WorldWideScience

Sample records for advanced digital imaging

  1. Advanced techniques in digital mammographic images recognition

    International Nuclear Information System (INIS)

    Computer Aided Detection and Diagnosis is used in digital radiography as a second thought in the process of determining diagnoses, which reduces the percentage of wrong diagnoses of the established interpretation of mammographic images. The issues that are discussed in the dissertation are the analyses and improvement of advanced technologies in the field of artificial intelligence, more specifically in the field of machine learning for solving diagnostic problems and automatic detection of speculated lesions in digital mammograms. The developed of SVM-based ICAD system with cascade architecture for analyses and comparison mammographic images in both projections (CC and MLO) gives excellent result for detection and masses and microcalcifications. In order to develop a system with optimal performances of sensitivity, specificity and time complexity, a set of relevant characteristics need to be created which will show all the pathological regions that might be present in the mammographic image. The structure of the mammographic image, size and the large number of pathological structures in this area are the reason why the creation of a set of these features is necessary for the presentation of good indicators. These pathological structures are a real challenge today and the world of science is working in that direction. The doctoral dissertation showed that the system has optimal results, which are confirmed by experts, and institutions, which are dealing with these same issues. Also, the thesis presents a new approach for automatic identification of regions of interest in the mammographic image where regions of interest are automatically selected for further processing mammography in cases when the number of examined patients is higher. Out of 480 mammographic images downloaded from MIAS database and tested with ICAD system the author shows that, after separation and selection of relevant features of ICAD system the accuracy is 89.7% (96.4% for microcalcifications

  2. Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications

    Science.gov (United States)

    Helvie, Mark A.

    2011-01-01

    Synopsis This article discusses recent developments in advanced derivative technologies associated with digital mammography. Digital breast tomosynthesis – its principles, development, and early clinical trials are reviewed. Contrast enhanced digital mammography and combined imaging systems with digital mammography and ultrasound are also discussed. Although all these methods are currently research programs, they hold promise for improving cancer detection and characterization if early results are confirmed by clinical trials. PMID:20868894

  3. Advanced digital detectors for neutron imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F. Patrick

    2003-12-01

    Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.

  4. Digital radiography and advanced imaging techniques in dentistry

    OpenAIRE

    Burcu Keles Evlice; Haluk Oztunc

    2013-01-01

    Since the discovery of x-rays in 1895, film has been the primary medium for capturing, displaying and storing radiographic images. Digital or filmless radiography is slowly being adopted by the dental profession. Digital radiography offers a number of capabilities compared with conventional radiography, such as postprocessing, electronic archiving, concurrent access to images, and improved data distribution. Computer based applications which are used for quantitative measurements and evaluati...

  5. Digital radiography and advanced imaging techniques in dentistry

    Directory of Open Access Journals (Sweden)

    Burcu Keles Evlice

    2013-04-01

    Full Text Available Since the discovery of x-rays in 1895, film has been the primary medium for capturing, displaying and storing radiographic images. Digital or filmless radiography is slowly being adopted by the dental profession. Digital radiography offers a number of capabilities compared with conventional radiography, such as postprocessing, electronic archiving, concurrent access to images, and improved data distribution. Computer based applications which are used for quantitative measurements and evaluations on digital images for better user interpretation. New diagnostic imaging processes are improved connected with the technological progress of computer systems. Since the first clinical use of computed tomography (CT scans in 1972, technological development has been rapid. Dental volumetric tomography (DVT, uniquely used for dentomaxillofacial imaging came to the market owing to recent rapid developments in digital radiology technology and is becoming more popular in dental applications. Low radiation dose cone beam computed tomography (CBCT units that are commercially available at a lower cost than CT units, has performed valuable diagnostic information for dentists. [Archives Medical Review Journal 2013; 22(2.000: 230-238

  6. Advances in digital printing and quality considerations of digitally printed images

    Science.gov (United States)

    Waes, Walter C.

    1997-02-01

    The traditional 'graphic arts' market has changed very rapidly. It has been only ten years now since Aldus introduced its 'PageMaker' software for text and layout. The platform used was Apple-Mac, which became also the standard for many other graphic applications. The so-called high-end workstations disappeared. This was the start for what later was called: the desk top publishing revolution. At the same time, image scanning became also user-friendly and heavy duty scanners were reduced to desktop-size. Color- reproduction became a commodity product. Since then, the pre-press industry has been going through a technical nightmare, trying to keep up with the digital explosion. One after another, tasks and crafts of pre-press were being transformed by digital technologies. New technologies in this field came almost too fast for many people to adapt. The next digital revolution will be for the commercial printers. All the reasons are explained later in this document. There is now a definite need for a different business-strategy and a new positioning in the electronic media-world. Niches have to be located for new graphic arts- applications. Electronic services to-and-from originators' and executors environments became a requirement. Data can now flow on-line between the printer and the originator of the job. It is no longer the pre-press shop who is controlling this. In many cases, electronic data goes between the print-buyer or agency and the printer. High power communication-systems with accepted standard color- management are transforming the printer, and more particularly, the pre-press shop fatally. The new digital printing market, now in the beginning of its expected full expansion, has to do with growing requests coming from agencies and other print-buyers for: (1) short-run printing; (2) print-on-demand approximately in-time; (3) personalization or other forms of customization; (4) quick turnaround.

  7. Ultra-realistic imaging advanced techniques in analogue and digital colour holography

    CERN Document Server

    Bjelkhagen, Hans

    2013-01-01

    Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a technique of ultra-realistic imaging.After a historical review of progress in holography, the book: Discusses CW recording lasers, pulsed holography lasers, and reviews optical designs for many of the principal laser types with emphasis on attaining th

  8. Digital image processing.

    Science.gov (United States)

    Seeram, Euclid

    2004-01-01

    Digital image processing is now commonplace in radiology, nuclear medicine and sonography. This article outlines underlying principles and concepts of digital image processing. After completing this article, readers should be able to: List the limitations of film-based imaging. Identify major components of a digital imaging system. Describe the history and application areas of digital image processing. Discuss image representation and the fundamentals of digital image processing. Outline digital image processing techniques and processing operations used in selected imaging modalities. Explain the basic concepts and visualization tools used in 3-D and virtual reality imaging. Recognize medical imaging informatics as a new area of specialization for radiologic technologists. PMID:15352557

  9. Digital imaging in anatomic pathology.

    Science.gov (United States)

    O'Brien, M J; Sotnikov, A V

    1996-10-01

    Advances in computer technology continue to bring new innovations to departments of anatomic pathology. This article briefly reviews the present status of digital optical imaging, and explores the directions that this technology may lead over the next several years. Technical requirements for digital microscopic and gross imaging, and the available options for image archival and retrieval are summarized. The advantages of digital images over conventional photography in the conference room, and the usefulness of digital imaging in the frozen section suite and gross room, as an adjunct to surgical signout and as a resource for training and education, are discussed. An approach to the future construction of digital histologic sections and the computer as microscope is described. The digital technologic applications that are now available as components of the surgical pathologist's workstation are enumerated. These include laboratory information systems, computerized voice recognition, and on-line or CD-based literature searching, texts and atlases and, in some departments, on-line image databases. The authors suggest that, in addition to these resources that are already available, tomorrow's surgical pathology workstation will include network-linked digital histologic databases, on-line software for image analysis and 3-D image enhancement, expert systems, and ultimately, advanced pattern recognition capabilities. In conclusion, the authors submit that digital optical imaging is likely to have a significant and positive impact on the future development of anatomic pathology. PMID:8853053

  10. Optical and digital image processing

    CERN Document Server

    Cristobal, Gabriel; Thienpont, Hugo

    2011-01-01

    In recent years, Moore's law has fostered the steady growth of the field of digital image processing, though the computational complexity remains a problem for most of the digital image processing applications. In parallel, the research domain of optical image processing has matured, potentially bypassing the problems digital approaches were suffering and bringing new applications. The advancement of technology calls for applications and knowledge at the intersection of both areas but there is a clear knowledge gap between the digital signal processing and the optical processing communities. T

  11. Digital image scrambling

    Institute of Scientific and Technical Information of China (English)

    丁玮; 闫伟齐; 齐东旭

    2001-01-01

    The purpose of digital image scrambling is to transforn a given digital image into a rather scrambled one so as to make it difficult for other people to find out the true meaning of the scrambled image. This paper comes up with a certain number of approaches to scrambling digital images, which, when thus processed, cannot be reconstructed in a common way. As a result, the original image is enc yrypted and protected.

  12. Digital Radiation image

    Directory of Open Access Journals (Sweden)

    Abou-Bakr Ramadan

    2012-03-01

    Full Text Available This work introduces a new way for data visualization. Its name is Digital Application name' Image. Normal digital image is created by digital camera or digital scanner but digital application name image is created by measurements of monitoring data. This work uses the data which is measured by radiation monitoring station and classifies it using fuzzy logic rules to create digital radiation image. The main unique advantage of digital radiation image is that it expresses thousands of measurements in a very clear form through only one picture while the maximum number of measurements does not exceed 100 with other conventional visualization methods. This feature gives a facility to view one year of all recorded measurements in only one photo. This picture helps the user to observe the behavior of thousands of measurements in few minutes instead of spending few hours for reviewing hundreds of charts for the same measurements.

  13. An advanced digital image-capture computer system for gross specimens: a substitute for gross description.

    Science.gov (United States)

    Leong, A S; Visinoni, F; Visinoni, C; Milios, J

    2000-05-01

    The description of macroscopic appearances of surgically excised specimens together with the sites of specimen sampling form an important component in the documentation of a histopathology specimen. Unfortunately, accuracy of description depends on the vocabulary and descriptive prowess of the pathologist which means that the result can be variable. Transcription of the dictated word also takes time and involves typists. We developed a user-friendly, high-resolution image capture system that will supplement word description of macroscopic specimens and has the potential to replace it completely. It also provides the opportunity of revisiting traditional methods of documenting specimens with words, allowing the production of more relevant and user-friendly reports containing information relevant to clinical management and supplemented by high-resolution digital images. The accompanying Windows-based software has capabilities of generating the entire histopathology report and allows rapid retrospective searches through any one of several common search parameters. The stored images form a powerful database for teaching and research. Connection to remote transmission facilities allows teleconferencing and telepathology consultations.

  14. Digital image processing in radiology

    International Nuclear Information System (INIS)

    The digital imaging process offers unique opportunities in the application of biomedical engineering techniques to improve health care delivery. The purpose of this text is to acquaint the reader with certain activities that have already shown promise and to explore future possibilities to extend the usefulness of this method of diagnostic inquiry. The format of the text begins with a historical presentation of the early evaluation of digital radiography by several pioneering groups. This is followed by a discussion of the general principles involved, but in the context of their application to the advancement of clinical usefulness of digital radiography. Afterwards, digital radiographic techniques are discussed under the common formate of organ systems with in depth exploration of novel methods by which digital radiography can be employed. Other chapters address specific advantages of the technical characteristics of digital radiography and follow the overall theme of improved data acquisitions, storage, manipulation, and transfer

  15. Digital Solution to Mining Image Monitor System

    Institute of Scientific and Technical Information of China (English)

    刘越男; 孙继平; 苏辉; 那景芳

    2001-01-01

    The thesis describes an advanced digital solution to mining digital image monitor system, which makes up the shortage of the traditional mining analog image monitor. It illustrates the system components and how to choose the encoder bandwidth of the system. The problem of image multicast and its solution in LAN are also discussed.

  16. Managing digital images.

    Science.gov (United States)

    Swartz, M L

    2000-09-01

    Although most orthodontists can rely on their orthodontic image software, those who have the need to go beyond just the monitor display of the images will need to get behind the scenes. Understanding a little of what makes up digital images and how to manipulate the variables will enable them to get optimum image quality as well as conserve on time, file size, and storage media. For those who import bitmapped images into digital presentations, the ability to adjust these variables can enable them to create presentation files that are manageable in size, will display without delays, and are of optimum resolution. PMID:10982939

  17. Technical report: Measuring digital image quality

    OpenAIRE

    Lundström, Claes

    2006-01-01

    Imaging is an invaluable tool in many research areas and other advanced domains such as health care. When developing any system dealing with images, image quality issues are insurmountable. This report describes digital image quality from many viewpoints, from retinal receptor characteristics to perceptual compression algorithms. Special focus is given to perceptual image quality measures.

  18. Digital imaging primer

    CERN Document Server

    Parkin, Alan

    2016-01-01

    Digital Imaging targets everyyone with an interest in digital imaging, be they professional or private, who uses even quite modest equipment such as a PC, digital camera and scanner, a graphics editor such as Paint, and an inkjet printer. Uniquely, it is intended to fill the gap between highly technical texts for academics (with access to expensive equipment) and superficial introductions for amateurs. The four-part treatment spans theory, technology, programs and practice. Theory covers integer arithmetic, additive and subtractive color, greyscales, computational geometry, and a new presentation of discrete Fourier analysis; Technology considers bitmap file structures, scanners, digital cameras, graphic editors, and inkjet printers; Programs develops several processing tools for use in conjunction with a standard Paint graphics editor and supplementary processing tools; Practice discusses 1-bit, greyscale, 4-bit, 8-bit, and 24-bit images for the practice section. Relevant QBASIC code is supplied an accompa...

  19. Digital Fourier analysis advanced techniques

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to advanced digital Fourier analysis for advanced undergraduate and graduate students. Assuming knowledge of the Fast Fourier Transform, this book covers advanced topics including the Hilbert transform, cepstrum analysis, and the two-dimensional Fourier transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Advanced Techniques" includes practice problems and thorough Appendices. As a central feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. The applet source code in Visual Basic is provided online, enabling advanced students to tweak and change the programs for more sophisticated results. A complete, intuitive guide, "Digital Fourier Analysis - Advanced Techniques" is an essential reference for students in science and engineering.

  20. Advanced digital optical communications

    CERN Document Server

    Binh, Le Nguyen

    2015-01-01

    This book provides a fundamental understanding of digital communication applications in optical communication technologies. Emphasizing operation principles versus mathematical analysis, the Second Edition includes new coverage of superchannel optical transmission systems, metropolitan and long-haul optical systems and networks, and Nyquist pulse shaping and high spectral efficiency of optical transmission systems, as well as new homework problems and examples. Featuring theoretical foundations as well as practical case studies, the text focuses on enhancements to digital technologies that are

  1. Digital color imaging

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  2. Digital image analysis

    DEFF Research Database (Denmark)

    Riber-Hansen, Rikke; Vainer, Ben; Steiniche, Torben

    2012-01-01

    Digital image analysis (DIA) is increasingly implemented in histopathological research to facilitate truly quantitative measurements, decrease inter-observer variation and reduce hands-on time. Originally, efforts were made to enable DIA to reproduce manually obtained results on histological slides...... reproducibility, application of stereology-based quantitative measurements, time consumption, optimization of histological slides, regions of interest selection and recent developments in staining and imaging techniques....

  3. Digital imaging a practical approach

    CERN Document Server

    Koelling, Jill Marie

    2004-01-01

    Digital Imaging is the essential guide to understanding digitization and managing a digitizing project. Koelling covers everything from deciding if digitizing is for you to planning and management, choosing equipment, and managing databases. Not only does she guide you in mastering the technical details, she also helps you find the fun in working with images.

  4. Digital geometry in image processing

    CERN Document Server

    Mukhopadhyay, Jayanta

    2013-01-01

    Exploring theories and applications developed during the last 30 years, Digital Geometry in Image Processing presents a mathematical treatment of the properties of digital metric spaces and their relevance in analyzing shapes in two and three dimensions. Unlike similar books, this one connects the two areas of image processing and digital geometry, highlighting important results of digital geometry that are currently used in image analysis and processing. The book discusses different digital geometries in multi-dimensional integral coordinate spaces. It also describes interesting properties of

  5. Hidden digital watermarks in images.

    Science.gov (United States)

    Hsu, C T; Wu, J L

    1999-01-01

    In this paper, an image authentication technique by embedding digital "watermarks" into images is proposed. Watermarking is a technique for labeling digital pictures by hiding secret information into the images. Sophisticated watermark embedding is a potential method to discourage unauthorized copying or attest the origin of the images. In our approach, we embed the watermarks with visually recognizable patterns into the images by selectively modifying the middle-frequency parts of the image. Several variations of the proposed method are addressed. The experimental results show that the proposed technique successfully survives image processing operations, image cropping, and the Joint Photographic Experts Group (JPEG) lossy compression.

  6. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  7. Perceptual digital imaging methods and applications

    CERN Document Server

    Lukac, Rastislav

    2012-01-01

    Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of tradition

  8. Advances in imaging and electron physics

    CERN Document Server

    Hawkes, Peter W

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Continuation order customers for either of the original Advances will receiveVolume 90, the first combined volume.

  9. A new full-field digital mammography system with and without the use of an advanced post-processing algorithm: Comparison of image quality and diagnostic performance

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hye Shin; Kim, Sun Mi; Jang, Mi Jung; Yun, Bo La; Kim, Boh Young [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Ko, Eun Sook; Han, Boo Kyung [Dept. of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Chang, Jung Min; Yi, Ann; Cho, Nariya; Moon, Woo Kyung [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Choi, Hye Young [Dept. of Radiology, Gyeongsang National University Hospital, Jinju (Korea, Republic of)

    2014-06-15

    To compare new full-field digital mammography (FFDM) with and without use of an advanced post-processing algorithm to improve image quality, lesion detection, diagnostic performance, and priority rank. During a 22-month period, we prospectively enrolled 100 cases of specimen FFDM mammography (Brestige), which was performed alone or in combination with a post-processing algorithm developed by the manufacturer: group A (SMA), specimen mammography without application of {sup M}ammogram enhancement ver. 2.0{sup ;} group B (SMB), specimen mammography with application of {sup M}ammogram enhancement ver. 2.0{sup .} Two sets of specimen mammographies were randomly reviewed by five experienced radiologists. Image quality, lesion detection, diagnostic performance, and priority rank with regard to image preference were evaluated. Three aspects of image quality (overall quality, contrast, and noise) of the SMB were significantly superior to those of SMA (p < 0.05). SMB was significantly superior to SMA for visualizing calcifications (p < 0.05). Diagnostic performance, as evaluated by cancer score, was similar between SMA and SMB. SMB was preferred to SMA by four of the five reviewers. The post-processing algorithm may improve image quality with better image preference in FFDM than without use of the software.

  10. A new full-field digital mammography system with and without the use of an advanced post-processing algorithm: Comparison of image quality and diagnostic performance

    International Nuclear Information System (INIS)

    To compare new full-field digital mammography (FFDM) with and without use of an advanced post-processing algorithm to improve image quality, lesion detection, diagnostic performance, and priority rank. During a 22-month period, we prospectively enrolled 100 cases of specimen FFDM mammography (Brestige), which was performed alone or in combination with a post-processing algorithm developed by the manufacturer: group A (SMA), specimen mammography without application of Mammogram enhancement ver. 2.0; group B (SMB), specimen mammography with application of Mammogram enhancement ver. 2.0. Two sets of specimen mammographies were randomly reviewed by five experienced radiologists. Image quality, lesion detection, diagnostic performance, and priority rank with regard to image preference were evaluated. Three aspects of image quality (overall quality, contrast, and noise) of the SMB were significantly superior to those of SMA (p < 0.05). SMB was significantly superior to SMA for visualizing calcifications (p < 0.05). Diagnostic performance, as evaluated by cancer score, was similar between SMA and SMB. SMB was preferred to SMA by four of the five reviewers. The post-processing algorithm may improve image quality with better image preference in FFDM than without use of the software.

  11. Imagers for digital still photography

    Science.gov (United States)

    Bosiers, Jan; Dillen, Bart; Draijer, Cees; Manoury, Erik-Jan; Meessen, Louis; Peters, Inge

    2006-04-01

    This paper gives an overview of the requirements for, and current state-of-the-art of, CCD and CMOS imagers for use in digital still photography. Four market segments will be reviewed: mobile imaging, consumer "point-and-shoot cameras", consumer digital SLR cameras and high-end professional camera systems. The paper will also present some challenges and innovations with respect to packaging, testing, and system integration.

  12. Advances in imaging and electron physics

    CERN Document Server

    Mulvey, Tom

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

  13. Fundamental concepts of digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Twogood, R.E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  14. Fundamental Concepts of Digital Image Processing

    Science.gov (United States)

    Twogood, R. E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  15. Digital Images Analysis

    OpenAIRE

    Roman-Gonzalez, Avid

    2012-01-01

    International audience; A specific field of image processing focuses on the evaluation of image quality and assessment of their authenticity. A loss of image quality may be due to the various processes by which it passes. In assessing the authenticity of the image we detect forgeries, detection of hidden messages, etc. In this work, we present an overview of these areas; these areas have in common the need to develop theories and techniques to detect changes in the image that it is not detect...

  16. Principles of digital image synthesis

    CERN Document Server

    Glassner, Andrew S

    1995-01-01

    Image synthesis, or rendering, is a field of transformation: it changesgeometry and physics into meaningful images. Because the most popularalgorithms frequently change, it is increasingly important for researchersand implementors to have a basic understanding of the principles of imagesynthesis. Focusing on theory, Andrew Glassner provides a comprehensiveexplanation of the three core fields of study that come together to formdigital image synthesis: the human visual system, digital signalprocessing, and the interaction of matter and light. Assuming no more thana basic background in calculus,

  17. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  18. Recent advances in imaging technologies in dentistry

    Institute of Scientific and Technical Information of China (English)

    Naseem; Shah; Nikhil; Bansal; Ajay; Logani

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools,specially imaging methods, have become mandatory.From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation(brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.

  19. Advanced image memory architecture

    Science.gov (United States)

    Vercillo, Richard; McNeill, Kevin M.

    1994-05-01

    A workstation for radiographic images, known as the Arizona Viewing Console (AVC), was developed at the University of Arizona Health Sciences Center in the Department of Radiology. This workstation has been in use as a research tool to aid us in investigating how a radiologist interacts with a workstation, to determine which image processing features are required to aid the radiologist, to develop user interfaces and to support psychophysical and clinical studies. Results from these studies have show a need to increase the current image memory's available storage in order to accommodate high resolution images. The current triple-ported image memory can be allocated to store any number of images up to a combined total of 4 million pixels. Over the past couple of years, higher resolution images have become easier to generate with the advent of laser digitizers and computed radiology systems. As part of our research, a larger 32 million pixel image memory for AVC has been designed to replace the existing image memory.

  20. An Experimental Digital Image Processor

    Science.gov (United States)

    Cok, Ronald S.

    1986-12-01

    A prototype digital image processor for enhancing photographic images has been built in the Research Laboratories at Kodak. This image processor implements a particular version of each of the following algorithms: photographic grain and noise removal, edge sharpening, multidimensional image-segmentation, image-tone reproduction adjustment, and image-color saturation adjustment. All processing, except for segmentation and analysis, is performed by massively parallel and pipelined special-purpose hardware. This hardware runs at 10 MHz and can be adjusted to handle any size digital image. The segmentation circuits run at 30 MHz. The segmentation data are used by three single-board computers for calculating the tonescale adjustment curves. The system, as a whole, has the capability of completely processing 10 million three-color pixels per second. The grain removal and edge enhancement algorithms represent the largest part of the pipelined hardware, operating at over 8 billion integer operations per second. The edge enhancement is performed by unsharp masking, and the grain removal is done using a collapsed Walsh-hadamard transform filtering technique (U.S. Patent No. 4549212). These two algo-rithms can be realized using four basic processing elements, some of which have been imple-mented as VLSI semicustom integrated circuits. These circuits implement the algorithms with a high degree of efficiency, modularity, and testability. The digital processor is controlled by a Digital Equipment Corporation (DEC) PDP 11 minicomputer and can be interfaced to electronic printing and/or electronic scanning de-vices. The processor has been used to process over a thousand diagnostic images.

  1. Image processing techniques for digital orthophotoquad production

    Science.gov (United States)

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  2. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  3. Digital Images on the DIME

    Science.gov (United States)

    2003-01-01

    With NASA on its side, Positive Systems, Inc., of Whitefish, Montana, is veering away from the industry standards defined for producing and processing remotely sensed images. A top developer of imaging products for geographic information system (GIS) and computer-aided design (CAD) applications, Positive Systems is bucking traditional imaging concepts with a cost-effective and time-saving software tool called Digital Images Made Easy (DIME(trademark)). Like piecing a jigsaw puzzle together, DIME can integrate a series of raw aerial or satellite snapshots into a single, seamless panoramic image, known as a 'mosaic.' The 'mosaicked' images serve as useful backdrops to GIS maps - which typically consist of line drawings called 'vectors' - by allowing users to view a multidimensional map that provides substantially more geographic information.

  4. Digital radiology and digitally formatted image management systems

    International Nuclear Information System (INIS)

    The number of diagnostic examinations performed with digitally formatted imaging equipment is increasing. Digital general-purpose and fluoroscopic radiology systems are being clinically evaluated. Digitizing conventional x-ray films, such as mammograms, frequently improves the diagnostic quality of the images. The digitizing process with laser has also afforded the opportunity to document required spatial resolution for digital imaging and network systems. The use of digitally formatted image instrumentation imposes new requirements on the acquisition, display and manipulation, transmission, hard copy image recording, and archiving of diagnostic data. Networking of digitally formatted image data offers many advantages for managing digital information. This paper identifies and describes digital radiographic systems. Parameters required for designing and implementing a digital image management system are outlined. Spatial and contrast resolution requirements are identified. The key parameters include the amount of image data generated each working day, the retrieval rate of the generated data, the display hardware and software needed for interactive diagnosis display stations, the requirements for analog hard copy generation, and on-line and long-term archiving requirements. These image management systems are often called PACS (Picture Archiving and Communication Systems)

  5. Digital imaging and fabrication.

    Science.gov (United States)

    Zandparsa, Roya

    2014-01-01

    Bioceramics have been adopted in dental restorations for implants, bridges, inlays, onlays, and all-ceramic crowns. Dental bioceramics include glass ceramics, reinforced porcelains, zirconias, aluminas, fiber-reinforced ceramic composites, and multilayered ceramic structures. The process of additive manufacturing is ideally suited to dentistry. Models are designed using data from a computed tomography scan or magnetic resonance imaging. Since its development in 2001, direct ceramic machining of presintered yttria tetragonal zirconia polycrystal has become increasingly popular in dentistry. There are wide variety commercially available cements for luting all-ceramic restorations. However, resin cements have lower solubility and better aesthetic characteristics. PMID:24286650

  6. Digital imaging and fabrication.

    Science.gov (United States)

    Zandparsa, Roya

    2014-01-01

    Bioceramics have been adopted in dental restorations for implants, bridges, inlays, onlays, and all-ceramic crowns. Dental bioceramics include glass ceramics, reinforced porcelains, zirconias, aluminas, fiber-reinforced ceramic composites, and multilayered ceramic structures. The process of additive manufacturing is ideally suited to dentistry. Models are designed using data from a computed tomography scan or magnetic resonance imaging. Since its development in 2001, direct ceramic machining of presintered yttria tetragonal zirconia polycrystal has become increasingly popular in dentistry. There are wide variety commercially available cements for luting all-ceramic restorations. However, resin cements have lower solubility and better aesthetic characteristics.

  7. Advances in digital terrain analysis

    CERN Document Server

    Zhou, Qiming; Tang, Guo-An

    2008-01-01

    Terrain analysis has been an active study field for years and attracted research studies from geographers, surveyors, engineers and computer scientists. With the rapid growth of Geographical Information System (GIS) technology, particularly the establishment of high resolution Digital Elevation Models (DEM) at national level, the challenge is now focused on delivering justifiable socio-economical and environmental benefits. The contributions in this book represent the state-of-the-art of terrain analysis methods and techniques in areas of digital representation, morphological and hydrological models, uncertainty and applications of terrain analysis.

  8. Nonlinear digital imaging

    CERN Document Server

    Lu, Jen-Tang; Fleischer, Jason W

    2015-01-01

    Nonlinear imaging systems can surpass the limits of linear optics, but to date they have all relied on physical media (e.g. crystals) to work. These materials are all constrained by their physical properties, such as frequency selectivity, environmental sensitivity, time behavior, and fixed nonlinear response. Here, we show that electro-optic spatial light modulators (SLMs) can take the place of traditional nonlinear media, provided that there is a feedback between the shape of the object and the pattern on the modulator. This feedback creates a designer illumination that generalizes the field of adaptive optics to include object-dependent patterns. Unlike physical media, the SLM response can provide arbitrary mathematical functions, operate over broad bandwidths at high speeds, and work equally well at high power and single-photon levels. We demonstrate the method experimentally for both coherent and incoherent light.

  9. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  10. Higuchi dimension of digital images.

    Directory of Open Access Journals (Sweden)

    Helmut Ahammer

    Full Text Available There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example, Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi dimension of these 1D signals is calculated using Higuchi's algorithm, and it is shown that both regions of interests and directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital images, are given. The main result is that Higuchi's algorithm allows a direction dependent as well as direction independent analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible. Moreover, the proposed method is not restricted to Higuchi's algorithm, as any 1D method of analysis, can be applied.

  11. Study on Digital Image Scrambling Algorithm

    OpenAIRE

    Wu Xue

    2013-01-01

    Encryption algorithm of traditional cryptology has strong safety, but the effect of encrypting images is not good. Digital image scrambling means that a digital image is transformed into a chaotic image which has no evident significance, but the operator can reconstruct the chaotic image into the original image by using the specific algorithm. Image scrambling encryption technology based on chaos theory makes use of chaotic signal to encrypt image data flow, which has the advantages of high s...

  12. Digital Image Watermarking Techniques: A Review

    Directory of Open Access Journals (Sweden)

    Pushpa Mala .S.

    2015-05-01

    Full Text Available Advancements in science and technology have introduced the need to protect data, authenticate data, integrate data, assert ownership, content labelling and security. Digital Watermarking schemes protect all forms of digital data. Digital Image Watermarking can be applied to gray scale, halftone, color, medical and 3D images. The process of watermarking can be broadly classified into three phases namely embedding, attacking, and decoding for typical scenarios. Some of the watermarking schemes adopted in the past include vector quantization, spread spectrum, SVD, DCT, DFT, etc. It was observed that the spread spectrum was more robust and it had also been applied for patenting. In spite of this, the method could not withstand high amplitude noise. Hence, later DCT, DFT and Wavelets were used. These schemes were not robust to collusion attacks. In this review, we have identified the embedding and detection schemes of the existing watermarks over the past decade and analyzed the robustness of each of these methods. The different parameters considered to analyze the performance of the existing watermarking schemes are also discussed. Research under watermarking is a great field of interest involving multimedia security, forensics, data authentication and digital rights protection. This paper will be useful for researchers to implement a robust watermarking scheme.

  13. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  14. The Digital Outcasts - Advanced Margins in Digital Societies

    DEFF Research Database (Denmark)

    Hjelholt, Morten

    2015-01-01

    This work-in-progress paper reports on preliminary findings from 15 interviews with so called “non-digital” Danish citizens to address and problematize this classification as a social category. In linking classification theory (the categories used in the digital post system) to a notion of advanced...... digital marginalization (to portray the path dependency of those who struggle to maintain links to societal membership) the paper expose the complexity of the “non-digital” and discusses how the assembling and connection of certain people, as a starting point for governmental strategies, might distort...... and prevent insights into how individuals and social groups are (re)-produced into new socio-technical configurations. The paper presents preliminary findings that suggest that “non-digitals” are in fact digital users but not in a way that allows them to be categorised as such. Finally the paper outline how...

  15. Advances in digital video for electronic media.

    Science.gov (United States)

    McAfooes, J A

    1997-01-01

    From media's early days of film strips and records, to today's multimedia CD-ROMs, nurses have embraced educational tools. Today, the capabilities of these tools have placed a tremendous demand for providing information any time, any where. This has led to increasing digitization of sights and sounds. Once digitized, this information can travel over information highways made up of telephone lines, fiberoptic cables, microwaves and satellites, or it can be stored on magnetic and optical media. Technological advances have made it possible for computer users to create, store and retrieve high quality digital still and moving video and audio for inclusion in electronic media. Methods for digitizing include capturing and converting the information with cameras, scanners and capture boards. Digital video compression/decompression (codec) standards vary in quality. Potential uses of digital video abound including video on demand, videoconferencing, distance learning, telemedicine, on-line education and computer-based training. Examples illustrating the differences in digital video formats will be shown during the presentation. PMID:10175444

  16. Digital image processing mathematical and computational methods

    CERN Document Server

    Blackledge, J M

    2005-01-01

    This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

  17. IMAGE AUTHENTICATION TECHNIQUES AND ADVANCES SURVEY

    Directory of Open Access Journals (Sweden)

    Derroll David

    2015-10-01

    Full Text Available With the advanced technologies in the area of Engineering the World has become a smaller place and communication is in our finger tips. The multimedia sharing traffic through electronic media has increased tremendously in the recent years with the higher use of social networking sites. The statistics of amount of images uploaded in the internet per day is very huge. Digital Image security has become vulnerable due to increase transmission over non-secure channel and needs protection. Digital Images play a crucial role in medical and military images etc. and any tampering of them is a serious issue. Several approaches are introduced to authenticate multimedia images. These approaches can be categorized into fragile and semi-fragile watermarking, conventional cryptography and digital signatures based on the image content. The aim of this paper is to provide a comparative study and also a survey of emerging techniques for image authentication. The important requirements for an efficient image authentication system design are discussed along with the classification of image authentication into tamper detection, localization and reconstruction and robustness against image processing operation. Furthermore, the concept of image content based authentication is enlightened.

  18. Secure Steganography for Digital Images

    Directory of Open Access Journals (Sweden)

    Khan Farhan Rafat

    2016-06-01

    Full Text Available The degree of imperceptibility of hidden image in the ‘Digital Image Steganography’ is mostly defined in relation to the limitation of Human Visual System (HVS, its chances of detection using statistical methods and its capacity to hide maximum information inside its body. Whereas, a tradeoff does exist between data hiding capacity of the cover image and robustness of underlying information hiding scheme. This paper is an exertion to underline the technique to embed information inside the cover at Stego key dependent locations, which are hard to detect, to achieve optimal security. Hence, it is secure under worst case scenario where Wendy is in possession of the original image (cover agreed upon by Alice and Bob for their secret communication. Reliability of our proposed solution can be appreciated by observing the differences between cover, preprocessed cover and Stego object. Proposed scheme is equally good for color as well as gray scaled images. Another interesting aspect of this research is that it implicitly presents fusion of cover and information to be hidden in it while taking care of passive attacks on it.

  19. Micro-Structure Measurement and Imaging Based on Digital Holography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Suk; Jung, Hyun Chul; Chang, Ho Seob; Akhter, Naseem [Chosun University, Gwangju (Korea, Republic of); Kee, Chang Doo [Chonnam National University, Gwangju (Korea, Republic of)

    2010-06-15

    Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated

  20. Digital Image Analysis for Detechip Code Determination

    OpenAIRE

    Marcus Lyon; Wilson, Mark V.; Kerry A. Rouhier; David J. Symonsbergen; Kiran Bastola; Ishwor Thapa; Holmes, Andrea E.; Sharmin M. Sikich; Abby Jackson

    2012-01-01

    DETECHIP® is a molecular sensing array used for identification of a large variety of substances. Previous methodology for the analysis of DETECHIP® used human vision to distinguish color changes induced by the presence of the analyte of interest. This paper describes several analysis techniques using digital images of DETECHIP® . Both a digital camera and flatbed desktop photo scanner were used to obtain Jpeg images. Color information within these digital images was obt...

  1. Digital Image Analysis for Detechip Code Determination

    OpenAIRE

    Marcus Lyon; Wilson, Mark V.; Holmes, Andrea E.; Sharmin M. Sikich; Abby Jackson; Kerry A. Rouhier; David J. Symonsbergen; Kiran Bastola

    2012-01-01

    DETECHIP® is a molecular sensing array used for identification of a large variety of substances. Previous methodology for the analysis of DETECHIP® used human vision to distinguish color changes induced by the presence of the analyte of interest. This paper describes several analysis techniques using digital images of DETECHIP®. Both a digital camera and flatbed desktop photo scanner were used to obtain Jpeg images. Color information within these digital images was obtained through the me...

  2. Digital Image Analysis for DETCHIP® Code Determination

    OpenAIRE

    Lyon, Marcus; Wilson, Mark V.; Kerry A. Rouhier; David J. Symonsbergen; Bastola, Kiran; Thapa, Ishwor; Holmes, Andrea E.; Sharmin M. Sikich; Jackson, Abby

    2012-01-01

    DETECHIP® is a molecular sensing array used for identification of a large variety of substances. Previous methodology for the analysis of DETECHIP® used human vision to distinguish color changes induced by the presence of the analyte of interest. This paper describes several analysis techniques using digital images of DETECHIP®. Both a digital camera and flatbed desktop photo scanner were used to obtain Jpeg images. Color information within these digital images was obtained through the measur...

  3. Advanced digital signal processing and noise reduction

    CERN Document Server

    Vaseghi, Saeed V

    2008-01-01

    Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates an

  4. Digital signal processing techniques and applications in radar image processing

    CERN Document Server

    Wang, Bu-Chin

    2008-01-01

    A self-contained approach to DSP techniques and applications in radar imagingThe processing of radar images, in general, consists of three major fields: Digital Signal Processing (DSP); antenna and radar operation; and algorithms used to process the radar images. This book brings together material from these different areas to allow readers to gain a thorough understanding of how radar images are processed.The book is divided into three main parts and covers:* DSP principles and signal characteristics in both analog and digital domains, advanced signal sampling, and

  5. Digital X-ray imager

    International Nuclear Information System (INIS)

    The global objective of this cooperation was to lower the cost and improve the quality of breast health care in the United States. We planned to achieve it by designing a very high performance digital radiography unit for breast surgical specimen radiography in the operating room. These technical goals needed to be achieved at reasonable manufacturing costs to enable MedOptics to achieve high market penetration at a profit. Responsibility for overall project execution rested with MedOptics. MedOptics fabricated and demonstrated hardware, and selected components and handled the overall integration. After completion of this CRADA, MedOptics worked with collaborators to demonstrate clinical performance and utility. Finally, the company marketed the device. LLNL convened a multi-directorate expert panel for an intensive review of MedOptics point design. A written brief of panel conclusions and recommendations was prepared. In addition, LLNL was responsible for: computationally simulating the effects of varying source voltage and filtering (predicting the required dynamic range for the detector); evaluating CsI:Tl, CdWO4 and scintillating glass as image converters; recommending image enhancement algorithms. The LLNL modeling results guided the design and experimental elements of the project. The Laboratory's unique array of sources and detectors was employed to resolve specific technical questions. Our image processing expertise was applied to the selection of enhancement tools for image display

  6. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S.S.C.

    1985-01-01

    Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.

  7. Comparative Study of Image Denoising Algorithms in Digital Image Processing

    OpenAIRE

    Aarti Kumari; Gaurav Pushkarna

    2015-01-01

    This paper proposes a basic scheme for understanding the fundamentals of digital image processing and the image denising algorithm. There are three basic operation categorized on during image processing i.e. image rectification and restoration, enhancement and information extraction. Image denoising is the basic problem in digital image processing. The main task is to make the image free from Noise. Salt & pepper (Impulse) noise and the additive white Gaussian noise and blurredness are th...

  8. Comparative Study of Image Denoising Algorithms in Digital Image Processing

    OpenAIRE

    Aarti; Gaurav Pushkarna

    2014-01-01

    This paper proposes a basic scheme for understanding the fundamentals of digital image processing and the image denising algorithm. There are three basic operation categorized on during image processing i.e. image rectification and restoration, enhancement and information extraction. Image denoising is the basic problem in digital image processing. The main task is to make the image free from Noise. Salt & pepper (Impulse) noise and the additive white Gaussian noise and blurrednes...

  9. Authenticity and integrity of digital mammography images.

    Science.gov (United States)

    Zhou, X Q; Huang, H K; Lou, S L

    2001-08-01

    Data security becomes more and more important in telemammography which uses a public high-speed wide area network connecting the examination site with the mammography expert center. Generally, security is characterized in terms of privacy, authenticity and integrity of digital data. Privacy is a network access issue and is not considered in this paper. We present a method, authenticity and integrity of digital mammography, here which can meet the requirements of authenticity and integrity for mammography image (IM) transmission. The authenticity and integrity for mammography (AIDM) consists of the following four modules. 1) Image preprocessing: To segment breast pixels from background and extract patient information from digital imaging and communication in medicine (DICOM) image header. 2) Image hashing: To compute an image hash value of the mammogram using the MD5 hash algorithm. 3) Data encryption: To produce a digital envelope containing the encrypted image hash value (digital signature) and corresponding patient information. 4) Data embedding: To embed the digital envelope into the image. This is done by replacing the least significant bit of a random pixel of the mammogram by one bit of the digital envelope bit stream and repeating for all bits in the bit stream. Experiments with digital IMs demonstrate the following. 1) In the expert center, only the user who knows the private key can open the digital envelope and read the patient information data and the digital signature of the mammogram transmitted from the examination site. 2) Data integrity can be verified by matching the image hash value decrypted from the digital signature with that computed from the transmitted image. 3) No visual quality degradation is detected in the embedded image compared with the original. Our preliminary results demonstrate that AIDM is an effective method for image authenticity and integrity in telemammography application. PMID:11513029

  10. Authenticity and integrity of digital mammography images.

    Science.gov (United States)

    Zhou, X Q; Huang, H K; Lou, S L

    2001-08-01

    Data security becomes more and more important in telemammography which uses a public high-speed wide area network connecting the examination site with the mammography expert center. Generally, security is characterized in terms of privacy, authenticity and integrity of digital data. Privacy is a network access issue and is not considered in this paper. We present a method, authenticity and integrity of digital mammography, here which can meet the requirements of authenticity and integrity for mammography image (IM) transmission. The authenticity and integrity for mammography (AIDM) consists of the following four modules. 1) Image preprocessing: To segment breast pixels from background and extract patient information from digital imaging and communication in medicine (DICOM) image header. 2) Image hashing: To compute an image hash value of the mammogram using the MD5 hash algorithm. 3) Data encryption: To produce a digital envelope containing the encrypted image hash value (digital signature) and corresponding patient information. 4) Data embedding: To embed the digital envelope into the image. This is done by replacing the least significant bit of a random pixel of the mammogram by one bit of the digital envelope bit stream and repeating for all bits in the bit stream. Experiments with digital IMs demonstrate the following. 1) In the expert center, only the user who knows the private key can open the digital envelope and read the patient information data and the digital signature of the mammogram transmitted from the examination site. 2) Data integrity can be verified by matching the image hash value decrypted from the digital signature with that computed from the transmitted image. 3) No visual quality degradation is detected in the embedded image compared with the original. Our preliminary results demonstrate that AIDM is an effective method for image authenticity and integrity in telemammography application.

  11. Advanced laser image recorder.

    Science.gov (United States)

    Gramenopoulos, N; Hartfield, E D

    1972-12-01

    A laser image recorder is described, which is unique because of its advanced design and the state-of-the-art components employed to achieve high performance and versatility. The critical components are the pyramidal mirror scanner and the beam focusing lens. The scanner has a six-facet, beryllium mirror accurate to 0.33 sec of arc and rotating at 0-50,000 rpm on air bearings. A rapid change in speed is an important feature of this scanner. The focusing lens is diffraction limited with a flat field of 54 degrees , allowing a 90% duty cycle and the use of photographic film transported by a cylindrical drum. The lens converts the constant angular velocity of the reflected beam to a constant scanning velocity of the focused spot with a linearity of 0.05%. Maximum number of picture elements per line is 36,800 over a format of 228.6 mm. PMID:20119408

  12. Digital X-ray Imaging in Dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Dankook University, Yongin (Korea, Republic of)

    1999-08-15

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  13. Advanced biomedical image analysis

    CERN Document Server

    Haidekker, Mark A

    2010-01-01

    "This book covers the four major areas of image processing: Image enhancement and restoration, image segmentation, image quantification and classification, and image visualization. Image registration, storage, and compression are also covered. The text focuses on recently developed image processing and analysis operators and covers topical research"--Provided by publisher.

  14. Digital Imaging: An Adobe Photoshop Course

    Science.gov (United States)

    Cobb, Kristine

    2007-01-01

    This article introduces digital imaging, an Adobe Photoshop course at Shrewsbury High School in Shrewsbury, Massachusetts. Students are able to earn art credits to graduate by successfully completing the course. Digital imaging must cover art criteria as well as technical skills. The course begins with tutorials created by the instructor and other…

  15. Computing Hypercrossed Complex Pairings in Digital Images

    Directory of Open Access Journals (Sweden)

    Simge Öztunç

    2013-01-01

    Full Text Available We consider an additive group structure in digital images and introduce the commutator in digital images. Then we calculate the hypercrossed complex pairings which generates a normal subgroup in dimension 2 and in dimension 3 by using 8-adjacency and 26-adjacency.

  16. Digital Image Mechanical Identification (DIMI)

    CERN Document Server

    Hild, François

    2007-01-01

    A continuous pathway from digital images acquired during a mechanical test to quantitative identification of a constitutive law is presented herein based on displacement field analysis. From images, displacement fields are directly estimated within a finite element framework. From the latter, the application of the equilibrium gap method provides the means for rigidity field evaluation. In the present case, a reconditioned formulation is proposed for a better stability. Last, postulating a specific form of a damage law, a linear system is formed that gives a direct access to the (non-linear) damage growth law in one step. The two last procedures are presented, validated on an artificial case, and applied to the case of a biaxial tension of a composite sample driven up to failure. A quantitative estimate of the quality of the determination is proposed, and in the last application, it is shown that no more than 7% of the displacement field fluctuations are not accounted for by the determined damage law.

  17. Optical scatter imaging using digital Fourier microscopy

    CERN Document Server

    Seet, K Y T; Meredith, P; Zvyagin, A V

    2007-01-01

    An approach reported recently by Alexandrov et al. on optical scatter imaging, termed digital Fourier microscopy (DFM), represents an adaptation of digital Fourier holography to selective imaging of biological matter. Holographic mode of recording of the sample optical scatter enables reconstruction of the sample image. Form-factor of the sample constituents provides a basis for discrimination of these constituents implemented via flexible digital Fourier filtering at the post processing stage. Like in the dark-field microscopy, the DFM image contrast appears to improve due to the suppressed optical scatter from extended sample structures. In this paper, we present theoretical and experimental study of DFM using biological phantom that contains polymorphic scatterers.

  18. Standard digital reference images for titanium castings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The digital reference images provided in the adjunct to this standard illustrate various types and degrees of discontinuities occurring in titanium castings. Use of this standard for the specification or grading of castings requires procurement of the adjunct digital reference images, which illustrate the discontinuity types and severity levels. They are intended to provide the following: 1.1.1 A guide enabling recognition of titanium casting discontinuities and their differentiation both as to type and degree through digital radiographic examination. 1.1.2 Example digital radiographic illustrations of discontinuities and a nomenclature for reference in acceptance standards, specifications and drawings. 1.2 The digital reference images consist of seventeen digital files each illustrating eight grades of increasing severity. The files illustrate seven common discontinuity types representing casting sections up to 1-in. (25.4-mm). 1.3 The reference radiographs were developed for casting sections up to 1...

  19. Comparative Study of Image Denoising Algorithms in Digital Image Processing

    Directory of Open Access Journals (Sweden)

    Aarti Kumari

    2015-11-01

    Full Text Available This paper proposes a basic scheme for understanding the fundamentals of digital image processing and the image denising algorithm. There are three basic operation categorized on during image processing i.e. image rectification and restoration, enhancement and information extraction. Image denoising is the basic problem in digital image processing. The main task is to make the image free from Noise. Salt & pepper (Impulse noise and the additive white Gaussian noise and blurredness are the types of noise that occur during transmission and capturing. For denoising the image there are some algorithms which denoise the image.

  20. An algorithm for approximate rectification of digital aerial images

    Science.gov (United States)

    High-resolution aerial photography is one of the most valuable tools available for managing extensive landscapes. With recent advances in digital camera technology, computer hardware, and software, aerial photography is easier to collect, store, and transfer than ever before. Images can be automa...

  1. Image rejects in general direct digital radiography

    International Nuclear Information System (INIS)

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality

  2. Osteogenic sarcoma : imaging advances

    International Nuclear Information System (INIS)

    The contents are classification of osteosarcoma, radiographic appearance, radionuclide imaging, PET - positron emission tomography scanning, arteriography, computed tomography, MRI imaging, response of chemotherapy (43 refs.)

  3. A digital image capture method: legal and criminalistic aspects

    OpenAIRE

    Šiurna, Žilvinas

    2007-01-01

    The graduating paper focuses on the digital image capture method in criminalistic and also on its legal regulation and practical resort in the law enforcement institutions‘ investigations of criminal acts. The digital image capture is one of the methods of digital image capture in criminalistic. Its structure contains digital photography and digital video recording. The digital photography is used for strategical and investigative photography. The usage of the digital image capture method inv...

  4. Image restoration fundamentals and advances

    CERN Document Server

    Gunturk, Bahadir Kursat

    2012-01-01

    Image Restoration: Fundamentals and Advances responds to the need to update most existing references on the subject, many of which were published decades ago. Providing a broad overview of image restoration, this book explores breakthroughs in related algorithm development and their role in supporting real-world applications associated with various scientific and engineering fields. These include astronomical imaging, photo editing, and medical imaging, to name just a few. The book examines how such advances can also lead to novel insights into the fundamental properties of image sources. Addr

  5. Advances in alimentary tract imaging

    OpenAIRE

    Maglinte, Dean DT; Sandrasegaran, Kumaresan; Tann, Mark

    2006-01-01

    Advances in imaging techniques are changing the way radiologists undertake imaging of the gastrointestinal tract and their ability to answer questions posed by surgeons. In this paper we discuss the technological improvements of imaging studies that have occurred in the last few years and how these help to better diagnosing alimentary tract disease.

  6. Advanced digital video surveillance for safeguard and physical protection

    International Nuclear Information System (INIS)

    Full text: Video surveillance is a very crucial component in safeguard and physical protection. Digital technology has revolutionized the surveillance scenario and brought in various new capabilities like better image quality, faster search and retrieval of video images, less storage space for recording, efficient transmission and storage of video, better protection of recorded video images, and easy remote accesses to live and recorded video etc. The basic safeguard requirement for verifiably uninterrupted surveillance has remained largely unchanged since its inception. However, changes to the inspection paradigm to admit automated review and remote monitoring have dramatically increased the demands on safeguard surveillance system. Today's safeguard systems can incorporate intelligent motion detection with very low rate of false alarm and less archiving volume, embedded image processing capability for object behavior and event based indexing, object recognition, efficient querying and report generation etc. It also demands cryptographically authenticating, encrypted, and highly compressed video data for efficient, secure, tamper indicating and transmission. In physical protection, intelligent on robust video motion detection, real time moving object detection and tracking from stationary and moving camera platform, multi-camera cooperative tracking, activity detection and recognition, human motion analysis etc. is going to play a key rote in perimeter security. Incorporation of front and video imagery exploitation tools like automatic number plate recognition, vehicle identification and classification, vehicle undercarriage inspection, face recognition, iris recognition and other biometric tools, gesture recognition etc. makes personnel and vehicle access control robust and foolproof. Innovative digital image enhancement techniques coupled with novel sensor design makes low cost, omni-directional vision capable, all weather, day night surveillance a reality

  7. A Prototype Digital Image Management System

    OpenAIRE

    Dwyer, Samuel J.; Templeton, Arch W.; Anderson, William H.; Tarlton, Mark A.; Hensley, Kenneth S.; Lee, Kyo Rak; Batnitzky, Solomon; Rosenthal, Stanton J.; Johnson, Joy A.; Preston, David F.

    1983-01-01

    A prototype digital image management system has been designed, implemented and is being evaluated by our department. The system satisfies two major requirements: (a) an on-line access, rapid response microcomputer network providing 9 day archiving of digital data; (b) a long-term, low demand archiving system. This paper provides an estimate of the cost of the system, the potential cost-savings, and identifies the digital data throughput using the Ethernet communications protocol.

  8. Evaluation of Graininess for Digital Halftone Images

    Institute of Scientific and Technical Information of China (English)

    Shigeru Kitakubo

    2004-01-01

    Some results of image recognition tests are given, in which a testee looks at an image and tell if he/she can recognize a certain figure in it or not. When studying digital halftoning process, it is important to discuss the resolution of the human eye, or eye and brain, from the viewpoint of image recognition.

  9. Image Interpolation With Dedicated Digital Hardware

    Science.gov (United States)

    Hartenstein, R.; Wagner, G.; Simons, D.; Coulson, J.

    1986-01-01

    Algorithm for interpolating two-dimensional image data to change picture-element spacing implemented in dedicated digital hardware for high-speed execution. System interpolates 100 times as fast as generalpurpose computer. Image resampling occurs first along one image axis and then along other, using two interpolation devices implemented in series.

  10. Fractal Image Coding with Digital Watermarks

    Directory of Open Access Journals (Sweden)

    Z. Klenovicova

    2000-12-01

    Full Text Available In this paper are presented some results of implementation of digitalwatermarking methods into image coding based on fractal principles. Thepaper focuses on two possible approaches of embedding digitalwatermarks into fractal code of images - embedding digital watermarksinto parameters for position of similar blocks and coefficients ofblock similarity. Both algorithms were analyzed and verified on grayscale static images.

  11. Digital Imaging and Conservation: Model Guidelines.

    Science.gov (United States)

    Dean, John F.

    2003-01-01

    Examines the intersection of conservation and digital imaging based on guidelines at the Cornell University (Ithaca, NY) library. Discusses the digitization of artifacts; assessing the condition prior to scanning; scanning considerations, including temperature and humidity, lighting, and security; stable storage of artifacts after scanning; and…

  12. Better imaging: the advantages of digital radiography

    NARCIS (Netherlands)

    P.F. van der Stelt

    2008-01-01

    Background. Digital radiography has been available in dentistry for more than 25 years, but it has not replaced conventional film-based radiography completely. This could be because of the costs involved in replacing conventional radiographic equipment with a digital imaging system, or because imple

  13. Development of standard digital images for pneumoconiosis.

    Science.gov (United States)

    Lee, Won-Jeong; Choi, Byung-Soon; Kim, Sung Jin; Park, Choong-Ki; Park, Jai-Soung; Tae, Seok; Hering, Kurt Georg

    2011-11-01

    We developed the standard digital images (SDIs) to be used in the classification and recognition of pneumoconiosis. From July 3, 2006 through August 31, 2007, 531 retired male workers exposed to inorganic dust were examined by digital (DR) and analog radiography (AR) on the same day, after being approved by our institutional review board and obtaining informed consent from all participants. All images were twice classified according to the International Labour Office (ILO) 2000 guidelines with reference to ILO standard analog radiographs (SARs) by four chest radiologists. After consensus reading on 349 digital images matched with the first selected analog images, 120 digital images were selected as the SDIs that considered the distribution of pneumoconiosis findings. Images with profusion category 0/1, 1, 2, and 3 were 12, 50, 40, and 15, respectively, and a large opacity were in 43 images (A = 20, B = 22, C = 1). Among pleural abnormality, costophrenic angle obliteration, pleural plaque and thickening were in 11 (9.2%), 31 (25.8%), and 9 (7.5%) images, respectively. Twenty-one of 29 symbols were present except cp, ef, ho, id, me, pa, ra, and rp. A set of 120 SDIs had more various pneumoconiosis findings than ILO SARs that were developed from adequate methods. It can be used as digital reference images for the recognition and classification of pneumoconiosis. PMID:22065894

  14. Digital image-rectification system

    Science.gov (United States)

    Van Wie, P. H.; Stein, M.; Puccinelli, E.; Fields, B.

    1977-01-01

    System removes spatial distortions from data and brings data into conformance with Universal Transverse Mercator map projection, produces digital output products suitable for further machine processing and analysis, and fills need for geometrically corrected Landsat multispectral scanner digital data in several remote sensing application areas.

  15. Digital Image Analysis for Detechip Code Determination

    Directory of Open Access Journals (Sweden)

    Marcus Lyon

    2012-09-01

    Full Text Available DETECHIP® is a molecular sensing array used for identification of a large variety of substances. Previous methodology for the analysis of DETECHIP® used human vision to distinguish color changes induced by the presence of the analyte of interest. This paper describes several analysis techniques using digital images of DETECHIP®. Both a digital camera and flatbed desktop photo scanner were used to obtain Jpeg images. Color information within these digital images was obtained through the measurement of redgreen-blue (RGB values using software such as GIMP, Photoshop and ImageJ. Several different techniques were used to evaluate these color changes. It was determined that the flatbed scanner produced in the clearest and more reproducible images. Furthermore, codes obtained using a macro written for use within ImageJ showed improved consistency versus pervious methods.

  16. Digital Image Analysis for Detechip Code Determination

    Directory of Open Access Journals (Sweden)

    Marcus Lyon

    2012-08-01

    Full Text Available DETECHIP® is a molecular sensing array used for identification of a large variety of substances. Previous methodology for the analysis of DETECHIP® used human vision to distinguish color changes induced by the presence of the analyte of interest. This paper describes several analysis techniques using digital images of DETECHIP® . Both a digital camera and flatbed desktop photo scanner were used to obtain Jpeg images. Color information within these digital images was obtained through the measurement of redgreen-blue (RGB values using software such as GIMP, Photoshop and ImageJ. Several different techniques were used to evaluate these color changes. It was determined that the flatbed scanner produced in the clearest and more reproducible images. Furthermore, codes obtained using a macro written for use within ImageJ showed improved consistency versus pervious methods.

  17. Study on Digital Image Scrambling Algorithm

    Directory of Open Access Journals (Sweden)

    Wu Xue

    2013-07-01

    Full Text Available Encryption algorithm of traditional cryptology has strong safety, but the effect of encrypting images is not good. Digital image scrambling means that a digital image is transformed into a chaotic image which has no evident significance, but the operator can reconstruct the chaotic image into the original image by using the specific algorithm. Image scrambling encryption technology based on chaos theory makes use of chaotic signal to encrypt image data flow, which has the advantages of high safety, rapid encryption speed, large key space and good scrambling effect. The paper studies invalid-key and quasi invalid-key existed in chaotic sequence which is generated by Logistic map, and proposes image scrambling encryption algorithm based on mixed and chaotic sequence. The algorithm has a good robustness for the JPEG compression with the fixed coefficient, and a good fragileness for the illegal manipulation.

  18. Digital Image Representation and Access.

    Science.gov (United States)

    Mostafa, Javed

    1994-01-01

    Reviews the literature relating to the development and application of modern imaging technology between 1987 and 1993. Highlights include image representation, including image data, compression, and image formats; and image access, including indexing and modeling, user interface design, and distributed access. (143 references) (LRW)

  19. Digital image envelope: method and evaluation

    Science.gov (United States)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  20. Modern Imaging Technology: Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  1. Modern Imaging Technology: Recent Advances

    International Nuclear Information System (INIS)

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area

  2. Existential space understanding through digital image

    Directory of Open Access Journals (Sweden)

    Susana Iñarra Abad

    2013-10-01

    Full Text Available The logical way to learn from the architectural space and then be able to design and represent it is, undoubtedly, that of experiencing it through all the sensitive channels that the space wakes up us.  But since the last 30 years, much of our learning about space comes from images of architecture and not from the space itself. The art of architecture is drifting towards a visual art and moving away from its existential side. In digital images that have flooded the architectural media, digital photographs of existing spaces intermingle with non-existent space renderings (photographs with a virtual camera. The first ones represent existing places but can be altered to change the perception that  the observer of the image will have, the second ones speak to us about places that do not exist yet but they present reality portions through extracts from digital photography (textures, trees, people... that compose the image.

  3. Proton Testing of Advanced Stellar Compass Digital Processing Unit

    DEFF Research Database (Denmark)

    Thuesen, Gøsta; Denver, Troelz; Jørgensen, Finn E

    1999-01-01

    The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland.......The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland....

  4. Digital Image Encryption Scheme Based on Multiple Chaotic Systems

    Science.gov (United States)

    Abd El-Latif, Ahmed A.; Li, Li; Zhang, Tiejun; Wang, Ning; Song, Xianhua; Niu, Xiamu

    2012-06-01

    Image encryption is a challenging task due to the significant level of sophistication achieved by forgerers and other cybercriminals. Advanced encryption methods for secure transmission, storage, and retrieval of digital images are increasingly needed for a number of military, medical, homeland security, and other applications. In this paper, we introduce a new digital image encryption algorithm. The new algorithm employs multiple chaotic systems and cryptographic primitive operations within the encryption process, which are efficiently implemented on modern processors, and adopts round keys for encryption using a chaotic map. Experiments conducted show that the proposed algorithm possesses robust security features such as fairly uniform distribution, high sensitivity to both keys and plainimages, almost ideal entropy, and the ability to highly de-correlate adjacent pixels in the cipherimages. Furthermore, it has a large key space, which greatly increases its security for image encryption applications.

  5. A digital library of radiology images.

    Science.gov (United States)

    Kahn, Charles E

    2006-01-01

    A web-based virtual library of peer-reviewed radiological images was created for use in education and clinical decision support. Images were obtained from open-access content of five online radiology journals and one e-learning web site. Figure captions were indexed by Medical Subject Heading (MeSH) codes, imaging modality, and patient age and sex. This digital library provides a new, valuable online resource.

  6. Digital process of images with Matlab

    OpenAIRE

    Moreno Moreno, Eduardo

    2010-01-01

    The aim of the Project is the digital process of images of the pages of a book scanned improving their quality and manipulating them for their publication in the web or digitally. The software we are going to use is Matlab 7.0. The techniques we are going to use (with this software) are morphological operations (close, open…), neighborhood operations, linear filtering and filter design.

  7. Analysis of Digital Images Using Morphlogical Operations

    Directory of Open Access Journals (Sweden)

    Suresha M

    2013-03-01

    Full Text Available The main aim of this study is to transform the digital images into different forms. Image processingtechniques are used with wide varieties of applications. The requirement is different for differentapplications. This study is mainly focused on how to transform the image using mathematical morphologyso that it can be suitable for the respective applications.Mathematical morphology has been chosen to explain how images are used to illustrate mathematical settheoretic operations, suchas union, intersection by means of morphological operations like dilation anderosion.These techniques are implemented in MATLAB using image processing algorithms. MATLAB is anexcellent tool to accomplish these tasks

  8. Survey on Digital Image Processing in Sports

    Directory of Open Access Journals (Sweden)

    Girish G. Koundinya

    2012-12-01

    Full Text Available Digital Image Processing has found to be useful in many domains. In sports, it can either be used as an analytical tool to determine strategic instances in a game or can be used in the broadcast of video to television viewers. Modern day coverage of sports involves multiple cameras and an array of technologies to support it, since manually going through every video coming to a station would be a near-impossible task, a wide range of Digital Image Processing algorithms are applied to do the same. Highlight Generation and Event Detection are the foremost areas in sports where a multitude of DIP algorithms exist. This study provides an insight into the applications of Digital Image Processing in Sports, concentrating on algorithms related to video broadcast while listing their advantages and drawbacks.

  9. Digital Receiver for Laser Imaging Radar

    Institute of Scientific and Technical Information of China (English)

    WANG Wei Ran; SUN Bing

    2004-01-01

    With the extension of the application domains for laser imaging radar,it is necessary to find a new technical way to obtain high technical performance and adaptive ability.In this paper,A new concept of digital receiver of laser imaging radar system is presented.This digital receiver is defined as a time varying parameter receiver which possesses large dynamics region and time domain filter.The receiver's mode,component structure as well as every function of its processing are described.The results and laboratorial data show the feasibility of digital reception.Also,it can exploit the inherent nature of laser imaging radar to obtain high probability of detection.

  10. Digital Advances in Contemporary Audio Production.

    Science.gov (United States)

    Shields, Steven O.

    Noting that a revolution in sonic high fidelity occurred during the 1980s as digital-based audio production methods began to replace traditional analog modes, this paper offers both an overview of digital audio theory and descriptions of some of the related digital production technologies that have begun to emerge from the mating of the computer…

  11. An Archive of Digital Images.

    Science.gov (United States)

    Fantini, M.; And Others

    1990-01-01

    Describes the architecture of the prototype of an image management system that has been used to develop an application concerning images of frescoes in the Sistina Chapel in the Vatican. Hardware and software design are described, the use of local area networks (LANs) is discussed, and data organization is explained. (15 references) (LRW)

  12. IDENTIFICATION OF INPAINTED IMAGES AND NATURAL IMAGES FOR DIGITAL FORENSICS

    Institute of Scientific and Technical Information of China (English)

    Wu Qiong; Sun Shaojie; Zhu Wei; Li Guohui

    2009-01-01

    Image forensics is a form of image analysis for finding out the condition of an image in the complete absence of any digital watermark or signature.It can be used to authenticate digital images and identify their sources.While the technology of exemplar-based inpainting provides an approach to remove objects from an image and play visual tricks.In this paper,as a first attempt,a method based on zero-connectivity feature and fuzzy membership is proposed to discriminate natural images from inpainted images.Firstly,zero-connectivity labeling is applied on block pairs to yield matching degree feature of all blocks in the region of suspicious,then the fuzzy memberships are computed and the tampered regions are identified by a cut set.Experimental results demonstrate the effectiveness of our method in detecting inpainted images.

  13. Research Advances on Blind Forensics Technology of Digital Image Region Duplication Forgery%数字图像区域复制篡改的盲取证技术研究进展

    Institute of Scientific and Technical Information of China (English)

    赵洁; 刘萌萌; 武斌; 翟大伟

    2016-01-01

    由于盲取证技术不需要任何预先嵌入的认证信息,而仅根据图像本身的统计特性就能鉴别数字图像的原始性、真实性和完整性,已经成为数字媒体安全领域的研究热点。文中介绍了数字图像中常见的区域复制篡改方式,分析实际篡改过程中可能涉及到的图像处理操作,总结归纳了区域复制篡改盲取证方法的一般流程。最后,指出现有目前方法存在的问题,并对盲取证技术未来的研究方向进行展望。%Blind forensics technology has become a hot research topic in the field of digital media security,due to the ad-vantage that it does not need any authentication information embedded in advance,only to identify image primitiveness, authenticity and integrity according to the statistical features of the image itself.In this paper,region duplication which is a common forgery in digital images is introduced.The image processing operations which may be involved in the practical tampering are analyzed.The general process of blind forensics method for detecting region duplication forgery is summa-rized.Finally,limitations existing in available methods are analyzed,and perspectives of further research work on blind forensics technology are presented.

  14. REVIEW OF DIGITAL IMAGE SHARING BY DIVERSE IMAGE MEDIA

    Directory of Open Access Journals (Sweden)

    Mayuri Sonkusare

    2015-10-01

    Full Text Available A natural-image-based VSS scheme (NVSS scheme that shares secret images. A natural-imagebasedsecret image sharing scheme (NSISS that can share a color secret image over n - 1 arbitrary naturalimages and one noise-like share image. Instead of altering the contents of the natural images, the encryptionprocess extracts feature images from each natural image. In order to protect the secret image from transmissionphase. (n, n - NVSS scheme shared secret image over n-1 natural share. The natural shares will be digital imageand printed image. By extracting the features of natural shares we can prepare noise-like share. After thatencryption carried out with noise-like share and secret image. Propose possible ways to hide the noise like shareto reduce the transmission risk problem for the share. In this paper Initially Feature Extraction process has beenperformed for Natural Shares. Here Digital image and Printed image have been used as Natural Shares. Withthat extracted features secret image will be encrypted by (n, n - NVSS scheme where process carried by (n-1natural shares. This Encrypted result will be hided using Share-Hiding Algorithm where generated the QR code.In the Recovering of the secret image will be done by Share Extraction Algorithm and also decryptionalgorithm. Finally the secret image with all pixels has been obtained. This proposed possible ways to hide thenoise like share to reduce the transmission risk problem for the share.

  15. Deformable Registration of Digital Images

    Institute of Scientific and Technical Information of China (English)

    管伟光; 解林; 等

    1998-01-01

    is paper proposes a novel elastic model and presents a deformable registration method based on the model.The method registers images without the need to extract reatures from the images,and therefore works directly on grey-level images.A new similarity metric is given on which the formation of external forces is based.The registration method,taking the coarse-to-fine strategy,constructs external forces in larger scales for the first few iterations to rely more on global evidence,and ther in smaller scales for later iterations to allow local refinements.The stiffness of the elastic body decreases as the process proceeds.To make it widely applicable,the method is not restricted to any type of transformation.The variations between images are thought as general free-form deformations.Because the elastic model designed is linearized,it can be solved very efficiently with high accuracy.The method has been successfully tested on MRI images.It will certainly find other uses such as matching time-varying sequences of pictures for motion analysis,fitting templates into images for non-rigid object recognition,matching stereo images for shape recovery,etc.

  16. Java advanced medical image toolkit

    International Nuclear Information System (INIS)

    Full text: The Java Advanced Medical Image Toolkit (jAMIT) has been developed at the Center for PET and Department of Nuclear Medicine in an effort to provide a suite of tools that can be utilised in applications required to perform analysis, processing and visualisation of medical images. jAMIT uses Java Advanced Imaging (JAI) to combine the platform independent nature of Java with the speed benefits associated with native code. The object-orientated nature of Java allows the production of an extensible and robust package which is easily maintained. In addition to jAMIT, a Medical Image VO API called Sushi has been developed to provide access to many commonly used image formats. These include DICOM, Analyze, MINC/NetCDF, Trionix, Beat 6.4, Interfile 3.2/3.3 and Odyssey. This allows jAMIT to access data and study information contained in different medical image formats transparently. Additional formats can be added at any time without any modification to the jAMIT package. Tools available in jAMIT include 2D ROI Analysis, Palette Thresholding, Image Groping, Image Transposition, Scaling, Maximum Intensity Projection, Image Fusion, Image Annotation and Format Conversion. Future tools may include 2D Linear and Non-linear Registration, PET SUV Calculation, 3D Rendering and 3D ROI Analysis. Applications currently using JAMIT include Antibody Dosimetry Analysis, Mean Hemispheric Blood Flow Analysis, QuickViewing of PET Studies for Clinical Training, Pharamcodynamic Modelling based on Planar Imaging, and Medical Image Format Conversion. The use of jAMIT and Sushi for scripting and analysis in Matlab v6.1 and Jython is currently being explored. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  17. An automated digital imaging system for environmental monitoring applications

    Science.gov (United States)

    Bogle, Rian; Velasco, Miguel; Vogel, John

    2013-01-01

    Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.

  18. Automated digital image analysis of islet cell mass using Nikon's inverted eclipse Ti microscope and software to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

    Science.gov (United States)

    Gmyr, Valery; Bonner, Caroline; Lukowiak, Bruno; Pawlowski, Valerie; Dellaleau, Nathalie; Belaich, Sandrine; Aluka, Isanga; Moermann, Ericka; Thevenet, Julien; Ezzouaoui, Rimed; Queniat, Gurvan; Pattou, Francois; Kerr-Conte, Julie

    2015-01-01

    Reliable assessment of islet viability, mass, and purity must be met prior to transplanting an islet preparation into patients with type 1 diabetes. The standard method for quantifying human islet preparations is by direct microscopic analysis of dithizone-stained islet samples, but this technique may be susceptible to inter-/intraobserver variability, which may induce false positive/negative islet counts. Here we describe a simple, reliable, automated digital image analysis (ADIA) technique for accurately quantifying islets into total islet number, islet equivalent number (IEQ), and islet purity before islet transplantation. Islets were isolated and purified from n = 42 human pancreata according to the automated method of Ricordi et al. For each preparation, three islet samples were stained with dithizone and expressed as IEQ number. Islets were analyzed manually by microscopy or automatically quantified using Nikon's inverted Eclipse Ti microscope with built-in NIS-Elements Advanced Research (AR) software. The AIDA method significantly enhanced the number of islet preparations eligible for engraftment compared to the standard manual method (p methods showed good correlations between mean values of IEQ number (r(2) = 0.91) and total islet number (r(2) = 0.88) and thus increased to r(2) = 0.93 when islet surface area was estimated comparatively with IEQ number. The ADIA method showed very high intraobserver reproducibility compared to the standard manual method (p method versus the ADIA method (p method also detected small islets between 10 and 50 µm in size. Automated digital image analysis utilizing the Nikon Instruments software is an unbiased, simple, and reliable teaching tool to comprehensively assess the individual size of each islet cell preparation prior to transplantation. Implementation of this technology to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers. PMID:23683575

  19. Digital image encryption with chaotic map lattices

    Institute of Scientific and Technical Information of China (English)

    Sun Fu-Yan; Lü Zong-Wang

    2011-01-01

    This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices.In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image.The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.

  20. A survey of passive technology for digital image forensics

    Institute of Scientific and Technical Information of China (English)

    LUO Weiqi; QU Zhenhua; PAN Feng; HUANG Jiwu

    2007-01-01

    Over the past years,digital images have been widely used in the Internet and other applications.Whilst image processing techniques are developing at a rapid speed,tampering with digital images without leaving any obvious traces becomes easier and easier.This may give rise to some problems such as image authentication.A new passive technology for image forensics has evolved quickly during the last few years.Unlike the signature-based or watermark-based methods,the new technology does not need any signature generated or watermark embedded in advance,it assumes that different imaging devices or processing would introduce different inherent patterns into the output images.These underlying patterns are consistent in the original untampered images and would be altered after some kind of manipulations.Thus,they can be used as evidence for image source identification and alteration detection.In this paper,we will discuss this new forensics technology and give an overview of the prior literatures.Some concluding remarks are made about the state of the art and the challenges in this novel technology.

  1. Parallel Digital Watermarking Process on Ultrasound Medical Images in Multicores Environment.

    Science.gov (United States)

    Khor, Hui Liang; Liew, Siau-Chuin; Zain, Jasni Mohd

    2016-01-01

    With the advancement of technology in communication network, it facilitated digital medical images transmitted to healthcare professionals via internal network or public network (e.g., Internet), but it also exposes the transmitted digital medical images to the security threats, such as images tampering or inserting false data in the images, which may cause an inaccurate diagnosis and treatment. Medical image distortion is not to be tolerated for diagnosis purposes; thus a digital watermarking on medical image is introduced. So far most of the watermarking research has been done on single frame medical image which is impractical in the real environment. In this paper, a digital watermarking on multiframes medical images is proposed. In order to speed up multiframes watermarking processing time, a parallel watermarking processing on medical images processing by utilizing multicores technology is introduced. An experiment result has shown that elapsed time on parallel watermarking processing is much shorter than sequential watermarking processing.

  2. Parallel Digital Watermarking Process on Ultrasound Medical Images in Multicores Environment.

    Science.gov (United States)

    Khor, Hui Liang; Liew, Siau-Chuin; Zain, Jasni Mohd

    2016-01-01

    With the advancement of technology in communication network, it facilitated digital medical images transmitted to healthcare professionals via internal network or public network (e.g., Internet), but it also exposes the transmitted digital medical images to the security threats, such as images tampering or inserting false data in the images, which may cause an inaccurate diagnosis and treatment. Medical image distortion is not to be tolerated for diagnosis purposes; thus a digital watermarking on medical image is introduced. So far most of the watermarking research has been done on single frame medical image which is impractical in the real environment. In this paper, a digital watermarking on multiframes medical images is proposed. In order to speed up multiframes watermarking processing time, a parallel watermarking processing on medical images processing by utilizing multicores technology is introduced. An experiment result has shown that elapsed time on parallel watermarking processing is much shorter than sequential watermarking processing. PMID:26981111

  3. Parallel Digital Watermarking Process on Ultrasound Medical Images in Multicores Environment

    Directory of Open Access Journals (Sweden)

    Hui Liang Khor

    2016-01-01

    Full Text Available With the advancement of technology in communication network, it facilitated digital medical images transmitted to healthcare professionals via internal network or public network (e.g., Internet, but it also exposes the transmitted digital medical images to the security threats, such as images tampering or inserting false data in the images, which may cause an inaccurate diagnosis and treatment. Medical image distortion is not to be tolerated for diagnosis purposes; thus a digital watermarking on medical image is introduced. So far most of the watermarking research has been done on single frame medical image which is impractical in the real environment. In this paper, a digital watermarking on multiframes medical images is proposed. In order to speed up multiframes watermarking processing time, a parallel watermarking processing on medical images processing by utilizing multicores technology is introduced. An experiment result has shown that elapsed time on parallel watermarking processing is much shorter than sequential watermarking processing.

  4. A LANDSAT digital image rectification system

    Science.gov (United States)

    Vanwie, P.; Stein, M.

    1976-01-01

    DIRS is a digital image rectification system for the geometric correction of LANDSAT multispectral scanner digital image data. DIRS removes spatial distortions from the data and brings it into conformance with the Universal Transverse Mercator (UTM) map projection. Scene data in the form of landmarks are used to drive the geometric correction algorithms. Two dimensional least squares polynominal and spacecraft attitude modeling techniques for geometric mapping are provided. Entire scenes or selected quadrilaterals may be rectified. Resampling through nearest neighbor or cubic convolution at user designated intervals is available. The output products are in the form of digital tape in band interleaved, single band or CCT format in a rotated UTM projection. The system was designed and implemented on large scale IBM 360 computers.

  5. Digital X-ray imager

    CERN Document Server

    LLNL &MedOptics Corporation

    1998-01-01

    The global objective of this cooperation was to lower the cost and improve the quality of breast health care in the United States. We planned to achieve it by designing a very high performance digital radiography unit for breast surgical specimen radiography in the operating room. These technical goals needed to be achieved at reasonable manufacturing costs to enable MedOptics to achieve high market penetration at a profit. Responsibility for overall project execution rested with MedOptics. MedOptics fabricated and demonstrated hardware, and selected components and handled the overall integration. After completion of this CRADA, MedOptics worked with collaborators to demonstrate clinical performance and utility. Finally, the company marketed the device. LLNL convened a multi-directorate expert panel for an intensive review of MedOptics point design. A written brief of panel conclusions and recommendations was prepared. In addition, LLNL was responsible for: computationally simulating the effects of varying so...

  6. Advantages of digital imaging for radiological diagnostic

    International Nuclear Information System (INIS)

    The advantages and limitations of radiological digital images in comparison with analogic ones are analyzed. We discuss three main topics: acquisition, post-procedure manipulation, and visualization, archive and communication. Digital acquisition with computed radiology systems present a global sensitivity very close to conventional film for diagnostic purposes. However, flat panel digital systems seems to achieve some advantages in particular clinical situations. A critical issue is the radiation dose-reduction that can be accomplished without reducing image quality nor diagnostic exactitude. The post-procedure manipulation allows, particularly in multiplanar modalities like CT or MR, to extract all implicit diagnostic information in the images: Main procedures are multiplanar and three-dimensional reformations, dynamic acquisitions, functional studies and image fusion. The use of PACS for visualization, archive and communication of images, improves the effectiveness and the efficiency of the workflow, allows a more comfortable diagnosis for the radiologist and gives way to improvements in the communication of images, allowing tele consulting and the tele radiology. (Author) 6 refs

  7. Advances in low-level color image processing

    CERN Document Server

    Smolka, Bogdan

    2014-01-01

    Color perception plays an important role in object recognition and scene understanding both for humans and intelligent vision systems. Recent advances in digital color imaging and computer hardware technology have led to an explosion in the use of color images in a variety of applications including medical imaging, content-based image retrieval, biometrics, watermarking, digital inpainting, remote sensing, visual quality inspection, among many others. As a result, automated processing and analysis of color images has become an active area of research, to which the large number of publications of the past two decades bears witness. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for single channel images are often not directly applicable to multichannel  ones. The goal of this volume is to summarize the state-of-the-art in the early stages of the color image processing pipeline.

  8. A ROBUST METHOD FOR FINGERPRINTING DIGITAL IMAGES

    Institute of Scientific and Technical Information of China (English)

    Saad Amer; Yi xian Yang

    2001-01-01

    In this paper, a method to fingerprint digital images is proposed, and different watermarked copies with different identification string are made. After determining the number of the customers and the length of the watermark string, this method chooses some values inside the digital image using a characteristic function, and adds watermarks to these values in a way that can protect the product against the attacks happened by comparing two fingerprinted copies.The watermarks are a string of binary numbers -1s and 1s. Every customer will be distinguished by a series of 1s and -1s generated by a pseudo-random generator. The owner of the image can determine the number of customers and the length of the string as well as this method will add another watermarking values to watermark string to protect the product.

  9. Digital Image Exploration at Maui Community College

    Science.gov (United States)

    Morzinski, K. M.; Crockett, C. J.; Crossfield, I. J.

    2010-12-01

    We designed a two-day laboratory exploration of fundamental concepts in digital images for an introductory engineering course at Maui Community College. Our objective was for the students to understand spatial vs. brightness resolution, standard file formats, image tradeoffs, and the engineering design cycle. We used open investigation, question generation, and an engineering design challenge to help our students achieve these learning goals. We also experimented with incorporating Hawaiian language and cultural awareness into our activity. We present our method, student response, and reflections on the success of our design. The 2008 re-design of this activity focused on better incorporating authentic engineering process skills, and on using a rubric for summative assessment of the students' poster presentations. A single file containing all documents and presentations used in this lesson is available online. (http://www.astro.ucla.edu/ ianc/files/digital_images_inquiry.pdf)

  10. Digital polarization holography advancing geometrical phase optics.

    Science.gov (United States)

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-01

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed. PMID:27505793

  11. Crack Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal, Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better than that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  12. Crack Length Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    1990-01-01

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better then that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  13. A New Technique for Digital Image Watermarking

    Institute of Scientific and Technical Information of China (English)

    Xiang-Sheng Wu

    2005-01-01

    In this paper, a new technique is proposed for rotation, scaling and translation (RST) invariant image watermarking based on log-polar mappings (LPM) and phase-only filtering (POF). The watermark is embedded in the LPM of Fourier magnitude spectrum of the original image, and a small portion of resulting LPM spectrum is used to calculate the watermark positions. This technique avoids computing inverse log-polar mapping (ILPM) to preserve the quality of the watermarked image, and avoids exhaustive search to save computation time and reduce false detection. Experimental results demonstrate that the digital watermarking technique is invariant and robust to rotation, scaling, and translation transformation.

  14. Space-Ready Advanced Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  15. Digital Image Watermarking in Transform Domains

    International Nuclear Information System (INIS)

    Fast development of internet and availability of huge digital content make it easy to create, modify and copy digital media such as audio, video and images. This causes a problem for owners of that content and hence a need to copy right protection tool was essential. First, encryption was proposed but it ensures protection during transmission only and once decryption occurred any one can modify the data. at that point watermarking was introduced as a solution to such problem. Watermarking is a process of inserting a low energy signal in to a high energy one so that it doesn't affect the main signal features. A good digital image watermarking technique should satisfy four requirements: 1) Embedding of a watermark should not degrade the host image visual quality (imperceptibility). 2) The embedded watermark should stick to the host image so that it couldn’t be removed by common image processing operation and could be extracted from the attacked watermarked image (robustness). 3) Knowing the embedding and extraction procedures is sufficient but not enough to extract the watermark; extra keys should be needed (security). 4) The watermarking technique should allow embedding and extraction of more than one watermark each independent of the other (capacity). This thesis presents a watermarking scheme that full fill the mentioned four requirements by jointing transform domains with Fractional Fourier Transform Domain (FracFT). More work on cascaded Discrete Wavelet Transform DWT with FracFT was done to develop a joint transform simply called Fractional Wavelet Transform (FWT). The proposed schemes were tested with different image processing attacks to verify its robustness. Finally, the watermarked image is transmitted over simulated MC CDMA channel to prove robustness in real transmission conditions case.

  16. Advances in multimodality molecular imaging

    Directory of Open Access Journals (Sweden)

    Zaidi Habib

    2009-01-01

    Full Text Available Multimodality molecular imaging using high resolution positron emission tomography (PET combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT and functional or metabolic (PET information provided in a "one-stop shop" and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed.

  17. Influence of radiochemotherapy on the nutritional status of patients with advanced carcinoma of the head and neck and presentation of a new method for imaging oral mucositis (digital dermascope system)

    International Nuclear Information System (INIS)

    The maintenance of nutritional status is a serious problem for patients suffering from head and neck cancer. Malnutrition leads to prolongation of hospitalisation and is an important risk factor in the development of postoperative complications and infections. This study was conducted to evaluate the consequences of radiochemotherapy on the nutritional status. Furthermore the timing for initiation of nutritional support was analysed. 23 patients with advanced carcinoma of the head and neck were studied prospectively. The treatment protocol consisted of conventional radiotherapy combined with infusional 5-fluorouracil and mitomycin-C. Anthropological, biochemical and immunological parameters and the Hackl-score were used to define malnutrition. The WHO-criteria and the digital dermascope-system were used for scoring and imaging oral mucositis. The dermascope-camera-system allows diagnosis of early mucosal changes and provides objective information on the patients' oral health. At the time of diagnosis malnutrition was present in some patients. Generally the nutritional status worsened until the beginning of therapy. After three weeks of treatment moderate or severe malnutrition and immunsuppression occurred in most of the patients. Analysis of the Hackl-score revealed an absolute indication for nutritional support in 82.6 %. At the end of treatment nutritional therapy was indicated in 100 % of the patients. Nutritional intervention was initiated too late in the clinical course. Prophylactic nutritional therapy is indicated when radiochemotherapy is planned for patients with advanced head and neck cancer.(author)

  18. Influence of radiochemotherapy on the nutritional status of patients with advanced carcinoma of the head and neck and presentation of a new method for imaging oral mucositis (digital dermascope system)

    International Nuclear Information System (INIS)

    The maintenance of nutritional status is a serious problem for patients suffering from head and neck cancer. Malnutrition leads to prolongation of hospitalization and is an important risk factor in the development of postoperative complications and infections. This study was conducted to evaluate the consequences of radiochemotherapy on the nutritional status. Furthermore the timing for initiation of nutritional support was analyzed. 23 patients with advanced carcinoma of the head and neck were studied prospectively. The treatment protocol consisted of conventional radiotherapy combined with infusional 5-fluorouracil and mitomycin-C. Anthropological, biochemical and immunological parameters and the Hackl-score were used to define malnutrition. The WHO-criteria and the digital dermascope-system were used for scoring and imaging oral mucositis. The dermascope-camera-system allows diagnosis of early mucosal changes and provides objective information on the patients' oral health. At the time of diagnosis malnutrition was present in some patients. Generally the nutritional status worsened until the beginning of therapy. After three weeks of treatment moderate or severe malnutrition and immunsuppression occurred in most of the patients. Analysis of the Hackl-score revealed an absolute indication for nutritional support in 82,6 %. At the end of treatment nutritional therapy was indicated in 100 % of the patients. Nutritional intervention was initiated too late in the clinical course. Prophylactic nutritional therapy is indicated when radiochemotherapy is planned for patients with advanced head and neck cancer. (author)

  19. Detection of Region Duplication Forgery in Digital Images Using SURF

    Directory of Open Access Journals (Sweden)

    B L Shivakumar

    2011-07-01

    Full Text Available An Image would yield better impact in convincing someone of something rather than pure description by words. Digital images are widely used in various fields like medical imaging, journalism, scientific manipulations and digital forensics. However, images are not reliable as it may be. Digital images can be easily tampered with image editing tools. One of the major problems in image forensics is determining if a particular image is authentic or not. Digital image forensic is an emerging field of image processing area. Copy-move forgery is one type of image forgery in digital image forensic where various methods have been proposed in the field to detect the forgery. In this paper a technique is presented to detect Copy-Move Forgery based on SURF and KD-Tree for multidimensional data matching. We demonstrate our method with high resolution images affected by copy-move forgery.

  20. Digital image processing in neutron radiography

    CERN Document Server

    Körner, S

    2000-01-01

    automated neutron tomography facility has been built at the Atominstitut with this detector. Digital Image Processing: Due to special detector properties of the CCD-camera NR detector, a standard image processing procedure has been developed that always has to be applied, when the CCD-detector is used. It consists of the following steps: white spot correction - dark frame correction and flat field correction. Radiation, which hits the CCD-chip causes an overflow of one or several pixels, which appears in the image as white spots. These disturbing spots have to be removed by means of digital image processing. Several filters have been tested, but the results were insufficient. Therefore, a new threshold-median-mean value filter was designed and a proper code was written in IDL (interactive data language). The new filter removes white spots very well by hardly blurring the images. A dark frame is an image made with closed camera shutter. It contains undesired detector signal caused by read out noise and dark cu...

  1. Three-dimensional digital breast histopathology imaging

    Science.gov (United States)

    Clarke, G. M.; Peressotti, C.; Mawdsley, G. E.; Eidt, S.; Ge, M.; Morgan, T.; Zubovits, J. T.; Yaffe, M. J.

    2005-04-01

    We have developed a digital histology imaging system that has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. The system is capable of producing a 3D representation of histopathology from an entire lumpectomy specimen. We acquire digital photomicrographs of a stack of large (120 x 170 mm) histology slides cut serially through the entire specimen. The images are then registered and displayed in 2D and 3D. This approach dramatically improves sampling and can improve visualization of tissue structures compared to current, small-format histology. The system consists of a brightfield microscope, adapted with a freeze-frame digital video camera and a large, motorized translation stage. The image of each slide is acquired as a mosaic of adjacent tiles, each tile representing one field-of-view of the microscope, and the mosaic is assembled into a seamless composite image. The assembly is done by a program developed to build image sets at six different levels within a multiresolution pyramid. A database-linked viewing program has been created to efficiently register and display the animated stack of images, which occupies about 80 GB of disk space per lumpectomy at full resolution, on a high-resolution (3840 x 2400 pixels) colour monitor. The scanning or tiling approach to digitization is inherently susceptible to two artefacts which disrupt the composite image, and which impose more stringent requirements on system performance. Although non-uniform illumination across any one isolated tile may not be discernible, the eye readily detects this non-uniformity when the entire assembly of tiles is viewed. The pattern is caused by deficiencies in optical alignment, spectrum of the light source, or camera corrections. The imaging task requires that features as small as 3.2 &mum in extent be seamlessly preserved. However, inadequate accuracy in positioning of the translation

  2. [Digital thoracic radiology: devices, image processing, limits].

    Science.gov (United States)

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing. PMID:11567193

  3. [Digital thoracic radiology: devices, image processing, limits].

    Science.gov (United States)

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.

  4. Imaging spectrometer - An advanced multispectral imaging concept

    Science.gov (United States)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P. N.; Salazar, R.

    1982-01-01

    The concept of an imaging spectrometer, which is being studied as a potential Space Shuttle experiment, is evaluated as a 'push-broom' imager that includes a spectrometer to disperse each line of imaging information into its spectral components. Using this instrument, the dispersed energy falls upon a two-dimensional focal plane array that detects both spatial and spectral information. As the line field of view is advanced over the earth by the motion of the spacecraft, the focal plane is read out constantly, which produces 'push-broom' images at multiple wavelengths. Ground instantaneous fields of view of 10 m in the visual and 20 m in the infrared are provided by the system, at a spectral resolution of 20 nm over the range from 0.4-2.5 microns. The system utilizes a triple-pass Schmidt optical system with a mosaic focal plane. A subset of the data stream is selected and encoded for transmission by the use of onboard processing.

  5. RADIOPACITY OF RESTORATIVE MATERIALS USING DIGITAL IMAGES

    OpenAIRE

    Leda Maria Pescinini Salzedas; Mário Jefferson Quirino Louzada; Antonio Braz de Oliveira Filho

    2006-01-01

    The radiopacity of esthetic restorative materials has been established as an important requirement, improving the radiographic diagnosis. The aim of this study was to evaluate the radiopacity of six restorative materials using a direct digital image system, comparing them to the dental tissues (enamel-dentin), expressed as equivalent thickness of aluminum (millimeters of aluminum). Five specimens of each material were made. Three 2-mm thick longitudinal sections were cut from an intact extrac...

  6. Speckle pattern processing by digital image correlation

    Directory of Open Access Journals (Sweden)

    Gubarev Fedor

    2016-01-01

    Full Text Available Testing the method of speckle pattern processing based on the digital image correlation is carried out in the current work. Three the most widely used formulas of the correlation coefficient are tested. To determine the accuracy of the speckle pattern processing, test speckle patterns with known displacement are used. The optimal size of a speckle pattern template used for determination of correlation and corresponding the speckle pattern displacement is also considered in the work.

  7. Speckle pattern processing by digital image correlation

    OpenAIRE

    Gubarev Fedor; Li Lin; Klenovskii Miron; Glotov Anatoliy

    2016-01-01

    Testing the method of speckle pattern processing based on the digital image correlation is carried out in the current work. Three the most widely used formulas of the correlation coefficient are tested. To determine the accuracy of the speckle pattern processing, test speckle patterns with known displacement are used. The optimal size of a speckle pattern template used for determination of correlation and corresponding the speckle pattern displacement is also considered in the work.

  8. 77 FR 12951 - Lifeline and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital...

    Science.gov (United States)

    2012-03-02

    ..., radiolocation, and digital audio broadcasting satellite uses. The Commission defined... and Modernization, Advancing Broadband Availability Through Digital Literacy Training; Final Rule #0...] Lifeline and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital...

  9. An Adaptive Watermarking Technique for the copyright of digital images and Digital Image Protection

    CERN Document Server

    Perwej, Yusuf; Perwej, Asif; 10.5121/ijma.2012.4202

    2012-01-01

    The Internet as a whole does not use secure links, thus information in transit may be vulnerable to interruption as well. The important of reducing a chance of the information being detected during the transmission is being an issue in the real world now days. The Digital watermarking method provides for the quick and inexpensive distribution of digital information over the Internet. This method provides new ways of ensuring the sufficient protection of copyright holders in the intellectual property dispersion process. The property of digital watermarking images allows insertion of additional data in the image without altering the value of the image.In this paper investigate the following relevant concepts and terminology, history of watermarks and the properties of a watermarking system and applications. We are proposing edge detection using Gabor Filters. In this paper we are proposed least significant bit (LSB) substitution method to encrypt the message in the watermark image file. The benefits of the LSB ...

  10. Biorthogonal Wavelet Transform Digital Image Watermarking

    Directory of Open Access Journals (Sweden)

    B. Rajendra Prasad

    2012-09-01

    Full Text Available With the growing popularity of Digital Mediasthrough the World Wide Web, intellectual propertyneeds copyright protection, prevention of illegalcopying and verification of content integrity. Thenew data hiding techniques need to be developedthat satisfy the requirements of Imperceptibility,Robustness, Capacity, or data hiding rate andSecurity of the hidden data etc. Watermarking hasbeen utilized by researchers for the security ofdigital documents. In this paper we proposed amethod which is an efficient scheme for protectingthe copyrights of digital images with the aid of bothbiometrics and digital watermarking. Newer datahiding techniques that satisfy the requirements ofimperceptibility, robustness, capacities, or datahiding rate and security of the hidden data etc., arebeing developed. Therefore the preference to go fordigital image watermarking, to show resiliencyagainst various unintentional or deliberate attackshas increased. In this paper implementation of twodifferent watermarking algorithms in the frequencydomain will be presented. The first algorithm isbased on the Discrete Wavelet Transform (DWT,the second one is based on the Bi-orthogonalWavelet Transform (BWT. Embedding thewatermark is done by modifying the coefficients ofthe middle frequency band within region of noninterest(RONI so that the visibility of the imageand diagnosis capability will not be affected and thewatermark will not be removed by attacks. Allschemes are tested using medical images and thesimulation results are compared and thecomparison shows that the best scheme is that basedon using BWT.

  11. Digital image sequence processing, compression, and analysis

    CERN Document Server

    Reed, Todd R

    2004-01-01

    IntroductionTodd R. ReedCONTENT-BASED IMAGE SEQUENCE REPRESENTATIONPedro M. Q. Aguiar, Radu S. Jasinschi, José M. F. Moura, andCharnchai PluempitiwiriyawejTHE COMPUTATION OF MOTIONChristoph Stiller, Sören Kammel, Jan Horn, and Thao DangMOTION ANALYSIS AND DISPLACEMENT ESTIMATION IN THE FREQUENCY DOMAINLuca Lucchese and Guido Maria CortelazzoQUALITY OF SERVICE ASSESSMENT IN NEW GENERATION WIRELESS VIDEO COMMUNICATIONSGaetano GiuntaERROR CONCEALMENT IN DIGITAL VIDEOFrancesco G.B. De NataleIMAGE SEQUENCE RESTORATION: A WIDER PERSPECTIVEAnil KokaramVIDEO SUMMARIZATIONCuneyt M. Taskiran and Edward

  12. Image manipulation: Fraudulence in digital dental records: Study and review

    OpenAIRE

    Aman Chowdhry; Keya Sircar; Deepika Bablani Popli; Ankita Tandon

    2014-01-01

    Introduction: In present-day times, freely available software allows dentists to tweak their digital records as never before. But, there is a fine line between acceptable enhancements and scientific delinquency. Aims and Objective: To manipulate digital images (used in forensic dentistry) of casts, lip prints, and bite marks in order to highlight tampering techniques and methods of detecting and preventing manipulation of digital images. Materials and Methods: Digital image records of forensi...

  13. [Digital imaging and robotics in endoscopic surgery].

    Science.gov (United States)

    Go, P M

    1998-05-23

    The introduction of endoscopical surgery has among other things influenced technical developments in surgery. Owing to digitalisation, major progress will be made in imaging and in the sophisticated technology sometimes called robotics. Digital storage makes the results of imaging diagnostics (e.g. the results of radiological examination) suitable for transmission via video conference systems for telediagnostic purposes. The availability of digital video technique renders possible the processing, storage and retrieval of moving images as well. During endoscopical operations use may be made of a robot arm which replaces the camera man. The arm does not grow tired and provides a stable image. The surgeon himself can operate or address the arm and it can remember fixed image positions to which it can return if ordered to do so. The next step is to carry out surgical manipulations via a robot arm. This may make operations more patient-friendly. A robot arm can also have remote control: telerobotics. At the Internet site of this journal a number of supplements to this article can be found, for instance three-dimensional (3D) illustrations (which is the purpose of the 3D spectacles enclosed with this issue) and a quiz (http:@appendix.niwi. knaw.nl). PMID:9627450

  14. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various materials. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  15. Image Resolution in the Digital Era: Notion and Clinical Implications

    OpenAIRE

    Vahid Rakhshan

    2014-01-01

    Digital radiographs need additional metadata in order to be accurate when being converted to analog media. Resolution is a major reason of failures in proper printing or digitizing the images. This letter shortly explains the overlooked pitfalls of digital radiography and photography in dental practice, and briefly instructs the reader how to avoid or rectify common problems associated with resolution calibration of digital radiographs.

  16. Design of Digital Imaging System for Optimization of Control Parameters

    Institute of Scientific and Technical Information of China (English)

    SONG Yong; HAO Qun; YANG Guang; SUN Hong-wei

    2007-01-01

    The design of experimental system of digital imaging system for control parameter is discussed in detail. Signal processing of digital CCD imaging system is first analyzed. Then the real time control of CCD driver and digital processing circuit and man-machine interaction are achieved by the design of digital CCD imaging module and control module. Experimental results indicate that the image quality of CCD experimental system makes a good response to the change of control parameters. The system gives an important base for improving image quality and the applicability of micro imaging system in complex environment.

  17. Imaging sunlight using a digital spectroheliograph

    CERN Document Server

    Harrison, Ken M

    2016-01-01

    Ken M. Harrison's latest book is a complete guide for amateur astronomers who want to obtain detailed narrowband images of the Sun using a digital spectroheliograph (SHG). The SHG allows the safe imaging of the Sun without the expense of commercial ‘etalon’ solar filters. As the supporting software continues to be refined, the use of the digital spectroheliograph will become more and more mainstream and has the potential to replace the expensive solar filters currently in use. The early chapters briefly explain the concept of the SHG and how it can produce an image from the solar spectrum. A comparison of the currently available narrow band solar filters is followed by a detailed analysis of the critical design, construction and assembly features of the SHG. The design and optimum layout of the instrument is discussed to allow evaluation of performance. This information explains how to assemble a fully functional SHG using readily available components. The software required to process the images is exp...

  18. Adaptive thresholding of digital subtraction angiography images

    Science.gov (United States)

    Sang, Nong; Li, Heng; Peng, Weixue; Zhang, Tianxu

    2005-10-01

    In clinical practice, digital subtraction angiography (DSA) is a powerful technique for the visualization of blood vessels in the human body. Blood vessel segmentation is a main problem for 3D vascular reconstruction. In this paper, we propose a new adaptive thresholding method for the segmentation of DSA images. Each pixel of the DSA images is declared to be a vessel/background point with regard to a threshold and a few local characteristic limits depending on some information contained in the pixel neighborhood window. The size of the neighborhood window is set according to a priori knowledge of the diameter of vessels to make sure that each window contains the background definitely. Some experiments on cerebral DSA images are given, which show that our proposed method yields better results than global thresholding methods and some other local thresholding methods do.

  19. Facial Edema Evaluation Using Digital Image Processing

    Directory of Open Access Journals (Sweden)

    A. E. Villafuerte-Nuñez

    2013-01-01

    Full Text Available The main objective of the facial edema evaluation is providing the needed information to determine the effectiveness of the anti-inflammatory drugs in development. This paper presents a system that measures the four main variables present in facial edemas: trismus, blush (coloration, temperature, and inflammation. Measurements are obtained by using image processing and the combination of different devices such as a projector, a PC, a digital camera, a thermographic camera, and a cephalostat. Data analysis and processing are performed using MATLAB. Facial inflammation is measured by comparing three-dimensional reconstructions of inflammatory variations using the fringe projection technique. Trismus is measured by converting pixels to centimeters in a digitally obtained image of an open mouth. Blushing changes are measured by obtaining and comparing the RGB histograms from facial edema images at different times. Finally, temperature changes are measured using a thermographic camera. Some tests using controlled measurements of every variable are presented in this paper. The results allow evaluating the measurement system before its use in a real test, using the pain model approved by the US Food and Drug Administration (FDA, which consists in extracting the third molar to generate the facial edema.

  20. Digital Image Correlation with Dynamic Subset Selection

    Science.gov (United States)

    Hassan, Ghulam Mubashar; MacNish, Cara; Dyskin, Arcady; Shufrin, Igor

    2016-09-01

    The quality of the surface pattern and selection of subset size play a critical role in achieving high accuracy in Digital Image Correlation (DIC). The subset size in DIC is normally selected by testing different subset sizes across the entire image, which is a laborious procedure. This also leads to the problem that the worst region of the surface pattern influences the performance of DIC across the entire image. In order to avoid these limitations, a Dynamic Subset Selection (DSS) algorithm is proposed in this paper to optimize the subset size for each point in an image before optimizing the correlation parameters. The proposed DSS algorithm uses the local pattern around the point of interest to calculate a parameter called the Intensity Variation Ratio (Λ), which is used to optimize the subset size. The performance of the DSS algorithm is analyzed using numerically generated images and is compared with the results of traditional DIC. Images obtained from laboratory experiments are also used to demonstrate the utility of the DSS algorithm. Results illustrate that the DSS algorithm provides a better alternative to subset size "guessing" and finds an appropriate subset size for each point of interest according to the local pattern.

  1. The Advancement of World Digital Cities

    DEFF Research Database (Denmark)

    Yasuoka, Mika; Ishida, Toru; Aurigi, Alessandro

    2009-01-01

    This chapter reviews the advancement of several worldwide activities on regional information spaces empowered by advanced technologies such as sensors, information terminals, broadband networks and wireless networks. In the US and Canada, a large number of community networks supported by grass root...... activities appeared in the early 1990s. In Europe, more than one hundred digital cities have been tried, often supported by local government, central government and EU in the name of local digitalization. Asian countries have actively adopted the latest information technologies as a part of national...

  2. Matching rendered and real world images by digital image processing

    Science.gov (United States)

    Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume

    2010-05-01

    Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.

  3. Digital mammography, cancer screening: Factors important for image compression

    Science.gov (United States)

    Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria

    1993-01-01

    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.

  4. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Loo Jr., Billy W.

    2000-06-09

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  5. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    Energy Technology Data Exchange (ETDEWEB)

    Xing, L [Stanford University, Stanford, CA (United States); Wong, J [Johns Hopkins University, Baltimore, MD (United States); Li, R [Stanford University, Palo Alto, CA (United States)

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gated VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.

  6. Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO

    Directory of Open Access Journals (Sweden)

    Bindewald A

    2005-04-01

    Full Text Available Abstract Background Fundus autofluorescence (AF imaging using confocal scanning laser ophthalmoscopy (cSLO provides an accurate delineation of areas of geographic atrophy (GA. Automated computer-assisted methods for detecting and removing interfering vessels are needed to support the GA quantification process in longitudinal studies and in reading centres. Methods A test tool was implemented that uses region-growing techniques to segment GA areas. An algorithm for illuminating shadows can be used to process low-quality images. Agreement between observers and between three different methods was evaluated by two independent readers in a pilot study. Agreement and objectivity were assessed using the Bland-Altman approach. Results The new method (C identifies vascular structures that interfere with the delineation of GA. Results are comparable to those of two commonly used procedures (A, B, with a mean difference between C and A of -0.67 mm2 (95% CI [-0.99, -0.36], between B and A of -0.81 mm2, (95% CI [-1.08, -0.53], and between C and B of 0.15 mm2 (95% CI [-0.12, 0.41]. Objectivity of a method is quantified by the mean difference between observers: A 0.30 mm2 (95% CI [0.02, 0.57], B -0.11 mm2 (95% CI [-0.28, 0.10], and C 0.12 mm2 (95% CI [0.02, 0.22]. Conclusion The novel procedure is comparable with regard to objectivity and inter-reader agreement to established methods of quantifying GA. It considerably speeds up the lengthy measurement process in AF with well defined GA zones.

  7. Digital image exploration at Maui Community College

    CERN Document Server

    Morzinski, Katie M; Crossfield, Ian J

    2010-01-01

    We designed a two-day laboratory exploration of fundamental concepts in digital images for an introductory engineering course at Maui Community College. Our objective was for the students to understand spatial vs. brightness resolution, standard file formats, image tradeoffs, and the engineering design cycle. We used open investigation, question generation, and an engineering design challenge to help our students achieve these learning goals. We also experimented with incorporating Hawaiian language and cultural awareness into our activity. We present our method, student response, and reflections on the success of our design. The 2008 re-design of this activity focused on better incorporating authentic engineering process skills, and on using a rubric for summative assessment of the students' poster presentations. A single file containing all documents and presentations used in this lesson is available online.

  8. Image manipulation: Fraudulence in digital dental records: Study and review

    Directory of Open Access Journals (Sweden)

    Aman Chowdhry

    2014-01-01

    Full Text Available Introduction: In present-day times, freely available software allows dentists to tweak their digital records as never before. But, there is a fine line between acceptable enhancements and scientific delinquency. Aims and Objective: To manipulate digital images (used in forensic dentistry of casts, lip prints, and bite marks in order to highlight tampering techniques and methods of detecting and preventing manipulation of digital images. Materials and Methods: Digital image records of forensic data (casts, lip prints, and bite marks photographed using Samsung Techwin L77 digital camera were manipulated using freely available software. Results: Fake digital images can be created either by merging two or more digital images, or by altering an existing image. Discussion and Conclusion: Retouched digital images can be used for fraudulent purposes in forensic investigations. However, tools are available to detect such digital frauds, which are extremely difficult to assess visually. Thus, all digital content should mandatorily have attached metadata and preferably watermarking in order to avert their malicious re-use. Also, computer alertness, especially about imaging software′s, should be promoted among forensic odontologists/dental professionals.

  9. Applications of Digital Image Analysis in Experimental Mechanics

    OpenAIRE

    Lyngbye, J. : Ph.D.

    1992-01-01

    The present thesis "Application of Digital Image Analysis in Experimental Mechanics" has been prepared as a part of Janus Lyngbyes Ph.D. study during the period December 1988 to June 1992 at the Department of Building technology and Structural Engineering, University of Aalborg, Denmark. In this thesis attention will be focused on optimal use and analysis of the information of digital images. This is realized during investigation and application of parametric methods in digital image analysis...

  10. On digital image processing technology and application in geometric measure

    Science.gov (United States)

    Yuan, Jiugen; Xing, Ruonan; Liao, Na

    2014-04-01

    Digital image processing technique is an emerging science that emerging with the development of semiconductor integrated circuit technology and computer science technology since the 1960s.The article introduces the digital image processing technique and principle during measuring compared with the traditional optical measurement method. It takes geometric measure as an example and introduced the development tendency of digital image processing technology from the perspective of technology application.

  11. Digital image-based classification of biodiesel.

    Science.gov (United States)

    Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Almeida, Valber Elias; Araújo, Thomas Souto Policarpo; Melo, Jessica Priscila; Diniz, Paulo Henrique Gonçalves Dias; Véras, Germano

    2015-07-01

    This work proposes a simple, rapid, inexpensive, and non-destructive methodology based on digital images and pattern recognition techniques for classification of biodiesel according to oil type (cottonseed, sunflower, corn, or soybean). For this, differing color histograms in RGB (extracted from digital images), HSI, Grayscale channels, and their combinations were used as analytical information, which was then statistically evaluated using Soft Independent Modeling by Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and variable selection using the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). Despite good performances by the SIMCA and PLS-DA classification models, SPA-LDA provided better results (up to 95% for all approaches) in terms of accuracy, sensitivity, and specificity for both the training and test sets. The variables selected Successive Projections Algorithm clearly contained the information necessary for biodiesel type classification. This is important since a product may exhibit different properties, depending on the feedstock used. Such variations directly influence the quality, and consequently the price. Moreover, intrinsic advantages such as quick analysis, requiring no reagents, and a noteworthy reduction (the avoidance of chemical characterization) of waste generation, all contribute towards the primary objective of green chemistry.

  12. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A

    2013-01-01

    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  13. 7th International Workshop on Advanced Optical Imaging and Metrology

    CERN Document Server

    2014-01-01

    In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imagi...

  14. Rotorcraft digital advanced avionics system (RODAAS) functional description

    Science.gov (United States)

    Peterson, E. M.; Bailey, J.; Mcmanus, T. J.

    1985-01-01

    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.

  15. Digital Image Watermarking Based on DiscreteWavelet Transform

    Institute of Scientific and Technical Information of China (English)

    丁玮; 闫伟齐; 齐东旭

    2002-01-01

    This paper aims at digital watermark which is a new popular research topic recently, presents some methods to embed digital watermark based on modifying frequency coefficients in discrete wavelettransfor(DWT)domain.First,thepresent progress of digital watermark is briefly introduced; after that, starting from Pitas's method and discarding hispseudo random number method, the authors use a digital image scrambling technology as preprocessing fordigital watermarking. Then the authors discuss how to embed a 1-bit digital image as watermark in frequency domain. Finallyanotherdigital watermarking method is given in which 3-D DWT is used to transformagivendigitalimage.Basedontheexperimentalresults, it is shown that the proposed methods are robust to a large extent.

  16. Counterfeit deterrence and digital imaging technology

    Science.gov (United States)

    Church, Sara E.; Fuller, Reese H.; Jaffe, Annette B.; Pagano, Lorelei W.

    2000-04-01

    The US government recognizes the growing problem of counterfeiting currency using digital imaging technology, as desktop systems become more sophisticated, less expensive and more prevalent. As the rate of counterfeiting with this type of equipment has grown, the need for specific prevention methods has become apparent to the banknote authorities. As a result, the Treasury Department and Federal Reserve have begun to address issues related specifically to this type of counterfeiting. The technical representatives of these agencies are taking a comprehensive approach to minimize counterfeiting using digital technology. This approach includes identification of current technology solutions for banknote recognition, data stream intervention and output marking, outreach to the hardware and software industries and enhancement of public education efforts. Other aspects include strong support and cooperation with existing international efforts to prevent counterfeiting, review and amendment of existing anti- counterfeiting legislation and investigation of currency design techniques to make faithful reproduction more difficult. Implementation of these steps and others are to lead to establishment of a formal, permanent policy to address and prevent the use of emerging technologies to counterfeit currency.

  17. Digital image processing applied Rock Art tracing

    Directory of Open Access Journals (Sweden)

    Montero Ruiz, Ignacio

    1998-06-01

    Full Text Available Adequate graphic recording has been one of the main objectives of rock art research. Photography has increased its role as a documentary technique. Now, digital image and its treatment allows new ways to observe the details of the figures and to develop a recording procedure which is as, or more, accurate than direct tracing. This technique also avoid deterioration of the rock paintings. The mathematical basis of this method is also presented.

    La correcta documentación del arte rupestre ha sido una preocupación constante por parte de los investigadores. En el desarrollo de nuevas técnicas de registro, directas e indirectas, la fotografía ha ido adquiriendo mayor protagonismo. La imagen digital y su tratamiento permiten nuevas posibilidades de observación de las figuras representadas y, en consecuencia, una lectura mediante la realización de calcos indirectos de tanta o mayor fiabilidad que la observación directa. Este sistema evita los riesgos de deterioro que provocan los calcos directos. Se incluyen las bases matemáticas que sustentan el método.

  18. A Review Paper : Noise Models in Digital Image Processing

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Boyat

    2015-04-01

    Full Text Available Noise is always presents in digital images during image acquisition, coding, transmission, and processing steps. Noise is very difficult to remove it from the digital images without the prior knowledge of noise model. That is why, review of noise models are essential in the study of image denoising techniques. In this paper, we express a brief overview of various noise models. These noise models can be selected by analysis of their origin. In this way, we present a complete and quantitative analysis of noise models available in digital images.

  19. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  20. Image Resolution in the Digital Era: Notion and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Vahid Rakhshan

    2014-05-01

    Full Text Available Digital radiographs need additional metadata in order to be accurate when being converted to analog media. Resolution is a major reason of failures in proper printing or digitizing the images. This letter shortly explains the overlooked pitfalls of digital radiography and photography in dental practice, and briefly instructs the reader how to avoid or rectify common problems associated with resolution calibration of digital radiographs.

  1. Image Resolution in the Digital Era: Notion and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Vahid Rakhshan

    2014-12-01

    Full Text Available Digital radiographs need additional metadata in order to be accurate when being converted to analog media. Resolution is a major reason of failures in proper printing or digitizing the images. This letter shortly explains the overlooked pitfalls of digital radiography and photography in dental practice, and briefly instructs the reader how to avoid or rectify common problems associated with resolution calibration of digital radiographs.

  2. Image Resolution in the Digital Era: Notion and Clinical Implications

    Science.gov (United States)

    Rakhshan, Vahid

    2014-01-01

    Digital radiographs need additional metadata in order to be accurate when being converted to analog media. Resolution is a major reason of failures in proper printing or digitizing the images. This letter shortly explains the overlooked pitfalls of digital radiography and photography in dental practice, and briefly instructs the reader how to avoid or rectify common problems associated with resolution calibration of digital radiographs. PMID:25469352

  3. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  4. Advanced software tools for digital loose part monitoring systems

    International Nuclear Information System (INIS)

    The paper describes two software modules as analysis tools for digital loose part monitoring systems. The first module is called acoustic module which utilizes the multi-media features of modern personal computers to replay the digital stored short-time bursts with sufficient length and in good quality. This is possible due to the so-called puzzle technique developed at ISTec. The second module is called classification module which calculates advanced burst parameters and classifies the acoustic events in pre-defined classes with the help of an artificial multi-layer perception neural network trained with the back propagation algorithm. (author). 7 refs, 7 figs

  5. X-ray imaging using digital cameras

    Science.gov (United States)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  6. Technical advances of interventional fluoroscopy and flat panel image receptor.

    Science.gov (United States)

    Lin, Pei-Jan Paul

    2008-11-01

    In the past decade, various radiation reducing devices and control circuits have been implemented on fluoroscopic imaging equipment. Because of the potential for lengthy fluoroscopic procedures in interventional cardiovascular angiography, these devices and control circuits have been developed for the cardiac catheterization laboratories and interventional angiography suites. Additionally, fluoroscopic systems equipped with image intensifiers have benefited from technological advances in x-ray tube, x-ray generator, and spectral shaping filter technologies. The high heat capacity x-ray tube, the medium frequency inverter generator with high performance switching capability, and the patient dose reduction spectral shaping filter had already been implemented on the image intensified fluoroscopy systems. These three underlying technologies together with the automatic dose rate and image quality (ADRIQ) control logic allow patients undergoing cardiovascular angiography procedures to benefit from "lower patient dose" with "high image quality." While photoconductor (or phosphor plate) x-ray detectors and signal capture thin film transistor (TFT) and charge coupled device (CCD) arrays are analog in nature, the advent of the flat panel image receptor allowed for fluoroscopy procedures to become more streamlined. With the analog-to-digital converter built into the data lines, the flat panel image receptor appears to become a digital device. While the transition from image intensified fluoroscopy systems to flat panel image receptor fluoroscopy systems is part of the on-going "digitization of imaging," the value of a flat panel image receptor may have to be evaluated with respect to patient dose, image quality, and clinical application capabilities. The advantage of flat panel image receptors has yet to be fully explored. For instance, the flat panel image receptor has its disadvantages as compared to the image intensifiers; the cost of the equipment is probably the most

  7. Survey on Digital Watermarking on Medical Images

    Directory of Open Access Journals (Sweden)

    Kavitha K J

    2013-12-01

    Full Text Available The rapid growth in information and communication technologies has advances the medical data management systems immensely. In this regard, many different techniques and also the advanced equipment like Magnetic Resonance Imaging (MRI Scanner, Computer Tomography (CT scanner, Positron Emission of Tomography (PET, mammography, ultrasound, radiography etc. are used. Nowadays there is a rise of various diseases, for which several diagnoses are insufficient; therefore to achieve a correct diagnostic, there is need to exchange the data over Internet, but the main problem is while exchanging the data over Internet, we need to maintain their authenticity, integrity and confidentiality. Therefore, we need a system for effective storage, transmission, controlled manipulation and access of medical data keeping its authenticity, integrity and confidentiality. In this article, we discuss various water marking techniques used for effective storage, transmission, controlled manipulation and access of medical data keeping its authenticity, integrity and confidentiality.

  8. On-line structure-lossless digital mammogram image compression

    Science.gov (United States)

    Wang, Jun; Huang, H. K.

    1996-04-01

    This paper proposes a novel on-line structure lossless compression method for digital mammograms during the film digitization process. The structure-lossless compression segments the breast and the background, compresses the former with a predictive lossless coding method and discards the latter. This compression scheme is carried out during the film digitization process and no additional time is required for the compression. Digital mammograms are compressed on-the-fly while they are created. During digitization, lines of scanned data are first acquired into a small temporary buffer in the scanner, then they are transferred to a large image buffer in an acquisition computer which is connected to the scanner. The compression process, running concurrently with the digitization process in the acquisition computer, constantly checks the image buffer and compresses any newly arrived data. Since compression is faster than digitization, data compression is completed as soon as digitization is finished. On-line compression during digitization does not increase overall digitizing time. Additionally, it reduces the mammogram image size by a factor of 3 to 9 with no loss of information. This algorithm has been implemented in a film digitizer. Statistics were obtained based on digitizing 46 mammograms at four sampling distances from 50 to 200 microns.

  9. Digital Archival Image Collections: Who Are the Users?

    Science.gov (United States)

    Herold, Irene M. H.

    2010-01-01

    Archival digital image collections are a relatively new phenomenon in college library archives. Digitizing archival image collections may make them accessible to users worldwide. There has been no study to explore whether collections on the Internet lead to users who are beyond the institution or a comparison of users to a national or…

  10. Improving digital image watermarking by means of optimal channel selection

    NARCIS (Netherlands)

    Huynh-The, Thien; Banos Legran, Oresti; Lee, Sungyoung; Yoon, Yongik; Le-Tien, Thuong

    2016-01-01

    Supporting safe and resilient authentication and integrity of digital images is of critical importance in a time of enormous creation and sharing of these contents. This paper presents an improved digital image watermarking model based on a coefficient quantization technique that intelligently encod

  11. Image Interpolation Techniques in Digital Image Processing: An Overview

    Directory of Open Access Journals (Sweden)

    Shreyas Fadnavis

    2014-10-01

    Full Text Available In current digital era the image interpolation techniques based on multi-resolution technique are being discovered and developed. These techniques are gaining importance due to their application in variety if field (medical, geographical, space information where fine and minor details are important. This paper presents an overview of different interpolation techniques, (nearest neighbor, Bilinear, Bicubic, B-spline, Lanczos, Discrete wavelet transform (DWT and Kriging. Our results show bicubic interpolations gives better results than nearest neighbor and bilinear, whereas DWT and Kriging give finer details.

  12. Robustness of the Digital Image Watermarking Techniques against Brightness and Rotation Attack

    Directory of Open Access Journals (Sweden)

    Raman Kumar, Singh

    2009-09-01

    Full Text Available The recent advent in the field of multimedia proposed a many facilities in transport, transmission and manipulation of data. Along with this advancement of facilities there are larger threats in authentication of data, its licensed use and protection against illegal use of data. A lot of digital image watermarking techniques have been designed and implemented to stop the illegal use of the digital multimedia images. This paper compares the robustness of three different watermarking schemes against brightness and rotation attacks. The robustness of the watermarked images has been verified on the parameters of PSNR (Peak Signal to Noise Ratio, RMSE (Root Mean Square Error and MAE (Mean Absolute Error.

  13. Performance evaluation of new components and services in digital medical imaging

    OpenAIRE

    Ungureanu-Kocsis, Otilia

    2004-01-01

    In current digital imaging systems, new components such as digital display, image compression, image processing, as well as film digitization and film printing are introduced, in addition to analogue or digital imaging modalities. Although the current trend is towards fully digital systems, analog images (films) represent a high percentage of the volume of medical image data in the interim transition period from analog to digital. Soft copy display of medical image using CRT mo...

  14. The teaching of computer programming and digital image processing in radiography.

    Science.gov (United States)

    Allan, G L; Zylinski, J

    1998-06-01

    The increased use of digital processing techniques in Medical Radiations imaging modalities, along with the rapid advance in information technology has resulted in a significant change in the delivery of radiographic teaching programs. This paper details a methodology used to concurrently educate radiographers in both computer programming and image processing. The students learn to program in visual basic applications (VBA), and the programming skills are contextualised by requiring the students to write a digital subtraction angiography (DSA) package. Program code generation and image presentation interface is undertaken by the spreadsheet Microsoft Excel. The user-friendly nature of this common interface enables all students to readily begin program creation. The teaching of programming and image processing skills by this method may be readily generalised to other vocational fields where digital image manipulation is a professional requirement. PMID:9726504

  15. Advanced Equalization Techniques for Digital Coherent Optical Receivers

    DEFF Research Database (Denmark)

    Arlunno, Valeria

    This PhD thesis addresses the design and performance evaluation of advanced Digital Signal Processing (DSP) algorithms for coherent optical fiber transmission systems. The research results presented in this thesis report on transmission of highly spectrally efficient optical communication systems...... format detection. Feedback equalization structure have been investigated in high order modulation formats transmission, when combined with coding techniques, and for closed spaced multiplexing scenario. Highlight results presented in this PhD thesis include evaluation and implementation of a novel...... digital coherent receivers. The research results presented in this thesis are pioneering in two areas: first the use of feedback equalization structures and second the use of digital signal processing for receiver structure supporting Orthogonal Frequency Division Multiplexing (OFDM) and reconfigurable...

  16. System for objective assessment of image differences in digital cinema

    Science.gov (United States)

    Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2014-09-01

    There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.

  17. Standard codecs image compression to advanced video coding

    CERN Document Server

    Ghanbari, Mohammed

    2003-01-01

    This book discusses the growth of digital television technology and the revolution in image and video compression (such as JPEG2000, broadcast TV, video phone), highlighting the need for standardisation in processing static and moving images and their exchange between computer systems. The book gives an authoritative explanation of picture and video coding algorithms, working from basic principles through to the advanced video compression systems now being developed. One of its main objectives is to describe the reasons behind the introduction of a standard codec for a specific application and

  18. An Adaptive Watermarking Technique for the copyright of digital images and Digital Image Protection

    Directory of Open Access Journals (Sweden)

    Yusuf Perwej

    2012-05-01

    Full Text Available The Internet as a whole does not use secure links, thus information in transit may be vulnerable to interruption as well. The important of reducing a chance of the information being detected during the transmission is being an issue in the real world now days. The Digital watermarking method provides for the quick and inexpensive distribution of digital information over the Internet. This method provides new ways of ensuring the sufficient protection of copyright holders in the intellectual property dispersion process. The property of digital watermarking images allows insertion of additional data in the image without altering the value of the image. This message is hidden in unused visual space in the image and stays below the human visible threshold for the image. Both seek to embed information inside a cover message with little or no degradation of the cover-object. In this paper investigate the following relevant concepts and terminology, history of watermarks and the properties of a watermarking system as well as a type of watermarking and applications. We are proposing edge detection using Gabor Filters. In this paper we are proposed least significant bit (LSB substitution method to encrypt the message in the watermark image file. The benefits of the LSB are its simplicity to embed the bits of the message directly into the LSB plane of cover-image and many techniques using these methods. The LSB does not result in a human perceptible difference because the amplitude of the change is little therefore the human eye the resulting stego image will look identical to the cover image and this allows high perceptual transparency of the LSB. The spatial domain technique LSB substitution it would be able to use a pseudo-random number generatorto determine the pixels to be used for embedding based on a given key. We are using DCT transform watermark algorithms based on robustness. The watermarking robustness have been calculated by the Peak Signal to

  19. An Adaptive Watermarking Technique for the copyright of digital images and Digital Image Protection

    Directory of Open Access Journals (Sweden)

    Yusuf Perwej

    2012-04-01

    Full Text Available The Internet as a whole does not use secure links, thus information in transit may be vulnerable to interruption as well. The important of reducing a chance of the information being detected during the transmission is being an issue in the real world now days. The Digital watermarking method provides for the quick and inexpensive distribution of digital information over the Internet. This method provides new ways of ensuring the sufficient protection of copyright holders in the intellectual property dispersion process. The property of digital watermarking images allows insertion of additional data in the image without altering the value of the image. This message is hidden in unused visual space in the image and stays below the human visible threshold for the image. Both seek to embed information inside a cover message with little or no degradation of the cover-object. In this paper investigate the following relevant concepts and terminology, history of watermarks and the properties of a watermarking system as well as a type of watermarking and applications. We are proposing edge detection using Gabor Filters. In this paper we are proposed least significant bit (LSB substitution method to encrypt the message in the watermark image file. The benefits of the LSB are its simplicity to embed the bits of the message directly into the LSB plane of cover-image and many techniques using these methods. The LSB does not result in a human perceptible difference because the amplitude of the change is little therefore the human eye the resulting stego image will look identical to the cover image and this allows high perceptual transparency of the LSB. The spatial domain technique LSB substitution it would be able to use a pseudo-random number generator to determine the pixels to be used for embedding based on a given key. We are using DCT transform watermark algorithms based on robustness. The watermarking robustness have been calculated by the Peak Signal

  20. Digital imaging based classification and authentication of granular food products

    Science.gov (United States)

    Carter, R. M.; Yan, Y.; Tomlins, K.

    2006-02-01

    In the food industry there are many types of product that are in the form of particles, granules or grains. Consistent material size and quality within any given sample is an important requirement that is well known in industry. In addition it is possible that samples of material may be of unknown type or have been subject to adulteration, thus making material authentication a real requirement. The present work implements an advanced, but cost-effective, digital imaging and image processing technique to characterize granular foodstuffs either in real time process control or in an off-line, sample-based, manner. The imaging approach not only provides cost-effective and rugged hardware when compared with other approaches but also allows precise characterization of individual grains of material. In this paper the imaging system is briefly described and the parameters it measures are discussed. Both cluster and discriminant analyses are performed to establish the suitability of the measured parameters for authenticity study and a simple fuzzy logic is implemented based on the findings. Tests are performed, using rice as an example, to evaluate the performance of the system for authenticity testing, and encouraging results are achieved.

  1. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.

    2013-07-23

    Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high-density) integration of dissimilar materials. Predictive finite element models are used to minimize delamination failures during design, but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical interface behavior from in-situ delamination experiments. Recently, a novel miniature delamination setup was presented that enables in-situ microscopic characterization of interface delamination while sensitively measuring global load-displacement curves for all mode mixities. Nevertheless, extraction of detailed mechanical interface behavior from measured images is challenging, because deformations are tiny and measurement noise large. Therefore, an advanced I-GDIC methodology is developed which correlates the image patterns by only deforming the images using kinematically-admissible \\'eigenmodes\\' that correspond to the few parameters controlling the interface tractions in an analytic description of the crack tip deformation field, thereby greatly enhancing accuracy and robustness. This method is validated on virtual delamination experiments, simulated using a recently developed self-adaptive cohesive zone (CZ) finite element framework. © The Society for Experimental Mechanics, Inc. 2014.

  2. Determination of representative elementary areas for soil redoximorphic features by digital image processing

    Science.gov (United States)

    Photography has been a welcome tool in documenting and conveying qualitative soil information. When coupled with image analysis software, the usefulness of digital cameras can be increased to advance the field of micropedology. The determination of a Representative Elementary Area (REA) still rema...

  3. Problems with Permatrace: a note on digital image publication

    Directory of Open Access Journals (Sweden)

    Guy Hopkinson

    2004-01-01

    Full Text Available The methodology presented here developed out of work required to convert the hard-copy illustrations submitted to Internet Archaeology for publication of the 1975 excavations at Cricklade. The publication (and digital image preparatory work was funded by English Heritage and was, in part, an experiment designed to explore some of the possibilities presented by digital image publication. Various challenges in how to transform the drawings on permatrace to a digital format were encountered. While a full exploration of the potential of all areas of digital image preparation and publication was not possible, some interesting technical options were evaluated. This short article explains the processes applied in creating the images that were finally incorporated within the publication. It also examines some other avenues regarding the presentation of archaeological drawings that could be explored in both future Internet Archaeology content and other digital publications.

  4. Digital image processing an algorithmic approach with Matlab

    CERN Document Server

    Qidwai, Uvais

    2009-01-01

    Introduction to Image Processing and the MATLAB EnvironmentIntroduction Digital Image Definitions: Theoretical Account Image Properties MATLAB Algorithmic Account MATLAB CodeImage Acquisition, Types, and File I/OImage Acquisition Image Types and File I/O Basics of Color Images Other Color Spaces Algorithmic Account MATLAB CodeImage ArithmeticIntroduction Operator Basics Theoretical TreatmentAlgorithmic Treatment Coding ExamplesAffine and Logical Operations, Distortions, and Noise in ImagesIntroduction Affine Operations Logical Operators Noise in Images Distortions in ImagesAlgorithmic Account

  5. Advances in Multimodality Molecular Imaging

    International Nuclear Information System (INIS)

    Multimodality molecular imaging is now playing a pivotal role in clinical setting and biomedical research. Modern molecular imaging technologies are deemed to potentially lead to a revolutionary paradigm shift in healthcare and revolutionize clinical practice. Within the spectrum of macroscopic medical imaging, sensitivity ranges from the detection of millimolar to submillimolar concentrations of contrast media with computed tomography (CT) and magnetic resonance imaging (MRI), respectively, to picomolar concentrations in single-photon emission computed tomography (SPECT) and positron emission 8 9 tomography (PET): a 108-109 difference. Even though the introduction of dedicated dual-modality imaging systems designed specifically and available commercially for clinical practice is relatively recent, the concept of combining anatomical and functional imaging has been recognized for several decades. Software- and hardware-based correlation between anatomical (x-ray CT, MRI) and physiological (PET) information is a promising research field and now offers unique capabilities for the medical imaging community and biomedical researchers. The introduction of dual-modality PET/CT imaging systems in clinical environments has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a 'one-stop shop' and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging where the first patient images have been shown late in 2006. This paper discusses the

  6. Blind detection of duplicate regions in digital images

    OpenAIRE

    Čargo, Boštjan

    2009-01-01

    This work refers to the research area of digital image processing. Its main purpose is to elucidate the field of automatic digital forgery detection and, within its scope, describe a particular algorithm for blind detection of duplicated image regions: the so-called Duplicate Region Detector (DRD). The algorithm is based on principal component analysis, reduction of image blocks representations, and their lexicographical comparison. Our java implementation was tested on a population with posi...

  7. Optical design and characterization of an advanced computational imaging system

    Science.gov (United States)

    Shepard, R. Hamilton; Fernandez-Cull, Christy; Raskar, Ramesh; Shi, Boxin; Barsi, Christopher; Zhao, Hang

    2014-09-01

    We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the optical requirement trades associated with custom and commercial-off-the-shelf (COTS) optics and converge on the development of two low-cost and robust COTS testbeds. The first is a coded-aperture programmable pixel imager employing a digital micromirror device (DMD) for image plane per-pixel oversampling and spatial super-resolution experiments. The second is a simultaneous pupil-encoded and time-encoded imager employing a DMD for pupil apodization or a deformable mirror for wavefront coding experiments. These two testbeds are built to leverage two MIT Lincoln Laboratory focal plane arrays - an orthogonal transfer CCD with non-uniform pixel sampling and on-chip dithering and a digital readout integrated circuit (DROIC) with advanced on-chip per-pixel processing capabilities. This paper discusses the derivation of optical component requirements, optical design metrics, and performance analyses for the two testbeds built.

  8. Topology of digital images visual pattern discovery in proximity spaces

    CERN Document Server

    Peters, James F

    2014-01-01

    This book carries forward recent work on visual patterns and structures in digital images and introduces a near set-based a topology of digital images. Visual patterns arise naturally in digital images viewed as sets of non-abstract points endowed with some form of proximity (nearness) relation. Proximity relations make it possible to construct uniform topolo- gies on the sets of points that constitute a digital image. In keeping with an interest in gaining an understanding of digital images themselves as a rich source of patterns, this book introduces the basics of digital images from a computer vision perspective. In parallel with a computer vision perspective on digital images, this book also introduces the basics of prox- imity spaces. Not only the traditional view of spatial proximity relations but also the more recent descriptive proximity relations are considered. The beauty of the descriptive proximity approach is that it is possible to discover visual set patterns among sets that are non-overlapping ...

  9. Imaging of the pituitary: Recent advances

    Directory of Open Access Journals (Sweden)

    Vikas Chaudhary

    2011-01-01

    Full Text Available Pituitary lesions, albeit relatively infrequent, can significantly alter the quality of life. This article highlights the role of advanced imaging modalities in evaluating pituitary-hypothalamic axis lesions. Magnetic resonance imaging (MRI is the examination of choice for evaluating hypothalamic-pituitary-related endocrine diseases. Advanced MR techniques discussed in this article include dynamic contrast-enhanced MRI, 3T MRI, magnetization transfer (MT imaging, diffusion-weighted imaging (DWI, proton MR spectroscopy, fluorine-18 fluorodeoxyglucose-positron emission tomography, single-photon emission computed tomography, intraoperative MRI, and intraoperative real-time ultrasonography.

  10. Functions of the digital image in Education: A methodological proposal for reading and writing the digital image on instructional screens

    Directory of Open Access Journals (Sweden)

    Mariella Milagros Azzato

    2011-07-01

    Full Text Available This research goes through the instructional possibilities that reading and writing the digital image have in Education. Along these lines, we are presenting this research that looks for, on one hand, to develop a methodological proposal for reading and writing the digital image, and on the other, to implement these methodologies in a course used as a study case and whose objective was to evaluate students' performance when writing screens for a learning object using the methodologies for reading and writing the digital image. The process for compiling date was based on the questionnaire technique, individual interviews and the analysis of course proposed activities. The application of the first questionnaire allowed us to determine students' knowledge level about the digital image before starting the course. The individual interview allowed us to determine the students' reading criteria gained after using the reading methodology for the digital image to analyse educational materials (Galavis, 2008; Azzato, 2009. The proposed activities for the course permitted us to value students' performance when reading and writing the digital image of a learning object. Finally, after course completion, the second questionnaire was applied in order to determine the students' acquired knowledge level about reading and writing an image on digital screens. The results obtained in each of the analysis allowed us to establish that the proposed methodologies were highly useful to write the educational image for the screens of each one of the learning objects created in the course.

  11. Digital Image Correlation for Performance Monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Palaviccini, Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herzberg, Michael [National Security Campus, Kansas City, MO (United States)

    2016-02-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of nondestructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video (HSV) and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  12. Digital Image Correlation for Performance Monitoring

    Science.gov (United States)

    Palaviccini, Miguel; Turner, Dan; Herzberg, Michael

    2016-01-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of non-destructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  13. Recent Advancements in Microwave Imaging Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  14. Copy-move forgery detection in digital image

    Science.gov (United States)

    Alamro, Loai; Yusoff, Nooraini

    2016-08-01

    Copy-move is considered as one of the most popular kind of digital image tempering, in which one or more parts of a digital image are copied and pasted into different locations. Geometric transformation is among the major challenges in detecting copy-move forgery of a digital image. In such forgery, the copied and moved parts of a forged image are either rotated or/and re-scaled. Hence, in this study we propose a combination of Discrete Wavelet Transform (DWT) and Speeded Up Robust Features (SURF) to detect a copy-move activity. The experiments results prove that the proposed method is superior with overall accuracy 95%. The copy-move attacks in digital image has been successfully detected and the method is also can detect the fraud parts exposed to rotation and scaling issue.

  15. Microscopy imaging device with advanced imaging properties

    Science.gov (United States)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  16. Microscopy imaging device with advanced imaging properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  17. Secure Digital signature scheme for Image authentication over wireless channels

    Directory of Open Access Journals (Sweden)

    K SriSwathi

    2011-09-01

    Full Text Available The introduction of 3G wireless communication systems, together with the invasive distribution of digital images and the growing concern on their originality triggers an emergent need of authenticating images received by unreliable channels, such as public Internet and wireless networks. To meet this need, a content-based image authentication scheme that is suitable for an insecure network and robust to transmission errors is proposed. The proposed scheme exploits the scalability of a structural digital signature in order to achieve a good tradeoff between security and image transfer for networked image applications. In this scheme, multi-scale features are used to make digital signatures robust to image degradations and key-dependent parametric wavelet filters are employed to improve the security against forgery attacks. This scheme is also able to distinguish tampering areas in the attacked image. Experimental results show the robustness and validity of the proposed scheme.

  18. A Color Image Digital Watermarking Scheme Based on SOFM

    CERN Document Server

    Anitha, J

    2011-01-01

    Digital watermarking technique has been presented and widely researched to solve some important issues in the digital world, such as copyright protection, copy protection and content authentication. Several robust watermarking schemes based on vector quantization (VQ) have been presented. In this paper, we present a new digital image watermarking method based on SOFM vector quantizer for color images. This method utilizes the codebook partition technique in which the watermark bit is embedded into the selected VQ encoded block. The main feature of this scheme is that the watermark exists both in VQ compressed image and in the reconstructed image. The watermark extraction can be performed without the original image. The watermark is hidden inside the compressed image, so much transmission time and storage space can be saved when the compressed data are transmitted over the Internet. Simulation results demonstrate that the proposed method has robustness against various image processing operations without sacrif...

  19. A Color Image Digital Watermarking Scheme Based on SOFM

    Directory of Open Access Journals (Sweden)

    J. Anitha

    2010-09-01

    Full Text Available Digital watermarking technique has been presented and widely researched to solve some important issues in the digital world, such as copyright protection, copy protection and content authentication. Several robust watermarking schemes based on vector quantization (VQ have been presented. In this paper, we present a new digital image watermarking method based on SOFM vector quantizer for color images. This method utilizes the codebook partition technique in which the watermark bit is embedded into the selected VQ encoded block. The main feature of this scheme is that the watermark exists both in VQ compressed image and in the reconstructed image. The watermark extraction can be performed without the original image. The watermark is hidden inside the compressed image, so much transmission time and storage space can be saved when the compressed data are transmitted over the Internet. Simulation results demonstrate that the proposed method has robustness against various image processing operations without sacrificing compression performance and the computational speed.

  20. Desktop supercomputers. Advance medical imaging.

    Science.gov (United States)

    Frisiello, R S

    1991-02-01

    Medical imaging tools that radiologists as well as a wide range of clinicians and healthcare professionals have come to depend upon are emerging into the next phase of functionality. The strides being made in supercomputing technologies--including reduction of size and price--are pushing medical imaging to a new level of accuracy and functionality.

  1. Invited article: Digital beam-forming imaging riometer systems.

    Science.gov (United States)

    Honary, Farideh; Marple, Steve R; Barratt, Keith; Chapman, Peter; Grill, Martin; Nielsen, Erling

    2011-03-01

    The design and operation of a new generation of digital imaging riometer systems developed by Lancaster University are presented. In the heart of the digital imaging riometer is a field-programmable gate array (FPGA), which is used for the digital signal processing and digital beam forming, completely replacing the analog Butler matrices which have been used in previous designs. The reconfigurable nature of the FPGA has been exploited to produce tools for remote system testing and diagnosis which have proven extremely useful for operation in remote locations such as the Arctic and Antarctic. Different FPGA programs enable different instrument configurations, including a 4 × 4 antenna filled array (producing 4 × 4 beams), an 8 × 8 antenna filled array (producing 7 × 7 beams), and a Mills cross system utilizing 63 antennas producing 556 usable beams. The concept of using a Mills cross antenna array for riometry has been successfully demonstrated for the first time. The digital beam forming has been validated by comparing the received signal power from cosmic radio sources with results predicted from the theoretical beam radiation pattern. The performances of four digital imaging riometer systems are compared against each other and a traditional imaging riometer utilizing analog Butler matrices. The comparison shows that digital imaging riometer systems, with independent receivers for each antenna, can obtain much better measurement precision for filled arrays or much higher spatial resolution for the Mills cross configuration when compared to existing imaging riometer systems.

  2. Factors to consider in the transition to digital radiological imaging.

    LENUS (Irish Health Repository)

    MacDonald, David

    2009-02-01

    The dentist considering adopting digital radiological technology should consider more than the type of detector with which to capture the image. He\\/she should also consider the mode of display, image enhancement, radiation dose reduction, how the image can be stored long term, and infection control.

  3. The British Library Initiatives for Access Seminar: Digital Imaging.

    Science.gov (United States)

    Alexander, Michael

    1996-01-01

    Provides an overview of the British Library's Initiatives for Access program which uses digital imaging. Highlights include digitization of microfilm, the electronic "Beowulf", electronic photographic viewing system, computer software that uses neural networks and fuzzy matching to provide links to search terms, and international projects. (LRW)

  4. Affordable, Accessible, Immediate: Capture Stunning Images with Digital Infrared Photography

    Science.gov (United States)

    Snyder, Mark

    2011-01-01

    Technology educators who teach digital photography should consider incorporating an infrared (IR) photography component into their program. This is an area where digital photography offers significant benefits. Either type of IR imaging is very interesting to explore, but traditional film-based IR photography is difficult and expensive. In…

  5. Advanced Imaging Algorithms for Radiation Imaging Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  6. Digital Image Analysis for DETCHIP(®) Code Determination.

    Science.gov (United States)

    Lyon, Marcus; Wilson, Mark V; Rouhier, Kerry A; Symonsbergen, David J; Bastola, Kiran; Thapa, Ishwor; Holmes, Andrea E; Sikich, Sharmin M; Jackson, Abby

    2012-08-01

    DETECHIP(®) is a molecular sensing array used for identification of a large variety of substances. Previous methodology for the analysis of DETECHIP(®) used human vision to distinguish color changes induced by the presence of the analyte of interest. This paper describes several analysis techniques using digital images of DETECHIP(®). Both a digital camera and flatbed desktop photo scanner were used to obtain Jpeg images. Color information within these digital images was obtained through the measurement of red-green-blue (RGB) values using software such as GIMP, Photoshop and ImageJ. Several different techniques were used to evaluate these color changes. It was determined that the flatbed scanner produced in the clearest and more reproducible images. Furthermore, codes obtained using a macro written for use within ImageJ showed improved consistency versus pervious methods. PMID:25267940

  7. Arthritis: Conventional and Advanced Radiological Imaging

    Directory of Open Access Journals (Sweden)

    Adviye Ergun

    2014-06-01

    Full Text Available Arthritides are acute or chronic inflammation of one or more joints. The most common types of arthritis are osteoarthritis and rheumatoid arthritis, but there are more than 100 different forms. Right and early diagnosis is extremely important for the prevention of eventual structural and functional disability of the affected joint. Imaging findings, especially those of advanced level imaging, play a major role in diagnosis and monitor the progression of arthritis or its response to therapy. The objective of the review is to discuss the findings of conventional and advanced radiological imaging of most common arthritides and to present a simplified approach for their radiological evaluation.

  8. Becoming Image : Perspectives on Digital Culture, Fashion and Technofeminism

    OpenAIRE

    Ehlin, Lisa

    2015-01-01

    Departing from a technofeminist perspective, Becoming Image, places the digital image in a broader context of modern and postmodern technological discourses and fashion. In four articles, the compilation dissertation expands a contemporary and imagistic tech discourse by questioning the ideology of ”masculinity”―specifically the idea of it as a historically male domain. Through interviews, discourse analysis and feminist critique, as well as an interdisciplinary focus on digital media, the pr...

  9. Image Fusion Technique for Impulse Noise Removal in Digital Images using Empirical Mode Decomposition

    OpenAIRE

    A. Ramarao; Ch. Satyanandareddy; Sateesh, G.

    2012-01-01

    This paper introduces the concept of image fusion technique for impulse noise reduction in digital images. Image fusion is the process of combining two or more images into a single image while retaining the important features of each image. Multiple image fusion is an important technique used in military, remote sensing and medical applications. The images captured by two different sensors undergo filtering using vector median or spatial median filter based on the noise density in the image. ...

  10. Multimodal digital color imaging system for facial skin lesion analysis

    Science.gov (United States)

    Bae, Youngwoo; Lee, Youn-Heum; Jung, Byungjo

    2008-02-01

    In dermatology, various digital imaging modalities have been used as an important tool to quantitatively evaluate the treatment effect of skin lesions. Cross-polarization color image was used to evaluate skin chromophores (melanin and hemoglobin) information and parallel-polarization image to evaluate skin texture information. In addition, UV-A induced fluorescent image has been widely used to evaluate various skin conditions such as sebum, keratosis, sun damages, and vitiligo. In order to maximize the evaluation efficacy of various skin lesions, it is necessary to integrate various imaging modalities into an imaging system. In this study, we propose a multimodal digital color imaging system, which provides four different digital color images of standard color image, parallel and cross-polarization color image, and UV-A induced fluorescent color image. Herein, we describe the imaging system and present the examples of image analysis. By analyzing the color information and morphological features of facial skin lesions, we are able to comparably and simultaneously evaluate various skin lesions. In conclusion, we are sure that the multimodal color imaging system can be utilized as an important assistant tool in dermatology.

  11. Improving HCAHPS Scores with Advances in Digital Radiography.

    Science.gov (United States)

    Matthews, Marianne; Cretella, Gregg; Nicholas, William

    2016-01-01

    The imaging department can be instrumental in contributing to a healthcare facility's ability to succeed in this new era of competition. Advances in DR technology can improve patient perceptions in the imaging department by improving efficiencies and outcomes which, in turn, can ultimately bolster overall HCAHPS scores. Specific areas for improved scores by utilization of DR include nurse communication, doctor communication, pain management, and communication about medication. Value based purchasing brought with it a mandate for hospitals to track key metrics, which requires an investment in time, tools, and human resources. However, this mandate also presents hospitals and imaging departments, with an opportunity to leverage those very metrics to better market their facilities.

  12. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... beamforming. This is achieved partly because synthetic aperture imaging removes the limitation of a fixed transmit focal depth and instead enables dynamic transmit focusing. Lately, the major ultrasound companies have produced ultrasound scanners using 2-D transducer arrays with enough transducer elements...

  13. Camac interface for digitally recording infrared camera images

    International Nuclear Information System (INIS)

    An instrument has been built to store the digital signals from a modified imaging infrared scanner directly in a digital memory. This procedure avoids the signal-to-noise degradation and dynamic range limitations associated with successive analog-to-digital and digital-to-analog conversions and the analog recording method normally used to store data from the scanner. This technique also allows digital data processing methods to be applied directly to recorded data and permits processing and image reconstruction to be done using either a mainframe or a microcomputer. If a suitable computer and CAMAC-based data collection system are already available, digital storage of up to 12 scanner images can be implemented for less than $1750 in materials cost. Each image is stored as a frame of 60 x 80 eight-bit pixels, with an acquisition rate of one frame every 16.7 ms. The number of frames stored is limited only by the available memory. Initially, data processing for this equipment was done on a VAX 11-780, but images may also be displayed on the screen of a microcomputer. Software for setting the displayed gray scale, generating contour plots and false-color displays, and subtracting one image from another (e.g., background suppression) has been developed for IBM-compatible personal computers

  14. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    Science.gov (United States)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  15. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping. PMID:26270925

  16. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  17. Optical-digital hybrid image search system in cloud environment

    Science.gov (United States)

    Ikeda, Kanami; Kodate, Kashiko; Watanabe, Eriko

    2016-09-01

    To improve the versatility and usability of optical correlators, we developed an optical-digital hybrid image search system consisting of digital servers and an optical correlator that can be used to perform image searches in the cloud environment via a web browser. This hybrid system employs a simple method to obtain correlation signals and has a distributed network design. The correlation signals are acquired by using an encoder timing signal generated by a rotating disk, and the distributed network design facilitates the replacement and combination of the digital correlation server and the optical correlator.

  18. Optical–digital hybrid image search system in cloud environment

    Science.gov (United States)

    Ikeda, Kanami; Kodate, Kashiko; Watanabe, Eriko

    2016-09-01

    To improve the versatility and usability of optical correlators, we developed an optical–digital hybrid image search system consisting of digital servers and an optical correlator that can be used to perform image searches in the cloud environment via a web browser. This hybrid system employs a simple method to obtain correlation signals and has a distributed network design. The correlation signals are acquired by using an encoder timing signal generated by a rotating disk, and the distributed network design facilitates the replacement and combination of the digital correlation server and the optical correlator.

  19. Quantitative evaluation of digital dental radiograph imaging systems.

    Science.gov (United States)

    Hildebolt, C F; Vannier, M W; Pilgram, T K; Shrout, M K

    1990-11-01

    Two digital imaging systems, a video camera and analog-to-digital converter, and a charge-coupled device linear photodiode array slide scanner, were tested for their suitability in quantitative studies of periodontal disease. The information content in the original films was estimated, and digital systems were assessed according to these requirements. Radiometric and geometric performance criteria for the digital systems were estimated from measurements and observations. The scanner-based image acquisition (digitization) system had no detectable noise and had a modulation transfer function curve superior to that of the video-based system. The scanner-based system was equivalent to the video-based system in recording radiographic film densities and had more geometric distortion than the video-based system. The comparison demonstrated the superiority of the charge-coupled device linear array system for the quantification of periodontal disease extent and activity. PMID:2234888

  20. NAIP Digital Ortho Photo Image 2010

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in...

  1. 77 FR 12784 - Lifeline and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital...

    Science.gov (United States)

    2012-03-02

    ... audio broadcasting satellite uses. The Commission defined ``small business'' for the wireless... and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital Literacy... availability through digital literacy training, limiting section 251 resale of Lifeline-supported...

  2. Business Card Recognition System Based on Digital Image Processing

    Directory of Open Access Journals (Sweden)

    Wu Xue

    2013-04-01

    Full Text Available Computer automatic understanding of document images becomes an increasingly hot issue in digital image processing and pattern recognition field, in which business card recognition system is a hot topic. The paper develops business card recognition software with good application prospects. It mainly has the functions including image acquisition, pretreatment, card recognition and extraction, business card tilt correction, positive and negative matching of business card, business card storage and retrieval. The paper proposes two new algorithms, one is to use digital image region labeling and automation for realizing automatic recognition and extraction of single business card, the other is to use pixel area interpolation method for tilt correction. The results prove that the two algorithms have wider applicability. They not only can use digital image region labeling and automation for form recognition, but also can use pixel area interpolation method for circumvolving in any angle.

  3. Analysis and Management System of Digital Ultrasonic Image

    Institute of Scientific and Technical Information of China (English)

    TAO Qiang; ZHANG Hai-yan; LI Xia; WANG Ke

    2008-01-01

    This paper presents the analysis and management system of digital ultrasonic image. The system can manage medical ultrasonic image by collecting, saving and transferring, and realize that section offices of ultrasonic image in hospital network manage. The system use network technology in transferring image between ultrasonic equipments to share patient data in ultrasonic equipments. And doctors can input patient diagnostic report,saved by text file and case history, digitally managed. The system can be realized by Visual C++ which make windows applied. The system can be brought forward because PACS prevail with various hospitals,but PACS is expensive. In view of this status, we put forward to the analysis and management system of digital ultrasonic image,which is similar to PACS.

  4. Wavelet-based gray-level digital image watermarking

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The watermarking technique has been proposed as a method by hiding secret information into the im age to protect the copyright of multimedia data. But most previous work focuses on the algorithms of embedding one-dimensional watermarks or two-dimensional binary digital watermarks. In this paper, a wavelet-based method for embedding a gray-level digital watermark into an image is proposed. By still image decomposition technique, a gray-level digital watermark is decompounded into a series of bitplanes. By discrete wavelet transform ( DWT ), the host image is decomposed into multiresolution representations with hierarchical structure. Thedifferent bitplanes of the gray-level watermark is embedded into the corresponding resolution of the decomposed host image. The experimental results show that the proposed techniques can successfully survive image processing operations and the lossy compression techniques such as Joint Photographic Experts Group (JPEG).

  5. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  6. Functions of the digital image in Education: A methodological proposal for reading and writing the digital image on instructional screens

    OpenAIRE

    Mariella Milagros Azzato

    2011-01-01

    This research goes through the instructional possibilities that reading and writing the digital image have in Education. Along these lines, we are presenting this research that looks for, on one hand, to develop a methodological proposal for reading and writing the digital image, and on the other, to implement these methodologies in a course used as a study case and whose objective was to evaluate students' performance when writing screens for a learning object using the methodologies for rea...

  7. Image Enhancer: A Graphic Editor to Apply Numerous Effects in Digital Image

    Directory of Open Access Journals (Sweden)

    Abhisek Hazra

    2014-12-01

    Full Text Available Image Enhancer is an open source, portable graphic editor developed for Windows platform. It is equipped with an enriched set of digital imaging filters with advanced computer vision techniques embedded within, like Interest Point Detection (Susan Corner Detector, Linear Edge Detection (Simple, Sobel, Canny, Histogram Equalization, Dithering (Bayer, Burkes, Sierra, Jarvis Judis Ninke, Transforming to Polar images and vice versa etc.  Image Enhancer was released under GNU Lesser General Public License (LGPL and the software was made available from the Microsoft’s open source project hosting repository Codeplex (http://imageenhancer.codeplex.com. Image Enhancer was tested and hosted by several popular software archives like SoftPedia, CNET, Freeware Files, ZDNet, Soft Tango and others. A stable Release Candidate (RC version has been made available in which some major modifications were done which were not present in the earlier Beta version. The download link for the Image Enhancer (both Release Candidate & Beta Version from CodePlex repository is (http://imageenhancer.codeplex.com/releases.

  8. Advances in noninvasive functional imaging of bone.

    Science.gov (United States)

    Lan, Sheng-Min; Wu, Ya-Na; Wu, Ping-Ching; Sun, Chi-Kuang; Shieh, Dar-Bin; Lin, Ruey-Mo

    2014-02-01

    The demand for functional imaging in clinical medicine is comprehensive. Although the gold standard for the functional imaging of human bones in clinical settings is still radionuclide-based imaging modalities, nonionizing noninvasive imaging technology in small animals has greatly advanced in recent decades, especially the diffuse optical imaging to which Britton Chance made tremendous contributions. The evolution of imaging probes, instruments, and computation has facilitated exploration in the complicated biomedical research field by allowing longitudinal observation of molecular events in live cells and animals. These research-imaging tools are being used for clinical applications in various specialties, such as oncology, neuroscience, and dermatology. The Bone, a deeply located mineralized tissue, presents a challenge for noninvasive functional imaging in humans. Using nanoparticles (NP) with multiple favorable properties as bioimaging probes has provided orthopedics an opportunity to benefit from these noninvasive bone-imaging techniques. This review highlights the historical evolution of radionuclide-based imaging, computed tomography, positron emission tomography, and magnetic resonance imaging, diffuse optics-enabled in vivo technologies, vibrational spectroscopic imaging, and a greater potential for using NPs for biomedical imaging. PMID:24439341

  9. Digital Library ImageRetrieval usingScale Invariant Feature and Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Hongtao Zhang

    2014-10-01

    Full Text Available With the advance of digital library, the digital content develops with rich information connotation. Traditional information retrieval methods based on external characteristic and text description are unable to sufficientlyreveal and express the substance and semantic relation of multimedia information, and unable to fully reveal and describe the representative characteristics of information. Because of the abundant connotation of image content and the people’s abstract subjectivity in studying image content, the visual feature of the image is difficult to be described by key words. Therefore, this method not always can meet people’s needs, and the study of digital library image retrieval technique based on content is important to both academic research and application. At present, image retrieval methods are mainly based on the text and content, etc. But these existing algorithms have shortages, such as large errors and slow speeds. Motivated by the above fact, we in this paper propose a new approach based on relevance vector machine (RVM. The proposed approach first extracts the patch-level scale invariant image feature (SIFT, and then constructs the global features for images. The image feature is then delivered into RVM for retrieval. We evaluate the proposed approach on Corel dataset. The experimental result shows that the proposed method in this text has high accuracy when retrieves images.

  10. REVIEW OF DIGITAL IMAGE SHARING BY DIVERSE IMAGE MEDIA

    OpenAIRE

    Mayuri Sonkusare; Nitin Janwe

    2015-01-01

    A natural-image-based VSS scheme (NVSS scheme) that shares secret images. A natural-imagebasedsecret image sharing scheme (NSISS) that can share a color secret image over n - 1 arbitrary naturalimages and one noise-like share image. Instead of altering the contents of the natural images, the encryptionprocess extracts feature images from each natural image. In order to protect the secret image from transmissionphase. (n, n) - NVSS scheme shared secret image over n-1 natural share. The natural...

  11. Resolution enhancement phase-contrast imaging by microsphere digital holography

    Science.gov (United States)

    Wang, Yunxin; Guo, Sha; Wang, Dayong; Lin, Qiaowen; Rong, Lu; Zhao, Jie

    2016-05-01

    Microsphere has shown the superiority of super-resolution imaging in the traditional 2D intensity microscope. Here a microsphere digital holography approach is presented to realize the resolution enhancement phase-contrast imaging. The system is designed by combining the microsphere with the image-plane digital holography. A microsphere very close to the object can increase the resolution by transforming the object wave from the higher frequency to the lower one. The resolution enhancement amplitude and phase images can be retrieved from a single hologram. The experiments are carried on the 1D and 2D gratings, and the results demonstrate that the observed resolution has been improved, meanwhile, the phase-contrast image is obtained. The proposed method can improve the transverse resolution in all directions based on a single exposure. Furthermore, this system has extended the application of the microsphere from the conventional 2D microscopic imaging to 3D phase-contrast microscopic imaging.

  12. Digital Topology and Geometry in Medical Imaging: A Survey.

    Science.gov (United States)

    Saha, Punam K; Strand, Robin; Borgefors, Gunilla

    2015-09-01

    Digital topology and geometry refers to the use of topologic and geometric properties and features for images defined in digital grids. Such methods have been widely used in many medical imaging applications, including image segmentation, visualization, manipulation, interpolation, registration, surface-tracking, object representation, correction, quantitative morphometry etc. Digital topology and geometry play important roles in medical imaging research by enriching the scope of target outcomes and by adding strong theoretical foundations with enhanced stability, fidelity, and efficiency. This paper presents a comprehensive yet compact survey on results, principles, and insights of methods related to digital topology and geometry with strong emphasis on understanding their roles in various medical imaging applications. Specifically, this paper reviews methods related to distance analysis and path propagation, connectivity, surface-tracking, image segmentation, boundary and centerline detection, topology preservation and local topological properties, skeletonization, and object representation, correction, and quantitative morphometry. A common thread among the topics reviewed in this paper is that their theory and algorithms use the principle of digital path connectivity, path propagation, and neighborhood analysis.

  13. Advanced Imaging of Chiari 1 Malformations.

    Science.gov (United States)

    Fakhri, Akbar; Shah, Manish N; Goyal, Manu S

    2015-10-01

    Type I Chiari malformations are congenital deformities involving cerebellar tonsillar herniation downward through the foramen magnum. Structurally, greater than 5 mm of tonsillar descent in adults and more than 6 mm in children is consistent with type I Chiari malformations. However, the radiographic severity of the tonsillar descent does not always correlate well with the clinical symptomatology. Advanced imaging can help clinically correlate imaging to symptoms. Specifically, cerebrospinal fluid (CSF) flow abnormalities are seen in patients with type I Chiari malformation. Advanced MRI involving cardiac-gated and phase-contrast MRI affords a view of such CSF flow abnormalities. PMID:26408061

  14. Four-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Four-channel digital flash X-ray imaging system is developed in authors' lab. Four radiography images at four time intervals of explosion and ballistic trajectory can be obtained using this system. The construction of the system, its specification, and its experimental results are presented

  15. Digital image analysis of palaeoenvironmental records and applications

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Environmental change signals in geological or biological records are commonly reflected on their reflecting or transmitting images. These environmental signals can be extracted through digital image analysis. The analysis principle involves section line selection, color value reading and calculating environmental proxy index along the section lines, layer identification, auto-chronology and investigation of structure evolution of growth bands. On detailed illustrations of the image technique, this note provides image analyzing procedures of coral, tree-ring and stalagmite records. The environmental implications of the proxy index from image analysis are accordingly given through application demonstration of the image technique.

  16. Generation and Analysis of Wire Rope Digital Radiographic Images

    Science.gov (United States)

    Chakhlov, S.; Anpilogov, P.; Batranin, A.; Osipov, S.; Zhumabekova, Sh; Yadrenkin, I.

    2016-06-01

    The paper is dealt with different structures of the digital radiographic system intended for wire rope radiography. The scanning geometry of the wire rope is presented and the main stages of its digital radiographic image generation are identified herein. Correction algorithms are suggested for X-ray beam hardening. A complex internal structure of the wire rope is illustrated by its 25 mm diameter image obtained from X-ray computed tomography. The paper considers the approach to the analysis of digital radiographic image algorithms based on the closeness of certain parameters (invariants) of all unit cross-sections of the reference wire rope or its sections with the length equaling to the lay. The main invariants of wire rope radiographic images are identified and compared with its typical defects.

  17. The FBI compression standard for digitized fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.; Bradley, J.N. [Los Alamos National Lab., NM (United States); Onyshczak, R.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Hopper, T. [Federal Bureau of Investigation, Washington, DC (United States)

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  18. Image processing in digital chest radiography: effect on diagnostic efficacy.

    Science.gov (United States)

    Manninen, H; Partanen, K; Lehtovirta, J; Matsi, P; Soimakallio, S

    1992-01-01

    The usefulness of digital image processing of chest radiographs was evaluated in a clinical study. In 54 patients, chest radiographs in the posteroanterior projection were obtained by both 14 inch digital image intensifier equipment and the conventional screen-film technique. The digital radiographs (512 x 512 image format) viewed on a 625 line monitor were processed in three different ways: (1) standard display; (2) digital edge enhancement for the standard display; and (3) inverse intensity display. The radiographs were interpreted independently by three radiologists. The diagnoses were confirmed by CT, follow-up radiographs and clinical records. Chest abnormalities of the films analyzed included 21 primary lung tumors, 44 pulmonary nodules, 16 cases with mediastinal disease and 17 cases with pneumonia/atelectasis. Interstitial lung disease, pleural plaques, and pulmonary emphysema were found in 30, 18 and 19 cases, respectively. The sensitivity of conventional radiography when averaged overall findings was better than that of the digital techniques (P less than 0.001). The differences in diagnostic accuracy measured by sensitivity and specificity between the three digital display modes were small. Standard image display showed better sensitivity for pulmonary nodules (0.74 vs 0.66; P less than 0.05) but poorer specificity for pulmonary emphysema (0.85 vs. 0.93; P less than 0.05) compared with inverse intensity display. We conclude that when using 512 x 512 image format, the routine use of digital edge enhancement and tone reversal at digital chest radiographs is not warranted. PMID:1563421

  19. Advanced imaging modalities in the detection of cerebral vasospasm.

    Science.gov (United States)

    Mills, Jena N; Mehta, Vivek; Russin, Jonathan; Amar, Arun P; Rajamohan, Anandh; Mack, William J

    2013-01-01

    The pathophysiology of cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) is complex and is not entirely understood. Mechanistic insights have been gained through advances in the capabilities of diagnostic imaging. Core techniques have focused on the assessment of vessel caliber, tissue metabolism, and/or regional perfusion parameters. Advances in imaging have provided clinicians with a multifaceted approach to assist in the detection of cerebral vasospasm and the diagnosis of delayed ischemic neurologic deficits (DIND). However, a single test or algorithm with broad efficacy remains elusive. This paper examines both anatomical and physiological imaging modalities applicable to post-SAH vasospasm and offers a historical background. We consider cerebral blood flow velocities measured by Transcranial Doppler Ultrasonography (TCD). Structural imaging techniques, including catheter-based Digital Subtraction Angiography (DSA), CT Angiography (CTA), and MR Angiography (MRA), are reviewed. We examine physiologic assessment by PET, HMPAO SPECT, (133)Xe Clearance, Xenon-Enhanced CT (Xe/CT), Perfusion CT (PCT), and Diffusion-Weighted/MR Perfusion Imaging. Comparative advantages and limitations are discussed. PMID:23476766

  20. Advanced Imaging Modalities in the Detection of Cerebral Vasospasm

    Directory of Open Access Journals (Sweden)

    Jena N. Mills

    2013-01-01

    Full Text Available The pathophysiology of cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH is complex and is not entirely understood. Mechanistic insights have been gained through advances in the capabilities of diagnostic imaging. Core techniques have focused on the assessment of vessel caliber, tissue metabolism, and/or regional perfusion parameters. Advances in imaging have provided clinicians with a multifaceted approach to assist in the detection of cerebral vasospasm and the diagnosis of delayed ischemic neurologic deficits (DIND. However, a single test or algorithm with broad efficacy remains elusive. This paper examines both anatomical and physiological imaging modalities applicable to post-SAH vasospasm and offers a historical background. We consider cerebral blood flow velocities measured by Transcranial Doppler Ultrasonography (TCD. Structural imaging techniques, including catheter-based Digital Subtraction Angiography (DSA, CT Angiography (CTA, and MR Angiography (MRA, are reviewed. We examine physiologic assessment by PET, HMPAO SPECT, 133Xe Clearance, Xenon-Enhanced CT (Xe/CT, Perfusion CT (PCT, and Diffusion-Weighted/MR Perfusion Imaging. Comparative advantages and limitations are discussed.

  1. Image transfer technology in health care advancing

    International Nuclear Information System (INIS)

    Instead of recording images used in medicine, such as x-ray images, on film, it is now increasingly often possible to record them digitally in a computer. Using open and integrated information systems, digital images and the related data can in future be processed simultaneously, for instance, at x-ray units, in laboratories and at hospital wards. The data are fed into an open and integrated information system only once. Users may search for and combine data easily and any way they wish. Images are stored in the computer system at the location where they are generated, and transferred in the network only when they are needed elsewhere. In future, it will be possible to obtain information from a database using, for instance, sound as a means of communication. Data may be stored in the network as graphs, as sound or even as films. Despite all this , the introduction of new information technology still requires much consideration, resources and time. An open information system also needs standardised concepts and services so that different pieces of equipment and programmes are able to work together. (orig.)

  2. Anatomy of picture archiving and communications systems: Nuts and bolts—Image acquisition: Getting digital images from imaging modalities

    OpenAIRE

    Andriole, Katherine P.

    1999-01-01

    Digital acquisition of data from the various imaging modalities for input to a picture archiving and communication system (PACS) is discussed. Essential features for successful clinical implementation including Digital Imaging and Communications in Medicine (DICOM) compliance, radiology information system (RIS)/hospital information system (HIS) interfacing, and workflow integration are detailed. Image acquisition from the inherently digital cross-sectional modalities are described, as well as...

  3. Interactive display system having a digital micromirror imaging device

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, James T.; DeSanto, Leonard; Kaull, Lisa; Brewster, Calvin

    2006-04-11

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector cooperates with a digital imaging device, e.g. a digital micromirror imaging device, for projecting an image through the panel for display on the outlet face. The imaging device includes an array of mirrors tiltable between opposite display and divert positions. The display positions reflect an image light beam from the projector through the panel for display on the outlet face. The divert positions divert the image light beam away from the panel, and are additionally used for reflecting a probe light beam through the panel toward the outlet face. Covering a spot on the panel, e.g. with a finger, reflects the probe light beam back through the panel toward the inlet face for detection thereat and providing interactive capability.

  4. Low-Light Image Enhancement Using Adaptive Digital Pixel Binning

    Directory of Open Access Journals (Sweden)

    Yoonjong Yoo

    2015-06-01

    Full Text Available This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP. Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor.

  5. In-line digital holographic imaging in volume holographic microscopy.

    Science.gov (United States)

    Zhai, Xiaomin; Lin, Wei-Tang; Chen, Hsi-Hsun; Wang, Po-Hao; Yeh, Li-Hao; Tsai, Jui-Chang; Singh, Vijay Raj; Luo, Yuan

    2015-12-01

    A dual-plane in-line digital holographic imaging method incorporating volume holographic microscopy (VHM) is presented to reconstruct objects in a single shot while eliminating zero-order and twin-image diffracted waves. The proposed imaging method is configured such that information from different axial planes is acquired simultaneously using multiplexed volume holographic imaging gratings, as used in VHM, and recorded as in-line holograms where the corresponding reference beams are generated in the fashion of Gabor's in-line holography. Unlike conventional VHM, which can take axial intensity information only at focal depths, the proposed method digitally reconstructs objects at any axial position. Further, we demonstrate the proposed imaging technique's ability to effectively eliminate zero-order and twin images for single-shot three-dimensional object reconstruction. PMID:26625046

  6. GEOMETRIC PROCESSING OF DIGITAL IMAGES OF THE PLANETS.

    Science.gov (United States)

    Edwards, Kathleen

    1987-01-01

    New procedures and software have been developed for geometric transformations of images to support digital cartography of the planets. The procedures involve the correction of spacecraft camera orientation of each image with the use of ground control and the transformation of each image to a Sinusoidal Equal-Area map projection with an algorithm which allows the number of transformation calculations to vary as the distortion varies within the image. When the distortion is low in an area of an image, few transformation computations are required, and most pixels can be interpolated. When distortion is extreme, the location of each pixel is computed. Mosaics are made of these images and stored as digital databases.

  7. Digital image compression for a 2f multiplexing optical setup

    Science.gov (United States)

    Vargas, J.; Amaya, D.; Rueda, E.

    2016-07-01

    In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.

  8. Image enhancement of digital periapical radiographs according to diagnostic tasks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Han, Won Jeong; Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, Dankook University College of Dentistry, Cheonan (Korea, Republic of)

    2014-03-15

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  9. Image enhancement of digital periapical radiographs according to diagnostic tasks

    International Nuclear Information System (INIS)

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  10. Digital adaptive optics line-scanning confocal imaging system

    Science.gov (United States)

    Liu, Changgeng; Kim, Myung K.

    2015-11-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  11. Developing Dynamic Digital Image Techniques with Continuous Parameters to Detect Structural Damage

    Directory of Open Access Journals (Sweden)

    Ming-Hsiang Shih

    2013-01-01

    Full Text Available Several earthquakes with strong magnitude occurred globally at various locations, especially the unforgettable tsunami disaster caused by the earthquake in Indonesia and Japan. If the characteristics of structures can be well understood to implement new technology, the damages caused by most natural disasters can be significantly alleviated. In this research, dynamic digital image correlation method for using continuous parameter is applied for developing a low-cost digital image correlation coefficient method with advanced digital cameras and high-speed computers. The experimental study using cantilever test object with defect control confirms that the vibration mode calculated using this proposed method can highly express the defect locations. This proposed method combined with the sensitivity of Inter-Story Drift Mode Shape, IDMS, can also reveal the damage degree of damage structure. These test and analysis results indicate that this proposed method is high enough for applying to achieve the object of real-time online monitoring of structure.

  12. A Fingerprint-Based Digital Images Watermarking for Identity Authentication

    Directory of Open Access Journals (Sweden)

    Wójtowicz Wioletta

    2014-03-01

    Full Text Available In this paper the combination of fingerprint verification methods with watermarking technology to provide copyright protection and authentication of digital images is proposed. The goal of this study is to investigate how watermarking processing affects the quality of biometric watermarks. Performed experiments showed that extracted fingerprint images have roughly equal verification performance even if some watermarked images undergo additional degradation. Proposed methodology will be improved using more sophisticated fingerprint verification methods and subsequently incorporated into multimodal watermarking schemes.

  13. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  14. Advanced imaging and visualization in gastrointestinal disorders

    Institute of Scientific and Technical Information of China (English)

    Odd Helge Gilja; Jan G Hatlebakk; Svein φdegaard; Arnold Bersta; Ivan Viola; Christopher Giertsen; Trygve Hausken; Hans Gregersen

    2007-01-01

    Advanced medical imaging and visualization has a strong impact on research and clinical decision making in gastroenterology. The aim of this paper is to show how imaging and visualization can disclose structural and functional abnormalities of the gastrointestinal (GI) tract.Imaging methods such as ultrasonography, magnetic resonance imaging (MRI), endoscopy, endosonography,and elastography will be outlined and visualization with Virtual Reality and haptic methods. Ultrasonography is a versatile method that can be used to evaluate antral contractility, gastric emptying, transpyloric flow, gastric configuration, intragastric distribution of meals, gastric accommodation and strain measurement of the gastric wall. Advanced methods for endoscopic ultrasound,three-dimensional (3D) ultrasound, and tissue Doppler (Strain Rate Imaging) provide detailed information of the GI tract. Food hypersensitivity reactions including gastrointestinal reactions due to food allergy can be visualized by ultrasonography and MRI. Development of multi-parametric and multi-modal imaging may increase diagnostic benefits and facilitate fusion of diagnostic and therapeutic imaging in the future.

  15. Copyright protection of images in the digital environment.

    Science.gov (United States)

    Ibbotson, J

    1997-03-01

    All creators of copyright-protected works are re-assessing the protection and exploitation of their works in the digital environment. This article attempts to define 'digital' in a copyright context. It reminds artists and photographers of the essentials of copyright as they already apply in the UK before it looks at how those essentials may apply to images circulating in the digital environment. Finally it covers some of the key issues which artists and other creators are now having to address in their day to day work.

  16. A computer program for planimetric analysis of digitized images

    DEFF Research Database (Denmark)

    Lynnerup, N; Lynnerup, O; Homøe, P

    1992-01-01

    Planimetrical measurements are made to calculate the area of an entity. By digitizing the entity the planimetrical measurements may be done by computer. This computer program was developed in conjunction with a research project involving measurement of the pneumatized cell system of the temporal...... bones as seen on X-rays. By placing the X-rays on a digitizer tablet and tracing the outline of the cell system, the area was calculated by the program. The calculated data and traced images could be stored and printed. The program is written in BASIC; necessary hardware is an IBM-compatible personal...... computer, a digitizer tablet and a printer....

  17. Utilization of MATLAB for Digital Image Transmission Simulation.,

    Directory of Open Access Journals (Sweden)

    T. Kratochvil

    2003-12-01

    Full Text Available The paper deals with the utilization of Matlab for simulation andanalysis of the digital image transmission and transmission distortionsin DTV (Digital Television and DVB (Digital Video Broadcasting area.The simulation model that covers selected phenomena of DVB standardbaseband signal processing applied in Matlab is presented and featuresof the protection against transmission errors are outlined. Thepractical results of FEC (Forward Error Correction codes efficiencyare presented and at the end the GUI application for experimentalsimulation and education is outlined with a simulation example.

  18. Improving HCAHPS Scores with Advances in Digital Radiography.

    Science.gov (United States)

    Matthews, Marianne; Cretella, Gregg; Nicholas, William

    2016-01-01

    The imaging department can be instrumental in contributing to a healthcare facility's ability to succeed in this new era of competition. Advances in DR technology can improve patient perceptions in the imaging department by improving efficiencies and outcomes which, in turn, can ultimately bolster overall HCAHPS scores. Specific areas for improved scores by utilization of DR include nurse communication, doctor communication, pain management, and communication about medication. Value based purchasing brought with it a mandate for hospitals to track key metrics, which requires an investment in time, tools, and human resources. However, this mandate also presents hospitals and imaging departments, with an opportunity to leverage those very metrics to better market their facilities. PMID:26939298

  19. Figure of Image Quality and Information Capacity in Digital Mammography

    Directory of Open Access Journals (Sweden)

    Christos M. Michail

    2014-01-01

    Full Text Available Objectives. In this work, a simple technique to assess the image quality characteristics of the postprocessed image is developed and an easy to use figure of image quality (FIQ is introduced. This FIQ characterizes images in terms of resolution and noise. In addition information capacity, defined within the context of Shannon’s information theory, was used as an overall image quality index. Materials and Methods. A digital mammographic image was postprocessed with three digital filters. Resolution and noise were calculated via the Modulation Transfer Function (MTF, the coefficient of variation, and the figure of image quality. In addition, frequency dependent parameters such as the noise power spectrum (NPS and noise equivalent quanta (NEQ were estimated and used to assess information capacity. Results. FIQs for the “raw image” data and the image processed with the “sharpen edges” filter were found 907.3 and 1906.1, correspondingly. The information capacity values were 60.86×103 and 78.96×103 bits/mm2. Conclusion. It was found that, after the application of the postprocessing techniques (even commercial nondedicated software on the raw digital mammograms, MTF, NPS, and NEQ are improved for medium to high spatial frequencies leading to resolving smaller structures in the final image.

  20. A New Approach of Improving CFA Image for Digital Camera's

    CERN Document Server

    Kumar, Manoj; Singla, Pradeep

    2012-01-01

    This paper work directly towards the improving the quality of the image for the digital cameras and other visual capturing products. In this Paper, the authors clearly defines the problems occurs in the CFA image. A different methodology for removing the noise is discuses in the paper for color correction and color balancing of the image. At the same time, the authors also proposed a new methodology of providing denoisiing process before the demosaickingfor the improving the image quality of CFA which is much efficient then the other previous defined. The demosaicking process for producing the colors in the image in a best way is also discuss.

  1. Experience with CANDID: Comparison algorithm for navigating digital image databases

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P.; Cannon, M.

    1994-10-01

    This paper presents results from the authors experience with CANDID (Comparison Algorithm for Navigating Digital Image Databases), which was designed to facilitate image retrieval by content using a query-by-example methodology. A global signature describing the texture, shape, or color content is first computed for every image stored in a database, and a normalized similarity measure between probability density functions of feature vectors is used to match signatures. This method can be used to retrieve images from a database that are similar to a user-provided example image. Results for three test applications are included.

  2. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  3. On the characteristics of the structural approach to image recognition on digital images

    International Nuclear Information System (INIS)

    The principles underlying the process of image recognition on digital images have been analyzed. A method has been proposed for automatic image recognition based on the structural approach to the choice of image features. The uniform local features have been described

  4. Visual Secret Sharing Based Digital Image Watermarking

    Directory of Open Access Journals (Sweden)

    B. Surekha

    2012-05-01

    Full Text Available In this paper, a spatial domain image watermarking technique based on Visual Secret Sharing (VSS and unique statistical properties is proposed. A random looking image is generated during watermark hiding process and is secretly registered with an arbitrator for verification during conflicts. Another random looking image is generated during watermark revelation stage and is combined with the existing one, to recover the watermark. This whole process is done without altering the image to be protected and hence the quality of the cover image is high. When compared with similar existing techniques, the proposed technique has three main advantages: Provides greater convenience in carrying and storing the intermediate images called shares; Provides high security; Reduce tradeoff between spatial and frequency domain techniques in terms of robustness

  5. Gastrointestinal digital fluoroscopy: Comparison of digital pulsed progressive readout images with 100-mm spot films

    International Nuclear Information System (INIS)

    New developments in pulsed progressive readout (PPR) techniques allow short, extremely intense pulses of radiation to be used to produce a latent image which is then progressively read off the video camera and placed in 1,024 x 1,024-pixel digital storage. The resulting image is produced by a 10-20-msec pulse, reducing motion artifact to below that achievable with conventional spot film techniques, with a potential for 50%-95% dose reduction. This technique of reducing motion artifact is ideal for digital applications in gastrointestinal radiology. The authors compared 10-mm spot films and PPR digital radiographs of 86 anatomic regions in 43 patients undergoing routine barium enema and cholangiographic examinations. Parameters evaluated included display of normal and pathologic features, image contrast, and resolution. The benefits of the PPR technique include postprocessing to evaluate low contrast region and the potential for significant dose reduction

  6. Dual Level Digital Watermarking for Images

    Science.gov (United States)

    Singh, V. K.; Singh, A. K.

    2010-11-01

    More than 700 years ago, watermarks were used in Italy to indicate the paper brand and the mill that produced it. By the 18th century watermarks began to be used as anti counterfeiting measures on money and other documents.The term watermark was introduced near the end of the 18th century. It was probably given because the marks resemble the effects of water on paper. The first example of a technology similar to digital watermarking is a patent filed in 1954 by Emil Hembrooke for identifying music works. In 1988, Komatsu and Tominaga appear to be the first to use the term "digital watermarking". Consider the following hypothetical situations. You go to a shop, buy some goods and at the counter you are given a currency note you have never come across before. How do you verify that it is not counterfeit? Or say you go to a stationery shop and ask for a ream of bond paper. How do you verify that you have actually been given what you asked for? How does a philatelist verify the authenticity of a stamp? In all these cases, the watermark is used to authenticate. Watermarks have been in existence almost from the time paper has been in use. The impression created by the mesh moulds on the slurry of fibre and water remains on the paper. It serves to identify the manufacturer and thus authenticate the product without actually degrading the aesthetics and utility of the stock. It also makes forgery significantly tougher. Even today, important government and legal documents are watermarked. But what is watermarking, when it comes to digital data? Information is no longer present on a physical material but is represented as a series of zeros and ones. Duplication of information is achieved easily by just reproducing that combination of zeros and ones. How then can one protect ownership rights and authenticate data? The digital watermark is the same as that of conventional watermarks.

  7. DIGITAL IMAGE STEGANALYSIS FOR COMPUTER FORENSIC INVESTIGATION

    Directory of Open Access Journals (Sweden)

    Nanhay Singh

    2012-05-01

    Full Text Available This paper presents study about how to hide the useful information and give the superficial knowledge of Steganography, compare encryption, and cryptography. This paper describes the present, past and future of Steganography. In this paper, we introduce Steganalysis for computer forensic investigation. Digital forensics is helpful in investigation of the cyber-crime and computer crime. With the help of Steganalysis, it detect the hide message which is transfer in the network. Furthermore, we have described the security system classification.

  8. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun

    2006-01-01

    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  9. Moiré Effect: Index and the Digital Image

    Directory of Open Access Journals (Sweden)

    Stella Baraklianou

    2014-10-01

    Full Text Available The moiré effect and phenomena are natural occurring geometric formations that appear during the super-position of grid structures. Most widely recognisable in colour printing practices, generally viewed on screens (computer and TV they are in most cases examples of interference within a signal or a code, unwanted visual mis-alignment. Especially in digital image capture, moiré patternings appear when a geometrically even pattern, like a fabric or close-up of fine texture, has an appearance of rippled water with blue or red hues of concentric circle formations. The intriguing pattern formation in this case points back not only to the mis-alignment of frequencies, but can be further seen as the intersection point of a speculative ontology for the index of the digital image. Moiré not only as a visually reproducible phenomenon or effect, but a field of vision that blurs the boundaries between analogue and digital, perception and affect, manifesting the photographic as a constant site of becoming, a site of immanence. The philosophy of Henri Bergson, Brian Massumi and Francois Laruelle will be explored alongside the moiré image and phenomenon, to see if there is such a speculative site underlining the becoming of the digital image and its repercussions in contemporary digital culture.

  10. Recent advances in radiology and medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, R.E.; Sherwood, T.

    1986-01-01

    The first chapter, on the radiology of arthritis, is an overview. The second and seventh chapters are on the chest the former, on adult respiratory distress syndrome, is a brief summary, and the latter, on digital radiography of the chest with the prototype slit-scanning technique. The third chapter reviews computed tomography of the lumbar spine. The following two chapters are on MR imaging, one on the central nervous system (covering demyelinating diseases, cardiovascular disease, infections, and tumors), with excellent illustrations; and one on MR imaging of the body. The illustrations are good. The following chapter is on extracardiac digital subtraction angiography (DSA), with an interesting table comparing and contrasting conventional angiography with both intraveneous and intraarterial DSA. The eighth chapter on pediatric imaging fits a world of experience. Chapter 9 is an update on contrast media, while the next chapter is on barium infusion examination of the small intestine. The final three chapters are concerned with the present state of angioplasty, interventional radiology in the urinary tract.

  11. Comparison of analog and digital transceiver systems for MR imaging.

    Science.gov (United States)

    Hashimoto, Seitaro; Kose, Katsumi; Haishi, Tomoyuki

    2014-01-01

    We critically evaluated analog and digital transceivers for magnetic resonance (MR) imaging systems under identical experimental conditions to identify and compare their advantages and disadvantages. MR imaging experiments were performed using a 4.74-tesla vertical-bore superconducting magnet and a high sensitivity gradient coil probe. We acquired 3-dimensional spin echo images of a kumquat with and without using a gain-stepping scan technique to extend the dynamic range of the receiver systems. The acquired MR images clearly demonstrated nearly identical image quality for both transceiver systems, but DC and ghosting artifacts were obtained for the analog transceiver system. We therefore concluded that digital transceivers have several advantages over the analog transceivers.

  12. Comparison of analog and digital transceiver systems for MR imaging.

    Science.gov (United States)

    Hashimoto, Seitaro; Kose, Katsumi; Haishi, Tomoyuki

    2014-01-01

    We critically evaluated analog and digital transceivers for magnetic resonance (MR) imaging systems under identical experimental conditions to identify and compare their advantages and disadvantages. MR imaging experiments were performed using a 4.74-tesla vertical-bore superconducting magnet and a high sensitivity gradient coil probe. We acquired 3-dimensional spin echo images of a kumquat with and without using a gain-stepping scan technique to extend the dynamic range of the receiver systems. The acquired MR images clearly demonstrated nearly identical image quality for both transceiver systems, but DC and ghosting artifacts were obtained for the analog transceiver system. We therefore concluded that digital transceivers have several advantages over the analog transceivers. PMID:25167877

  13. Adaptive Image Digital Watermarking with DCT and FCM

    Institute of Scientific and Technical Information of China (English)

    SU Liyun; MA Hong; TANG Shifu

    2006-01-01

    A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visual system (HVS). One is suited for embedding a digital watermark, the other is not. So the appropriate blocks in an image are selected to embed the watermark. The watermark is embedded in the middle-frequency part of the host image in conjunction with HVS and discrete cosine transform (DCT). The maximal watermark strength is fixed according to the frequency masking. In the same time, for the good performance, the watermark is modulated into a fractal modulation array. The simulation results show that we can remarkably extract the hiding watermark and the algorithm can achieve good robustness with common signal distortion or geometric distortion and the quality of the watermarked image is guaranteed.

  14. Imperceptible of Watermarking in Digital Image Based Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    Cahyana

    2006-11-01

    Full Text Available Watermarking is a commonly used technique to protect digital image from unintended used such as counterfeiting. This paper will address one of the techniques to embed a watermark to digital image which is based on the singular value decomposition. The primary target to be achieved by a good watermarking technique is that the watermarked image is imperceptible and that the inserted image can still be perfectly retrieved even though various transformations are done to the watermarked image. Our works show that the SVD-based watermarking demonstrates both imperceptibility as well as robustness of the watermarking scheme as indicated by significantly high value of correlation between the inserted and retrieved logo after some transformation such as PSNR, RML and Compression.

  15. Optical and Digital Microscopic Imaging Techniques and Applications in Pathology

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2011-01-01

    Full Text Available The conventional optical microscope has been the primary tool in assisting pathological examinations. The modern digital pathology combines the power of microscopy, electronic detection, and computerized analysis. It enables cellular-, molecular-, and genetic-imaging at high efficiency and accuracy to facilitate clinical screening and diagnosis. This paper first reviews the fundamental concepts of microscopic imaging and introduces the technical features and associated clinical applications of optical microscopes, electron microscopes, scanning tunnel microscopes, and fluorescence microscopes. The interface of microscopy with digital image acquisition methods is discussed. The recent developments and future perspectives of contemporary microscopic imaging techniques such as three-dimensional and in vivo imaging are analyzed for their clinical potentials.

  16. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    Science.gov (United States)

    Beaulieu, Stace E.; Emery, Emery; Brickley, Annette; Spargo, Abbey; Patterson, Kathleen; Joyce, Katherine; Silva, Tim; Madin, Katherine

    2015-01-01

    Digital globes are new technologies increasingly used in informal and formal education to display global datasets and show connections among Earth systems. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question by developing new content for digital globes with the intent to educate and…

  17. Does image reduction affect the diagnostic accuracy of digital mammograms?

    Science.gov (United States)

    Takane, Yumi; Kawasumi, Yusuke; Horie, Tsunemitsu; Ishibashi, Tadashi

    2013-03-01

    We aimed to evaluate the influence of image reduction using a bi-cubic interpolation method on the accuracy of detection of clustered microcalcifications (MCLs) and masses on digital mammograms. Digital mammograms (n=194) of 97 subjects were selected retrospectively, comprising 47 patients with clustered MCLs or masses and 52 controls. Images were acquired in the craniocaudal view by phase-contrast mammography (PCM). Original PCM images comprised 25-μm pixels. The reduced images converted from the originals by bi-cubic interpolation were of 50-μm pixel size. Five observers independently interpreted all images, and rated their confidence concerning the presence of lesions on a continuous 0-100 scale. Receiver-operating characteristic (ROC) analysis was performed using the jackknife method and LABMRMC program. Differences in areas under the curve (AUC) values based on 95% confidence intervals were evaluated. The average AUC values for detection of masses were 0.8435 and 0.8646 for the original and reduced images, respectively. The difference between the average AUC values was not statistically significant (p=0.5855). Average AUC values for clustered MCLs detection were 0.9273 and 0.9574 for the original and reduced images, respectively. This difference was not statistically significant (p=0.1949). Detection of masses and clustered MCLs on digital mammograms was unaffected by bi-cubic interpolation image reduction.

  18. Digital Geometry Algorithms Theoretical Foundations and Applications to Computational Imaging

    CERN Document Server

    Barneva, Reneta

    2012-01-01

    Digital geometry emerged as an independent discipline in the second half of the last century. It deals with geometric properties of digital objects and is developed with the unambiguous goal to provide rigorous theoretical foundations for devising new advanced approaches and algorithms for various problems of visual computing. Different aspects of digital geometry have been addressed in the literature. This book is the first one that explicitly focuses on the presentation of the most important digital geometry algorithms. Each chapter provides a brief survey on a major research area related to the general volume theme, description and analysis of related fundamental algorithms, as well as new original contributions by the authors. Every chapter contains a section in which interesting open problems are addressed.

  19. Combining Digital Watermarks with Two-Color Bitmap Image

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A technology for combining digital watermarks with two-color bitmap image based on the threshold watermarking method is presented. Our technology doesn't add any thing to the digital media, but combines the watermarks in two-color bitmap image by looking for some characteristic values in the bitmap and uses the relationship between the watermarks and the characteristic values to prove the copyright protection. The choice of the characteristic values depends on the choice of a cryptographic key known by the owner of the bitmap. The benefit of using a cryptographic key is to combine the watermarks with the bitmap in a high secure way.

  20. Digital image processing and analysis human and computer vision applications with CVIPtools

    CERN Document Server

    Umbaugh, Scott E

    2010-01-01

    Section I Introduction to Digital Image Processing and AnalysisDigital Image Processing and AnalysisOverviewImage Analysis and Computer VisionImage Processing and Human VisionKey PointsExercisesReferencesFurther ReadingComputer Imaging SystemsImaging Systems OverviewImage Formation and SensingCVIPtools SoftwareImage RepresentationKey PointsExercisesSupplementary ExercisesReferencesFurther ReadingSection II Digital Image Analysis and Computer VisionIntroduction to Digital Image AnalysisIntroductionPreprocessingBinary Image AnalysisKey PointsExercisesSupplementary ExercisesReferencesFurther Read

  1. Analog and digital systems of imaging in roentgenodiagnostics.

    Science.gov (United States)

    Oborska-Kumaszyńska, Dominika; Wiśniewska-Kubka, Sylwia

    2010-04-01

    In the recent years, we have been witnessing a very dynamic development of diagnostic methods of imaging. In contemporary radiology, the carrier of the diagnostic information is the image, obtained as a result of an X-ray beam transmitted through the patient's body, with modulation of intensity, and processing of data collected by the detector. Depending on the diagnostic method used, signals can be detected with analog (x-ray film) or digital systems (CR, DR and DDR). Each of these methods of image acquisition, due to its own technological solutions, determines a different quality of imaging (diagnostic data). The introduction of digital image receptors, instead of conventional SF systems, increased the patient dose, as a result of a gradually increasing exposure. This followed from the fact that in digital systems, the increased radiation dose reduces image noise and improves image quality, and that is owing to the data capacity of these systems (impossible in SF systems with a limited data capacity of the image detector). The availability of the multitude of imaging systems, each characterized by disparate qualitative and quantitative parameters, implies the problem of evaluation and enforcement of a proper efficiency from manufacturers of these systems.At the same time, there is a legal problem present in our country, i.e. the lack of laws and regulations regarding standards of the scope of quality control (parameters) and measurement methodology for the systems of digital image acquisition. In the European countries, the scope and standards of control are regulated by the manufacturers and European Guidelines, whereas in the United States, AAPM Reports have been introduced, that specifically describe methods of tests performance, their frequency, as well as target values and limits. This paper is a review of both, the scope of quality control parameters of image detectors in analog and digital systems of imaging, and the measurement methodology. The parameters

  2. Dose assessment of digital tomosynthesis in pediatric imaging

    Science.gov (United States)

    Gislason, Amber; Elbakri, Idris A.; Reed, Martin

    2009-02-01

    We investigated the potential for digital tomosynthesis (DT) to reduce pediatric x-ray dose while maintaining image quality. We utilized the DT feature (VolumeRadTM) on the GE DefiniumTM 8000 flat panel system installed in the Winnipeg Children's Hospital. Facial bones, cervical spine, thoracic spine, and knee of children aged 5, 10, and 15 years were represented by acrylic phantoms for DT dose measurements. Effective dose was estimated for DT and for corresponding digital radiography (DR) and computed tomography (CT) patient image sets. Anthropomorphic phantoms of selected body parts were imaged by DR, DT, and CT. Pediatric radiologists rated visualization of selected anatomic features in these images. Dose and image quality comparisons between DR, DT, and CT determined the usefulness of tomosynthesis for pediatric imaging. CT effective dose was highest; total DR effective dose was not always lowest - depending how many projections were in the DR image set. For the cervical spine, DT dose was close to and occasionally lower than DR dose. Expert radiologists rated visibility of the central facial complex in a skull phantom as better than DR and comparable to CT. Digital tomosynthesis has a significantly lower dose than CT. This study has demonstrated DT shows promise to replace CT for some facial bones and spinal diagnoses. Other clinical applications will be evaluated in the future.

  3. Digital imaging improves upright stereotactic core biopsy of mammographic microcalcifications

    Energy Technology Data Exchange (ETDEWEB)

    Whitlock, J.P.L.; Evans, A.J.; Burrell, H.C.; Pinder, S.E.; Ellis, I.O.; Blamey, R.W.; Wilson, A.R.M

    2000-05-01

    AIM: This comparative study was carried out to assess the effect of using digital images compared to conventional film-screen mammography on the accuracy of core biopsy of microcalcifications using upright stereotactic equipment. MATERIALS AND METHODS: The biopsy results from a consecutive series of 104 upright stereotactic 14-gauge core biopsies performed with conventional X-ray (Group A) were compared with 40 biopsies carried out using stereotaxis with digital imaging (Group B). In all cases specimen radiography was performed and analysed for the presence of calcifications. Pathological correlation was then carried out with needle and surgical histology. RESULTS: The use of digital add-on equipment increased the radiographic calcification retrieval rate from 55 to 85% (P < 0.005). The absolute sensitivity of core biopsy in pure ductal carcinoma in situ (DCIS) cases rose from 34 to 69% (P < 0.03), with the complete sensitivity increasing from 52 to 94% (P < 0.005). For DCIS with or without an invasive component the absolute sensitivity rose from 41 to 67% (P = 0.052), while the complete sensitivity was 59% before and 86% after the introduction of digital imaging (P < 0.04). CONCLUSION: Digital equipment improves the performance of upright stereotactic core biopsy of microcalcifications, giving a significantly increased success rate in accurately obtaining calcifications. This leads to an improvement in absolute and complete sensitivity of core biopsy when diagnosing DCIS. Whitlock, J.P.L. (2000)

  4. Point to point processing of digital images using parallel computing

    Directory of Open Access Journals (Sweden)

    Eric Olmedo

    2012-05-01

    Full Text Available This paper presents an approach the point to point processing of digital images using parallel computing, particularly for grayscale, brightening, darkening, thresholding and contrast change. The point to point technique applies a transformation to each pixel on image concurrently rather than sequentially. This approach used CUDA as parallel programming tool on a GPU in order to take advantage of all available cores. Preliminary results show that CUDA obtains better results in most of the used filters. Except in the negative filter with lower resolutions images OpenCV obtained better ones, but using images in high resolutions CUDA performance is better.

  5. CANDID: Comparison algorithm for navigating digital image databases

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P.M.; Cannon, T.M.

    1994-02-21

    In this paper, we propose a method for calculating the similarity between two digital images. A global signature describing the texture, shape, or color content is first computed for every image stored in a database, and a normalized distance between probability density functions of feature vectors is used to match signatures. This method can be used to retrieve images from a database that are similar to an example target image. This algorithm is applied to the problem of search and retrieval for database containing pulmonary CT imagery, and experimental results are provided.

  6. Spectral methods for spatial resolution improvement of digital images

    Institute of Scientific and Technical Information of China (English)

    郝鹏威; 徐冠华; 朱重光

    1999-01-01

    A general matrix formula is proposed for signal spectral aliasing of various or mutual resolution, the concept of spectral aliasing matrix is introduced, and some general spectral methods for spatial resolution improvement from multiframes of undersampled digital images are discussed. A simplified iterative method of parallel row-action projection for spectral de-aliasing is also given. The method can be applied to multiframe images with various spatial resolution,relative displacement, dissimilar point spread function, different image radiance, and additive random noise. Some experiments with a resolution test pattern and an image of vertical fin performed the convergence and the effectiveness of the algorithms.

  7. DWT-Based Watermarking Scheme for Digital Images

    Institute of Scientific and Technical Information of China (English)

    何泉; 苏广川

    2003-01-01

    A watermarking scheme for digital images is introduced. This method is based on discrete wavelet transform and spread spectrum technique. A discrete wavelet transformed binary signature image is expanded by an m-sequence and added to the large wavelet coefficients of a host image with a scale factor. Good balance between transparency and robustness is achieved by the selection of the scale factor. In addition, the spread spectrum technique is adopted to increase the robustness of this watermarking scheme. The experimental results show that the proposed method is of good performance and robustness for common image operations such as JPEG lossy compression, etc.

  8. Optimization of image quality and patient dose for chest examinations in digital radiology

    International Nuclear Information System (INIS)

    Full text: Digital radiology may represent the greatest technological advance in medical imaging over the last decade. With the application of faster computers, larger storage capabilities and new X ray detector systems, film for X ray imaging is becoming obsolete. While digital techniques have the potential to reduce patient doses, they also have the potential to significantly increase them. Experience has shown that the radiology departments which have transitioned to digital equipment have not reduced but measurably increased patient doses. In digital radiology, higher patient dose per image usually means improved image quality. However, there is a tendency to use higher patient doses than necessary and this should be avoided. Radiologists constantly face the dilemma of trying to reduce the exposure of a patient while still using exposures that are high enough to produce images of good quality to provide proper diagnosis. Quality assurance helps to achieve this goal. Therefore it is necessary for the QA programme to include assessment of image quality, patient dose evaluations and periodical measurement of physical parameters of the X ray machine. Chest X ray examination is one of the most frequently required procedures used in clinical practice. It is because X ray image often provides information in deciding for further step in the establishment of diagnosis and treatment of many diseases. For studying the image quality of different X ray digital systems and for the control of patient doses, the standard anthropomorphic lung/chest phantom RSD 330 is used, where animal lungs simulate the size and structure of lungs of adult male, as well as the left coronary artery. For comparison of different techniques of chest examination a special software was elaborated which enables to compare DICOM images from different modalities (CR, DR), based on the support of a special viewer of those images. The user of the software can compare different images gained at variable

  9. Terahertz Tools Advance Imaging for Security, Industry

    Science.gov (United States)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  10. Advanced endoscopic imaging to improve adenomadetection

    Institute of Scientific and Technical Information of China (English)

    Helmut Neumann; Andreas N?gel; Andrea Buda

    2015-01-01

    Advanced endoscopic imaging is revolutionizing ourway on how to diagnose and treat colorectal lesions.Within recent years a variety of modern endoscopicimaging techniques was introduced to improveadenoma detection rates. Those include high-definitionimaging, dye-less chromoendoscopy techniques andnovel, highly flexible endoscopes, some of themequipped with balloons or multiple lenses in order toimprove adenoma detection rates. In this review wewill focus on the newest developments in the field ofcolonoscopic imaging to improve adenoma detectionrates. Described techniques include high-definitionimaging, optical chromoendoscopy techniques, virtualchromoendoscopy techniques, the Third Eye Retroscopeand other retroviewing devices, the G-EYE endoscopeand the Full Spectrum Endoscopy-system.

  11. Calculation of the nematic entropy using digital images.

    Science.gov (United States)

    Freire, F M C; Kimura, N M; Luders, D D; Palangana, A J; Simões, M

    2013-12-01

    In this work we will use digital images to compute the entropy dependence on temperature of a nematic lyotropic sample. The set of images comprehend the entire temperature range between a reentrant nematic isotropic phase transition, at a low temperature, and a usual nematic isotropic phase transition at a higher temperature. We will show that, inside the nematic phase, the image entropy profile agrees accurately with the entropy given by the Maier-Saupe model. As far as we know, this is the first time that the entropy of a lyotropic nematic phase is evaluated by this method, which introduces a way to measure their macroscopic variables. Namely, being that the entropy is a thermodynamical potential, this result implies that digital images can be used to compute mean values of nematic random variables. PMID:24483590

  12. Correction of distorted digital images generated by radiotherapy simulator

    International Nuclear Information System (INIS)

    Objective: To measure the distortion of digital images generated by radiotherapy simulator, and to study the appropriate method of correction. Methods: The grid correction plate and Microsoft Visual C++ 6.0 were used for correction. The area error and boundary maximum displacement error of digital images before and after correction were calculated. The post-correction images were compared with film images to evaluate the correction method. Results: The area error was 0.31%-12.36%, and the boundary displacement error was more than 0-6 mm for 4 cm x 4 cm - 12 cm x 12 cm radiation field before correction. For commonly used radiation field (12 cm x 12 cm), the post-correction area error and the boundary displacement error were 0.48% and 0.46 mm, respectively. Conclusions: The least square and polynomial fitting correction method can fulfill the requirement of conventional radiotherapy. (authors)

  13. Integrating digital topology in image-processing libraries.

    Science.gov (United States)

    Lamy, Julien

    2007-01-01

    This paper describes a method to integrate digital topology informations in image-processing libraries. This additional information allows a library user to write algorithms respecting topological constraints, for example, a seed fill or a skeletonization algorithm. As digital topology is absent from most image-processing libraries, such constraints cannot be fulfilled. We describe and give code samples for all the structures necessary for this integration, and show a use case in the form of a homotopic thinning filter inside ITK. The obtained filter can be up to a hundred times as fast as ITK's thinning filter and works for any image dimension. This paper mainly deals of integration within ITK, but can be adapted with only minor modifications to other image-processing libraries.

  14. Applications of digital image processing XV; Proceedings of the Meeting, San Diego, CA, July 21-24, 1992

    Science.gov (United States)

    Tescher, Andrew G.

    1993-01-01

    Recent advances in digital image processing are addressed, focusing on image representations and models; systems and implementations; image understanding issues; algorithms; nonlinear technology for signal processing, communication, and control; image coding and transmission; innovative applications; and contributions of general interest. Particular attention is given to subpixel resolution for target tracking, endoscopic inspection and measurement, a technique of color image processing to enhance the cytomorphological deformation, improved moment invariants for shape discrimination, model adaptive optimal image restoration, noise reduction for chaotic data by geometric projection, a comparison of image coding techniques with a picture quality scale, a tissue characterization by texture analysis of ultrasonic images, a novel approach to human face recognition, and digital filtering methods used in eliminating diffraction halo of speckle interferograms. (No individual items are abstracted in this volume)

  15. A Cyclic Analog to Digital Converter for CMOS image sensors

    OpenAIRE

    Levski Dimitrov, Deyan

    2014-01-01

    The constant strive for improvement of digital video capturing speeds together with power efficiency increase, has lead to tremendous research activities in the image sensor readout field during the past decade. The improvement of lithography and solid-state technologies provide the possibility of manufacturing higher resolution image sensors. A double resolution size-up, leads to a quadruple readout speed requirement, if the same capturing frame rate is to be maintained. The speed requiremen...

  16. Digital image processing for the earth resources technology satellite data.

    Science.gov (United States)

    Will, P. M.; Bakis, R.; Wesley, M. A.

    1972-01-01

    This paper discusses the problems of digital processing of the large volumes of multispectral image data that are expected to be received from the ERTS program. Correction of geometric and radiometric distortions are discussed and a byte oriented implementation is proposed. CPU timing estimates are given for a System/360 Model 67, and show that a processing throughput of 1000 image sets per week is feasible.

  17. Watermarking Digital Image Using Fuzzy Matrix Compositions and Rough Set

    OpenAIRE

    Sharbani Bhattacharya

    2014-01-01

    Watermarking is done in digital images for authentication and to restrict its unauthorized usages. Watermarking is sometimes invisible and can be extracted only by authenticated party. Encrypt a text or information by public –private key from two fuzzy matrix and embed it in image as watermark. In this paper we proposed two fuzzy compositions Product-Mod-Minus, and Compliment-Product-Minus. Embedded watermark using Fuzzy Rough set created from fuzzy matrix compositions.

  18. Watermarking Digital Image Using Fuzzy Matrix Compositions and Rough Set

    Directory of Open Access Journals (Sweden)

    Sharbani Bhattacharya

    2014-07-01

    Full Text Available Watermarking is done in digital images for authentication and to restrict its unauthorized usages. Watermarking is sometimes invisible and can be extracted only by authenticated party. Encrypt a text or information by public –private key from two fuzzy matrix and embed it in image as watermark. In this paper we proposed two fuzzy compositions Product-Mod-Minus, and Compliment-Product-Minus. Embedded watermark using Fuzzy Rough set created from fuzzy matrix compositions.

  19. The sonographic digital portfolio: a longitudinal ultrasound image tracking program

    OpenAIRE

    Hughes, Daralee R; Kube, Erika; Gable, Brad D; Madore, Francis E; David P. Bahner

    2012-01-01

    Background Ultrasonography (US) at the medical student level is developing. As clinical skills and simulation centers expand, US equipment miniaturizes, and more students are exposed to ultrasound; a digital portfolio comprised of US images and videos may be useful in demonstrating experience and possibly competency. Methods Medical students participated in US curricula consisting of didactics and hands-on training. From 1 July 2006 to 30 June 2008, student images and videos were saved. Total...

  20. Digital Image Tamper Detection Techniques - A Comprehensive Study

    OpenAIRE

    Mishra, Minati; Adhikary, Flt. Lt. Dr. M. C.

    2013-01-01

    Photographs are considered to be the most powerful and trustworthy media of expression. For a long time, those were accepted as proves of evidences in varied fields such as journalism, forensic investigations, military intelligence, scientific research and publications, crime detection and legal proceedings, investigation of insurance claims, medical imaging etc. Today, digital images have completely replaced the conventional photographs from every sphere of life but unfortunately, they seldo...

  1. Adaptive color contrast enhancement for digital images

    Science.gov (United States)

    Wang, Yanfang; Luo, Yupin

    2011-11-01

    Noncanonical illumination that is too dim or with color cast induces degenerated images. To cope with this, we propose a method for color-contrast enhancement. First, intensity, chrominance, and contrast characteristics are explored and integrated in the Naka-Rushton equation to remove underexposure and color cast simultaneously. Motivated by the comparison mechanism in Retinex, the ratio of each pixel to its surroundings is utilized to improve image contrast. Finally, inspired by the two color-opponent dimensions in CIELAB space, a color-enhancement strategy is devised based on the transformation from CIEXYZ to CIELAB color space. For images that suffer from underexposure, color cast, or both problems, our algorithm produces promising results without halo artifacts and corruption of uniform areas.

  2. Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6

    Science.gov (United States)

    Lee, George

    1993-01-01

    A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.

  3. Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J.; Mbalisike, Emmanuel C. [J.W. Goethe University Hospital-Frankfurt/Main, Department of Diagnostic and Interventional Radiology, Frankfurt/Main (Germany)

    2013-06-15

    Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. (orig.)

  4. Application of digital image processing for pot plant grading.

    NARCIS (Netherlands)

    Dijkstra, J.

    1994-01-01

    The application of digital image processing for grading of pot plants has been studied. Different techniques e.q. plant part identification based on knowledge based segmentation, have been developed to measure features of plants in different growth stage. Growth experiments were performed to identif

  5. A Review of Different Techniques on Digital Image Watermarking Scheme

    Directory of Open Access Journals (Sweden)

    Y. Shantikumar Singh1 , B. Pushpa Devi2 , and Kh. Manglem Singh3

    2013-07-01

    Full Text Available In this paper we aim to present a survey of different techniques on digital image watermarking. Digital watermarking technique is becoming more important in this developing society of internet. Digital watermarking is used as a key solution to make the data transferring secure from illegal interferences. Digital watermark techniques are used in various areas such as copyright protection, broadcast monitoring and owner identification. In this paper we mainly discussed about two methods via spatial domain and frequency domain. In spatial (pixel domain, watermark is inserted directly by modifying the pixel values of host image. Such algorithms are very easy at the time of implementation. However they have some problems like Low hiding capacity of watermark information, less PSNR, less correlation between original and extracted watermark and less security, so anyone can detect such algorithms. In frequency domain such as DCT, DFT, DWT, SVD etc, the watermark is inserted into transformed coefficients of image giving more information hiding capacity and more robustness against watermarking attacks because information can be spread out to entire image.

  6. Comparison between Digital Image Processing and Spectrophotometric Measurements Methods

    Directory of Open Access Journals (Sweden)

    Bogdan Adnan HAIFA

    2011-03-01

    Full Text Available Background: Spectrophotometer is a very common instrument in various scientific fields and gives accurate information about light absorbance and transmittance through materials using monochromatic light source. Though, devices used in spectrophotometry can be quite expensive, using components with high technical specifications and the procedure itself is time consuming. Regular digital image acquisition instruments like scanners and cameras on the other hand uses very cheap electronic components to record the information on 3 wide band channels (Red, Green, Blue. Purpose: This paper studies the possibility of correlating the measurements from the spectrophotometer with raw data from digital image acquisition instruments. Materials and Methods: Because the results will be used in protein electrophoresis, we prepared o set of plates with blood serum in different dilutions, stained with Coomassie Brilliant Blue. The absorbance of the resulting plates has been measured using a spectrophotometer and after that, the plates were scanned with a regular office scanner. The digital image was converted in different color spaces (gray scale, RGB, HSV, HSL, CIEXYZ and CIELAB using custom developed software in C++. We statistically measured the correlation coefficient of different parameters from the color space with the absorption measured with the spectrophotometer. Results and Discussion: The findings of this work show that a consumer digital scanner can be used as a fast and inexpensive alternative to spectrophotometers. This offers the possibility of using scanned images of protein electrophoresis to make quantitative estimations regarding the proteinogram.

  7. Identification and Quantification Soil Redoximorphic Features by Digital Image Processing

    Science.gov (United States)

    Soil redoximorphic features (SRFs) have provided scientists and land managers with insight into relative soil moisture for approximately 60 years. The overall objective of this study was to develop a new method of SRF identification and quantification from soil cores using a digital camera and imag...

  8. Advantages of digital imaging for radiological diagnostic; Ventajas de la imagen digital para el diagnostico radiologico

    Energy Technology Data Exchange (ETDEWEB)

    Trapero, M. A.; Gonzalez, S.; Albillos, J. C.; Martel, J.; Rebollo, M.

    2006-07-01

    The advantages and limitations of radiological digital images in comparison with analogic ones are analyzed. We discuss three main topics: acquisition, post-procedure manipulation, and visualization, archive and communication. Digital acquisition with computed radiology systems present a global sensitivity very close to conventional film for diagnostic purposes. However, flat panel digital systems seems to achieve some advantages in particular clinical situations. A critical issue is the radiation dose-reduction that can be accomplished without reducing image quality nor diagnostic exactitude. The post-procedure manipulation allows, particularly in multiplanar modalities like CT or MR, to extract all implicit diagnostic information in the images: Main procedures are multiplanar and three-dimensional reformations, dynamic acquisitions, functional studies and image fusion. The use of PACS for visualization, archive and communication of images, improves the effectiveness and the efficiency of the workflow, allows a more comfortable diagnosis for the radiologist and gives way to improvements in the communication of images, allowing tele consulting and the tele radiology. (Author) 6 refs.

  9. Digital image processing of mandibular trabeculae on radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, Toshi

    1987-06-01

    The present study was aimed to reveal the texture patterns of the radiographs of the mandibular trabeculae by digital image processing. The 32 cases of normal subjects and the 13 cases of patients with mandibular diseases of ameloblastoma, primordial cysts, squamous cell carcinoma and odontoma were analyzed by their intra-oral radiographs in the right premolar regions. The radiograms were digitized by the use of a drum scanner densitometry method. The input radiographic images were processed by a histogram equalization method. The result are as follows : First, the histogram equalization method enhances the image contrast of the textures. Second, the output images of the textures for normal mandible-trabeculae radiograms are of network pattern in nature. Third, the output images for the patients are characterized by the non-network pattern and replaced by the patterns of the fabric texture, intertwined plants (karakusa-pattern), scattered small masses and amorphous texture. Thus, these results indicates that the present digital image system is expected to be useful for revealing the texture patterns of the radiographs and in the future for the texture analysis of the clinical radiographs to obtain quantitative diagnostic findings.

  10. Update on digital image management and PACS.

    Science.gov (United States)

    Ratib, O; Ligier, Y; Bandon, D; Valentino, D

    2000-01-01

    Information technology is becoming a vital component of all health care enterprises, from managed care services to large hospital networks, that provides the basis of electronic patient records and hospital-wide information. The rationale behind such systems is deceptively simple: physicians want to sit down at a single workstation and call up all information, both clinical data and medical images, concerning a given patient. Picture archiving and communication systems (PACS) are responsible for solving the problem of acquiring, transmitting, and displaying radiologic images. The major benefit of PACS resides in its ability to communicate images and reports to referring physicians in a timely and reliable fashion. With the changes in economics and the shift toward managed and capitated care, the teleradiology component of PACS is rapidly gaining momentum. In allowing remote coverage of multiple sites by the same radiologists and remote consultations and expert opinion, teleradiology is in many instances the only option to maintain economically viable radiologic settings. The technical evolution toward more integrated systems and the shift toward Web-based technology is rapidly merging the two concepts of PACS and teleradiology in global image management and communication systems.

  11. Distributed image coding for digital image recovery from the print-scan channel.

    Science.gov (United States)

    Samadani, Ramin; Mukherjee, Debargha

    2010-03-01

    A printed digital photograph is difficult to reuse because the digital information that generated the print may no longer be available. This paper describes a method for approximating the original digital image by combining a scan of the printed photograph with digital auxiliary information kept together with the print. We formulate and solve the approximation problem using a Wyner-Ziv coding framework. During encoding, the Wyner-Ziv auxiliary information consists of a small amount of digital data composed of a number of sampled luminance pixel blocks and a number of sampled color pixel values to enable subsequent accurate registration and color-reproduction during decoding. The registration and color information is augmented by an additional amount of digital data encoded using Wyner-Ziv coding techniques that recovers residual errors and lost high spatial frequencies. The decoding process consists of scanning the printed photograph, together with a two step decoding process. The first decoding step, using the registration and color auxiliary information, generates a side-information image which registers and color corrects the scanned image. The second decoding step uses the additional Wyner-Ziv layer together with the side-information image to provide a closer approximation of the original, reducing residual errors and restoring the lost high spatial frequencies. The experimental results confirm the reduced digital storage needs when the scanned print assists in the digital reconstruction.

  12. Image stabilization for SWIR advanced optoelectronic device

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Craciun, Anca-Ileana; Craciun, Alexandru; Granciu, Dana

    2015-02-01

    At long ranges and under low visibility conditions, Advanced Optoelectronic Device provides the signal-to-noise ratio and image quality in the Short-wave Infra-red - SWIR (wavelengths between 1,1 ÷2,5 μm), significantly better than in the near wave infrared - NWIR and visible spectral bands [1,2]. The quality of image is nearly independent of the polarization in the incoming light, but it is influenced by the relative movement between the optical system and the observer (the operators' handshake), and the movement towards the support system (land and air vehicles). All these make it difficult to detect objectives observation in real time. This paper presents some systems enhance which the ability of observation and sighting through the optical systems without the use of the stands, tripods or other means. We have to eliminate the effect of "tremors of the hands" and the vibration in order to allow the use of optical devices by operators on the moving vehicles on land, on aircraft, or on boats, and to provide additional comfort for the user to track the moving object through the optical system, without losing the control in the process of detection and tracking. The practical applications of stabilization image process, in SWIR, are the most advanced part of the optical observation systems available worldwide [3,4,5]. This application has a didactic nature, because it ensures understanding by the students about image stabilization and their participation in research.

  13. Digital signal and image processing using MATLAB

    CERN Document Server

    Blanchet, Gérard

    2006-01-01

    This title provides the most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals. The theory is supported by exercises and computer simulations relating to real applications.More than 200 programs and functions are provided in the MATLAB® language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject.

  14. Autocorrelation and regularization in digital images. II - Simple image models

    Science.gov (United States)

    Jupp, David L. B.; Strahler, Alan H.; Woodcock, Curtis E.

    1989-01-01

    The variogram function used in geostatistical analysis is a useful statistic in the analysis of remotely sensed images. Using the results derived by Jupp et al. (1988), the basic second-order, or covariance, properties of scenes modeled by simple disks of varying size and spacing after imaging into disk-shaped pixels are analyzed to explore the relationship betwee image variograms and discrete object scene structure. The models provide insight into the nature of real images of the earth's surface and the tools for a complete analysis of the more complex case of three-dimensional illuminated discrete-object images.

  15. Recording multiple spatially-heterodyned direct to digital holograms in one digital image

    Science.gov (United States)

    Hanson, Gregory R.; Bingham, Philip R.

    2008-03-25

    Systems and methods are described for recording multiple spatially-heterodyned direct to digital holograms in one digital image. A method includes digitally recording, at a first reference beam-object beam angle, a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram to sit on top of a first spatial-heterodyne carrier frequency defined by the first reference beam-object beam angle; digitally recording, at a second reference beam-object beam angle, a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram to sit on top of a second spatial-heterodyne carrier frequency defined by the second reference beam-object beam angle; applying a first digital filter to cut off signals around the first original origin and define a first result; performing a first inverse Fourier transform on the first result; applying a second digital filter to cut off signals around the second original origin and define a second result; and performing a second inverse Fourier transform on the second result, wherein the first reference beam-object beam angle is not equal to the second reference beam-object beam angle and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  16. Guest Editors’ Introduction: Advances in Interactive Digital Entertainment Technologies

    Directory of Open Access Journals (Sweden)

    Frederick Li

    2009-04-01

    Full Text Available With the significant development of digital technologies in recent years, we are seeing an increasing number of applications of these technologies, in particular in the entertainment domain. They may include computer games, e-learning, high- definition and interactive TVs, and virtual environments. The development of these applications typically involves the integration of existing technologies as well as the development of new technologies.The first International Workshop on Digital Entertainment Technologies 2008 (IDET’08 was held at Lanzhou University, China, in July 2008, in conjunction with the first IEEE International Conference on Ubi-media Computing (U-Media’08. This workshop was an initial effort to review various technological issues and challenges in digital entertainments. A special emphasis was on issues that are relevant to or supporting the dynamic interactions between users and applications. This special issue collects the extended version of some of the best papers presented in IDET’08 and relevant keynote papers presented in U-Media’08.This special issue includes six papers covering some of the recent technological advances in digital entertainments. These papers can be roughly divided into three groups. The first group of two papers addresses networking issues of digital entertainments. The article by Wah and Sat (of University of Illinois, Urbana-Champaign, U.S.A. describes the authors’ work on real-time VoIP (voice over-IP systems that can achieve high perceptual conversational quality. It focuses on the fundamental understanding of conversational quality and its trade-offs among the design of speech codecs and strategies for network control, playout scheduling, and loss concealments. The article by Ye, Li, and Chen (of City University of Hong Kong, Hong Kong presents an adaptive algorithm called “SPF-A*” for searching multimedia files in heterogeneous mobile P2P network environments in order for these

  17. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  18. Influence of imaging resolution on color fidelity in digital archiving.

    Science.gov (United States)

    Zhang, Pengchang; Toque, Jay Arre; Ide-Ektessabi, Ari

    2015-11-01

    Color fidelity is of paramount importance in digital archiving. In this paper, the relationship between color fidelity and imaging resolution was explored by calculating the color difference of an IT8.7/2 color chart with a CIELAB color difference formula for scanning and simulation images. Microscopic spatial sampling was used in selecting the image pixels for the calculations to highlight the loss of color information. A ratio, called the relative imaging definition (RID), was defined to express the correlation between image resolution and color fidelity. The results show that in order for color differences to remain unrecognizable, the imaging resolution should be at least 10 times higher than the physical dimension of the smallest feature in the object being studied.

  19. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    The invention provides a method of producing visible difference images derived from an X-ray image of an anatomical subject, comprising the steps of directing X-rays through the anatomical subject for producing an image, converting the image into television fields comprising trains of on-going video signals, digitally storing and integrating the on-going video signals over a time interval corresponding to several successive television fields and thereby producing stored and integrated video signals, recovering the video signals from storage and producing integrated video signals, producing video difference signals by performing a subtraction between the integrated video signals and the on-going video signals outside the time interval, and converting the difference signals into visible television difference images representing on-going changes in the X-ray image

  20. A 360-deg Digital Image Correlation system for materials testing

    Science.gov (United States)

    Genovese, K.; Cortese, L.; Rossi, M.; Amodio, D.

    2016-07-01

    The increasing research interest toward natural and advanced engineered materials demands new experimental protocols capable of retrieving highly dense sets of experimental data on the full-surface of samples under multiple loading conditions. Such information, in fact, would allow to capture the possible heterogeneity and anisotropy of the material by using up-to-date inverse characterization methods. Although the development of object-specific test protocols could represent the optimal choice to address this need, it is unquestionable that universal testing machines (UTM) remain the most widespread and versatile option to test materials and components in both academic and industrial contexts. A major limitation of performing standard material tests with UTM, however, consists in the scarce information obtainable with the commonly associated sensors since they provide only global (LVDTs, extensometers, 2D-video analyzers) or local (strain gages) measures of displacement and strain. This paper presents a 3D Digital Image Correlation (DIC) system developed to perform highly accurate full-surface 360-deg measurements on either standard or custom-shaped samples under complex loading within universal testing machines. To this aim, a low cost and easy to setup video rig was specifically designed to overcome the practical limitations entailed with the integration of a multi-camera system within an already existing loading frame. In particular, the proposed system features a single SLR digital camera moved through multiple positions around the specimen by means of a large rotation stage. A proper calibration and data-processing procedure allows to automatically merge the experimental data obtained from the multiple views with an accuracy of 10-2 m m . The results of a full benchmarking of the metrological performances of the system are here reported and discussed together with illustrative examples of full-360-deg shape and deformation measurements on a Grade X65 steel

  1. Urban Object Extraction from Digital Surface Model and Digital Aerial Images

    Science.gov (United States)

    Grigillo, D.; Kanjir, U.

    2012-07-01

    The paper describes two different methods for extraction of two types of urban objects from lidar digital surface model (DSM) and digital aerial images. Within the preprocessing digital terrain model (DTM) and orthoimages for three test areas were generated from aerial images using automatic photogrammetric methods. Automatic building extraction was done using DSM and multispectral orthoimages. First, initial building mask was created from the normalized digital surface model (nDSM), then vegetation was eliminated from the building mask using multispectral orthoimages. The final building mask was produced employing several morphological operations and buildings were vectorised using Hough transform. Automatic extraction of other green urban features (trees and natural ground) started from orthoimages using iterative object-based classification. This method required careful selection of segmentation parameters; in addition to basic spectral bands also information from nDSM was included. After the segmentation of images the segments were classified based on their attributes (spatial, spectral, geometrical, texture) using rule set classificator. First iteration focused on visible (i.e. unshaded) urban features, and second iteration on objects in deep shade. Results from both iterations were merged into appropriate classes. Evaluation of the final results (completeness, correctness and quality) was carried out on a per-area level and on a per-object level by ISPRS Commission III, WG III/4.

  2. The trustworthy digital camera: Restoring credibility to the photographic image

    Science.gov (United States)

    Friedman, Gary L.

    1994-01-01

    The increasing sophistication of computers has made digital manipulation of photographic images, as well as other digitally-recorded artifacts such as audio and video, incredibly easy to perform and increasingly difficult to detect. Today, every picture appearing in newspapers and magazines has been digitally altered to some degree, with the severity varying from the trivial (cleaning up 'noise' and removing distracting backgrounds) to the point of deception (articles of clothing removed, heads attached to other people's bodies, and the complete rearrangement of city skylines). As the power, flexibility, and ubiquity of image-altering computers continues to increase, the well-known adage that 'the photography doesn't lie' will continue to become an anachronism. A solution to this problem comes from a concept called digital signatures, which incorporates modern cryptographic techniques to authenticate electronic mail messages. 'Authenticate' in this case means one can be sure that the message has not been altered, and that the sender's identity has not been forged. The technique can serve not only to authenticate images, but also to help the photographer retain and enforce copyright protection when the concept of 'electronic original' is no longer meaningful.

  3. [Digital library for archiving files of radiology and medical imaging].

    Science.gov (United States)

    Duvauferrier, R; Rambeau, M; Moulène, F

    1993-01-01

    The Conseil des Enseignants de Radiologie de France in collaboration with the Ilab-TSI company and Schering laboratories has developed a computer programme allowing the storage and consultation of radiological teaching files. This programme, developed on Macintosh from standard Hypercard and Quicktime applications, allows, in consultation mode, the multicriteria search and visualisation of selected radiological files. In the author mode, new files can be included after digitalizing the author's own images or after obtaining images from another image library. This programme, which allows juxtaposition of digitalised radiological files, is designed to be extremely open and can be easily combined with other computer-assisted teaching or computer-assisted presentation applications.

  4. Digital Images Inpainting using Modified Convolution Based Method

    Directory of Open Access Journals (Sweden)

    Mohiy M. Hadhoud

    2008-12-01

    Full Text Available Reconstruction of missing parts or scratches of digital images is animportant field used extensively in artwork restoration. This restoration can be done by using two approaches, image inpainting and texture synthesis. There are many techniques for the two pervious approaches that can carry out the process optimally and accurately. In this paper the advantages and disadvantages of most algorithms of the image inpainting approach are discussed. The modification to Oliveira inpainting model is introduced. Thismodification produces fast and good quality with one iteration without blur and removes large object with symmetric background.

  5. DIGITAL IMAGE MEASUREMENT OF BUBBLE MOTION IN AERATED WATER FLOWS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Digital image measurement method, as an ex-tension of Particle Image Velocimetry of single-phase flowmeasurement, was investigated for application to air-watertwo-phase flows. The method has strong potential ability inmeasuring bubble geometrical features and moving velocitiesfor complex bubble motion in aerated water flow. Both dilutedand dense bubble rising flows are measured using the digitalimage method. Measured bubble shapes and sizes, and bubblevelocities are affected by threshold selection for binary image.Several algorithms for selecting threshold are compared andmethods for calculating the time-averaged void fraction arediscussed.

  6. Digital Retinal Images: Background and Damaged Areas Segmentation

    Directory of Open Access Journals (Sweden)

    Eman A. Gani

    2014-07-01

    Full Text Available Digital retinal images are more appropriate for automatic screening of diabetic retinopathy systems. Unfortunately, a significant percentage of these images are poor quality that hiders further analysis due to many factors (such as patient movement, inadequate or non-uniform illumination, acquisition angle and retinal pigmentation. The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. So, the segmentation of retinal image is essential for this purpose, the segmentation is employed to smooth and strengthen image by separating the background and damaged areas from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, methods for segmenting colored retinal image are proposed to improve the quality of retinal image diagnosis. The methods generates two segmentation masks; i.e., background segmentation mask for extracting the background area and poor quality mask for removing the noisy areas from retinal image. The standard retinal image databases DIARETDB0, DIARETDB1, STARE, DRIVE and some images obtained from ophthalmologists have been used to test the validation of the proposed segmentation technique. Experimental results indicate the introduced methods are effective and can lead to high segmentation accuracy

  7. Reversible Anonymization of DICOM Images using Cryptography and Digital Watermarking

    Directory of Open Access Journals (Sweden)

    Lhoussain ELFADIL

    2012-04-01

    Full Text Available Digital Imaging and Communications in Medicine (DICOM is a standard for handling, storing, printing, and transmitting information in medical images. The DICOM file contains the image data and a number of attributes such as identified patient data (name, age, insurance ID card,…, and non-identified patient data (doctor’s interpretation, image type,…. Medical images serve not only for examination, but can also be used for research and education purposes. For research they are used to prevent illegal use of information; before authorizing researchers to use these images, the medical staff deletes all the data which would reveal the patient identity to prevent patient privacy. This manipulation is called anonymization. In this paper, we propose a reversible anonymization of DICOM images. Identifying patient data with image digest, computed by the well-known SHA-256 hash function, are encrypted using the proposed probabilistic public key crypto-system. After compressing the Least Significant Bit (LSB bitplan of the image using Hofmann coding algorithm, the encrypted data is inserted into a liberated zone of the LSB bitplan of the image. The proposed method allows researchers to use anonymous DICOM images and keep to authorized staff -if necessary- the possibility to return to the original image with all related patient data.

  8. Contribution to the study of integrated system design in digital imaging. Application to digital radiology

    International Nuclear Information System (INIS)

    In the first part of this work, we describe the hardware and software used to design integrated systems able to acquire, memorize, process and visualize 1024 x 1024 x 8 bits images. In the second part, we present and analyse the first realised prototype system which is a digital radiology one. After a technical and economical digital radiology study, we present the angiographic and tomographic results. In the third part, we indicate possible evolution of this system and we show how the adopted structure and developed hardware allow applications in various fields

  9. Dynamic imaging in spectroscopy with digital detector; Imagen dinamica en fluoroscopia con detector digital

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, M. A.; Ojeda, C.; Santin, J.

    2006-07-01

    The Flat Detector technology allows systems to be designed for covering the complete range of cardiovascular applications. Requirements from some medical applications translate into design requirements of the detector. This affects spatial and temporal resolution, sensitivity, DQE and signal to noise ratio. The current technology of choice for the actual dynamic flat detector is the combination of a scintillator of Thallium doped Csl with an amorphous silicon photodiode array with TFT. The flat panel is connected to dedicated electronics, which provides low noise column readout and multiplexing into an electrical signal, which is digitalized to provide a direct digital image output. (Author) 13 refs.

  10. Digital signal and image processing using Matlab

    CERN Document Server

    Blanchet , Gérard

    2015-01-01

    The most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals, the theory being supported by exercises and computer simulations relating to real applications.   More than 200 programs and functions are provided in the MATLAB® language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject.  Following on from the first volume, this second installation takes a more practical stance, provi

  11. Digital signal and image processing using MATLAB

    CERN Document Server

    Blanchet , Gérard

    2014-01-01

    This fully revised and updated second edition presents the most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals. The theory is supported by exercises and computer simulations relating to real applications. More than 200 programs and functions are provided in the MATLABÒ language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject. This fully revised new edition updates : - the

  12. Fraudulent retouching of digital radiographic images - a potential risk

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.J.; Oh, S.N.; Park, M.Y.; Rha, S.E. [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, Seoul 137-040 (Korea, Republic of); Choi, B.G., E-mail: cbg@catholic.ac.k [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, Seoul 137-040 (Korea, Republic of)

    2010-12-15

    Aim: To determine whether radiologists can recognize images retouched to include sham lesions. Materials and methods: Ten representative key images were selected of aortic dissection, hepatocellular carcinoma, renal cell carcinoma, colon cancer, liver metastasis, hepatic cyst, gallbladder stones, splenic artery aneurysm, adrenal adenoma, and stomach cancer from abdominal computed tomography (CT) imaging performed in 2008. Five of the key images were replaced with retouched images using image-editing software. The time to complete retouching was recorded for each image. Radiologists were requested to make a diagnosis for the 10 images, and were then asked to identify possible retouched images. The time taken to reach a decision in each case was recorded. Thirty radiologists (13 residents and 17 attending radiologists) participated as reviewers. Results: The time to complete retouching was 15.2 {+-} 3.15 min. None of the reviewers recognized that some images were retouched during diagnosis. The rate of correct diagnosis was 90% (range 71.7-100%). After reviewers were informed of possible image retouching, the detection rate of retouched images was 50% (40-58.3%). This rate was statistically the same as random choice (p = 0.876). There was no significant difference between residents and attending radiologists in the detection rate of retouched images (p = 0.786). The time to diagnosis and the time to detection of the retouched images were 15 (14-17) and 6 (5-7) min, respectively. Conclusion: Digital images can be easily retouched, and radiologists have difficulty in identifying retouched images. Radiologists should be aware of the potential fraudulent use of retouched images.

  13. Fuzzy Methods and Image Fusion in a Digital Image Processing

    Directory of Open Access Journals (Sweden)

    Jaroslav Vlach

    2012-01-01

    Full Text Available Although the basics of image processing were laid more than 50 years ago, significant development occurred mainly in the last 25 years with the entrance of personal computers and today's problems are already very sophisticated and quick. This article is a contribution to the study of the use of fuzzy logic methods and image fusion for image processing using LabVIEW tools for quality management, in this case especially in the jewelry industry.  

  14. Recent advances in imaging in Parkinson disease

    International Nuclear Information System (INIS)

    Despite recent knowledge on the pathophysiology of Parkinson disease, the precise and early diagnosis of this condition remains difficult. Advances in imaging techniques have enabled the assessment of in vivo structural, neurometabolic, and neurochemical changes in Parkinson disease, and their role as biomarkers have assumed greater importance in recent years. We presently review the various approaches with these imaging techniques for the study of Parkinson disease. Voxel-based morphometry studies with structural MRI showed a characteristic pattern of gray matter loss, and fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) studies have indicated latent network abnormalities in Parkinson disease. Moreover, radiotracer imaging with dopaminergic markers facilitates the assessment of pre- and postsynaptic nigro-striatal integrity, and other radiotracers have been used in the studies of nondopaminergic neurotransmitter systems, such as the cholinergic, noradrenergic, and serotonergic systems. These imaging techniques can be used to detect presymptomatic disease and to monitor disease progression. Thus, imaging data provide meaningful insights into the pathological process in Parkinson disease. (author)

  15. 78 FR 32427 - Notice of Issuance of Final Determination Concerning Multifunctional Digital Imaging Systems

    Science.gov (United States)

    2013-05-30

    ... Multifunctional Digital Imaging Systems AGENCY: U.S. Customs and Border Protection, Department of Homeland... certain multifunctional digital imaging systems. Based upon the facts presented, CBP has concluded in the... of origin of certain multifunctional digital imaging systems which may be offered to the...

  16. Evaluation of clinical image processing algorithms used in digital mammography.

    Science.gov (United States)

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the

  17. Evaluation of clinical image processing algorithms used in digital mammography.

    Science.gov (United States)

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the

  18. Development of an advanced digital detection system for multidrug resistant tuberculosis screening

    Science.gov (United States)

    Simkulet, Michelle D.; Beckstead, Jeffrey A.; Gilman, Brian C.; Bardarov, Savco; Castracane, James; Jacobs, William R., Jr.

    2000-04-01

    Tuberculosis (TB) remains the leading cause of death in the world from a single infectious disease and the threat is becoming more critical with the emergence and spread of multi-drug resistant tuberculosis (MDR-TB). Existing methods for detection of various strains of mycobacterium tuberculosis are complex, time consuming and expensive, and therefore, not suitable for use in developing countries where the spread of the disease is most rampant. Currently, a digital detection system based on advanced digital imaging technology, including CMOS and image intensification technology, is being developed by InterScience, Inc. for use with the luciferase reporter mycobacteriophages technique as developed at the Albert Einstein College of Medicine. This compact, low cost and high sensitivity system for rapid diagnosis and drug susceptibility testing for TB will have an immediate impact for both research and clinical applications. It is envisioned that the instrument will be suitable for use as a portable tool for rapid screening of MDR-TB in both developed and developing countries. The development of the system, recent results and a comparison to competing technologies will be presented.

  19. An Adaptive Watermarking Technique for the copyright of digital images and Digital Image Protection

    OpenAIRE

    Yusuf Perwej; Firoj Parwej

    2012-01-01

    The Internet as a whole does not use secure links, thus information in transit may be vulnerable to interruption as well. The important of reducing a chance of the information being detected during the transmission is being an issue in the real world now days. The Digital watermarking method provides for the quick and inexpensive distribution of digital information over the Internet. This method provides new ways of ensuring the sufficient protection of copyright holders in the intellectual ...

  20. An Adaptive Watermarking Technique for the copyright of digital images and Digital Image Protection

    OpenAIRE

    Yusuf Perwej; Firoj Parwej; Asif Perwej

    2012-01-01

    The Internet as a whole does not use secure links, thus information in transit may be vulnerable to interruption as well. The important of reducing a chance of the information being detected during the transmission is being an issue in the real world now days. The Digital watermarking method provides for the quick and inexpensive distribution of digital information over the Internet. This method provides new ways of ensuring the sufficient protection of copyright holders in the in...

  1. Digital implementation of a neural network for imaging

    Science.gov (United States)

    Wood, Richard; McGlashan, Alex; Yatulis, Jay; Mascher, Peter; Bruce, Ian

    2012-10-01

    This paper outlines the design and testing of a digital imaging system that utilizes an artificial neural network with unsupervised and supervised learning to convert streaming input (real time) image space into parameter space. The primary objective of this work is to investigate the effectiveness of using a neural network to significantly reduce the information density of streaming images so that objects can be readily identified by a limited set of primary parameters and act as an enhanced human machine interface (HMI). Many applications are envisioned including use in biomedical imaging, anomaly detection and as an assistive device for the visually impaired. A digital circuit was designed and tested using a Field Programmable Gate Array (FPGA) and an off the shelf digital camera. Our results indicate that the networks can be readily trained when subject to limited sets of objects such as the alphabet. We can also separate limited object sets with rotational and positional invariance. The results also show that limited visual fields form with only local connectivity.

  2. Digital Watermarking Method Warranting the Lower Limit of Image Quality of Watermarked Images

    Directory of Open Access Journals (Sweden)

    Iwata Motoi

    2010-01-01

    Full Text Available We propose a digital watermarking method warranting the lower limit of the image quality of watermarked images. The proposed method controls the degradation of a watermarked image by using a lower limit image. The lower limit image means the image of the worst quality that users can permit. The proposed method accepts any lower limit image and does not require it at extraction. Therefore lower limit images can be decided flexibly. In this paper, we introduce 2-dimensional human visual MTF model as an example of obtaining lower limit images. Also we use JPEG-compressed images of quality 75% and 50% as lower limit images. We investigate the performance of the proposed method by experiments. Moreover we compare the proposed method using three types of lower limit images with the existing method in view of the tradeoff between PSNR and the robustness against JPEG compression.

  3. Radar foundations for imaging and advanced concepts

    CERN Document Server

    Sullivan, Roger

    2004-01-01

    Through courses internally taught at IDA, Dr. Roger Sullivan has devised a book that brings readers fully up to speed on the most essential quantitave aspects of general radar in order to introduce study of the most exciting and relevant applications to radar imaging and advanced concepts: Synthetic Aperture Radar (4 chapters), Space-time Adaptive Processing, moving target indication (MTI), bistatic radar, low probability of intercept (LPI) radar, weather radar, and ground-penetrating radar. Whether you're a radar novice or experienced professional, this is an essential refer

  4. Hiding an image in cascaded Fresnel digital holograms

    Institute of Scientific and Technical Information of China (English)

    Shaogeng Deng; Liren Liu; Haitao Lang; Weiqing Pan; Dong Zhao

    2006-01-01

    @@ A system of two separated computer-generated holograms termed cascaded Fresnel digital holography (CFDH) is proposed and its application to hiding information is demonstrated by a computer simulation experiment. The technique is that the reconstructed image is the result of the wave Fresnel diffractionof two sub-holograms located at different distances from the imaging plane along the illuminating beam. The two sub-holograms are generated by an iterative algorithm based on the projection onto convex sets. In the application to the hiding of optical information, the information to be hidden is encoded into thesub-hologram which is multiplied by the host image in the input plane, the other sub-hologram in the filterplane is used for the deciphering key, the hidden image can be reconstructed in the imaging plane of the CFDH setup.

  5. An Effective Digital Watermarking Algorithm for Binary Text Image

    Institute of Scientific and Technical Information of China (English)

    HU Zhihua; QIN Zhongping

    2006-01-01

    Aiming at the binary text image's characteristics of simple pixel, complex texture and bad immunity of information concealment, a digital watermarking embedment location choosing method has been put forward based upon compatible roughness set. The method divides binary text image into different equivalent classes. Equivalent classes are further divided into different subclasses according to each pixel's degree and texture changes between blocks. Through properties' combination, the embedment block and location which are fit for watermarking are found out. At last, different binary text images are chosen for emulation experiment. After being embedded, the image is compressed in JPIG-2. Gaussian noise, salt & pepper noise are added and cutting is employed to imitate the actual environment in which images may suffer from various attacks and interferences. The result shows that the detector has a sound testing effect under various conditions.

  6. Colored Digital Image Watermarking using the Wavelet Technique

    Directory of Open Access Journals (Sweden)

    Mohammed F. Al-Hunaity

    2007-01-01

    Full Text Available With the revolution of information technology and Wide Area Networking, data has become less and less private where the access of media as well as the attempts to change and manipulate the contents of media data have become a common case. For that, we need to use a watermarking technique to protect the copyright of the media as well as for digital right management but without leaving a visual effect. We presented a watermarking technique that deals with images where the used technique to embed a wavelet compressed watermark image within the least significant bit (LSB of the cover image pixels in a specific pattern which won't be visible after embedding and will cause the cover image to become copyrighted using the embedded watermark image that can be extracted later.

  7. Optical Synchrotron Radiation Beam Imaging with a Digital Mask

    Energy Technology Data Exchange (ETDEWEB)

    Fiorito, R. B. [University of Maryland, College Park, MD (United States); Zhang, H. D. [University of Maryland, College Park, MD (United States); Corbett, W. J. [SLAC, Menlo Park, CA (United States); Fisher, A. S. [SLAC, Menlo Park, CA (United States); Mok, W. Y. [SLAC, Menlo Park, CA (United States); Tian, K. [SLAC, Menlo Park, CA (United States); Douglas, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wilson, F. G. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Mitsuhashi, T. M. [KEK, Tsukuba (Japan); Shkvarunets, A. G. [University of Maryland, College Park, MD (United States)

    2012-11-01

    We have applied a new imaging/optical masking technique, which employs a digital micro-mirror device (DMD) and optical synchrotron radiation (OSR), to perform high dynamic range (DR) beam imaging at the JLAB Energy Recovery Linac and the SLAC/SPEAR3 Synchrotron Light Source. The OSR from the beam is first focused onto the DMD to produce a primary image; selected areas of this image are spatially filtered by controlling the state of individual micro-mirrors; and finally, the filtered image is refocused onto a CCD camera. At JLAB this technique has been used successfully to view the beam halo with a DR ~ 105. At SPEAR3 the DMD was used to filter out the bright core of the stored beam to study the turn-by-turn dynamics of the 10-3 weaker injected beam. We describe the optical performance, present limitations and our plans to improve the DR of both experimental systems.

  8. Synthesis of color filter array pattern in digital images

    Science.gov (United States)

    Kirchner, Matthias; Böhme, Rainer

    2009-02-01

    We propose a method to synthetically create or restore typical color filter array (CFA) pattern in digital images. This can be useful, inter alia, to conceal traces of manipulation from forensic techniques that analyze the CFA structure of images. For continuous signals, our solution maintains optimal image quality, using a quadratic cost function; and it can be computed efficiently. Our general approach allows to derive even more efficient approximate solutions that achieve linear complexity in the number of pixels. The effectiveness of the CFA synthesis as tamper-hiding technique and its superior image quality is backed with experimental evidence on large image sets and against state-of-the-art forensic techniques. This exposition is confined to the most relevant 'Bayer'-grid, but the method can be generalized to other layouts as well.

  9. Advances in Imaging for Atrial Fibrillation Ablation

    International Nuclear Information System (INIS)

    Over the last fifteen years, our understanding of the pathophysiology of atrial fibrillation (AF) has paved the way for ablation to be utilized as an effective treatment option. With the aim of gaining more detailed anatomical representation, advances have been made using various imaging modalities, both before and during the ablation procedure, in planning and execution. Options have flourished from procedural fluoroscopy, electro anatomic mapping systems, pre procedural computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and combinations of these technologies. Exciting work is underway in an effort to allow the electro physiologist to assess scar formation in real time. One advantage would be to lessen the learning curve for what are very complex procedures. The hope of these developments is to improve the likelihood of a successful ablation procedure and to allow more patients access to this treatment

  10. Advanced proton imaging in computed tomography

    CERN Document Server

    Mattiazzo, S; Giubilato, P; Pantano, D; Pozzobon, N; Snoeys, W; Wyss, J

    2015-01-01

    In recent years the use of hadrons for cancer radiation treatment has grown in importance, and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise body imaging for accurate beam delivery is decisive. Proton computed tomography (pCT) scanners, currently in their R&D phase, provide the ultimate 3D imaging for hadrons treatment guidance. A key component of a pCT scanner is the detector used to track the protons, which has great impact on the scanner performances and ultimately limits its maximum speed. In this article, a novel proton-tracking detector was presented that would have higher scanning speed, better spatial resolution and lower material budget with respect to present state-of-the-art detectors, leading to enhanced performances. This advancement in performances is achieved by employing the very latest development in monolithic active pixel detectors (to build high granularity, low material budget, ...

  11. Language engineering for the Semantic Web: a digital library for endangered languages. Endangered languages, Ontology, Digital library, Multimedia, EMELD, Intelligent querying and retrieval, ImageSpace

    Directory of Open Access Journals (Sweden)

    Lu Shiyong

    2004-01-01

    Full Text Available In this paper, we describe the effort undertaken at Wayne State University to preserve endangered languages using the state-of-the-art information technologies. In particular, we discuss the issues involved in such an effort, and present the architecture of a distributed digital library for endangered languages which will contain various data of endangered languages in the forms of text, image, video, audio and include advanced tools for intelligent cataloguing, indexing, searching and browsing information on languages and language analysis. We use various Semantic Web technologies such as XML, OLAC, ontologies so that our digital library becomes a useful linguistic resource on the Semantic Web.

  12. Fingerprint pattern restoration by digital image processing techniques.

    Science.gov (United States)

    Wen, Che-Yen; Yu, Chiu-Chung

    2003-09-01

    Fingerprint evidence plays an important role in solving criminal problems. However, defective (lacking information needed for completeness) or contaminated (undesirable information included) fingerprint patterns make identifying and recognizing processes difficult. Unfortunately. this is the usual case. In the recognizing process (enhancement of patterns, or elimination of "false alarms" so that a fingerprint pattern can be searched in the Automated Fingerprint Identification System (AFIS)), chemical and physical techniques have been proposed to improve pattern legibility. In the identifying process, a fingerprint examiner can enhance contaminated (but not defective) fingerprint patterns under guidelines provided by the Scientific Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST), the Scientific Working Group on Imaging Technology (SWGIT), and an AFIS working group within the National Institute of Justice. Recently, the image processing techniques have been successfully applied in forensic science. For example, we have applied image enhancement methods to improve the legibility of digital images such as fingerprints and vehicle plate numbers. In this paper, we propose a novel digital image restoration technique based on the AM (amplitude modulation)-FM (frequency modulation) reaction-diffusion method to restore defective or contaminated fingerprint patterns. This method shows its potential application to fingerprint pattern enhancement in the recognizing process (but not for the identifying process). Synthetic and real images are used to show the capability of the proposed method. The results of enhancing fingerprint patterns by the manual process and our method are evaluated and compared. PMID:14535661

  13. IMAGEP - A FORTRAN ALGORITHM FOR DIGITAL IMAGE PROCESSING

    Science.gov (United States)

    Roth, D. J.

    1994-01-01

    IMAGEP is a FORTRAN computer algorithm containing various image processing, analysis, and enhancement functions. It is a keyboard-driven program organized into nine subroutines. Within the subroutines are other routines, also, selected via keyboard. Some of the functions performed by IMAGEP include digitization, storage and retrieval of images; image enhancement by contrast expansion, addition and subtraction, magnification, inversion, and bit shifting; display and movement of cursor; display of grey level histogram of image; and display of the variation of grey level intensity as a function of image position. This algorithm has possible scientific, industrial, and biomedical applications in material flaw studies, steel and ore analysis, and pathology, respectively. IMAGEP is written in VAX FORTRAN for DEC VAX series computers running VMS. The program requires the use of a Grinnell 274 image processor which can be obtained from Mark McCloud Associates, Campbell, CA. An object library of the required GMR series software is included on the distribution media. IMAGEP requires 1Mb of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in VAX FILES-11 format. It is also available on a TK50 tape cartridge in VAX FILES-11 format. This program was developed in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation.

  14. DESIGN AN ADVANCE COMPUTER-AIDED TOOL FOR IMAGE AUTHENTICATION AND CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Rozita Teymourzadeh

    2013-01-01

    Full Text Available Over the years, advancements in the fields of digital image processing and artificial intelligence have been applied in solving many real-life problems. This could be seen in facial image recognition for security systems, identity registrations. Hence a bottleneck of identity registration is image processing. These are carried out in form of image preprocessing, image region extraction by cropping, feature extraction using Principal Component Analysis (PCA and image compression using Discrete Cosine Transform (DCT. Other processing include filtering and histogram equalization using contrast stretching is performed while enhancing the image as part of the analytical tool. Hence, this research work presents a universal integration image forgery detection analysis tool with image facial recognition using Black Propagation Neural Network (BPNN processor. The proposed designed tool is a multi-function smart tool with the novel architecture of programmable error goal and light intensity. Furthermore, its advance dual database increases the efficiency for high performance application. With the fact that, the facial image recognition will always, give a matching output or closest possible output image for every input image irrespective of the authenticity, the universal smart GUI tool is proposed and designed to perform image forgery detection with the high accuracy of ±2% error rate. Meanwhile, a novel structure that provides efficient automatic image forgery detection for all input test images for the BPNN recognition is presented. Hence, an input image will be authenticated before being fed into the recognition tool.

  15. Advanced imaging of the scapholunate ligamentous complex.

    Science.gov (United States)

    Shahabpour, Maryam; Staelens, Barbara; Van Overstraeten, Luc; De Maeseneer, Michel; Boulet, Cedric; De Mey, Johan; Scheerlinck, Thierry

    2015-12-01

    The scapholunate joint is one of the most involved in wrist injuries. Its stability depends on primary and secondary stabilisers forming together the scapholunate complex. This ligamentous complex is often evaluated by wrist arthroscopy. To avoid surgery as diagnostic procedure, optimization of MR imaging parameters as use of three-dimensional (3D) sequences with very thin slices and high spatial resolution, is needed to detect lesions of the intrinsic and extrinsic ligaments of the scapholunate complex. The paper reviews the literature on imaging of radial-sided carpal ligaments with advanced computed tomographic arthrography (CTA) and magnetic resonance arthrography (MRA) to evaluate the scapholunate complex. Anatomy and pathology of the ligamentous complex are described and illustrated with CTA, MRA and corresponding arthroscopy. Sprains, mid-substance tears, avulsions and fibrous infiltrations of carpal ligaments could be identified on CTA and MRA images using 3D fat-saturated PD and 3D DESS (dual echo with steady-state precession) sequences with 0.5-mm-thick slices. Imaging signs of scapholunate complex pathology include: discontinuity, nonvisualization, changes in signal intensity, contrast extravasation (MRA), contour irregularity and waviness and periligamentous infiltration by edema, granulation tissue or fibrosis. Based on this preliminary experience, we believe that 3 T MRA using 3D sequences with 0.5-mm-thick slices and multiplanar reconstructions is capable to evaluate the scapholunate complex and could help to reduce the number of diagnostic arthroscopies.

  16. Advanced imaging of the scapholunate ligamentous complex

    Energy Technology Data Exchange (ETDEWEB)

    Shahabpour, Maryam; Maeseneer, Michel de; Boulet, Cedric; Mey, Johan de [Universitair Ziekenhuis Brussel (UZ Brussel), Department of Radiology, Brussels (Belgium); Staelens, Barbara; Scheerlinck, Thierry [Universitair Ziekenhuis Brussel (UZ Brussel), Department of Orthopaedics and Traumatology, Brussels (Belgium); Overstraeten, Luc van [Hand and Foot Surgery Unit (HFSU), Tournai (Belgium)

    2015-12-15

    The scapholunate joint is one of the most involved in wrist injuries. Its stability depends on primary and secondary stabilisers forming together the scapholunate complex. This ligamentous complex is often evaluated by wrist arthroscopy. To avoid surgery as diagnostic procedure, optimization of MR imaging parameters as use of three-dimensional (3D) sequences with very thin slices and high spatial resolution, is needed to detect lesions of the intrinsic and extrinsic ligaments of the scapholunate complex. The paper reviews the literature on imaging of radial-sided carpal ligaments with advanced computed tomographic arthrography (CTA) and magnetic resonance arthrography (MRA) to evaluate the scapholunate complex. Anatomy and pathology of the ligamentous complex are described and illustrated with CTA, MRA and corresponding arthroscopy. Sprains, mid-substance tears, avulsions and fibrous infiltrations of carpal ligaments could be identified on CTA and MRA images using 3D fat-saturated PD and 3D DESS (dual echo with steady-state precession) sequences with 0.5-mm-thick slices. Imaging signs of scapholunate complex pathology include: discontinuity, nonvisualization, changes in signal intensity, contrast extravasation (MRA), contour irregularity and waviness and periligamentous infiltration by edema, granulation tissue or fibrosis. Based on this preliminary experience, we believe that 3 T MRA using 3D sequences with 0.5-mm-thick slices and multiplanar reconstructions is capable to evaluate the scapholunate complex and could help to reduce the number of diagnostic arthroscopies. (orig.)

  17. A robust chaotic algorithm for digital image steganography

    Science.gov (United States)

    Ghebleh, M.; Kanso, A.

    2014-06-01

    This paper proposes a new robust chaotic algorithm for digital image steganography based on a 3-dimensional chaotic cat map and lifted discrete wavelet transforms. The irregular outputs of the cat map are used to embed a secret message in a digital cover image. Discrete wavelet transforms are used to provide robustness. Sweldens' lifting scheme is applied to ensure integer-to-integer transforms, thus improving the robustness of the algorithm. The suggested scheme is fast, efficient and flexible. Empirical results are presented to showcase the satisfactory performance of our proposed steganographic scheme in terms of its effectiveness (imperceptibility and security) and feasibility. Comparison with some existing transform domain steganographic schemes is also presented.

  18. Prediction of yield by digital image analysis of vine

    Directory of Open Access Journals (Sweden)

    Bešlić Zoran S.

    2014-01-01

    Full Text Available The grape yield per vine of cv. Cabernet Sauvignon (Vitis vinifera L. was evaluated on the basis of digital image processing of vine part. Digital camera was mounted on tripod and used for taking photos of 1 x 1 m portions of canopy. The Adobe Photoshop software was used to analyse image for the colour counting of the blue pixels of grape in the quadrant region. The actual yield was obtained from the photographed vines by hand harvesting of sampled portions. Linear regression was used for calculation of the correlation between blue pixels and grape weight. The relatively strong relationship between blue pixels and grape weight (R2=0.91 was obtained. Based on these results, we can recommend this simple technique for yield forecasting. [Projekat Ministarstva nauke Republike Srbije, br. TP31063

  19. Digital-image processing and image analysis of glacier ice

    Science.gov (United States)

    Fitzpatrick, Joan J.

    2013-01-01

    This document provides a methodology for extracting grain statistics from 8-bit color and grayscale images of thin sections of glacier ice—a subset of physical properties measurements typically performed on ice cores. This type of analysis is most commonly used to characterize the evolution of ice-crystal size, shape, and intercrystalline spatial relations within a large body of ice sampled by deep ice-coring projects from which paleoclimate records will be developed. However, such information is equally useful for investigating the stress state and physical responses of ice to stresses within a glacier. The methods of analysis presented here go hand-in-hand with the analysis of ice fabrics (aggregate crystal orientations) and, when combined with fabric analysis, provide a powerful method for investigating the dynamic recrystallization and deformation behaviors of bodies of ice in motion. The procedures described in this document compose a step-by-step handbook for a specific image acquisition and data reduction system built in support of U.S. Geological Survey ice analysis projects, but the general methodology can be used with any combination of image processing and analysis software. The specific approaches in this document use the FoveaPro 4 plug-in toolset to Adobe Photoshop CS5 Extended but it can be carried out equally well, though somewhat less conveniently, with software such as the image processing toolbox in MATLAB, Image-Pro Plus, or ImageJ.

  20. Effect of image quality on calcification detection in digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C. [National Co-ordinating Centre for the Physics of Mammography, Royal Surrey County Hospital NHS Foundation Trust, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); Jarvis Breast Screening and Diagnostic Centre, Guildford GU1 1LJ (United Kingdom); Department of Radiology, St. George' s Healthcare NHS Trust, Tooting, London SW17 0QT (United Kingdom); Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ (United Kingdom); Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15210 (United States); National Co-ordinating Centre for the Physics of Mammography, Royal Surrey County Hospital NHS Foundation Trust, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); National Co-ordinating Centre for the Physics of Mammography, Royal Surrey County Hospital NHS Foundation Trust, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2012-06-15

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  1. Comparison of standard mammography with digital mammography and digital infrared thermal imaging for breast cancer screening

    OpenAIRE

    2010-01-01

    Breast cancer is the most common malignancy in women. Screen-film mammography (SFM) has been considered the gold standard for breast cancer screening and detection. Despite its recognized value in detecting and characterizing breast disease, mammography has important limitations and its false-negative rate ranges from 4% to 34%. Given these limitations, development of imaging modalities that would enhance, complement, or replace mammography has been a priority. Digital mammography (FFDM) and ...

  2. Language engineering for the Semantic Web: a digital library for endangered languages. Endangered languages, Ontology, Digital library, Multimedia, EMELD, Intelligent querying and retrieval, ImageSpace

    OpenAIRE

    Lu Shiyong; Liu Dapeng

    2004-01-01

    In this paper, we describe the effort undertaken at Wayne State University to preserve endangered languages using the state-of-the-art information technologies. In particular, we discuss the issues involved in such an effort, and present the architecture of a distributed digital library for endangered languages which will contain various data of endangered languages in the forms of text, image, video, audio and include advanced tools for intelligent cataloguing, indexing, searching and browsi...

  3. Application of Digital Image Correlation in Uniaxial Tensile Test

    OpenAIRE

    Aydın, Murat; Wu, Xin; Çetinkaya, Kerim; Kadı, İbrahim; Mustafa YAŞAR

    2015-01-01

    Application fields of non-contact measurement techniques have been recently increasing by means of optics and technological development in measurement applications. Digital image correlation (DIC) is the one and powerful non-contact measurement method that can be used to obtain elongation and strain as well. It is versatile and flexible measurement method can be adopted to many traditional test experiments such as tensile, compression, and bending in order to calculate mechanical properties o...

  4. Skimming Digits: Neuromorphic Classification of Spike-Encoded Images

    OpenAIRE

    Gregory Kevin Cohen; Garrick eOrchard; Sio Hoi eIeng; Jonathan eTapson; Ryad Benjamin Benosman; André evan Schaik

    2016-01-01

    The growing demands placed upon the field of computer vision has renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST,a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM), a learning method based on pr...

  5. Skimming Digits: Neuromorphic Classification of Spike-Encoded Images

    OpenAIRE

    Cohen, Gregory K.; Orchard, Garrick; Leng, Sio-Hoi; Tapson, Jonathan; Benosman, Ryad B.; Van Schaik, André

    2016-01-01

    International audience The growing demands placed upon the field of computer vision have renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST, a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM), a...

  6. Neurolight -astonishing advances in brain imaging.

    Science.gov (United States)

    Rojczyk-Gołębiewska, Ewa; Pałasz, Artur; Worthington, John J; Markowski, Grzegorz; Wiaderkiewicz, Ryszard

    2015-02-01

    In recent years, significant advances in basic neuroanatomical studies have taken place. Moreover, such classical, clinically-oriented human brain imaging methods such as MRI, PET and DTI have been applied to small laboratory animals allowing improvement in current experimental neuroscience. Contemporary structural neurobiology also uses various technologies based on fluorescent proteins. One of these is optogenetics, which integrates physics, genetics and bioengineering to enable temporal precise control of electrical activity of specific neurons. Another important challenge in the field is the accurate imaging of complicated neural networks. To address this problem, three-dimensional reconstruction techniques and retrograde labeling with modified viruses has been developed. However, a revolutionary step was the invention of the "Brainbow" system, utilizing gene constructs including the sequences of fluorescent proteins and the usage of Cre recombinase to create dozens of colour combinations, enabling visualization of neurons and their connections in extremely high resolution. Furthermore, the newly- introduced CLARITY method should make it possible to visualize three-dimensionally the structure of translucent brain tissue using the hydrogel polymeric network. This original technique is a big advance in neuroscience creating novel viewpoints completely different than standard glass slide immunostaining.

  7. Encryption On Grayscale Image For Digital Image Confidentiality Using Shamir Secret Sharing Scheme

    Science.gov (United States)

    Rodiah; Anggraini, Dyah; Fitrianingsih; Kazhimi, Farizan

    2016-04-01

    The use of high-frequency internet in the process of exchanging information and digital transaction is often accompanied by transmitting digital image in the form of raster images. Secret sharing schemes are multiparty protocols that related to the key establishment which provides protection against any threats of losing cryptography key. The greater the key duplication, the higher the risk of losing the key and vice versa. In this study, Secret Sharing Method was used by employing Shamir Threshold Scheme Algorithm on grayscale digital image with the size of 256×256 pixel obtaining 128×128 pixels of shared image with threshold values (4, 8). The result number of shared images were 8 parts and the recovery process can be carried out by at least using 4 shares of the 8 parts. The result of encryption on grayscale image is capable of producing vague shared image (i.e., no perceptible information), therefore a message in the form of digital image can be kept confidential and secure.

  8. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.

    Science.gov (United States)

    Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing

    2016-01-01

    In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively. PMID:27669256

  9. GrinLine identification using digital imaging and Adobe Photoshop.

    Science.gov (United States)

    Bollinger, Susan A; Brumit, Paula C; Schrader, Bruce A; Senn, David R

    2009-03-01

    The purpose of this study was to outline a method by which an antemortem photograph of a victim can be critically compared with a postmortem photograph in an effort to facilitate the identification process. Ten subjects, between 27 and 55 years old provided historical pictures of themselves exhibiting a broad smile showing anterior teeth to some extent (a grin). These photos were termed "antemortem" for the purpose of the study. A digital camera was used to take a current photo of each subject's grin. These photos represented the "postmortem" images. A single subject's "postmortem" photo set was randomly selected to be the "unknown victim." These combined data of the unknown and the 10 antemortem subjects were digitally stored and, using Adobe Photoshop software, the images were sized and oriented for comparative analysis. The goal was to devise a technique that could facilitate the accurate determination of which "antemortem" subject was the "unknown." The generation of antemortem digital overlays of the teeth visible in a grin and the comparison of those overlays to the images of the postmortem dentition is the foundation of the technique. The comparisons made using the GrinLine Identification Technique may assist medical examiners and coroners in making identifications or exclusions.

  10. Concepts for evaluation of image quality in digital radiology

    Science.gov (United States)

    Zscherpel, U.; Ewert, U.; Jechow, M.

    2012-05-01

    Concepts for digital image evaluation are presented for Computed Radiography (CR) and Digital Detector Arrays (DDAs) used for weld inspection. The precise DDA calibration yields an extra ordinary increase of contrast sensitivity up to 10 times in relation to film radiography. Restrictions in spatial resolution caused by pixel size of the DDA are compensated by increased contrast sensitivity. First CR standards were published in 2005 to support the application of phosphor imaging plates in lieu of X-ray film, but they need already a revision based on experiences reported by many users. One of the key concepts is the usage of signal-to-noise (SNR) measurements as equivalent to the optical density of film and film system class. The contrast sensitivity, measured by IQI visibility, depends on three essential parameters: The basic spatial resolution (SRb) of the radiographic image, the achieved signal-to-noise ratio (SNR) and the specific contrast (μeff - effective attenuation coefficient). Knowing these 3 parameters for the given exposure condition, inspected material and monitor viewing condition permits the calculation of the just visible IQI element. Furthermore, this enables the optimization of exposure conditions. The new ISO/FDIS 17636-2 describes the practice for digital radiography with CR and DDAs. It considers the first time compensation principles, derived from the three essential parameters. The consequences are described.

  11. Dynamic Approaches for Facial Recognition Using Digital Image Speckle Correlation

    Science.gov (United States)

    Rafailovich-Sokolov, Sara; Guan, E.; Afriat, Isablle; Rafailovich, Miriam; Sokolov, Jonathan; Clark, Richard

    2004-03-01

    Digital image analysis techniques have been extensively used in facial recognition. To date, most static facial characterization techniques, which are usually based on Fourier transform techniques, are sensitive to lighting, shadows, or modification of appearance by makeup, natural aging or surgery. In this study we have demonstrated that it is possible to uniquely identify faces by analyzing the natural motion of facial features with Digital Image Speckle Correlation (DISC). Human skin has a natural pattern produced by the texture of the skin pores, which is easily visible with conventional digital cameras of resolution greater than 4 mega pixels. Hence the application of the DISC method to the analysis of facial motion appears to be very straightforward. Here we demonstrate that the vector diagrams produced by this method for facial images are directly correlated to the underlying muscle structure which is unique for an individual and is not affected by lighting or make-up. Furthermore, we will show that this method can also be used for medical diagnosis in early detection of facial paralysis and other forms of skin disorders.

  12. Efficient Watermarking Technique for Digital Media (Images and Videos

    Directory of Open Access Journals (Sweden)

    Chirag Sharma

    2012-05-01

    Full Text Available In This Paper we are going to purpose an efficient Watermarking Technique for Digital Media Content Protection and Copyright Protection. Watermarking is a technique to embed hidden andunnoticeable signal into digital media in such a way that if an intruder wants to copy it, he can be caught on the basis of Copyright protection and Ownership Identification. There are many Techniques that are available to watermark the data, In our purposal we are discussing DWT Technique which is most robust to attacks rather than LSB for the protection of Digital Images. We will try to find the Quality loss after the addition of watermark after applying various attacks on Watermarked Image, the more the quality loss will be there lesser will be the efficiency of Watermarking. There will be Many Factors that can effect the quality of the Images after the addition of Watermarking that are discussed in Later Section. The Creating on GUI and Implementation of our purposed Algorithm will be realized using MATLAB.

  13. Particle Imaging, Characterization and Extinction Measurement with Digital Holography

    Science.gov (United States)

    Subedi, Nava; Berg, Matthew

    2015-03-01

    Digital holographic microcopy (DHM) can be a ground breaking technique in the field of particle diagnostic because of its capability for imaging, characterization and extinction measurement in situ. The beauty of this technique is that a single experimental set up is able to do all these works at the same time. In this sense DHM can be used to establish a new kind of instrumentation having the properties of cost-effective, light-weight and portable. Besides this, this technique also has lots of useful applications in the field of aerosol research, climate modeling, life science, polymer crystallization, and defense. We are using DHM for sub-micron sized particle imaging, characterization and extinction. In this work, a particle is illuminated by a pulsed laser and the interference pattern produced by superposition of particle's forward-scattered wave with the incident wave is recorded by a digital camera. The recorded pattern constitutes a digital hologram which can be numerically processed to get image, composition information and extinction cross-section of the particle. These information of the particle are the basic requirements for the characterization of respirable-sized (1-10 μm) aerosols particles.

  14. Freezing effect on bread appearance evaluated by digital imaging

    Science.gov (United States)

    Zayas, Inna Y.

    1999-01-01

    In marketing channels, bread is sometimes delivered in a frozen sate for distribution. Changes occur in physical dimensions, crumb grain and appearance of slices. Ten loaves, twelve bread slices per loaf were scanned for digital image analysis and then frozen in a commercial refrigerator. The bread slices were stored for four weeks scanned again, permitted to thaw and scanned a third time. Image features were extracted, to determine shape, size and image texture of the slices. Different thresholds of grey levels were set to detect changes that occurred in crumb, images were binarized at these settings. The number of pixels falling into these gray level settings were determined for each slice. Image texture features of subimages of each slice were calculated to quantify slice crumb grain. The image features of the slice size showed shrinking of bread slices, as a results of freezing and storage, although shape of slices did not change markedly. Visible crumb texture changes occurred and these changes were depicted by changes in image texture features. Image texture features showed that slice crumb changed differently at the center of a slice compared to a peripheral area close to the crust. Image texture and slice features were sufficient for discrimination of slices before and after freezing and after thawing.

  15. Digital image quantification of siderophores on agar plates

    Directory of Open Access Journals (Sweden)

    Megan Y. Andrews

    2016-03-01

    Full Text Available This article presents visual image data and detailed methodology for the use of a new method for quantifying the exudation of siderophores during fungal growth. The data include images showing time series for calibration, fungal exudation, and negative controls, as well as replication accuracy information. In addition, we provide detailed protocols for making CAS assay layer plates, the digital analysis protocol for determining area of color change, and discuss growth media that do and do not work with the layer plate method. The results of these data, their interpretation, and further discussion can be found in Andrews et al., 2016 [1].

  16. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    Science.gov (United States)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design

  17. Objective and Subjective Assessment of Digital Pathology Image Quality

    Directory of Open Access Journals (Sweden)

    Prarthana Shrestha

    2015-03-01

    Full Text Available The quality of an image produced by the Whole Slide Imaging (WSI scanners is of critical importance for using the image in clinical diagnosis. Therefore, it is very important to monitor and ensure the quality of images. Since subjective image quality assessments by pathologists are very time-consuming, expensive and difficult to reproduce, we propose a method for objective assessment based on clinically relevant and perceptual image parameters: sharpness, contrast, brightness, uniform illumination and color separation; derived from a survey of pathologists. We developed techniques to quantify the parameters based on content-dependent absolute pixel performance and to manipulate the parameters in a predefined range resulting in images with content-independent relative quality measures. The method does not require a prior reference model. A subjective assessment of the image quality is performed involving 69 pathologists and 372 images (including 12 optimal quality images and their distorted versions per parameter at 6 different levels. To address the inter-reader variability, a representative rating is determined as a one-tailed 95% confidence interval of the mean rating. The results of the subjective assessment support the validity of the proposed objective image quality assessment method to model the readers’ perception of image quality. The subjective assessment also provides thresholds for determining the acceptable level of objective quality per parameter. The images for both the subjective and objective quality assessment are based on the HercepTestTM slides scanned by the Philips Ultra Fast Scanners, developed at Philips Digital Pathology Solutions. However, the method is applicable also to other types of slides and scanners.

  18. Evaluation of digital halftones image by vector error diffusion

    Science.gov (United States)

    Kouzaki, Masahiro; Itoh, Tetsuya; Kawaguchi, Takayuki; Tsumura, Norimichi; Haneishi, Hideaki; Miyake, Yoichi

    1998-12-01

    The vector error diffusion (VED) method is applied to proudce the digital halftone images by an electrophotographic printer with 600 dpi. Objective image quality of those obtained images is evaluated and analyzed. As a result, in the color reproduction of halftone image by the VED method, it was clear that there are large color difference between target color and printed color typically in the mid-tone colors. We consider it is due to the printer properties including dot-gain. It was also clear that the color noise of the VED method is larger compared with that of the conventional scalar error diffusion method in some patches. It was remarkable that ununiform patterns are generated by the VED method.

  19. Infective endocarditis detection through SPECT/CT images digital processing

    Science.gov (United States)

    Moreno, Albino; Valdés, Raquel; Jiménez, Luis; Vallejo, Enrique; Hernández, Salvador; Soto, Gabriel

    2014-03-01

    Infective endocarditis (IE) is a difficult-to-diagnose pathology, since its manifestation in patients is highly variable. In this work, it was proposed a semiautomatic algorithm based on SPECT images digital processing for the detection of IE using a CT images volume as a spatial reference. The heart/lung rate was calculated using the SPECT images information. There were no statistically significant differences between the heart/lung rates values of a group of patients diagnosed with IE (2.62+/-0.47) and a group of healthy or control subjects (2.84+/-0.68). However, it is necessary to increase the study sample of both the individuals diagnosed with IE and the control group subjects, as well as to improve the images quality.

  20. Use of film digitizers to assist radiology image management

    Science.gov (United States)

    Honeyman-Buck, Janice C.; Frost, Meryll M.; Staab, Edward V.

    1996-05-01

    The purpose of this development effort was to evaluate the possibility of using digital technologies to solve image management problems in the Department of Radiology at the University of Florida. The three problem areas investigated were local interpretation of images produced in remote locations, distribution of images to areas outside of radiology, and film handling. In all cases the use of a laser film digitizer interfaced to an existing Picture Archiving and Communication System (PACS) was investigated as a solution to the problem. In each case the volume of studies involved were evaluated to estimate the impact of the solution on the network, archive, and workstations. Communications were stressed in the analysis of the needs for all image transmission. The operational aspects of the solution were examined to determine the needs for training, service, and maintenance. The remote sites requiring local interpretation included were a rural hospital needing coverage for after hours studies, the University of Florida student infirmary, and the emergency room. Distribution of images to the intensive care units was studied to improve image access and patient care. Handling of films originating from remote sites and those requiring urgent reporting were evaluated to improve management functions. The results of our analysis and the decisions that were made based on the analysis are described below. In the cases where systems were installed, a description of the system and its integration into the PACS system is included. For all three problem areas, although we could move images via a digitizer to the archive and a workstation, there was no way to inform the radiologist that a study needed attention. In the case of outside films, the patient did not always have a medical record number that matched one in our Radiology Information Systems (RIS). In order to incorporate all studies for a patient, we needed common locations for orders, reports, and images. RIS orders

  1. A comparison of image interpretation times in full field digital mammography and digital breast tomosynthesis

    Science.gov (United States)

    Astley, Susan; Connor, Sophie; Lim, Yit; Tate, Catriona; Entwistle, Helen; Morris, Julie; Whiteside, Sigrid; Sergeant, Jamie; Wilson, Mary; Beetles, Ursula; Boggis, Caroline; Gilbert, Fiona

    2013-03-01

    Digital Breast Tomosynthesis (DBT) provides three-dimensional images of the breast that enable radiologists to discern whether densities are due to overlapping structures or lesions. To aid assessment of the cost-effectiveness of DBT for screening, we have compared the time taken to interpret DBT images and the corresponding two-dimensional Full Field Digital Mammography (FFDM) images. Four Consultant Radiologists experienced in reading FFDM images (4 years 8 months to 8 years) with training in DBT interpretation but more limited experience (137-407 cases in the past 6 months) were timed reading between 24 and 32 two view FFDM and DBT cases. The images were of women recalled from screening for further assessment and women under surveillance because of a family history of breast cancer. FFDM images were read before DBT, according to local practice. The median time for readers to interpret FFDM images was 17.0 seconds, with an interquartile range of 12.3-23.6 seconds. For DBT, the median time was 66.0 seconds, and the interquartile range was 51.1-80.5 seconds. The difference was statistically significant (p<0.001). Reading times were significantly longer in family history clinics (p<0.01). Although it took approximately four times as long to interpret DBT than FFDM images, the cases were more complex than would be expected for routine screening, and with higher mammographic density. The readers were relatively inexperienced in DBT interpretation and may increase their speed over time. The difference in times between clinics may be due to increased throughput at assessment, or decreased density.

  2. Recent advances of MIBG imaging in cardiology

    International Nuclear Information System (INIS)

    The sympathetic nervous system plays an important role in the regulation of cardiovascular function both in healthy subjects and in patients with heart disease. Cardiac neurotransmission imaging allows in vivo noninvasive assessment of presynaptic storage, release and reuptake of neurotransmitters. Iodine-123 labeled metaiodobenzylguanidine (MIBG) is an analogue of the sympatholytic agent guanethidine and behaves in a manner that is similar to norepinephrine, a neurotransmitter of the sympathetic nervous system in the heart. Qualitative and quantitative assessment of MIBG uptake and washout kinetics has evaluated alterations of the cardiac sympathetic function in various heart diseases, such as cardiomyopathies, coronary artery disease, diabetic heart and arrhythmias. As reduced MIBG uptake has been related to the clinical indices of severity and prognosis, it can be used to evaluate the therapeutic effects on the cardiac sympathetic dysfunction. For example, angiotensin converting enzyme inhibitors and β-blockers which have been shown to improve functional capacity and prognosis in patients with heart failure, have been demonstrated to increase MIBG uptake and reduce its washout rate in these patients, indicating favorable effects on the sympathetic nervous system. Thus, MIBG imaging has become a promising noninvasive tool and a widely available modality for the assessment of prognosis and effects of medical therapy in various forms of cardiac pathology. The usefulness and recent advances of MIBG imaging in cardiology will be noted in this article. (author)

  3. Blind Digital Image Watermarking Robust Against Histogram Equalization

    Directory of Open Access Journals (Sweden)

    H. Sadawarti

    2012-01-01

    Full Text Available Problem statement: Piracy in the presence of internet and computers proves to be a biggest damage to the industry. Easy editing and copying of images yields a great damage to the owner as original images can be distributed through internet very easily. To reduce the piracy and duplicity of the digital multimedia files, digital watermarking technique is dominating over the other available techniques. There are certain methods or attacks which are used to damage the watermark. One of the major attacks is histogram equalization and reducing the number of histogram equalized levels. Thus, there is a need to develop a method so that the watermark can be protected after histogram equalization. Approach: A blind digital watermarking algorithm is presented which embed the watermark in frequency domain. Firstly, DWT is applied on the original image and then DCT on the 4×4 blocks to target the particular frequencies of the image for embedding the watermark which does not have more effect after histogram equalization. Also, to enhance the security of the watermark dual encryption technique is deployed. Results: Algorithm applied to four images which are Lena, Cameraman, Baboon and Peppers. The evaluation of the algorithm is calculated in terms of peak signal to noise ratio and non correlation. The results prove that the algorithm is robust to histogram equalization attack up to 2 grey levels. Conclusion/Recommendations: The developed algorithm proved its performance against histogram equalization but the algorithm can also be checked for the other attacks which can be addition of white noise, Gaussian noise, filtering.

  4. Use of Digital Image Technology to 'Clearly' Depict Global Change

    Science.gov (United States)

    Molnia, B. F.; Carbo, C. L.

    2014-12-01

    Earth is dynamic and beautiful. Understanding why, when, how, and how fast its surface changes yields information and serves as a source of inspiration. The artistic use of geoscience information can inform the public about what is happening to their planet in a non-confrontational and apolitical way. While individual images may clearly depict a landscape, photographic comparisons are necessary to clearly capture and display annual, decadal, or century-scale impacts of climate and environmental change on Earth's landscapes. After years of effort to artistically communicate geoscience concepts with unenhanced individual photographs or pairs of images, the authors have partnered to maximize this process by using digital image enhancement technology. This is done, not to manipulate the inherent artistic content or information content of the photographs, but to insure that the comparative photo pairs produced are geometrically correct and unambiguous. For comparative photography, information-rich historical photographs are selected from archives, websites, and other sources. After determining the geographic location from which the historical photograph was made, the original site is identified and eventually revisited. There, the historical photos field of view is again photographed, ideally from the original location. From nearly 250 locations revisited, about 175 pairs have been produced. Every effort is made to reoccupy the original historical site. However, vegetation growth, visibility reduction, and co-seismic level change may make this impossible. Also, inherent differences in lens optics, camera construction, and image format may result in differences in the geometry of the new photograph when compared to the old. Upon selection, historical photos are cleaned, contrast stretched, brightness adjusted, and sharpened to maximize site identification and information extraction. To facilitate matching historical and new images, digital files of each are overlain in

  5. Image Registration in Digital Images for Variability in VEP

    Directory of Open Access Journals (Sweden)

    N Sivanandan

    2011-05-01

    Full Text Available The visually evoked potential (VEP is the measure of cortically evoked electrical activity that provides information about the integrity of the optic nerve and the primary visual cortex. The analysis of P-100 latency and amplitude measurement variability based on visual pathway conduction in VEP has been shown to have clinical utility. The reliable measurement of VEP techniques to do are less well developed. This work presents a technique for a reliable extraction P-100 latency and amplitude using a wavelet based technique. The challenge of image registration (the process of correctly aligning two or more images accounting for all possible source of distortion is of general interest in image processing. Several types of VEPs are routinely used in a clinical setting. These primarily differ in a mode of stimulus presentation.. This registration can be carried out for VEP waveforms of the same subject taken at different times, waves taken under different modalities, and wave pattern which have only a partial overlap area. This research focused on investigating potential registration algorithms for transforming partially overlapping VEP waves which have only a partially overlapping waveform of the retina into a single overlapping composite waveform to aid physicians in assessment of retinal health, and on registering vectors from known common points in the images to be registered. All potential transforms between waveforms are generated, with the correct registration producing a tight cluster of data points in the space of transform coefficients. The technique has been applied to different types of retinal waveforms - B/W checker board (pattern reversal,B/W checker board (flash,LED Goggles (pattern reversal and LED Goggles(flash stimulations and the technique can be readily used to provide cross - modal.

  6. Development Of A Physician-Friendly Digital Image Display Console

    Science.gov (United States)

    van der Voorde, F.; Arenson, R.; Kundel, H.; Miller, W.; Epstein, D.; Gefter, W.; Seshadri, S.; Brikman, I.; Khalsa, S.

    1986-06-01

    A high speed fiber optic network for the transmission of digital images has been under development for the last three years at our Hospital. This network utilizes a ring architecture with token passing contention handling. Radiographs are digitized with a high resolution camera. Images can be viewed at either high or low resolution. The software for this four node Medical Image Management System (MIMS) is now complete and is undergoing trial runs. Clinical tests begin on March 1, 1986. This paper will focus on the philosophy, evolution and the present state of the interfaces that exist between the system and the physician. Care has been taken to develop an interface that is fast, powerful and error-free. Though simple to use, it presents the physician with a number of powerful options to manipulate the image to facilitate effective interpretation. An effort has been made to incorporate those functions that are useful to the physician. We tried to avoid cluttering the user menu with an array of less-used options.

  7. High-speed digital phonoscopy images analyzed by Nyquist plots

    Science.gov (United States)

    Yan, Yuling

    2012-02-01

    Vocal-fold vibration is a key dynamic event in voice production, and the vibratory characteristics of the vocal fold correlate closely with voice quality and health condition. Laryngeal imaging provides direct means to observe the vocal fold vibration; in the past, however, available modalities were either too slow or impractical to resolve the actual vocal fold vibrations. This limitation has now been overcome by high-speed digital imaging (HSDI) (or high-speed digital phonoscopy), which records images of the vibrating vocal folds at a rate of 2000 frames per second or higher- fast enough to resolve a specific, sustained phonatory vocal fold vibration. The subsequent image-based functional analysis of voice is essential to better understanding the mechanism underlying voice production, as well as assisting the clinical diagnosis of voice disorders. Our primary objective is to develop a comprehensive analytical platform for voice analysis using the HSDI recordings. So far, we have developed various analytical approaches for the HSDI-based voice analyses. These include Nyquist plots and associated analysese that are used along with FFT and Spectrogram in the analysis of the HSDI data representing normal voice and specific voice pathologies.

  8. DIAGNOcam--a Near Infrared Digital Imaging Transillumination (NIDIT) technology.

    Science.gov (United States)

    Abdelaziz, Marwa; Krejci, Ivo

    2015-01-01

    In developed countries, clinical manifestation of carious lesions is changing: instead of dentists being confronted with wide-open cavities, more and more hidden caries are seen. For a long time, the focus of the research community was on finding a method for the detection of carious lesions without the need for radiographs. The research on Digital Imaging Fiber-Optic Transillumination (DIFOTI) has been an active domain. The scope of the present article is to describe a novel technology for caries diagnostics based on Near Infrared Digital Imaging Transillumination (NIDIT), and to give first examples of its clinical indications. In addition, the coupling of NIDIT with a head-mounted retinal image display (RID) to improve clinical workflow is presented. The novel NIDIT technology was shown to be useful as a diagnostic tool in several indications, including mainly the detection of proximal caries and, less importantly, for occlusal caries, fissures, and secondary decay around amalgam and composite restorations. The coupling of this technology with a head-mounted retinal image system allows for its very efficient implementation into daily practice. PMID:25625132

  9. High Res at High Speed: Automated Delivery of High-Resolution Images from Digital Library Collections

    Science.gov (United States)

    Westbrook, R. Niccole; Watkins, Sean

    2012-01-01

    As primary source materials in the library are digitized and made available online, the focus of related library services is shifting to include new and innovative methods of digital delivery via social media, digital storytelling, and community-based and consortial image repositories. Most images on the Web are not of sufficient quality for most…

  10. Preoperative digital mammography imaging in conservative mastectomy and immediate reconstruction

    Science.gov (United States)

    Angrigiani, Claudio; Hammond, Dennis; Nava, Maurizio; Gonzalez, Eduardo; Rostagno, Roman; Gercovich, Gustavo

    2016-01-01

    Background Digital mammography clearly distinguishes gland tissue density from the overlying non-glandular breast tissue coverage, which corresponds to the existing tissue between the skin and the Cooper’s ligaments surrounding the gland (i.e., dermis and subcutaneous fat). Preoperative digital imaging can determine the thickness of this breast tissue coverage, thus facilitating planning of the most adequate surgical techniques and reconstructive procedures for each case. Methods This study aimed to describe the results of a retrospective study of 352 digital mammograms in 176 patients with different breast volumes who underwent preoperative conservative mastectomies. The breast tissue coverage thickness and its relationship with the breast volume were evaluated. Results The breast tissue coverage thickness ranged from 0.233 to 4.423 cm, with a mean value of 1.952 cm. A comparison of tissue coverage and breast volume revealed a non-direct relationship between these factors. Conclusions Preoperative planning should not depend only on breast volume. Flap evaluations based on preoperative imaging measurements might be helpful when planning a conservative mastectomy. Accordingly, we propose a breast tissue coverage classification (BTCC). PMID:26855903

  11. Imaging advances in upper cervical vertebral disease

    International Nuclear Information System (INIS)

    Upper cervical vertebral has complex anatomic structure and some diseases may involve this vital center area of human body. Most of the diseases, such as trauma, malformation, and degeneration, need to be treated with surgery to recover the function of cervical vertebral. The accurate evaluation is crucial before and after the surgery. In the past few years, CT, MRI, and ultra-sound play important roles in the evaluation of upper cervical vertebral diseases and planning treatment. Comprehensive evaluation with multidisciplinary approach is advocated. In this paper we reviewed the anatomy and clinic treatments; summarized the latest imaging advances in upper cervical vertebral disease; discussed the perspective of comprehensive evaluation with multidisciplinary approach. (authors)

  12. Recent advances in imaging subcellular processes.

    Science.gov (United States)

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  13. Recent Advances in Morphological Cell Image Analysis

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed.

  14. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    Science.gov (United States)

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area. PMID:27420575

  15. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    Science.gov (United States)

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area.

  16. Fingerprint Image Enhancement Based on Second Directional Derivative of the Digital Image

    Directory of Open Access Journals (Sweden)

    Onnia Vesa

    2002-01-01

    Full Text Available This paper presents a novel approach of fingerprint image enhancement that relies on detecting the fingerprint ridges as image regions where the second directional derivative of the digital image is positive. A facet model is used in order to approximate the derivatives at each image pixel based on the intensity values of pixels located in a certain neighborhood. We note that the size of this neighborhood has a critical role in achieving accurate enhancement results. Using neighborhoods of various sizes, the proposed algorithm determines several candidate binary representations of the input fingerprint pattern. Subsequently, an output binary ridge-map image is created by selecting image zones, from the available binary image candidates, according to a MAP selection rule. Two public domain collections of fingerprint images are used in order to objectively assess the performance of the proposed fingerprint image enhancement approach.

  17. Semantic Integrative Digital Pathology: Insights into Microsemiological Semantics and Image Analysis Scalability.

    Science.gov (United States)

    Racoceanu, Daniel; Capron, Frédérique

    2016-01-01

    Being able to provide a traceable and dynamic second opinion has become an ethical priority for patients and health care professionals in modern computer-aided medicine. In this perspective, a semantic cognitive virtual microscopy approach has been recently initiated, the MICO project, by focusing on cognitive digital pathology. This approach supports the elaboration of pathology-compliant daily protocols dedicated to breast cancer grading, in particular mitotic counts and nuclear atypia. A proof of concept has thus been elaborated, and an extension of these approaches is now underway in a collaborative digital pathology framework, the FlexMIm project. As important milestones on the way to routine digital pathology, a series of pioneer international benchmarking initiatives have been launched for mitosis detection (MITOS), nuclear atypia grading (MITOS-ATYPIA) and glandular structure detection (GlaS), some of the fundamental grading components in diagnosis and prognosis. These initiatives allow envisaging a consolidated validation referential database for digital pathology in the very near future. This reference database will need coordinated efforts from all major teams working in this area worldwide, and it will certainly represent a critical bottleneck for the acceptance of all future imaging modules in clinical practice. In line with recent advances in molecular imaging and genetics, keeping the microscopic modality at the core of future digital systems in pathology is fundamental to insure the acceptance of these new technologies, as well as for a deeper systemic, structured comprehension of the pathologies. After all, at the scale of routine whole-slide imaging (WSI; ∼0.22 µm/pixel), the microscopic image represents a structured 'genomic cluster', enabling a naturally structured support for integrative digital pathology approaches. In order to accelerate and structure the integration of this heterogeneous information, a major effort is and will continue to

  18. Semantic Integrative Digital Pathology: Insights into Microsemiological Semantics and Image Analysis Scalability.

    Science.gov (United States)

    Racoceanu, Daniel; Capron, Frédérique

    2016-01-01

    Being able to provide a traceable and dynamic second opinion has become an ethical priority for patients and health care professionals in modern computer-aided medicine. In this perspective, a semantic cognitive virtual microscopy approach has been recently initiated, the MICO project, by focusing on cognitive digital pathology. This approach supports the elaboration of pathology-compliant daily protocols dedicated to breast cancer grading, in particular mitotic counts and nuclear atypia. A proof of concept has thus been elaborated, and an extension of these approaches is now underway in a collaborative digital pathology framework, the FlexMIm project. As important milestones on the way to routine digital pathology, a series of pioneer international benchmarking initiatives have been launched for mitosis detection (MITOS), nuclear atypia grading (MITOS-ATYPIA) and glandular structure detection (GlaS), some of the fundamental grading components in diagnosis and prognosis. These initiatives allow envisaging a consolidated validation referential database for digital pathology in the very near future. This reference database will need coordinated efforts from all major teams working in this area worldwide, and it will certainly represent a critical bottleneck for the acceptance of all future imaging modules in clinical practice. In line with recent advances in molecular imaging and genetics, keeping the microscopic modality at the core of future digital systems in pathology is fundamental to insure the acceptance of these new technologies, as well as for a deeper systemic, structured comprehension of the pathologies. After all, at the scale of routine whole-slide imaging (WSI; ∼0.22 µm/pixel), the microscopic image represents a structured 'genomic cluster', enabling a naturally structured support for integrative digital pathology approaches. In order to accelerate and structure the integration of this heterogeneous information, a major effort is and will continue to

  19. Autocorrelation and regularization in digital images. I - Basic theory

    Science.gov (United States)

    Jupp, David L. B.; Strahler, Alan H.; Woodcock, Curtis E.

    1988-01-01

    Spatial structure occurs in remotely sensed images when the imaged scenes contain discrete objects that are identifiable in that their spectral properties are more homogeneous within than between them and other scene elements. The spatial structure introduced is manifest in statistical measures such as the autocovariance function and variogram associated with the scene, and it is possible to formulate these measures explicitly for scenes composed of simple objects of regular shapes. Digital images result from sensing scenes by an instrument with an associated point spread function (PSF). Since there is averaging over the PSF, the effect, termed regularization, induced in the image data by the instrument will influence the observable autocovariance and variogram functions of the image data. It is shown how the autocovariance or variogram of an image is a composition of the underlying scene covariance convolved with an overlap function, which is itself a convolution of the PSF. The functional form of this relationship provides an analytic basis for scene inference and eventual inversion of scene model parameters from image data.

  20. Effect of image scaling and segmentation in digital rock characterisation

    Science.gov (United States)

    Jones, B. D.; Feng, Y. T.

    2016-04-01

    Digital material characterisation from microstructural geometry is an emerging field in computer simulation. For permeability characterisation, a variety of studies exist where the lattice Boltzmann method (LBM) has been used in conjunction with computed tomography (CT) imaging to simulate fluid flow through microscopic rock pores. While these previous works show that the technique is applicable, the use of binary image segmentation and the bounceback boundary condition results in a loss of grain surface definition when the modelled geometry is compared to the original CT image. We apply the immersed moving boundary (IMB) condition of Noble and Torczynski as a partial bounceback boundary condition which may be used to better represent the geometric definition provided by a CT image. The IMB condition is validated against published work on idealised porous geometries in both 2D and 3D. Following this, greyscale image segmentation is applied to a CT image of Diemelstadt sandstone. By varying the mapping of CT voxel densities to lattice sites, it is shown that binary image segmentation may underestimate the true permeability of the sample. A CUDA-C-based code, LBM-C, was developed specifically for this work and leverages GPU hardware in order to carry out computations.

  1. The Research on Transient Burning Rate of Solid Propellant by Digital Image Processing

    Directory of Open Access Journals (Sweden)

    Xin Peng

    2016-01-01

    Full Text Available In order to obtain the burn rate of the solid propellant that is the important parameter of transient burning, the new method named digital image processing is presented. In the article , the principle of digital image processing is analysed; The burning face of the sample in the each time is located according the image and the coordinates of the burning face is obtained. In experiment the transient burn rate is measured by digital image processing and the accuracy is acceptable.

  2. The wavelet/scalar quantization compression standard for digital fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  3. Image Fusion Technique for Impulse Noise Removal in Digital Images using Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    A. Ramarao

    2012-03-01

    Full Text Available This paper introduces the concept of image fusion technique for impulse noise reduction in digital images. Image fusion is the process of combining two or more images into a single image while retaining the important features of each image. Multiple image fusion is an important technique used in military, remote sensing and medical applications. The images captured by two different sensors undergo filtering using vector median or spatial median filter based on the noise density in the image. The filtered images are fused into a single image, which combines the uncorrupted pixels from each one of the filtered image. The fusion algorithm is based on Bi-dimensional Empirical Mode Decomposition (BEMD, which decomposes an image into residue and IMF components. Different fusion rules are used to combine IMFs and Residual components. Finally, the image is recovered using inverse BEMD. The performance evaluation of the fusion algorithm is evaluated using structural similarity index (SSIM between original and fused image. Experimental results show that this fusion algorithm produce a high quality image than individually filtered image.

  4. [Digital library for archiving files of radiology and medical imaging].

    Science.gov (United States)

    Duvauferrier, R; Rambeau, M; Moulène, F

    1993-01-01

    The Conseil des Enseignants de Radiologie de France in collaboration with the Ilab-TSI company and Schering laboratories has developed a computer programme allowing the storage and consultation of radiological teaching files. This programme, developed on Macintosh from standard Hypercard and Quicktime applications, allows, in consultation mode, the multicriteria search and visualisation of selected radiological files. In the author mode, new files can be included after digitalizing the author's own images or after obtaining images from another image library. This programme, which allows juxtaposition of digitalised radiological files, is designed to be extremely open and can be easily combined with other computer-assisted teaching or computer-assisted presentation applications. PMID:7509583

  5. Automatic Microaneurysm Detection and Characterization Through Digital Color Fundus Images

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Charles; Veras, Rodrigo; Ramalho, Geraldo; Medeiros, Fatima; Ushizima, Daniela

    2008-08-29

    Ocular fundus images can provide information about retinal, ophthalmic, and even systemic diseases such as diabetes. Microaneurysms (MAs) are the earliest sign of Diabetic Retinopathy, a frequently observed complication in both type 1 and type 2 diabetes. Robust detection of MAs in digital color fundus images is critical in the development of automated screening systems for this kind of disease. Automatic grading of these images is being considered by health boards so that the human grading task is reduced. In this paper we describe segmentation and the feature extraction methods for candidate MAs detection.We show that the candidate MAs detected with the methodology have been successfully classified by a MLP neural network (correct classification of 84percent).

  6. Digital processing methodology applied to exploring of radiological images

    International Nuclear Information System (INIS)

    In this work, digital image processing is applied as a automatic computational method, aimed for exploring of radiological images. It was developed an automatic routine, from the segmentation and post-processing techniques to the radiology images acquired from an arrangement, consisting of a X-ray tube, target and filter of molybdenum, of 0.4 mm and 0.03 mm, respectively, and CCD detector. The efficiency of the methodology developed is showed in this work, through a case study, where internal injuries in mangoes are automatically detected and monitored. This methodology is a possible tool to be introduced in the post-harvest process in packing houses. A dichotomic test was applied to evaluate a efficiency of the method. The results show a success of 87.7% to correct diagnosis and 12.3% to failures to correct diagnosis with a sensibility of 93% and specificity of 80%. (author)

  7. A blind digital image watermarking method using interval wavelet decomposition

    Directory of Open Access Journals (Sweden)

    Teruya Minamoto

    2010-06-01

    Full Text Available In this paper, we present a new blind digital image watermarking method. We introduce interval wavelet decomposition, which is a combination of a discrete wavelet transform and interval arithmetic, and we examine its properties. According to our experimental results, this combination is a good way to produce a kind of redundancy from the original image and to develop new watermarking methods. Thanks to this property, we can obtain specific frequency components where the watermark is embedded. We describe the procedure of our method in detail and its relations with the human visual system (HVS. We also give some experimental results demonstrating that our method gives watermarked images of betterquality and is robust against attacks such as clipping, marking, and JPEG and JPEG2000 compressions.

  8. Processing techniques for digital sonar images from GLORIA.

    Science.gov (United States)

    Chavez, P.S.

    1986-01-01

    Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author

  9. Quantifying biodiversity using digital cameras and automated image analysis.

    Science.gov (United States)

    Roadknight, C. M.; Rose, R. J.; Barber, M. L.; Price, M. C.; Marshall, I. W.

    2009-04-01

    Monitoring the effects on biodiversity of extensive grazing in complex semi-natural habitats is labour intensive. There are also concerns about the standardization of semi-quantitative data collection. We have chosen to focus initially on automating the most time consuming aspect - the image analysis. The advent of cheaper and more sophisticated digital camera technology has lead to a sudden increase in the number of habitat monitoring images and information that is being collected. We report on the use of automated trail cameras (designed for the game hunting market) to continuously capture images of grazer activity in a variety of habitats at Moor House National Nature Reserve, which is situated in the North of England at an average altitude of over 600m. Rainfall is high, and in most areas the soil consists of deep peat (1m to 3m), populated by a mix of heather, mosses and sedges. The cameras have been continuously in operation over a 6 month period, daylight images are in full colour and night images (IR flash) are black and white. We have developed artificial intelligence based methods to assist in the analysis of the large number of images collected, generating alert states for new or unusual image conditions. This paper describes the data collection techniques, outlines the quantitative and qualitative data collected and proposes online and offline systems that can reduce the manpower overheads and increase focus on important subsets in the collected data. By converting digital image data into statistical composite data it can be handled in a similar way to other biodiversity statistics thus improving the scalability of monitoring experiments. Unsupervised feature detection methods and supervised neural methods were tested and offered solutions to simplifying the process. Accurate (85 to 95%) categorization of faunal content can be obtained, requiring human intervention for only those images containing rare animals or unusual (undecidable) conditions, and

  10. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L. [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Bie, B. X. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Ran, X. X.; Qi, M. L., E-mail: qiml@whut.edu.cn [School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B. [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Fezzaa, K.; Sun, T. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Chen, W. [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); School of Material Science Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Gong, X. L., E-mail: gongxl@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  11. High-speed radiometric imaging with a gated, intensified, digitally controlled camera

    Science.gov (United States)

    Ross, Charles C.; Sturz, Richard A.

    1997-05-01

    The development of an advanced instrument for real-time radiometric imaging of high-speed events is described. The Intensified Digitally-Controlled Gated (IDG) camera is a microprocessor-controlled instrument based on an intensified CCD that is specifically designed to provide radiometric optical data. The IDG supports a variety of camera- synchronous and camera-asynchronous imaging tasks in both passive imaging and active laser range-gated applications. It features both automatic and manual modes of operation, digital precision and repeatability, and ease of use. The IDG produces radiometric imagery by digitally controlling the instrument's optical gain and exposure duration, and by encoding and annotating the parameters necessary for radiometric analysis onto the resultant video signal. Additional inputs, such as date, time, GPS, IRIG-B timing, and other data can also be encoded and annotated. The IDG optical sensitivity can be readily calibrated, with calibration data tables stored in the camera's nonvolatile flash memory. The microprocessor then uses this data to provide a linear, calibrated output. The IDG possesses both synchronous and asynchronous imaging modes in order to allow internal or external control of exposure, timing, and direct interface to external equipment such as event triggers and frame grabbers. Support for laser range-gating is implemented by providing precise asynchronous CCD operation and nanosecond resolution of the intensifier photocathode gate duration and timing. Innovative methods used to control the CCD for asynchronous image capture, as well as other sensor and system considerations relevant to high-speed imaging are discussed in this paper.

  12. Precision Improvement of Photogrammetry by Digital Image Correlation

    Science.gov (United States)

    Shih, Ming-Hsiang; Sung, Wen-Pei; Tung, Shih-Heng; Hsiao, Hanwei

    2016-04-01

    The combination of aerial triangulation technology and unmanned aerial vehicle greatly reduces the cost and application threshold of the digital surface model technique. Based on the report in the literatures, the measurement error in the x-y coordinate and in the elevation lies between 8cm~15cm and 10cm~20cm respectively. The measurement accuracy for the geological structure survey already has sufficient value, but for the slope and structures in terms of deformation monitoring is inadequate. The main factors affecting the accuracy of the aerial triangulation are image quality, measurement accuracy of control point and image matching accuracy. In terms of image matching, the commonly used techniques are Harris Corner Detection and Scale Invariant Feature Transform (SIFT). Their pairing error is in scale of pixels, usually lies between 1 to 2 pixels. This study suggests that the error on the pairing is the main factor causing the aerial triangulation errors. Therefore, this study proposes the application of Digital Image Correlation (DIC) method instead of the pairing method mentioned above. DIC method can provide a pairing accuracy of less than 0.01 pixel, indeed can greatly enhance the accuracy of the aerial triangulation, to have sub-centimeter level accuracy. In this study, the effects of image pairing error on the measurement error of the 3-dimensional coordinate of the ground points are explored by numerical simulation method. It was confirmed that when the image matching error is reduced to 0.01 pixels, the ground three-dimensional coordinate measurement error can be controlled in mm level. A combination of DIC technique and the traditional aerial triangulation provides the potential of application on the deformation monitoring of slope and structures, and achieve an early warning of natural disaster.

  13. Advanced Color Image Processing and Analysis

    CERN Document Server

    2013-01-01

    This volume does much more than survey modern advanced color processing. Starting with a historical perspective on ways we have classified color, it sets out the latest numerical techniques for analyzing and processing colors, the leading edge in our search to accurately record and print what we see. The human eye perceives only a fraction of available light wavelengths, yet we live in a multicolor world of myriad shining hues. Colors rich in metaphorical associations make us “purple with rage” or “green with envy” and cause us to “see red.” Defining colors has been the work of centuries, culminating in today’s complex mathematical coding that nonetheless remains a work in progress: only recently have we possessed the computing capacity to process the algebraic matrices that reproduce color more accurately. With chapters on dihedral color and image spectrometers, this book provides technicians and researchers with the knowledge they need to grasp the intricacies of today’s color imaging.

  14. Identification of Potato Genotypes Using Digital Image Analysis

    Directory of Open Access Journals (Sweden)

    Máté CSÁK

    2011-07-01

    Full Text Available Based on the fractal analysis of digital images, a new classifying system has been proposed at the Potato Research Centre of Keszthely. It is a qualifying system generating objective values to distinguish potato varieties or detect quality differences within the genotype in a relatively simple way. The goal of the research project was to investigate whether Spectral Fractal Dimension (SFD value of digital images is applicable to describe various quality characters of potato tubers and whether SFD values could be used for the identification of certain varieties – if so, which conditions were the most important to enable this process. Considering the above aims, we developed an evaluation computer program which determines the SFD values of the 4 conditions of potato tubers: skin colour; raw flesh-colour; boiled flesh-colour; greying of flesh-colour after 24 hours in RGB spectrum and in all of its sub-spectrums (R, G, B. In total 2080 digital images of 13 varieties from 4 examining periods were analysed. Based on our results we can conclude that SFD analysis can be used in potato breeding only when digital images were made under well-determined, standardized conditions. Detailed statistical analysis (hypothesis tests, principal component analysis and non-hierarchic cluster analysis showed that SFD was not suitable for qualifying tuber characters within a genotype. When images were examined for different years and the same genotype, it became evident, that there are significant deviations between years and within same genotypes. We could conclude that the identification of genotypes should be related not to one particular SFD value, but to the control of the given year with the known value. When analyzing the differences between genotypes on yearly basis, irrespective of characteristics or the studied spectrum, we could not significantly separate genotypes, although there were some that could be separated, even though genotypes and their

  15. Advancing the Digital Health Discourse for Nurse Leaders.

    Science.gov (United States)

    Remus, Sally

    2016-01-01

    Limited informatics competency uptake is a recognized nursing leadership challenge impacting digital practice settings. The health system's inability to reap the promised benefits of EHRs is a manifestation of inadequate development of informatics competencies by chief nurse executives (CNEs) and other clinicians. Through the application of Transformational Leadership Theory (TL), this discussion paper explains how informatics competencies enable CNEs to become transformational nursing leaders in digital health allowing them to meet their accountabilities to lead integrated, high-quality care delivery through evidence based practices (EBPs). It is proposed that successful CNE eHealth sponsors will be those armed with informatics competencies who can drive health organizations' investment in technology and innovation. Finally, some considerations are suggested in how nurse informaticists globally play a critical role in preparing our existing and future CNEs to fulfill their transformational leader roles in the digital age. PMID:27332233

  16. High-performance VGA-resolution digital color CMOS imager

    Science.gov (United States)

    Agwani, Suhail; Domer, Steve; Rubacha, Ray; Stanley, Scott

    1999-04-01

    This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be

  17. Optimisation techniques for digital image reconstruction from their projections

    Science.gov (United States)

    Durrani, T. S.; Goutis, C. E.

    1980-09-01

    A method is proposed for the digital reconstruction of images from their projections based on optimizing specified performance criteria. The reconstruction problem is embedded into the framework of constrained optimization and its solution is shown to lead to a relationship between the image and the one-dimensional Lagrange functions associated with each cost criterion. Two types of geometries (the parallel-beam and fan-beam systems) are considered for the acquisition of projection data and the constrained-optimization problem is solved for both. The ensuing algorithms allow the reconstruction of multidimensional objects from one-dimensional functions only. For digital data a fast reconstruction algorithm is proposed which exploits the symmetries inherent in both a circular domain of image reconstruction and in projections obtained at equispaced angles. Computational complexity is significantly reduced by the use of fast-Fourier-transform techniques, as the underlying relationship between the available projection data and the associated Lagrange multipliers is shown to possess a block circulant matrix structure.

  18. HD Photo: a new image coding technology for digital photography

    Science.gov (United States)

    Srinivasan, Sridhar; Tu, Chengjie; Regunathan, Shankar L.; Sullivan, Gary J.

    2007-09-01

    This paper introduces the HD Photo coding technology developed by Microsoft Corporation. The storage format for this technology is now under consideration in the ITU-T/ISO/IEC JPEG committee as a candidate for standardization under the name JPEG XR. The technology was developed to address end-to-end digital imaging application requirements, particularly including the needs of digital photography. HD Photo includes features such as good compression capability, high dynamic range support, high image quality capability, lossless coding support, full-format 4:4:4 color sampling, simple thumbnail extraction, embedded bitstream scalability of resolution and fidelity, and degradation-free compressed domain support of key manipulations such as cropping, flipping and rotation. HD Photo has been designed to optimize image quality and compression efficiency while also enabling low-complexity encoding and decoding implementations. To ensure low complexity for implementations, the design features have been incorporated in a way that not only minimizes the computational requirements of the individual components (including consideration of such aspects as memory footprint, cache effects, and parallelization opportunities) but results in a self-consistent design that maximizes the commonality of functional processing components.

  19. Comparison of different phantoms used in digital diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bor, Dogan, E-mail: bor@eng.ankara.edu.tr [Ankara University, Faculty of Engineering, Department of Engineering Physics. Tandogan, 06100 Ankara (Turkey); Unal, Elif, E-mail: elf.unall@gmail.com [Radat Dosimetry Laboratory Services, 06830, Golbasi, Ankara (Turkey); Uslu, Anil, E-mail: m.aniluslu@gmail.com [Radat Dosimetry Laboratory Services, 06830, Golbasi, Ankara (Turkey)

    2015-09-21

    The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.

  20. Modulated digital images for biometric and other security applications

    Science.gov (United States)

    McCarthy, Lawry D.; Lee, Robert A.; Swiegers, Gerhard F.

    2004-06-01

    There are, in general, two ways for an observer to deal with light that is incorrect in some way (e.g. which is partially out of focus). One approach is to correct the error (e.g. by using a lens to selectively bend the light). Another approach employs selective masking to block those portions of the light which are unwanted (e.g. out of focus). The principle of selective masking is used in a number of important industries. However it has not found widespread application in the field of optical security devices. This work describes the selective masking, or modulation, of digital images as a means of creating documents and transparent media containing overt or covert biometric and other images. In particular, we show how animation effects, flash-illumination features, color-shifting patches, information concealment devices, and biometric portraiture in various settings can be incorporated in transparent media like plastic packaging materials, credit cards, and plastic banknotes. We also demonstrate the application of modulated digital images to the preparation of optically variable diffractive foils which are readily customized to display biometric portraits and information. Selective masking is shown to be an important means of creating a diverse range of effects useful in authentication. Such effects can be readily and inexpensively produced without the need, for example, to fabricate lenses on materials which may not be conducive in this respect.

  1. Single-image hard copy display of musculoskeletal digital radiographs

    Science.gov (United States)

    Legendre, Kevin; Steller Artz, Dorothy E.; Freedman, Matthew T.; Mun, Seong K.

    1995-04-01

    Screen film radiography often fails to optimally display all regions of anatomy on muskuloskeletal exams due to the wide latitude of tissue densities present. Various techniques of image enhancement have been applied to such exams using computerized radiography but with limited success in improving visualization of structures whose final optical density lies at the extremes of the interpretable range of the film. An existing algorithm for compressing optical density extremes known as dynamic range compression has been used to increase the radiodensity of the retrocardiac region of the chest or to decrease the radiodensity of the edge of the breast in digital mammography. In the skeletal system, there are regions where a single image may contain both areas of decreased exposure that result in light images and areas of higher exposure that result in dark regions of the image. Faced with this problem, the senior author asked Fuji to formulate a modification of the DRC process that incorporates a combination of the curves used for chest and breast images. The newly designed algorithm can thus simultaneously lower the optical density of dark regions of the image and increase the optical density of the less exposed regions. The results of this modification of the DRC algorithm are presented in this paper.

  2. Robust Digital Image-Adaptive Watermarking Using BSS Based

    Directory of Open Access Journals (Sweden)

    Sangeeta d. Jadhav

    2010-03-01

    Full Text Available In a digital watermarking scheme, it is not convenient to carry the original image all the time in order to detect the owner's signature from the watermarked image. Moreover, for those applications that require different watermark for different copies, it is preferred to utilize some kind of watermark-independent algorithm for extraction process i.e. dewatermarking. Watermark embedding is performed in the blue channel, as it is less sensitive to human visual system .This paper proposes a new color image watermarking method ,which adopts Blind Source Separation (BSS technique for watermark extraction. Single level Discrete Wavelet Transform(DWT is used for embedding . The novelty of our scheme lies in determining the mixing matrix for BSS model during embedding. The determination of mixing matrix using Quasi-Newton’s (BFGS technique is based on texture analysis which uses energy as metric. This makes our method image adaptive to embed the watermark into original image so as not to bring about a perceptible change in the marked image. BSS based on Joint diagonalization of the time delayed covariance matrices algorithm is used for the extraction of watermark. The proposed method, undergoing different experiments, has shown its robustness against many attacks including rotation ,low pass filtering, salt n pepper noise addition and compression. The robustness evaluation is also carried out with respect to the spatial domain embedding.

  3. Digital image modification detection using color information and its histograms.

    Science.gov (United States)

    Zhou, Haoyu; Shen, Yue; Zhu, Xinghui; Liu, Bo; Fu, Zigang; Fan, Na

    2016-09-01

    The rapid development of many open source and commercial image editing software makes the authenticity of the digital images questionable. Copy-move forgery is one of the most widely used tampering techniques to create desirable objects or conceal undesirable objects in a scene. Existing techniques reported in the literature to detect such tampering aim to improve the robustness of these methods against the use of JPEG compression, blurring, noise, or other types of post processing operations. These post processing operations are frequently used with the intention to conceal tampering and reduce tampering clues. A robust method based on the color moments and other five image descriptors is proposed in this paper. The method divides the image into fixed size overlapping blocks. Clustering operation divides entire search space into smaller pieces with similar color distribution. Blocks from the tampered regions will reside within the same cluster since both copied and moved regions have similar color distributions. Five image descriptors are used to extract block features, which makes the method more robust to post processing operations. An ensemble of deep compositional pattern-producing neural networks are trained with these extracted features. Similarity among feature vectors in clusters indicates possible forged regions. Experimental results show that the proposed method can detect copy-move forgery even if an image was distorted by gamma correction, addictive white Gaussian noise, JPEG compression, or blurring. PMID:27391780

  4. Effects of common image manipulations on diagnostic performance in digital pathology: human study

    OpenAIRE

    Platisa, Ljiljana; Van Brantegem, Leen; Kumcu, Asli; Marchessoux, Cedric; Vansteenkiste, Ewout; Philips, Wilfried

    2013-01-01

    A very recent work of Ref.[1] studied the effects of image manipulation and image degradation on the perceived attributes of image quality (IQ) of digital pathology slides. However, before any conclusions and recommendations can be formulated regarding specific image manipulations (and IQ attributes), it is necessary to investigate their effects on the diagnostic performance of clinicians when interpreting these images. In this study, 6 expert pathologists interpreted digital images of H&E st...

  5. Automated extraction of chemical structure information from digital raster images

    Directory of Open Access Journals (Sweden)

    Shedden Kerby A

    2009-02-01

    Full Text Available Abstract Background To search for chemical structures in research articles, diagrams or text representing molecules need to be translated to a standard chemical file format compatible with cheminformatic search engines. Nevertheless, chemical information contained in research articles is often referenced as analog diagrams of chemical structures embedded in digital raster images. To automate analog-to-digital conversion of chemical structure diagrams in scientific research articles, several software systems have been developed. But their algorithmic performance and utility in cheminformatic research have not been investigated. Results This paper aims to provide critical reviews for these systems and also report our recent development of ChemReader – a fully automated tool for extracting chemical structure diagrams in research articles and converting them into standard, searchable chemical file formats. Basic algorithms for recognizing lines and letters representing bonds and atoms in chemical structure diagrams can be independently run in sequence from a graphical user interface-and the algorithm parameters can be readily changed-to facilitate additional development specifically tailored to a chemical database annotation scheme. Compared with existing software programs such as OSRA, Kekule, and CLiDE, our results indicate that ChemReader outperforms other software systems on several sets of sample images from diverse sources in terms of the rate of correct outputs and the accuracy on extracting molecular substructure patterns. Conclusion The availability of ChemReader as a cheminformatic tool for extracting chemical structure information from digital raster images allows research and development groups to enrich their chemical structure databases by annotating the entries with published research articles. Based on its stable performance and high accuracy, ChemReader may be sufficiently accurate for annotating the chemical database with links

  6. Effect of digital image processing on radiographic interpretation of pneumoconiosis

    International Nuclear Information System (INIS)

    Fuji Computed Radiography (FCT) is a newly developed digital radiography which has a potential capability of replacing conventional radiography. In order to evaluate the applicability of the FCR system for radiographic diagnosis of pneumoconiosis, the present study has been undertaken. As the first step, an investigation has been made on the fact that the diagnostic accuracy of pneumoconiosis radiograph might be influenced by the reduction of film size and image processing methods. The ILO standard films and test films selected from training film of pneumoconiosis in U.S.A. were digitized by using a drum scanner. Digitized images were processed with the several contrast and spatial frequency characteristics which were similar to those employed in FCR system, and finally written optically onto X-ray film in reduced size using a drum scanner. Two steps of experiments on interpretation for the radiograph of pneumoconiosis were performed. In the first step, the ILO standard films were processed in various ways and four methods of image processing were chosen which were suitable for the diagnosis of pneumoconiosis. The second step was performed to read the radiographs which were processed with the methods determined in the first experiment. In this step, the test films of reduced size were processed with the four different methods and diagnosed by comparing with both the original and the processed (also reduced size) ILO standard films. From these experiments, it is concluded that diagnosis of pneumoconiosis can be made by the processed film of reduced size (1/2 in length) with the same accuracy as the original films. Thus, the FCR system may be utilized for the radiographic diagnosis of pneumoconiosis. (author)

  7. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico

    International Nuclear Information System (INIS)

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation. - Highlights: • Radiation dose in CR digital mammography (CRDM) systems was determined. • Image quality related with dose in CR digital mammography (CRDM) systems was analysed. • Image processing artefacts were observed and correlated with dose. • Measured entrance dose by TL phosphors could be good parameter for radiation protection optimization in patient

  8. Validation of no-reference image quality index for the assessment of digital mammographic images

    Science.gov (United States)

    de Oliveira, Helder C. R.; Barufaldi, Bruno; Borges, Lucas R.; Gabarda, Salvador; Bakic, Predrag R.; Maidment, Andrew D. A.; Schiabel, Homero; Vieira, Marcelo A. C.

    2016-03-01

    To ensure optimal clinical performance of digital mammography, it is necessary to obtain images with high spatial resolution and low noise, keeping radiation exposure as low as possible. These requirements directly affect the interpretation of radiologists. The quality of a digital image should be assessed using objective measurements. In general, these methods measure the similarity between a degraded image and an ideal image without degradation (ground-truth), used as a reference. These methods are called Full-Reference Image Quality Assessment (FR-IQA). However, for digital mammography, an image without degradation is not available in clinical practice; thus, an objective method to assess the quality of mammograms must be performed without reference. The purpose of this study is to present a Normalized Anisotropic Quality Index (NAQI), based on the Rényi entropy in the pseudo-Wigner domain, to assess mammography images in terms of spatial resolution and noise without any reference. The method was validated using synthetic images acquired through an anthropomorphic breast software phantom, and the clinical exposures on anthropomorphic breast physical phantoms and patient's mammograms. The results reported by this noreference index follow the same behavior as other well-established full-reference metrics, e.g., the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Reductions of 50% on the radiation dose in phantom images were translated as a decrease of 4dB on the PSNR, 25% on the SSIM and 33% on the NAQI, evidencing that the proposed metric is sensitive to the noise resulted from dose reduction. The clinical results showed that images reduced to 53% and 30% of the standard radiation dose reported reductions of 15% and 25% on the NAQI, respectively. Thus, this index may be used in clinical practice as an image quality indicator to improve the quality assurance programs in mammography; hence, the proposed method reduces the subjectivity

  9. Tutorial: Introduction to Emotion Recognition for Digital Images

    OpenAIRE

    Kumar, Vinay; Agarwal, Arpit; Mittal, Kanika

    2011-01-01

    Humans can use vision to identify objects quickly and accurately. Computer Vision seeks to emulate human vision by analyzing digital image inputs. For humans to detect an emotion will not be a difficult job to perform as humans are linked with emotions themselves but for a computer detecting an emotion will be difficult job to perform. Detecting emotion through voice, for example: detecting ‘stress' in a voice by setting parameters in areas like tone, pitch, pace, volume etc can be achieved b...

  10. New Active Digital Pixel Circuit for CMOS Image Sensor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new active digital pixel circuit for CMOS image sensor is designed consisting of four components: a photo-transducer, a preamplifier, a sample & hold (S & H) circuit and an A/D converter with an inverter. It is optimized by simulation and adjustment based on 2μm standard CMOS process. Each circuit of the components is designed with specific parameters. The simulation results of the whole pixel circuits show that the circuit has such advantages as low distortion, low power consumption, and improvement of the output performances by using an inverter.

  11. Evaluation of fiber reinforced cement using digital image correlation.

    Directory of Open Access Journals (Sweden)

    Garrett W Melenka

    Full Text Available The effect of short fiber reinforcements on the mechanical properties of cement has been examined using a splitting tensile - digital image correlation (DIC measurement method. Three short fiber reinforcement materials have been used in this study: fiberglass, nylon, and polypropylene. The method outlined provides a simple experimental setup that can be used to evaluate the ultimate tensile strength of brittle materials as well as measure the full field strain across the surface of the splitting tensile test cylindrical specimen. Since the DIC measurement technique is a contact free measurement this method can be used to assess sample failure.

  12. Advanced framework for digital forensic technologies and procedures.

    Science.gov (United States)

    Trček, Denis; Abie, Habtamu; Skomedal, Asmund; Starc, Iztok

    2010-11-01

    Recent trends in global networks are leading toward service-oriented architectures and sensor networks. On one hand of the spectrum, this means deployment of services from numerous providers to form new service composites, and on the other hand this means emergence of Internet of things. Both these kinds belong to a plethora of realms and can be deployed in many ways, which will pose serious problems in cases of abuse. Consequently, both trends increase the need for new approaches to digital forensics that would furnish admissible evidence for litigation. Because technology alone is clearly not sufficient, it has to be adequately supported by appropriate investigative procedures, which have yet become a subject of an international consensus. This paper therefore provides appropriate a holistic framework to foster an internationally agreed upon approach in digital forensics along with necessary improvements. It is based on a top-down approach, starting with legal, continuing with organizational, and ending with technical issues. More precisely, the paper presents a new architectural technological solution that addresses the core forensic principles at its roots. It deploys so-called leveled message authentication codes and digital signatures to provide data integrity in a way that significantly eases forensic investigations into attacked systems in their operational state. Further, using a top-down approach a conceptual framework for forensics readiness is given, which provides levels of abstraction and procedural guides embellished with a process model that allow investigators perform routine investigations, without becoming overwhelmed by low-level details. As low-level details should not be left out, the framework is further evaluated to include these details to allow organizations to configure their systems for proactive collection and preservation of potential digital evidence in a structured manner. The main reason behind this approach is to stimulate efforts

  13. Digital chest radiography: an update on modern technology, dose containment and control of image quality

    International Nuclear Information System (INIS)

    The introduction of digital radiography not only has revolutionized communication between radiologists and clinicians, but also has improved image quality and allowed for further reduction of patient exposure. However, digital radiography also poses risks, such as unnoticed increases in patient dose and suboptimum image processing that may lead to suppression of diagnostic information. Advanced processing techniques, such as temporal subtraction, dual-energy subtraction and computer-aided detection (CAD) will play an increasing role in the future and are all targeted to decrease the influence of distracting anatomic background structures and to ease the detection of focal and subtle lesions. This review summarizes the most recent technical developments with regard to new detector techniques, options for dose reduction and optimized image processing. It explains the meaning of the exposure indicator or the dose reference level as tools for the radiologist to control the dose. It also provides an overview over the multitude of studies conducted in recent years to evaluate the options of these new developments to realize the principle of ALARA. The focus of the review is hereby on adult applications, the relationship between dose and image quality and the differences between the various detector systems. (orig.)

  14. Robust digital image inpainting algorithm in the wireless environment

    Science.gov (United States)

    Karapetyan, G.; Sarukhanyan, H. G.; Agaian, S. S.

    2014-05-01

    Image or video inpainting is the process/art of retrieving missing portions of an image without introducing undesirable artifacts that are undetectable by an ordinary observer. An image/video can be damaged due to a variety of factors, such as deterioration due to scratches, laser dazzling effects, wear and tear, dust spots, loss of data when transmitted through a channel, etc. Applications of inpainting include image restoration (removing laser dazzling effects, dust spots, date, text, time, etc.), image synthesis (texture synthesis), completing panoramas, image coding, wireless transmission (recovery of the missing blocks), digital culture protection, image de-noising, fingerprint recognition, and film special effects and production. Most inpainting methods can be classified in two key groups: global and local methods. Global methods are used for generating large image regions from samples while local methods are used for filling in small image gaps. Each method has its own advantages and limitations. For example, the global inpainting methods perform well on textured image retrieval, whereas the classical local methods perform poorly. In addition, some of the techniques are computationally intensive; exceeding the capabilities of most currently used mobile devices. In general, the inpainting algorithms are not suitable for the wireless environment. This paper presents a new and efficient scheme that combines the advantages of both local and global methods into a single algorithm. Particularly, it introduces a blind inpainting model to solve the above problems by adaptively selecting support area for the inpainting scheme. The proposed method is applied to various challenging image restoration tasks, including recovering old photos, recovering missing data on real and synthetic images, and recovering the specular reflections in endoscopic images. A number of computer simulations demonstrate the effectiveness of our scheme and also illustrate the main properties

  15. Assessing and improving cobalt-60 digital tomosynthesis image quality

    Science.gov (United States)

    Marsh, Matthew B.; Schreiner, L. John; Kerr, Andrew T.

    2014-03-01

    Image guidance capability is an important feature of modern radiotherapy linacs, and future cobalt-60 units will be expected to have similar capabilities. Imaging with the treatment beam is an appealing option, for reasons of simplicity and cost, but the dose needed to produce cone beam CT (CBCT) images in a Co-60 treatment beam is too high for this modality to be clinically useful. Digital tomosynthesis (DT) offers a quasi-3D image, of sufficient quality to identify bony anatomy or fiducial markers, while delivering a much lower dose than CBCT. A series of experiments were conducted on a prototype Co-60 cone beam imaging system to quantify the resolution, selectivity, geometric accuracy and contrast sensitivity of Co-60 DT. Although the resolution is severely limited by the penumbra cast by the ~2 cm diameter source, it is possible to identify high contrast objects on the order of 1 mm in width, and bony anatomy in anthropomorphic phantoms is clearly recognizable. Low contrast sensitivity down to electron density differences of 3% is obtained, for uniform features of similar thickness. The conventional shift-and-add reconstruction algorithm was compared to several variants of the Feldkamp-Davis-Kress filtered backprojection algorithm result. The Co-60 DT images were obtained with a total dose of 5 to 15 cGy each. We conclude that Co-60 radiotherapy units upgraded for modern conformal therapy could also incorporate imaging using filtered backprojection DT in the treatment beam. DT is a versatile and promising modality that would be well suited to image guidance requirements.

  16. Digital Signature and Watermark Methods For Image Authentication using Cryptography Analysis

    Directory of Open Access Journals (Sweden)

    M.Sreerama Murty

    2011-06-01

    Full Text Available The digital signature and watermarking methods are used for image authentication. Digital signature encodes the signature in a file separate from the original image. Cryptographic algorithms have suggested several advantages over the traditional encryption algorithms such as high security, speed, reasonablecomputational overheads and computational power. A digital watermark and signature method for image authentication using cryptography analysis is proposed. The digital signature created for the originalimage and apply watermark. Images are resized before transmission in the network. After digital signature and water marking an image, apply the encryption and decryption process to an image for the authentication. The encryption is used to securely transmit data in open networks for the encryption of an image using public key and decrypt that image using private key.

  17. Digital Signature and Watermark Methods For Image Authentication using Cryptography Analysis

    Directory of Open Access Journals (Sweden)

    M.Sreerama Murty

    2011-09-01

    Full Text Available The digital signature and watermarking methods are used for image authentication. Digital signature encodes the signature in a file separate from the original image. Cryptographic algorithms have suggested several advantages over the traditional encryption algorithms such as high security, speed, reasonablecomputational overheads and computational power. A digital watermark and signature method for image authentication using cryptography analysis is proposed. The digital signature created for the originalimage and apply watermark. Images are resized before transmission in the network. After digital signature and water marking an image, apply the encryption and decryption process to an image for the authentication. The encryption is used to securely transmit data in open networks for the encryption of an image using public key and decrypt that image using private key.

  18. Efficient Digital Image Authentication and Tamper Localization Technique Using 3Lsb Watermarking

    Directory of Open Access Journals (Sweden)

    Sajjad Dadkhah

    2012-01-01

    Full Text Available The authentications of digital images have become the center of attentions for certain group of companies since the number of doctored images increased. Tampering the digital images in a way that it's impossible to be detected by naked eyes has become easier with development of image editing tools. Digital watermarking can preserve the authentication of digital images. In this paper we proposed an efficient image tamper detection method using 3 LSB (last significant bit watermarking technique which is able to authenticate the digital image and detect the tamper locations accurately. In the proposed algorithm a 12-bit watermark key will be created from each block of host image which will be embed to last three significant bit of each block. Our proposed method improved tamper detection technique proposed by Prasad's in sense of tamper detection rate by 40 percent. The experimental result clearly proved the efficiency of our proposed method.

  19. A DIGITAL COLOR IMAGE WATERMARKING SYSTEM USING BLIND SOURCE SEPARATION

    Directory of Open Access Journals (Sweden)

    Sangeeta D. Jadhav

    2013-12-01

    Full Text Available An attempt is made to implement a digital color image-adaptive watermarking scheme in spatial domain and hybrid domain i.e host image in wavelet domain and watermark in spatial domain. Blind Source Separation (BSS is used to extract the watermark The novelty of the presented scheme lies in determining the mixing matrix for BSS model using BFGS (Broyden– Fletcher–Goldfarb–Shanno optimization technique. This method is based on the smooth and textured portions of the image. Texture analysis is carried based on energy content of the image (using GLCM which makes the method image adaptive to embed color watermark. The performance evaluation is carried for hybrid domain of various color spaces like YIQ, HSI and YCbCr and the feasibility of optimization algorithm for finding mixing matrix is also checked for these color spaces. Three ICA (Independent Component Analysis/BSS algorithms are used in extraction procedure ,through which the watermark can be retrieved efficiently . An effort is taken to find out the best suited color space to embed the watermark which satisfies the condition of imperceptibility and robustness against various attacks.

  20. A solution for digital image management in spatial databases

    Institute of Scientific and Technical Information of China (English)

    LIU Chen; MA Xiu-jun; XIE Kun-qing; LIU Yu; FENG Xue-bing

    2004-01-01

    Digital Orthographic Map (DOM) can be used in various applications because it contains both image features and terrain information. Spatial database management systems aim at the effective and efficient management of data related to a space,engineering design and so on. Thereby spatial database provides an efficient solution for managing DOM. According to large amounts of the DOM data in storage, a data compression based on wavelet is introduced into the storage. Another strategy to solve this problem is to decompose the raw image into tiles and store the tiles individually as separate tuples. The metadata of DOM can be used to organize and manage spatial information,especially for spatial data sharing and fast locating. A tool for browsing, zooming and querying the DOM data is also designed. We implemented these ideas in SISP (Spatial Information Sharing System) and applied the subsystem into the DOM management of Beijing City, which is an component of the Beijing Spatial Information Infrastructure.

  1. Adaptive Digital Image Watermarking Based on Combination of HVS Models

    Directory of Open Access Journals (Sweden)

    P. Foris

    2009-09-01

    Full Text Available In this paper two new blind adaptive digital watermarking methods of color images are presented. The adaptability is based on perceptual watermarking which exploits Human Visual System (HVS models. The first method performs watermark embedding in transform domain of DCT and the second method is based on DWT. Watermark is embedded into transform domain of a chosen color image component in a selected color space. Both methods use a combination of HVS models to select perceptually significant transform coefficients and at the same time to determine the bounds of modification of selected coefficients. The final HVS model consists of three parts. The first part is the HVS model in DCT (DWT domain. The second part is the HVS model based on Region of Interest and finally the third part is the HVS model based on Noise Visibility Function. Watermark has a form of a real number sequence with normal distribution.

  2. A Recursive Fuzzy System for Efficient Digital Image Stabilization

    Directory of Open Access Journals (Sweden)

    Nikolaos Kyriakoulis

    2008-01-01

    Full Text Available A novel digital image stabilization technique is proposed in this paper. It is based on a fuzzy Kalman compensation of the global motion vector (GMV, which is estimated in the log-polar plane. The GMV is extracted using four local motion vectors (LMVs computed on respective subimages in the logpolar plane. The fuzzy Kalman system consists of a fuzzy system with the Kalman filter's discrete time-invariant definition. Due to this inherited recursiveness, the output results into smoothed image sequences. The proposed stabilization system aims to compensate any oscillations of the frame absolute positions, based on the motion estimation in the log-polar domain, filtered by the fuzzy Kalman system, and thus the advantages of both the fuzzy Kalman system and the log-polar transformation are exploited. The described technique produces optimal results in terms of the output quality and the level of compensation.

  3. Image Denoising And Enhancement Using Multiwavelet With Hard Threshold In Digital Mammographic Images

    Directory of Open Access Journals (Sweden)

    Kother Mohideen

    2011-01-01

    Full Text Available Breast cancer continues to be a significant public health problem in the world. The diagnosing mammographymethod is the most effective technology for early detection of the breast cancer. However, in some cases, it is difficult forradiologists to detect the typical diagnostic signs, such as masses and microcalcifications on the mammograms. Dense regionin digital mammographic images are usually noisy and have low contrast. And their visual screening is difficult to view forphysicians. This paper describes a new multiwavelet method for noise suppression and enhancement in digital mammographicimages. Initially the image is pre-processed to improve its local contrast and discriminations of subtle details. Imagesuppression and edge enhancement are performed based on the multiwavelet transform. At each resolution, coefficientassociated with the noise is modelled and generalized by laplacian random variables. Multiwavelet can satisfy both symmetryand asymmetry which are very important characteristics in Digital image processing. The better denoising result depends onthe degree of the noise, generally its energy distributed over low frequency band while both its noise and details aredistributed over high frequency band and also applied hard threshold in different scale of frequency sub-bands to limit theimage. This paper is proposed to indicate the suitability of different wavelets and multiwavelet on the neighbourhood in theperformance of image denoising algorithms in terms of PSNR.. Finally it compares the wavelet and multiwavelet techniques toproduce the best denoised mammographic image using efficient multiwavelet algorithm with hard threshold based on theperformance of image denoising algorithm in terms of PSNR values.

  4. Ground penetrating radar digital imaging of a collapsed paleocaves

    Directory of Open Access Journals (Sweden)

    Francisco Pinheiro Lima-Filho

    2012-12-01

    Full Text Available In this paper we present the methodological procedures for digital imaging of collapsed paleocaves in carbonate tufas using ground penetrating radar (GPR. These carbonate deposits occur in the Quixer region, Cear State (NE Brazil, on the western border of the Potiguar Basin. Collapsed paleocaves are exposed along a state road, which were selected to this study. We chose a portion of the called Quixer outcrop for making a photomosaic and caring out a GPR test section to compare and parameterize the karst geometries on the geophysics line. The results were satisfactory and led to the adoption of criteria for the interpretation of others GPR sections acquired in the region of the Quixer outcrop. Two grids of GPR lines were acquired; the first one was wider and more spaced and guided the location of the second grid, denser and located in the southern part of the outcrop. The radargrams of the second grid reveal satisfactorily the collapsed paleocaves geometries. For each grid has been developed a digital solid model of the Quixer outcrop. The first model allows the recognition of the general distribution and location of collapsed paleocaves in tufa deposits, while the second more detailed digital model provides not only the 3D individualization of the major paleocaves, but also the estimation of their respective volumes. The digital solid models are presented here as a new frontier in the study of analog outcrops to reservoirs (for groundwater and hydrocarbon, in which the volumetric parameterization and characterization of geological bodies become essential for composing the databases, which together with petrophysical properties information, are used in more realistic computer simulations for sedimentary reservoirs.

  5. Standard digital reference images for inspection of aluminum castings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 These digital reference images illustrate the types and degrees of discontinuities that may be found in aluminum-alloy castings. The castings illustrated are in thicknesses of 1/ 4 in. [6.35 mm] and 3/4 in. [19.1mm]. 1.2 All areas of this standard may be open to agreement between the cognizant engineering organization and the supplier, or specific direction from the cognizant engineering organization. These items should be addressed in the purchase order or the contract. 1.3 The values stated in inch-pound units are to be regarded as standard. 1.4 These digital reference images are not intended to illustrate the types and degrees of discontinuities found in aluminum-alloy castings when performing film radiography. If performing film radiography of aluminum-alloy castings, refer to Reference Radiographs E 155. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and he...

  6. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B. [Department of Radiology, University of Chicago, 5841 S. Maryland Avenue Chicago, Illinois 60637 (United States); Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2009-11-15

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  7. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    Science.gov (United States)

    Sidky, Emil Y.; Pan, Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-01-01

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness whenp=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging. PMID:19994501

  8. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for digital radiographic (DR) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of digital X-ray imaging equipment by specifying image data transfer and archival methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitions, information modules and a ...

  9. A New Technique to Digital Image Watermarking Using DWT for Real Time Applications

    Directory of Open Access Journals (Sweden)

    Swamy T N

    2014-08-01

    Full Text Available Digital watermarking is an essential technique to add hidden copyright notices or secret messages to digital audio, image, or image forms. In this paper we introduce a new approach for digital image watermarking for real time applications. We have successfully implemented the digital watermarking technique on digital images based on 2-level Discrete Wavelet Transform and compared the performance of the proposed method with Level-1 and Level-2 and Level-3 Discrete Wavelet Transform using the parameter peak signal to noise ratio. To make the watermark robust and to preserve visual significant information a 2-Level Discrete wavelet transform used as transformation domain for both secret image and original image. The watermark is embedded in the original image using Alpha blending technique and implemented using Matlab Simulink.

  10. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    Science.gov (United States)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  11. Extracting knowledge from chemical imaging data using computational algorithms for digital cancer diagnosis.

    Science.gov (United States)

    Tiwari, Saumya; Bhargava, Rohit

    2015-06-01

    Fourier transform infrared (FTIR) spectroscopic imaging is an emerging microscopy modality for clinical histopathologic diagnoses as well as for biomedical research. Spectral data recorded in this modality are indicative of the underlying, spatially resolved biochemical composition but need computerized algorithms to digitally recognize and transform this information to a diagnostic tool to identify cancer or other physiologic conditions. Statistical pattern recognition forms the backbone of these recognition protocols and can be used for highly accurate results. Aided by biochemical correlations with normal and diseased states and the power of modern computer-aided pattern recognition, this approach is capable of combating many standing questions of traditional histology-based diagnosis models. For example, a simple diagnostic test can be developed to determine cell types in tissue. As a more advanced application, IR spectral data can be integrated with patient information to predict risk of cancer, providing a potential road to precision medicine and personalized care in cancer treatment. The IR imaging approach can be implemented to complement conventional diagnoses, as the samples remain unperturbed and are not destroyed. Despite high potential and utility of this approach, clinical implementation has not yet been achieved due to practical hurdles like speed of data acquisition and lack of optimized computational procedures for extracting clinically actionable information rapidly. The latter problem has been addressed by developing highly efficient ways to process IR imaging data but remains one that has considerable scope for progress. Here, we summarize the major issues and provide practical considerations in implementing a modified Bayesian classification protocol for digital molecular pathology. We hope to familiarize readers with analysis methods in IR imaging data and enable researchers to develop methods that can lead to the use of this promising

  12. Evaluation of Fetal Lung Ultrasound Images by Digital Texture Analysis Methods

    Directory of Open Access Journals (Sweden)

    Ümmu Yildiz

    2016-01-01

    Full Text Available Aim: Evaluation of fetal lung maturity in preterm pregnancies without requirement for an invasive procedure such as amniocentesis is of importance. The aim of the present study was to extract numerical features from fetal pulmonary ultrasound images, using computerized texture analysis methods. Material and Method: Twenty fetal ultrasound images from 18 pregnancies that were followed up in our department for threatened preterm delivery between 24-37 weeks of gestational age were included before corticosteroid administration. Transverse sections including well-defined visualization of bilateral fetal lungs without artifacts were evaluated. Regions of interests (ROIs with a 64x64 pixel area and homogenous pulmonary tissue were selected. Images were analyzed with invariant moments (IM, grey level co-occurrence matrix (GLCM, and wavelet analysis (WA using MATLAB R2014a computer software. Results: The mean gestational age was 30.9 ± 3.2 weeks. A total of 159 features were extracted from the ROIs of each image. Therefore, fetal ultrasound images were coded into numerical values, using advanced texture analysis techniques. Discussion: Assessment of ultrasound images from fetal lungs at different gestational ages was feasible with the introduced digital tissue analysis algorithm. Non-invasive evaluation of fetal lung maturity will subsequently be investigated in line with the defined procedure.

  13. Digital Rocks Portal: a sustainable platform for imaged dataset sharing, translation and automated analysis

    Science.gov (United States)

    Prodanovic, M.; Esteva, M.; Hanlon, M.; Nanda, G.; Agarwal, P.

    2015-12-01

    Recent advances in imaging have provided a wealth of 3D datasets that reveal pore space microstructure (nm to cm length scale) and allow investigation of nonlinear flow and mechanical phenomena from first principles using numerical approaches. This framework has popularly been called "digital rock physics". Researchers, however, have trouble storing and sharing the datasets both due to their size and the lack of standardized image types and associated metadata for volumetric datasets. This impedes scientific cross-validation of the numerical approaches that characterize large scale porous media properties, as well as development of multiscale approaches required for correct upscaling. A single research group typically specializes in an imaging modality and/or related modeling on a single length scale, and lack of data-sharing infrastructure makes it difficult to integrate different length scales. We developed a sustainable, open and easy-to-use repository called the Digital Rocks Portal, that (1) organizes images and related experimental measurements of different porous materials, (2) improves access to them for a wider community of geosciences or engineering researchers not necessarily trained in computer science or data analysis. Once widely accepter, the repository will jumpstart productivity and enable scientific inquiry and engineering decisions founded on a data-driven basis. This is the first repository of its kind. We show initial results on incorporating essential software tools and pipelines that make it easier for researchers to store and reuse data, and for educators to quickly visualize and illustrate concepts to a wide audience. For data sustainability and continuous access, the portal is implemented within the reliable, 24/7 maintained High Performance Computing Infrastructure supported by the Texas Advanced Computing Center (TACC) at the University of Texas at Austin. Long-term storage is provided through the University of Texas System Research

  14. Two Librarians, an Archivist, and 13,000 Images: Collaborating to Build a Digital Collection

    Science.gov (United States)

    Hunter, Nancy Chaffin; Legg, Kathleen; Oehlerts, Beth

    2010-01-01

    Colorado State University Libraries has been creating digitized collections, primarily from its Archives and Special Collections unit, since 2000. These projects involved collaboration among Archives, Cataloging, and Digitization; the most recent and ambitious project, digitizing 13,000 historical images of the university dating from the 1880s…

  15. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico.

    Science.gov (United States)

    Gaona, E; Rivera, T; Arreola, M; Franco, J; Molina, N; Alvarez, B; Azorín, C G; Casian, G

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation.

  16. Digital images and art libraries in the twenty-first century

    CERN Document Server

    Wyngaard, Susan

    2013-01-01

    Increase your knowledge of the digital technology that is essential for art librarianship today! Digital Images and Art Libraries in the Twenty-First Century is your key to cutting-edge discourse on digital image databases and art libraries. Just as early photographers tried to capture the world to make it accessible, now information professionals in art libraries and art museums are creating and sharing digital collections to make them broadly accessible. This collection shares the experience and insight of art information managers who have taken advantage of digital technology to exp

  17. Subjective image quality comparison between two digital dental radiographic systems and conventional dental film

    OpenAIRE

    Muhammed Ajmal; Mohamed I. Elshinawy

    2014-01-01

    Objectives: Digital radiography has become an integral part of dentistry. Digital radiography does not require film or dark rooms, reduces X-ray doses, and instantly generates images. The aim of our study was to compare the subjective image quality of two digital dental radiographic systems with conventional dental film. Materials & methods: A direct digital (DD) ‘Digital’ system by Sirona, a semi-direct (SD) digital system by Vista-scan, and Kodak ‘E’ speed dental X-ray films were selecte...

  18. CMOS image sensor noise reduction method for image signal processor in digital cameras and camera phones

    Science.gov (United States)

    Yoo, Youngjin; Lee, SeongDeok; Choe, Wonhee; Kim, Chang-Yong

    2007-02-01

    Digital images captured from CMOS image sensors suffer Gaussian noise and impulsive noise. To efficiently reduce the noise in Image Signal Processor (ISP), we analyze noise feature for imaging pipeline of ISP where noise reduction algorithm is performed. The Gaussian noise reduction and impulsive noise reduction method are proposed for proper ISP implementation in Bayer domain. The proposed method takes advantage of the analyzed noise feature to calculate noise reduction filter coefficients. Thus, noise is adaptively reduced according to the scene environment. Since noise is amplified and characteristic of noise varies while the image sensor signal undergoes several image processing steps, it is better to remove noise in earlier stage on imaging pipeline of ISP. Thus, noise reduction is carried out in Bayer domain on imaging pipeline of ISP. The method is tested on imaging pipeline of ISP and images captured from Samsung 2M CMOS image sensor test module. The experimental results show that the proposed method removes noise while effectively preserves edges.

  19. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Zhi-Yi Chen

    2014-01-01

    Full Text Available Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy.

  20. Some Requirements for Digitizing Software and Using Advanced Plotting for Checking Results

    International Nuclear Information System (INIS)

    All three digitizers presented on the Workshop presented show their essential progress. The most promising direction of the programs' development is further automation of operations. In particular, using automatic adjustment (focusing), i.e. search of the optimal location of the elements (images of symbol and scales) demonstrated by GSYS can allow reducing influence of human factor and finally to reach more stable results of digitization. There are still a lot of possibilities for improvements

  1. An Approach of Digital Image Copyright Protection by Using Watermarking Technology

    Directory of Open Access Journals (Sweden)

    Md. Selim Reza

    2012-03-01

    Full Text Available Digital watermarking system is a paramount for safeguarding valuable resources and information. Digital watermarks are generally imperceptible to the human eye and ear. Digital watermark can be used in video, audio and digital images for a wide variety of applications such as copy prevention right management, authentication and filtering of internet content. The proposed system is able to protect copyright or owner identification of digital media, such as audio, image, video, or text. The system permutated the watermark and embed the permutated watermark into the wavelet coefficients of the original image by using a key. The key is randomly generated and used to select the locations in the wavelet domain in which to embed the permutated watermark. Finally, the system combines the concept of cryptography and digital watermarking techniques to implement a more secure digital watermarking system.

  2. An Approach of Digital Image Copyright Protection by Using Watermarking Technology

    CERN Document Server

    Reza, Md Selim; Alam, Md Golam Robiul; Islam, Serajul

    2012-01-01

    Digital watermarking system is a paramount for safeguarding valuable resources and information. Digital watermarks are generally imperceptible to the human eye and ear. Digital watermark can be used in video, audio and digital images for a wide variety of applications such as copy prevention right management, authentication and filtering of internet content. The proposed system is able to protect copyright or owner identification of digital media, such as audio, image, video, or text. The system permutated the watermark and embed the permutated watermark into the wavelet coefficients of the original image by using a key. The key is randomly generated and used to select the locations in the wavelet domain in which to embed the permutated watermark. Finally, the system combines the concept of cryptography and digital watermarking techniques to implement a more secure digital watermarking system.

  3. An economical digital system for image display and analysis

    International Nuclear Information System (INIS)

    High purchase and maintenance costs of commercial digital systems dedicated to nuclear medicine have been one of the major obstacles to the progress of dynamic clinical studies with radionuclides in developing countries. The paper describes the evolution of a low budget project designed and started in 1979 for the solution of this problem. The final outcome was the use of an IBM personal computer (IBM PC) or compatible, coupled to an acquisition subsystem and an image display module designed and built in domestic laboratories. Software was implemented in Turbo-Pascal and Assembly languages. System operation is via multiple choice questions or menus, and is based on general routines or single action commands which can be organized into logical sequences or programs. All general routines are readily available and can be called at any moment by the user. They include programs for data acquisition, display and analysis. Processing is performed on a copy of the displayed image stored in memory, leaving the raw image data unaltered. Software allows image corrections (non-uniformity, background subtraction, noise reduction and selective enhancement) and manipulation, parametrical extraction, and mathematical operations with data (images or curves). Logical sequences have been developed for acquisition, display and processing of the main cardiological procedures, including amplitude and phase analysis. This project allowed the development with a very low budget of sophisticated nuclear cardiology studies; it allowed the creation of a unit totally independent of commercial firms and assured the future evolution and progress of nuclear medicine at the National Institute of Cardiology, Mexico, all based on the creation of technology according to Mexican needs. (author). 10 refs

  4. CORRELATION PROCESSING OF DIGITAL OPTICAL IMAGES FOR SOLVING CRIMINALISTIC PROBLEMS

    Directory of Open Access Journals (Sweden)

    V. L. Kozlov

    2015-01-01

    Full Text Available The correlation processing of optical digital images of expert research objects is promising to improve the quality, reliability and representativeness of the research. The development of computer algorithms for expert investigations by using correlation analysis methods for solving such problems of criminology, as a comparison of color-tone image parameters impressions of seals and stamps, and measurement of the rifling profile trace of the barrel on the bullet is the purpose of the work. A method and software application for measurement of linear, angular and altitude characteristics of the profile (micro relief of the rifling traces of the barrel on the bullet for judicial-ballistic tests is developed. Experimental results testify to a high overall performance of the developed program application and confirm demanded accuracy of spent measurements. Technique and specialized program application for the comparison of color-tone image parameters impressions of seals and stamps, reflecting degree and character of painting substance distribution in strokes has been developed. It improves presentation and objectivity of tests, and also allows to reduce their carrying out terms. The technique of expert interpretation of correlation analysis results has been offered. Reliability of the received results has been confirmed by experimental researches and has been checked up by means of other methods.

  5. A method to transfer speckle patterns for digital image correlation

    Science.gov (United States)

    Chen, Zhenning; Quan, Chenggen; Zhu, Feipeng; He, Xiaoyuan

    2015-09-01

    A simple and repeatable speckle creation method based on water transfer printing (WTP) is proposed to reduce artificial measurement error for digital image correlation (DIC). This technique requires water, brush, and a piece of transfer paper that is made of prefabricated decal paper, a protected sheet, and printed speckle patterns. The speckle patterns are generated and optimized via computer simulations, and then printed on the decal paper. During the experiments, operators can moisten the basement with water and the brush, so that digital patterns can be simply transferred to the carriers’ surfaces. Tensile experiments with an extended three-dimensional (3D) DIC system are performed to test and verify the validity of WTP patterns. It is shown that by comparing with a strain gage, the strain error is less than 50με in a uniform tensile test. From five carbon steel tensile experiments, Lüders bands in both WTP patterns and spray paint patterns are demonstrated to propagate symmetrically. In the necking part where the strain is up to 66%, WTP patterns are proved to adhere to the specimens well. Hence, WTP patterns are capable of maintaining coherence and adherence to the specimen surface. The transfer paper, working as the role of strain gage in the electrometric method, will contribute to speckle creation.

  6. A method to transfer speckle patterns for digital image correlation

    International Nuclear Information System (INIS)

    A simple and repeatable speckle creation method based on water transfer printing (WTP) is proposed to reduce artificial measurement error for digital image correlation (DIC). This technique requires water, brush, and a piece of transfer paper that is made of prefabricated decal paper, a protected sheet, and printed speckle patterns. The speckle patterns are generated and optimized via computer simulations, and then printed on the decal paper. During the experiments, operators can moisten the basement with water and the brush, so that digital patterns can be simply transferred to the carriers’ surfaces. Tensile experiments with an extended three-dimensional (3D) DIC system are performed to test and verify the validity of WTP patterns. It is shown that by comparing with a strain gage, the strain error is less than 50με in a uniform tensile test. From five carbon steel tensile experiments, Lüders bands in both WTP patterns and spray paint patterns are demonstrated to propagate symmetrically. In the necking part where the strain is up to 66%, WTP patterns are proved to adhere to the specimens well. Hence, WTP patterns are capable of maintaining coherence and adherence to the specimen surface. The transfer paper, working as the role of strain gage in the electrometric method, will contribute to speckle creation. (paper)

  7. Digital Image Processing Technique for Breast Cancer Detection

    Science.gov (United States)

    Guzmán-Cabrera, R.; Guzmán-Sepúlveda, J. R.; Torres-Cisneros, M.; May-Arrioja, D. A.; Ruiz-Pinales, J.; Ibarra-Manzano, O. G.; Aviña-Cervantes, G.; Parada, A. González

    2013-09-01

    Breast cancer is the most common cause of death in women and the second leading cause of cancer deaths worldwide. Primary prevention in the early stages of the disease becomes complex as the causes remain almost unknown. However, some typical signatures of this disease, such as masses and microcalcifications appearing on mammograms, can be used to improve early diagnostic techniques, which is critical for women’s quality of life. X-ray mammography is the main test used for screening and early diagnosis, and its analysis and processing are the keys to improving breast cancer prognosis. As masses and benign glandular tissue typically appear with low contrast and often very blurred, several computer-aided diagnosis schemes have been developed to support radiologists and internists in their diagnosis. In this article, an approach is proposed to effectively analyze digital mammograms based on texture segmentation for the detection of early stage tumors. The proposed algorithm was tested over several images taken from the digital database for screening mammography for cancer research and diagnosis, and it was found to be absolutely suitable to distinguish masses and microcalcifications from the background tissue using morphological operators and then extract them through machine learning techniques and a clustering algorithm for intensity-based segmentation.

  8. ANÁLISE DE USABILIDADE NO SOFTWARE DIGITAL IMAGE

    Directory of Open Access Journals (Sweden)

    Thaís Josiani Mousquer

    2013-07-01

    Full Text Available Seeking to improve the learning of computer graphics, we developed the Digital Image Software, object of this study. The aim of this study is to analyze usability aspects of Software, looking for their effectiveness and efficiency. For this investigation was conducted usability literature on the subject, where the theoretical framework surrounding this issue and also the study by testing the Software practices related to the Software, it developed a questionnaire for usability. The questionnaire was applied to different classes of high school and university classes in Brazil. From the results it was found that improvements should be implemented in the tool, especially in terms that refer to help (help and errors still found.

  9. Computational proximity excursions in the topology of digital images

    CERN Document Server

    Peters, James F

    2016-01-01

    This book introduces computational proximity (CP) as an algorithmic approach to finding nonempty sets of points that are either close to each other or far apart. Typically in computational proximity, the book starts with some form of proximity space (topological space equipped with a proximity relation) that has an inherent geometry. In CP, two types of near sets are considered, namely, spatially near sets and descriptivelynear sets. It is shown that connectedness, boundedness, mesh nerves, convexity, shapes and shape theory are principal topics in the study of nearness and separation of physical aswell as abstract sets. CP has a hefty visual content. Applications of CP in computer vision, multimedia, brain activity, biology, social networks, and cosmology are included. The book has been derived from the lectures of the author in a graduate course on the topology of digital images taught over the past several years. Many of the students have provided important insights and valuable suggestions. The topics in ...

  10. Fatigue Crack Closure Analysis Using Digital Image Correlation

    Science.gov (United States)

    Leser, William P.; Newman, John A.; Johnston, William M.

    2010-01-01

    Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.

  11. Optics for Advanced Neutron Imaging and Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moncton, David E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Khaykovich, Boris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-03-30

    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  12. Digital Terrain Model Generation By Using Area Based Image Matching Techniques

    OpenAIRE

    KARALAR, Fikret; Uysal, Murat; VARLIK, Abdullah; CAN, Zekai Cevdet

    2010-01-01

    Recently, Photogrammetry is the one of the most suitable methods to be Digital Terrain Model (DTM) generation for large areas accurately and actually. Automatic DTM generation is fundamental functional module of Digital Photogrammetry. In fact, many of Digital Photogrammetric systems offer that function and must take into consideration that be significant for a great number of users. One of the most advantages the Digital Photogrammetry have been formed a regular DTM by means of image matchin...

  13. Digital radiography.

    Science.gov (United States)

    Mattoon, J S

    2006-01-01

    Digital radiography has been used in human medical imaging since the 1980s with recent and rapid acceptance into the veterinary profession. Using advanced image capture and computer technology, radiographic images are viewed on a computer monitor. This is advantageous because radiographic images can be adjusted using dedicated computer software to maximize diagnostic image quality. Digital images can be accessed at computer workstations throughout the hospital, instantly retrieved from computer archives, and transmitted via the internet for consultation or case referral. Digital radiographic data can also be incorporated into a hospital information system, making record keeping an entirely paperless process. Digital image acquisition is faster when compared to conventional screen-film radiography, improving workflow and patient throughput. Digital radiography greatly reduces the need for 'retake' radiographs because of wide latitude in exposure factors. Also eliminated are costs associated with radiographic film and x-ray film development. Computed radiography, charged coupled devices, and flat panel detectors are types of digital radiography systems currently available. PMID:16971994

  14. From Digitized Images to Online Catalogs Data Mining a Sky Survey

    OpenAIRE

    Fayyad, Usama M.; Djorgovski, S. G.; Weir, Nicholas

    1996-01-01

    The value of scientific digital-image libraries seldom lies in the pixels of images. For large collections of images, such as those resulting from astronomy sky surveys, the typical useful product is an online database cataloging entries of interest. We focus on the automation of the cataloging effort of a major sky survey and the availability of digital libraries in general. The SKICAT system automates the reduction and analysis of the three terabytes worth of images, expected to contain on ...

  15. Qualitative and quantitative interpretation of SEM image using digital image processing.

    Science.gov (United States)

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations.

  16. Automation of Axisymmetric Drop Shape Analysis Using Digital Image Processing

    Science.gov (United States)

    Cheng, Philip Wing Ping

    The Axisymmetric Drop Shape Analysis - Profile (ADSA-P) technique, as initiated by Rotenberg, is a user -oriented scheme to determine liquid-fluid interfacial tensions and contact angles from the shape of axisymmetric menisci, i.e., from sessile as well as pendant drops. The ADSA -P program requires as input several coordinate points along the drop profile, the value of the density difference between the bulk phases, and gravity. The solution yields interfacial tension and contact angle. Although the ADSA-P technique was in principle complete, it was found that it was of very limited practical use. The major difficulty with the method is the need for very precise coordinate points along the drop profile, which, up to now, could not be obtained readily. In the past, the coordinate points along the drop profile were obtained by manual digitization of photographs or negatives. From manual digitization data, the surface tension values obtained had an average error of +/-5% when compared with literature values. Another problem with the ADSA-P technique was that the computer program failed to converge for the case of very elongated pendant drops. To acquire the drop profile coordinates automatically, a technique which utilizes recent developments in digital image acquisition and analysis was developed. In order to determine the drop profile coordinates as precisely as possible, the errors due to optical distortions were eliminated. In addition, determination of drop profile coordinates to pixel and sub-pixel resolution was developed. It was found that high precision could be obtained through the use of sub-pixel resolution and a spline fitting method. The results obtained using the automatic digitization technique in conjunction with ADSA-P not only compared well with the conventional methods, but also outstripped the precision of conventional methods considerably. To solve the convergence problem of very elongated pendant drops, it was found that the reason for the

  17. Minimal form factor digital-image sensor for endoscopic applications

    Science.gov (United States)

    Wäny, Martin; Voltz, Stephan; Gaspar, Fabio; Chen, Lei

    2009-02-01

    This paper presents a digital image sensor SOC featuring a total chip area (including dicing tolerances) of 0.34mm2 for endoscopic applications. Due to this extremely small form factor the sensor enables integration in endoscopes, guide wires and locater devices of less than 1mm outer diameter. The sensor embeds a pixel matrix of 10'000 pixels with a pitch of 3um x 3um covered with RGB filters in Bayer pattern. The sensor operates fully autonomous, controlled by an on chip ring oscillator and readout state machine, which controls integration AD conversion and data transmission, thus the sensor only requires 4 pin's for power supply and data communication. The sensor provides a frame rate of 40Frames per second over a LVDS serial data link. The endoscopic application requires that the sensor must work without any local power decoupling capacitances at the end of up to 2m cabling and be able to sustain data communication over the same wire length without deteriorating image quality. This has been achieved by implementation of a current mode successive approximation ADC and current steering LVDS data transmission. An band gap circuit with -40dB PSRR at the data frequency was implemented as on chip reference to improve robustness against power supply ringing due to the high series inductance of the long cables. The B&W versions of the sensor provides a conversion gain of 30DN/nJ/cm2 at 550nm with a read noise in dark of 1.2DN when operated at 2m cable. Using the photon transfer method according to EMVA1288 standard the full well capacity was determined to be 18ke-. According to our knowledge the presented work is the currently world smallest fully digital image sensor. The chip was designed along with a aspheric single surface lens to assemble on the chip without increasing the form factor. The extremely small form factor of the resulting camera permit's to provide visualization with much higher than state of the art spatial resolution in sub 1mm endoscopic

  18. Noise equalization for detection of microcalcification clusters in direct digital mammogram images.

    NARCIS (Netherlands)

    McLoughlin, K.J.; Bones, P.J.; Karssemeijer, N.

    2004-01-01

    Equalizing image noise is shown to be an important step in the automatic detection of microcalcifications in digital mammography. This study extends a well established film-screen noise equalization scheme developed by Veldkamp et al. for application to full-field digital mammogram (FFDM) images. A

  19. Bispectral methods of signal processing applications in radar, telecommunications and digital image restoration

    CERN Document Server

    Totsky, Alexander V; Kravchenko, Victor F

    2015-01-01

    By studying applications in radar, telecommunications and digital image restoration, this monograph discusses signal processing techniques based on bispectral methods. Improved robustness against different forms of noise as well as preservation of phase information render this method a valuable alternative to common power-spectrum analysis used in radar object recognition, digital wireless communications, and jitter removal in images.

  20. Early detection of the incidence of malignancy in mammograms using digital image correlation

    International Nuclear Information System (INIS)

    The digital image correlation has proved an effective way for Pattern Recognition, this research to identify the using Findings digitally extracted from a mammographic image, which is the means used by more specialists to determine if a person is a candidate or not, a Suffer Breast Cancer. This shown that early detection of symptom logy 'carcinogenic' is the key . (Author)