WorldWideScience

Sample records for advanced cyclone processes

  1. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Evaluation, Engineering and Development of Advanced Cyclone Processes'' is a research and development project for the reduction of pyritic sulfur in coal. Project goals are to remove 80 to 90% of the ash and pyritic sulfur while retaining 80 to 90% of the parent coal's heating value. A number of media and media separator options are to be evaluated and tested, culminating with the implementation of the preferred combination in a 1,000 lb/hr bench-scale process optimization circuit.

  2. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    Durney, T.E.; Cook, A. [Coal Technology Corporation, Bristol, VA (United States); Ferris, D.D. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)] [and others

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  3. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER). Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report consists of appendices pertaining to the separating media evaluation (calcium nitrate solution) and testing for an advanced cyclone process. Appendices include: materials safety data, aqueous medium regeneration, pH control strategy, and other notes and data.

  4. Evaluation, engineering and development of advanced cyclone processes. Quarterly technical progress report No. 4, July 1, 1991--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    ``Evaluation, Engineering and Development of Advanced Cyclone Processes`` is a research and development project for the reduction of pyritic sulfur in coal. Project goals are to remove 80 to 90% of the ash and pyritic sulfur while retaining 80 to 90% of the parent coal`s heating value. A number of media and media separator options are to be evaluated and tested, culminating with the implementation of the preferred combination in a 1,000 lb/hr bench-scale process optimization circuit.

  5. Polytropic process and tropical Cyclones

    CERN Document Server

    Romanelli, Alejandro; Rodríguez, Juan

    2013-01-01

    We show a parallelism between the expansion and compression of the atmosphere in the secondary cycle of a tropical cyclone with the fast expansion and compression of wet air in a bottle. We present a simple model in order to understand how the system (cyclone) draws energy from the air humidity. In particular we suggest that the upward (downward) expansion (compression) of the warm (cold) moist (dry) air follows a polytropic process, $PV^\\beta$= constant. We show both experimentally and analytically that $\\beta$ depends on the initial vapor pressure in the air. We propose that the adiabatic stages in the Carnot-cycle model for the tropical cyclone be replaced by two polytropic stages. These polytropic processes can explain how the wind wins energy and how the rain and the dry bands are produced inside the storm.

  6. Diabatic processes and the evolution of two contrasting extratropical cyclones

    Science.gov (United States)

    Martinez-Alvarado, Oscar; Gray, Suzanne; Methven, John

    2016-04-01

    Two contrasting extratropical cyclones were observed over the United Kingdom during the summer 2012 field campaign of the DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) project. The first cyclone, observed in July, was a shallow system typical of summer over west Europe while the second cyclone, observed in August, was a much deeper system which developed a potential vorticity (PV) tower. The evolution of these two cyclones was analysed and compared in terms of diabatic effects with respect to two aspects. The first aspect is the amount and distribution of heat produced during the development of each cyclone, measured by the cross-isentropic motion around the cyclone centre. The second aspect is the modification to the circulation around the cyclones' centres, measured by area-averaged isentropic vorticity. The contributions from individual diabatic processes, such as convection, cloud microphysics and radiation, to these two aspects is also considered. The cyclones were analysed via hindcast simulations with a research version of the Met Office Unified Model, enhanced with on-line tracers of diabatic changes of potential temperature and PV. A new methodology for the interpretation of these tracers was also implemented and used. The hindcast simulations were compared with the available dropsonde observations from the field campaign as well as operational analyses and radar rainfall rates. It is shown that, while boundary layer and turbulent mixing processes and cloud microphysics processes contributed to the development of both cyclones, the main differences between the cyclones in terms of diabatic effects could be attributed to differences in convective activity. It is also shown that the contribution from all these diabatic processes to changes in the circulation was modulated by the characteristics of advection around each cyclone in a highly nonlinear fashion. This research establishes a new framework for a systematic comparison

  7. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Jeffrey J. [Phillips66 Company, West Terre Haute, IN (United States)

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char

  8. Cyclone oil shale retorting concept. [Use it all retorting process

    Energy Technology Data Exchange (ETDEWEB)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  9. Ocean feedback to tropical cyclones: climatology and processes

    Science.gov (United States)

    Jullien, Swen; Marchesiello, Patrick; Menkes, Christophe E.; Lefèvre, Jérôme; Jourdain, Nicolas C.; Samson, Guillaume; Lengaigne, Matthieu

    2014-11-01

    This study presents the first multidecadal and coupled regional simulation of cyclonic activity in the South Pacific. The long-term integration of state-of the art models provides reliable statistics, missing in usual event studies, of air-sea coupling processes controlling tropical cyclone (TC) intensity. The coupling effect is analyzed through comparison of the coupled model with a companion forced experiment. Cyclogenesis patterns in the coupled model are closer to observations with reduced cyclogenesis in the Coral Sea. This provides novel evidence of air-sea coupling impacting not only intensity but also spatial cyclogenesis distribution. Storm-induced cooling and consequent negative feedback is stronger for regions of shallow mixed layers and thin or absent barrier layers as in the Coral Sea. The statistical effect of oceanic mesoscale eddies on TC intensity (crossing over them 20 % of the time) is also evidenced. Anticyclonic eddies provide an insulating effect against storm-induced upwelling and mixing and appear to reduce sea surface temperature (SST) cooling. Cyclonic eddies on the contrary tend to promote strong cooling, particularly through storm-induced upwelling. Air-sea coupling is shown to have a significant role on the intensification process but the sensitivity of TCs to SST cooling is nonlinear and generally lower than predicted by thermodynamic theories: about 15 rather than over 30 hPa °C-1 and only for strong cooling. The reason is that the cooling effect is not instantaneous but accumulated over time within the TC inner-core. These results thus contradict the classical evaporation-wind feedback process as being essential to intensification and rather emphasize the role of macro-scale dynamics.

  10. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Sarv

    2009-02-28

    A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level

  11. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    International Nuclear Information System (INIS)

    A NOx minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z(reg sign) low-NOx burner. At a fixed overall excess air level of 17%, NOx emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NOx levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NOx values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NOx emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NOx (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NOx reduction from the uncontrolled operation. Levelized costs for additional NOx removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NOx/106 Btu. Two-level OFA ports could offer the most economical approach for moderate NOx control, especially for smaller units. O2 enrichment in combination with 2-level OFA was not cost effective for wall-firing. For cyclone units, NOx removal by

  12. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  13. Sensitivity of movement and intensity of severe cyclone AILA to the physical processes

    Indian Academy of Sciences (India)

    S Rambabu; D Gayatri Vani; S S V S Ramakrishna; G V Rama; B V AppaRao

    2013-08-01

    Accurate prediction of movement and intensity of tropical cyclone is still most challenging problem in numerical weather prediction. The positive progress in this field can be achieved by providing network of observations in the storm region and best representation of atmospheric physical processes in the model. In the present study later part was attempted to investigate the sensitivity of movement and intensity of the severe cyclonic storm AILA to different physical processes in the Weather Research and Forecasting model. Three sets of experiments were conducted for convection, microphysics (MP) and planetary boundary layer (PBL) processes. Model-simulated fields like minimum central surface pressure, maximum surface wind, track and vector displacement error are considered to test the sensitivity. The results indicate that the movement of the system is more sensitive to the cumulus physics and the intensity of the cyclone is sensitive to both PBL and cumulus physics. The combination of Betts Miller Janjic (BMJ) for convection, Yonsei University (YSU) for PBL and Purdue Lin (LIN) for microphysics is found to perform better than other combination schemes. The horizontal and vertical features of the system along with its special features like complete northward movement of the system throughout the travel period and the consistent cyclonic storm intensity until 15 hrs after the landfall could be well simulated by the model.

  14. The relevance of individual microphysical processes for potential vorticity anomalies in extratropical cyclones

    Science.gov (United States)

    Crezee, Bas; Joos, Hanna; Wernli, Heini

    2016-04-01

    Extratropical cyclones have a large impact on daily weather through their accompanying strong winds and precipitation. The latent heating and cooling associated with microphysical processes like condensation, freezing and melting, sublimation and evaporation leads to the formation of distinct cloud diabatic potential vorticity (CDPV) anomalies. Positive low-level CDPV anomalies - which typically are formed along the fronts and close to the cyclone center - have been shown to interact with upper-level PV anomalies thereby potentially enhancing storm intensification. Here a novel method is applied, which calculates backward trajectories from the mature storm stage, integrates cloud diabatic PV changes due to microphysical processes, and constructs a CDPV budget for each individual anomaly. Thereby we quantify the contributions of, e.g., cloud condensation, depositional growth of snow and melting of snow to the individual anomalies and in turn to the near-surface circulation. First, we apply this method to an idealized mid-latitude cyclone. The formation of the relatively small low-level negative CDPV anomalies is dominated each by one specific process, depending on their location relative to the front. For the large positive PV anomaly we find that the strongest contributions are from in-cloud condensation and below-cloud snow melting and rain evaporation. Although contributions of in-cloud depositional growth of ice are rather small, they cover a very large area and are therefore dynamically significant, i.e., they produce a fairly large-scale but low-amplitude anomaly. In addition the results from the idealized simulations are compared to a wintertime cyclone. It will be discussed how well the method works for real cyclones and how closely the results agree with those from the idealized channel model experiment.

  15. Using Enabling Technologies to Advance Data Intensive Analysis Tools in the JPL Tropical Cyclone Information System

    Science.gov (United States)

    Knosp, B.; Gangl, M. E.; Hristova-Veleva, S. M.; Kim, R. M.; Lambrigtsen, B.; Li, P.; Niamsuwan, N.; Shen, T. P. J.; Turk, F. J.; Vu, Q. A.

    2014-12-01

    The JPL Tropical Cyclone Information System (TCIS) brings together satellite, aircraft, and model forecast data from several NASA, NOAA, and other data centers to assist researchers in comparing and analyzing data related to tropical cyclones. The TCIS has been supporting specific science field campaigns, such as the Genesis and Rapid Intensification Processes (GRIP) campaign and the Hurricane and Severe Storm Sentinel (HS3) campaign, by creating near real-time (NRT) data visualization portals. These portals are intended to assist in mission planning, enhance the understanding of current physical processes, and improve model data by comparing it to satellite and aircraft observations. The TCIS NRT portals allow the user to view plots on a Google Earth interface. To compliment these visualizations, the team has been working on developing data analysis tools to let the user actively interrogate areas of Level 2 swath and two-dimensional plots they see on their screen. As expected, these observation and model data are quite voluminous and bottlenecks in the system architecture can occur when the databases try to run geospatial searches for data files that need to be read by the tools. To improve the responsiveness of the data analysis tools, the TCIS team has been conducting studies on how to best store Level 2 swath footprints and run sub-second geospatial searches to discover data. The first objective was to improve the sampling accuracy of the footprints being stored in the TCIS database by comparing the Java-based NASA PO.DAAC Level 2 Swath Generator with a TCIS Python swath generator. The second objective was to compare the performance of four database implementations - MySQL, MySQL+Solr, MongoDB, and PostgreSQL - to see which database management system would yield the best geospatial query and storage performance. The final objective was to integrate our chosen technologies with our Joint Probability Density Function (Joint PDF), Wave Number Analysis, and

  16. The Role of Moist Processes in the Intrinsic Predictability of Indian Ocean Cyclones

    Energy Technology Data Exchange (ETDEWEB)

    Taraphdar, Sourav; Mukhopadhyay, P.; Leung, Lai-Yung R.; Zhang, Fuqing; Abhilash, S.; Goswami, B. N.

    2014-07-16

    The role of moist processes and the possibility of error cascade from cloud scale processes affecting the intrinsic predictable time scale of a high resolution convection permitting model within the environment of tropical cyclones (TCs) over the Indian region are investigated. Consistent with past studies of extra-tropical cyclones, it is demonstrated that moist processes play a major role in forecast error growth which may ultimately limit the intrinsic predictability of the TCs. Small errors in the initial conditions may grow rapidly and cascades from smaller scales to the larger scales through strong diabatic heating and nonlinearities associated with moist convection. Results from a suite of twin perturbation experiments for four tropical cyclones suggest that the error growth is significantly higher in cloud permitting simulation at 3.3 km resolutions compared to simulations at 3.3 km and 10 km resolution with parameterized convection. Convective parameterizations with prescribed convective time scales typically longer than the model time step allows the effects of microphysical tendencies to average out so convection responds to a smoother dynamical forcing. Without convective parameterizations, the finer-scale instabilities resolved at 3.3 km resolution and stronger vertical motion that results from the cloud microphysical parameterizations removing super-saturation at each model time step can ultimately feed the error growth in convection permitting simulations. This implies that careful considerations and/or improvements in cloud parameterizations are needed if numerical predictions are to be improved through increased model resolution. Rapid upscale error growth from convective scales may ultimately limit the intrinsic mesoscale predictability of the TCs, which further supports the needs for probabilistic forecasts of these events, even at the mesoscales.

  17. Advanced Biosignal Processing

    CERN Document Server

    Nait-Ali, Amine

    2009-01-01

    Presents the principle of many advanced biosignal processing techniques. This title introduces the main biosignal properties and the acquisition techniques. It concerns one of the most intensively used biosignals in the clinical routine, namely the Electrocardiogram, the Elektroenzephalogram, the Electromyogram and the Evoked Potential

  18. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  19. Advanced Polymer Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Muenchausen, Ross E. [Los Alamos National Laboratory

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  20. AN ADVANCED OXIDATION PROCESS : FENTON PROCESS

    Directory of Open Access Journals (Sweden)

    Engin GÜRTEKİN

    2008-03-01

    Full Text Available Biological wastewater treatment is not effective treatment method if raw wastewater contains toxic and refractory organics. Advanced oxidation processes are applied before or after biological treatment for the detoxification and reclamation of this kind of wastewaters. The advanced oxidation processes are based on the formation of powerful hydroxyl radicals. Among advanced oxidation processes Fenton process is one of the most promising methods. Because application of Fenton process is simple and cost effective and also reaction occurs in a short time period. Fenton process is applied for many different proposes. In this study, Fenton process was evaluated as an advanced oxidation process in wastewater treatment.

  1. Advances in speech processing

    Science.gov (United States)

    Ince, A. Nejat

    1992-10-01

    The field of speech processing is undergoing a rapid growth in terms of both performance and applications and this is fueled by the advances being made in the areas of microelectronics, computation, and algorithm design. The use of voice for civil and military communications is discussed considering advantages and disadvantages including the effects of environmental factors such as acoustic and electrical noise and interference and propagation. The structure of the existing NATO communications network and the evolving Integrated Services Digital Network (ISDN) concept are briefly reviewed to show how they meet the present and future requirements. The paper then deals with the fundamental subject of speech coding and compression. Recent advances in techniques and algorithms for speech coding now permit high quality voice reproduction at remarkably low bit rates. The subject of speech synthesis is next treated where the principle objective is to produce natural quality synthetic speech from unrestricted text input. Speech recognition where the ultimate objective is to produce a machine which would understand conversational speech with unrestricted vocabulary, from essentially any talker, is discussed. Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. It is for this reason that the paper is concerned primarily with this technique.

  2. Advanced powder processing

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Gelcasting is an advanced powder forming process. It is most commonly used to form ceramic or metal powders into complex, near-net shapes. Turbine rotors, gears, nozzles, and crucibles have been successfully gelcast in silicon nitride, alumina, nickel-based superalloy, and several steels. Gelcasting can also be used to make blanks that can be green machined to near-net shape and then high fired. Green machining has been successfully applied to both ceramic and metal gelcast blanks. Recently, the authors have used gelcasting to make tooling for metal casting applications. Most of the work has centered on H13 tool steel. They have demonstrated an ability to gelcast and sinter H13 to near net shape for metal casting tooling. Also, blanks of H13 have been cast, green machined into complex shape, and fired. Issues associated with forming, binder burnout, and sintering are addressed.

  3. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  4. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  5. AN ADVANCED OXIDATION PROCESS : FENTON PROCESS

    OpenAIRE

    Engin GÜRTEKİN; Nusret ŞEKERDAĞ

    2008-01-01

    Biological wastewater treatment is not effective treatment method if raw wastewater contains toxic and refractory organics. Advanced oxidation processes are applied before or after biological treatment for the detoxification and reclamation of this kind of wastewaters. The advanced oxidation processes are based on the formation of powerful hydroxyl radicals. Among advanced oxidation processes Fenton process is one of the most promising methods. Because application of Fenton process is simple ...

  6. The possible use of Bayer process cyclone fines for manufacture of abrasives

    Directory of Open Access Journals (Sweden)

    Sancho, J.

    2002-12-01

    Full Text Available This paper deals with the feasibihty of producing synthetic abrasives from a by-product of the Bayer process: the cyclone fines, through synthesis aided by mineralizers addition. The main result has been the production of a low temperature (1200-1300 °C polish by adding fluoride mineralizers, that could be in clear competence with synthetic corundum obtained also in this work by a more traditional way: sodium removal, using of magnesium oxide as mineralizer, and high calcination temperatures (1700 °C.

    En este trabajo se demuestra la posibilidad de producir abrasivos a partir de un subproducto de la fabricación de la alúmina Bayer: los finos de ciclón, mediante la síntesis ayudada por la adición de mineralizantes. Un resultado importante ha sido la obtención de un pulimento a baja temperatura, (1.200-1.300 °C mediante mineralizantes fluorados, que puede competir de forma clara con corindones sintéticos obtenidos, también en este trabajo, de forma tradicional: eliminación de sodio, utilización de óxido de magnesio como mineralizante y elevadas temperaturas de calcinación (1.700 °C.

  7. Advances in Solidification Processing

    Directory of Open Access Journals (Sweden)

    Hugo F. Lopez

    2015-08-01

    Full Text Available Melt solidification is the shortest and most viable route to obtain components, starting from the design to the finished products. Hence, a sound knowledge of the solidification of metallic materials is essential for the development of advanced structural metallic components that drive modern technological societies. As a result, there have been innumerable efforts and full conferences dedicated to this important subject [1–6]. In addition, there are various scientific journals fully devoted to investigating the various aspects which give rise to various solidification microstructures [7–9]. [...

  8. USING CYCLONES EFFECTIVELY AT COTTON GINS

    Science.gov (United States)

    Cyclones are the most common type of emissions control device used in agricultural processing operations. Cyclones are efficient, reliable, low-cost, and require little maintenance. When used properly, cyclones effectively separate particulate matter from air streams, allowing compliance with state ...

  9. Diagnosing the Influence of Diabatic Processes on the Explosive Deepening of Extratropical Cyclones over the North Atlantic Ocean

    Science.gov (United States)

    Knippertz, P.; Fink, A. H.; Pohle, S.; Pinto, J. G.

    2012-04-01

    The relative roles of baroclinic and diabatic processes for explosive deepening of extratropical cyclones have been debated for a long time, mostly on the basis of case studies. Here we present a powerful diagnostic approach to the problem, which is based on a combination of an automatic cyclone tracking with a special version of the classical pressure tendency equation (PTE) that relates changes in surface pressure to contributions from horizontal and vertical temperature advection as well as diabatic processes, i.e., mainly latent heat release in clouds. Along the entire track of a cyclone, the PTE is evaluated in a 3°x3° box from the surface to 100 hPa centred on the location the storm is moving to within the next time step. The great advantage of this new approach is the easy applicability to large gridded datasets, even if diabatic tendencies are not explicitly available as in many reanalysis products. The strengths and limitations of the method are illustrated here through application to several explosively deepening, damaging winter storms over the North Atlantic Ocean. Data used are 6-hourly ERA-Interim re-analyses. For better interpretation of the results, the PTE analysis is complemented with other classical cyclogenetic factors, i.e., the strength of the polar jet and the equivalent-potential temperature θe at 850 hPa in the warm sector. The main conclusions from this analysis are: • The time evolutions of the actual core pressure of the storm and the 6-hourly pressure changes in the moving box used to evaluate the PTE show structural similarities that are dominated by the explosive deepening. • The vertical advection term is positive throughout the entire lifecycle of all storms indicating the dominance of ascent downstream of the cyclone center. It is (over-) compensated by negative contributions through warm advection and diabatic heating. • Storms "Martin" and "Kyrill" are dominated by baroclinic processes with contributions of diabatic

  10. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  11. Impact of subgrid-scale processes on eyewall replacement cycle of tropical cyclones in HWRF system

    Science.gov (United States)

    Zhu, Ping; Zhu, Zhenduo; Gopalakrishnan, Sundararaman; Black, Robert; Marks, Frank D.; Tallapragada, Vijay; Zhang, Jun A.; Zhang, Xuejin; Gao, Cen

    2015-11-01

    Two idealized simulations by the Hurricane Weather Research and Forecast (HWRF) model are presented to examine the impact of model physics on the simulated eyewall replacement cycle (ERC). While no ERC is produced in the control simulation that uses the operational HWRF physics, the sensitivity experiment with different model physics generates an ERC that possesses key features of observed ERCs in real tropical cyclones. Likely reasons for the control simulation not producing ERC include lack of outer rainband convection at the far radii from the eyewall, excessive ice hydrometeors in the eyewall, and enhanced moat shallow convection, which all tend to prevent the formation of a persistent moat between the eyewall and outer rainband. Less evaporative cooling from precipitation in the outer rainband region in the control simulation produces a more stable and dryer environment that inhibits the development of systematic convection at the far radii from the eyewall.

  12. Plasma Processing of Advanced Materials

    Energy Technology Data Exchange (ETDEWEB)

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  13. Advances in machining process modeling

    International Nuclear Information System (INIS)

    Ever increasing speed and affordability of computing resources together with the advances in the modeling techniques made it possible to use the numerical models like finite element method (FEM), to simulate the metal cutting processes numerically. This paper explains the recent technological advances made in the commercial DEFORMTM system to facilitate the modeling of metal cutting process. During the first phase of this work a 2D system has been developed which assumes orthogonal cutting conditions. The second phase of this work has resulted in the development of a modeling system for 3D machining processes with main focus on turning. The modeling tools developed in this project utilize a hybrid procedure including both transient and steady state approaches. Automated remeshing procedure is being used with great success. Multiple coating layers on the insert can be modeled to study their thermal effects. Elastic and thermal response of the insert during the machining process can also be modeled using this system. The Usui's wear model has also been implemented in the system to study the tool wear. The system developed has been validated with various results reported from actual cutting tests and comparisons are found to be reasonably accurate

  14. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  15. Advances in natural language processing.

    Science.gov (United States)

    Hirschberg, Julia; Manning, Christopher D

    2015-07-17

    Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area.

  16. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  17. Electrochromic Windows: Advanced Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  18. Satellite radiothermovision of atmospheric mesoscale processes: case study of tropical cyclones

    OpenAIRE

    D. M. Ermakov; E. A. Sharkov; A. P. Chernushich

    2015-01-01

    Satellite radiothermovision is a set of processing techniques applicable for multisource data of radiothermal monitoring of oceanatmosphere system, which allows creating dynamic description of mesoscale and synoptic atmospheric processes and estimating physically meaningful integral characteristics of the observed processes (like avdective flow of the latent heat through a given border). The approach is based on spatiotemporal interpolation of the satellite measurements which allows ...

  19. Advances in uranium enrichment processes

    International Nuclear Information System (INIS)

    Advances in gas centrifuges and development of the atomic vapour laser isotope separation process promise substantial reductions in the cost of enriched uranium. The resulting reduction in LWR fuel costs could seriously erode the economic advantage of CANDU, and in combination with LWR design improvements, shortened construction times and increased operational reliability could allow the LWR to overtake CANDU. CANDU's traditional advantages of neutron economy and high reliability may no longer be sufficient - this is the challenge. The responses include: combining neutron economy and dollar economy by optimizing CANDU for slightly enriched uranium fuel; developing cost-reducing improvements in design, manufacture and construction; and reducing the cost of heavy water. Technology is a renewable resource which must be continually applied to a product for it to remain competitive in the decades to come. Such innovation is a prerequisite to Canada increasing her share of the international market for nuclear power stations. The higher burn-up achievable with enriched fuel in CANDU can reduce the fuel cycle costs by 20 to 40 percent for a likely range of costs for yellowcake and separative work. Alternatively, some of the benefits of a higher fissile content can take the form of a cheaper reactor core containing fewer fuel channels and less heavy water, and needing only a single fuelling machine. An opportunity that is linked to this need to introduce an enriched uranium fuel cycle into CANDU is to build an enrichment business in Canada. This could offer greater value added to our uranium exports, security of supply for enriched CANDUs, technological growth in Canada and new employment opportunities. AECL has a study in progress to define this opportunity

  20. The Influence of Dust-radiation-microphysics Processes on Tropical Cyclone Development

    Science.gov (United States)

    Chen, S.; Cheng, C.; Chen, J.; Lin, Y.; Lee, H.; Tsai, I.

    2011-12-01

    Saharan dust can modify the Saharan Air Layer (SAL) and its environment by changing the energy budget through direct and indirect radiative forcing. Scattering and absorption of radiation by suspended dust directly modifies the energy budget in the atmosphere and at the surface. Smaller dust particles can remain suspended in the air for prolonged periods and propagate over the Atlantic Ocean along with SAL. These fine particles can reach an altitude of 8-9 km, where they nucleate ice crystals and transform cloud microphysical properties, indirectly changing the energy budget. Thus, the dust within the air mass is likely to affect the evolution of hurricane properties, life cycles, and the corresponding cloud systems through the dust-cloud-radiation interactions. A tracer model based on the Weather Research and Forecasting model (named WRFT) was developed to study the influence of dust-radiation-microphysics effects on hurricane activities. The dust-radiation effects and a two-moment microphysics scheme with dust particles acting as ice nuclei were implemented into WRFT. In this work, two easterly waves, which were precursors of Tropical Storm Debby and Hurricane Ernesto, during 18-25 August 2006 were studied. Four high-resolution numerical experiments were conducted with the combinations of activating/deactivating dust-radiation and/or dust-microphysics processes. Results from these four experiments are compared to investigate the influence of dust-radiation-microphysics processes on these two storm developments.

  1. Nontraditional machining processes research advances

    CERN Document Server

    2013-01-01

    Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional M...

  2. Advanced methods for processing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-05-01

    Combustion chemical vapor deposition (CCVD) is a flame assisted, open air chemical vapor deposition (CVD) process. The process is capable of producing textured, epitaxial coatings on single crystal substrates using low cost reagents. Combustion chemical vapor deposition is a relatively inexpensive, alternative thin film deposition process with potential to replace conventional coating technologies for certain applications. The goals of this project are to develop the CCVD process to the point that potential industrial applications can be identified and reliably assessed.

  3. Tropical Cyclone Information System

    Science.gov (United States)

    Li, P. Peggy; Knosp, Brian W.; Vu, Quoc A.; Yi, Chao; Hristova-Veleva, Svetla M.

    2009-01-01

    The JPL Tropical Cyclone Infor ma tion System (TCIS) is a Web portal (http://tropicalcyclone.jpl.nasa.gov) that provides researchers with an extensive set of observed hurricane parameters together with large-scale and convection resolving model outputs. It provides a comprehensive set of high-resolution satellite (see figure), airborne, and in-situ observations in both image and data formats. Large-scale datasets depict the surrounding environmental parameters such as SST (Sea Surface Temperature) and aerosol loading. Model outputs and analysis tools are provided to evaluate model performance and compare observations from different platforms. The system pertains to the thermodynamic and microphysical structure of the storm, the air-sea interaction processes, and the larger-scale environment as depicted by ocean heat content and the aerosol loading of the environment. Currently, the TCIS is populated with satellite observations of all tropical cyclones observed globally during 2005. There is a plan to extend the database both forward in time till present as well as backward to 1998. The portal is powered by a MySQL database and an Apache/Tomcat Web server on a Linux system. The interactive graphic user interface is provided by Google Map.

  4. Cyclonic Separation Technology: Researches and Developments

    Institute of Scientific and Technical Information of China (English)

    汪华林; 张艳红; 王剑刚; 刘洪来

    2012-01-01

    Centered on thetechniques and industrial applications of the reinforced cyclonic separation process, its principles and mechanism for separation ot ions, molecules and their aggregates using polyalsperse aroplets are discussed generally; the characteristics and influential factors of fish-hook phenomenon of the grade efficiency curve in cyclonic separation for both gas and liquid are analyzed; and the influence of shear force on particle be- havior (or that of particle swarm) is also summarized. A novel idea for cyclonic separation is presented here: enhancing the cyclonic seoaration process of ions, molecules and their aggregates with monodisperse microspheres and their surface grafting, rearranging the distribution of particles by size using centrifugal field, reinforcing the cyclonic separation performance with orderly arranged particle swarm. Also the investigation of the shortcut flow, recirculation flow, the asymmetric structure and non-linear characteristics of the cyclonic flow field with a com-bined method of Volumetric 3-component Velocimetry (V3V) and Phase-Doppler Particle Anemometer (PDPA) are elaborated. It is recommended to develop new systems for the separation of heterogeneous phases with cyclonic technology, in accordance with the capture and reuse of CO2, methanol to olefins (MTO) process, coal transfer, andthe exploitation of oil shale.

  5. Advanced methods for processing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1997-04-01

    Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.

  6. Advancements in Big Data Processing

    CERN Document Server

    Vaniachine, A; The ATLAS collaboration

    2012-01-01

    The ever-increasing volumes of scientific data present new challenges for Distributed Computing and Grid-technologies. The emerging Big Data revolution drives new discoveries in scientific fields including nanotechnology, astrophysics, high-energy physics, biology and medicine. New initiatives are transforming data-driven scientific fields by pushing Bid Data limits enabling massive data analysis in new ways. In petascale data processing scientists deal with datasets, not individual files. As a result, a task (comprised of many jobs) became a unit of petascale data processing on the Grid. Splitting of a large data processing task into jobs enabled fine-granularity checkpointing analogous to the splitting of a large file into smaller TCP/IP packets during data transfers. Transferring large data in small packets achieves reliability through automatic re-sending of the dropped TCP/IP packets. Similarly, transient job failures on the Grid can be recovered by automatic re-tries to achieve reliable Six Sigma produc...

  7. Doppler weather Radar based Nowcasting of cyclone Ogni

    Indian Academy of Sciences (India)

    Soma Sen Roy; V Lakshmanan; S K Roy Bhowmik; S B Thampi

    2010-04-01

    In this paper, we describe offline analysis of Indian Doppler Weather Radar (DWR) data from cyclone Ogni using a suite of radar algorithms as implemented on NEXRAD and the advanced algorithms developed jointly by the National Severe Storms Laboratory (NSSL) and the University of Oklahoma. We demonstrate the applicability of the various algorithms to Indian radar data, the improvement in the quality control and evaluate the benefit of nowcasting capabilities in Indian conditions. New information about the tropical cyclone structure, as derived from application of the algorithms is also discussed in this study. Finally, we suggest improvements that could be made to the Indian data collection strategies, networking and real-time analysis. Since this is the first study of its kind to process and utilize DWR data in a tropical climate, the suggestions on real-time analysis and data collection strategies made in this paper, would in many cases, be beneficial to other countries embarking on DWR network modernization programs.

  8. Traditional machining processes research advances

    CERN Document Server

    2015-01-01

    This book collects several examples of research in machining processes. Chapter 1 provides information on polycrystalline diamond tool material and its emerging applications. Chapter 2 is dedicated to the analysis of orthogonal cutting experiments using diamond-coated tools with force and temperature measurements. Chapter 3 describes the estimation of cutting forces and tool wear using modified mechanistic models in high performance turning. Chapter 4 contains information on cutting under gas shields for industrial applications. Chapter 5 is dedicated to the machinability of magnesium and its alloys. Chapter 6 provides information on grinding science. Finally, chapter 7 is dedicated to flexible integration of shape and functional modelling of machine tool spindles in a design framework.    

  9. Advanced Materials and Processing 2010

    Science.gov (United States)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  10. Emerging materials by advanced processing

    International Nuclear Information System (INIS)

    This volume contains 36 contributions with following subjects (selection): Densification of highly reactive aluminium titanate powders; influence of precursor history on carbon fiber characteristics; influence of water removal rate during calcination on the crystallization of ZrO2 from amorphous hydrous precipitates; tape casting of AlN; influence of processing on the properties of beta-SiC powders; corrosion of SiSiC by gases and basic slag at high temperature; influence of sintering and thermomechanical treatment on microstructure and properties of W-Ni-Fe alloys; mechanical alloying for development of sintered steels with high hard phase content (NbC); early stages of mechanical alloying in Ni-Ti and Ni-Al powder mixtures; growth and microstructural development of melt-oxidation derived Al2O3/Al-base composites; fabrication of RSBN composites; synthesis of high density coridierite bodies; comparative studies on post-HIP and sinter-HIP treatments on transformation thoughened ceramics; sinter HIP of SiC; precipitation mixing of Si3N4 with bimetallic oxides; temperature dependence of the interfacial energies in Al2O3-liquid metal systems; synthesis and microstructural examination of Synroc B; solid state investigation of ceramic-metal bonding; thermophysical properties of MgAl2O4; preparation, sintering and thermal expansion of MgAl2O4; microstructural studies on alumina-zirconia and metallized alumina ceramics; electrodeposition of metals (e.g. Ti, Mo, In) and metal oxides from molten salts; electrochemical deposition of Ti from nonaqueous media (DMSO, DMF); lithium as anode material in power sources (passivation); reduction of chromium(VI) when solar selective black chromium is deposited; thermodynamic optimization of phase diagrams (computer calculations); optimization of Na-Tl phase diagram; phase relations in the Y-Si-Al-O-N system: Controlled manufacturing of alpha/beta-SIALON composites. (MM)

  11. Cyclone and after...

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    This is a general article meant for the non-specialist reader. The article provides a brief description of the devastating effects of tropical cyclones in general, and super-cyclone that hit the Orissa Coast, India in 1999, which has been described...

  12. Advanced digital signal processing and noise reduction

    CERN Document Server

    Vaseghi, Saeed V

    2008-01-01

    Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates an

  13. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  14. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    Science.gov (United States)

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  15. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  16. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  17. Process simulation for advanced composites production

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  18. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  19. HYDROLOGICAL PROCESSES MODELLING USING ADVANCED HYDROINFORMATIC TOOLS

    Directory of Open Access Journals (Sweden)

    BEILICCI ERIKA

    2014-03-01

    Full Text Available The water has an essential role in the functioning of ecosystems by integrating the complex physical, chemical, and biological processes that sustain life. Water is a key factor in determining the productivity of ecosystems, biodiversity and species composition. Water is also essential for humanity: water supply systems for population, agriculture, fisheries, industries, and hydroelectric power depend on water supplies. The modelling of hydrological processes is an important activity for water resources management, especially now, when the climate change is one of the major challenges of our century, with strong influence on hydrological processes dynamics. Climate change and needs for more knowledge in water resources require the use of advanced hydroinformatic tools in hydrological processes modelling. The rationale and purpose of advanced hydroinformatic tools is to develop a new relationship between the stakeholders and the users and suppliers of the systems: to offer the basis (systems which supply useable results, the validity of which cannot be put in reasonable doubt by any of the stakeholders involved. For a successful modelling of hydrological processes also need specialists well trained and able to use advanced hydro-informatics tools. Results of modelling can be a useful tool for decision makers to taking efficient measures in social, economical and ecological domain regarding water resources, for an integrated water resources management.

  20. Advanced oxidation process sanitization of eggshell surfaces.

    Science.gov (United States)

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces. PMID:27030693

  1. Recent Advances in Precombustion Coal Cleaning Processes

    Institute of Scientific and Technical Information of China (English)

    Shiao-HungChiang; DaxinHe

    1994-01-01

    The mineral matter in coal constitutes a major impediment to the direct use of coal in power plants.A concerted effort has been mounted to reduce the ash/sulfur contents in product coal to meet the ever more stringent environmental regulations.In recent years,significant advances have taken place in fine coal cleaning technologies.A review of recent developments in aveanced physical,chemical and biological processes for deep-cleaning of fine coal is presented.

  2. Cloudsat tropical cyclone database

    Science.gov (United States)

    Tourville, Natalie D.

    CloudSat (CS), the first 94 GHz spaceborne cloud profiling radar (CPR), launched in 2006 to study the vertical distribution of clouds. Not only are CS observations revealing inner vertical cloud details of water and ice globally but CS overpasses of tropical cyclones (TC's) are providing a new and exciting opportunity to study the vertical structure of these storm systems. CS TC observations are providing first time vertical views of TC's and demonstrate a unique way to observe TC structure remotely from space. Since December 2009, CS has intersected every globally named TC (within 1000 km of storm center) for a total of 5,278 unique overpasses of tropical systems (disturbance, tropical depression, tropical storm and hurricane/typhoon/cyclone (HTC)). In conjunction with the Naval Research Laboratory (NRL), each CS TC overpass is processed into a data file containing observational data from the afternoon constellation of satellites (A-TRAIN), Navy's Operational Global Atmospheric Prediction System Model (NOGAPS), European Center for Medium range Weather Forecasting (ECMWF) model and best track storm data. This study will describe the components and statistics of the CS TC database, present case studies of CS TC overpasses with complementary A-TRAIN observations and compare average reflectivity stratifications of TC's across different atmospheric regimes (wind shear, SST, latitude, maximum wind speed and basin). Average reflectivity stratifications reveal that characteristics in each basin vary from year to year and are dependent upon eye overpasses of HTC strength storms and ENSO phase. West Pacific (WPAC) basin storms are generally larger in size (horizontally and vertically) and have greater values of reflectivity at a predefined height than all other basins. Storm structure at higher latitudes expands horizontally. Higher vertical wind shear (≥ 9.5 m/s) reduces cloud top height (CTH) and the intensity of precipitation cores, especially in HTC strength storms

  3. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  4. Grey swan tropical cyclones

    Science.gov (United States)

    Lin, Ning; Emanuel, Kerry

    2016-01-01

    We define `grey swan’ tropical cyclones as high-impact storms that would not be predicted based on history but may be foreseeable using physical knowledge together with historical data. Here we apply a climatological-hydrodynamic method to estimate grey swan tropical cyclone storm surge threat for three highly vulnerable coastal regions. We identify a potentially large risk in the Persian Gulf, where tropical cyclones have never been recorded, and larger-than-expected threats in Cairns, Australia, and Tampa, Florida. Grey swan tropical cyclones striking Tampa, Cairns and Dubai can generate storm surges of about 6 m, 5.7 m and 4 m, respectively, with estimated annual exceedance probabilities of about 1/10,000. With climate change, these probabilities can increase significantly over the twenty-first century (to 1/3,100-1/1,100 in the middle and 1/2,500-1/700 towards the end of the century for Tampa). Worse grey swan tropical cyclones, inducing surges exceeding 11 m in Tampa and 7 m in Dubai, are also revealed with non-negligible probabilities, especially towards the end of the century.

  5. Recent advances in nonlinear speech processing

    CERN Document Server

    Faundez-Zanuy, Marcos; Esposito, Antonietta; Cordasco, Gennaro; Drugman, Thomas; Solé-Casals, Jordi; Morabito, Francesco

    2016-01-01

    This book presents recent advances in nonlinear speech processing beyond nonlinear techniques. It shows that it exploits heuristic and psychological models of human interaction in order to succeed in the implementations of socially believable VUIs and applications for human health and psychological support. The book takes into account the multifunctional role of speech and what is “outside of the box” (see Björn Schuller’s foreword). To this aim, the book is organized in 6 sections, each collecting a small number of short chapters reporting advances “inside” and “outside” themes related to nonlinear speech research. The themes emphasize theoretical and practical issues for modelling socially believable speech interfaces, ranging from efforts to capture the nature of sound changes in linguistic contexts and the timing nature of speech; labors to identify and detect speech features that help in the diagnosis of psychological and neuronal disease, attempts to improve the effectiveness and performa...

  6. Advanced Signal Processing for Wireless Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2000-01-01

    Full Text Available There is at present a worldwide effort to develop next-generation wireless communication systems. It is envisioned that many of the future wireless systems will incorporate considerable signal-processing intelligence in order to provide advanced services such as multimedia transmission. In general, wireless channels can be very hostile media through which to communicate, due to substantial physical impediments, primarily radio-frequency interference and time-arying nature of the channel. The need of providing universal wireless access at high data-rate (which is the aim of many merging wireless applications presents a major technical challenge, and meeting this challenge necessitates the development of advanced signal processing techniques for multiple-access communications in non-stationary interference-rich environments. In this paper, we present some key advanced signal processing methodologies that have been developed in recent years for interference suppression in wireless networks. We will focus primarily on the problem of jointly suppressing multiple-access interference (MAI and intersymbol interference (ISI, which are the limiting sources of interference for the high data-rate wireless systems being proposed for many emerging application areas, such as wireless multimedia. We first present a signal subspace approach to blind joint suppression of MAI and ISI. We then discuss a powerful iterative technique for joint interference suppression and decoding, so-called Turbo multiuser detection, that is especially useful for wireless multimedia packet communications. We also discuss space-time processing methods that employ multiple antennas for interference rejection and signal enhancement. Finally, we touch briefly on the problems of suppressing narrowband interference and impulsive ambient noise, two other sources of radio-frequency interference present in wireless multimedia networks.

  7. Advances in Packaging Methods, Processes and Systems

    Directory of Open Access Journals (Sweden)

    Nitaigour Premchand Mahalik

    2014-10-01

    Full Text Available The food processing and packaging industry is becoming a multi-trillion dollar global business. The reason is that the recent increase in incomes in traditionally less economically developed countries has led to a rise in standards of living that includes a significantly higher consumption of packaged foods. As a result, food safety guidelines have been more stringent than ever. At the same time, the number of research and educational institutions—that is, the number of potential researchers and stakeholders—has increased in the recent past. This paper reviews recent developments in food processing and packaging (FPP, keeping in view the aforementioned advancements and bearing in mind that FPP is an interdisciplinary area in that materials, safety, systems, regulation, and supply chains play vital roles. In particular, the review covers processing and packaging principles, standards, interfaces, techniques, methods, and state-of-the-art technologies that are currently in use or in development. Recent advances such as smart packaging, non-destructive inspection methods, printing techniques, application of robotics and machineries, automation architecture, software systems and interfaces are reviewed.

  8. Advanced monitoring with complex stream processing

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Making sense of metrics and logs for service monitoring can be a complicated task. Valuable information is normally scattered across several streams of monitoring data, requiring aggregation, correlation and time-based analysis to promptly detect problems and failures. This presentations shows a solution which is used to support the advanced monitoring of the messaging services provided by the IT Department. It uses Esper, an open-source software product for Complex Event Processing (CEP), that analyses series of events for deriving conclusions from them.

  9. Processing and properties of advanced metallic foams

    Science.gov (United States)

    Brothers, Alan Harold

    Since the development of the first aluminum foams in the middle of the 20th century [178], great advances have been made in the processing and fundamental understanding of metallic foams. As a result of these advances, metallic foams are now penetrating a number of applications where their unique suite of properties makes them superior to solid materials, such as lightweight structures, packaging and impact protection, and filtration and catalysis [3]. The purpose of this work is to extend the use of metallic foams in such applications by expanding their processing to include more sophisticated base alloys and architectures. The first four chapters discuss replacement of conventional crystalline metal foams with ones made from high-strength, low-melting amorphous metals, a substitution that offers potential for achieving mechanical properties superior to those of the best crystalline metal foams, without sacrificing the simplicity of processing methods made for low-melting crystalline alloys. Three different amorphous metal foams are developed in these chapters, and their structures and properties characterized. It is shown for the first time that amorphous metal foams, due to stabilization of shear bands during bending of their small strut-like features, are capable of compressive ductility comparable to that of ductile crystalline metal foams. A two-fold improvement in mechanical energy absorption relative to crystalline aluminum foams is shown experimentally to result from this stabilization. The last two chapters discuss modifications in foam processing that are designed to introduce controllable and continuous gradients in local foam density, which should improve mass efficiency by mimicking the optimized structures found in natural cellular materials [64], as well as facilitate the bonding and joining of foams with solid materials in higher-order structures. Two new processing methods are developed, one based on replication of nonuniformly-compressed polymer

  10. An ocean-land-atmosphere coupled model for tropical cyclone landfall processes: The multi-layer ocean model and its verification

    Institute of Scientific and Technical Information of China (English)

    DUAN Yihong; YU Runling; LI Yongping

    2006-01-01

    POM (Princeton ocean model) tentatively taken as the ocean part of an ocean-land-atmosphere coupled model is verified for the ultimate purpose of studying the landfall process of tropical cyclone (TC) in the western North Pacific. The POM is tested with monthly mean wind stress in the summer and given lateral boundary conditions. The results indicate that the equilibrium state of the ocean is in accordance with the climate mean, with the error in sea surface temperature (salinity) less than 0.5 ℃ (0.5). The simulated ocean currents are reasonable as well. Several numerical experiments are designed to verify the oceanic response to a stationary or moving TC. It is found that the results agree fairly well with the previous work, including both the drop magnitude and the distribution of sea temperature. Compared with the simple two-layer ocean model used by some other studies, the response of the ocean to a TC is more logical here. The model is also verified in a real case with a TC passing the neighborhood of a buoy station. It is shown that the established ocean model can basically reproduce the sea surface temperature change as observed.

  11. Radiation Processing of Advanced Composite Materials

    International Nuclear Information System (INIS)

    Advanced composites, such as carbon-fiber-reinforced plastics, are being used widely for many applications. Carbon fiber/epoxies composites have attracted special attention from the aircraft, aerospace, marine engineering, sporting goods and transportation industries, because they have useful mechanical properties including high strength-to-weight and stiffness-to-weight ratios, a corrosion resistant, impact and damage tolerance characteristics and wear properties. Thermal curing has been the dominant industrial process for advanced composites until now, however, a radiation curing process using UV, microwave x-ray, electron-beam(E-beam) and γ-ray has emerged as a better alternative in recent years. These processes are compatible with the manufacturing of composites using traditional fabrication methods including a filament/tape winding, pultrusion, resin transfer moulding and hand lay-up. In this study, E-beam curable carbon fiber/epoxy composites were manufactured, and their mechanical properties were investigated. Two epoxy resins (bisphenol-A, bisphenol-F) containing photo-initiators (tri aryl sulfonium hexafluorophosphate, tri aryl sulfonium hexafluoroantimonate) were used as a matrix and a 4H-satin carbon woven fabric was used as a reinforcement. And then an electron beam irradiated the composites up to 200 kGy in a vacuum and an inert atmosphere. The cure cycle was optimized and the properties of composites were evaluated and analyzed via a differential scanning calorimetry, scanning electron microscopy, sol-gel extractions, FT-NIR, universal test machine, and an impact tester. The gel content, glass transition temperature and mechanical strength of the irradiated composites were increased with an increasing radiation dose

  12. Development of Advanced Spent Fuel Management Process

    International Nuclear Information System (INIS)

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm2 and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields

  13. Development of Advanced Spent Fuel Management Process

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G. (and others)

    2007-06-15

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm{sup 2} and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields.

  14. Modified diffusion with memory for cyclone track fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Bernido, Christopher C., E-mail: cbernido@mozcom.com [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Carpio-Bernido, M. Victoria [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Escobido, Matthew G.O. [W. Sycip Graduate School of Business, Asian Institute of Management, 123 Paseo de Roxas Ave., Makati City 1260 (Philippines)

    2014-06-13

    Fluctuations in a time series for tropical cyclone tracks are investigated based on an exponentially modified Brownian motion. The mean square displacement (MSD) is evaluated and compared to a recent work on cyclone tracks based on fractional Brownian motion (fBm). Unlike the work based on fBm, the present approach is found to capture the behavior of MSD versus time graphs for cyclones even for large values of time. - Highlights: • Cyclone track fluctuations are modeled as stochastic processes with memory. • Stochastic memory functions beyond fractional Brownian motion are introduced. • The model captures the behavior of cyclone track fluctuations for longer periods of time. • The approach can model time series for other fluctuating phenomena.

  15. Impact of Ocean Barrier Layers on Tropical Cyclone Intensification

    Science.gov (United States)

    Balaguru, K.; Chang, P.; Saravanan, R.; Leung, L.

    2012-12-01

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.;

  16. Advanced laser processing of glass materials

    Science.gov (United States)

    Sugioka, Koji; Obata, Kotaro; Cheng, Ya; Midorikawa, Katsumi

    2003-09-01

    Three kinds of advanced technologies using lasers for glass microprocessing are reviewed. Simultaneous irradiation of vacuum ultraviolet (VUV) laser beam, which possesses extremely small laser fluence, with ultraviolet (UV) laser achieves enhanced high surface and edge quality ablation in fused silica and other hard materials with little debris deposition as well as high-speed and high-efficiency refractive index modification of fused silica (VUV-UV multiwavelength excitation processing). Metal plasma generated by the laser beam effectively assists high-quality ablation of transparent materials, resulting in surface microstructuring, high-speed holes drilling, crack-free marking, color marking, painting and metal interconnection for the various kinds of glass materials (laser-induced plasma-assisted ablation (LIPAA)). In the meanwhile, a nature of multiphoton absorption of femtosecond laser by transparent materials realizes fabrication of true three-dimensional microstructures embedded in photosensitive glass.

  17. Advanced Color Image Processing and Analysis

    CERN Document Server

    2013-01-01

    This volume does much more than survey modern advanced color processing. Starting with a historical perspective on ways we have classified color, it sets out the latest numerical techniques for analyzing and processing colors, the leading edge in our search to accurately record and print what we see. The human eye perceives only a fraction of available light wavelengths, yet we live in a multicolor world of myriad shining hues. Colors rich in metaphorical associations make us “purple with rage” or “green with envy” and cause us to “see red.” Defining colors has been the work of centuries, culminating in today’s complex mathematical coding that nonetheless remains a work in progress: only recently have we possessed the computing capacity to process the algebraic matrices that reproduce color more accurately. With chapters on dihedral color and image spectrometers, this book provides technicians and researchers with the knowledge they need to grasp the intricacies of today’s color imaging.

  18. Recent advances in EEG data processing.

    Science.gov (United States)

    Zetterberg, L H

    1978-01-01

    It is argued that the most interesting advances in EEG signal processing are with methods based on descriptive mathematical models of the process. Formulation of auto-regressive (AR) and mixed autoregressive and moving average (ARMA) models is reviewed for the scalar and the multidimensional cases and extensions to allow time-varying coefficients are pointed out. Data processing with parametric models, DPPM, involves parameter estimation and a large number of algorithms are available. Emphasis is put on those that are simple to apply and require a modest amount of computation. A recursive algorithm by Levinson, Robinson and Durbin is well suited for estimation of the coefficients in the AR model and for tests of model order. It is applicable to both the scalar and multidimensional cases. The ARMA model can be handled by approximation of an AR model or by nonlinear optimization. Recursive estimation with AR and ARMA models is reviewed and the connection with the Kalman filter pointed out. In this way processes with time-varying properties may be handled and a stationarity index is defined. The recursive algorithms can deal with AR or ARMA models in the same way. A reformulation of the algorithm to include sparsely updated parameter estimates significantly speeds up the calculations. It will allow several EEG channels to be handled simultaneously in real time on a modern minicomputer installation. DPPM has been particularly successful in the areas of spectral analysis and detection of short transients such as spikes and sharp waves. Recently some interesting attempts have been made to apply classification algorithms to estimated parameters. A brief review is made of the main results in these areas.

  19. Induced effects of advanced oxidation processes

    Science.gov (United States)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  20. Advanced sludge reduction and phosphorous removal process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly in this system. When chemical oxygen demand ρ(COD) is 332 - 420 mg/L, concentration of ammonia ρ(NH3-N) is 30 - 40 mg/L and concentration of total phosphorous ρ(TP) is 6.0 - 9.0 mg/L in influent, the system still ensures ρ(COD)<23 mg/L, ρ(NH3-N)<3.2 mg/L and ρ(TP)<0.72 mg/L in effluent. Besides, when the concentration of dissolved oxygen ρ(DO) is around 1.0 mg/L, sludge production is less than 0. 140 g with the consumption of 1 g COD, and the phosphorous removal exceeds 91%. Also, 48.4% of total nitrogen is removed by simultaneous nitrification and denitrification.

  1. Study on Non-Collision Mineralizing Mechanism of Froth Cyclone

    Institute of Scientific and Technical Information of China (English)

    董平; 许占贤; 周晓玲

    2002-01-01

    On the basis of the mineralizing mechanism of froth cyclone, this paper expounds that the froth cyclone flotation process is accomplished in a limited centrifugal field. The main feature of air bubble mineralizing in the froth cyclone is a synthetic mineralizing process, of which the non-collision mineralization of minute air bubble separated out dominates, supplemented with the collision mineralization. Moreover, this paper points out that the hydrophobic separated out and centrifugal force strengthen the selectivity of fine coal particle, accelerate the flotation speed and improve the slime recovery.

  2. Analysis on the Physical Mechanism of Snowstorm Generated by the South Cyclone

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study the physical mechanism of snowstorm which was generated by the south cyclone. [Method] By using the routine meteorological observation data, satellite data and MM5 mode output data, the snowstorm weather in the east of Heilongjiang Province during March 4-6, 2007 was analyzed. The physical mechanism of snowstorm which was generated by the south cyclone was discussed. [Result] Jianghuai cyclone advanced northward to generate the snowstorm. In the middle and high latitu...

  3. Extra-tropical Cyclones and Windstorms in Seasonal Forecasts

    Science.gov (United States)

    Leckebusch, Gregor C.; Befort, Daniel J.; Weisheimer, Antje; Knight, Jeff; Thornton, Hazel; Roberts, Julia; Hermanson, Leon

    2015-04-01

    Severe damages and large insured losses over Europe related to natural phenomena are mostly caused by extra-tropical cyclones and their related windstorm fields. Thus, an adequate representation of these events in seasonal prediction systems and reliable forecasts up to a season in advance would be of high value for society and economy. In this study, state-of-the-art seasonal forecast prediction systems are analysed (ECMWF, UK Met Office) regarding the general climatological representation and the seasonal prediction of extra-tropical cyclones and windstorms during the core winter season (DJF) with a lead time of up to four months. Two different algorithms are used to identify cyclones and windstorm events in these datasets. Firstly, we apply a cyclone identification and tracking algorithm based on the Laplacian of MSLP and secondly, we use an objective wind field tracking algorithm to identify and track continuous areas of extreme high wind speeds (cf. Leckebusch et al., 2008), which can be related to extra-tropical winter cyclones. Thus, for the first time, we can analyse the forecast of severe wind events near to the surface caused by extra-tropical cyclones. First results suggest a successful validation of the spatial climatological distributions of wind storm and cyclone occurrence in the seasonal forecast systems in comparison with reanalysis data (ECMWF-ERA40 & ERAInterim) in general. However, large biases are found for some areas. The skill of the seasonal forecast systems in simulating the year-to-year variability of the frequency of severe windstorm events and cyclones is investigated using the ranked probability skill score. Positive skill is found over large parts of the Northern Hemisphere as well as for the most intense extra-tropical cyclones and its related wind fields.

  4. Research into the Cleaning Efficiency of 300 m3/h Maintained by the Spiral Multi-Channel Cyclone in the Process of Removing Solid Particles of <20 µm

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2014-10-01

    Full Text Available Tests on the cleaning efficiency of an experimental spiral cyclone have been conducted to determine the removal efficiency of the solid particles the dispersion of which makes <20 µm in the streamlined multi-channel cyclone. The introduced device is adapted to removing ultrafine particulate matter from contaminated air (gas flow. A multi-channel cyclone with spiral casing has been designed at the Department of Environmental Protection (DEP of Vilnius Gediminas Technical University. Experimental studies have disclosed that air (gas flow cleaning efficiency of the spiral multi-cyclone (capacity 300 m3 depend on the internal structure of the device, i.e. on the number of channels and air (gas flow distribution ratio of transit and peripheral channels. Also, the treatment efficiency of the applied equipment has been evaluated removing solid particles of different nature. AFA-VP-20 filters have been employed for conducting experimental tests. The obtained results have disclosed that solid granite particles – 95.1%, glass – 91.4% and wood – 92.2% are removed most effectively.

  5. Teaching an advanced processing course with hands-on projects

    OpenAIRE

    Simar, Aude; International Conference on Materials Education

    2015-01-01

    The present work discusses an advanced processing course with 10 magisterial courses (2h each) where theoretical aspects are covered and three hands-on projects. This advanced manufacturing course follows a basic course reviewing all manufacturing technologies. The courses concern process selection, advanced machining and additive manufacturing. To each of these topics a project is associated where the use of computer technologies for manufacturing is emphasized. The process selection process...

  6. Natural language processing and advanced information management

    Science.gov (United States)

    Hoard, James E.

    1989-01-01

    Integrating diverse information sources and application software in a principled and general manner will require a very capable advanced information management (AIM) system. In particular, such a system will need a comprehensive addressing scheme to locate the material in its docuverse. It will also need a natural language processing (NLP) system of great sophistication. It seems that the NLP system must serve three functions. First, it provides an natural language interface (NLI) for the users. Second, it serves as the core component that understands and makes use of the real-world interpretations (RWIs) contained in the docuverse. Third, it enables the reasoning specialists (RSs) to arrive at conclusions that can be transformed into procedures that will satisfy the users' requests. The best candidate for an intelligent agent that can satisfactorily make use of RSs and transform documents (TDs) appears to be an object oriented data base (OODB). OODBs have, apparently, an inherent capacity to use the large numbers of RSs and TDs that will be required by an AIM system and an inherent capacity to use them in an effective way.

  7. Plan for advanced microelectronics processing technology application

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  8. Cyclone formation and development in the Antarctic Prydz Bay

    Institute of Scientific and Technical Information of China (English)

    解思梅; 梅山; 刘克威; 魏立新

    2002-01-01

    Using meteorological data of field observation in 1990~ 2000 , especially polar orbit highresolution NOAA satellite cloud maps received from the Antarctic expedition vessel since 1997, the formation and development of the Prydz Bay cyclone are studied in this paper. Some new viewpoints are suggested such as: when surround-polar cyclone enters the Prydz Bay, it can also intensify and develop in summer; cyclone can also develop in the easterlies in this bay. These view points revise old uncomplete view point that the Prydz Bay is a burial ground of cyclone, and also further consummate formation-development theory of surround-cyclone in the Antarctic westerlies and cyclone in the Antarctic easterlies. In this paper, the mechanism of ice-air-sea interaction in the Prydz Bay is studied, and the physical process of cyclone formation-development is explained. By use of wholly dynamic transportation method, an energy exchange case of a cyclone, which explosively developed after entering the Prydz Bay, is calculated. In the open water area, momentum flux is - 2.205 N/m2, sensible heat flux is 486.69 W/m2, and latent heat flux is 261.84 W/m2. It is larger than values of westerlies burst over the Pacific. The heat transferred from ocean to atmosphere in form of sensible and latent heat promotes cyclone development rapidly. In this case wind force was as strong as 12 grade, with 10 minutes average wind speed of 38 m/s, and instantaneous wind speed of 100 m/s which broke the wind speed record of 96 m/s in the Antarctic (Wendler and Kodama).

  9. The contribution of tropical cyclones to rainfall in Mexico

    Science.gov (United States)

    Agustín Breña-Naranjo, J.; Pedrozo-Acuña, Adrián; Pozos-Estrada, Oscar; Jiménez-López, Salma A.; López-López, Marco R.

    Investigating the contribution of tropical cyclones to the terrestrial water cycle can help quantify the benefits and hazards caused by the rainfall generated from this type of hydro-meteorological event. Rainfall induced by tropical cyclones can enhance both flood risk and groundwater recharge, and it is therefore important to characterise its minimum, mean and maximum contributions to a region or country's water balance. This work evaluates the rainfall contribution of tropical depressions, storms and hurricanes across Mexico from 1998 to 2013 using the satellite-derived precipitation dataset TMPA 3B42. Additionally, the sensitivity of rainfall to other datasets was assessed: the national rain gauge observation network, real-time satellite rainfall and a merged product that combines rain gauges with non-calibrated space-borne rainfall measurements. The lower Baja California peninsula had the highest contribution from cyclonic rainfall in relative terms (∼40% of its total annual rainfall), whereas the contributions in the rest of the country showed a low-to-medium dependence on tropical cyclones, with mean values ranging from 0% to 20%. In quantitative terms, southern regions of Mexico can receive more than 2400 mm of cyclonic rainfall during years with significant TC activity. Moreover, (a) the number of tropical cyclones impacting Mexico has been significantly increasing since 1998, but cyclonic contributions in relative and quantitative terms have not been increasing, and (b) wind speed and rainfall intensity during cyclones are not highly correlated. Future work should evaluate the impacts of such contributions on surface and groundwater hydrological processes and connect the knowledge gaps between the magnitude of tropical cyclones, flood hazards, and economic losses.

  10. A tropical cyclone application for virtual globes

    Science.gov (United States)

    Joseph Turk, F.; Hawkins, Jeff; Richardson, Kim; Surratt, Mindy

    2011-01-01

    Within the past ten years, a wide variety of publicly available environmental satellite-based data have become available to users and gained popular exposure in meteorological applications. For example, the Naval Research Laboratory (NRL) has maintained a well accepted web-based tropical cyclone (TC) website (NRL TC-Web) with a diverse selection of environmental satellite imagery and products covering worldwide tropical cyclones extending back to 1997. The rapid development of virtual globe technologies provides for an effective framework to efficiently demonstrate meteorological and oceanographic concepts to not only specialized weather forecasters but also to students and the general public. With their emphasis upon geolocated data, virtual globes represent the next evolution beyond the traditional web browser by allowing one to define how, where, and when various data are displayed and dynamically updated. In this article, we describe a virtual globe implementation of the NRL TC-Web satellite data processing system. The resulting NRL Tropical Cyclones on Earth (TC-Earth) application is designed to exploit the capabilities of virtual globe technology to facilitate the display, animation, and layering of multiple environmental satellite imaging and sounding sensors for effective visualization of tropical cyclone evolution. As with the NRL TC-Web, the TC-Earth application is a dynamic, realtime application, driven by the locations of active and historical tropical cyclones. TC-Earth has a simple interface that is designed around a series of placemarks that follow the storm track history. The position coordinates along the storm track are used to map-register imagery and subset other types of information, allowing the user a wide range of freedom to choose data types, overlay combinations, and animations with a minimum number of clicks. TC-Earth enables the user to quickly select and navigate to the storm of interest from the multiple TCs active at anytime around

  11. Proton Testing of Advanced Stellar Compass Digital Processing Unit

    DEFF Research Database (Denmark)

    Thuesen, Gøsta; Denver, Troelz; Jørgensen, Finn E

    1999-01-01

    The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland.......The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland....

  12. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    OpenAIRE

    Dorota Krzemińska; Ewa Neczaj; Gabriel Borowski

    2015-01-01

    High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC), Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s) are characterized by a common chemical feature: the capability of exploiting...

  13. Treeline advance - driving processes and adverse factors

    Directory of Open Access Journals (Sweden)

    F.-K. Holtmeier

    2007-06-01

    Full Text Available The general trend of climatically-driven treeline advance is modified by regional, local and temporal variations. Treelines will not advance in a closed front parallel to the shift of any isotherm to higher elevations and more northern latitudes. The effects of varying topography on site conditions and the after-effects of historical disturbances by natural and anthropogenic factors may override the effects of slightly higher average temperatures. Moreover, the varying treeline-forming species respond in different ways to a changing climate. Forest advance upwards and northwards primarily depends on successful regeneration and survival of young growth rather than on increasing growth rates of mature trees. Every assessment of treeline response to future climate change must consider the effects of local site conditions and feedbacks of in-creasing tree population in modulating the climatically-driven change. Treeline-shift will influence regional and local climates, pedogenesis, plant communities, animal populations and biodiversity as well as having a considerable effect on economic changes in primary production. A better understanding of the functional relationships between the many treeline-relevant factors and treeline dynamics can be achieved only by extensive research at different scales within different climatic regions supported by as many as possible experimental studies in the field together with laboratory and remote sensing techniques.

  14. Accelerating two-stage explosive development of an extratropical cyclone over the northwestern Pacific Ocean: a piecewise potential vorticity diagnosis

    Directory of Open Access Journals (Sweden)

    Shenming Fu

    2014-03-01

    Full Text Available An extreme explosive extratropical cyclone over the northwestern Pacific Ocean (NPO that formed in winter 2004 and went through two distinct rapid deepening periods was successfully simulated by a non-hydrostatic mesoscale model (MM5. Based on the simulation, the cyclone's rapid deepening was investigated in detail using the piecewise potential vorticity (PV inversion method which successfully captured the characteristics of the cyclone and its associated background circulations. Results indicated that explosive development of the cyclone was dominated by forcings in the extended surface layer (ESL, which were closely related to baroclinity (temperature advection and boundary layer processes (sensible heat exchange. In the interior layer (IL, direct effects of condensation were mainly conducive to the cyclone's development, whereas indirect effects (interactions with other layers mainly acted conversely. Processes associated with latent heat release (LHR were characterised by nonlinearity. Features of the precipitation, including intensity, duration, range and relative configuration to the cyclone determined the influences of condensation on the cyclone. In the upper layer (UL, tropopause-folding processes and horizontal PV advection were main influencing factors to the evolution of the cyclone. Upper-level forcings firstly exerted slight effects on the cyclone's development, since upper-level positive PV anomalies were far from the cyclone; then, as the influencing short-wave trough and the cyclone both moved northeastward, upper-level positive PV anomalies merged, enhanced and entered key areas of the cyclone, and thus both direct and indirect effects associated with the upper-level forcings strengthened significantly around the cyclone, and this dominated the cyclone's transition from a moderate explosive cyclone to an extreme one.

  15. Recent advances in imaging subcellular processes.

    Science.gov (United States)

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  16. Potential Application of Airborne Passive Microwave Observations for Monitoring Inland Flooding Caused by Tropical Cyclones

    Science.gov (United States)

    Hood, Robbie E.; Radley, C.D.; LaFontaine, F.J.

    2008-01-01

    Inland flooding from tropical cyclones can be a significant factor in storm-related deaths in the United States and other countries. Information collected during NASA tropical cyclone field studies suggest surface water and flooding induced by tropical cyclone precipitation can be detected and therefore monitored using passive microwave airborne radiometers. In particular, the 10.7 GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) flown on the NASA ER-2 has demonstrated high resolution detection of anomalous surface water and flooding in numerous situations. This presentation will highlight the analysis of three cases utilizing primarily satellite and airborne radiometer data. Radiometer data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during landfalling Hurricane Georges in both the Dominican Republic and Louisiana. A third case is landfalling Tropical Storm Gert in Eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7 GHz information. The results of this study suggest the benefit of an aircraft 10 GHz radiometer to provide real-time observations of surface water conditions as part of a multi-sensor flood monitoring network.

  17. Extratropical cyclone classification and its use in climate studies

    Science.gov (United States)

    Catto, J. L.

    2016-06-01

    Extratropical cyclones have long been known to be important for midlatitude weather. It is therefore important that our current state-of-the-art climate models are able to realistically represent these features, in order that we can have confidence in how they are projected to change in a warming climate. Despite the observation that these cyclones are extremely variable in their structure and features, there have, over the years, been numerous attempts to classify or group them. Such classifications can provide insight into the different cloud structures, airflows, and dynamical forcing mechanisms within the different cyclone types. This review collects and details as many classification techniques as possible, and may therefore act as a reference guide to classifications. These classifications offer the opportunity to improve the way extratropical cyclone evaluation in climate models is currently done by giving more insight into the dynamical and physical processes that occur in climate models (rather than just evaluating the mean state over a broad region as is often done). Examples of where these ideas have been used, or could be used, are reviewed. Finally, the potential impacts of future climate changes on extratropical cyclones are detailed. The ways in which the classification techniques could improve our understanding of future changes in extratropical cyclones and their impacts are given.

  18. JPL Tropical Cyclone Information System

    Data.gov (United States)

    National Aeronautics and Space Administration — The JPL Tropical Cyclone Information System (TCIS) brings together satellite and in situ data sets from various sources to help you find information for a...

  19. Advanced Materials Growth and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This most extensive of U.S. Army materials growth and processing facilities houses seven dedicated, state-of-the-art, molecular beam epitaxy and three metal organic...

  20. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  1. Advances in the Application of Image Processing Fruit Grading

    OpenAIRE

    Fang, Chengjun; Hua, Chunjian

    2013-01-01

    In the perspective of actual production, the paper presents the advances in the application of image processing fruit grading from several aspects, such as processing precision and processing speed of image processing technology. Furthermore, the different algorithms about detecting size, shape, color and defects are combined effectively to reduce the complexity of each algorithm and achieve a balance between the processing precision and processing speed are keys to automatic apple grading.

  2. 65-nm Cyclone Ⅲ FPGA

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Altera公司低功耗、低成本Cyclone Ⅲ系列65nm FPGA所有8个型号的产品级芯片实现量产,Cyclone Ⅲ系列产品已迅速应用于无线、军事、显示、汽车和工业市场的大量客户系统中。

  3. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  4. Recent Advancements in Semiconductor-based Optical Signal Processing

    DEFF Research Database (Denmark)

    Nielsen, M L; Mørk, Jesper

    2006-01-01

    Significant advancements in technology and basic understanding of device physics are bringing optical signal processing closer to a commercial breakthrough. In this paper we describe the main challenges in high-speed SOA-based switching....

  5. ADVANCED OXIDATION PROCESSES (AOP'S FOR THE TREATMENT OF CCL CHEMICALS

    Science.gov (United States)

    Research on treatment of Contaminant Candidate List (CCL) chemicals is being conducted. Specific groups of contaminants on the CCL will be evaluated using numerous advanced oxidation processes (AOPs). Initially, these CCL contaminants will be evaluated in groups based on chemical...

  6. Recent advances in radiation processing of food

    International Nuclear Information System (INIS)

    Commercial application of radiation technology for food processing started in the nineties after it was approved by FAO/IAEA/WHO and Codex Alimentarius Commission in the eighties. Sanitary applications were initially explored commercially with microbial decontamination of spices and dry ingredients as the primary commodities to be processed on a large scale. Subsequently, with the emergence of E.coli O157:H7 as the potential food poisoning risk in ground beef, irradiation of meat was initiated in the late nineties in the USA. Since then irradiation, has become a very useful food safety tool and the technology has been approved for addressing food safety risks in moluscan shellfish and vegetables like lettuce, spinach, and more recently for raw uncooked meat by USFDA. Phytosanitary applications assumed importance after USFDA approved irradiation as a method of phytosanitary treatment and subsequent endorsement of the process by International Plant Protection Convention (IPPC) in 2003. These approvals were responsible for development of international trade in agricultural commodities. The first to demonstrate the feasibility of the process were India and Australia, the countries that exported mangoes to New Zealand and USA, respectively. As far as the source of radiation is concerned, the world is slowly moving towards deployment of machine sources, thereby reducing its dependence on radioisotopes for commercial irradiation. (author)

  7. Black Swan Tropical Cyclones

    Science.gov (United States)

    Emanuel, K.; Lin, N.

    2012-12-01

    Virtually all assessments of tropical cyclone risk are based on historical records, which are limited to a few hundred years at most. Yet stronger TCs may occur in the future and at places that have not been affected historically. Such events lie outside the realm of historically based expectations and may have extreme impacts. Their occurrences are also often made explainable after the fact (e.g., Hurricane Katrina). We nickname such potential future TCs, characterized by rarity, extreme impact, and retrospective predictability, "black swans" (Nassim Nicholas Taleb, 2007). As, by definition, black swan TCs have yet to happen, statistical methods that solely rely on historical track data cannot predict their occurrence. Global climate models lack the capability to predict intense storms, even with a resolution as high as 14 km (Emanuel et al. 2010). Also, most dynamic downscaling methods (e.g., Bender et al. 2010) are still limited in horizontal resolution and are too expensive to implement to generate enough events to include rare ones. In this study, we apply a simpler statistical/deterministic hurricane model (Emanuel et al. 2006) to simulate large numbers of synthetic storms under a given (observed or projected) climate condition. The method has been shown to generate realistic extremes in various basins (Emanuel et al. 2008 and 2010). We also apply a hydrodynamic model (ADCIRC; Luettich et al. 1992) to simulate the storm surges generated by these storms. We then search for black swan TCs, in terms of the joint wind and surge damage potential, in the generated large databases. Heavy rainfall is another important TC hazard and will be considered in a future study. We focus on three areas: Tampa Bay in the U.S., the Persian Gulf, and Darwin in Australia. Tampa Bay is highly vulnerable to storm surge as it is surrounded by shallow water and low-lying lands, much of which may be inundated by a storm tide of 6 m. High surges are generated by storms with a broad

  8. Cyclones, windstorms and the IMILAST project

    Directory of Open Access Journals (Sweden)

    Tim D. Hewson

    2015-09-01

    Full Text Available By way of introduction to the TELLUS thematic cluster on outcomes of the IMILAST project (Intercomparison of MId-LAtitude STorm diagnostics, this paper presents the results of new research that is fundamental for the correct interpretation of IMILAST results. Specifically we investigated the mesoscale structure of cyclonic windstorms, and the representation of those windstorms in re-analysis data. The paper concludes with an overview of the project itself. Twenty-nine historic windstorms are studied in detail, using wide-ranging observational data, and on this basis a conceptual model of the life cycle of a typical windstorm-generating cyclone is developed. The model delineates three wind phenomena, the warm jet, the sting jet and the cold jet, and maps out the typical damage footprint left by each. Focussing on the boundary layer, the physical processes at work in each jet zone are investigated. These include the impact of near-surface stability and exposure on gust strength. Based on numerous cases, a generic description of the sting jet is provided, with many new features highlighted. This phenomenon looks to be unique in that exceptional gusts can be realised well inland because destabilisation is activated from above. We next investigate how well the widely-referenced ERA-Interim re-analysis, that has been a primary data source for IMILAST, can represent windstorms. In many ways, performance is suboptimal. Compared to a benchmark manually-analysed dataset, windstorm-generating cyclones generally do not deepen rapidly enough. In part, this is a resolution limitation. For one medium-sized cyclone, it is shown, using other models, that horizontal resolution of order 20 km or better is required to capture the most damaging winds. In the context of IMILAST, which has used data at resolutions ≥80 km, this is a fundamental result. For this and other reasons, caution is clearly needed when inferring storm behaviour and severity from model

  9. Proceedings of the second international conference on advanced oxidation processes

    International Nuclear Information System (INIS)

    The major objective of the conference is to discuss the recent developments in diversified fields in advanced oxidation processes. Development of new and modern technologies for water purification is vital to water management in any country. Advanced oxidation process is among the latest methodologies which are under tremendous researches in the recent past. In-situ generation of highly oxidizing species using chemical, photochemical, sonochemical and radiation chemical techniques were the focus of the discussions. Papers relevant to INIS are indexed separately

  10. Achievements and prospects of advanced materials processed by powder technology

    OpenAIRE

    Kaysser, W.

    1993-01-01

    In this paper examples from intermetallics, composites with ductile and high strength reinforcements, nanocrystalline and superplastic materials are used to illustrate generic and special achievements and prospects of advanced materials processed by powder technology. Processing technologies include reactive powder metallurgy, nanocrystalline processing, rapid solidification and mechanical alloying.

  11. Improving Seismic Image with Advanced Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mericy Lastra Cunill

    2012-07-01

    Full Text Available Taking Taking into account the need to improve the seismic image in the central area of Cuba, specifically in the area of the Venegas sector, located in the Cuban Folded Belt, the seismic data acquired by Cuba Petróleo (CUPET in the year 2007 was reprocessed according to the experience accumulated during the previous processing carried out in the same year, and the new geologic knowledge on the area. This was done with the objective of improving the results. The processing applied previously was analyzed by reprocessing the primary data with new focuses and procedures, among them are the following: the attenuation of the superficial wave with a filter in the Radon domain in its lineal variant, the change of the primary statics corrections of elevation by those of refraction, the study of velocity with the selection automatic biespectral of high density, the study of the anisotropy, the attenuation of the random noise, and the pre stack time and depth migration. As a result of this reprocessing, a structure that was not identified in the seismic sections of the previous processing was located at the top of a Continental Margin sediment located to the north of the sector that increased the potentialities of finding hydrocarbons in quantities of economic importance thus diminishing the risk of drilling in the sector Venegas.

  12. Technology advances for Space Shuttle processing

    Science.gov (United States)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  13. Advances in Processing of Bulk Ferroelectric Materials

    Science.gov (United States)

    Galassi, Carmen

    The development of ferroelectric bulk materials is still under extensive investigation, as new and challenging issues are growing in relation to their widespread applications. Progress in understanding the fundamental aspects requires adequate technological tools. This would enable controlling and tuning the material properties as well as fully exploiting them into the scale production. Apart from the growing number of new compositions, interest in the first ferroelectrics like BaTiO3 or PZT materials is far from dropping. The need to find new lead-free materials, with as high performance as PZT ceramics, is pushing towards a full exploitation of bariumbased compositions. However, lead-based materials remain the best performing at reasonably low production costs. Therefore, the main trends are towards nano-size effects and miniaturisation, multifunctional materials, integration, and enhancement of the processing ability in powder synthesis. Also, in control of dispersion and packing, to let densification occur in milder conditions. In this chapter, after a general review of the composition and main properties of the principal ferroelectric materials, methods of synthesis are analysed with emphasis on recent results from chemical routes and cold consolidation methods based on the colloidal processing.

  14. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  15. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process and a lineari...... on pilot plant equipment on the department of Chemical Engineering DTU Lyngby.......This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process...... cannot be achieved without violation of process constraints. A target calculation function can be used to calculate the optimal achievable target for the process. The use of hard and soft constraints for process input constraints in the MPC controllers, ensures feasible solutions. The computational load...

  16. Development of Advanced Voloxidation Process for Treatment of Spent Fuel

    International Nuclear Information System (INIS)

    Data for evaluation of the effects of advanced voloxidation on pyroprocessing of spent oxide fuel with a determination for a path forward such was produced as follows: effect of particle size and particle structure on oxide reduction, assessment of decladding options for pyroprocessing, effect of removal timing of fission products, analysis of radioactivity and decay heat of advanced voloxidation process, proliferation resistance of advanced voloxidation process, Effect of advanced voloxidation process on shielding. Also, performance objectives for advanced voloxidation with respective to the down stream effects was established. The technology on design and manufacture of voloxidation and off gas treatment equipment was established. The possibility of fabrication of porous granule as a feed material for electro-reduction process was confirmed using rotary voloxidizer and SIMFUEL. The operational conditions for advanced voloxidation process consisting of 4 steps heat treatment was drawn to vaporize fission products and fabricate UO2 granule. The trapping test of Cs and Re(surrogate material of Tc) using newly developed filter were selectively separated at trapping efficiency of 99%, respectively. Data for oxidative decladding, vaporization rate of fission products, and particle size from experiment on voloxidation using spent fuel in ILN hot cell was acquisited including data of off gas trapping characteristics and verification of excellent performance of filter

  17. Advances in modeling plastic waste pyrolysis processes

    Directory of Open Access Journals (Sweden)

    Y. Safadi, J. Zeaiter

    2014-01-01

    Full Text Available The tertiary recycling of plastics via pyrolysis is recently gaining momentum due to promising economic returns from the generated products that can be used as a chemical feedstock or fuel. The need for prediction models to simulate such processes is essential in understanding in depth the mechanisms that take place during the thermal or catalytic degradation of the waste polymer. This paper presents key different models used successfully in literature so far. Three modeling schemes are identified: Power-Law, Lumped-Empirical, and Population-Balance based equations. The categorization is based mainly on the level of detail and prediction capability from each modeling scheme. The data shows that the reliability of these modeling approaches vary with the degree of details the experimental work and product analysis are trying to achieve.

  18. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Science.gov (United States)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  19. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  20. Do tropical cyclones shape shorebird habitat patterns? Biogeoclimatology of snowy plovers in Florida.

    Directory of Open Access Journals (Sweden)

    Matteo Convertino

    Full Text Available BACKGROUND: The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations. CONCLUSIONS/SIGNIFICANCE: Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones.

  1. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  2. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  3. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  4. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2013-01-01

    Most advanced process control systems are based on Model Predictive Control (MPC). In this paper we discuss three critical issues for the practical implementation of linear MPC for process control applications. The rst issue is related to oset free control and disturbance models; the second issue...

  5. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  6. Year 2000 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2000 Tropical Cyclones of the World poster. During calendar year 2000, forty-five tropical cyclones with sustained surface winds of at least 64 knots were...

  7. Year 2001 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2001 Tropical Cyclones of the World poster. During calendar year 2001, fifty tropical cyclones with sustained surface winds of at least 64 knots were observed...

  8. 2003 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2003 Tropical Cyclones of the World poster. During calendar year 2003, fifty-one tropical cyclones with sustained surface winds of at least 64 knots were...

  9. Development of Operational Parameters for Advanced Voloxidation Process at KAERI

    International Nuclear Information System (INIS)

    KAERI has been developing a voloxidation process as a head-end process of pyroprocessing technology with INL (Idaho National Laboratory). The work scope of KAERI is to develop the operation parameters for advanced voloxidation process at KAERI using surrogate materials and SIMFUEL. In order to evaluate operation conditions of an advanced voloxidation process, oxidation and vaporization behavior of metals and Cs compounds was investigated in terms of thermal treatment atmosphere and temperature by using thermodynamic data. And also, the oxidation and vaporization behavior of semi-volatile fission products with process pressure and temperature was investigated using surrogate materials. Particle size control for U3O8 powder was investigated using SIMFUEL and a rotary voloxidizer. According to analysis of KAERI works, the operation conditions for advanced voloxiation process may be consisted of the following four steps: 1) oxidation of UO2 pellet into U3O8 powder at 500 .deg. C in oxidative atmosphere, 2) additional oxidation of noble metal alloy and vaporization of high vapor pressure of fission products at 700 .deg. C in oxidative atmosphere, 3) granulation of U3O8 powder and vaporization of Cs compounds at 1200 .deg. C in an atmosphere of argon, and 4) reduction of UO2+x granules into UO2 granules at 1000 .deg. C in an atmosphere of 4%H2-Ar. This report will be used as a useful means for determining the operation parameters for advanced voloxidation process

  10. Advances in the Process Development of Biocatalytic Processes

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Lima Ramos, Joana; Al-Haque, Naweed;

    2013-01-01

    Biocatalysis is already established in chemical synthesis on an industrial scale, in particular in the pharmaceutical sector. However, the wider implementation of biocatalysis is currently hindered by the extensive effort required to develop a competitive process. In order that resources spent on...

  11. Treatment of Landfill Leachate by Advanced Oxidation Processes

    OpenAIRE

    Koçak, Seda; Güney, Cansu; Argun, M. Tuna; Tarkın, Begüm; Kırtman, E. Özlem; Akgül, Deniz; MERTOGLU, Bulent

    2013-01-01

    Organic and inorganic pollutants found in municipal landfill leachate lead to severe problems for the environment when directly discharged to water bodies without treatment. Due to the existence of recalcitrant organics in leachate, advanced oxidation processes (AOP) are mostly applied to biologically treated leachate as a polishing step. In this study, the effectiveness of Fenton process on leachate treatment was examined. The Fenton process was applied to both young (untreated) and biologic...

  12. Intensification of tropical cyclones in the GFS model

    Directory of Open Access Journals (Sweden)

    J. C. Marín

    2008-09-01

    Full Text Available Special forecasts from the Global Forecast System (GFS model were used in this study to evaluate how the intensification process in a tropical cyclone is represented in this model. Several tropical cyclones that developed in 2005 were analyzed in terms of the storm-scale circulation rather than more traditional measures such as maximum wind or minimum central pressure. The primary balance governing the circulation in the planetary boundary layer is between the convergence of environmental vorticity, which tends to spin up the storm, and surface friction, which tends to spin it down. In addition, we employ recently developed ideas about the relationship between precipitation and the saturation fraction of the environment to understand the factors controlling mass, and hence vorticity convergence. The budget of moist entropy is central to this analysis.

    Two well-known governing factors for cyclone intensification emerge from this study; surface moist entropy fluxes, dependent in the model on sea surface temperature and cyclone-generated surface winds, and ventilation of the system by dry environmental air. Quantitative expressions for the role of these factors in cyclone intensification are presented in this paper.

  13. Advanced solidification processing of an industrial gas turbine engine component

    Science.gov (United States)

    Clemens, Mei Ling; Price, Allen; Bellows, Richard S.

    2003-03-01

    This paper will describe the efforts of the Advanced Turbine Airfoil Manufacturing Technology Program sponsored by the U.S. Department of Energy through the Oak Ridge National Laboratory and Howmet Research Corporation. The purpose of the program is to develop single-crystal and directionally solidified casting technologies to benefit Advanced Turbine Systems (ATS) industrial and utility gas turbine engines. The focus is on defining and implementing advanced Vacuum Induction Melting (VIM) furnace enhancements that provide precise control of mold temperatures during solidification. Emphasis was placed on increasing the total magnitude of thermal gradients while minimizing the difference in maximum and minimum gradients produced during the solidification process. Advanced VIM casting techniques were applied to Solar Turbines Incorporated’s Titan 130 First Stage High Pressure Turbine Blade under the ATS program. A comparison of the advanced VIM casting process to the conventional Bridgeman casting process will be presented as it pertains to the thermal gradients achieved during solidification, microstructure, elemental partitioning characterization, and solution heat treat response.

  14. Electron processing of fibre-reinforced advanced composites

    Science.gov (United States)

    Singh, Ajit; Saunders, Chris B.; Barnard, John W.; Lopata, Vince J.; Kremers, Walter; McDougall, Tom E.; Chung, Minda; Tateishi, Miyoko

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres, and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties.

  15. Microeconomics of advanced process window control for 50-nm gates

    Science.gov (United States)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  16. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao;

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  17. Processing effects on the nutritional advancement of probiotics and prebiotics

    OpenAIRE

    Ananta, E.; Birkeland, S.-E.; Corcoran, B.; Fitzgerald, Gerald F.; Hinz, S.; Klijn, A.; Matto, J.; Mercernier, A.; Nilsson, U.; Nyman, M.; O’Sullivan, E; Parche, S; Rautonen, N.; Ross, R. Paul; Saarela, M.

    2004-01-01

    Investigates the processing effects on the nutritional advancement of probiotics and prebiotics. Efforts of health researchers to overcome difficulties that impact on the performance of functional foods; Importance of characterizing the interactions between probiotics and prebiotics in starter cultures or in functional foods prior to human consumption; Role of prebiotics on the viability and stability of probiotic cultures within food matrices during processing and storage.

  18. Advanced multiresponse process optimisation an intelligent and integrated approach

    CERN Document Server

    Šibalija, Tatjana V

    2016-01-01

    This book presents an intelligent, integrated, problem-independent method for multiresponse process optimization. In contrast to traditional approaches, the idea of this method is to provide a unique model for the optimization of various processes, without imposition of assumptions relating to the type of process, the type and number of process parameters and responses, or interdependences among them. The presented method for experimental design of processes with multiple correlated responses is composed of three modules: an expert system that selects the experimental plan based on the orthogonal arrays; the factor effects approach, which performs processing of experimental data based on Taguchi’s quality loss function and multivariate statistical methods; and process modeling and optimization based on artificial neural networks and metaheuristic optimization algorithms. The implementation is demonstrated using four case studies relating to high-tech industries and advanced, non-conventional processes.

  19. Degradation of 2-hydroxybenzoic acid by advanced oxidation processes

    OpenAIRE

    C. L. P. S. Zanta; Martínez-Huitle, C. A.

    2009-01-01

    In this study, advanced oxidation processes (AOPs) such as the UV/H2O2 and Fenton processes were investigated for the degradation of 2-hydroxybenzoic acid (2-HBA) in lab-scale experiments. Different [H2O2]/[2-HBA] molar ratios and pH values were used in order to establish the most favorable experimental conditions for the Fenton process. For comparison purposes, degradation of 2-HBA was carried out by the UV/H2O2 process under Fenton experimental conditions. The study showed that the Fenton p...

  20. Advanced Purex process for the new French reprocessing plants

    International Nuclear Information System (INIS)

    The paper describes the main process innovations of the new Cogema reprocessing plants of La Hague (UP3 and UP2 800). Major improvements of process like the use of rotary dissolvers and annular columns, and also entirely new processes like solvent distillation and plutonium oxidizing dissolution, yield an advanced Purex process. The results of these innovations are significant improvements for throughput, end-products purification performances and waste minimization. They contribute also to limit personnel exposure. The main results of the first three years of operation are described. (author). 3 refs., 5 figs

  1. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as high performance fuel concepts now under development for delivery in the late 1980s. The paper also discusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability

  2. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as 'high performance' fuel concepts now under development for delivery in the late 1980s. The paper also disusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability. (author)

  3. Advanced Reactors Thermal Energy Transport for Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  4. Application of high magnetic fields in advanced materials processing

    Institute of Scientific and Technical Information of China (English)

    MA Yanwei; XIAO Liye; YAN Luguang

    2006-01-01

    Recently, steady magnetic fields available from cryogen-free superconducting magnets open up new ways to process materials. In this paper,the main results obtained by using a high magnetic field to process several advanced materials are reviewed. These processed objects primarily include superconducting, magnetic, metallic and nanometer-scaled materials. It has been found that a high magnetic field can effectively align grains when fabricating the magnetic and non-magnetic materials and make inclusions migrate in a molten metal. The mechanism is discussed from the theoretical viewpoint of magnetization energy.

  5. A climatological analysis of Saharan cyclones

    Science.gov (United States)

    Ammar, K.; El-Metwally, Mossad; Almazroui, Mansour; Abdel Wahab, M. M.

    2014-07-01

    In this study, the climatology of Saharan cyclones is presented in order to understand the Saharan climate, its variability and its changes. This climatology includes an analysis of seasonal and interannual variations, the identification and classification of cyclone tracks, and a presentation of their chief characteristics. The data used are drawn from the 1980-2009, 2.5° × 2.5°, NCEP/NCAR reanalysis (NNRP I) dataset. It is found that cyclone numbers increase in September-October-November (SON) at 4.9 cyclones per decade, while they decrease in June-July-August at 12.3 cyclones per decade. The identification algorithm constructed 562 tracks, which are categorized into 12 distinct clusters. Around 75 % of the Saharan cyclones originate south of the Atlas Mountains. The percentage of tracks that move over the Sahara is around 48 %. The eastern Mediterranean receives 27 % of the Saharan tracks, while the western basin receives only 17 and 8 % of all the Saharan cyclones decay over the Arabian Peninsula. The maximum cyclonic activity occurs in April. There is a general decrease in the number of tracks in all categories between 1993 and 2009, compared with the period between 1980 and 1992. About 72 % of the Saharan cyclones do not live more than 3 days, and about 80 % of the cyclones in the tracks never reach central pressures 1,000 hPa during their lifetimes. The maximum deepening in the tracks occurs over the western Mediterranean and over northern Algeria.

  6. Thunderstorms caused by southern cyclones in Estonia

    Directory of Open Access Journals (Sweden)

    Kaupo Mändla

    2014-05-01

    Full Text Available The relationships between the frequency and duration of thunderstorms, lightning and southern cyclones over Estonia are presented for the period 1950–2010. A total of 545 southern cyclones and 2106 thunderstorm days were detected, whereas 11.3% of the observed thunder days were associated with southern cyclones. At the same time, 29.2% of all southern cyclones were accompanied by thunderstorms. In the thunder season, however, this percentage was much higher, reaching up to 80% in summer months. The number of thunder days was largest when the centres of southern cyclones passed a measuring station at a distance less than 500 km. The number of cloud-to-ground lightning strikes related to southern cyclones was larger than that of any other thunder events. The results of our study demonstrate that the intensity of thunderstorms related to southern cyclones is higher than that of other thunderstorms. Correlation analysis revealed statistically significant relationships between the frequency of thunder days related to southern cyclones and the frequency of southern cyclones, also between the frequency of thunder days related to southern cyclones and days of other thunder events.

  7. Characterization of Rice Husk for Cyclone Gasifier

    Science.gov (United States)

    Mohamad Yusof, I.; Farid, N. A.; Zainal, Z. A.; Azman, M.

    The characterization of rice husk from local rice mills has been studied and evaluated to determine its potential utilization as a biomass fuel for a cyclone gasifier. The raw rice husk was pre-treated throughout a grinding process into smaller sizes of particles which is within a range of 0.4 to 1 mm and the sample of ground rice husk was analyzed for its fuel characteristics. The result of proximate analysis shows that the ground rice husk with size distribution within 0.4 to 1 mm contains 13.4% of fixed carbon, 62.95% of volatile matter and 18.5% of ash on dry basis. The moisture content of the sample was measured and determined as 10.4% (wet basis) and the calorific value was found to be approximately 14.8 MJ kg-1 with bulk density of 91.46 kg m-3. The result of ultimate analysis validates both ash and moisture content which are found to be 18.15 and 10.4%, respectively. Other elemental compositions determined by the ultimate analysis are carbon (37.9%), hydrogen (5.2%), nitrogen (0.14%), sulfur (0.61%) and oxygen (27.7% by difference). The study has identified that the fuel characteristics of the ground rice husk is comparable with other types of biomass and thus, making it another potential source of fuel for the cyclone gasification system.

  8. Advanced oxidation processes for wastewater reuse - removal of micropollutants

    OpenAIRE

    James, Christopher P.

    2013-01-01

    The removal of micropollutants (MPs) from secondary municipal wastewater by an advanced oxidation process (AOP) based on UV irradiation combined with hydrogen peroxide (UV/H2O2) has been assessed through pilot-scale experiments incorporating microfiltration (MF) and reverse osmosis (RO). Tests employed low concentrations of a range of emerging contaminants of concern, and the water quality varied by blending of waters from different sources. Under optimum H2O2 and lamp power...

  9. Advanced information processing system: Input/output network management software

    Science.gov (United States)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  10. Process development status report for advanced manufacturing projects

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  11. Scenarios in the development of Mediterranean cyclones

    Directory of Open Access Journals (Sweden)

    M. Romem

    2007-07-01

    Full Text Available The Mediterranean is one of the most cyclogenetic regions in the world. The cyclones are concentrated along its northern coasts and their tracks are oriented more or less west-east, with several secondary tracks connecting them to Europe and to North Africa. The aim of this study is to examine scenarios in the development of Mediterranean cyclones, based on five selected winter seasons (October–March. We detected the cyclones subjectively using 6-hourly Sea-Level Pressure maps, based on the NCAR/NCEP reanalysis archive.

    HMSO (1962 has shown that most Mediterranean cyclones (58% enter the Mediterranean from the Atlantic Ocean (through Biscay and Gibraltar, and from the south-west, the Sahara Desert, while the rest are formed in the Mediterranean Basin itself. Our study revealed that only 13% of the cyclones entered the Mediterranean, while 87% were generated in the Mediterranean Basin. The entering cyclones originate in three different regions: the Sahara Desert (6%, the Atlantic Ocean (4%, and Western Europe (3%.

    The cyclones formed within the Mediterranean Basin were found to generate under the influence of external cyclonic systems, i.e. as "daughter cyclones" to "parent cyclones" or troughs. These parent systems are located in three regions: Europe (61%, North Africa and the Red Sea (34.5% and the Mediterranean Basin itself (4.5%. The study presents scenarios in the development of Mediterranean cyclones during the winter season, emphasizing the cyclogenesis under the influence of various external forcing.

    The large difference with respect to the findings of HMSO (1962 is partly explained by the dominance of spring cyclones generating in the Sahara Desert, especially in April and May that were not included in our study period.

  12. Integrated Seismic Event Detection and Location by Advanced Array Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kvaerna, T; Gibbons, S J; Ringdal, F; Harris, D B

    2007-02-09

    The principal objective of this two-year study is to develop and test a new advanced, automatic approach to seismic detection/location using array processing. We address a strategy to obtain significantly improved precision in the location of low-magnitude events compared with current fully-automatic approaches, combined with a low false alarm rate. We have developed and evaluated a prototype automatic system which uses as a basis regional array processing with fixed, carefully calibrated, site-specific parameters in conjuction with improved automatic phase onset time estimation. We have in parallel developed tools for Matched Field Processing for optimized detection and source-region identification of seismic signals. This narrow-band procedure aims to mitigate some of the causes of difficulty encountered using the standard array processing system, specifically complicated source-time histories of seismic events and shortcomings in the plane-wave approximation for seismic phase arrivals at regional arrays.

  13. Objectively classifying Southern Hemisphere extratropical cyclones

    Science.gov (United States)

    Catto, Jennifer

    2016-04-01

    There has been a long tradition in attempting to separate extratropical cyclones into different classes depending on their cloud signatures, airflows, synoptic precursors, or upper-level flow features. Depending on these features, the cyclones may have different impacts, for example in their precipitation intensity. It is important, therefore, to understand how the distribution of different cyclone classes may change in the future. Many of the previous classifications have been performed manually. In order to be able to evaluate climate models and understand how extratropical cyclones might change in the future, we need to be able to use an automated method to classify cyclones. Extratropical cyclones have been identified in the Southern Hemisphere from the ERA-Interim reanalysis dataset with a commonly used identification and tracking algorithm that employs 850 hPa relative vorticity. A clustering method applied to large-scale fields from ERA-Interim at the time of cyclone genesis (when the cyclone is first detected), has been used to objectively classify identified cyclones. The results are compared to the manual classification of Sinclair and Revell (2000) and the four objectively identified classes shown in this presentation are found to match well. The relative importance of diabatic heating in the clusters is investigated, as well as the differing precipitation characteristics. The success of the objective classification shows its utility in climate model evaluation and climate change studies.

  14. Tracking Surface Cyclones with Moist Potential Vorticity

    Institute of Scientific and Technical Information of China (English)

    Zuohao CAO; Da-Lin ZHANG

    2004-01-01

    Surface cyclone tracks are investigated in the context of moist potential vorticity (MPV). A prognostic equation of surface absolute vorticity is derived which provides a basis for using negative MPV (NMPV) in the troposphere as an alternative approach to track surface cyclones. An observed case study of explosive lee cyclogenesis is performed to test the effectiveness of the MPV approach. It is shown that when a surface cyclone signal is absent due to the blocking of the Rocky Mountains, the surface cyclone can be well identified by tracing the peak NMPV.

  15. Asymmetric and axisymmetric dynamics of tropical cyclones

    Science.gov (United States)

    Persing, J.; Montgomery, M. T.; McWilliams, J. C.; Smith, R. K.

    2013-12-01

    We present the results of idealized numerical experiments to examine the difference between tropical cyclone evolution in three-dimensional (3-D) and axisymmetric (AX) model configurations. We focus on the prototype problem for intensification, which considers the evolution of an initially unsaturated AX vortex in gradient-wind balance on an f plane. Consistent with findings of previous work, the mature intensity in the 3-D model is reduced relative to that in the AX model. In contrast with previous interpretations invoking barotropic instability and related horizontal mixing processes as a mechanism detrimental to the spin-up process, the results indicate that 3-D eddy processes associated with vortical plume structures can assist the intensification process by contributing to a radial contraction of the maximum tangential velocity and to a vertical extension of tangential winds through the depth of the troposphere. These plumes contribute significantly also to the azimuthally averaged heating rate and the corresponding azimuthal-mean overturning circulation. The comparisons show that the resolved 3-D eddy momentum fluxes above the boundary layer exhibit counter-gradient characteristics during a key spin-up period, and more generally are not solely diffusive. The effects of these eddies are thus not properly represented by the subgrid-scale parameterizations in the AX configuration. The resolved eddy fluxes act to support the contraction and intensification of the maximum tangential winds. The comparisons indicate fundamental differences between convective organization in the 3-D and AX configurations for meteorologically relevant forecast timescales. While the radial and vertical gradients of the system-scale angular rotation provide a hostile environment for deep convection in the 3-D model, with a corresponding tendency to strain the convective elements in the tangential direction, deep convection in the AX model does not suffer this tendency. Also, since

  16. Asymmetric and axisymmetric dynamics of tropical cyclones

    Directory of Open Access Journals (Sweden)

    J. Persing

    2013-05-01

    Full Text Available We present the results of idealized numerical experiments to examine the difference between tropical cyclone evolution in three-dimensional (3-D and axisymmetric (AX model configurations. We focus on the prototype problem for intensification, which considers the evolution of an initially unsaturated AX vortex in gradient-wind balance on an f-plane. Consistent with findings of previous work, the mature intensity in the 3-D model is reduced relative to that in the AX model. In contrast with previous interpretations invoking barotropic instability and related horizontal mixing processes as a mechanism detrimental to the spin-up process, the results indicate that 3-D eddy processes associated with vortical plume structures can assist the intensification process by contributing to a radial contraction of the maximum tangential velocity and to a vertical extension of tangential winds through the depth of the troposphere. These plumes contribute significantly also to the azimuthally-averaged heating rate and the corresponding azimuthal-mean overturning circulation. The comparisons show that the resolved 3-D eddy momentum fluxes above the boundary layer exhibit counter-gradient characteristics and are generally not represented properly by the subgrid-scale parameterizations in the AX configuration. The resolved eddy fluxes act to support the contraction and intensification of the maximum tangential winds. The comparisons indicate fundamental differences between convective organization in the 3-D and AX configurations for meteorologically relevant forecast time scales. While the radial and vertical gradients of the system-scale angular rotation provide a hostile environment for deep convection in the 3-D model, with a corresponding tendency to strain the convective elements in the tangential direction, deep convection in the AX model does not suffer this tendency. Also, since during the 3-D intensification process the convection has not yet organized

  17. A graphene superficial layer for the advanced electroforming process

    Science.gov (United States)

    Rho, Hokyun; Park, Mina; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Ha, Jun-Seok; Lee, Sang Hyun

    2016-06-01

    Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil. We also demonstrated that the electroformed free-standing Cu thin films could be utilized for patterning microstructures and incorporated onto a flexible substrate for LEDs. This innovative process could be beneficial for the advancement of flexible electronics and optoelectronics, which require a wide range of mechanical and physical properties.Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil

  18. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  19. Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned

    CERN Document Server

    Baily, Charles; Pollock, Steven J

    2013-01-01

    When education researchers describe newly developed curricular materials, they typically concentrate on the research base behind their design, and the efficacy of the final products, but do not highlight the initial stages of creating the actual materials. With the aim of providing useful information for faculty engaged in similar projects, we describe here our development of a set of in-class tutorials for advanced undergraduate electrodynamics students, and discuss factors that influenced their initial design and refinement. Among the obstacles to be overcome was the investigation of student difficulties within the short time frame of our project, and devising ways for students to engage in meaningful activities on advanced-level topics within a single 50-minute class period. We argue for a process that leverages faculty experience and classroom observations, and present several guidelines for tutorial development and implementation in upper-division physics classrooms.

  20. The extratropical transition of Atlantic tropical cyclones: Climatology, lifecycle definition, and a case study

    Science.gov (United States)

    Hart, Robert Edward

    This thesis examines the conversion of Atlantic tropical cyclones (TC) into extratropical cyclones (extratropical transition; ET) and presents arguments for the climatology, lifecycle definition, and the physical processes behind ET. Extratropical transition is the conversion of a symmetric, vertically stacked, warm-core tropical cyclone with a maximum intensity in the lower troposphere into an asymmetric, cold-core and tilted extratropical cyclone with a maximum intensity in the upper troposphere. This transition usually occurs with movement into the middle latitudes, and is partially a result of the increased shear, baroclinicity and synoptic-scale disturbances at those latitudes. After an introduction to the topic in Chapter 1, a comprehensive climatology of extratropically transitioning tropical cyclones in the Atlantic basin is presented in Chapter 2. Storm tracks and intensities over a period from 1899 through 1996 are examined, with a focus on the more reliable post-1950 era database. Extratropically transitioning tropical cyclones represent 50% of landfalling tropical cyclones on the east coasts of the United States and Canada, and the west coast of Europe, combined. Atlantic transition occurs from 24°N through 55°N, with a much higher frequency between the latitudes of 35°N to 45°N. Transition occurs at lower latitudes at the beginning and end of the season, and at higher latitudes during the season peak (August-September). The structural evolution of the 61 tropical cyclones from 1979-1993 in Chapter 2 were further examined using 1.125° ECMWF reanalyses in Chapter 3. A reliable indicator for the start of extratropical transition was the mean 850-600hPa thickness difference between the semicircles right and left of storm motion. The fourth chapter examines in detail a case study of extratropical transition through an application of the diagnostics developed in the first two chapters as well as conventional measures of tropical and extratropical

  1. 基于轨迹图像的气液旋风分离器液滴粒度、浓度、速度的在线测量%In-line measurement of size, concentration and velocity of drops from gas-liquid cyclone separator based on trajectory image processing

    Institute of Scientific and Technical Information of China (English)

    刘海龙; 陈孝震; 蔡小舒; 余方

    2012-01-01

    For measuring size, concentration and velocity of droplets from the cyclone separator inlet and outlet, a measurement system based on trajectory image processing was developed. Principles of measurement were introduced. Droplets from cyclone separator were always spherical under the surface tension of water. It was reasonable to approximate the width of trajectory particle image as the diameter of droplets. The distance over which droplets moved in exposure time was obtained from trajectory image by processing, and the velocity of droplets could be easily calculated. Telecentric lens was used as an important part of measurement system. Common lens exhibited varying magnification for objects at different distances from the lens, but telecentric lens provided the same magnification at all distances, so droplets at different distances were the same size in the image. Firstly, images of particles were taken by capture system, and images were processed with a computer program. Then the particle size, concentration and velocity could be calculated. The system was installed in an experimental set-up that was used to study the performance of the cyclone separator. The experiment results showed that the system avoided the inversing process and had high size resolution as compared with traditional measurement system with the light scattering method. And it could make a measurement in line, and was better than other systems.

  2. “Out of our control”: Living through Cyclone Yasi

    Directory of Open Access Journals (Sweden)

    Cindy Woods

    2014-01-01

    Full Text Available The aim of this study was to explore the experiences of people who lived through Cyclone Yasi on 3 February 2011. Data from two open-ended questions (Q1: n=344; and Q2: n=339 within a survey completed by 433 residents of cyclone-affected areas between Cairns and Townsville, Australia, were analysed using a qualitative, thematic approach. Experiences were portrayed in three main themes: (1 living in the mode of existential threat describes survivors’ sense of panic and feeling at the mercy of nature as they feared for their life; (2 unforgettable memories describe feelings of emotional helplessness and the unimaginable chaos that the cyclone wrought; and (3 centrality of others shows how community support and closeness helped alleviate losses and uncertainty. A critical finding from this study was the negative role of the media in escalating fears for life prior to and during the cyclone, highlighting the need for government, community leaders, and health professionals to have a media plan in place to ensure that disaster warnings are taken seriously without inciting unnecessary panic. Although survivors experienced extreme vulnerability and a threat to life, the disaster also brought communities closer together and connected family, friends, and neighbours through the caring, support, and help they offered each other. This highlights the central role of others during the recovery process and underlines the importance of promoting and facilitating social support to aid recovery post disaster.

  3. Identification of a subtropical cyclone in the proximity of the Canary Islands and its analysis by numerical modeling

    Science.gov (United States)

    Quitián-Hernández, L.; Martín, M. L.; González-Alemán, J. J.; Santos-Muñoz, D.; Valero, F.

    2016-09-01

    Subtropical cyclones (STC) are low-pressure systems that share tropical and extratropical characteristics. Because of the great economic and social damage, the study of these systems has recently grown. This paper analyzes the cyclone formed in October 2014 near the Canary Islands and diagnoses such a cyclone in order to identify its correspondence to an STC category, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. An extratropical cyclone, in its early stage, experimented a process of cut-off and isolation from the midlatitude flow. The incursion of a trough in conjunction with a low-level baroclinic zone favored the formation of the STC northwestern of the Canary Islands. Streamers of high potential vorticity linked to the cyclone favored strong winds and precipitation in the study domain. Cyclone phase space diagrams are used to complement the synoptic analysis and the satellite images of the cyclone to categorize such system. The diagrams reveal the transition from extratropical cyclone to STC remaining for several days with a subtropical structure with a quite broad action radius. The study of the mesoscale environment parameters showed an enhanced conditional instability through a deep troposphere layer. It is shown that moderate to strong vertical wind shear together with relatively warm sea surface temperature determine conditions enabling the development of long-lived convective structures.

  4. High-power ultrasonic processing: Recent developments and prospective advances

    Science.gov (United States)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  5. Treatment of gasoline-contaminated waters by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Tiburtius, Elaine Regina Lopes [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba, PR (Brazil); Peralta-Zamora, Patricio [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba, PR (Brazil)]. E-mail: zamora@quimica.ufpr.br; Emmel, Alexandre [Centro Integrado de Tecnologia e Educacao Profissional, 81310-010 Curitiba, PR (Brazil)

    2005-11-11

    In this study, the efficiency of advanced oxidative processes (AOPs) was investigated toward the degradation of aqueous solutions containing benzene, toluene and xylenes (BTX) and gasoline-contaminated waters. The results indicated that BTX can be effectively oxidized by near UV-assisted photo-Fenton process. The treatment permits almost total degradation of BTX and removal of more than 80% of the phenolic intermediates at reaction times of about 30 min. Preliminary investigations using water contaminated by gasoline suggest a good potentiality of the process for the treatment of large volumes of aqueous samples containing these polluting species. Heterogeneous photocatalysis and H{sub 2}O{sub 2}/UV system show lower degradation efficiency, probably due to the heterogeneous character of the TiO{sub 2}-mediated system and lost of photonic efficiency of the H{sub 2}O{sub 2}/UV system in the presence of highly colored intermediated.

  6. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  7. Sustaining high energy efficiency in existing processes with advanced process integration technology

    International Nuclear Information System (INIS)

    Highlights: ► Process integration with better modelling and more advanced solution methods. ► Operational changes for better environmental performance through optimisation. ► Identification of process integration technology for operational optimisation. ► Systematic implementation procedure of process integration technology. ► A case study with crude oil distillation to demonstrate the operational flexibility. -- Abstract: To reduce emissions in the process industry, much emphasis has been put on making step changes in emission reduction, by developing new process technology and making renewable energy more affordable. However, the energy saving potential of existing systems cannot be simply ignored. In recent years, there have been significant advances in process integration technology with better modelling techniques and more advanced solution methods. These methods have been applied to the new design and retrofit studies in the process industry. Here attempts are made to apply these technologies to improve the environmental performance of existing facilities with operational changes. An industrial project was carried out to demonstrate the importance and effectiveness of exploiting the operational flexibility for energy conservation. By applying advanced optimisation technique to integrate the operation of distillation and heat recovery in a crude oil distillation unit, the energy consumption was reduced by 8% without capital expenditure. It shows that with correctly identified technology and the proper execution procedure, significant energy savings and emission reduction can be achieved very quickly without major capital expenditure. This allows the industry to improve its economic and environment performance at the same time.

  8. OPTIMIZATION AND APPLICATIONS OF REVERSE-FLOW CYCLONES

    Institute of Scientific and Technical Information of China (English)

    Guogang; Sun; Jianyi; Chen; Mingxian; Shi

    2005-01-01

    An optimum design approach to reverse-flow cyclones based on the concept of optimizing cyclone dimensions is introduced in this paper. This approach involves optimizing cyclone dimensions by categories, calculating cyclone performance by correlating similitude numbers and optimizing the combination of four cyclone parameters, D, KA,(-d- and vi, which has been proven to be applicable not only for single-stage cyclone, but also for multistage cyclone separators. Applications of the designed cyclones in FCC units and acrylonitrile reactors are also presented.

  9. Effects of Flow Parameters and Inlet Geometry on Cyclone Efficiency

    Institute of Scientific and Technical Information of China (English)

    赵兵涛

    2006-01-01

    A novel cyclone design, named converging symmetrical spiral inlet (CSSI) cyclone, is developed by improving the inlet geometry of conventional tangential single inlet (CTSI) cyclone for enhancing the physical performance of the cyclone.The collection efficiency of the CSSI cyclone is experimentally compared with the widely used CTSI cyclone. The results indicate that the CSSI cyclone provides higher collection efficiency by 5%~20% than that of the CTSI cyclone for a tested inlet velocity range of 11.99~23.85 m/s. In addition, the results of collection efficiency comparison between experimental data and theoretical model are also discussed.

  10. Advanced process control with design-based metrology

    Science.gov (United States)

    Yang, Hyunjo; Kim, Jungchan; Hong, Jongkyun; Yim, Donggyu; Kim, Jinwoong; Hasebe, Toshiaki; Yamamoto, Masahiro

    2007-03-01

    K1 factor for development and mass-production of memory devices has been decreased down to below 0.30 in recent years. Process technology has responded with extreme resolution enhancement technologies (RET) and much more complex OPC technologies than before. ArF immersion lithography is expected to remain the major patterning technology through under 35 nm node, where the degree of process difficulties and the sensitivity to process variations grow even higher. So, Design for manufacturing (DFM) is proposed to lower the degree of process difficulties and advanced process control (APC) is required to reduce the process variations. However, both DFM and APC need much feed-back from the wafer side such as hot spot inspection results and total CDU measurements at the lot, wafer, field and die level. In this work, we discuss a new design based metrology which can compare SEM image with CAD data and measure the whole CD deviations from the original layouts in a full die. It can provide the full information of hot spots and the whole CD distribution diagram of various transistors in peripheral regions as well as cell layout. So, it is possible to analyze the root cause of the CD distribution of some specific transistors or cell layout, such as OPC error, mask CDU, lens aberrations or etch process variation and so on. The applications of this new inspection tool will be introduced and APC using the analysis result will be presented in detail.

  11. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    1999-10-14

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas The effort during the reporting period has been devoted to development of an advanced hot-gas process that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur

  12. H Scan/AHP advanced technology proposal evaluation process

    Energy Technology Data Exchange (ETDEWEB)

    Mack, S. [Energetics, Inc., Columbia, MD (United States); Valladares, M.R.S. de [National Renewable Energy Lab., Washington, DC (United States)

    1996-10-01

    It is anticipated that a family of high value/impact projects will be funded by the Hydrogen Program to field test hydrogen technologies that are at advanced stages of development. These projects will add substantial value to the Program in several ways, by: demonstrating successful integration of multiple advanced technologies, providing critical insight on issues of larger scale equipment design, construction and operations management, yielding cost and performance data for competitive analysis, refining and deploying enhanced safety measures. These projects will be selected through a competitive proposal evaluation process. Because of the significant scope and funding levels of projects at these development phases, Program management has indicated the need for an augmented proposal evaluation strategy to ensure that supported projects are implemented by capable investigative teams and that their successful completion will optimally advance programmatic objectives. These objectives comprise a complex set of both quantitative and qualitative factors, many of which can only be estimated using expert judgment and opinion. To meet the above need, the National Renewable Energy Laboratory (NREL) and Energetics Inc. have jointly developed a proposal evaluation methodology called H Scan/AHP. The H Scan component of the process was developed by NREL. It is a two-part survey instrument that substantially augments the type and scope of information collected in a traditional proposal package. The AHP (Analytic Hierarchy Process) component was developed by Energetics. The AHP is an established decision support methodology that allows the Program decision makers to evaluate proposals relatively based on a unique set of weighted criteria that they have determined.

  13. Tropical Cyclones, Hurricanes, and Climate: NASA's Global Cloud-Scale Simulations and New Observations that Characterize the Lifecycle of Hurricanes

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    One of the primary interests of Global Change research is the impact of climate changes and climate variability on extreme weather events, such as intense tropical storms and hurricanes. Atmospheric climate models run at resolutions of global weather models have been used to study the impact of climate variability, as seen in sea surface temperatures, on the frequency and intensity of tropical cyclones. NASA's Goddard Earth Observing System Model, version 5 (GEOS-5) in ensembles run at 50 km resolution has been able to reproduce the interannual variations of tropical cyclone frequency seen in nature. This, and other global models, have found it much more difficult to reproduce the interannual changes in intensity, a result that reflects the inability of the models to simulate the intensities of the most extreme storms. Better representation of the structures of cyclones requires much higher resolution models. Such improved representation is also fundamental to making best use of satellite observations. In collaboration with NOAA's Geophysical Fluid Dynamics Laboratory, GEOS-5 now has the capability of running at much higher resolution to better represent cloud-scale resolutions. Global simulations at cloud-permitting resolutions (10- to 3.5-km) allows for the development of realistic tropical cyclones from tropical storm 119 km/hr winds) to category 5 (>249km1hr winds) intensities. GEOS-5 has produced realistic rain-band and eye-wall structures in tropical cyclones that can be directly analyzed against satellite observations. For the first time a global climate model is capable of representing realistic intensity and track variability on a seasonal scale across basins. GEOS-5 is also used in assimilation mode to test the impact of NASA's observations on tropical cyclone forecasts. One such test, for tropical cyclone Nargis in the Indian Ocean in May 2008, showed that observations from Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit

  14. A graphene superficial layer for the advanced electroforming process.

    Science.gov (United States)

    Rho, Hokyun; Park, Mina; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Ha, Jun-Seok; Lee, Sang Hyun

    2016-07-01

    Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil. We also demonstrated that the electroformed free-standing Cu thin films could be utilized for patterning microstructures and incorporated onto a flexible substrate for LEDs. This innovative process could be beneficial for the advancement of flexible electronics and optoelectronics, which require a wide range of mechanical and physical properties. PMID:26949072

  15. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  16. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  17. Advanced materials and processes for polymer solar cell devices

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen; Søndergaard, Roar; Krebs, Frederik C

    2010-01-01

    The rapidly expanding field of polymer and organic solar cells is reviewed in the context of materials, processes and devices that significantly deviate from the standard approach which involves rigid glass substrates, indium-tin-oxide electrodes, spincoated layers of conjugated polymer....../fullerene mixtures and evaporated metal electrodes in a flat multilayer geometry. It is likely that significant advances can be found by pursuing many of these novel ideas further and the purpose of this review is to highlight these reports and hopefully spark new interest in materials and methods that may...

  18. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    OpenAIRE

    Barazesh, JM; Hennebel, T; Jasper, JT; Sedlak, DL

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low con...

  19. Safety Analysis of Soybean Processing for Advanced Life Support

    Science.gov (United States)

    Hentges, Dawn L.

    1999-01-01

    Soybeans (cv. Hoyt) is one of the crops planned for food production within the Advanced Life Support System Integration Testbed (ALSSIT), a proposed habitat simulation for long duration lunar/Mars missions. Soybeans may be processed into a variety of food products, including soymilk, tofu, and tempeh. Due to the closed environmental system and importance of crew health maintenance, food safety is a primary concern on long duration space missions. Identification of the food safety hazards and critical control points associated with the closed ALSSIT system is essential for the development of safe food processing techniques and equipment. A Hazard Analysis Critical Control Point (HACCP) model was developed to reflect proposed production and processing protocols for ALSSIT soybeans. Soybean processing was placed in the type III risk category. During the processing of ALSSIT-grown soybeans, critical control points were identified to control microbiological hazards, particularly mycotoxins, and chemical hazards from antinutrients. Critical limits were suggested at each CCP. Food safety recommendations regarding the hazards and risks associated with growing, harvesting, and processing soybeans; biomass management; and use of multifunctional equipment were made in consideration of the limitations and restraints of the closed ALSSIT.

  20. Changes in North Atlantic Sea Surface Temperatures and Tropical Cyclones Activity

    Science.gov (United States)

    Andronache, C.; Phillips, V.

    2009-12-01

    The variability in the activity of North Atlantic tropical cyclones at seasonal scales, and beyond, has been linked to significant changes in the ocean - atmosphere system. The dominant factors affecting the development of North Atlantic tropical cyclones are: sea surface temperature (SST), surface pressure, atmospheric instability, humidity, and vertical shear of the mean flow. Changes in such factors at climate time-scales modulate the frequency of tropical cyclones and their most destructive manifestation, namely the hurricanes. Some of these changes have been observed to be linked to large-scale perturbations, such as ENSO, and other ocean - atmosphere oscillations and teleconnections. This study reports findings on changes in SST anomalies and their possible links to tropical cyclones. Using SST data over the last six decades, we illustrate statistical connections by applying novel mathematical techniques between the Atlantic Multi-decadal Oscillation (AMO) and tropical cyclones. Possible interactions between AMO, climate change and the fate of tropical cyclones are discussed in the context of recent advances in climate research.

  1. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  2. Advances in low-level color image processing

    CERN Document Server

    Smolka, Bogdan

    2014-01-01

    Color perception plays an important role in object recognition and scene understanding both for humans and intelligent vision systems. Recent advances in digital color imaging and computer hardware technology have led to an explosion in the use of color images in a variety of applications including medical imaging, content-based image retrieval, biometrics, watermarking, digital inpainting, remote sensing, visual quality inspection, among many others. As a result, automated processing and analysis of color images has become an active area of research, to which the large number of publications of the past two decades bears witness. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for single channel images are often not directly applicable to multichannel  ones. The goal of this volume is to summarize the state-of-the-art in the early stages of the color image processing pipeline.

  3. Advanced treatment of pharmaceutical wastewater by Fenton reagent oxidation process

    Directory of Open Access Journals (Sweden)

    Yanan YANG

    2015-12-01

    Full Text Available Avermectin-salinomycin waster is hard to be further biodegraded after treated by anaerobic-aerobiotic process, so Fenton oxidation process is studied for its advanced treatment. Influencing factors of pH, reaction time, H2O2 dosage and H2O2/Fe2+ on COD removal are investigated, respectively. When pH value is 3.0, the dosage of H2O2 is 1.5 mL/L, and the mole ratio of H2O2/Fe2+ is 5∶1, the effluent COD mass concentrations decreases from 224 to 64.3 mg/L, namely the COD removal efficiency reaches 71.3%.

  4. Integrated metrology: an enabler for advanced process control (APC)

    Science.gov (United States)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  5. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    Science.gov (United States)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  6. Advanced Signal Processing for MIMO-OFDM Receivers

    DEFF Research Database (Denmark)

    Manchón, Carles Navarro

    This thesis deals with a wide range of topics within the research area of advanced baseband receiver design for wireless communication systems. In particular, the work focuses on signal processing algorithms for receivers in multiple-input multiple-output (MIMO) orthogonal frequency-division mult......This thesis deals with a wide range of topics within the research area of advanced baseband receiver design for wireless communication systems. In particular, the work focuses on signal processing algorithms for receivers in multiple-input multiple-output (MIMO) orthogonal frequency...... the structure of the receiver with the hope that the resulting heuristic architecture will exhibit the desired behavior and performance. On the other hand, one can employ analytical frameworks to pose the problem as the optimization of a global objective function subject to certain constraints. This work...... apply the combined message-passing algorithm to the probabilistic model of a MIMO-OFDM system; from the general derivation of the messages in the model, several instances of receiver structures with varying degrees of computational complexity and performance are obtained. We also explore...

  7. Study on process basic requirements of experimental facility of advanced spent fuel management process

    International Nuclear Information System (INIS)

    The advanced spent fuel management process, which was proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. Hot cell facilities of α-γ type and inert atmosphere are required essentially for safe hot test and verification of this process. In this study, design basic data are established, and these data include process flow, process condition and yields, mass and radioactivity balance of radionuclides, process safety considerations, etc. And also, these data will be utilized for basic and detail design of hot cell facility, secured conservative safety and effective operability

  8. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances.

    Science.gov (United States)

    Tabrizi, Gelareh Bankian; Mehrvar, Mehrab

    2004-01-01

    The greatest challenge of today's wastewater treatment technology is to optimize the use of biological and chemical wastewater treatment processes. The choice of the process and/or integration of the processes depend strongly on the wastewater characteristics, concentrations, and the desired efficiencies. It has been observed by many investigators that the coupling of a bioreactor and advanced oxidation processes (AOPs) could reduce the final concentrations of the effluent to the desired values. However, optimizing the total cost of the treatment is a challenge, as AOPs are much more expensive than biological processes alone. Therefore, an appropriate design should not only consider the ability of this coupling to reduce the concentration of organic pollutants, but also try to obtain the desired results in a cost effective process. To consider the total cost of the treatment, the residence time in biological and photochemical reactors, the kinetic rates, and the capital and operating costs of the reactors play significant roles. In this study, recent developments and trends (1996-2003) on the integration of photochemical and biological processes for the degradation of problematic pollutants in wastewater have been reviewed. The conditions to get the optimum results from this integration have also been considered. In most of the studies, it has been shown that the integrated processes were more efficient than individual processes. However, slight changes in the configuration of the reactors, temperature, pH, treatment time, concentration of the oxidants, and microorganism's colonies could lead to a great deviation in results. It has also been demonstrated that the treatment cost in both reactors is a function of time, which changes by the flow rate. The minimum cost in the coupling of the processes cannot be achieved unless considering the best treatment time in chemical and biological reactors individually.

  9. Tropical Cyclones as a Critical Phenomenon

    CERN Document Server

    Corral, A

    2011-01-01

    It has been proposed that the number of tropical cyclones as a function of the energy they release is a decreasing power-law function, up to a characteristic energy cutoff determined by the spatial size of the ocean basin in which the storm occurs. This means that no characteristic scale exists for the energy of tropical cyclones, except for the finite-size effects induced by the boundaries of the basins. This has important implications for the physics of tropical cyclones. We discuss up to what point tropical cyclones are related to critical phenomena (in the same way as earthquakes, rainfall, etc.), providing a consistent picture of the energy balance in the system. Moreover, this perspective allows one to visualize more clearly the effects of global warming on tropical-cyclone occurrence.

  10. Technology Summary Advancing Tank Waste Retreival And Processing

    International Nuclear Information System (INIS)

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated since it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans and methods. WRPS and the DOE are therefore developing, testing, and deploying technologies to ensure that they can meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  11. Evaluation of advanced hot conditioning process for PHWRS

    International Nuclear Information System (INIS)

    Hot-conditioning/hot functional test process is carried out to the PHT system of reactor before reactor going to critical/operational. The process is aimed in checking the component functionalities at high temperature and high pressure conditions, the process also checks/removes the suspended corrosion products in heat transport circuit. This process leads to formation of a passive or corrosion oxide film on the heat transport circuit surfaces which protects/mitigates the corrosion of the system circuits during the operation of plant. Major concerned alloy in the Primary Heat Transport (PHT) system of Indian PHWRs during the hot conditioning process and also during operation is the carbon steel due to its high corrosion. Hot-conditioning process mitigates the corrosion of carbon steel by the formation of iron oxide (Fe3O4) as major oxide phase layer on the carbon steel surface with a typical thickness of 1.0 μm with particle size of 1μm after 336 h of process at 250 °C. But this passive oxide film thickness increase with time of operation of system with c.a. 10μm for 2.2 EFYP. The protectiveness of passive layer can be further enhanced by reducing the particle sizes in the passive film to nano meter range. The process can impact on the compactness of passive oxide layer with reduced pores in the oxide layer and properties of the nano nature oxide (transport properties) impacting the corrosion mitigation. The corrosion mitigation reduce the source term in the activated corrosion product generation. To achieve this a new process 'Advanced hot conditioning' was developed in water steam chemistry division, BARC for getting a passive oxide film with a lowered particle size in the passive film. The AHC process with 1g/L of PEG-8000 at 250 °C for 336 h showed a particle size <100 nm. The process was tested under the normal operating conditions as function of the time, the corrosion parameter like oxide film thickness, corrosion rate and metal ion release to

  12. Technology Summary Advancing Tank Waste Retrieval And Processing

    International Nuclear Information System (INIS)

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. This technology overview provides a high-level summary of technologies being investigated, developed, and deployed by WRPS to advance Hanford Site tank waste retrieval and processing. Transformational technologies are needed to complete Hanford tank waste retrieval and treatment by 12/31/2047. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated because it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans, and methods. WRPS and the DOE are developing, testing, and deploying technologies to meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them. DOE's Office of Environmental Management (EM) identifies the environmental management technology needs and the activities necessary to address them. The U.S. Congress then funds these activities through EM or the DOE field offices. Finally, an array of entities that include DOE site prime contractors and

  13. Pulsed high-density plasmas for advanced dry etching processes

    Energy Technology Data Exchange (ETDEWEB)

    Banna, Samer; Agarwal, Ankur; Cunge, Gilles; Darnon, Maxime; Pargon, Erwine; Joubert, Olivier [Applied Materials Inc., 974 E. Arques Avenue, M/S 81312, Sunnyvale, California 94085 (United States); CNRS-LTM, 17 rue des Martyrs, 38054 Grenoble Cedex (France)

    2012-07-15

    Plasma etching processes at the 22 nm technology node and below will have to satisfy multiple stringent scaling requirements of microelectronics fabrication. To satisfy these requirements simultaneously, significant improvements in controlling key plasma parameters are essential. Pulsed plasmas exhibit considerable potential to meet the majority of the scaling challenges, while leveraging the broad expertise developed over the years in conventional continuous wave plasma processing. Comprehending the underlying physics and etching mechanisms in pulsed plasma operation is, however, a complex undertaking; hence the full potential of this strategy has not yet been realized. In this review paper, we first address the general potential of pulsed plasmas for plasma etching processes followed by the dynamics of pulsed plasmas in conventional high-density plasma reactors. The authors reviewed more than 30 years of academic research on pulsed plasmas for microelectronics processing, primarily for silicon and conductor etch applications, highlighting the potential benefits to date and challenges in extending the technology for mass-production. Schemes such as source pulsing, bias pulsing, synchronous pulsing, and others in conventional high-density plasma reactors used in the semiconductor industry have demonstrated greater flexibility in controlling critical plasma parameters such as ion and radical densities, ion energies, and electron temperature. Specifically, plasma pulsing allows for independent control of ion flux and neutral radicals flux to the wafer, which is key to eliminating several feature profile distortions at the nanometer scale. However, such flexibility might also introduce some difficulty in developing new etching processes based on pulsed plasmas. Therefore, the main characteristics of continuous wave plasmas and different pulsing schemes are compared to provide guidelines for implementing different schemes in advanced plasma etching processes based on

  14. Advances in Process Intensification through Multifunctional Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    O' Hern, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center; Evans, Lindsay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Miller, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Cooper, Marcia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetic Components Realization Center; Torczynski, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Donovan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  15. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    2000-04-17

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to testing the FHR-32 sorbent. FHR-32 sorbent was tested for 50 cycles of sulfidation in a laboratory scale reactor.

  16. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    1999-04-26

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3% of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to development of optimized low-cost zinc-oxide-based sorbents for Sierra-Pacific. The sorbent surface were modified to prevent

  17. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Science.gov (United States)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  18. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    CERN Document Server

    Zharkova, Valentina V; Benz, Arnold O; Browning, Phillippa; Dauphin, Cyril; Emslie, A Gordon; Fletcher, Lyndsay; Kontar, Eduard P; Mann, Gottfried; Onofri, Marco; Petrosian, Vahe; Turkmani, Rim; Vilmer, Nicole; Vlahos, Loukas

    2011-01-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  19. Advanced information processing system: Input/output system services

    Science.gov (United States)

    Masotto, Tom; Alger, Linda

    1989-01-01

    The functional requirements and detailed specifications for the Input/Output (I/O) Systems Services of the Advanced Information Processing System (AIPS) are discussed. The introductory section is provided to outline the overall architecture and functional requirements of the AIPS system. Section 1.1 gives a brief overview of the AIPS architecture as well as a detailed description of the AIPS fault tolerant network architecture, while section 1.2 provides an introduction to the AIPS systems software. Sections 2 and 3 describe the functional requirements and design and detailed specifications of the I/O User Interface and Communications Management modules of the I/O System Services, respectively. Section 4 illustrates the use of the I/O System Services, while Section 5 concludes with a summary of results and suggestions for future work in this area.

  20. Advanced Manufacturing Technology Implementation Process in SME: Critical Success Factors

    Directory of Open Access Journals (Sweden)

    Jani Rahardjo

    2010-01-01

    Full Text Available The aim of this paper is to present critical factors that constitute a successful implementation of the Advanced Manufacturing Technologies (AMT in Small Medium Enterprise (SME. Many large companies have applied AMT and the applications have shown significant results in this global market era. Conveniently, these phenomenons are also engaged to Small Medium Enterprises (SME that of high demands on performing high quality product, fast delivery, reliable and more flexible. The implementation of AMT follow several processes namely pre installation, installation, improvement and mature. In order to guarantee the succesfull of running these processes, one should consider the Critical Success Factors (CSF. We conducted a survey to 125 SMEs that have implemented AMT, and found that the CSF for each process are moderately different. Good leadership is the main critical success factor for preparing and installation of the AMT. Once the AMT started or installed and arrived at growth stage, the financial availability factor turns into a critical success factor in the AMT implementation. In, mature stage, the support and commitment of top management becomes an important factor for gaining successful implementation. By means of factor analysis, we could point out that strategic factors are the main factors in pre-installation and installation stage. Finally, in the growth stage and mature stage, both tactical and strategic factors are the important factors in the successful of AMT implementation

  1. Numerical Simulations of Saturn's Polar Cyclones

    Science.gov (United States)

    Brueshaber, Shawn R.; Sayanagi, Kunio M.

    2014-11-01

    Shawn R. Brueshaber, Department of Mechanical Engineering, Western Michigan UniversityKunio M. Sayanagi, Atmospheric and Planetary Sciences, Hampton UniversityCassini mission to Saturn has revealed evidences of a warm core cyclone centered on each of the poles of the planet. The morphology of the clouds in these cyclones resembles that of a terrestrial hurricane. The formation and maintenance mechanisms of these large polar cyclones are yet to be explained. Scott (2011, Astrophys. Geophys. Fluid Dyn) proposed that cyclonic vortices beta-drifting poleward can result in a polar cyclone, and demonstrated that beta-drifting cyclonic vortices can indeed cause accumulation of cyclonic vorticity at the pole using a 1-layer quasi-geostrophic model.The objectives of our project is to test Scott's hypothesis using a 1.5-layer shallow-water model and many-layer primitive equations model. We use the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al. 1998, 2004, Icarus) to perform direct numerical simulations of Saturn's polar atmosphere. To date, our project has focused on modifying the model to construct a polar rectangular model grid in order to avoid the problem of polar singularity associated with the conventional latitude-longitude grids employed in many general circulation models. We present our preliminary simulations, which show beta-drifting cyclones cause a poleward flux of cyclonic vorticity, which is consistent with Scott's results.Our study is partially supported by NASA Outer Planets Research Grant NNX12AR38G and NSF Astronomy and Astrophysics Grant 1212216 to KMS.

  2. Sensitivity of Cyclone Tracks to the Initial Moisture Distribution: A Moist Potential Vorticity Perspective

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this study, the characteristics of moist potential vorticity (MPV) in the vicinity of a surface cyclone center and their physical processes are investigated. A prognostic equation of surface absolute vorticity is then used to examine the relationship between the cyclone tracks and negative MPV (NMPV) using numerical simulations of the life cycle of an extratropical cyclone. It is shown that the MPV approach developed herein, i.e., by tracing the peak NMPV, can be used to help trace surface cyclones during their development and mature stages. Sensitivity experiments are conducted to investigate the impact of different initial moisture fields on the effectiveness of the MPV approach. It is found that the lifetime of NMPV depends mainly on the initial moisture field, the magnitude of condensational heating, and the advection of NMPV. When NMPV moves into a saturated environment at or near a cyclone center, it can trace better the evolution of the surface cyclone due to the conservative property of MPV. It is also shown that the NMPV generation is closely associated with the coupling of large potential temperature and moisture gradients as a result of frontogenesis processes. Analyses indicate that condensation, confluence and tilting play important but different roles in determining the NMPV generation. NMPV is generated mainly through the changes in the strength of baroclinicity and in the direction of the moisture gradient due to moist and/or dry air mass intrusion into the baroclinic zone.

  3. Post Cyclone (PoC) : An innovative way to reduce the emission of fines from industrial cyclones

    NARCIS (Netherlands)

    Ray, MB; Luning, PE; Hoffmann, AC; Plomp, A; Beumer, MIL

    1997-01-01

    A novel approach for reducing the emission of industrial-scale cyclones of particles smaller than 10 mu m is presented. Utilizing the strong swirl already present in the vortex finder of a conventional cyclone, the escaped dust from the cyclone is collected in a so-called ''Post Cyclone'' (PoC), whi

  4. Advanced processes for minor actinides recycling: studies towards potential industrialization

    International Nuclear Information System (INIS)

    In June 2006, a new act on sustainable management of radioactive waste was voted by the French parliament with a national plan on radioactive materials and radioactive waste management (PNG-MDR). Concerning partitioning and transmutation, the program is connected to 4. generation reactors, in which transmutation of minor actinides could be operated. In this frame, the next important milestone is 2012, with the assessment of the possible transmutation roads, which are either homogeneous recycling of the minor actinides in the whole reactor fleet, with a low content of M.A (∼3%) in all fuel assemblies, or heterogeneous recycling of the minor actinides in about one third of the reactor park, with a higher content of M.A. (∼20%) in dedicated targets dispatched in the periphery of the reactor. Advanced processes for the recycling of minor actinides are being developed to address the challenges of these various management options. An important part of the program consists in getting closer to process implementation conditions. The processes based on liquid-liquid extraction benefit from the experience gained by operating the PUREX process at the La Hague plant. In the field of extracting apparatus, a large experience is available. In the field of extracting apparatus, a large experience is already available. Nevertheless, the processes present specificities which have to be considered more precisely. They have been classified in the following fields: - Evolution of the simulation codes, including phenomenological representations: with such a simulation tool, it will be possible to assess operating tolerances, lead sensitivity studies and calculate transient states; - Definition of the implementation conditions in continuous contactors (such as pulse columns), according to the extractant physico-chemical characteristics; - Scale-up of new extractants, such as malonamides used in the DIAMEX process, facing purity specifications and costs estimation; - Solvent clean

  5. Application of advanced oxidative process in treatment radioactive waste

    International Nuclear Information System (INIS)

    The ion exchange resin is used in the water purification system in both nuclear research and power reactors. Combined with active carbon, the resin removes dissolved elements from water when the nuclear reactor is operating. After its consumption, it becomes a special type of radioactive waste. The usual treatment to this type of waste is the immobilization with Portland cement, which is simple and low cost. However, its low capacity of immobilization and the increase volume of waste have been the challenges. The development of new technologies capable of destroying this waste completely by increasing its solidification is the main target due to the possibility of both volume and cost reduction. The objective of this work was to evaluate ion exchange resin degradation by Advanced Oxidative Process using Fenton's Reagent (H2O2 / Fe+2) in different concentration and temperatures. One advantage of this process is that all additional organic compounds or inorganic solids produced are oxidized easily. The degradation experiments were conducted with IRA-400 resin and Fenton's Reagents, varying the H2O2 concentration (30% e 50%) and heat temperature (25, 60 and 100 deg C). The resin degradation was confirmed by the presence of BaCO3 as a white precipitate resulting from the reaction between the Ba(OH)2 and the CO2 from the resin degradation. All experiments run in duplicate. Higher degradation was observed with Fenton's Reagent (Fe+2 /H2O2 30%) at 100 deg C after 2 hours. (author)

  6. Advanced oxide powders processing based on cascade plasma

    International Nuclear Information System (INIS)

    Analysis of the potential advantages offered to thermal spraying and powder processing by the implementation of plasma torches with inter-electrode insert (IEI) or, in other words, cascade plasma torches (CPTs) is presented. The paper provides evidence that the modular designed single cathode CPT helps eliminate the following major disadvantages of conventional plasma torches: plasma parameters drifting, 1-5 kHz pulsing of plasma flow, as well as excessive erosion of electrodes. More stable plasma results in higher quality, homogeneity and reproducibility of plasma sprayed coatings and powders treated. In addition, CPT offers an extremely wide operating window, which allows better control of plasma parameters, particle dwell time and, consequently, particle temperature and velocity within a wide range by generating high enthalpy quasi-laminar plasmas, medium enthalpy transient plasmas, as well as relatively low enthalpy turbulent plasmas. Stable operation, flexibility with plasma gases as well as wide operating window of CPT should help significantly improve the existing plasma spraying processes and coatings, and also help develop new advanced technologies

  7. Recent Advances in Techniques for Hyperspectral Image Processing

    Science.gov (United States)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  8. The influence of advanced processing on PWA 1480

    Science.gov (United States)

    Fritzemeier, L. G.; Schnittgrund, G. D.

    1989-01-01

    High thermal gradient casting of PWA 1480 was evaluated as an avenue for reducing the size of casting porosity. Hot isostatic pressing (HIP) was also employed for the elimination of casting pores. An alternate to the standard PWA 1480 coating plus diffusion bonding aging heat treatment cycle was also evaluated for potential improvements in the properties of interest to the Space Shuttle Main Engine (SSME) application. Microstructural changes associated with the high thermal gradient casting process were quantified by measurement of the size and density of the casting porosity, the amount of retained casting eutectic, and dendrite arm spacings. The results of the advanced processing have shown an improvement in material microstructure due to high thermal gradient casting. Improved homogeneity of PWA 1480 is advantageous in providing an improved solution heat treatment window and, potentially, easier HIP. High thermal gradient casting improves fatigue life by reducing casting pore size. The alternate heat treatment improves the balance of strength and ductility which appears to improve low cycle fatigue life, but with a reduction in short time stress rupture life. Based upon these tests, hot isostatic pressing appears to afford further improvements in cyclic life, though additional evaluation is suggested. Development of the alternate heat treatment is not recommended due to the reduced stress rupture capability and the need to develop a new properties data base. High thermal gradient casting and HIP are recommended for application to single crystal castings.

  9. A field theoretical prediction of the tropical cyclone properties

    CERN Document Server

    Spineanu, Florin

    2013-01-01

    The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems combining thermodynamics and fluid-mechanical processes. The late phase of the evolution towards stationarity consists of the vorticity concentration, a well known tendency to self-organization, an universal property of the two-dimensional fluids. It may then be expected that the stationary state of the tropical cyclone has the same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors, Bose - Einsetin condensate, cosmic strings, etc. Indeed it was found that there is a description of the atmospheric vortex in terms of a field theory. It is compatible with the more conventional treatment based on conservation laws, but the field theoretical model reveals properties that are almost inaccessible to the conventional formulation: it identifies the stationary states as being close to self-duality. This is of highest importance: the self-duality is known to be the origin of all co...

  10. Genesis of tropical cyclone Nargis revealed by multiple satellite observations

    Science.gov (United States)

    Kikuchi, Kazuyoshi; Wang, Bin; Fudeyasu, Hironori

    2009-03-01

    Tropical cyclone (TC) Nargis recently battered Myanmar on May 2 2008 is one of the most deadly tropical storms in history. Nargis was initiated by an abnormally strong intraseasonal westerly event associated with Madden-Julian oscillation (MJO) in the eastern Indian Ocean. An incipient cyclonic disturbance emerged as an emanation of Rossby wave-induced vortex when the intraseasonal convective anomaly reached the Maritime Continent. The northeastward movement of MJO convection facilitated further development of the disturbance. The incipient disturbance became a tropical disturbance (TD) with a central warm-core structure on April 26. The further development from the TD to TC formation on April 28 is characterized by two distinctive stages: a radial contraction followed by a rapid intensification. The processes responsible for contraction and rapid intensification are discussed by diagnosis of multiple satellite data. This proposed new scenario is instrumental for understanding how a major TC develops in the northern Indian Ocean.

  11. Topographic effects on polar low and tropical cyclone development in simple theoretical model

    Institute of Scientific and Technical Information of China (English)

    Zi-liang LI; Gang FU; Jing-tian GUO; Yi-hong DUAN; Mei-gen ZHANG

    2009-01-01

    The polar low and tropical cyclone type vortices over topography are assumed to be the axisymmetrical and thermal-wind balanced systems, which are solved as an initial value problem of a linearized vortex equation set in cylindrical coordinates. The roles of the sensible and latent heating, friction, and topography in the structure and intensification of the polar low and tropical cyclone type vortices are analyzed. The radial velocity, vertical velocity, azimuthal velocity, and the unstable growth rate including the topography effects are obtained. It is shown that the interaction between the flow and the topography plays a significant role in the structure and intensification of the polar low and tropical cyclone system. The analysis of the topography term indicates that, in the up-slope side of the mountain, the radial inflow and the vertical ascent forced by the mountain can intensify the polar low and tropical cyclone type vortex and increase the unstable growth rate. However, in the lee side of the mountain, the radial inflow and the vertical descent forced by the mountain can weaken the polar low and tropical cyclone type vortex and decrease the unstable growth rate of the polar low and tropical cyclone system. In addition, the evolutionary process and the spatial structure of the polar low observed over the Japan Sea on 19 December 2003 are investigated with the observationaldata to verify this theoretical result.

  12. Human influence on tropical cyclone intensity

    Science.gov (United States)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-07-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas–driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  13. Human influence on tropical cyclone intensity

    Science.gov (United States)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-07-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  14. Human Influence on Tropical Cyclone Intensity

    Science.gov (United States)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  15. Human influence on tropical cyclone intensity.

    Science.gov (United States)

    Sobel, Adam H; Camargo, Suzana J; Hall, Timothy M; Lee, Chia-Ying; Tippett, Michael K; Wing, Allison A

    2016-07-15

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  16. Tropical cyclone Pam field survey in Vanuatu

    Science.gov (United States)

    Fritz, Hermann M.; Pilarczyk, Jessica E.; Kosciuch, Thomas; Hong, Isabel; Rarai, Allan; Harrison, Morris J.; Jockley, Fred R.; Horton, Benjamin P.

    2016-04-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam is the most intense tropical cyclone to make landfall on Vanuatu since the advent of satellite imagery based intensity estimates in the 1970s. Pam caused one of the worst natural disaster in Vanuatu's recorded history. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands causing coastal inundation on Tuvalu's Vaitupu Island located some 1100 km east of the cyclone center. Pam intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters but reached 800 m on Epi Island. Wrack lines containing pumice perfectly delineated the

  17. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  18. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  19. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    Science.gov (United States)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  20. Pengolahan Limbah Cair Pabrik Pupuk Urea Menggunakan Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Darmadi Darmadi

    2014-06-01

    Full Text Available Limbah cair pabrik pupuk urea terdiri dari urea dan amonium yang masing-masing mempunyai konsentrasi berkisar antara 1500-10000 ppm dan 400-3000 ppm. Konsentrasi urea yang tinggi di dalam badan air dapat menyebabkan blooming algae dalam ekosistem tersebut yang dapat mengakibatkan kehidupan biota air lain terserang penyakit. Peristiwa ini terjadi karena kurangnya nutrisi bagi biota air dan sedikitnya sinar matahari yang dapat menembusi permukaan air. Disamping kedua hal tersebut di atas, algae juga dapat memproduksi senyawa beracun bagi biota air dan manusia. Penelitian ini bertujuan untuk mengolah urea menggunakan oksidasi konvensional (H2O2 dan Advanced Oxidation Processes (kombinasi H2O2-Fe2+ pada pH 5 dengan parameter yang digunakan adalah variasi konsen-trasi awal H2O2  dan konsentrasi Fe2+. Hasil percobaan menunjukkan bahwa penurunan konsentrasi urea tertinggi diperoleh pada penggunaan reagen fenton (8000 ppm H2O2 dan 500 ppm Fe2+, yaitu dapat menurunkan urea dari konsentrasi awal urea 2566,145 ppm menjadi 0 ppm. Kinetika reaksi dekomposisi urea menjadi amonium dan amonium menjadi nitrit dan nitrat yang diuji mengikuti laju kinetika reaksi orde 1 (satu terhadap urea dan orde satu terhadap amonium dengan konstanta laju reaksi masing-masing k1 = 0,019 dan k2 = 0,022 min-1.

  1. Field study of disposed solid wastes from advanced coal processes

    International Nuclear Information System (INIS)

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells

  2. Observations of cyclone-induced storm surge in coastal Bangladesh

    CERN Document Server

    Chiu, Soyee

    2015-01-01

    Water level measurements from 15 tide gauges in the coastal zone of Bangladesh are analyzed in conjunction with cyclone tracks and wind speed data for 54 cyclones between 1977 and 2010. Storm surge magnitude is inferred from residual water levels computed by subtracting modeled astronomical tides from observed water levels at each station. Observed residual water levels are generally smaller than reported storm surge levels for cyclones where both are available, and many cyclones produce no obvious residual at all. Both maximum and minimum residual water levels are higher for west-landing cyclones producing onshore winds and generally diminish for cyclones making landfall on the Bangladesh coast or eastward producing offshore winds. Water levels observed during cyclones are generally more strongly influenced by tidal phase and amplitude than by storm surge alone. In only 7 of the 15 stations does the highest plausible observed water level coincide with a cyclone. While cyclone-coincident residual water level ...

  3. The Indian Ocean Dipole's influence on Atlantic tropical cyclone activity

    Science.gov (United States)

    Marinaro, Alan Joseph

    Improving early tropical cyclone forecasts would assist reinsurance decision makers as they seek information that can minimize risks. Early lead forecasts are based on model variables before December 1 (Year 0) that predict Atlantic tropical cyclone activity (Year +1). The autumn Indian Ocean Dipole (IOD) has an 8 to 14 month antecedent correlation with the El Nino - Southern Oscillation (ENSO). ENSO is traditionally the best non-lead and overall predictor of Atlantic tropical cyclone activity. Analyses were performed over a 30-year period from 1984/85-2013/14, with some time variation depending on the test. Correlation, spatial, and wavelet analyses were utilized to find associations between the IOD, west and east components of the IOD, and four other variables related to the following season's ENSO state and tropical cyclone activity. The prior western pole of the October IOD (WIOD) was demonstrated to have statistically significant r-squared values (i.e. 99% confidence interval) to upcoming tropical storm activity (i.e. explained 25% of the variance), named storm counts (28%), and ENSO (21%). The WIOD has no connection with U.S. hurricane landfalls. Wavelet analysis between October IOD variables and following August-October ENSO data was observed to have the best time-frequency relationship. Dynamic reasoning for these relationships reside within the idealized biennial IOD-ENSO cycle, Walker circulation process, and the impact of ENSO on the state of the Atlantic Basin. The WIOD's integration into early-lead forecast models could be an advantage for those in the reinsurance industry and other decision makers impacted by Atlantic tropical cyclonesn.

  4. The Application of Waste Silica Cyclone Powder for the Protective Coating of Steel Billets

    Directory of Open Access Journals (Sweden)

    Torkar, M.

    2007-01-01

    Full Text Available The role of a protective coating is to diminish the steel surface scaling during the reheating for hot rolling. The protective coating consists of several components, and the effect of the coating is based on the formation of the modification of Al2O3, amorphous SiO2 and FeO×Al2O3, which all exhibit low permeability to oxygen at temperature up to 1200 °C. The silica sand powder from the cyclone is a waste product in the separation of silica sand. Tests confirmed that waste cyclone powder could replace the silica flour as one of the ingredients in the protective coating. The results of the efficiency of the protective coating after the advanced application of waste cyclone powder on AISI 1059 and AISI 6150 steels are presented. The application of the coating decreased the oxidation and decarburisation of the steel surface during the reheating for hot rolling.

  5. Growth process and microstructure of Y123 film fabricated by advanced TFA-MOD process

    International Nuclear Information System (INIS)

    The advanced metal organic deposition (MOD) process using F-free salt of Cu and trifluroacetates (TFA) salts (Superconductivity Research Laboratory (SRL)-Method) was applied to form well oriented Y123 film on LaAlO3 substrate. In order to clarify the growth mechanism of the Y123 film by the advanced TFA-MOD process, two methods were introduced. One was the quenching method to get samples under several different conditions during the process, and the microstructures were observed by transmission electron microscopy (TEM). The other was in situ observation method to know surface changes of the film by the generation of liquid and/or gas. From the θ-2θ X-ray diffraction (XRD) analysis of YBa2Cu3O7-δ (YBCO) films fabricated by suitable conditions (0 0 n) diffraction peaks were obtained indicating they had strongly c-axis oriented structure. The thin YBCO films had critical current density (J C) of 3.8-4.9 MA/cm2 (77 K,0 T) measured by the four-probe-method. A growth model with some process-controlling parameters was proposed based on the above observed results

  6. Effect of tropical cyclones on the stratosphere-troposphere exchange observed using satellite observations over the north Indian Ocean

    Science.gov (United States)

    Venkat Ratnam, M.; Babu, S. Ravindra; Das, S. S.; Basha, G.; Krishnamurthy, B. V.; Venkateswararao, B.

    2016-07-01

    Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere-troposphere exchange (STE) processes in the upper troposphere and lower stratosphere (UTLS) region. In the present study, the impact of cyclones that occurred over the north Indian Ocean during 2007-2013 on the STE processes is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS) radio occultation (RO) measurements, and ozone and water vapour concentrations in the UTLS region are obtained from Aura Microwave Limb Sounder (MLS) satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km of the centre of the tropical cyclone. In our earlier study, we observed a decrease (increase) in the tropopause altitude (temperature) up to 0.6 km (3 K), and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL) thickness of 3 km within 500 km of the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from the cyclone centre, whereas the enhancement in the water vapour in the lower stratosphere is more significant on the south-east side, extending from 500 to 1000 km away from the cyclone centre. The cross-tropopause mass flux for different intensities of cyclones is estimated and it is found that the mean flux from the stratosphere to the troposphere for cyclonic storms is 0.05 ± 0.29 × 10-3 kg m-2, and for very severe cyclonic storms it is 0.5 ± 1.07 × 10-3 kg m-2. More downward flux is noticed on the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget, and consequentially the STE in the UTLS region.

  7. Climate Forcing of North Atlantic Tropical Cyclone Activity over the last 6000 years

    Science.gov (United States)

    Donnelly, J. P.; Woodruff, J. D.; Scileppi, E.; Lane, P.

    2006-12-01

    Africa leading to stronger easterly waves moving into the tropical North Atlantic. A positive correlation between warmer SSTs, inferred from the limited reconstructions available, and intense tropical cyclone landfalls in the Caribbean is possible within dating uncertainties. However, given the increase in intense tropical cyclone landfalls during the later half of the LIA, tropical SSTs as warm as present are apparently not a requisite condition for increased intense tropical cyclone activity. In addition the western North Atlantic experienced a relatively active interval of intense tropical cyclones for over 1000 years despite summer tropical SSTs that were on average cooler than modern. These results suggest that processes in addition to fluctuations in SST act to modulate intense tropical cyclone activity on centennial and millennial timescales. If we are to accurately project future changes in intense tropical cyclone activity it is important to consider and understand how these factors may change over the coming decades.

  8. Tropical Cyclone Warm Core Structure Retrieved from ATMS

    Science.gov (United States)

    Zhu, B.; Zhu, T.; Weng, F.

    2012-12-01

    The Advanced Technology Microwave Sounder (ATMS) on board Suomi NPP was successfully launched on October 28, 2011. ATMS consists of a microwave radiometer that measures microwave radiances at 22 channels from 23.8 GHz to 183.3 GHz. Combining the capabilities of current Advanced Microwave Sounding Unit (AMSU-A) and Microwave Humidity Sounder (MHS), ATMS provides sounding observations with improved sampling and coverage for retrieving atmospheric vertical temperature and moisture profiles. A new algorithm is developed to retrieve atmospheric temperature profiles for tropical cyclone with ATMS data. The cross-track asymmetric pattern is investigated for ATMS three window channels. It is found that the asymmetric biases are close to the simulations when the polarization alignment angles are set between 91o and 92o. The algorithm is applied for Tropical Cyclone Giovanna case study and compared with the retrievals from NOAA-15 AMSU-A observation. ATMS retrievals clearly depict the cold temperature anomalies in TC spiral rain bands and the storm warm core. More case study results will be provided at the conference.

  9. Environmental assessment of different solar driven advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Ivan; Rieradevall, Joan [Institut de Ciencia i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Torrades, Francesc [Departament d' Enginyeria Quimica, ETSEI de Terrassa, Universitat Politecnica de Catalunya, 08222 Terrassa (Barcelona) (Spain); Peral, Jose; Domenech, Xavier [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)

    2005-10-01

    In this work a comparative environmental assessment of different advanced oxidation processes (AOP's) is performed. Two energy scenarios have been considered according to the energy source used: solar energy and electricity (UVA lamp). A life cycle assessment (LCA) is carried out in order to quantify the environmental impacts of the AOP's. The treatments considered are heterogenous photocatalysis, photo-Fenton reactions, the coupling of heterogeneous photocatalysis and photo-Fenton, and heterogeneous photocatalysis in combination with hydrogen peroxide. These AOP's are applied to the treatment of kraft mill bleaching wastewaters. The system under study includes the production of the catalysts, reagents as well as the production of electricity; eight environmental impact categories are assessed for each AOP: global warming, ozone depletion, aquatic eutrophication, acidification, human toxicity, freshwater aquatic toxicity, photochemical ozone formation, and abiotic resource depletion. the results of the LCA show that the environmental impact of AOP's is caused mainly by the amount of electricity consumed, whereas the impact of producing the reagents and catalysts is comparatively low. For this reason, the solar energy scenario reduces the impact more than 90% for almost all AOP's and impact categories. None of the solar driven AOP's can be identified as the best in all impact categories, but heterogenous photocatalysis and photo-Fenton reactions obtain better results than the remaining treatments, since these treatments do not consume simultaneously both TiO{sub 2} and H{sub 2}O{sub 2}, the chemicals with highest environmental burdens in the system. (author)

  10. Plan for advanced microelectronics processing technology application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  11. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    Energy Technology Data Exchange (ETDEWEB)

    Goulart de Araujo, Leandro; Vicente de Padua Ferreira, Rafael; Takehiro Marumo, Julio [Nuclear and Energy Research Institute, Av. Lineu Prestes, 2242., Sao Paulo, SP. (Brazil); Passos Piveli, Roque; Campos, Fabio [The Polytechnic School of the University of Sao Paulo, Av. Prof. Almeida Prado, 83, trav.2. Sao Paulo, SP (Brazil)

    2013-07-01

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the

  12. Modelling and performance evaluation of a soot cyclone separator / by L.D.J. Bieldt

    OpenAIRE

    Bieldt, Lodewyk Dominico Jacobus

    2009-01-01

    This mini-dissertation reports on the performance of a cyclone separator used to remove excess soot that is typically formed during the production of pebble fuel for High Temperature Gas-cooled Reactors. A chemical vapour deposition process is used to manufacture TRISO-coated fuel particles and during this process soot is formed that needs to be removed. This removal process uses cyclone separators as pre-filters and a bag filter as the final means of preventing unwanted particles from bei...

  13. Experimental researches and comparison on aerodynamic parameters and cleaning efficiency of multi-level multi-channel cyclone

    OpenAIRE

    Aleksandras Chlebnikovas; Pranas Baltrėnas

    2015-01-01

    Multi-level multi-channel cyclone – the lately designed air cleaning device that can remove ultra-fine 20 μm particulatematter (PM) from dusted air and reach over 95% of the overall cleaning efficiency. Multi-channel cyclone technology is based on centrifugal forces and has the resulting additional filtering process operation. Multi-level structure of cyclone allows to achieve higher air flow cleaning capacity at the same dimensions of the device, thus saving installation space required for t...

  14. Satellite-based Tropical Cyclone Monitoring Capabilities

    Science.gov (United States)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  15. Characteristics of cyclone climatology and variability in the Southern Ocean

    Institute of Scientific and Technical Information of China (English)

    WEI Lixin; QIN Ting

    2016-01-01

    A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high-resolution European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979–2013. A validation shows that identified cyclone tracks are in good agreement with a available analyzed cyclone product. The climatological characteristics of the Southern Ocean cyclones are then analyzed, including track, number, density, intensity, deepening rate and explosive events. An analysis shows that the number of cyclones in the Southern Ocean has increased for 1979–2013, but only statistically significant in summer. Coincident with the circumpolar trough, a single high-density band of cyclones is observed in 55°–67°S, and cyclone density has generally increased in north of this band for 1979–2013, except summer. The intensity of up to 70% cyclones in the Southern Ocean is less than 980 hPa, and only a few cyclones with pressure less than 920 hPa are detected for 1979–2013. Further analysis shows that a high frequency of explosive cyclones is located in the band of 45°–55°S, and the Atlantic Ocean sector has much higher frequent occurrence of the explosive cyclones than that in the Pacific Ocean sector. Additionally, the relationship between cyclone activities in the Southern Ocean and the Southern Annular Mode is discussed.

  16. The spatial distribution and evolution characteristics of North Atlantic cyclones

    Science.gov (United States)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary

  17. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    Science.gov (United States)

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second

  18. Redesign of the Advanced Education processes in the United States Coast Guard

    OpenAIRE

    Johnson, Lamar V.; Sanders, Marc F.

    1999-01-01

    The processes used in the operation of the Coast Guard Advanced Education Program have evolved as most business processes that were developed prior to the introduction of information technology. These processes include the selection, management, assignment and tracking of advanced education students. These processes are still fully dependent on physical files and the mail system. The Coast Guard has an information technology infrastructure that supports better processes, however it is not bei...

  19. Processing for long YBCO coated conductors by advanced TFA-MOD process

    International Nuclear Information System (INIS)

    The long tape process was developed using the advanced TFA precursor solution. In a long tape production, the advanced TFA precursor solution was coated by a die-coater using the reel-to-reel system, and the multi-coating method was applied for thicker film fabrication. We successfully fabricated long uniform precursor films. In the high temperature treatment, a large scale equipment for the continuous long tape process was developed. This equipment had a perpendicular gas flow system to the tape length which is effective to fabricate the uniform films. Ic values and its distribution in the YBCO tape fabricated by this method on CeO2/IBAD-Gd2Zr2O7/Hastelloy were measured. And the uniform and high performance was confirmed. A 0.25 m long YBCO film with 1.38 μm in thickness on the metal substrate shows the high Ic performance of 210 A with end to end at 77.3 K in self-fields

  20. Putting to rest WISHE-ful misconceptions for tropical cyclone intensification

    Science.gov (United States)

    Montomery, Michael T.; Persing, John; Smith, Roger K.

    2015-03-01

    The purpose of this article is twofold. The first is to point out and correct several misconceptions about the putative WISHE mechanism of tropical cyclone intensification that currently are being taught to atmospheric science students, to tropical weather forecasters, and to laypeople who seek to understand how tropical cyclones intensify. The mechanism relates to the simplest problem of an initial cyclonic vortex in a quiescent environment. This first part is important because the credibility of tropical cyclone science depends inter alia on being able to articulate a clear and consistent picture of the hypothesized intensification process and its dependencies on key flow parameters. The credibility depends also on being able to test the hypothesized mechanisms using observations, numerical models, or theoretical analyses. The second purpose of the paper is to carry out new numerical experiments using a state-of-the-art numerical model to test a recent hypothesis invoking the WISHE feedback mechanism during the rapid intensification phase of a tropical cyclone. The results obtained herein, in conjunction with prior work, do not support this recent hypothesis and refute the view that the WISHE intensification mechanism is the essential mechanism of tropical cyclone intensification in the idealized problem that historically has been used to underpin the paradigm. This second objective is important because it presents a simple way of testing the hypothesized intensification mechanism and shows that the mechanism is neither essential nor the dominant mode of intensification for the prototype intensification problem. In view of the operational, societal, and scientific interest in the physics of tropical cyclone intensification, we believe this paper will be of broad interest to the atmospheric science community and the findings should be useful in both the classroom setting and frontier research.

  1. Organic conductors as novel ``molecular rulers`` for advanced manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M.

    1995-12-31

    Future advanced manufacturing equipment used in high technology programs will require ultra-high precision and associated machining tool operations that require placement accuracy of {approximately} 1--100 nm (1 nm = 10 {angstrom}). There is consensus among engineers that this equipment will be based on STM (Scanning Tunneling Microscope) technology. All such STM-based ``drivers`` must contain a metrology system that requires absolute length standards referenced to atomic spacings for calibration. Properly designed organic conductor substrate crystals have the potential to be molecular rulers for STM-based advanced manufacturing equipment. The major challenges in future organic conductor research aimed at STM metrology application are listed.

  2. NESDIS Microwave Sounder-based Tropical Cyclone (TC) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The S-NPP Microwave Sounder-based Tropical Cyclone (TC) Products provide estimates of tropical cyclone maximum wind speed, minimum sea level pressure, radii of 34,...

  3. Climate Prediction Center (CPC) Western Pacific Basin Cyclone Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tropical cyclones are one of the nature?s destructive phenomena, causing loss of lives and property damage. The affected countries associated with the cyclones of...

  4. Dust cyclone technology for gins – A literature review

    Science.gov (United States)

    Dust cyclone research leading to more efficient designs has helped the cotton ginning industry to comply with increasingly stringent air quality regulations governing fine particulate emissions. Future changes in regulations may require additional improvements in dust cyclone efficacy. This inter-...

  5. Modeling and Advanced Control for Sustainable Process Systems (chapter 5)

    Science.gov (United States)

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  6. A Study of Formation and Development of One Kind of Cyclone on the Mei-yu (Baiu) Front

    Institute of Scientific and Technical Information of China (English)

    张凤; 赵思雄

    2004-01-01

    The paper presents one diagnosis of baroclinity and the coupling of jets during the developing process of a cyclone that occurred on the mei-yu (Baiu) front around the end of the second stage of the mei-yu (Baiu)in 1998. Results have shown that: (1) The advantageous changes of upper-level large-scale circulation caused the appearance and maintenance of the coupling between the upper-level jet (ULJ) and lower-level jet (LLJ) over the cyclone's area. The coupling of jets in this case possesses some different characteristics from previous cases. Moreover, the coupling between the ULJ and LLJ caused the intensification of both lower-level convergence and upper-level divergence, which was favorable for the development of this cyclone. (2) From the analysis of the voricity budget, the role of lower-level convergence in the development of the cyclone was emphasized. Divergent wind in the lower troposphere was a direct contributor to the development of the cyclone. (3) During the development of the cyclone, cold air and warm air were_active over the cyclone's domain. Although this cyclone occurred at the mei-yu (Baiu) front, its development assumed baroclinity to a certain extent, which was just the main difference between this kind of cyclone and the first kind of low which is usually barotropic (or quasi-barotropic). (4) In recent years, studies on mei-yu front lows have paid more attention to the lower troposphere. In this paper, the analysis of the energy budget further supports this point: the certain effect of baroclinity forcing in the upper troposphere on mei-yu front lows cannot be ignored.

  7. Explosive cyclones in CMIP5 climate models

    Science.gov (United States)

    Seiler, C.; Zwiers, F. W.

    2014-12-01

    Explosive cyclones are rapidly intensifying low pressure systems with severe wind speeds and precipitation, affecting livelihoods and infrastructure primarily in coastal and marine environments. A better understanding of the potential impacts of climate change on these so called meteorological bombs is therefore of great societal relevance. This study evaluates how well CMIP5 climate models reproduce explosive cyclones in the extratropics of the northern hemisphere, and how these bombs respond to global warming. For this purpose an objective-feature tracking algorithm was used to identify and track extratropical cyclones from 25 CMIP5 models and 3 reanalysis products for the periods 1980 to 2005 and 2070 to 2099. Cyclones were identified as the maxima of T42 vorticity of 6h wind speed at 850 hPa. Explosive and non-explosive cyclones were separated based on the corresponding deepening rates of mean sea level pressure. Most models accurately reproduced the spatial distribution of bombs when compared to results from reanalysis data (R2 = 0.84, p-value = 0.00), with high frequencies along the Kuroshio Current and the Gulf Stream, as well as the exit regions of the polar jet streaks. Most models however significantly underestimated bomb frequencies by a third on average, and by 74% in the most extreme case. This negative frequency bias coincided with significant underestimations of either meridional sea surface temperature (SST) gradients, or wind speeds of the polar jet streaks. Bomb frequency biases were significantly correlated with the number vertical model levels (R2= 0.36, p-value = 0.001), suggesting that the vertical atmospheric model resolution is crucial for simulating bomb frequencies accurately. The impacts of climate change on the location, frequency, and intensity of explosive cyclones were then explored for the Representative Concentration Pathway 8.5. Projections were related to model bias, resolution, projected changes of SST gradients, and wind speeds

  8. Cyclone IV拓展Altera低成本Cyclone FPGA系列

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ 基于60nm工艺的Cyclone IV FPGA是在现有Cyclone系列FPGA基础上的扩展.cycIone IV FPGA由两个子系列组成,一是Cyclone IV GX FPGA,它是带收发器的低成本、低功耗FPGA且支持业界主流的协议规范;另一款是内核电压1.0的Cyclone IV E FPGA,不含收发器但具有更低成本和功耗.

  9. Advanced diagnostics in oxy-fuel combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Brix, J.; Clausen, Soennik; Degn Jensen, A. (Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark)); Boeg Toftegaard, M. (DONG Energy Power, Hvidovre (Denmark))

    2012-07-01

    This report sums up the findings in PSO-project 010069, ''Advanced Diagnostics in Oxy-Fuel Combustion Processes''. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory scale fixed bed reactor. The results obtained in the swirl burner have proved the FTIR method as a valuable technique for gas phase temperature measurements. When its efficacy is evaluated against traditional thermocouple measurements, two cases, with and without probe beam stop, must however be treated separately. When the FTIR probe is operated with the purpose of gas phase concentration measurements the probe needs to operate with a beam stop mounted in front of it. With this beam stop in place it was shown that the measured gas phase temperature was affected by cooling, induced by the cooled beam stop. Hence, for a more accurate determination of gas phase temperatures the probe needed to operate without the beam stop. When this was the case, the FTIR probe showed superior to traditional temperature measurements using a thermocouple as it could measure the fast temperature fluctuations. With the beam stop in place the efficacy of the FTIR probe for gas temperature determination was comparable to the use of a traditional thermocouple. The evaluation of the FTIR technique regarding estimation of gas phase concentrations of H{sub 2}O, CO{sub 2} and CO showed that the method is reliable though it cannot be stated as particularly accurate. The accuracy of the method is dependent on the similarity of the reference emission spectra of the gases with those obtained in the experiments, as the transmittance intensity is not a linear function of concentration. The length of the optical path also affects the steadiness of the measurements. The length of the optical path is difficult to adjust on the small scales that are the focus of this work. However

  10. Application of Advanced Oxidation Processes to Wastewater Treatment

    OpenAIRE

    Lucas, Marco Paulo Gomes de Sousa

    2009-01-01

    Tese de Doutoramento em Química This research contributes to the study and development of advanced oxidation technologies applied to two different problematic wastewaters: textile and winery wastewaters. In this dissertation the factors that influence the oxidation of the model compound of textile wastewaters, the azo dye Reactive Black 5 (RB5), and of the winery wastewaters were investigated. The first part of the thesis experimental work is dedicated to the decolorization of RB5 solut...

  11. Advanced power electronics converters PWM converters processing AC voltages

    CERN Document Server

    dos Santos, Euzeli

    2014-01-01

    This book covers power electronics, in depth, by presenting the basic principles and application details, which can be used both as a textbook and reference book.  Introduces a new method to present power electronics converters called Power Blocks Geometry. Applicable for courses focusing on power electronics, power electronics converters, and advanced power converters. Offers a comprehensive set of simulation results to help understand the circuits presented throughout the book

  12. Radio occultation bending angle anomalies during tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, S.;

    2011-01-01

    The tropical deep convection affects the radiation balance of the atmosphere changing the water vapor mixing ratio and the temperature of the upper troposphere lower stratosphere. The aim of this work is to better understand these processes and to investigate if severe storms leave a significant ...... Ensemble in Space (ACES) payload on the International Space Station....... signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from different GPS radio occultation missions (COSMIC, GRACE, CHAMP, SACC and GPSMET), we selected 1194 profiles in a time window of 3 h and a space window of 300 km from the eye...

  13. THE RESEARCH ON RELATIONSHIP BETWEEN OUTER CIRCULATION OF TROPICAL CYCLONES AND HIGH TEMPERATURE WEATHER IN GUANGZHOU

    Institute of Scientific and Technical Information of China (English)

    LU Shan; YE Meng

    2007-01-01

    Using historical synoptic data, the surface observation data of Guangzhou, the data in the Yearbook on Tropical Cyclones of P. R. China, and NCEP/NCAR reanalysis data of geopotential height,vertical velocity from June to September over the years 1983 to 2004, and defining three days or more in succession with daily maximum temperature over 35℃as a process of high temperature weather, this work analyzes the relationship between the activity of tropical cyclones and the disastrous high temperature weather in Guangzhou. The result shows that disastrous high temperature weather in Guangzhou is closely related to the outer circulation of tropical cyclones, and high temperatures weather over 37℃ occur mainly when tropical cyclones move in the range from 400 to 1600 km southeast or east to Guangzhou. Furthermore,rapid temperature increase with descending motion resulting from tropical cyclones is the major factor that induces disastrous high temperature weather in Guangzhou when the city is controlled by the subtropical high.

  14. A three-dimensional model study on ocean dynamic response to traveling cyclone over the Huanghai Sea

    Institute of Scientific and Technical Information of China (English)

    QIN Zenghao; LI Yongping; YUAN Yaochu; YU Runling

    2005-01-01

    ambient weather system was likely to be a fast process and such a response could last at least for more than 1 d. Current increased with the duration of wind stress exerted on the surface and decreased with the increasing depth. Affected by the cyclone, the maximum sea surface temperature decreased by almost 1.6 ℃ during the 24 h cyclone.

  15. Cost analysis of advanced turbine blade manufacturing processes

    Science.gov (United States)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  16. Parameters determining maximum wind velocity in a tropical cyclone

    International Nuclear Information System (INIS)

    The spiral structure of a tropical cyclone was earlier explained by a tangential velocity distribution which varies inversely as the distance from the cyclone centre outside the circle of maximum wind speed. The case has been extended in the present paper by adding a radial velocity. It has been found that a suitable combination of radial and tangential velocities can account for the spiral structure of a cyclone. This enables parametrization of the cyclone. Finally a formula has been derived relating maximum velocity in a tropical cyclone with angular momentum, radius of maximum wind speed and the spiral angle. The shapes of the spirals have been computed for various spiral angles. (author)

  17. Advances in chemical physics dynamical processes in condensed matter

    CERN Document Server

    Evans, Myron W

    2009-01-01

    Transport Properties and Soliton Models for Polyacetylene (M. Andretta, et al.). Development and Application of the Theory of Brownian Motion (W. Coffey). The Fading of Memory During the Regression of Structural Fluctuations (L. Dissado, et al.). Cooperative Molecular Behavior and Field Effects on Liquids: Experimental Considerations (G. Evans). A Review and Computer Simulation of the Molecular Dynamics of a Series of Specific Molecular Liquids (M. Evans and G. Evans). Recent Advances in Molecular-Dynamics Computer Simulation (D. Fincham and D. Heyes). Nonadiabatic Scattering Probl

  18. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    DEFF Research Database (Denmark)

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik;

    This report sums up the findings in PSO-project 010069, “Advanced Diagnostics in Oxy- Fuel Combustion Processes”. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory...... equipment. The use of the IR technique for determination of particle temperatures, particle sizes, and number density proved reliable in both the swirl burner and the laboratory scale fixed bed reactor. When the technique was used in the swirl burner the subsequent data treatment was sensitive to optical...

  19. Toluene vapor capture by activated carbon particles in a dual gas-solid cyclone system.

    Science.gov (United States)

    Lim, Yun Hui; Ngo, Khanh Quoc; Park, Young Koo; Jo, Young Min

    2012-08-01

    Capturing of odorous compounds such as toluene vapor by a particulate-activated carbon adsorbent was investigated in a gas-solid cyclone, which is one type of mobile beds. The test cyclone was early modified with the post cyclone (PoC) and a spiral flow guide to the vortex finder. The proposed process may contribute to the reduction of gases and dust from industrial exhausts, especially when dealing with a low concentration of odorous elements and a large volume ofdust flow. In this device, the toluene capturing efficiency at a 400 ppm concentration rose up to 77.4% when using activated carbon (AC) particles with a median size of 27.03 microm. A maximum 96% of AC particles could be collected for reuse depending on the size and flow rate. The AC regenerated via thermal treatment showed an adsorption potential up to 66.7% throughout repeated tests.

  20. Application of Helical Characteristics of the Velocity Field to Evaluate the Intensity of Tropical Cyclones

    Science.gov (United States)

    Levina, G.; Glebova, E.; Naumov, A.; Trosnikov, I.

    The paper presents results of numerical analysis for helical features of velocity field to investigate the process of tropical cyclone formation, namely, the downward helicity flux through the upper boundary of the viscous atmospheric turbulent boundary layer has been calculated. The simulation was carried out by use of the regional atmospheric ETA model and NCEP reanalysis global data. Calculations were performed for two tropical cyclones - Wilma (Atlantic basin, 2005) and Man-Yi (North-West Pacific, 2007). It has been found, that the chosen helical characteristic reveals an adequate response to basic trends in variation of such important meteorological fields as pressure and wind velocity during the hurricane vortex evolution. The analysis carried out in the paper shows that the helicity flux can be used as an illustrative characteristic to describe the intensity and destructive power of tropical cyclones.

  1. Numerical study of particle deposition and scaling in dust exhaust of cyclone separator

    Science.gov (United States)

    Xu, W. W.; Li, Q.; Zhao, Y. L.; Wang, J. J.; Jin, Y. H.

    2016-05-01

    The solid particles accumulation in the dust exhaust cone area of the cyclone separator can cause the wall wear. This undoubtedly prevents the flue gas turbine from long period and safe operation. So it is important to study the mechanism how the particles deposited and scale on dust exhaust cone area of the cyclone separator. Numerical simulations of gas-solid flow field have been carried out in a single tube in the third cyclone separator. The three-dimensionally coupled computational fluid dynamic (CFD) technology and the modified Discrete Phase Model (DPM) are adopted to model the gas-solid two-phase flow. The results show that with the increase of the operating temperature and processing capacity, the particle sticking possibility near the cone area will rise. The sticking rates will decrease when the particle diameter becomes bigger.

  2. Cyclone hazard proneness of districts of India

    Indian Academy of Sciences (India)

    M Mohapatra

    2015-04-01

    Hazards associated with tropical cyclones (TCs) are long-duration rotatory high velocity winds, very heavy rain, and storm tide. India has a coastline of about 7516 km of which 5400 km is along the mainland. The entire coast is affected by cyclones with varying frequency and intensity. Thus classification of TC hazard proneness of the coastal districts is very essential for planning and preparedness aspects of management of TCs. So, an attempt has been made to classify TC hazard proneness of districts by adopting a hazard criteria based on frequency and intensity of cyclone, wind strength, probable maximum precipitation, and probable maximum storm surge. Ninety-six districts including 72 districts touching the coast and 24 districts not touching the coast, but lying within 100 km from the coast have been classified based on their proneness. Out of 96 districts, 12 are very highly prone, 41 are highly prone, 30 are moderately prone, and the remaining 13 districts are less prone. This classification of coastal districts based on hazard may be considered for all the required purposes including coastal zone management and planning. However, the vulnerability of the place has not been taken into consideration. Therefore, composite cyclone risk of a district, which is the product of hazard and vulnerability, needs to be assessed separately through a detailed study.

  3. Cyclone separator having boundary layer turbulence control

    Science.gov (United States)

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  4. A Simplified Model of Tropical Cyclone Intensification

    Science.gov (United States)

    Schubert, W. H.

    2015-12-01

    An axisymmetric model of tropical cyclone intensification is presented. The model is based on Salmon's wave-vortex approximation, which can describe flows with high Rossby number and low Froude number. After introducing an additional approximation designed to filter propagating inertia-gravity waves, the problem is reduced to the prediction of potential vorticity (PV) and the inversion of this PV to obtain the balanced wind and mass fields. This PV prediction/inversion problem is solved analytically for two types of forcing: a two-region model in which there is nonzero forcing in the cyclone core and zero forcing in the far-field; a three-region model in which there is non-zero forcing in both the cyclone core and the eyewall, with zero forcing in the far-field. The solutions of the two-region model provide insight into why tropical cyclones can have long incubation times before rapid intensification and how the size of the mature vortex can be influenced by the size of the initial vortex. The solutions of the three-region model provide insight into the formation of hollow PV structures and the inward movement of angular momentum surfaces across the radius of maximum wind.

  5. Relation between tropical cyclone heat potential and cyclone intensity in the North Indian Ocean

    Science.gov (United States)

    Jangir, B.; Swain, D.; Udaya Bhaskar, T. V. S.

    2016-05-01

    Ocean Heat Content (OHC) plays a significant role in modulating the intensity of Tropical Cyclones (TC) in terms of the oceanic energy available to TCs. TC Heat Potential (TCHP), an estimate of OHC, is thus known to be a useful indicator of TC genesis and intensification. In the present study, we analyze the role of TCHP in intensification of TCs in the North Indian Ocean (NIO) through statistical comparisons between TCHP and Cyclone Intensities (CI). A total of 27 TCs (20 in the Bay of Bengal, and 7 in the Arabian Sea) during the period 2005-2012 have been analyzed using TCHP data from Global Ocean Data Assimilation System (GODAS) model of Indian National Center for Ocean Information Services and cyclone best track data from India Meteorological Department. Out of the 27 cyclones analyzed, 58% (86%) in the Bay (Arabian Sea) have negative correlation and 42% (14%) cyclones have positive correlation between CI and TCHP. On the whole, more than 60% cyclones in the NIO show negative correlations between CI and TCHP. The negative percentage further increases for TCHP leading CI by 24 and 48 hours. Similar trend is also seen with satellite derived TCHP data obtained from National Remote Sensing Center and TC best track data from Joint Typhoon Warming Centre. Hence, it is postulated that TCHP alone need not be the only significant oceanographic parameter, apart from sea surface temperature, responsible for intensification and propagation of TCs in the NIO.

  6. Recent advances in high density tungsten composite processing

    Energy Technology Data Exchange (ETDEWEB)

    Cytron, S. [Army Armament Research, Development and Engineering Center, Dover, NJ (United States)

    1993-12-31

    Conventional liquid phase sintering has been the mainstay for processing tungsten alloy composites for the past several decades. New application demands being placed on these high density composites has resulted in the emergence of new processing approaches aimed at developing a new generation of high density tungsten composite materials. Recent investigative studies into rapid solidification technology, solid state sintering, mechanical alloying and explosive compaction are reported here to highlight these recent processing trends.

  7. AGU governance's decision-making process advances strategic plan

    Science.gov (United States)

    McPhaden, Michael; Finn, Carol; McEntee, Chris

    2012-10-01

    A lot has happened in a little more than 2 years, and we want give AGU members an update on how things are working under AGU's strategic plan and governance model. AGU is an organization committed to its strategic plan (http://www.agu.org/about/strategic_plan.shtml), and if you have not read the plan lately, we encourage you to do so. AGU's vision is to be an organization that "galvanizes a community of Earth and space scientists that collaboratively advances and communicates science and its power to ensure a sustainable future." We are excited about the progress we have made under this plan and the future course we have set for the Union. Everything the Board of Directors, Council, and committees put on their agendas is intended to advance AGU's strategic goals and objectives. Together with headquarters staff, these bodies are working in an integrated, effective manner to carry out this plan. The best way to demonstrate the progress made and each group's role is to walk through a recent example: the creation of a new Union-level award (see Figure 1).

  8. Production process for advanced space satellite system cables/interconnects.

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  9. Advanced nonlinear signal processing in silicon-based waveguides

    OpenAIRE

    Petropoulos, P.; Ettabib, M.A.; Bottrill, K.R.H.; Lacava, C.; Parmigiani, F.; Hammani, K.; BRUN, M.; Labeye, P.; Nicoletti, S.; Bogris, A.; Kapsalis, A.; Syvridis, D.

    2015-01-01

    This talk presents recent progress in optical signal processing based on compact waveguides fabricated mainly using silicon germanium alloys. Applications include supercontinuum generation, wavelength conversion and signal regeneration.

  10. Variations in Extratropical Cyclone Activity in Northern East Asia

    Institute of Scientific and Technical Information of China (English)

    WANG Xinmin; ZHAI Panmao; WANG Cuicui

    2009-01-01

    Based on an improved objective cyclone detection and tracking algorithm, decadal variations in extratropical cyclones in northern East Asia are studied by using the ECMWF 40 Year Reanalysis (ERA-40) sea-level pressure data during 1958-2001. The results reveal that extratropical cyclone activity has displayed clear seasonal, interannual, and decadal variability in northern East Asia. Spring is the season when cyclones occur most frequently. The spatial distribution of extratropical cyclones shows that cyclones occur mainly within the 40°-50°N latitudinal band in northern East Asia, and the most frequent region of occurrence is in Mongolia. Furthermore, this study also reveals the fact that the frequency of extratropical cyclones has significantly decreased in the lower latitude region of northern East Asia during 1958-2001, but dccadal variability has dominated in higher latitude bands, with frequent cyclone genesis. The intensity of extratropical cyclones has decreased on an annual and seasonal basis. Variation of the annual number of cyclones in northern East Asia is associated with the mean intensity of the baroclinic frontal zone, which is influenced by climate warming in the higher latitudes. Moreover, the dipole structure of extratopical cyclone change, with increases in the north and decreases in the southern part of northern East Asia, is related to the northward movement of the baroclinic frontal zone on either side of 110°E.

  11. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  12. Advanced ThioClear process testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lani, B.

    1998-03-01

    Wet scrubbing is the leading proven commercial post-combustion FGD technology available to meet the sulfur dioxide reductions required by the Clean Air Act Amendments. To reduce costs associated with wet FGD, Dravo Lime Company has developed the ThioClear process. ThioClear is an ex-situ forced oxidation magnesium-enhanced lime FGD process. ThioClear process differs from the conventional magnesium-enhanced lime process in that the recycle liquor has minimal suspended solids and the by-products are wallboard quality gypsum and magnesium hydroxide, an excellent reagent for water treatment. The process has demonstrated sulfur dioxide removal efficiencies of +95% in both a vertical spray scrubber tower and a horizontal absorber operating at gas velocities of 16 fps, respectively. This report details the optimization studies and associated economics from testing conducted at Dravo Lime Company`s pilot plant located at the Miami Fort Station of the Cincinnati Gas and Electric Company.

  13. Process optimization for advanced high conductivity-high strength materials

    Energy Technology Data Exchange (ETDEWEB)

    Pantsyrnyi, V.; Shikov, A.; Nikulin, A. [A.A. Bochvar All-Russian Research Inst. of Inorganic Materials, Moscow (Russian Federation)] [and others

    1998-09-01

    On the basis of investigations carried out earlier, two types of high strength-high conductivity Cu-Nb wires have been designed and appropriate manufacturing processes have been proposed and experimentally approved. Long length conductors with rectangular cross sections 4 x 6 mm{sup 2} and 2 x 3 mm{sup 2} have been fabricated by the in situ process and by the bundle and deform process, which eliminates the operation of melting, accordingly. Investigation on the microstructure of both types of the fabricated wires has been conducted. Mechanical properties and electrical conductivity parameters have been measured also.

  14. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    International Nuclear Information System (INIS)

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  15. Advances toward industrialization of novel molten salt electrochemical processes.

    Science.gov (United States)

    Ito, Yasuhiko; Nishikiori, Tokujiro; Tsujimura, Hiroyuki

    2016-08-15

    We have invented various novel molten salt electrochemical processes, that can be put to practical use in the fields of energy and materials. These processes are promising from both technological and commercial viewpoints, and they are currently under development for industrial application. To showcase current developments in work toward industrialization, we focus here on three of these processes: (1) electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure, (2) electrochemical formation of carbon film, and (3) plasma-induced discharge electrolysis to produce nanoparticles. PMID:27265244

  16. Recent advances in high density tungsten composite processing. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Cytron, S.

    1993-10-01

    Conventional liquid phase sintering has been the mainstay for processing tungsten alloy composites for the past several decades. New application demands being placed on these high density composites have resulted in the emergence of new processing approaches aimed at developing a new generation of high density tungsten composite materials. Recent investigative studies into rapid solidification technology, solid state sintering, mechanical alloying, and explosive compaction are reported here to highlight these recent processing trends. Tungsten heavy alloys, Tungsten alloy composite, Solid state sintering, Mechanical alloying, Explosive composition, Rapid solidification technology.

  17. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    Energy Technology Data Exchange (ETDEWEB)

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  18. Power beams and their comparative positioning in advanced materials processing

    International Nuclear Information System (INIS)

    Power Beam Technology covering laser, electron and plasma beams belongs to a class of novel manufacturing techniques. Availability of high power density in localized area along with flexible-controllability of the process makes them attractive for material processing applications. The use of power beams in cutting, welding and melting has been known for over five decades. However, it is only recently that the use of power beams in non-thermal and non-equilibrium processing is emerging as an area of active interest. This paper addresses some of the issues related to the underlying principles of power beams, the comparative strengths and weaknesses of the different techniques and their implementation in processing environment. (author)

  19. Advances in signal processing and intelligent recognition systems

    CERN Document Server

    Gelbukh, Alexander; Mukhopadhyay, Jayanta

    2014-01-01

    This Edited Volume contains a selection of refereed and revised papers originally presented at the International Symposium on Signal Processing and Intelligent Recognition Systems (SIRS-2014), March 13-15, 2014, Trivandrum, India. The program committee received 134 submissions from 11 countries. Each paper was peer reviewed by at least three or more independent referees of the program committee and the 52 papers were finally selected. The papers offer stimulating insights into Pattern Recognition, Machine Learning and Knowledge-Based Systems; Signal and Speech Processing; Image and Video Processing; Mobile Computing and Applications and Computer Vision. The book is directed to the researchers and scientists engaged in various field of signal processing and related areas.  

  20. Advancements on the simulation of the micro injection moulding process

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Hansen, Hans Nørgaard;

    2013-01-01

    injection molding, because they are developed for macro plastic parts and they are therefore limited in the capability of modeling the polymer flow in micro cavities properly. However, new opportunities for improved accuracy have opened up due to current developments of the simulation technology. Hence, new......Process simulations are applied in micro injection molding with the same purpose as in conventional injection molding: aiming at optimization and support of the design of mold, inserts, plastic products, and the process itself. Available software packages are however not well suited for micro...... strategies and aspects for comprehensive simulation models which provide more precise results for micro injection molding are discussed. Modeling and meshing recommendations are presented, leading to a multi-scale mesh of all relevant units in the injection molding process. The implementation of the process...

  1. Research advances in eco-hydrological process and function

    Institute of Scientific and Technical Information of China (English)

    YongGang Yang; HongLang Xiao; ZuoDong Qin; Na Kang; CaiMei Li

    2014-01-01

    Present studies on the coupling relationship and hydrology mechanism between basin ecosystem and hydrological process has become an international research frontier in hydrology. This paper investigates this coupling relationship, and also summarizes research and presents a method of combining isotopic technology with hydro-chemical methods, for the study of eco-hydrological process and function in different landscape zones. We then examine research trends for future direction and development of this field.

  2. Titanium alloys. Advances in alloys, processes, products and applications

    OpenAIRE

    Blenkinsop, P.

    1993-01-01

    The last few years have been a period of consolidation of existing alloys and processes. While the aerospace industry remains the principal driving force for alloy development, the paper illustrates examples of new markets being established in "older" alloys, by a combination of product/process development and a re-examination of engineering design parameters. Considerable attention is still being directed towards the titanium aluminide systems, but other more conventional alloy developments ...

  3. ADVANCES ON BILINEAR MODELING OF BIOCHEMICAL BATCH PROCESSES

    OpenAIRE

    GONZÁLEZ MARTÍNEZ, JOSÉ MARÍA

    2015-01-01

    [EN] This thesis is aimed to study the implications of the statistical modeling approaches proposed for the bilinear modeling of batch processes, develop new techniques to overcome some of the problems that have not been yet solved and apply them to data of biochemical processes. The study, discussion and development of the new methods revolve around the four steps of the modeling cycle, from the alignment, preprocessing and calibration of batch data to the monitoring of batches trajectories....

  4. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  5. Holographic femtosecond laser manipulation for advanced material processing

    Science.gov (United States)

    Hasegawa, Satoshi; Hayasaki, Yoshio

    2016-02-01

    Parallel femtosecond laser processing using a computer-generated hologram displayed on a spatial light modulator, known as holographic femtosecond laser processing, provides the advantages of high throughput and high-energy use efficiency. Therefore, it has been widely used in many applications, including laser material processing, two-photon polymerization, two-photon microscopy, and optical manipulation of biological cells. In this paper, we review the development of holographic femtosecond laser processing over the past few years from the perspective of wavefront and polarization modulation. In particular, line-shaped and vector-wave femtosecond laser processing are addressed. These beam-shaping techniques are useful for performing large-area machining in laser cutting, peeling, and grooving of materials and for high-speed fabrication of the complex nanostructures that are applied to material-surface texturing to control tribological properties, wettability, reflectance, and retardance. Furthermore, issues related to the nonuniformity of diffraction light intensity in optical reconstruction and wavelength dispersion from a computer-generated hologram are addressed. As a result, large-scale holographic femtosecond laser processing over 1000 diffraction spots was successfully demonstrated on a glass sample.

  6. Comparing Simple and Advanced Video Tools as Supports for Complex Collaborative Design Processes

    Science.gov (United States)

    Zahn, Carmen; Pea, Roy; Hesse, Friedrich W.; Rosen, Joe

    2010-01-01

    Working with digital video technologies, particularly advanced video tools with editing capabilities, offers new prospects for meaningful learning through design. However, it is also possible that the additional complexity of such tools does "not" advance learning. We compared in an experiment the design processes and learning outcomes of 24…

  7. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology.

    Science.gov (United States)

    Wang, Chung-Yi; Huang, Hsiao-Wen; Hsu, Chiao-Ping; Yang, Binghuei Barry

    2016-01-01

    High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications.

  8. Advancements in organic antireflective coatings for dual-damascene processes

    Science.gov (United States)

    Deshpande, Shreeram V.; Shao, Xie; Lamb, James E., III; Brakensiek, Nickolas L.; Johnson, Joe; Wu, Xiaoming; Xu, Gu; Simmons, William J.

    2000-06-01

    Dual Damascene (DD) process has been implemented in manufacturing semiconductor devices with smaller feature sizes (EQ 0.20 micrometer), due to increased use of copper as a metal of choice for interconnects. Copper is preferred over aluminum due to its lower resistance which helps to minimize the effects of interconnect delays. Via first DD process is the most commonly used process for manufacturing semiconductor devices since it requires less number of processing steps and also it can make use of a via fill material to minimize the resist thickness variations in the trench patterning photolithography step. Absence of via fill material results in non-uniform fill of vias (in isolated and dense via regions) thus leading to non-uniform focus and dose for exposure of the resist in the deep vias. This results in poor resolution and poor critical dimension (CD) control in the trench-patterning step. When a via fill organic material such as a bottom anti- reflective coating (BARC) is used, then the resist thickness variations are minimized thus enhancing the resolution and CD control in trench patterning. Via fill organic BARC materials can also act as etch blocks at the base of the via to protect the substrate from over etch. In this paper we review the important role of via fill organic BARCs in improving the efficiency of via first DD process now being implemented in semiconductor manufacturing.

  9. Advanced Process Monitoring Techniques for Safeguarding Reprocessing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Christopher R.; Bryan, Samuel A.; Schwantes, Jon M.; Levitskaia, Tatiana G.; Fraga, Carlos G.; Peper, Shane M.

    2010-11-30

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including both the Multi-Isotope Process (MIP) Monitor and a spectroscopy-based monitoring system, to potentially reduce the time and resource burden associated with current techniques. The MIP Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using UV-Vis, Near IR and Raman spectroscopy. This paper will provide an overview of our methods and report our on-going efforts to develop and demonstrate the technologies.

  10. DEVELOPMENT OF ADVANCED HOT-GAS DESULFURIZATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    K. Jothimurugesan; Santosh K. Gangwal

    2000-12-01

    The techniques employed in this project have successfully demonstrated the feasibility of preparing sorbents that achieve greater than 99% H{sub 2}S removal at temperatures 480 C and that retain their activity over 50 cycles. Fundamental understanding of phenomena leading to chemical deactivation and high regeneration light-off temperature has enabled us to successfully prepare and scale up a FHR-32 sorbent that showed no loss in reactivity and capacity over 50 cycles. This sorbent removed H{sub 2}S below 80 ppmv and lighted-off nicely at 480 C during regeneration. Overall the test is a success with potential for an optimized FHR-32 to be a candidate for Sierra-Pacific. An advanced attrition resistant hot-gas desulfurization sorbent that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur directly has been developed. Attrition resistant Zn-Fe sorbent (AHI-2) formulations have been prepared that can remove H{sub 2}S to below 20 ppmv from coal gas and can be regenerated using SO{sub 2} to produce elemental sulfur.

  11. Advanced processing technology for high-nitrogen steels

    Science.gov (United States)

    Dunning, John S.; Simmons, John W.; Rawers, James C.

    1994-03-01

    Both high-and low-pressure processing techniques can be employed to add nitrogen to iron-based alloys at levels in excess of the equilibrium, ambient-pressure solubility limits. High-pressure techniques include high-pressure melting-solidification; powder atomization; and high-pressure, solid-state diffusion. Low-pressure techniques are centrifugal powder atomization and mechanical alloying. This article describes U.S. Bureau of Mines research on a range of processing technologies for nitrogen steels and references thermodynamic and materials characterization studies that have been completed on these materials.

  12. EFFECT OF UNEQUAL DEFORMATION IN DEVELOPMENT OF ADVANCED PLASTIC PROCESSING TECHNOLOGIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An effect of unequal deformation in development of advanced plastic processing technologies is researched by studying an in-plane bending process of strip metal under unequal compressing. The research results show the following: If appropriately controlled, unequal plastic deformation can play an important role not only in the improvement of quality of parts obtained by plastic processing technologies, but also in the development of new processes for advanced plastic working technologies. A coordinated growth of unequal plastic deformation can develop the deformation potentiality of material to the full. The degree of unequal plastic deformation can be used as bases for optimization design of processes and dies of plastic forming.

  13. Low-Cost Innovative Hi-Temp Fiber Coating Process for Advanced Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MATECH GSM (MG) proposes 1) to demonstrate a low-cost innovative Hi-Temp Si-doped in-situ BN fiber coating process for advanced ceramic matrix composites in order...

  14. Advancing e-commerce personalization: Process framework and case study

    NARCIS (Netherlands)

    Kaptein, M.C.; Parvinen, P.

    2015-01-01

    Personalization is widely used in e-commerce, and as computational power increases, personalization is now within reach for many online vendors. We describe a process framework to structure our knowledge of online personalization both from academia and from applied attempts. This framework is expect

  15. Advances towards a Clean Hydrometallurgical Process for Chromite

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-01-01

    Full Text Available Because of the acute toxicity of Cr(VI-bearing substances, the pollution problem caused by chromite process residue has become a worldwide concern. In the view of relevant studies, the technologies based on the alkali treatment cannot fundamentally resolve the pollution problem, because the oxidation of Cr(III to Cr(VI is unavoidable during chromite decomposition. In contrast, the oxidation of Cr(III to Cr(VI can be controlled by the sulfuric acid treatment of chromite, and the Cr(VI pollution can be eliminated from the original source of production. Many research studies focusing on the resolutions of the key obstacles hindering the development of the sulfuric acid treatment process have been carried out, and significant progress has been achieved. In this study, a clean hydrometallurgical process without the generation of hexavalent chromium is demonstrated. First, the chromite was decomposed and leached by sulfuric acid solution in the presence of an oxidant. Then, iron was hydrothermally removed from the acid solution as the precipitate of jarosite. Finally, chromium salts were obtained by adjusting the basicity of the solution, separation and drying. With the aim of realizing industrialization, future research emphasis on the development of the sulfuric acid treatment process is proposed in this study.

  16. 单入口双进气道旋风分离器内冲蚀特性%Erosion Characteristic in a Single Inlet Cyclone Separator With Double Passage

    Institute of Scientific and Technical Information of China (English)

    王江云; 冯留海; 张果; 毛羽; 王娟

    2016-01-01

    采用雷诺应力湍流模型、离散相模型和改进的冲蚀模型对一种单入口双进气道旋风分离器内的气‐固紊流及冲蚀过程进行了数值模拟,得到旋风分离器内壁面冲蚀速率详细分布规律。结果表明,固体颗粒对旋风分离器内壁的冲蚀主要发生在蜗壳上顶板、蜗壳与筒体连接段及排尘口处;在旋风分离器分离空间内,由上至下旋流稳定性逐渐减弱,导致壁面冲蚀速率逐渐增大。与普通单入口旋风分离器相比,在相同处理量时,单入口双进气道旋风分离器内形成的轴对称稳定旋流可以有效减弱颗粒与壁面的碰撞和磨削,从而明显降低壁面摩擦阻力损失和冲蚀速率,有利于旋风分离器的压降降低和长周期稳定运行。%The gas‐solid multiphase turbulence flow and wall erosion in a single inlet cyclone separator with double passage were studied by using Reynolds stress model ,discrete phase model and the advanced erosion model to obtain the detail wall erosion rate distribution . The results showed that the eroded region appeared in the volute roof ,the transition section between the volute and the cylinder and the dust outlet in the cyclone separator .In the separation space of the cyclone separator ,the vortex stability was weak gradually along the downward direction ,leading to the increase of wall erosion rate .Compared with the common single inlet cyclone at the same process load ,the axisymmetrical stable swirl of the cyclone with double passage contributed to weaken the particle collision and cutting of inner wall ,by which the frictional resistance and the erosion rate dramatically decreased .Therefore ,with this flow and erosion characteristic the pressure drop can be decreased to ensure the long period operation of the cyclone separator .

  17. ADVANCED OXIDATION PROCESSES (AOPs) APPLIED FOR WASTEWATER AND DRINKING WATER TREATMENT. ELIMINATION OF PHARMACEUTICALS

    OpenAIRE

    Petrovic, Mira; Radjenovic, Jelena; Barcelo, Damia

    2011-01-01

    Due to their insufficient removal in conventional wastewater treatments, advanced drinking and wastewater treatment options should be considered for the removal of pharmaceutically active compounds (PhACs) from urban, hospital and industrial wastewaters. This paper summarizes the current state-of-the-art in two often applied advanced oxidation processes (AOPs), namely TiO2 assisted photocatalysis and photo-Fenton process. Their possibilities in removing PhACs are discussed, giving examples fo...

  18. Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units

    NARCIS (Netherlands)

    Miguel Mercader, de F.; Groeneveld, M.J.; Kersten, S.R.A.; Way, N.W.J.; Schaverien, C.J.; Hogendoorn, J.A.

    2010-01-01

    One of the possible process options for the production of advanced biofuels is the co-processing of upgraded pyrolysis oil in standard refineries. The applicability of hydrodeoxygenation (HDO) was studied as a pyrolysis oil upgrading step to allow FCC co-processing. Different HDO reaction end temper

  19. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    International Nuclear Information System (INIS)

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%

  20. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Shoucheng, Wen [Yangtze Univ., HuBei Jingzhou (China)

    2014-02-15

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.

  1. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  2. Advanced Image Processing for Defect Visualization in Infrared Thermography

    Science.gov (United States)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  3. Combining advanced imaging processing and low cost remote imaging capabilities

    Science.gov (United States)

    Rohrer, Matthew J.; McQuiddy, Brian

    2008-04-01

    Target images are very important for evaluating the situation when Unattended Ground Sensors (UGS) are deployed. These images add a significant amount of information to determine the difference between hostile and non-hostile activities, the number of targets in an area, the difference between animals and people, the movement dynamics of targets, and when specific activities of interest are taking place. The imaging capabilities of UGS systems need to provide only target activity and not images without targets in the field of view. The current UGS remote imaging systems are not optimized for target processing and are not low cost. McQ describes in this paper an architectural and technologic approach for significantly improving the processing of images to provide target information while reducing the cost of the intelligent remote imaging capability.

  4. Advancements on Radar Polarization Information Acquisition and Processing

    Directory of Open Access Journals (Sweden)

    Dai Dahai

    2016-04-01

    Full Text Available The study on radar polarization information acquisition and processing has currently been one important part of radar techniques. The development of the polarization theory is simply reviewed firstly. Subsequently, some key techniques which include polarization measurement, polarization anti-jamming, polarization recognition, imaging and parameters inversion using radar polarimetry are emphatically analyzed in this paper. The basic theories, the present states and the development trends of these key techniques are presented and some meaningful conclusions are derived.

  5. Investigation of Advanced Processed Single-Crystal Turbine Blade Alloys

    Science.gov (United States)

    Peters, B. J.; Biondo, C. M.; DeLuca, D. P.

    1995-01-01

    This investigation studied the influence of thermal processing and microstructure on the mechanical properties of the single-crystal, nickel-based superalloys PWA 1482 and PWA 1484. The objective of the program was to develop an improved single-crystal turbine blade alloy that is specifically tailored for use in hydrogen fueled rocket engine turbopumps. High-gradient casting, hot isostatic pressing (HIP), and alternate heat treatment (HT) processing parameters were developed to produce pore-free, eutectic-free microstructures with different (gamma)' precipitate morphologies. Test materials were cast in high thermal gradient solidification (greater than 30 C/cm (137 F/in.)) casting furnaces for reduced dendrite arm spacing, improved chemical homogeneity, and reduced interdendritic pore size. The HIP processing was conducted in 40 cm (15.7 in.) diameter production furnaces using a set of parameters selected from a trial matrix study. Metallography was conducted on test samples taken from each respective trial run to characterize the as-HIP microstructure. Post-HIP alternate HT processes were developed for each of the two alloys. The goal of the alternate HT processing was to fully solution the eutectic gamma/(gamma)' phase islands and to develop a series of modified (gamma)' morphologies for subsequent characterization testing. This was accomplished by slow cooling through the (gamma)' solvus at controlled rates to precipitate volume fractions of large (gamma)'. Post-solution alternate HT parameters were established for each alloy providing additional volume fractions of finer precipitates. Screening tests included tensile, high-cycle fatigue (HCF), smooth and notched low-cycle fatigue (LCF), creep, and fatigue crack growth evaluations performed in air and high pressure (34.5 MPa (5 ksi)) hydrogen at room and elevated temperature. Under the most severe embrittling conditions (HCF and smooth and notched LCF in 34.5 MPa (5 ksi) hydrogen at 20 C (68 F), screening test

  6. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    Science.gov (United States)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  7. The effects of cyclone Hudah on the forest of Masoala Peninsula, Madagascar

    Directory of Open Access Journals (Sweden)

    Miramasoandro Randrianjanahary

    2007-12-01

    , particularly burning, that can derail this process. It is recommended that following cyclones conservation managers prioritize fire control.

  8. Recent advances in processing and characterization of edgeless detectors

    Science.gov (United States)

    Wu, X.; Kalliopuska, J.; Eränen, S.; Virolainen, T.

    2012-02-01

    During past five years VTT has actively developed edgeless detector fabrication process. The straightforward and high yield process relies on ion-implantation to activate the edges of the detector. A recent fabrication process was performed at VTT to provide p-on-n edgeless detectors. The layout contained DC- and AC-coupled strip detector and pixel detectors for Medipix/Timepix readouts. The fabricated detector thicknesses were 50, 100 and 150 μm. Electrical characterization was done for 5 × 5 mm2 edgeless diodes on wafer level. All measured electrical parameters showed a dramatic dependence on the diode thickness. Leakage current was measured below 10 nA/cm2 at full depletion. Calculation using a theoretical approximation indicates the diode surface generation current of less than 300 pA. The breakdown voltages were measured to be above 140 V and increased as a function of diode thickness. Reverse bias of 10 V is enough to fully deplete designed edgeless diodes. Leakage current dependence of temperature was investigated for both p-on-n and previous n-on-n edgeless detectors and results show that the leakage current doubles for every 8.5 degree Celsius rise in temperature. TCAD device simulations reveal that breakdown occurs at the lateral p-n junction where the electric field reaches its highest value. Thick edgeless diodes have wider bulk space that allows electric potential to drop and causes smaller curvature of the equipotential lines. This releases the accumulation of electric field at the corner of anode and increases the breakdown voltage. A good match of the simulated and the measured capacitance-voltage curves enables identification of proper parameters used in the simulation.

  9. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    Science.gov (United States)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  10. Advances in carbon dioxide compression and pipeline transportation processes

    CERN Document Server

    Witkowski, Andrzej; Majkut, Mirosław; Rulik, Sebastian; Stolecka, Katarzyna

    2015-01-01

    Providing a comprehensive analysis of CO2 compression, transportation processes and safety issues for post combustion CO2 capture applications for a 900 MW pulverized hard coal-fired power plant, this book assesses techniques for boosting the pressure of CO2 to pipeline pressure values with a minimal amount of energy. Four different types of compressors are examined in detail: a conventional multistage centrifugal compressor, integrally geared centrifugal compressor, supersonic shock wave compressor, and pump machines. The study demonstrates that the total compression power is closely related

  11. Advanced electrical and electronics materials processes and applications

    CERN Document Server

    Gupta, K M

    2015-01-01

    This comprehensive and unique book is intended to cover the vast and fast-growing field of electrical and electronic materials and their engineering in accordance with modern developments.   Basic and pre-requisite information has been included for easy transition to more complex topics. Latest developments in various fields of materials and their sciences/engineering, processing and applications have been included. Latest topics like PLZT, vacuum as insulator, fiber-optics, high temperature superconductors, smart materials, ferromagnetic semiconductors etc. are covered. Illustrations and exa

  12. Radio occultation bending angle anomalies during tropical cyclones

    Directory of Open Access Journals (Sweden)

    R. Biondi

    2011-02-01

    Full Text Available The tropical deep convection affects the radiation balance of the atmosphere changing the water vapor mixing ratio and the temperature of the upper troposphere lower stratosphere. The aim of this work is to better understand these processes and to investigate if severe storms leave a significant signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from different GPS radio occultation missions (COSMIC, GRACE, CHAMP, SACC and GPSMET, we selected 1194 profiles in a time window of 3 h and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS radio occultation signal is typically larger than the climatology in the upper troposphere and lower stratosphere and that a double tropopause during deep convection can easily be detected using this technique. Comparisons with co-located radiosondes, climatology of tropopause altitudes and GOES analyses are also shown to support the hypothesis that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES payload on the International Space Station.

  13. Advanced modeling of management processes in information technology

    CERN Document Server

    Kowalczuk, Zdzislaw

    2014-01-01

    This book deals with the issues of modelling management processes of information technology and IT projects while its core is the model of information technology management and its component models (contextual, local) describing initial processing and the maturity capsule as well as a decision-making system represented by a multi-level sequential model of IT technology selection, which acquires a fuzzy rule-based implementation in this work. In terms of applicability, this work may also be useful for diagnosing applicability of IT standards in evaluation of IT organizations. The results of this diagnosis might prove valid for those preparing new standards so that – apart from their own visions – they could, to an even greater extent, take into account the capabilities and needs of the leaders of project and manufacturing teams. The book is intended for IT professionals using the ITIL, COBIT and TOGAF standards in their work. Students of computer science and management who are interested in the issue of IT...

  14. Emergency Department Presentations following Tropical Cyclone Yasi.

    Directory of Open Access Journals (Sweden)

    Peter Aitken

    Full Text Available Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED of a tertiary level hospital (Townsville following a tropical cyclone (Yasi. Specific areas of focus include changes in: patient demographics (age and gender, triage categories, and classification of diseases.Data were extracted from the Townsville Hospitals ED information system (EDIS for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011 to six days after Yasi crossed the coast line (8 February 2012. The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level.There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories--4 and 5; and ICD categories--diseases of the skin and subcutaneous tissue (L00-L99, and factors influencing health care status (Z00-Z99. The most common diagnostic presentation across all years was injury (S00-T98.There was an increase in presentations to the ED of TTH, which peaked in the first 24-48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience.

  15. Objective classification of historical tropical cyclone intensity

    Science.gov (United States)

    Chenoweth, Michael

    2007-03-01

    Preinstrumental records of historical tropical cyclone activity require objective methods for accurately categorizing tropical cyclone intensity. Here wind force terms and damage reports from newspaper accounts in the Lesser Antilles and Jamaica for the period 1795-1879 are compared with wind speed estimates calculated from barometric pressure data. A total of 95 separate barometric pressure readings and colocated simultaneous wind force descriptors and wind-induced damage reports are compared. The wind speed estimates from barometric pressure data are taken as the most reliable and serve as a standard to compare against other data. Wind-induced damage reports are used to produce an estimated wind speed range using a modified Fujita scale. Wind force terms are compared with the barometric pressure data to determine if a gale, as used in the contemporary newspapers, is consistent with the modern definition of a gale. Results indicate that the modern definition of a gale (the threshold point separating the classification of a tropical depression from a tropical storm) is equivalent to that in contemporary newspaper accounts. Barometric pressure values are consistent with both reported wind force terms and wind damage on land when the location, speed and direction of movement of the tropical cyclone are determined. Damage reports and derived wind force estimates are consistent with other published results. Biases in ships' logbooks are confirmed and wind force terms of gale strength or greater are identified. These results offer a bridge between the earlier noninstrumental records of tropical cyclones and modern records thereby offering a method of consistently classifying storms in the Caribbean region into tropical depressions, tropical storms, nonmajor and major hurricanes.

  16. Ion trajectory evaluation on CYCLONE 30

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Luisa A.; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2011-07-01

    The Cyclotron is a compact device created with the purpose of accelerating positive or negative ions of H, D or {alpha} particles with energy up to 2-5% relativistic mass, whose beam is extracted and conveyed toward to the specific targets. On these accelerators, powerful electromagnetic magnets keep the particles moving in a circular trajectory. A radio frequency source provides electric fields between electrode's cavity whose polarity switches in synchronization with the passage of the pulsed particle beam. The particle kinetic energy increases at every turn. The Cyclone 30, from Ion Beam Applications, Belgium, is a negative ion accelerator, specifically for the production of radioisotopes. This device can generate beams of protons with energies up to 30 MeV and current up to 350 {mu}A. The major goal of this study is to build a cyclone-30 model and simulate particle trajectory through the CST particle studio (2011) electromagnetic code. The pathway of a positive ion beam along its EMF (simulated on the Cyclone-type cyclotron-30 model) is presented. Herein, only the ion pathways on the main components, involving the circular path of the particle beam, were simulated. The results show the electrical field and pathway of the ion beam on the RF cavities. As conclusion, the modeling is in progress and simulations on the RF cavities were performed. In future, one can analyze the main physical parameter that involves ion acceleration on cyclone 30 based on simulations. Such investigation will provide possible performance comparisons and improvements in future designs. (author)

  17. Machine Vision and Advanced Image Processing in Remote Sensing

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    This paper describes the multivariate alteration detection (MAD) transformation which is based on the established canonical correlation analysis. It also proposes post-processing of the change detected by the MAD variates by means of maximum autocorrelation factor (MAF) analysis. As opposed to most......, and to the application of radiometric and atmospheric correction schemes that are linear or affine in the gray numbers of each image band. Other multivariate change detection schemes described are principal component type analysis of simple difference images. A case study with Landsat TM data using simple linear...... stretching and masking of the change images shows the usefulness of the new MAD and MAF/MAD change detection schemes. A simple simulation of a no-change situation shows the power of the MAD and MAF/MAD transformations...

  18. Self-supported electrocatalysts for advanced energy conversion processes

    Directory of Open Access Journals (Sweden)

    Tian Yi Ma

    2016-06-01

    Full Text Available The biggest challenge in developing new energy conversion technologies such as rechargeable metal-air batteries, regenerated fuel cells and water splitting devices is to find suitable catalysts that can efficiently and stably catalyze the key electrochemical processes involved. This paper reviews the new development of self-supported electrocatalysts in three categories: electrocatalysts growing on rigid substrates, electrocatalysts growing on soft substrates, and free-standing catalyst films. They are distinct and superior to the conventional powdery electrocatalysts, showing advantages in controllable nanostructure and chemical component, flexible electrode configuration, and outstanding catalytic performance. The self-supported electrocatalysts with various architectures like nanowire/plate/pillar arrays and porous films, composed of metals, metal oxides/selenides/phosphides, organic polymers, carbons and their corresponding hybrids, are presented and discussed. These catalysts exhibit high activity, durability and selectivity toward oxygen reduction, oxygen evolution, and/or hydrogen evolution reactions. The perspectives on the relevant areas are also proposed.

  19. An advanced microcomputer design for processing of semiconductor materials

    Science.gov (United States)

    Bjoern, L.; Lindkvist, L.; Zaar, J.

    1988-01-01

    In the Get Away Special 330 payload two germanium samples doped with gallium will be processed. The aim of the experiments is to create a planar solid/liquid interface, and to study the breakdown of this interface as the crystal growth rate increases. For the experiments a gradient furnace was designed which is heated by resistive heaters. Cooling is provided by circulating gas from the atmosphere in the cannister through cooling channels in the furnace. The temperature along the sample are measured by platinum/rhodium thermocouples. The furnace is controlled by a microcomputer system, based upon the processor 80C88. A data acquisition system is integrated into the system. In order to synchronize the different actions in time, a multitask manager is used.

  20. A review on advances of torrefaction technologies for biomass processing

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bimal; Sule, Idris; Dutta, Animesh [University of Guelph, School of Engineering, Guelph, ON (Canada)

    2012-12-15

    Torrefaction is a thermochemical pretreatment process at 200-300 C in an inert condition which transforms biomass into a relatively superior handling, milling, co-firing and clean renewable energy into solid biofuel. This increases the energy density, water resistance and grindability of biomass and makes it safe from biological degradation which ultimately makes easy and economical on transportation and storing of the torrefied products. Torrefied biomass is considered as improved version than the current wood pellet products and an environmentally friendly future alternative for coal. Torrefaction carries devolatilisation, depolymerization and carbonization of lignocellulose components and generates a brown to black solid biomass as a productive output with water, organics, lipids, alkalis, SiO{sub 2}, CO{sub 2}, CO and CH{sub 4}. During this process, 70 % of the mass is retained as a solid product, and retains 90 % of the initial energy content. The torrefied product is then shaped into pellets or briquettes that pack much more energy density than regular wood pellets. These properties minimize on the difference in combustion characteristics between biomass and coal that bring a huge possibility of direct firing of biomass in an existing coal-fired plant. Researchers are trying to find a solution to fire/co-fire torrefied biomass instead of coal in an existing coal-fired based boiler with minimum modifications and expenditures. Currently available torrefied technologies are basically designed and tested for woody biomass so further research is required to address on utilization of the agricultural biomass with technically and economically viable. This review covers the torrefaction technologies, its' applications, current status and future recommendations for further study. (orig.)

  1. Advanced bulk processing of lightweight materials for utilization in the transportation sector

    Science.gov (United States)

    Milner, Justin L.

    The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.

  2. Anatomy of sand beach ridges: Evidence from severe Tropical Cyclone Yasi and its predecessors, northeast Queensland, Australia

    Science.gov (United States)

    Nott, Jonathan; Chague-Goff, Catherine; Goff, James; Sloss, Craig; Riggs, Naomi

    2013-09-01

    Four well-identified tropical cyclones over the past century have been responsible for depositing distinct units of predominantly quartzose sand and gravel to form the most seaward beach ridge at several locations along the wet tropical coast of northeast Queensland, Australia. These units deposited by tropical cyclones display a key sedimentary signature characterized by a sharp basal erosional contact, a coarser grain size than the underlying facies and a coarse-skewed trend toward the base. Coarse-skewed distributions with minimal change in mean grain size also characterize the upper levels of the high-energy deposited units at locations within the zone of maximum onshore winds during the tropical cyclone. These same coarse skew distributions are not apparent in sediments deposited at locations where predominantly offshore winds occurred during the cyclone, which in the case of northeast Australia is north of the eye-crossing location. These sedimentary signatures, along with the geochemical indicators and the degraded nature of the microfossil assemblages, have proven to be useful proxies to identify storm-deposited units within the study site and can also provide useful proxies in older beach ridges where advanced pedogenesis has obscured visual stratigraphic markers. As a consequence, more detailed long-term histories of storms and tropical cyclones can now be developed.

  3. Les cyclones tropicaux et le changement climatique

    Science.gov (United States)

    André, Jean-Claude; Royer, Jean-François; Chauvin, Fabrice

    2008-09-01

    Results from observations and modelling studies, a number of which having been used to support the conclusions of the IPCC fourth assessment report, are presented. For the past and present-day (since 1970) periods, the increase of strong cyclonic activity over the North Atlantic Ocean appears to be in good correlation with increasing temperature of the ocean surface. For regions where observational data are of lesser quality, the increasing trend is less clear. In fact, assessing long-term changes is made difficult due to both the multi-decennial natural variability and the lesser coverage of observations before satellites were made available. Indirect observational data, such as those derived from quantitative estimations of damage caused by tropical cyclones, suffer from many artefacts and do not allow the resolving of the issue either. For the future, only numerical three-dimensional climate models can be used. They nevertheless run presently with too-large grid-sizes, so that their results are still not converging. Various simulations lead indeed to different results, and it is very often difficult to find the physical reasons for these differences. One concludes by indicating some ways through which numerical simulations could be improved, leading to a decrease of uncertainties affecting the prediction of cyclonic activity over the next decades.

  4. A DYNAMICAL INTERPRETATION OF THE WIND FIELD IN TROPICAL CYCLONES

    Institute of Scientific and Technical Information of China (English)

    HAO Shi-feng; CUI Xiao-peng; PAN Jin-song; ZHOU Guan-bo; HU Bo

    2009-01-01

    Based on the primitive equations in polar coordinates and with the supposition that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure agrees with the Fujita formula, a set of equations are derived, which describe the impact of perturbations of central pressure, position of tropical cyclones, direction and velocity of movement of tropical cyclones on the wind field. It is proved that the second order approximation of the kinetic energy of tropical cyclones can be described by the equations under linear approximation. Typhoon Wipha (2007) is selected to verify the above interpretation method, and the results show that the interpretation method of the wind field could give very good results before the landfall of tropical cyclones, while making no apparent improvement after the landfall. The dynamical interpretation method in this paper is applicable to improving the forecasts of the wind field of tropical cyclones close to the coast.

  5. Particle Residence Time in Column Flotation Based on Cyclonic Separation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-hua; LIU Jiong-tian

    2007-01-01

    The cyclonic static micro-bubble column flotation (FCSMC) is an effective separation device for fine particle treatment. The high mineralization rate and short flotation time of this equipment can be attributed to its unique cyclonic force field. It also has been observed that the presence of a cyclonic force field leads to a lower bottom separation size limit and a reduction of unselective entrainment. The collection zone of the column is considered to consist of two parts, a column separation zone and a cyclonic zone. Total recovery of the collection zone was developed. For our study, we analyzed the particle movement in the cyclonic zone. Particle residence time equations for the cyclonic zone were derived by force analysis. Results obtained in this study provide a theoretical foundation for the design and scale-up of the FCSMC.

  6. Advanced Signal Processing Methods Applied to Digital Mammography

    Science.gov (United States)

    Stauduhar, Richard P.

    1997-01-01

    The work reported here is on the extension of the earlier proposal of the same title, August 1994-June 1996. The report for that work is also being submitted. The work reported there forms the foundation for this work from January 1997 to September 1997. After the earlier work was completed there were a few items that needed to be completed prior to submission of a new and more comprehensive proposal for further research. Those tasks have been completed and two new proposals have been submitted, one to NASA, and one to Health & Human Services WS). The main purpose of this extension was to refine some of the techniques that lead to automatic large scale evaluation of full mammograms. Progress on each of the proposed tasks follows. Task 1: A multiresolution segmentation of background from breast has been developed and tested. The method is based on the different noise characteristics of the two different fields. The breast field has more power in the lower octaves and the off-breast field behaves similar to a wideband process, where more power is in the high frequency octaves. After the two fields are separated by lowpass filtering, a region labeling routine is used to find the largest contiguous region, the breast. Task 2: A wavelet expansion that can decompose the image without zero padding has been developed. The method preserves all properties of the power-of-two wavelet transform and does not add appreciably to computation time or storage. This work is essential for analysis of the full mammogram, as opposed to selecting sections from the full mammogram. Task 3: A clustering method has been developed based on a simple counting mechanism. No ROC analysis has been performed (and was not proposed), so we cannot finally evaluate this work without further support. Task 4: Further testing of the filter reveals that different wavelet bases do yield slightly different qualitative results. We cannot provide quantitative conclusions about this for all possible bases

  7. Automated angiogenesis quantification through advanced image processing techniques.

    Science.gov (United States)

    Doukas, Charlampos N; Maglogiannis, Ilias; Chatziioannou, Aristotle; Papapetropoulos, Andreas

    2006-01-01

    Angiogenesis, the formation of blood vessels in tumors, is an interactive process between tumor, endothelial and stromal cells in order to create a network for oxygen and nutrients supply, necessary for tumor growth. According to this, angiogenic activity is considered a suitable method for both tumor growth or inhibition detection. The angiogenic potential is usually estimated by counting the number of blood vessels in particular sections. One of the most popular assay tissues to study the angiogenesis phenomenon is the developing chick embryo and its chorioallantoic membrane (CAM), which is a highly vascular structure lining the inner surface of the egg shell. The aim of this study was to develop and validate an automated image analysis method that would give an unbiased quantification of the micro-vessel density and growth in angiogenic CAM images. The presented method has been validated by comparing automated results to manual counts over a series of digital chick embryo photos. The results indicate the high accuracy of the tool, which has been thus extensively used for tumor growth detection at different stages of embryonic development. PMID:17946107

  8. Advanced Signal Processing for Thermal Flaw Detection; TOPICAL

    International Nuclear Information System (INIS)

    Dynamic thermography is a promising technology for inspecting metallic and composite structures used in high-consequence industries. However, the reliability and inspection sensitivity of this technology has historically been limited by the need for extensive operator experience and the use of human judgment and visual acuity to detect flaws in the large volume of infrared image data collected. To overcome these limitations new automated data analysis algorithms and software is needed. The primary objectives of this research effort were to develop a data processing methodology that is tied to the underlying physics, which reduces or removes the data interpretation requirements, and which eliminates the need to look at significant numbers of data frames to determine if a flaw is present. Considering the strengths and weakness of previous research efforts, this research elected to couple both the temporal and spatial attributes of the surface temperature. Of the possible algorithms investigated, the best performing was a radiance weighted root mean square Laplacian metric that included a multiplicative surface effect correction factor and a novel spatio-temporal parametric model for data smoothing. This metric demonstrated the potential for detecting flaws smaller than 0.075 inch in inspection areas on the order of one square foot. Included in this report is the development of a thermal imaging model, a weighted least squares thermal data smoothing algorithm, simulation and experimental flaw detection results, and an overview of the ATAC (Automated Thermal Analysis Code) software that was developed to analyze thermal inspection data

  9. Advanced primary treatment of waste water using a bio-flocculation-adsorption sedimentation process

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W.; Ting, Y.P.; Chen, J.P.; Xing, C.H. [National Univ., Singapore (Singapore). Dept. of Chemical and Environmental Engineering; Shi, S.Q. [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering

    2000-07-01

    An advanced primary treatment process for a municipal waste water was systematically studied, using a bio-flocculation-adsorption, sedimentation and stabilization process (BSS). It was shown that the organic removal efficiency was higher than that of the traditional primary treatment processes but lower than that of the traditional secondary treatment processes. Both adsorption and bio-flocculation played an important role in the removal of pollutants. The activated sludge within the bio-flocculation-adsorption tank could be considered a bio-flocculent which improved the quality of the effluent from the primary treatment process. As the effluent of the BSS process did not meet the requirements for a typical secondary effluent, the process may be regarded as an advanced (or enhanced) primary treatment process, suitable for waste water containing a high concentration of suspended solids and colloidal particles. (orig.)

  10. Density distribution in a heavy-medium cyclone

    Institute of Scientific and Technical Information of China (English)

    Wang Yuling; Zhao Yuemin; Yang Jianguo

    2011-01-01

    Heavy-medium cyclones are widely used to upgrade run-of-mine coal. But the understanding of flow in a cyclone containing a dense medium is still incomplete. By introducing turbulent diffusion into calculations of centrifugal settling a theoretical distribution function giving the density field can be deduced. Qualitative analysis of the density field in every part of a cylindrical cyclone suggests an optimum design that has exhibited good separation effectiveness and anti-wear performance when in commercial operation.

  11. Dry-Scrubbing of Acid Gases in Recirculating Cyclones

    OpenAIRE

    Chibante, Vania; Fonseca, Ana; Salcedo, Romualdo

    2007-01-01

    This paper describes a laboratory-scale study on the use of recirculating cyclones as reaction chambers for dry scrubbing of gaseous HCl with solid slaked lime particles. This gas cleaning system combines a numerically optimized reverse flow gas cyclone (RS_VHE geometry) with a straight-through cyclone concentrator, which simultaneously increases the capture of the solid particles and promotes their partial recirculation. A laboratory-scale study was undertaken to test this technology and to ...

  12. Advances in process overlay: alignment solutions for future technology nodes

    Science.gov (United States)

    Megens, Henry; van Haren, Richard; Musa, Sami; Doytcheva, Maya; Lalbahadoersing, Sanjay; van Kemenade, Marc; Lee, Hyun-Woo; Hinnen, Paul; van Bilsen, Frank

    2007-03-01

    Semiconductor industry has an increasing demand for improvement of the total lithographic overlay performance. To improve the level of on-product overlay control the number of alignment measurements increases. Since more mask levels will be integrated, more alignment marks need to be printed when using direct-alignment (also called layer-to-layer alignment). Accordingly, the alignment mark size needs to become smaller, to fit all marks into the scribelane. For an in-direct alignment scheme, e.g. a scheme that aligns to another layer than the layer to which overlay is being measured, the number of needed alignment marks can be reduced. Simultaneously there is a requirement to reduce the size of alignment mark sub-segmentations without compromising the alignment and overlay performance. Smaller features within alignment marks can prevent processing issues like erosion, dishing and contamination. However, when the sub-segmentation size within an alignment mark becomes comparable to the critical dimension, and thus smaller than the alignment-illuminating wavelength, polarization effects might start to occur. Polarization effects are a challenge for optical alignment systems to maintain mark detectability. Nevertheless, this paper shows how to actually utilize those effects in order to obtain enhanced alignment and overlay performance to support future technology nodes. Finally, another challenge to be met for new semiconductor product technologies is the ability to align through semi-opaque materials, like for instance new hard-mask materials. Enhancement of alignment signal strength can be reached by adapting to new alignment marks that generate a higher alignment signal. This paper provides a description of an integral alignment solution that meets with these emerging customer application requirements. Complying with these requirements will significantly enhance the flexibility in production strategies while maintaining or improving the alignment and overlay

  13. Detection of cyclonic eddy generated by looping tropical cyclone in the northern South China Sea:a case study

    Institute of Scientific and Technical Information of China (English)

    HU Jianyu; KAWAMURA Hiroshi

    2004-01-01

    A case study on the cyclonic eddy generated by the tropical cyclone looping over the northern South China Sea (NSCS) is presented, using TOPEX/POSEIDON altimeter data and AVHRR sea surface temperature (SST) data.Three cases relating to the tropical cyclone events (Typhoon Kai-Tak in July 2000, Tropical Storm Russ in June 1994 and Tropical Storm Maria in August-September 2000) over the NSCS have been analyzed. For each looping tropical cyclone case, the cyclonic eddy with an obvious sea level depression appears in the sea area where the tropical cyclone takes a loop form, and lasts for about 2 weeks with a slight variation in location. The cold core with the SST difference greater than 2 ℃ against its surrounding areas is also observed by the satellite-derived SST data.

  14. Detection of cyclonic eddy generated by looping tropical cyclone in the northern South China Sea:a case study

    Institute of Scientific and Technical Information of China (English)

    HU Jianyu; KAWAMURA Hiroshi

    2004-01-01

    A case study on the cyclonic eddy generated by the tropical cyclone looping over the northern South China Sea (NSCS) is presented, using TOPEX/POSEIDON altimeter data and AVHRR sea surface temperature (SST) data.Three cases relating to the tropical cyclone events (Typhoon Kai-Tak in July 2000, Tropical Storm Russ in June 1994and Tropical Storm Maria in August-September 2000) over the NSCS have been analyzed. For each looping tropical cyclone case, the cyclonic eddy with an obvious sea level depression appears in the sea area where the tropical cyclone takes a loop form, and lasts for about 2 weeks with a slight variation in location. The cold core with the SST difference greater than 2 ℃ against its surrounding areas is also observed by the satellite-derived SST data.

  15. Differential leaflet mortality may influence biogeochemical cycling following tropical cyclones.

    Science.gov (United States)

    Marler, Thomas E; Ferreras, Ulysses

    2014-01-01

    Intensity of tropical cyclones is expected to increase in the coming century, and an improved understanding of their influence on biogeochemical cycles would benefit ecologists and conservationists. We studied the November 2013 Typhoon Haiyan damage to observe that numerous examples of partial leaf necrosis on intact leaves of trees in the Cycadaceae and Arecaceae families resulted, leaving behind a copious amount of arboreal dead leaf material attached to live leaves. The decay process of this form of arboreal litter has not been previously studied. When compared with decay of ground litter or detached litter suspended in the canopy, we predict the decay process of this form of arboreal litter will include increased photooxidation, leaching, and comminution by detritivorous insects and mites; but decreased catabolism of organic molecules by saprophytic organisms.

  16. Tropical cyclone statistics in the Northeastern Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Vadillo, E. [Universidad Autonoma de Baja California Sur (UABCS), La Paz, Baja California Sur (Mexico); Zaytsev, O. [Centro Interdisciplinario de Ciencias Marinas, Instituto Politecnico Nacional, La Paz, Baja California Sur (Mexico)]. E-mail: ozaytsev@ipn.mx; Morales-Perez, R. [Instituto Mexicano de Tecnologia del Agua (IMTA), Jiutepec, Morelos (Mexico)

    2007-04-15

    The principal area of tropical cyclogenesis in the tropical eastern Pacific Ocean is offshore in the Gulf of Tehuantepec, between 8 and 15 degrees Celsius N, and most of these cyclones move towards the west and northwest during their initial phase. Historical analysis of tropical cyclone data in the Northeastern (NE) Pacific over the last 38 years (from 1966 to 2004) shows a mean of 16.3 tropical cyclones per year, consisting of 8.8 hurricanes 198 and 7.4 tropical storms. The analysis shows great geographical variability of cyclone tracks, and that there were a considerable number of hurricane strikes along the Mexican coast. About 50% of the tropical cyclones formed turned north to northeast. It was rare that any passed further north than 30 degrees Celsius N in latitude because of the cold California Current. Hurricane tracks that affected the NE Pacific may be separated into 5 groups. We compared the historical record of the sea surface temperature (SST), related with the El Nino events with a data set of tropical cyclones, including frequency, intensity, trajectory, and duration. Although the statistical dependence between the frequencies of tropical cyclones of the most abundant categories, 1 and 2, over this region and SST data was not convincing, the percentage of high intensity hurricanes and hurricanes with a long life-time (greater than 12 days) was more during El Nino years than in non-El Nino years. [Spanish] La principal region de la formacion de ciclones en el oceano Pacifico Este es el Golfo de Tehuantepec, entre los 8 y los 15 grados Celsius N. En su fase inicial los ciclones se mueven hacia el oeste y el noroeste. El analisis historico de los ciclones que se han generado durante los ultimos 38 anos (de 1966 a 2004) muestra un promedio de 16.2 ciclones por ano, consistentes en 8.8 huracanes y 7.4 tormentas tropicales. El analisis muestra una gran variabilidad geografica en la trayectoria de los ciclones, de los cuales un gran numero impacta las

  17. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste

  18. Wafer level reliability monitoring strategy of an advanced multi-process CMOS foundry

    NARCIS (Netherlands)

    Scarpa, Andrea; Tao, Guoqiao; Kuper, Fred G.

    2000-01-01

    In an advanced multi-process CMOS foundry it is strategically important to make use of an optimum reliability monitoring strategy, in order to be able to run well controlled processes. Philips Semiconductors Business Unit Foundries wafer fab MOS4YOU has developed an end-of-line ultra-fast reliabilit

  19. Software Systems 2--Compiler and Operating Systems Lab--Advanced, Data Processing Technology: 8025.33.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course outline has been prepared as a guide to help the student develop the skills and knowledge necessary to succeed in the field of data processing. By learning the purpose and principles of compiler programs and operating systems, the student will become familiar with advanced data processing procedures that are representative of computer…

  20. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Science.gov (United States)

    2010-01-01

    .../bone separation machinery; process control. 318.24 Section 318.24 Animals and Animal Products FOOD.../bone separation machinery; process control. (a) General. Meat, as defined in § 301.2 of this subchapter... this subchapter, using advances in mechanical meat/bone separation machinery (i.e., AMR systems)...

  1. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    Science.gov (United States)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of

  2. [Technology development as social process: prospects and frontiers of social scientific elucidation of technological advancement].

    Science.gov (United States)

    Dierkes, M

    1990-05-01

    This article provides an overview of the new developments in social scientific technology research which have changed considerably as a result of public debate and reactions to the importance of advancements in technology. The shift in emphasis, away from the effects of technology to its shaping, is described and certain hypotheses and concepts of advancement in the study of the social conditions underlying technical development processes are presented.

  3. Comparisons of Three Advanced Oxidation Processes in Organic Matter Removal from Esfahan Composting Factory Leachate

    OpenAIRE

    karimi B.; Ehrampoush M.H.; Mokhtari M.; Ebrahimi A

    2011-01-01

    Backgrounds and Objectives: Wet air oxidation (WAO) is one of the advanced oxidation process which is mostly used to reduce organic matter concentration from industrial wastewater, toxic and non biodegradable substance and solid waste leachate.The objective of this paper is comparisons of three advance oxidation in organic matter removal in different conditions from Esfahan composing factory leachateMaterial and Methods: The experiment was carried out by adding 1.5 Lit pretreated leachate sam...

  4. C.I. Reactive Black 5 degradation by advanced electrochemical oxidation process, AEOP

    OpenAIRE

    Esteves, M. de Fátima; Sousa, Elisabete,1954-

    2007-01-01

    In the last decades, an increasing number of procedures to remove pollutants from wastewater have been reported. Advanced oxidation processes (AOPs) are one of those technologies used for this purpose, namely, for textile wastewater treatment. AOPs are environmentally friendly methods based on chemical, photochemical or photocatalytical production of hydroxyl radical (HO•). This strong oxidant can react with most organic compounds present in wastewater, as dyestuffs. In this paper, an Advance...

  5. The influence of an atmospheric Two-Way coupled model system on the predictability of extratropical cyclones

    Science.gov (United States)

    Schuster, Mareike; Thürkow, Markus; Weiher, Stefan; Kirchner, Ingo; Ulbrich, Uwe; Will, Andreas

    2016-04-01

    A general bias of global atmosphere ocean models, and also of the MPI-ESM, is an under-representation of the high latitude cyclone activity and an overestimation of the mid latitude cyclone activity in the North Atlantic, thus representing the extra-tropical storm track too zonal. We will show, that this effect can be antagonized by applying an atmospheric Two-Way Coupling (TWC). In this study we present a newly developed Two-Way Coupled model system, which is based on the MPI-ESM, and show that it is able to capture the mean storm track location more accurate. It also influences the sub-decadal deterministic predictability of extra-tropical cyclones and shows significantly enhanced skill compared to the "uncoupled" MPI-ESM standalone system. This study evaluates a set of hindcast experiments performed with said Two-Way Coupled model system. The regional model COSMO CLM is Two-Way Coupled to the atmosphere of the global Max-Plack-Institute Earth System Model (MPI-ESM) and therefore integrates and exchanges the state of the atmosphere every 10 minutes (MPI-TWC-ESM). In the coupled source region (North Atlantic), mesoscale processes which are relevant for the formation and early-stage development of cyclones are expected to be better represented, and therefore influence the large scale dynamics of the target region (Europe). The database covers 102 "uncoupled" years and 102 Two-Way Coupled years of the recent climate (1960-2010). Results are validated against the ERA-Interim reanalysis. Besides the climatological point of view, the design of this single model ensemble allows for an analysis of the predictability of the first and second leadyears of the hindcasts. As a first step to understand the improved predictability of cyclones, we will show a detailed analysis of climatologies for specific cyclone categories, sorted by season and region. Especially for cyclones affecting Europe, the TWC is capable to counteract the AOGCM's biases in the North Atlantic. Also

  6. Appraisal of recent theories to understand cyclogenesis pathways of tropical cyclone Madi (2013)

    Science.gov (United States)

    Rajasree, V. P. M.; Kesarkar, Amit P.; Bhate, Jyoti N.; Umakanth, U.; Singh, Vikas; Harish Varma, T.

    2016-08-01

    The present study aims to examine the new understanding of cyclogenesis by analyzing the genesis sequence of formation of a very severe cyclonic storm Madi (6-13 December 2013) that occurred over the Bay of Bengal. We have generated a high-resolution (18 km, 6 km, and 2 km) analysis using three-dimensional variational data assimilation technique and Weather Research and Forecasting model. The genesis sequence of Madi cyclone is analyzed using the concepts in the marsupial theory and other theories of tropical cyclone formation. Major results are as follows: the developed analysis is found useful for tracking the movement of westward moving parent disturbance from 15 days prior to the genesis; identifying developed pouch region in the Lagrangian frame of reference; understanding the evolution of the pouch and convection within the pouch region and for the study of intensification inside the pouch region. Also, large-scale priming of environment concurs with the hypotheses of the marsupial theory of tropical cyclogenesis. The analysis of dynamical and thermodynamical processes within the pouch region showed gradual moistening, uplifting of moisture, diabatic heating causing buoyant convection in the vorticity-rich environment followed by vortex tube stretching, development of convection, heavy precipitation, strengthening of lower level convergence, and hence spin-up during a day or two preceding the genesis of Madi cyclone. In general, it is concluded that intensification within pouch region during the cyclogenesis phase followed the marsupial paradigm and bottom-up mechanism.

  7. Impacts of tropical cyclones on Fiji and Samoa

    Science.gov (United States)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola

    2013-04-01

    Weather and climate hazards have significant impacts on Pacific Island Countries. Costs of hazards such as tropical cyclones can be astronomical making enormous negative economic impacts on developing countries. We highlight examples of extreme weather events which have occurred in Fiji and Samoa in the last few decades and have caused major economic and social disruption in the countries. Destructive winds and torrential rain associated with tropical cyclones can bring the most damaging weather conditions to the region causing economic and social hardship, affecting agricultural productivity, infrastructure and economic development which can persist for many years after the initial impact. Analysing historical data, we describe the impacts of tropical cyclones Bebe and Kina on Fiji. Cyclone Bebe (October 1972) affected the whole Fiji especially the Yasawa Islands, Viti Levu and Kadavu where hurricane force winds have been recorded. Nineteen deaths were reported and damage costs caused by cyclone Bebe were estimated as exceeding F20 million (F 1972). Tropical cyclone Kina passed between Fiji's two main islands of Viti Levu and Vanua Levu, and directly over Levuka on the night of 2 January 1993 with hurricane force winds causing extensive damage. Twenty three deaths have been reported making Kina one of the deadliest hurricanes in Fiji's recent history. Severe flooding on Viti Levu, combined with high tide and heavy seas led to destruction of the Sigatoka and Ba bridges, as well as almost complete loss of crops in Sigatoka and Navua deltas. Overall, damage caused by cyclone Kina was estimated as F170 million. In Samoa, we describe devastation to the country caused by tropical cyclones Ofa (February 1990) and Val (December 1991) which were considered to be the worst cyclones to affect the Samoan islands since the 1889 Apia cyclone. In Samoa, seven people were killed due to cyclone Ofa, thousands of people were left homeless and entire villages were destroyed. Damage

  8. Lessons learnt from tropical cyclone losses

    Science.gov (United States)

    Honegger, Caspar; Wüest, Marc; Zimmerli, Peter; Schoeck, Konrad

    2016-04-01

    Swiss Re has a long history in developing natural catastrophe loss models. The tropical cyclone USA and China model are examples for event-based models in their second generation. Both are based on basin-wide probabilistic track sets and calculate explicitly the losses from the sub-perils wind and storm surge in an insurance portfolio. Based on these models, we present two cases studies. China: a view on recent typhoon loss history Over the last 20 years only very few major tropical cyclones have caused severe insurance losses in the Pearl River Delta region and Shanghai, the two main exposure clusters along China's southeast coast. Several storms have made landfall in China every year but most struck areas with relatively low insured values. With this study, we make the point that typhoon landfalls in China have a strong hit-or-miss character and available insured loss experience is too short to form a representative view of risk. Historical storm tracks and a simple loss model applied to a market portfolio - all from publicly available data - are sufficient to illustrate this. An event-based probabilistic model is necessary for a reliable judgement of the typhoon risk in China. New York: current and future tropical cyclone risk In the aftermath of hurricane Sandy 2012, Swiss Re supported the City of New York in identifying ways to significantly improve the resilience to severe weather and climate change. Swiss Re provided a quantitative assessment of potential climate related risks facing the city as well as measures that could reduce those impacts.

  9. Recent advances of annular centrifugal extractor for hot test of nuclear waste partitioning process

    Institute of Scientific and Technical Information of China (English)

    HeXiang-Ming; YanYu-Shun; 等

    1998-01-01

    Advances are being made in the design of the annular centrifugal extractor fornuclear fuel reprocessing extraction process studies.The extractors have been built and tested.Twelve stages of this extractor and 50 stages are used toimplement the TRPO process for the cleanup ofcommercial and defense nuclear waste liquids,respectively.Following advances are available:(1) simple way of assembly and disassembly between rotor part and housing part of extractor,ease of manipulator operation;(2)automatic sampling from housing of extractor in hot cell;(3) compact multi-stage housing system;(4) easy interstage link;(5) computer data acquisition and monitoring system of speed.

  10. Experiments with the Kema cyclone incinerator for radioactive waste

    Science.gov (United States)

    Matteman, J. L.; Tigchelaar, P.

    A cyclone incinerator for the treatment of solid waste at a nuclear power station was developed to reduce volume and weight of the final waste; reductions by factors of 7 and 80 respectively are possible (after solidification). For burnable waste the throughput is 23 kg/hr for 6 hr runs. About 7000 kg of nonradioactive waste were treated in total. The behavior of potentially dangerous radionuclides (Co, Cs, Mn and Sr) was studied by tracers. It appears that Co, Mn and Sr are concentrated in the resulting ashes, where 55% of the Cs is also found; the remaining Cs is unaccounted for. The ashes were solidified by mixing them with concrete in a 1:1 ratio. Due to the flexibility of the facility, start-up and turn-down periods are short. Since the process can be controlled automatically, the operation can be run by one employee, to load the waste and handle the ashes.

  11. Ocean-atmosphere interactions during cyclone Nargis

    Digital Repository Service at National Institute of Oceanography (India)

    McPhaden, M.J.; Foltz, G.R.; Lee, T.; Murty, V.S.N.; Ravichandran, M.; Vecchi, G.A.; Vialard, J.; Wiggert, J.D.; Yu, L.

    stream_size 13708 stream_content_type text/plain stream_name EOS_Trans_Am_Geophys_Union_90(7)_53a.pdf.txt stream_source_info EOS_Trans_Am_Geophys_Union_90(7)_53a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset...=UTF-8 Author version: EOS: Trans. Am. Geophys. Union: 90(7); 2009; 53-60; doi:10.1029/2009EO070001 Ocean-Atmosphere Interactions During Cyclone Nargis M. J. McPhaden (1) , G. R. Foltz (2) , T. Lee (3) , V. S. N. Murty (4) , M...

  12. Some Features of Aerodynamics of Cyclonic Chamber with Free Exit

    Directory of Open Access Journals (Sweden)

    A. N. Orekhov

    2014-06-01

    Full Text Available The paper cites results of an experimental research in aerodynamics of a cyclonic chamber with a free exit that has a large relative length. Distributions of aerodynamic stream characteristics depending on geometry of working volume of the cyclonic chamber are given in the paper. Calculative dependences are proposed in the paper.

  13. Waves off Gopalpur, northern Bay of Bengal during cyclone Phailin.

    Digital Repository Service at National Institute of Oceanography (India)

    Amrutha, M.M.; SanilKumar, V.; Anoop, T.R.; Nair, T.M.B.; Nherakkol, A.; Jeyakumar, C.

    by Copernicus Publications on behalf of the European Geosciences Union. 1074 M. M. Amrutha et al.: Waves off Gopalpur, northern Bay of Bengal during Cyclone Phailin Table 1. Cyclone position, wind speed, buoy location and wave parameters during 9–13 October 2013...

  14. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process

    OpenAIRE

    Bragg, Stefanie A.; Armstrong, Kristie C.; Xue, Zi-Ling

    2012-01-01

    A new process to pretreat blood samples has been developed. This process combines the Advanced Oxidation Process (AOP) treatment (using H2O2 and UV irradiation) with acid deactivation of the enzyme catalase in blood. A four-cell reactor has been designed and built in house. The effect of pH on the AOP process has been investigated. The kinetics of the pretreatment process shows that at high CH2O2,t = 0, the reaction is zeroth order with respect to CH2O2 and first order with respect to Cblood....

  15. Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters

    Institute of Scientific and Technical Information of China (English)

    Djalma; Ribeiro; da; Silva; Carlos; A.Martinez-Huítle

    2010-01-01

    In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under ...

  16. A quasi-Lagrangian diagnostic case study of the effect of satellite sounding data assimilation on model cyclone prediction

    Science.gov (United States)

    Vergin, J. M.; Johnson, D. R.; Atlas, R.

    1984-01-01

    A quasi-Lagrangian diagnostic study was performed to compare weather forecast accuracy with and without use of satellite data. Attention was focused on the mass and angular momentum budgets of the cyclone. The diagnostic study isolated the effects of physical processes within a cyclone and the effects of transport processes moving with the cyclone. Satellite data furnished different initialization values for horizontal mass and eddy angular momentum. Colder temperatures and weaker stabilities in the NW quadrant lower layers in the budget volume and increased stability in the middle and lower layers of another quadrant were obtained when the satellite data were considered. The addition of satellite data was concluded to have enhanced the accuracy of the forecast.

  17. Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials

    Science.gov (United States)

    Singh, Mrityunjay

    2003-01-01

    Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.

  18. Disaster triggers disaster: Earthquake triggering by tropical cyclones

    Science.gov (United States)

    Wdowinski, S.; Tsukanov, I.

    2011-12-01

    Three recent devastating earthquakes, the 1999 M=7.6 Chi-Chi (Taiwan), 2010 M=7.0 Leogane (Haiti), 2010 M=6.4 Kaohsiung (Taiwan), and additional three moderate size earthquakes (6hurricane or typhoon) hit the very same area. The most familiar example is Haiti, which was hit during the late summer of 2008 by two hurricanes and two tropical storms (Fay, Gustav, Hanna and Ike) within 25 days. A year an a half after this very wet hurricane season, the 2010 Leogane earthquake occurred in the mountainous Haiti's southern peninsula and caused the death of more than 300,000 people. The other cases are from Taiwan, which is characterized by a high seismicity level and frequent typhoon landfall. The three wettest typhoons in Taiwan's past 50 years were Morakot (in 2009, with 2885 mm or rain), Flossie (1969, 2162 mm) and Herb (1996, 1987 mm)[Lin et al., 2010]. Each of this three very wet storms was followed by one or two main-shock M>6 earthquake that occurred in the central mountainous area of Taiwan within three years after the typhoon. The 2009 Morakot typhoon was followed by 2009 M=6.2 Nantou and 2010 M=6.4 Kaohsiung earthquakes; the 1969 Flossie typhoon was followed by an M=6.3 earthquake in 1972; and the 1996 Herb typhoon by the 1998 M=6.2 Rueyli and 1999 M=7.6 Chi-Chi earthquakes. The earthquake catalog of Taiwan lists only two other M>6 main-shocks that occurred in Taiwan's central mountainous belt, one of them was in 1964 only four months after the wet Typhoon Gloria poured heavy rain in the same area. We suggest that the close proximity in time and space between wet tropical cyclones and earthquakes reflects a physical link between the two hazard types in which these earthquakes were triggered by rapid erosion induced by tropical cyclone's heavy rain. Based on remote sensing observations, meshfree finite element modeling, and Coulomb failure stress analysis, we show that the erosion induced by very wet cyclones increased the failure stresses at the hypocenters

  19. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  20. Building of tropical beach ridges, northeastern Queensland, Australia: Cyclone inundation and aeolian decoration

    Science.gov (United States)

    Tamura, Toru; Nicholas, William; Brooke, Brendan; Oliver, Thomas

    2016-04-01

    Processes associated with tropical cyclones are thought responsible for building coarse sand beach ridges along the northeastern Queensland coast, Australia. While these ridges are expected to be geological records of the past cyclone, they question the general consensus of the aeolian genesis of sandy beach ridges. To explore the ridge-forming process, we carried out the GPR survey, auger drilling, pit excavation, grain-size analysis, and OSL dating for coarse sand beach ridges at the Cowley Beach, northeastern Queensland. The Cowley Beach is a mesotidal beach characterized by a low-tide terrace and steep beach face. Ten beach ridges are recognized along the survey transect that extends 700 m inland from the shore. 37 OSL ages are younger seawards, indicating the seaward accretion of the ridge sequence over the last 2700 years. The highest ridge is +5.1 m high above AHD (Australian Height Datum). Two GPR units are bounded by a groundwater surface at c. +1.5 m AHD. The upper unit is characterized by horizontal to hummocky reflectors punctuated by seaward dipping truncation surfaces. These reflectors in places form dome-like structure that appears to be the nucleus of a beach ridge. The shape and level (+2.5 m AHD) of the dome are similar to those of the present swash berm. The lower unit shows a sequence of reflectors that dip at an angle of present beach face. The sequence is dissected by truncation surfaces, some of which are continuous to those in the upper unit. Coarse sand mainly forms beach ridge deposits below +4.0 m AHD, while a few higher ridges have an upward fining layer composed of medium sand above +4.0 m, which is finer than aeolian ripples found on the backshore during the survey. In addition, pumice gravel horizons underlie the examined ridge crests. The sequence of seaward dipping reflectors indicates that the Cowley Beach, like other many sandy beaches, has prograded during onshore sand accretion by fairweather waves and has been eroded by storms

  1. Energy, Exergy and Advanced Exergy Analysis of a Milk Processing Factory

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Jensen, Jonas Kjær;

    2016-01-01

    , cream and milk powder. The results show the optimisation potential based on 1st and 2nd law analyses. An evaluation and comparison of the applicability of exergy methods, including advanced exergy methods, to the dairy industry is made. The comparison includes typical energy mappings conducted onsite......Energy, exergy and advanced exergy methods are used in this study to analyse a milk processing facility which is one of the largest energy consumers within the food industry in Denmark. While a conventional energy analysis maps the energy flows of the system and suggests opportunities for process...... integration, an exergy analysis pinpoints the locations, causes and magnitudes of thermodynamic losses. The advanced exergy analysis further identifies the real potential for thermodynamic improvements of the system by splitting exergy destruction into its avoidable and unavoidable parts, which are related...

  2. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    Science.gov (United States)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  3. Analysis of Tropical Cyclone Tracks in the North Indian Ocean

    Science.gov (United States)

    Patwardhan, A.; Paliwal, M.; Mohapatra, M.

    2011-12-01

    Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.

  4. Experimental researches and comparison on aerodynamic parameters and cleaning efficiency of multi-level multi-channel cyclone

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2015-10-01

    Full Text Available Multi-level multi-channel cyclone – the lately designed air cleaning device that can remove ultra-fine 20 μm particulatematter (PM from dusted air and reach over 95% of the overall cleaning efficiency. Multi-channel cyclone technology is based on centrifugal forces and has the resulting additional filtering process operation. Multi-level structure of cyclone allows to achieve higher air flow cleaning capacity at the same dimensions of the device, thus saving installation space required for the job, production and operating costs. Studies have examined the air flow parameters change in one–, two– and three–levels multichannel cyclone. These constructions differ according to the productivity of cleaned air under the constant peripheral and transitional (50/50 case air flow relations. Accordance with the results of air flow dynamics – velocity distribution of multi-channel cyclone, aerodynamic resistance and efficiency can be judged on the flow turbulence, the flow channel cross-section and select the most appropriate application. Cleaning efficiency studies were carried out using fine granite and wood ashes PM. The maximum cleaning efficiency was 93.3%, at an average of 4.5 g/m3, the aerodynamic resistance was equal to 1525 Pa.

  5. A standard data set for performance analysis of advanced IR image processing techniques

    NARCIS (Netherlands)

    Weiss, A.R.; Adomeit, U.; Chevalier, P.; Landeau, S.; Bijl, P.; Champagnat, F.; Dijk, J.; Göhler, B.; Landini, S.; Reynolds, J.P.; Smith, L.N.

    2012-01-01

    Modern IR cameras are increasingly equipped with built-in advanced (often non-linear) image and signal processing algorithms (like fusion, super-resolution, dynamic range compression etc.) which can tremendously influence performance characteristics. Traditional approaches to range performance model

  6. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  7. An Evaluation of the Air Force Logistics Career Area Advanced Academic Degree Position Validation Process.

    Science.gov (United States)

    Biehl, Aleck L.; Sonnier, Ronald J.

    Reduced funding for educational programs indicated that a thorough review should be made of the Advanced Academic Degree (AAD) validation process. This reduction in funding necessitates more effective management of the AAD program in the logistics career areas to insure that officers in these career areas require those skills learned through these…

  8. Thermo-hydro-mechanical processes in fractured rock formations during a glacial advance

    OpenAIRE

    Selvadurai, A. P. S.; Suvorov, A. P.; Selvadurai, P. A.

    2015-01-01

    The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach that takes into account thermo-...

  9. Characterization of plasma-induced phenol advanced oxidation process in a DBD reactor

    OpenAIRE

    Marotta, E.; Ceriani, E.; Shapoval, V.; Schiorlin, M.; Ceretta, C.; Rea, M.; Paradisi, C.

    2011-01-01

    Abstract Using phenol as a model organic pollutant we studied and characterized an innovative advanced oxidation process in water using a prototype dielectric barrier discharge (DBD) reactor in which electrical discharges are produced in the air above the water surface. Phenol is decomposed quite efficiently in this reactor operated at room temperature and atmospheric pressure. The process selectivity to form CO2 is, however, to be improved since a large fraction of the treated org...

  10. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    OpenAIRE

    Oyuna Tsydenova; Valeriy Batoev; Agniya Batoeva

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fe...

  11. Advanced signal processing techniques for interference removal in Satellite Navigation Systems

    OpenAIRE

    Musumeci, Luciano

    2014-01-01

    This thesis investigates the use of innovative interference detection and mitigation techniques for GNSS based applications. The main purpose of this thesis is the development of advanced signal processing techniques outperforming current interference mitigation algorithms already implemented in off-the-shelf GNSS receivers. State-of-the-art interference countermeasures already investigated in literature, which process the signal at the ADC output, provide interference components suppression ...

  12. Comparison of advanced oxidation processes used for municipal waste water treatment

    OpenAIRE

    Pavlin, David

    2014-01-01

    Municipal wastewater can be used as an alternative water source. However, it is essential to treat the wastewater, thereby achieving extensive removal of organic pollutants. It is also necessary to ensure a nearly complete decolouration and disinfection of the water. The use of chemical oxidation and thus advanced oxidation processes (AOPs) in the processes of wastewater treatment is important in terms of ensuring an efficient degradation of the more difficult biodegradable or even non-biodeg...

  13. Toxicity Assessment of Perchloroethylene and Intermediate Products after Advanced Oxidation Process by Daphnia Magna Bioassay

    OpenAIRE

    Mahdi Kargar; Kazem Naddafi; Ramin Nabizadeh

    2014-01-01

    Background and objective: Perchloroethylene is a chlorinated hydrocarbon used as a solvent in many industries and services activities such as dry cleaning and auto industry as degreasing. We carried out a bioassay using Daphnia Magna in order to determine the ecological effects of wastewater treatment through applying advanced oxidation processes (ultrasonic, ultraviolet irradiation and hydrogen peroxide processes) for removal of perchloroethylene. Materials and Methods: Due to the sensiti...

  14. Trace component analysis of process hydrogen streams at the Wilsonville Advanced Coal Liquefaction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bronfenbrenner, J.C.

    1983-09-01

    This report summarizes subcontracted work done by the Radian Corporation to analyze trace components in process hydrogen streams at the Advanced Coal Liquefaction Facility in Wilsonville, Alabama. The data will be used to help define whether the gas streams to be treated in the hydrogen processing unit in the SRC-I Demonstration Plant will require further treatment to remove trace contaminants that could be explosive under certain conditions. 2 references.

  15. The use of safeguards data for process monitoring in the Advanced Test Line for Actinide Separations

    International Nuclear Information System (INIS)

    Los Alamos is constructing an integrated process monitoring/materials control and accounting (PM/MC and A) system in the Advanced Testing Line for Actinide Separations (ATLAS) at the Los Alamos Plutonium Facility. The ATLAS will test and demonstrate new methods for aqueous processing of plutonium. The ATLAS will also develop, test, and demonstrate the concepts for integrated process monitoring/materials control and accounting. We describe how this integrated PM/MC and A system will function and provide benefits to both process research and materials accounting personnel

  16. Sensitivities of Tropical Cyclones to Surface Friction and the Coriolis Parameter in a 2-D Cloud-Resolving Model

    Science.gov (United States)

    Chao, Winston C.; Chen, Baode; Tao, Wei-Kuo; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The sensitivities to surface friction and the Coriolis parameter in tropical cyclogenesis are studied using an axisymmetric version of the Goddard cloud ensemble model. Our experiments demonstrate that tropical cyclogenesis can still occur without surface friction. However, the resulting tropical cyclone has very unrealistic structure. Surface friction plays an important role of giving the tropical cyclones their observed smaller size and diminished intensity. Sensitivity of the cyclogenesis process to surface friction. in terms of kinetic energy growth, has different signs in different phases of the tropical cyclone. Contrary to the notion of Ekman pumping efficiency, which implies a preference for the highest Coriolis parameter in the growth rate if all other parameters are unchanged, our experiments show no such preference.

  17. Advanced instrumentation for the collection, retrieval, and processing of urban stormwater data

    Science.gov (United States)

    Robinson, Jerald B.; Bales, Jerad D.; Young, Wendi S.; ,

    1995-01-01

    The U.S. Geological Survey, in cooperation with the City of Charlotte and Mecklenburg County, North Carolina, has developed a data-collection network that uses advanced instrumentation to automatically collect, retrieve, and process urban stormwater data. Precipitation measurement and water-quality networks provide data for (1) planned watershed simulation models, (2) early warning of possible flooding, (3) computation of material export, and (4) characterization of water quality in relation to basin conditions. Advantages of advanced instrumentation include remote access to real-time data, reduced demands on and more efficient use of limited human resources, and direct importation of data into a geographical information system for display and graphic analysis.

  18. Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing

    KAUST Repository

    Gao, Xin

    2013-01-11

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  19. Experimental research on cyclone performance at high temperature

    Institute of Scientific and Technical Information of China (English)

    LI Wenqi; CHEN Jianyi

    2007-01-01

    To predict the influence of operating temperatures on cyclone performance,an experimental investigation was conducted on particle separation in a reverse flow,tangential volute-inlet cyclone separator with a diameter of 300 mm and with air heated up to 973 K.The test powder silica has a mass median diameter of 10 urn,while inlet velocity range was 12-36 m/s.Both the separation efficiency and pressure drop of the cyclone were measured as a function of the inlet velocity and operating temperature.At the same inlet velocity,both the separation efficiency and pressure drop decrease with increasing temperature.In addition,optimum inlet velocity,at which the cyclone has its highest separation efficiency,tends to increase with a rise in temperature.An analysis on our own data and published results has shown that the fractional efficiency of a cyclone is a definite function of dimensionless numbers such as the Stokes number,the Reynolds number,the Froude number,dimensionless cyclone inlet area,and dimensionless outlet diameter.A nondimensional experimental correlation of the cyclone performance,including the influence of temperature,was obtained on the basis of our own previous work.The prediction of the influence of temperature on separation efficiencies and pressure drops is in fairly good agreement with experimental results.

  20. Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.

  1. Temporal clustering of tropical cyclones and its ecosystem impacts.

    Science.gov (United States)

    Mumby, Peter J; Vitolo, Renato; Stephenson, David B

    2011-10-25

    Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated activity followed by relative quiescence. Such temporal clustering is particularly strong in the Caribbean Sea, along the coasts of Belize, Honduras, Costa Rica, Jamaica, the southwest of Haiti, and in the main hurricane development region in the North Atlantic between Africa and the Caribbean. Failing to recognize this natural nonstationarity in cyclone rates can give inaccurate impact predictions. We demonstrate this by exploring cyclone impacts on coral reefs. For a given cyclone rate, we find that clustered events have a less detrimental impact than independent random events. Predictions using a standard random hurricane model were overly pessimistic, predicting reef degradation more than a decade earlier than that expected under clustered disturbance. The presence of clustering allows coral reefs more time to recover to healthier states, but the impacts of clustering will vary from one ecosystem to another.

  2. The Process of Transforming an Advanced Lab Course: Goals, Curriculum, and Assessments

    CERN Document Server

    Zwickl, Benjamin M; Lewandowski, H J

    2012-01-01

    A thoughtful approach to designing and improving labs, particularly at the advanced level, is critical for the effective preparation of physics majors for professional work in industry or graduate school. With that in mind, physics education researchers in partnership with the physics faculty at the University of Colorado Boulder have overhauled the senior-level Advanced Physics Lab course. The transformation followed a three part process of establishing learning goals, designing curricula that align with the goals, and assessment. Similar efforts have been carried out in physics lecture courses at the University of Colorado Boulder, but this is the first systematic research-based revision of one of our laboratory courses. The outcomes of this effort include a set of learning goals, a suite of new lab-skill activities and transformed optics labs, and a set of assessments specifically tailored for a laboratory environment. While the particular selection of advanced lab experiments varies widely between institu...

  3. An advanced tunnel oxide layer process for 65 nm NOR floating-gate flash memories

    International Nuclear Information System (INIS)

    An advanced tunnel oxide layer process for 65 nm NOR-type floating-gate flash memory is proposed to improve tunnel oxide quality by an additive sacrificial oxide layer growth. The sacrificial oxide layer process effectively controls the thickness variation of tunnel oxide and improves the flatness of the SiO2/Si interface across the active area. The interface traps’ generation during program/erase cycling of flash cells is found to be reduced, and the reliability property is significantly improved as compared to flash cells without the sacrificial oxide layer process. The technology is applicable to further scaled floating-gate flash memories. (paper)

  4. Tropical cyclones and climate change; Les cyclones tropicaux et le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J.C. [Centre Europeen de Recherches Avancees en Calcul Scientifique, 31 - Toulouse (France); Royer, J.F.; Chauvin, F. [Meteo-France, Centre National de Recherches Meteorologique (CNRM), 31 - Toulouse (France)

    2008-09-15

    Results from observations and modelling studies, a number of which having been used to support the conclusions of the IPCC fourth assessment report, are presented. For the past and present-day (since 1970) periods, the increase of strong cyclonic activity over the North Atlantic Ocean appears to be in good correlation with increasing temperature of the ocean surface. For regions where observational data are of lesser quality, the increasing trend is less clear. In fact, assessing long-term changes is made difficult due to both the multi-decennial natural variability and the lesser coverage of observations before satellites were made available. Indirect observational data, such as those derived from quantitative estimations of damage caused by tropical cyclones, suffer from many artefacts and do not allow the resolving of the issue either. For the future, only numerical three-dimensional climate models can be used. They nevertheless run presently with too-large grid-sizes, so that their results are still not converging. Various simulations lead indeed to different results, and it is very often difficult to find the physical reasons for these differences. One concludes by indicating some ways through which numerical simulations could be improved, leading to a decrease of uncertainties affecting the prediction of cyclonic activity over the next decades. (authors)

  5. Study of a Novel Rotary Cyclone Gas-Solid Separator

    Institute of Scientific and Technical Information of China (English)

    Zhiguang Ling; Xingyong Deng

    2003-01-01

    Based on the analytical study of the characteristics of fine particle motion in swirling flow, a new design idea on flow organization and construction aimed at increasing the positive radial flow in the separation chamber of the rotary cyclone separator (PRV type) was proposed. Experimental verification including the test of variation of separation efficiency and pressure loss with the first and secondary flow ratio show that this new type separator has higher and more stable separation efficiency in broad flow ratio range while the pressure loss is far below the conventional rotary cyclone separator and even comparable with that of simple cyclone separator

  6. Two parametric tropical cyclone models for storm surge modeling

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-li

    2010-01-01

    In this paper,the two parametric tropical cyclone models for storm surge modeling are further developed.The analytical expressions of tangential and radial velocity distribution are derived from the governing momentum equations,based on the general symmetric pressure distribution proposed by Holland and Fujita.On the basis of the data of several tropical cyclones that occurred in East China Ocean,the shape parameter in pressure model is estimated.Finally,the Fred cyclone(typhoon 199417)is calculated,and comparisons of measured and calculated air pressures and wind speed are presented.

  7. Cyclones over Fram Strait: impact on sea ice and variability

    OpenAIRE

    Brümmer, Burghard; Müller, Gerd; Affeld, Björn; Gerdes, Rüdiger; Karcher, Michael; Kauker, Frank

    2001-01-01

    The relation between sea ice drift and cyclone activity in the Fram Strait region was studied by both in situ observations and long-term time series. In a 1999 field campaign, the atmospheric forcing and the ice drift were determined using a research aircraft and drifting ice buoys. One cyclone entered the experimental area and caused a temporal increase in ice drift speed. Long-term studies are based on 16 years of cyclone statistics and model, satellite and sonar ice drift estimates. The ac...

  8. Advanced image processing package for FPGA-based re-programmable miniature electronics

    Science.gov (United States)

    Ovod, Vladimir I.; Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.

    2005-05-01

    Nova Sensors produces miniature electronics for a variety of real-time digital video camera systems, including foveal sensors based on Nova's Variable Acuity Superpixel Imager (VASITM) technology. An advanced image-processing package has been designed at Nova Sensors to re-configure the FPGA-based co-processor board for numerous applications including motion detection, optical, background velocimetry and target tracking. Currently, the processing package consists of 14 processing operations that cover a broad range of point- and area-applied algorithms. Flexible FPGA designs of these operations and re-programmability of the processing board allows for easy updates of the VASITM sensors, and for low-cost customization of VASITM sensors taking into account specific customer requirements. This paper describes the image processing algorithms implemented and verified in Xilinx FPGAs and provides the major technical performances with figures illustrating practical applications of the processing package.

  9. Diurnal variations of tropical cyclone precipitationin

    Science.gov (United States)

    Wu, Q.

    2015-12-01

    Using 15 years of satellite-measured precipitation data and tropical cyclone (TC) information, this study estimates the diurnal variations of TC precipitation in its inner core and outer rainbands. It is found that for both weak (tropical storms to category 1 TCs) and strong (categories 2-5 TCs) storms over all six TC basins, the TC precipitation reaches its daily maximum in the morning, but the mean rain rate and diurnal variations are larger in the inner core than in the outer rainbands. With increasing radial distance from the TC center, the diurnal amplitude of precipitation decreases, and the peak time appears progressively later. The outward propagation of diurnal signals from the TC center dominates as an internal structure of the TC convective systems. For all basins examined, the diurnal precipitation maximum within the inner core of a strong storm occurs earlier than the maximum observed in non-TC precipitation; the same result is not found for the outer rainbands.

  10. Tropical cyclone recurvature: An intrinsic property?

    Science.gov (United States)

    Chan, Kelvin T. F.; Chan, Johnny C. L.

    2016-08-01

    The typical track of a tropical cyclone (TC) in the Northern Hemisphere is an initial northwestward movement followed by an eventual turning toward the east. Such turning is referred to as recurvature and often explained by the change of the environmental flow that steers the TC. Here we show that even in the absence of background flow, a TC initiated at a high enough latitude can recurve itself. Differential horizontal advection of the planetary vorticity by the TC circulation at different vertical levels leads to the development of vertical wind shear, upper tropospheric anticyclone, and asymmetric distribution of convection. The flow associated with the upper tropospheric anticyclone on the equatorward side of the TC and the diabatic heating associated with the asymmetric convection combine to cause the TC to recurve. Such knowledge, an intrinsic recurvature property of the TC is important in forecasting the TC track when the environmental flow is weak.

  11. Estimating Tropical Cyclone Precipitation from Station Observations

    Institute of Scientific and Technical Information of China (English)

    REN Fumin; WANG Yongmei; WANG Xiaoling; LI Weijing

    2007-01-01

    In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM,by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems.

  12. Effect of longwall face advance rate on spontaneous heating process in the gob area - CFD modelling

    Energy Technology Data Exchange (ETDEWEB)

    Boleslav Taraba; Zdenek Michalec [University of Ostrava, Ostrava (Czech Republic). Dept. of Chemistry

    2011-08-15

    A commercial CFD software programme, FLUENT, was used to study the oxidation process of coal in the mined-out longwall (gob) area. A three-dimensional, single-phase model with a continuously advancing longwall face has been developed. For the model, the gob longwall area was designed on the basis of the actual longwall panel operating in the Ostrava-Karvina Coal Mines (OKD, Czech Republic). The behaviour of the coal to oxygen was modelled using the results arising mainly from the former laboratory-scale experiments with Czech bituminous coals. Basically, the technique of pulse flow calorimetry and measurements at a continuous airflow reactor were applied during the laboratory investigations. In the contribution, the main focus was to understand the effect of the longwall face advancing speed on the oxidation heat production as well as evolution of the gases in the gob area. Simultaneously, the effect of coal crushing in the mined-out area on the spontaneous heating process was examined. Numerical simulations confirmed the existence of a 'favourable' zone for the onset and development of the spontaneous heating process in the gob area. The location and the maximal temperature reached in the 'favourable' zone were found to be significantly affected by the advancing rate of the coalface. The slower the advancing rate is, the higher the maximal temperature and smaller the depth of the 'favourable' zone in the gob area are. When the rate drops to a certain 'critical' value, spontaneous heating turns to flammable combustion of the coal. The value of the 'critical' advancing rate was confirmed to increase if the grain size of the coal left in the gob decreases. Numerical examinations of carbon monoxide concentrations then proved that small incidents of spontaneous heating could occur in the gob area that need not be detected in the airflow of the longwall tail gate. 46 refs., 8 figs., 2 tabs.

  13. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh; Schubert, Craig

    2007-06-28

    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.

  14. Advances in statistical monitoring of complex multivariate processes with applications in industrial process control

    CERN Document Server

    Kruger, Uwe

    2012-01-01

    The development and application of multivariate statistical techniques in process monitoring has gained substantial interest over the past two decades in academia and industry alike.  Initially developed for monitoring and fault diagnosis in complex systems, such techniques have been refined and applied in various engineering areas, for example mechanical and manufacturing, chemical, electrical and electronic, and power engineering.  The recipe for the tremendous interest in multivariate statistical techniques lies in its simplicity and adaptability for developing monitoring applica

  15. Purification of complex biopharmaceuticals with new processes, advanced analytics and computer-aided process design tools

    OpenAIRE

    Martins, Duarte Lima

    2013-01-01

    Viruses are highly efficient vectors that have been used for vaccination and gene therapy applications. However, their complexity renders downstream process particularly challenging since devices and strategies especially designed for virus purification are still lacking or need further optimization. After an introduction to the challenges of virus purification and the current strategies being employed, this dissertation presents the study of three different stages of the downstream proces...

  16. Pattern recognition analysis of satellite data for tropical cyclone motion and intensity forecasts

    Science.gov (United States)

    Hunter, Herbert; Nunez, Edwin; Barker, Llyle; Rodgers, ED

    1986-01-01

    An objective empirical analysis technique is employed to investigate the extent to which satellite-obtained measurements (GOES IR and TOVS data) of a tropical cyclone and its environment can be used to predict cyclone motion. The paper describes the procedure used to process the satellite derived data in order to optimize their possible predictive value, the technique used in developing the regression algorithms, and the results of testing these algorithms using the Lachenbrach and Mickey (1968) procedure. The data were examined alone and in conjunction with available nonsatellite climatological and persistence variables for each storm. These predictors are similar to those used in the National Hurricane Center (NHC) CLIPPER model. The performances obtained using the Nichols Research Corporation CLIPPER model and the NHC CLIPPER model are compared, using homogeneous data sets for the comparisons. Major differences in results were found to be related to differences in the models.

  17. Improvements of the cyclone separator performance by down-comer tubes.

    Science.gov (United States)

    Ganegama Bogodage, Sakura; Leung, A Y T

    2016-07-01

    Enhancement of fine particle (PM2.5) separation is important for cyclone separators to reduce any extra purification process required at the outlet. Therefore, the present experimental research was performed to explore the performance of cyclone separators modified with down-comer tubes at solid loading rates from 0 to 8.0g/m(3) with a 10m/s inlet velocity. The study proved the effectiveness of down-comer tubes in reducing the particle re-entrainment and increasing the finer separation with acceptable pressure drops, which was pronounced at low solid loading conditions. The experimental results were compared with theories of Smolik and Muschelknautz. Theories were acceptable for certain ranges, and theory breakdown was mainly due to the neglect of particle agglomeration, re-entrainment and the reduction of swirling energy, as well as the increase of wall friction due to presence of particles. PMID:26967646

  18. Cyclonic multiphase flow measurement system GLCC®1 for oil well capacity evaluation

    Directory of Open Access Journals (Sweden)

    J.M. Godoy–Alcántar

    2008-10-01

    Full Text Available This paper shows the development of a portable multiphase flow measurement system based in cyclonic separation technology GLCC@1. This system is aimed for oil well measurement and was developed in three phases; the first devoted to the geometric design of a cyclonic separator by means of design software GLCC V7.8 and the selection of measurement instrumentation and flux control valves. In the second phase, the automatic control system was designed for the implementation of four control strategies each one related with a possible scenario of the well behavior. The third constitutes the integration of the measurement and control devices through a user interface aimed for visualization, information processing and system's operation and control. Experimental results in oil well measurements show the efficiency and workability of the integrated system.

  19. Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS

    Science.gov (United States)

    Baines, K.H.; Momary, T.W.; Fletcher, L.N.; Showman, A.P.; Roos-Serote, M.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    A high-speed cyclonic vortex centered on the north pole of Saturn has been revealed by the visual-infrared mapping spectrometer (VIMS) onboard the Cassini-Huygens Orbiter, thus showing that the tropospheres of both poles of Saturn are occupied by cyclonic vortices with winds exceeding 135 m/s. High-spatial-resolution (~200 km per pixel) images acquired predominantly under night-time conditions during Saturn's polar winter-using a thermal wavelength of 5.1 ??m to obtain time-lapsed imagery of discrete, deep-seated (>2.1-bar) cloud features viewed in silhouette against Saturn's internally generated thermal glow-show a classic cyclonic structure, with prograde winds exceeding 135 m/s at its maximum near 88.3?? (planetocentric) latitude, and decreasing to conditions as the polar winter wanes shows the hexagon is still visible in reflected sunlight nearly 28 years since its discovery, that a similar 3-lane structure is observed in reflected and thermal light, and that the cloudtops may be typically lower in the hexagon than in nearby discrete cloud features outside of it. Clouds are well-correlated in visible and 5.1 ??m images, indicating little windshear above the ~2-bar level. The polar cyclone is similar in size and shape to its counterpart at the south pole; a primary difference is the presence of a small (<600 km in diameter) nearly pole-centered cloud, perhaps indicative of localized upwelling. Many dozens of discrete, circular cloud features dot the polar region, with typical diameters of 300-700 km. Equatorward of 87.8??N, their compact nature in the high-wind polar environment suggests that vertical shear in horizontal winds may be modest on 1000 km scales. These circular clouds may be anticyclonic vortices produced by baroclinic instabilities, barotropic instabilities, moist convection or other processes. The existence of cyclones at both poles of Saturn indicates that cyclonic circulation may be an important dynamical style in planets with significant

  20. Thermo-hydro-mechanical processes in fractured rock formations during glacial advance

    Science.gov (United States)

    Selvadurai, A. P. S.; Suvorov, A. P.; Selvadurai, P. A.

    2014-11-01

    The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach that takes into account thermo-poroelasticity of the intact geological formation and the presence of a system of sessile but hydraulically interacting fractures (fracture zones). The modeling considers coupled thermo-hydro-mechanical effects in both the intact rock and the fracture zones due to contact normal stresses and fluid pressure at the base of the advancing glacier. Computational modelling provides an assessment of the role of fractures that can modify the pore pressure generation within the entire rock mass.

  1. Thermo-hydro-mechanical processes in fractured rock formations during a glacial advance

    Science.gov (United States)

    Selvadurai, A. P. S.; Suvorov, A. P.; Selvadurai, P. A.

    2015-07-01

    The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach that takes into account thermo-poroelasticity of the intact geological formation and the presence of a system of sessile but hydraulically interacting fractures (fracture zones). The modelling considers coupled thermo-hydro-mechanical effects in both the intact rock and the fracture zones due to contact normal stresses and fluid pressure at the base of the advancing glacier. Computational modelling provides an assessment of the role of fractures in modifying the pore pressure generation within the entire rock mass.

  2. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  3. Forecasting of cyclone Viyaru and Phailin by NWP-based cyclone prediction system (CPS) of IMD – an evaluation

    Indian Academy of Sciences (India)

    S D Kotal; S K Bhattacharya; S K Roy Bhowmik; P K Kundu

    2014-10-01

    An objective NWP-based cyclone prediction system (CPS) was implemented for the operational cyclone forecasting work over the Indian seas. The method comprises of five forecast components, namely (a) Cyclone Genesis Potential Parameter (GPP), (b) Multi-Model Ensemble (MME) technique for cyclone track prediction, (c) cyclone intensity prediction, (d) rapid intensification, and (e) predicting decaying intensity after the landfall. GPP is derived based on dynamical and thermodynamical parameters from the model output of IMD operational Global Forecast System. The MME technique for the cyclone track prediction is based on multiple linear regression technique. The predictor selected for the MME are forecast latitude and longitude positions of cyclone at 12-hr intervals up to 120 hours forecasts from five NWP models namely, IMD-GFS, IMD-WRF, NCEP-GFS, UKMO, and JMA. A statistical cyclone intensity prediction (SCIP) model for predicting 12 hourly cyclone intensity (up to 72 hours) is developed applying multiple linear regression technique. Various dynamical and thermodynamical parameters as predictors are derived from the model outputs of IMD operational Global Forecast System and these parameters are also used for the prediction of rapid intensification. For forecast of inland wind after the landfall of a cyclone, an empirical technique is developed. This paper briefly describes the forecast system CPS and evaluates the performance skill for two recent cyclones Viyaru (non-intensifying) and Phailin (rapid intensifying), converse in nature in terms of track and intensity formed over Bay of Bengal in 2013. The evaluation of performance shows that the GPP analysis at early stages of development of a low pressure system indicated the potential of the system for further intensification. The 12-hourly track forecast by MME, intensity forecast by SCIP model, and rapid intensification forecasts are found to be consistent and very useful to the operational forecasters. The error

  4. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol M. [Savannah River National Lab., Aiken SC (United States); Lee, William E. [Imperial College, London (United Kingdom). Dept. of Materials; Ojovan, Michael I. [Univ. of Sheffield (United Kingdom). Dept. of Materials Science and Engineering

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate

  5. Micropollutant removal from municipal wastewater: from conventional treatments to advanced biological processes

    OpenAIRE

    Margot, Jonas

    2015-01-01

    Many micropollutants present in municipal wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs), and may generate adverse effects on aquatic life. The objective of this thesis was to study and develop various options to improve micropollutant removal from municipal wastewaters. Various technologies were investigated, from conventional biological treatments to advanced physico-chemical and biological processes such as ozonati...

  6. Removal of Organic Matter from Landfill Leachate by Advanced Oxidation Processes: A Review

    OpenAIRE

    Tao Hua; Wei Li; Qixing Zhou

    2010-01-01

    In most countries, sanitary landfill is nowadays the most common way to eliminate municipal solid wastes (MSWs). However, sanitary landfill generates large quantity of heavily polluted leachate, which can induce ecological risk and potential hazards towards public health and ecosystems. The application of advanced oxidation processes (AOPs) including ozone-based oxidation, Fenton oxidation, electrochemical oxidation, and other AOPs to treatment of landfill leachate was reviewed. Th...

  7. Recent Developments in Homogeneous Advanced Oxidation Processes for Water and Wastewater Treatment

    OpenAIRE

    M. Muruganandham; Suri, R. P. S.; Sh. Jafari; M. Sillanpää; Gang-Juan Lee; Wu, J J; M. Swaminathan

    2014-01-01

    This paper reports on recent developments in homogeneous Advanced Oxidation Processes (AOPs) for the treatment of water and wastewater. It has already been established that AOPs are very efficient compared to conventional treatment methods for degradation and mineralization of recalcitrant pollutants present in water and wastewater. AOPs generate a powerful oxidizing agent, hydroxyl radical, which can react with most of the pollutants present in wastewater. Therefore, it is important to dis...

  8. Advances in wastewater nitrogen removal by biological processes: state of the art review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2016-04-01

    Full Text Available The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE process (pre-denitrification and nitrification in the activated sludge process, the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs that can be operated both in oxidation and reduction mode.

  9. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  10. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    Science.gov (United States)

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater. PMID:17918591

  11. Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications

    Directory of Open Access Journals (Sweden)

    David K. Matlock

    2005-12-01

    Full Text Available With the development of new steels and processing techniques, there have been corresponding advances in the fatigue performance of automotive components. These advances have led to increased component life and smaller power transfer systems. New processing approaches to enhance the fatigue performance of steels are reviewed with an emphasis on carburizing and deep rolling. Selected examples are presented to illustrate the importance of the base steel properties on the final performance of surface modified materials. Results on carburized gear steels illustrate the dependence of the fatigue behavior on carburizing process control (gas and vacuum carburizing, alloy additions and microstructure. The importance of retained austenite content, case and core grain size as controlled by processing and microalloy additions, extent of intergranular oxidation, and the residual stress profile on fatigue performance is also illustrated. Specific recent results on the use of microalloying elements (e.g. Nb and process history control to limit austenite grain growth at the higher carburizing temperatures associated with vacuum carburizing are highlighted. For crankshaft applications, deep rolling is highlighted, a process to mechanically work fillet surfaces to improve fatigue resistance. The influence of the deformation behavior of the substrate, as characterized by standard tensile and compression tests, on the ability to create desired surface properties and residual stress profiles will be illustrated with data on several new steels of current and future interest for crankshaft applications.

  12. Advanced simulation technology for etching process design for CMOS device applications

    Science.gov (United States)

    Kuboi, Nobuyuki; Fukasawa, Masanaga; Tatsumi, Tetsuya

    2016-07-01

    Plasma etching is a critical process for the realization of high performance in the next generation of CMOS devices. To predict and control fluctuations in the etching properties accurately during mass production, it is essential that etching process simulation technology considers fluctuations in the plasma chamber wall conditions, the effects of by-products on the critical dimensions, the Si recess dependence on the wafer open area ratio and local pattern structure, and the time-dependent plasma-induced damage distribution associated with the three-dimensional feature scale profile at the 100 nm level. This consideration can overcome the issues with conventional simulations performed under the assumed ideal conditions, which are not accurate enough for practical process design. In this article, these advanced process simulation technologies are reviewed, and, from the results of suitable process simulations, a new etching system that automatically controls the etching properties is proposed to enable stable CMOS device fabrication with high yields.

  13. Climatology of Vb-cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe

    Directory of Open Access Journals (Sweden)

    M. Messmer

    2015-05-01

    Full Text Available Cyclones, which develop over the western Mediterranean and move northeastward are a major source of extreme weather and known to be responsible for heavy precipitation over Central Europe and the Alps. As the relevant processes triggering these so-called Vb-events and their impact on extreme precipitation are not yet fully understood, this study focusses on gaining insight into the dynamics of past events. For this, a cyclone detection and tracking tool is applied to the ERA-Interim reanalysis (1979–2013 to identify prominent Vb-situations. Precipitation in the ERA-Interim and the E-OBS datasets is used to evaluate case-to-case precipitation amounts and to assess consistency between the two datasets. Both datasets exhibit high variability in precipitation amounts among different Vb-events. While only 23 % of all Vb-events are associated with extreme precipitation, around 15 % of all extreme precipitation days (99 percentile over the Alpine region are induced by Vb-events, although Vb-cyclones are rare events (2.3 per year. To obtain a better understanding of the variability within Vb-events, the analysis of the 10 heaviest and lowest precipitation Vb-events reveals noticeable differences in the state of the atmosphere. These differences are most pronounced in the geopotential height and potential vorticity field, indicating a much stronger cyclone for heavy precipitation events. The related differences in wind direction are responsible for the moisture transport around the Alps and the orographical lifting along the Alps. These effects are the main reasons for a disastrous outcome of Vb-events, and consequently are absent in the Vb-events associated with low precipitation. Hence, our results point out that heavy precipitation related to Vb-events is mainly related to large-scale dynamics rather than to thermodynamic processes.

  14. Development and application of a probabilistic evaluation method for advanced process technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  15. Development and application of a probabilistic evaluation method for advanced process technologies

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  16. Pressure Drop in Cyclone Separator at High Pressure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    For the design of pressurized circulating fluidized beds, experiments were conducted in a small cyclone with 120 mm in diameter and 300 mm in height at high pressures and at atmospheric temperatures. Influence of air leakage from the stand pipe into the cyclone was specially focused. A semi-empirical model was developed for the predic tion of the pressure drop of the cyclone separator at different operate pressures with the effect of air leakage and inlet solid loading. The operate pressure, air leakage and inlet solid loading act as significant roles in cyclone pressure drop. The pressure drop increases with the increasing of pressure and decreases with the increasing of the flow rate of air leakage from the standpipe and with the increasing of the inlet solid loading.

  17. Growth of cyclone Viyaru and Phailin – a comparative study

    Indian Academy of Sciences (India)

    S D Kotal; S K Bhattacharya; S K Roy Bhowmik; P K Kundu

    2014-10-01

    The tropical cyclone Viyaru maintained a unique quasi-uniform intensity during its life span. Despite being in contact with sea surface for < 120 hr travelling about 2150 km, the cyclonic storm (CS) intensity, once attained, did not intensify further, hitherto not exhibited by any other system over the Bay of Bengal. On the contrary, the cyclone Phailin over the Bay of Bengal intensified into very severe cyclonic storm (VSCS) within about 48 hr from its formation as depression. The system also experienced rapid intensification phase (intensity increased by 30 kts or more during subsequent 24 hours) during its life time and maximum intensity reached up to 115 kts. In this paper, a comparative study is carried out to explore the evolution of the various thermodynamical parameters and possible reasons for such converse features of the two cyclones. Analysis of thermodynamical parameters shows that the development of the lower tropospheric and upper tropospheric potential vorticity (PV) was low and quasi-static during the lifecycle of the cyclone Viyaru. For the cyclone Phailin, there was continuous development of the lower tropospheric and upper tropospheric PV, which attained a very high value during its lifecycle. Also there was poor and fluctuating diabatic heating in the middle and upper troposphere and cooling in the lower troposphere for Viyaru. On the contrary, the diabatic heating was positive from lower to upper troposphere with continuous development and increase up to 6°C in the upper troposphere. The analyses of cross sections of diabatic heating, PV, and the 1000–500 hPa geopotential metre (gpm) thickness contours indicate that the cyclone Viyaru was vertically tilted (westward) and lacked axisymmetry in its structure and converse features (axisymmetric and vertical) that occurred for the cyclone Phailin. In addition, there was a penetration of dry air in the middle troposphere of Viyaru, whereas high moisture existed in the middle troposphere of

  18. Thermodynamics of a tropical cyclone: generation and dissipation of mechanical energy in a self-driven convection system

    Directory of Open Access Journals (Sweden)

    Hisashi Ozawa

    2015-01-01

    Full Text Available The formation process of circulatory motion of a tropical cyclone is investigated from a thermodynamic viewpoint. The generation rate of mechanical energy by a fluid motion under diabatic heating and cooling, and the dissipation rate of this energy due to irreversible processes are formulated from the first and second laws of thermodynamics. This formulation is applied to a tropical cyclone, and the formation process of the circulatory motion is examined from a balance between the generation and dissipation rates of mechanical energy in the fluid system. We find from this formulation and data analysis that the thermodynamic efficiency of tropical cyclones is about 40% lower than the Carnot maximum efficiency because of the presence of thermal dissipation due to irreversible transport of sensible and latent heat in the atmosphere. We show that a tropical cyclone tends to develop within a few days through a feedback supply of mechanical energy when the sea surface temperature is higher than 300 K, and when the horizontal scale of circulation becomes larger than the vertical height of the troposphere. This result is consistent with the critical radius of 50 km and the corresponding central pressure of about 995 hPa found in statistical properties of typhoons observed in the western North Pacific.

  19. Hanford waste vitrification plant process description, process advancements, and Hanford site interfaces

    International Nuclear Information System (INIS)

    Westinghouse Hanford Company, a prime operating contractor to the U.S. Department of Energy in Richland, Washington, has the lead responsibility for development, design, construction, and operation of the Hanford Waste Vitrification Plant. The Hanford Waste Vitrification Plant will be built for the U.S. Department of Energy to vitrify existing and future liquid high level and transuranic wastes produced by defense activities at the Hanford Site. Start of construction is scheduled for mid1991. Hot startup currently is scheduled for December 1999, and acceleration of the hot startup schedule is under consideration. Requirements related to interfaces with existing Hanford Site facilities and other site specific requirements are discussed in this paper. Design of the feed transfer and lag storage, radioactive liquid waste treatment and recycle, and process off gas treatment systems is significantly affected by site specific requirements. Recent developments in design of these systems are described. 3 figs

  20. Establishment of team work system for advanced spent fuel management process

    International Nuclear Information System (INIS)

    The advanced spent fuel management process (ASFMP), which is being developed by KAERI, is now in the 2nd research phase. This phase has a goal to design the total system of active demonstration of ASFMP. It is composed of the core process, remote handling technologies, examination technologies and experimental facilities. For the collaboration of these research fields, a team work system has been established by proper hardware and software selections for use of about 50 project members. This system has been tested by adaptation to the ASFMP project and will be used during the remained project period

  1. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T.P.; Tchizhik, A.A.; Chavchanidze, N.N. [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1998-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  2. Advances in Intelligent Signal Processing and Data Mining Theory and Applications

    CERN Document Server

    Mihaylova, Lyudmila; Jain, Lakhmi

    2013-01-01

    The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carlo methods, Markov Chain Monte Carlo filters, Rao Blackwellization, to the biologically inspired paradigm of Neural Networks and decomposition techniques such as Empirical Mode Decomposition, Independent Component Analysis and Singular Spectrum Analysis.   The book is directed to the research students, professors, researchers and practitioners interested in exploring the advanced techniques in intelligent signal processing and data mining paradigms.  

  3. NUMERICAL SIMULATIONS OF β-GYRES IN TROPICAL CYCLONES

    Institute of Scientific and Technical Information of China (English)

    杨洪波; 张铭

    2003-01-01

    The circulation of β-gyres in tropical cyclones is studied using numerical simulations. As shown in the result, there is clear circulation of β-gyres in the deviation flow field of the middle layer of the model,i.e. there is cyclone current west of the vortex center but anticyclone current east of it. The theory analysis shows that the circulation of β-gyres is formed by the advection of geostrophic vorticity.

  4. Application of CFD Code PHOENICS for simulating CYCLONE SEPARATORS

    International Nuclear Information System (INIS)

    The work presents a computational fluid dynamics (CFD) calculation to investigate the flow field in a tangential inlet cyclone which is mainly used for the separation of the moisture from an air stream. Three-dimensional, steady state Eulerian simulations of the turbulent gas - droplet flow in a cyclone separator have been performed. Numerical simulation was carried out using CFD code PHOENICS for the given geometry of separators available in literature

  5. A note on boundary-layer friction in baroclinic cyclones

    CERN Document Server

    Boutle, I A; Belcher, S E; Plant, R S

    2008-01-01

    The interaction between extratropical cyclones and the underlying boundary layer has been a topic of recent discussion in papers by Adamson et. al. (2006) and Beare (2007). Their results emphasise different mechanisms through which the boundary layer dynamics may modify the growth of a baroclinic cyclone. By using different sea-surface temperature distributions and comparing the low-level winds, the differences are exposed and both of the proposed mechanisms appear to be acting within a single simulation.

  6. Management of high level radioactive aqueous effluents in advanced partitioning processes

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, Patrick; Sans, Daniele; Lartigaud, Cathy; Bisel, Isabelle [Commissariat a l' Energie Atomique, Centre de Marcoule, BP 17171, Bagnols sur Ceze, 30207 (France)

    2009-06-15

    The context of this study is the development of management strategies for the high level radioactive aqueous effluents generated by advanced minor actinides partitioning processes. In the present nuclear reprocessing plants, high level liquid wastes are concentrated via successive evaporations, with or without de-nitration, to reach the inlet specifications of the downstream processing steps. In contrast to the PUREX process, effluents from advanced actinides partitioning processes contain large amounts of organic compounds (complexing agents, buffers or reducing reagents), which could disrupt concentration operations. Thus, in parallel with new partitioning process development, the compatibility of usual concentration operations with the high level liquid waste issued from them are investigated, and, if necessary, additional treatments to eliminate remaining organic compounds are reviewed. The behaviour of each reagent and related identified by-products is studied in laboratory-scale devices representative of industrial operating conditions. Final concentrated solutions (actinide or fission solutions) and the resulting distillates (i.e. decontaminated effluents) are checked in terms of compatibility with the downstream specifications. Process implementation and safety aspects are also evaluated. Kinetic and thermodynamic constants are measured. After the collection of these data, the effectiveness of the overall continuous process of the effluent treatment (combination of elementary operations) is evaluated through semi-empirical models which are also able to optimize the conditions for implementation. First results indicate that nitric acid streams containing complexing agents (oxalic acid, HEDTA, DTPA) will be managed by usual concentration processes, while buffered solutions ( containing glycolic, citric or malonic acid) will require additional treatments to lower organic carbon concentration. Oxidation process by hydrogen peroxide at boiling temperature has

  7. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes

    International Nuclear Information System (INIS)

    Highlights: • NP4EO in industrial effluents can be treated before reaching water reservoirs. • Advanced oxidation processes are proposed for the degradation of NP4EO. • The degradation rate depends mainly on the light intensity. • The mineralization rate depends mainly on the current density. • Photo-assisted electrochemical oxidation showed the best degradation results. - Abstract: Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis – HP, eletrochemical oxidation – EO and photo-assisted electrochemical oxidation – PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NPnEO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NPnEO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NPnEO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250 W lamp and a current density of 10 mA/cm2 showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NPnEO, avoiding the contamination of water resources

  8. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Wohlmuth da Silva, Salatiel, E-mail: salatielws@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGEM), Av. Bento Gonçalves, 9500, Porto Alegre, RS (Brazil); Klauck, Cláudia Regina, E-mail: claudiark@feevale.br [Universidade Feevale, Campus II ERS-239, 2755, Novo Hamburgo, RS (Brazil); Siqueira, Marco Antônio, E-mail: marcor@feevale.br [Universidade Feevale, Campus II ERS-239, 2755, Novo Hamburgo, RS (Brazil); Bernardes, Andréa Moura, E-mail: amb@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGEM), Av. Bento Gonçalves, 9500, Porto Alegre, RS (Brazil)

    2015-01-23

    Highlights: • NP{sub 4}EO in industrial effluents can be treated before reaching water reservoirs. • Advanced oxidation processes are proposed for the degradation of NP{sub 4}EO. • The degradation rate depends mainly on the light intensity. • The mineralization rate depends mainly on the current density. • Photo-assisted electrochemical oxidation showed the best degradation results. - Abstract: Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis – HP, eletrochemical oxidation – EO and photo-assisted electrochemical oxidation – PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NP{sub n}EO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NP{sub n}EO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NP{sub n}EO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250 W lamp and a current density of 10 mA/cm{sup 2} showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NP{sub n}EO, avoiding the contamination of water resources.

  9. Advanced treatment of landfill leachate by a new combination process in a full-scale plant

    International Nuclear Information System (INIS)

    Advanced treatment of mature landfill leachate from a municipal landfill located in southern China (Jiangmen) was carried out in a full-scale plant using a new process. The combined process has a sequencing batch reactor (SBR) serving as the primary treatment, with polyferric sulfate (PFS) coagulation coupled with a Fenton system as secondary treatment, and a pair of upflow biological aerated filters (UBAFs) in parallel as tertiary treatment. The overall removal efficiency of chemical oxygen demand (COD) in this process was 97.3%, with an effluent COD less than 100 mg/L. Up to 99% ammonia (N-NH3) removal efficiency was achieved in the SBR, with an effluent of less than 3 mg/L, which meets the discharge standard (≤25 mg/L) with only primary treatment. The total phosphorus (TP) and suspended solids (SS) in the final effluent were reduced to less than 1 mg/L and 10 mg/L, respectively. The experience gained in the operation and maintenance will lead to a more stable performance of this combined process. An economic analysis shows that the overall operating cost of the advanced treatment was $2.70/m3. This new combination process was proved to be highly compatible and efficient in a small-scale landfill leachate treatment plant and is recommended for small-scale landfill leachate treatment plants.

  10. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    International Nuclear Information System (INIS)

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  11. Implementation and benefits of advanced process control for lithography CD and overlay

    Science.gov (United States)

    Zavyalova, Lena; Fu, Chong-Cheng; Seligman, Gary S.; Tapp, Perry A.; Pol, Victor

    2003-05-01

    Due to the rapidly reduced imaging process windows and increasingly stingent device overlay requirements, sub-130 nm lithography processes are more severely impacted than ever by systamic fault. Limits on critical dimensions (CD) and overlay capability further challenge the operational effectiveness of a mix-and-match environment using multiple lithography tools, as such mode additionally consumes the available error budgets. Therefore, a focus on advanced process control (APC) methodologies is key to gaining control in the lithographic modules for critical device levels, which in turn translates to accelerated yield learning, achieving time-to-market lead, and ultimately a higher return on investment. This paper describes the implementation and unique challenges of a closed-loop CD and overlay control solution in high voume manufacturing of leading edge devices. A particular emphasis has been placed on developing a flexible APC application capable of managing a wide range of control aspects such as process and tool drifts, single and multiple lot excursions, referential overlay control, 'special lot' handling, advanced model hierarchy, and automatic model seeding. Specific integration cases, including the multiple-reticle complementary phase shift lithography process, are discussed. A continuous improvement in the overlay and CD Cpk performance as well as the rework rate has been observed through the implementation of this system, and the results are studied.

  12. Improvement of wind field hindcasts for tropical cyclones

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2016-01-01

    Full Text Available This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the Cross-Calibrated Multi-Platform (CCMP reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.

  13. Influences of Tropical Cyclones on China During 1965-2004

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaoling; WU Liguang; REN Fumin; WANG Yongmei; LI Weijing

    2008-01-01

    Using the Joint Typhoon Warning Center (JTWC) and China Meteorological Administration (CMA) tropical cyclone track datasets, variations in frequency and intensity of the affecting-China tropical cyclones (ACTCs) are studied for the period of 1965 2004. First, the differences between the two tropical cyclone datasets are examined. The annual frequencies of tropical cyclones in the western North Pacific basin are reasonably consistent to each other, while the intensity records are less reliable. The annual numbers of ACTCs based on different datasets are close to each other with similar interdecadal and interannual variations. However, the maximum intensity and the annual frequency of ACTCs for strong categories show great dependence on datasets. Tropical cyclone impacts on China show the same variations as the annual number of ACTCs and also show dependence on datasets. Differences in tropical cyclone impacts on China are mainly caused by datasets used. The annual frequency of ACTCs, especially the length of lifetime of ones that make landfall, and the intensity estimates all have effects on the value of impacts on China.

  14. Tropical cyclone activity over the Southwest Tropical Indian Ocean

    Science.gov (United States)

    Burns, Jessica M.; Subrahmanyam, Bulusu; Nyadjro, Ebenezer S.; Murty, V. S. N.

    2016-08-01

    The Southwest Tropical Indian Ocean (SWTIO) is a key region for air-sea interaction. Tropical cyclones (TCs) regularly form over the SWTIO and subsurface ocean variability influences the cyclogenesis of this region. Tropical cyclone days for this region span from November through April, and peak in January and February during austral summer. Past research provides evidence for more tropical cyclone days over the SWTIO during austral summer (December-June) with a deep thermocline ridge than in austral summer with a shallow thermocline ridge. We have analyzed the Argo temperature data and HYbrid Coordinate Ocean Model (HYCOM) outputs while focusing on the austral summer of 2012/2013 (a positive Indian Ocean Dipole (IOD) year and neutral El Niño Southern Oscillation (ENSO) year) when seven named tropical cyclones developed over the SWTIO region. This study reveals that the climatic events like the IOD and ENSO influence the cyclonic activity and number of TC days over the SWTIO. We ascertain that the IOD events have linkages with the Barrier Layer Thickness (BLT) in the SWTIO region through propagating Rossby waves, and further show that the BLT variability influences the cyclonic activity in this region.

  15. DYNAMIC MODELLING AND ADVANCED PREDICTIVE CONTROL OF A CONTINUOUS PROCESS OF ENZYME PURIFICATION

    Directory of Open Access Journals (Sweden)

    Dechechi E.C.

    1997-01-01

    Full Text Available A dynamic mathematical model, simulation and computer control of a Continuous Affinity Recycle Extraction (CARE process, a protein purification technique based on protein adsorption on solid-phase adsorbents is described in this work. This process, consisting of three reactors, is a multivariable process with considerable time delay in the on-line analyses of the controlled variable. An advanced predictive control configuration, specifically the Dynamic Matrix Control (DMC, was applied. The DMC algorithm was applied in process schemes where the aim was to maintain constant the enzyme concentration in the outlet of the third reactor. The performance of the DMC controller was analyzed in the feed-flow disturbances and the results are presented.

  16. Application of Advanced Process Control techniques to a pusher type reheating furnace

    Science.gov (United States)

    Zanoli, S. M.; Pepe, C.; Barboni, L.

    2015-11-01

    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.

  17. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    Science.gov (United States)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  18. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    Energy Technology Data Exchange (ETDEWEB)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert [Faculty of Engineering and the Built Environment, University of Johannesburg, (South Africa)

    2015-08-15

    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  19. Aerosols-Cloud-Microphysics Interactions in Tropical Cyclone Earl

    Science.gov (United States)

    Luna-Cruz, Yaitza

    Aerosols-cloud-microphysical processes are largely unknown in their influence on tropical cyclone evolution and intensification; aerosols possess the largest uncertainty. For example: What is the link between aerosols and cloud microphysics quantities? How efficient are the aerosols (i.e. dust from the Saharan Air Layer -SAL) as cloud condensation nuclei (CCN) and ice nuclei (IN)? Does aerosols affect the vertical velocity, precipitation rates, cloud structure and lifetime? What are the dominant factors and in which sectors of the tropical cyclone? To address some of the questions in-situ microphysics measurements from the NASA DC-8 aircraft were obtained during the Genesis and Rapid Intensification Processes (GRIP) 2010 field campaign. A total of four named storms (Earl, Gaston, Karl and Mathew) were sampled. Earl presented the excellent opportunity to study aerosols-cloud-microphysics interactions because Saharan dust was present and it underwent rapid intensification. This thesis seeks to explore hurricane Earl to develop a better understanding of the relationship between the SAL aerosols and cloud microphysics evolution. To assist in the interpretation of the microphysics observations, high resolution numerical simulations of hurricane Earl were performed using the Weather Research and Forecasting (WRF-ARW) model with the new Aerosol-Aware bulk microphysics scheme. This new version of Thompson scheme includes explicit activation of cloud condensation nuclei (CCN) from a major CCN source (i.e. sulfates and sea salt) and explicit ice nucleation (IN) from mineral dust. Three simulations are performed: (1) the Control case with the old Thompson scheme and initial conditions from GFS model, (2) the Aerosol-Aware first baseline case with GOCART aerosol module as an input conditions, and (3) the Aerosol-Aware increase case in which the GOCART aerosols concentrations were increased significantly. Overall, results of model simulations along with aircraft observations

  20. Utilization of satellite cloud information to diagnose the energy state and transformations in extratropical cyclones

    Science.gov (United States)

    Smith, P. J.

    1985-01-01

    An important component of the research was a continuing investigation of the impact of latent release on extratropical cyclone development. Previous efforts to accomplish this task have focused on the energy balance and the vertical motion field of an intense winter extratropical cyclone over the United States. During this fiscal year researchers turned their attention to a more fundamental diagnostic variable, the height tendency. Central to this effort is the use of a modified form of the quasi-geostrophic height tendency equation, in which geostrophic wind components have been replaced by observed winds and a latent heat release term has been added. This methodology was adopted to produce a simple diagnostic model which retains the essential mechanisms of quasi-geostrophic theory but more faithfully describes observed wave development when the Rossby Number approaches and exceeds 0.5. Results to date indicate that the new model yields height tendencies that are superior to those obtained from the quasi-geostrophic formulation and are sufficiently close to the observed tendencies to be a useful tool for diagnosing the principle large-scale forcing mechanisms in th e700-300 mb layer. Of the three forcing terms included in the new model, vortity advection is in general dominant. The most persistent challenge to this dominance is made by the thermal advection. On the whole, latent heat release plays a secondary role. Finally, during the rapid intensification observed for this cyclone, all three processes complement each other in forcing height falls.

  1. PENENTUAN WAKTU PERAWATAN UNTUK PENCEGAHANPADA KOMPONEN KRITIS CYCLONE FEED PUMP BERDASARKAN KRITERIA MINIMASI DOWN TIME

    Directory of Open Access Journals (Sweden)

    Siti Nandiroh

    2006-08-01

    Full Text Available Sistem perawatan mesin yang dilakukan di PT. Newmont Nusa Tenggara, selama ini masih bersifat korektif yaitu perawatan setelah terjadi kerusakan. Kerusakan komponen ini biasanya akan ditandai dengan ditemukannya produk yang dihasilkan tidak sedikit mengalami kecacatan. Peranan perawatan terhadap komponen-komponen Cyclone Feed Pump pada Process Departement - PT.Newmont Nusa Tenggara sangat penting artinya untuk mencegah terjadinya kecacatan produk masal dan mencegah terjadinya down time produksi. Dan perawatan yang paling baik digunakan adalah perawatan pencegahan sebelum terjadinya kerusakan (preventive maintenance. Mesin kritis adalah mesin yang mengalami frekwensi kerusakan terbesar dengan total downtime terbesar. Untuk penentuan mesin kritis ini, langkah pertama yang dilakukan adalah dengan mengukur lamanya waktu downtime produksi dari tiap-tiap mesin yang ada. Perhitungan MTTR berdasarkan data downtime, yang sebelumnya juga dilakukan uji kecocokan distribusi dan hasilnya sesuai, Dengan melakukan perhitungan Mean Time To Repair dan Mean Time To Failure dapat diketahui rata-rata waktu berapa lama pompa beroperasi dan berapa lama pompa tersebut dapat dilakukan perbaikan serta dapat diketahui Reliability pada Cyclone Feed Pump 2.0.1. Setelah dilakukkan perhitungan, komponen kritis Discharge Pipe pada Cyclone Feed Pump 2.0.1 harus sudah dilakukan inspeksi preventif, karena telah beroperasi 664.8 jam, dan perbaikan yang harus lakukan maksimal 3.4997 jam setiap kali dilakukan shutdown.

  2. C2A2 Project - CO2 Capture by Advances Amines process

    International Nuclear Information System (INIS)

    This publication presents the operation principles and the obtained results for a research demonstrator developed in Le Havre by EDF and Alstom for CO2 capture by post-combustion. The implemented technology, developed by Alstom and DOX Chemical is named Advanced Amines Processes (AAP). This process comprises the use of solvent and a specific process scheme (the Advanced Flow Scheme or AFS). The smoke treatment chain of the installation is described, and the valorisation of combustion by-products and of smoke processing operations is indicated. The capacities of the installation are given. Systems aimed at increasing the solvent lifetime are described, and some operational parameters are indicated. Various aspects related to the demonstrator design, construction and operation are discussed. Results obtained during tests between October 2013 and March 2014 are given and discussed in terms of quantity of captured CO2, of energy performance, of solvent management and consumption, of emissions, of corrosion, of exploitation organisation, and of instrumentation verification and data quality

  3. The Distribution of Technetium in U/Pu Partition Step of Advanced Purex Process Based on Organic Reagents

    Institute of Scientific and Technical Information of China (English)

    WANG; Hui; WEI; Yan; LIU; Fang; JIA; Yong-fen; LIU; Zhan-yuan

    2012-01-01

    <正>Advanced Purex process based on organic reagents (APOR) is an advanced Purex process, where monomethylhydrazine (MMH)-dimethylhydroxylamine (DMHAN) are adopted as salt-free plutonium- reductant in the partition step. During this step, technetium mainly goes into aqueous plutonium stream, and the aim of our work is to explain this phenomena. Reaction kinetic experiments and process experiments with mixer-settler were carried out for this purpose.

  4. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    Science.gov (United States)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.

  5. Advanced Practice Nursing Committee on Process Improvement in Trauma: An Innovative Application of the Strong Model.

    Science.gov (United States)

    West, Sarah Katherine

    2016-01-01

    This article aims to summarize the successes and future implications for a nurse practitioner-driven committee on process improvement in trauma. The trauma nurse practitioner is uniquely positioned to recognize the need for clinical process improvement and enact change within the clinical setting. Application of the Strong Model of Advanced Practice proves to actively engage the trauma nurse practitioner in process improvement initiatives. Through enhancing nurse practitioner professional engagement, the committee aims to improve health care delivery to the traumatically injured patient. A retrospective review of the committee's first year reveals trauma nurse practitioner success in the domains of direct comprehensive care, support of systems, education, and leadership. The need for increased trauma nurse practitioner involvement has been identified for the domains of research and publication. PMID:27414145

  6. Advanced process modeling at the BCL smelter: Improving economic and environmental performance

    Science.gov (United States)

    Tripathi, Nagendra; Peek, Edgar; Stroud, Milton

    2011-01-01

    Since 1973 Bamangwato Concessions Limited (BCL) has operated a nickel-copper smelter in Selebi-Phikwe, Botswana. The smelter treats concentrates from local mines and various custom feed concentrates. The nickel throughput capacity of this smelter is constrained by a low nickel feed grade in its primary BCL concentrate. BCL contracted Xstrata Process Support (XPS) to assist in identifying key economic drivers to maximize revenue-generating opportunities. After the disclosure of essential BCL plant performance data XPS developed and utilized advanced metallurgical modeling techniques to identify production bottlenecks, calculate Ni, Cu, and Co recoveries, manage the slag volumes, increase the custom feed capacity, and perform various feasibility analyses for key unit process operations in the BCL smelter. The methodology for developing the process model and its application in contributing to the economic bottom line are outlined in this paper.

  7. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications.

    Science.gov (United States)

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  8. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    International Nuclear Information System (INIS)

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research

  9. Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Manish; Baer, Douglas

    2013-09-30

    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  10. Tropical cyclones in reanalysis data sets

    Science.gov (United States)

    Murakami, Hiroyuki

    2014-03-01

    This study evaluates and compares tropical cyclones (TCs) in state-of-the-art reanalysis data sets including the following: the Japanese 55-year Reanalysis (JRA-55), Japanese 25-year Reanalysis, European Centre for Medium-Range Weather Forecasts Reanalysis-40, Interim Reanalysis, National Centers for Environmental Prediction Climate Forecast System Reanalysis, and NASA's Modern Era Retrospective Analysis for Research and Application (MERRA). Most of the reanalyses reproduce a reasonable global spatial distribution of observed TCs and temporal interannual variation of total TC frequency. Of the six reanalysis data sets, JRA-55 appears to be the best in terms of the following: the highest skill for spatial and temporal distribution of TC frequency of occurrence, highest TC hitting rate, lower false alarm rate, reasonable TC structure in terms of the relationship between maximum surface wind speed and sea level pressure, and higher correlation coefficients for interannual variations of TC frequency. These results also suggest that the finest-resolution reanalysis data sets, like MERRA, are not always the best in terms of TC climatology.

  11. Observed strong currents under global tropical cyclones

    Science.gov (United States)

    Chang, Yu-Chia; Tseng, Ruo-Shan; Chu, Peter C.; Chen, Jau-Ming; Centurioni, Luca R.

    2016-07-01

    Global data from drifters of the Surface Velocity Program (Niiler, 2001) and tropical cyclones (TCs) from the Joint Typhoon Warning Center and National Hurricane Center were analyzed to demonstrate strong ocean currents and their characteristics under various storm intensities in the Northern Hemisphere (NH) and in the Southern Hemisphere (SH). Mean TC's translation speed (Uh) is faster in the NH (~ 4.7 m s- 1) than in the SH (~ 4.0 m s- 1), owing to the fact that TCs are more intense in the NH than in the SH. The rightward (leftward) bias of ocean mixed-layer (OML) velocity occurs in the NH (SH). As a result of this slower Uh and thus a smaller Froude number in the SH, the flow patterns in the SH under the same intensity levels of TCs are more symmetric relative to the TC center and the OML velocities are stronger. This study provides the first characterization of the near-surface OML velocity response to all recorded TCs in the SH from direct velocity measurements.

  12. Comparison of Three Tropical Cyclone Intensity Datasets

    Institute of Scientific and Technical Information of China (English)

    YU Hui; HU Chunmei; JIANG Leyi

    2007-01-01

    Analyzed in this paper are the 16-yr (1988-2003) tropical cyclone (TC) intensity data from three major forecast centers of the western North Pacific, i.e., China Meteorological Administration (CMA), Regional Specialized Meteorological Center Tokyo (RSMC Tokyo), and Joint Typhoon Warning Center (JTWC) of the United States. Results show that there are significant discrepancies (at 1% significance level) in the intensity of TCs among the three centers, with a maximum difference for the same TC over 30 m s-1. The flight reconnaissance over TC can minish the discrepancy to some extent.A climatic and persistent prediction model is set up to study the impact of initial data from different forecast centers on the prediction of TC intensity. It is obtained that the root mean square error (RMSE)of a 4-yr independent test is the largest using data from JTWC, while the smallest using data from RSMC Tokyo. Average absolute deviation in 24-h intensity prediction is 2.5 m s-1 between CMA and RSMC Tokyo data, and 4.0 m s-1 between CMA and JTWC data, with a maximum deviation reaching 21 m s-1. Such a problem in the initial value increases the difficulty in intensity prediction of TCs over the western North Pacific.

  13. Tropical Cyclones Feed More Heavy Rain in a Warmer Climate

    Science.gov (United States)

    Lau, K.-M.; Zhou, Y. P.; Wu, H.-T.

    2007-01-01

    The possible linkage of tropical cyclones (TC) to global warming is a hotly debated scientific topic, with immense societal impacts. Most of the debate has been focused on the issue of uncertainty in the use of non-research quality data for long-term trend analyses, especially with regard to TC intensity provided by TC forecasting centers. On the other hand, it is well known that TCs are associated with heavy rain during the processes of genesis and intensification, and that there are growing evidences that rainfall characteristics (not total rainfall) are most likely to be affected by global warming. Yet, satellite rainfall data have not been exploited in any recent studies of linkage between tropical cyclones (TC) and global warming. This is mostly due to the large uncertainties associated with detection of long-term trend in satellite rainfall estimates over the ocean. This problem, as we demonstrate in this paper, can be alleviated by examining rainfall distribution, rather than rainfall total. This paper is the first to use research-quality, satellite-derived rainfall from TRMM and GPCP over the tropical oceans to estimate shift in rainfall distribution during the TC season, and its relationships with TCs, and sea surface temperature (SST) in the two major ocean basins, the northern Atlantic and the northern Pacific for 1979-2005. From the rainfall distribution, we derive the TC contributions to rainfall in various extreme rainfall categories as a function to time. Our results show a definitive trend indicating that TCs are contributing increasingly to heavier rain events, i.e., intense TC's are more frequent in the last 27 years. The TC contribution to top 5% heavy rain has nearly doubled in the last two decades in the North Atlantic, and has increased by about 10% in the North Pacific. The different rate of increase in TC contribution to heavy rain may be related to the different rates of different rate of expansion of the warm pool (SST >2S0 C) area in the

  14. Comparisons of Three Advanced Oxidation Processes in Organic Matter Removal from Esfahan Composting Factory Leachate

    Directory of Open Access Journals (Sweden)

    karimi B.

    2011-06-01

    Full Text Available Backgrounds and Objectives: Wet air oxidation (WAO is one of the advanced oxidation process which is mostly used to reduce organic matter concentration from industrial wastewater, toxic and non biodegradable substance and solid waste leachate.The objective of this paper is comparisons of three advance oxidation in organic matter removal in different conditions from Esfahan composing factory leachateMaterial and Methods: The experiment was carried out by adding 1.5 Lit pretreated leachate sample to 3Lit autoclave reactor and adding 10 bar pressure at temperature of 100, 200 and 300 °C and pressure (10 bars with retention time of 30, 60 and 90 min. leachate sample in 18 stages from composting factory in Isfahan in the volume of 20 lit was taken and the three methodsWAO, WPO, and a combination of WAO/GAC were used for pre-treatments. Pure oxygen and 30% hydrogen peroxide was used as oxidation agent.Results: The result shows significant improvement on the removal rate of COD (7.8-33.3%, BOD5 (14.7-50.6%by WAO process.The removal efficiency of 4.6-34% COD, 24-50% BOD, was observed in the reactor.Adding theGACto the reactor improved removal efficiency of all parameters.Combination Process (WAO/GAC removed 48% of COD, 31-43.6% of BOD.Combination process demonstrated higher efficiency than two other previous methods as BOD5/COD ratio of 90% achieved.Conclusion: The WAO process presented in this paper is efficient for pretreatment of leachate, And the modified WPO process remove organic materials and ammonia moreover WAO/GAC can be considered as an excellent alternative treatment for removing reluctant organic matter (COD, BOD5 and organic nitrogen compounds, which found in leachate.

  15. Challenges in process marginality for advanced technology nodes and tackling its contributors

    Science.gov (United States)

    Narayana Samy, Aravind; Schiwon, Roberto; Seltmann, Rolf; Kahlenberg, Frank; Katakamsetty, Ushasree

    2013-10-01

    Process margin is getting critical in the present node shrinkage scenario due to the physical limits reached (Rayleigh's criterion) using ArF lithography tools. K1 is used to its best for better resolution and to enhance the process margin (28nm metal patterning k1=0.31). In this paper, we would like to give an overview of various contributors in the advanced technology nodes which limit the process margins and how the challenges have been tackled in a modern foundry model. Advanced OPC algorithms are used to make the design content at the mask optimum for patterning. However, as we work at the physical limit, critical features (Hot-spots) are very susceptible to litho process variations. Furthermore, etch can have a significant impact as well. Pattern that still looks healthy at litho can fail due to etch interactions. This makes the traditional 2D contour output from ORC tools not able to predict accurately all defects and hence not able to fully correct it in the early mask tapeout phase. The above makes a huge difference in the fast ramp-up and high yield in a competitive foundry market. We will explain in this paper how the early introduction of 3D resist model based simulation of resist profiles (resist top-loss, bottom bridging, top-rounding, etc.,) helped in our prediction and correction of hot-spots in the early 28nm process development phase. The paper also discusses about the other overall process window reduction contributors due to mask 3D effects, wafer topography (focus shifts/variations) and how this has been addressed with different simulation efforts in a fast and timely manner.

  16. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  17. Degradation of estrone in water and wastewater by various advanced oxidation processes.

    Science.gov (United States)

    Sarkar, Shubhajit; Ali, Sura; Rehmann, Lars; Nakhla, George; Ray, Madhumita B

    2014-08-15

    A comprehensive study was conducted to determine the relative efficacy of various advanced oxidation processes such as O3, H2O2, UV, and combinations of UV/O3, UV/H2O2 for the removal of estrone (E1) from pure water and secondary effluent. In addition to the parent compound (E1) removal, performance of the advanced oxidation processes was characterized using removal of total organic carbon (TOC), and estrogenicity of the effluent. Although E1 removal was high for all the AOPs, intermediates formed were more difficult to degrade leading to slow TOC removal. Energy calculations and cost analysis indicated that, although UV processes have low electricity cost, ozonation is the least cost option ($ 0.34/1000 gallons) when both capital and operating costs were taken into account. Ozonation also is superior to the other tested AOPs due to higher removal of TOC and estrogenicity. The rate of E1 removal decreased linearly with the background TOC in water, however, E1 degradation in the secondary effluent from a local wastewater treatment plant was not affected significantly due to the low COD values in the effluent.

  18. Impact of cyclone Nilam on tropical lower atmospheric dynamics

    Science.gov (United States)

    Vinay Kumar, P.; Dutta, Gopa; Ratnam, M. V.; Krishna, E.; Bapiraju, B.; Rao, B. Venkateswara; Mohammad, Salauddin

    2016-08-01

    A deep depression formed over the Bay of Bengal on 28 October 2012, and developed into a cyclonic storm. After landfall near the south coast of Chennai, cyclone Nilam moved north-northwestwards. Coordinated experiments were conducted from the Indian stations of Gadanki (13.5°N, 79.2°E) and Hyderabad (17.4°N, 78.5°E) to study the modification of gravity-wave activity and turbulence by cyclone Nilam, using GPS radiosonde and mesosphere-stratosphere-troposphere radar data. The horizontal velocities underwent large changes during the closest approach of the storm to the experimental sites. Hodograph analysis revealed that inertia gravity waves (IGWs) associated with the cyclone changed their directions from northeast (control time) to northwest following the path of the cyclone. The momentum flux of IGWs and short-period gravity waves (1-8 h) enhanced prior to, and during, the passage of the storm (±0.05 m2 s-2 and ±0.3 m2 s-2, respectively), compared to the flux after its passage. The corresponding body forces underwent similar changes, with values ranging between ±2-4 m s-1 d-1 and ±12-15 m s-1 d-1. The turbulence refractivity structure constant ( C n 2 ) showed large values below 10 km before the passage of the cyclone when humidity in the region was very high. Turbulence and humidity reduced during the passage of the storm when a turbulent layer at ~17 km became more intense. Turbulence in the lower troposphere and near the tropopause became weak after the passage of the cyclone.

  19. On tropical cyclone frequency and the warm pool area

    Directory of Open Access Journals (Sweden)

    R. E. Benestad

    2009-04-01

    Full Text Available The proposition that the rate of tropical cyclogenesis increases with the size of the "warm pool" is tested by comparing the seasonal variation of the warm pool area with the seasonality of the number of tropical cyclones. An analysis based on empirical data from the Northern Hemisphere is presented, where the warm pool associated with tropical cyclone activity is defined as the area, A, enclosed by the 26.5°C SST isotherm. Similar analysis was applied to the temperature weighted area AT with similar results.

    An intriguing non-linear relationship of high statistical significance was found between the temperature weighted area in the North Atlantic and the North-West Pacific on the one hand and the number of cyclones, N, in the same ocean basin on the other, but this pattern was not found over the North Indian Ocean. A simple statistical model was developed, based on the historical relationship between N and A. The simple model was then validated against independent inter-annual variations in the seasonal cyclone counts in the North Atlantic, but the correlation was not statistically significant in the North-West Pacific. No correlation, however, was found between N and A in the North Indian Ocean.

    A non-linear relationship between the cyclone number and temperature weighted area may in some ocean basins explain both why there has not been any linear trend in the number of cyclones over time as well as the recent upturn in the number of Atlantic hurricanes. The results also suggest that the notion of the number of tropical cyclones being insensitive to the area A is a misconception.

  20. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Hierarchical Multiscale Interactions During the Formation of Tropical Cyclone Nargis(2008)

    Science.gov (United States)

    Shen, B.-W.; Tao, W.-K.; Lau, W. K.; Atlas, R.

    2010-01-01

    Very severe cyclonic storm Nargis devastated Burma (Myanmar) in May 2008, caused tremendous damage and numerous fatalities, and became one of the 10 deadliest tropical cyclones (TCs) of all time. To increase the warning time in order to save lives and reduce economic damage, it is important to extend the lead time in the prediction of TCs like Nargis. As recent advances in high-resolution global models and supercomputing technology have shown the potential for improving TC track and intensity forecasts, the ability of a global mesoscale model to predict TC genesis in the Indian Ocean is examined in this study with the aim of improving simulations of TC climate. High-resolution global simulations with real data show that the initial formation and intensity variations of TC Nargis can be realistically predicted up to 5 days in advance. Preliminary analysis suggests that improved representations of the following environmental conditions and their hierarchical multiscale interactions were the key to achieving this lead time: (1) a westerly wind burst and equatorial trough, (2) an enhanced monsoon circulation with a zero wind shear line, (3) good upper-level outflow with anti-cyclonic wind shear between 200 and 850 hPa, and (4) low-level moisture convergence.

  1. Comparison Between the Efficiency of Advanced Oxidation Process and Coagulation for Removal Organophosphorus and Carbamat Pesticides

    OpenAIRE

    A.R Rahmani; M.T. Samadi; M Khodadadi

    2011-01-01

    Background and Objectives: Water pollution by pesticides has adverse effects on the environment and human health, as well .In recent years, advanced oxidation processes, have been gone through to a very high degree for pesticides removal. Poly-Aluminum chloride (PAC) used for water treatment, can be effective on pesticides removal. The aim of this research was to study the use of UV/O3 and PAC in the removal of pesticides from drinking water.Materials and Methods: In this descriptive- an...

  2. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    OpenAIRE

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-01-01

    In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation...

  3. A study on the enhancement of sonochemical degradation of eosin B using other advanced oxidation processes

    OpenAIRE

    Goel, Mukesh; Das, Ashutosh; Ravikumar, K.; ASTHANA, ABHISHEK

    2014-01-01

    Eosin B is a xanthenes dye and is a derivate of fluorescein. The efficacy of sonochemical degradation coupled with other advanced oxidation process (AOP’s) has been studied for eosin B degradation in aqueous solution. The study compares the effects of H2O2 concentration, saturating gas (argon, N2, and O2), temperature and pH (3–11). Furthermore, kinetic comparison and a figure of merit for the electrical energy consumption were carried out for the degradation under combination of different AO...

  4. Removal of micro-pollutants from drinking water with advanced oxidation processes

    OpenAIRE

    Sander, Fabian

    2009-01-01

    This thesis determines the feasibility of ozone gas and ultraviolet (UV)technologies to reduce pollutants from drinking water. The merging of both techniques, ozone and UV, is known as a so called advanced oxidation process (AOP). ITT Wedeco is developing new technologies to meet the growing concern of water works to remove micro-pollutants from their water. The emphasis of this work was put on the formation of the oxidation by-product bromate and the removal of the solvent 1.4 dioxane fr...

  5. Alarm Reduction Processing of Advanced Nuclear Power Plant Using Data Mining and Active Database Technologies

    International Nuclear Information System (INIS)

    The purpose of the Advanced Alarm Processing (AAP) is to extract only the most important and the most relevant data out of large amount of available information. It should be noted that the integrity of the knowledge base is the most critical in developing a reliable AAP. This paper proposes a new approach to an AAP by using Event-Condition-Action(ECA) rules that can be automatically triggered by an active database. Also this paper proposed a knowledge acquisition method using data mining techniques to obtain the integrity of the alarm knowledge

  6. Acquisition and processing of advanced sensor data for ERW and UXO detection and classification

    Science.gov (United States)

    Schultz, Gregory M.; Keranen, Joe; Miller, Jonathan S.; Shubitidze, Fridon

    2014-06-01

    The remediation of explosive remnants of war (ERW) and associated unexploded ordnance (UXO) has seen improvements through the injection of modern technological advances and streamlined standard operating procedures. However, reliable and cost-effective detection and geophysical mapping of sites contaminated with UXO such as cluster munitions, abandoned ordnance, and improvised explosive devices rely on the ability to discriminate hazardous items from metallic clutter. In addition to anthropogenic clutter, handheld and vehicle-based metal detector systems are plagued by natural geologic and environmental noise in many post conflict areas. We present new and advanced electromagnetic induction (EMI) technologies including man-portable and towed EMI arrays and associated data processing software. While these systems feature vastly different form factors and transmit-receive configurations, they all exhibit several fundamental traits that enable successful classification of EMI anomalies. Specifically, multidirectional sampling of scattered magnetic fields from targets and corresponding high volume of unique data provide rich information for extracting useful classification features for clutter rejection analysis. The quality of classification features depends largely on the extent to which the data resolve unique physics-based parameters. To date, most of the advanced sensors enable high quality inversion by producing data that are extremely rich in spatial content through multi-angle illumination and multi-point reception.

  7. How gamma radiation processing systems are benefiting from the latest advances in information technology

    Science.gov (United States)

    Gibson, Wayne H.; Levesque, Daniel

    2000-03-01

    This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.

  8. Experimental investigation into the application of a magnetic dense medium cyclone in a production environment / Ilana Katinka Myburgh

    OpenAIRE

    Myburgh, Ilana Katinka

    2001-01-01

    The magnetic dense medium cyclone project was undertaken at Koingnaas Mine on a 250 mm diameter cyclone during 1998 and a 510 mm cyclone during 2000. The aim of the project was to evaluate the performance of a magnetic DM cyclone in a production environment. Previous test work on magnetic DM cyclones were conducted during 1995 and 1996 on small (100 mm) cyclones in a laboratory environment, with medium feed only. Solenoid position, magnetic field strength and medium inlet de...

  9. Spiral rainband in a numerically simulated tropical cyclone

    Institute of Scientific and Technical Information of China (English)

    ZHU Peijun; ZHENG Yongguang; WANG Hongqing; TAO Zuyu

    2005-01-01

    Spiral rainband is a prominent structure of tropical cyclone. Though its forming mechanism, vortex Rossby wave theory, has been widely recent in recent years, its internal structural features are still not well known. The spiral rainband in the severe tropical storm Kammuri (2002), which caused heavy rainfall in southeast China, is simulated using the mesoscale model MM5 (V3). Results show that the simulated spiral rainband propagates azimuthally at a speed close to that of vortex Rossby wave in theory, and is accom- panied with energy dispersion in the radial direction. The structural features of simulated spiral rainband are analyzed with the high-resolution model output including the full physical process. Positive vorticity, ascending motion, hori- zontal momentum and so on are highly concentrated in the spiral rainband. The convergent moisture of spiral rainband comes mostly from the planetary boundary layer under 1 km. Airflow from the outside of spiral rainband is convective instability, which can provide instability energy for convec- tion development. However, the atmospheric stratification in the inside of spiral rainband is neutral, implying that the instability energy has been released. There is a mesoscale strong wind band just near the spiral rainband in the outer side with a maximum wind speed exceeding 30 m/s, which results from the pressure force acceleration when the air flows into the spiral rainband along the gradient of pressure.

  10. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    Science.gov (United States)

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  11. Advanced gate CDU control in sub-28nm node using poly slot process by scatterometry metrology

    Science.gov (United States)

    Tzai, Wei-Jhe; Chen, Howard; Lin, Jun-Jin; Huang, Yu-Hao; Yu, Chun-Chi; Lin, Ching-Hung Bert; Yoo, Sungchul; Huang, Chien-Jen Eros; Mihardja, Lanny

    2013-04-01

    Scatterometry-based metrology is a well proven method to measure and monitor the critical dimensions of interest in advanced sub-28nm process development and high volume manufacturing [1][3][4][6][7]. In this paper, a proposed solution to control and achieve the optimal gate critical dimension uniformity (CDU) was explored. The proposed solution is named a novel scatterometry slot gate CDU control flow. High performance measurement and control during the slot gate step is critical as it directly controls the poly line cut profile to the active area which then directly impacts the final device performance. The proposed flow incorporates scatterometry-based CD (SCD) measurement feedback and feed forward to the Automation Process Control (APC) system, further process recipe fine tuning utilizing the data feedback and forward, and two dimensional (2D) and three dimensional (3D) scatterometry-based CD (SCD) measurement of gate after developer inspection (ADI) and after etch inspection (AEI) [1]. The methodologies and experiment results presented in this study started from the process development through the SCD model optimization of the DOE wafers, to the final implementation of the process control flow and measurement loop into the production line to evaluate its capability for long term in-line monitoring in high volume manufacturing environment. The result showed significant improvement in the gate CD uniformity that met the sub-28nm process manufacturing requirement.

  12. APPLICATION OF AN OBJECTIVE DISCRIMINATING METHOD IN THE EVOLUTION OF TROPICAL CYCLONE "HAIMA" DURING EXTRATROPICAL TRANSITION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-xin; ZHANG Shou-bao; WANG Fu-xia

    2008-01-01

    An objective method for discriminating the process of extratropical transition (ET) in tropical cyclones is introduced. With this method, the gridpoint output data of NWP are used to calculate three parameters: storm-relative thickness symmetry (B), low-level (-VLT) and upper-level thermal wind (-VUT). This objective method is easy to calculate and convenient for operational use. To verify the method, this paper uses the NCEP reanalysis data to identify the evolution of ET for "Haima", a tropical storm (0421) that affected the eastern part of China in 2004. The result shows that the three parameters defined with the objective method are good indicators of the ET process.

  13. Dynamically Downscaling Precipitation from Extra-Tropical Cyclones

    Science.gov (United States)

    Champion, A.; Hodges, K.; Bengtsson, L.

    2012-04-01

    Recent flooding events experienced by the UK and Western Europe have highlighted the potential disruption caused by precipitation associated with extra-tropical cyclones. The question as to the effect of a warming climate on these events also needs to be addressed to determine whether such events will become more frequent or more intense in the future. The changes in precipitation can be addressed through the use of Global Climate Models (GCMs), however the resolution of GCMs are often too coarse to drive hydrological models, required to investigate any flooding that may be associated with the precipitation. The changes to the precipitation associated with extra-tropical cyclones are investigated by tracking cyclones in two resolutions of the ECHAM5 GCM, T213 and T319 for 20th and 21st century climate simulations. It is shown that the intensity of extreme precipitation associated with extra-tropical cyclones is predicted to increase in a warmer climate at both resolutions. It was also found that the increase in resolution shows an increase in the number of extreme events for several fields, including precipitation; however it is also seen that the magnitude of the response is not uniform across the seasons. The tails of the distributions are investigated using Extreme Value Theory (EVT) using a Generalised Pareto Distribution (GPD) with a Peaks over Threshold (POT) method, calculating return periods for given return levels. From the cyclones identified in the T213 resolution of the GCM a small number of cyclones were selected that pass over the UK, travelling from the South-West to the North-East. These are cyclones that are more likely to have large amounts of moisture associated with them and therefore potentially being associated with large precipitation intensities. Four cyclones from each climate were then selected to drive a Limited Area Model (LAM), to gain a more realistic representation of the precipitation associated with each extra-tropical cyclone. The

  14. Physical and chemical effects of direct aqueous advanced oxidation processing on green sand foundry mold materials

    Science.gov (United States)

    Clobes, Jason Kenneth

    Iron foundries using the common green sand molding process have increasingly been incorporating aqueous advanced oxidation (AO) systems to reduce the consumption of sand system bentonite clay and coal raw materials by and to decrease their volatile organic compound (VOC) emissions. These AO systems typically use a combination of sonication, ozone aeration, and hydrogen peroxide to treat and recycle slurries of sand system baghouse dust, which is rich in clay and coal. While the overall effects of AO on raw material consumption and organic emissions are known, the mechanisms behind these effects are not well understood. This research examined the effects of bench-scale direct aqueous AO processing on green sand mold materials at the micro level. Bench-scale AO processing, including acoustic sonication, ozone/oxygen aeration, and hydrogen peroxide dramatically decreased the particle sizes of both western bentonite and foundry sand system baghouse dust. Bench-scale AO processing was shown to effectively separate the clay material from the larger silica and coal particles and to extensively break up the larger clay agglomerates. The acoustic sonication component of AO processing was the key contributor to enhanced clay recovery. Acoustic sonication alone was slightly more effective than combined component AO in reducing the particle sizes of the baghouse dust and in the recovery of clay yields in the supernatant during sedimentation experiments. Sedimentation separation results correlated well with the increase in small particle concentrations due to AO processing. Clay suspension viscosity decreased with AO processing due to enhanced dispersion of the particles. X-ray diffraction of freeze-dried baghouse dust indicated that AO processing does not rehydrate calcined montmorillonite and does not increase the level of interlayer water hydration in the dry clays. Zeta potential measurements indicated that AO processing also does not produce any large changes in the

  15. Statistical metrology - measurement and modeling of variation for advanced process development and design rule generation

    International Nuclear Information System (INIS)

    Advanced process technology will require more detailed understanding and tighter control of variation in devices and interconnects. The purpose of statistical metrology is to provide methods to measure and characterize variation, to model systematic and random components of that variation, and to understand the impact of variation on both yield and performance of advanced circuits. Of particular concern are spatial or pattern-dependencies within individual chips; such systematic variation within the chip can have a much larger impact on performance than wafer-level random variation. Statistical metrology methods will play an important role in the creation of design rules for advanced technologies. For example, a key issue in multilayer interconnect is the uniformity of interlevel dielectric (ILD) thickness within the chip. For the case of ILD thickness, we describe phases of statistical metrology development and application to understanding and modeling thickness variation arising from chemical-mechanical polishing (CMP). These phases include screening experiments including design of test structures and test masks to gather electrical or optical data, techniques for statistical decomposition and analysis of the data, and approaches to calibrating empirical and physical variation models. These models can be integrated with circuit CAD tools to evaluate different process integration or design rule strategies. One focus for the generation of interconnect design rules are guidelines for the use of 'dummy fill' or 'metal fill' to improve the uniformity of underlying metal density and thus improve the uniformity of oxide thickness within the die. Trade-offs that can be evaluated via statistical metrology include the improvements to uniformity possible versus the effect of increased capacitance due to additional metal

  16. SINGULAR SPECTRUM ANALYSIS FOR TROPICAL CYCLONE LANDING IN GUANGDONG

    Institute of Scientific and Technical Information of China (English)

    谢炯光; 纪忠萍

    2003-01-01

    Using the method of Singular Spectrum Analysis (SSA), the evolution regularity of tropical cyclones landing in Guangdong are analyzed. The main periods of yearly topical cyclones landing in Guangdong are found at 8 and quasi-3 years, and in the west of Pearl River Mouth are 12 and quasi-2 years to the west ofPearl River Mouth. The northwest Pacific that topical cyclones are generated isdivided into 8 areas, and the Sea-Surface Temperature (SST) in each area is analyzed using SSA. The main periods of NINO-west are 8 and 3 years, and those of the warm pool are 12 and 2 years, respectively. This may be the physical reason for the generation tropical cyclones landing in Guangdong. By combining the Maximum Entropy Method (MEM) with SSA (SSA-MEM), the yearly variation trend of tropical cyclones landing in Guangdong and the Pearl River Mouth are forecast, and theresults are good. The method can be used in operational short-range climate forecast.

  17. Contrasting Various Metrics for Measuring Tropical Cyclone Activity

    Directory of Open Access Journals (Sweden)

    Jia-Yuh Yu and Ping-Gin Chiu

    2012-01-01

    Full Text Available Popular metrics used for measuring the tropical cyclone (TC activity, including NTC (number of tropical cyclones, TCD (tropical cyclone days, ACE (accumulated cyclone energy, PDI (power dissipation index, along with two newly proposed indices: RACE (revised accumulated cyclone energy and RPDI (revised power dissipation index, are compared using the JTWC (Joint Typhoon Warning Center best-track data of TC over the western North Pacific basin. Our study shows that, while the above metrics have demonstrated various degrees of discrepancies, but in practical terms, they are all able to produce meaningful temporal and spatial changes in response to climate variability. Compared with the conventional ACE and PDI, RACE and RPDI seem to provide a more precise estimate of the total TC activity, especially in projecting the upswing trend of TC activity over the past few decades, simply because of a better approach in estimating TC wind energy. However, we would argue that there is still no need to find a _ or _ metric for TC activity because different metrics are designed to stratify different aspects of TC activity, and whether the selected metric is appropriate or not should be determined solely by the purpose of study. Except for magnitude difference, the analysis results seem insensitive to the choice of the best-track datasets.

  18. CFB cyclones at high temperature: Operational results and design assessment

    Institute of Scientific and Technical Information of China (English)

    Raf Dewil; Jan Baeyens; Bart Caerts

    2008-01-01

    Pressure drop and cut size measurements are reported for a full scale cyclone operating within a 58 MWth CFB-combustor unit at 775℃.The paper reviews the vast number of equations to calculate the pressure drop and separation efficiency of cyclones, generally for operation at ambient temperature and at low Cs[0.5]. None of the literature correlations predicts the pressure drop with a fair accuracy within the range of experimental operating conditions. The cut size d50 can be estimated using direct empirical methods or using the Stokes number, Stk50. Both methods were used to compare measured and predicted values of d50. With the exception of Muschelknautz and Krambrock, none of the equations made accurate predictions.Finally, an alternative method to determine the friction factor of the pressure drop equation (Euler number, Eu) and of the cut size is proposed. The Eu number is determined from the geometry of common cyclones, and the derived value of Stk50 defines more accurate cut sizes. The remaining discrepancy of less than 5%, when compared with the measured values, is tentatively explained in terms of a reduced cyclone diameter due to the solids layer formed near its wall. Further measurements, mostly using positron emission particle tracking, elucidate the particle motion in the cyclone and both tracking results and the influence of the particle movement on Eu and Stk50 will be discussed in a follow-up paper.

  19. Design basis tropical cyclone for nuclear power plants

    International Nuclear Information System (INIS)

    The general characteristics of tropical cyclones are discussed in this Safety Guide, with particular emphasis on their pressure and wind structures in the light of available data. General methods are given for the evaluation of the relevant parameters of a Probable Maximum Tropical Cyclone (PMTC), which can be used as the Design Basis Tropical Cyclone (DBTC); these parameters then serve as inputs for the derivation of a design basis surge and a design basis wind. A possible method is also given for the evaluation of the PMTC pressure and wind field based on an approach valid primarily for a particular region. This method depends on the results of a theoretical study on the tropical cyclone structure and makes use of a large amount of data, including aircraft reconnaissance observations for 170 most intense tropical cyclones near the coast of Japan, Taiwan and the Philippines for the period 1960-1974, as well as detailed analyses of all the extreme storms along the Gulf of Mexico and the east coast of the USA during 1900-1978, for the determination of the necessary parameters

  20. Determination of welding spark parameters for cyclone efficiency calculation (rus

    Directory of Open Access Journals (Sweden)

    Kitain M.B.

    2011-08-01

    Full Text Available Importance of the current work is explained by the problem of air purification in the field of breath of the worker and prevention of the fire and the explosion. To solve this problem the authors offer to use Reverse-flow cyclone as precleaner with spark extinguishing option. In case if the dust includes sparks it is very important to insure that the particles with the sparks will be totally collected in the cyclone, so the collection efficiency for such particles will be 100% in the cyclone. For the estimation of the efficiency of gas purification from the dust particles in the cyclones dust particles features should be determinate, that can be done with the satisfactory accuracy only by physical modeling results. The amount of physical experiments was made by the authors. The methods of determination of the geometric diameter and hydraulic size of the particle consisting sparks were offered. The experimental researches showed that the accuracy of using the geometric diameter of such particle is not enough, because the hydrodynamic characteristics of the particles (such as weight, effective diameter, the way of interaction with the environment can be change in the case of moving. At the same time< hydraulic size, determined in the second part of the experiment, consider all these factors and can be used for the estimation of the cyclone efficiency based on the model of turbulent diffusion with the limited velocity.

  1. ANALYSIS ON CYCLONE COLLECTION EFFICIENCIES AT HIGH TEMPERATURES

    Institute of Scientific and Technical Information of China (English)

    Jianyi Chen; Mingxian Shi

    2003-01-01

    In order to predict the influence of operating temperature on cyclone performance, an experimental investigation on particle separation was conducted in a 300 mm diameter, tangential volute-inlet and reverse flow cyclone separator with air heated up to 973 K. The test powder silica has a mean mass diameter of 10 microns and the measured as a function of the inlet velocity and operating temperature. It is shown that at the same inlet velocity both the overall efficiency and fractional efficiency decrease with an increase of temperature. An analysis of our own data and published results has shown that the fractional efficiency of a cyclone is a definite function of such dimensionless numbers as Stokes number, Reynolds number, Froude number and dimensionless cyclone inlet area and dimensionless outlet diameter. A nondimensional experimental correlation of the cyclone performance, including the influence of the temperature, was obtained on the basis of our own previous work. The prediction of the influence of temperature on separation efficiencies is in fairly good agreement with experimental results.

  2. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    Science.gov (United States)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  3. Advances in Reasoning-Based Image Processing Intelligent Systems Conventional and Intelligent Paradigms

    CERN Document Server

    Nakamatsu, Kazumi

    2012-01-01

    The book puts special stress on the contemporary techniques for reasoning-based image processing and analysis: learning based image representation and advanced video coding; intelligent image processing and analysis in medical vision systems; similarity learning models for image reconstruction; visual perception for mobile robot motion control, simulation of human brain activity in the analysis of video sequences; shape-based invariant features extraction; essential of paraconsistent neural networks, creativity and intelligent representation in computational systems. The book comprises 14 chapters. Each chapter is a small monograph, representing resent investigations of authors in the area. The topics of the chapters cover wide scientific and application areas and complement each-other very well. The chapters’ content is based on fundamental theoretical presentations, followed by experimental results and comparison with similar techniques. The size of the chapters is well-ballanced which permits a thorough ...

  4. Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge.

    Science.gov (United States)

    Wilcox, Jennifer; Haghpanah, Reza; Rupp, Erik C; He, Jiajun; Lee, Kyoungjin

    2014-01-01

    Reducing CO2 in the atmosphere and preventing its release from point-source emitters, such as coal and natural gas-fired power plants, is a global challenge measured in gigatons. Capturing CO2 at this scale will require a portfolio of gas-separation technologies to be applied over a range of applications in which the gas mixtures and operating conditions will vary. Chemical scrubbing using absorption is the current state-of-the-art technology. Considerably less attention has been given to other gas-separation technologies, including adsorption and membranes. It will take a range of creative solutions to reduce CO2 at scale, thereby slowing global warming and minimizing its potential negative environmental impacts. This review focuses on the current challenges of adsorption and membrane-separation processes. Technological advancement of these processes will lead to reduced cost, which will enable subsequent adoption for practical scaled-up application. PMID:24702296

  5. The Witch Navigator - A Low Cost GNSS Software Receiver for Advanced Processing Techniques

    Directory of Open Access Journals (Sweden)

    O. Jakubov

    2010-12-01

    Full Text Available The developement of advanced GNSS signal processing algorithms such as multi-constellation, multi-frequency and multi-antenna navigation requires an easily reprogrammable software defined radio solution. Various receiver architectures for this purpose have been introduced. RF front-end with FPGA universal correlators on ExpressCard connected directly to PC was selected and manufactured. Such a~unique hardware combination provides the GNSS researchers and engineers with a~great convenience of writing the signal processing algorithms including tracking, acquisition and positioning in the Linux application programming interface and enables them to reconfigure the RF front-end easily by the PC program. With more of these ExpressCards connected to the PC, the number of the RF channels, correlators or antennas can be increased to further boost the computational power. This paper reveals the implementation aspects of the receiver, named the Witch Navigator, and~gives the key test results.

  6. Application of advanced oxidation processes (AOPs) for the treatment of a particular industrial wastewater

    International Nuclear Information System (INIS)

    The present paper refers about the use of some advanced oxidation processes for the treatment of a particular industrial wastewater polluted by organic acids and solvents. Such waste is generated during the electrodeposition of paint in cathodic technological systems (cataphoresis). The AOPs studied were the following: H2O2-UV, O3 in strongly alkaline media and Fe(met)-H2O2. The latter which represents a derivation of the Fenton process gave the best results in terms of reaction times, costs in management and reduction rate of organic matter. Its efficiency was also confirmed by some laboratory tests made on synthetic samples. The reactors used to perform the experiments with ozone and H2O2-UV were especially created. The degradation of the organic compounds was quantified by monitoring the COD parameter and in some cases by detecting the concentration of each individual pollutant

  7. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics.

    Science.gov (United States)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

  8. Variable-resolution frameworks for the simulation of tropical cyclones in global atmospheric general circulation models

    Science.gov (United States)

    Zarzycki, Colin

    The ability of atmospheric General Circulation Models (GCMs) to resolve tropical cyclones in the climate system has traditionally been difficult. The challenges include adequately capturing storms which are small in size relative to model grids and the fact that key thermodynamic processes require a significant level of parameterization. At traditional GCM grid spacings of 50-300 km tropical cyclones are severely under-resolved, if not completely unresolved. This thesis explores a variable-resolution global model approach that allows for high spatial resolutions in areas of interest, such as low-latitude ocean basins where tropical cyclogenesis occurs. Such GCM designs with multi-resolution meshes serve to bridge the gap between globally-uniform grids and limited area models and have the potential to become a future tool for regional climate assessments. A statically-nested, variable-resolution option has recently been introduced into the Department of Energy/National Center for Atmospheric Research (DoE/NCAR) Community Atmosphere Model's (CAM) Spectral Element (SE) dynamical core. Using an idealized tropical cyclone test, variable-resolution meshes are shown to significantly lessen computational requirements in regional GCM studies. Furthermore, the tropical cyclone simulations are free of spurious numerical errors at the resolution interfaces. Utilizing aquaplanet simulations as an intermediate test between idealized simulations and fully-coupled climate model runs, climate statistics within refined patches are shown to be well-matched to globally-uniform simulations of the same grid spacing. Facets of the CAM version 4 (CAM4) subgrid physical parameterizations are likely too scale sensitive for variable-resolution applications, but the newer CAM5 package is vastly improved in performance at multiple grid spacings. Multi-decadal simulations following 'Atmospheric Model Intercomparison Project' protocols have been conducted with variable-resolution grids. Climate

  9. Pathways of deep cyclones associated with large volume changes (LVCs) and major Baltic inflows (MBIs)

    Science.gov (United States)

    Lehmann, Andreas; Höflich, Katharina; Post, Piia; Myrberg, Kai

    2016-04-01

    Large volume changes (LVCs) and major Baltic inflows (MBIs) are essential processes for the water exchange and renewal of the deep stagnant deep water in the Baltic Sea deep basins. MBIs are considered as subset of LVCs transporting with the large water volume a big amount of highly saline and oxygenated water into the Baltic Sea. Since the early 1980s the frequency of MBIs has dropped drastically from 5 to 7 events to only one inflow per decade, and long lasting periods without MBIs became the usual state. Only in January 1993, 2003 and December 2014 MBIs occurred that were able to interrupt the stagnation periods in the deep basins of the Baltic Sea. However, in spite of the decreasing frequency of MBIs, there is no obvious decrease of LVCs. Large volume changes have been calculated for the period 1887-2014 filtering daily time series of Landsort sea surface elevation anomalies. The Landsort sea level is known to reflect the mean sea level of the Baltic Sea very well. Thus, LVCs can be calculated from the mean sea level variations. The cases with local minimum and maximum difference resulting of at least 100 km³ of water volume change have been chosen for a closer study of characteristic pathways of deep cyclones. The average duration of a LVC is about 40 days. During this time, 5-6 deep cyclones will move along characteristic storm tracks. We obtained three main routes of deep cyclones which were associated with LVCs, but also with the climatology. One is approaching from the west at about 58-62°N, passing the northern North Sea, Oslo, Sweden and the Island of Gotland, while a second, less frequent one, is approaching from the west at about 65°N, crossing Scandinavia south-eastwards passing the Sea of Bothnia and entering Finland. A third very frequent one is entering the study area north of Scotland turning north-eastwards along the northern coast of Scandinavia. Thus, the conditions for a LVC to happen are a temporal clustering of deep cyclones in certain

  10. A standard data set for performance analysis of advanced IR image processing techniques

    Science.gov (United States)

    Weiß, A. Robert; Adomeit, Uwe; Chevalier, Philippe; Landeau, Stéphane; Bijl, Piet; Champagnat, Frédéric; Dijk, Judith; Göhler, Benjamin; Landini, Stefano; Reynolds, Joseph P.; Smith, Leslie N.

    2012-06-01

    Modern IR cameras are increasingly equipped with built-in advanced (often non-linear) image and signal processing algorithms (like fusion, super-resolution, dynamic range compression etc.) which can tremendously influence performance characteristics. Traditional approaches to range performance modeling are of limited use for these types of equipment. Several groups have tried to overcome this problem by producing a variety of imagery to assess the impact of advanced signal and image processing. Mostly, this data was taken from classified targets and/ or using classified imager and is thus not suitable for comparison studies between different groups from government, industry and universities. To ameliorate this situation, NATO SET-140 has undertaken a systematic measurement campaign at the DGA technical proving ground in Angers, France, to produce an openly distributable data set suitable for the assessment of fusion, super-resolution, local contrast enhancement, dynamic range compression and image-based NUC algorithm performance. The imagery was recorded for different target / background settings, camera and/or object movements and temperature contrasts. MWIR, LWIR and Dual-band cameras were used for recording and were also thoroughly characterized in the lab. We present a selection of the data set together with examples of their use in the assessment of super-resolution and contrast enhancement algorithms.

  11. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    Science.gov (United States)

    Waters, Eric D.; Garcia, Jessica; Beers, Benjamin; Philips, Alan; Holt, James B.; Threet, Grady E., Jr.

    2013-01-01

    The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process.

  12. Enhancing Performance of Optical Communication Systems with Advanced Optical Signal Processing

    Directory of Open Access Journals (Sweden)

    Ivan Glesk

    2010-11-01

    Full Text Available Growing needs to transport large amount of data, penetration of multimedia into our daily lives, and quickly expanding e-Commerce sector triggered an unparallel demand for the new generation of fast, secure, and energy savvy communication networks.Today we already benefit from many advances which revolutionized data and voice communication. Commercially deployed Dense Wavelength Division Multiple Access (DWDMA networks today are capable of transporting tens of Gigabits of data per second over a single WDM channel thus offering tremendous aggregate data throughputs over a single optical fibre. As a consequence, new bottlenecks have emerged at the fibre endpoints where data detection, routing, and switching must take place. Today's routers use electronics to process all incoming optical traffic. However the available bandwidth offered by current electronics can no longer keep up with these rapidly growing demands. To address these challenges and with goal in mind to eliminate this bottleneck, the research community has been looking long and hard for appropriate alternative solutions. One of taken approaches can be described as optical signal processing. As we will demonstrate it can be very powerful tool to improve performance of advanced communication networks especially when coupled with technologies and approaches which will enable device integration and packaging.

  13. The impacts of altered tropical cyclone activity on climate mitigation strategies

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; LePage, Y.; Patel, P.; Chini, L. P.; Thomson, A. M.; Clarke, L.; Calvin, K. V.; Wise, M.; Chambers, J. Q.; Negron Juarez, R. I.

    2012-12-01

    There is growing evidence that anthropogenic climate change may alter patterns of tropical cyclone frequency, intensity and spatial distribution, which in turn will alter the carbon balance of terrestrial systems in the large regions impacted by these storms. Recent studies project up to a doubling of major storms (Saffir-Simpson Scale 3-5) over the next century. Single large storms have been shown to be capable of causing committed carbon emissions equivalent to the annual U.S. carbon sink. These changes have the potential to affect climate mitigation strategies, most of which rely on maintaining or enhancing the terrestrial carbon sink to restrain the accumulation of atmospheric greenhouse gases. Altered patterns of disturbances and the resulting changes to the carbon balance of terrestrial systems could impact the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, and thus future land-use patterns, food prices and energy technology. Here we investigate the potential consequences of altered tropical cyclone activity on climate mitigation strategies using a fully integrated model (iED) that links advanced ecological and socio-economic models. The model combines the regional integrated assessment algorithms of the Global Change Assessment Model (GCAM), with the climate- sensitive ecosystem and carbon modeling in the Ecosystem Demography (ED) model, and the land-use mapping algorithms of the Global Land-use Model (GLM). We explore a range of scenarios of altered future tropical cyclone frequency, intensity and spatial pattern, the resulting effects on the terrestrial carbon balance, and the coupled effects on the food and energy sector under a range of future climate mitigation goals.

  14. The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08 field experiment – Part 1: The role of the easterly wave critical layer

    Directory of Open Access Journals (Sweden)

    M. T. Montgomery

    2010-10-01

    Full Text Available An observational and real-time model forecast study of the genesis of Typhoon Nuri during the Tropical Cyclone Structure 2008 (TCS-08 field campaign in the western North Pacific sector is presented. Analysis and observational data show that the surrounding base state is an easterly trade wind flow and the precursor disturbance to Typhoon Nuri is an easterly wave that originates in the ITCZ in the Central Pacific. This disturbance can be tracked more than 10 days prior to tropical storm formation. An overview of the field data is presented here using a newly proposed dynamical framework for tropical cyclone formation within the critical layer of an easterly wave. Despite propagating through a hostile environment ripe with strong vertical wind shear and relatively dry air, the easterly wave critical layer protects the proto-vortex and allows it to gestate until it reaches a more favorable environment. Within this protective "Kelvin cat's eye flow" located within the wave's critical layer existed a sweet spot, defined as the intersection between the wave trough and critical latitude, which is the preferred location for tropical cyclogenesis. Global Forecast System Final Analyses and IR satellite imagery, which shows convective bands wrapping around the sweet spot as genesis nears, confirm that this sweet spot is the location where Typhoon Nuri's dominant low-level circulation emerges.

    United States Air Force C130 and Naval Research Laboratory P3 research flights on 16 and 17 August collected flight-level, dropwindsonde, and Doppler radar data that allowed an evaluation of the dynamic and thermodynamic processes within the cat's eye circulation. The dropwindsonde analyses identifies the precursor easterly wave disturbance on 16 August and identifies an area of weak low-level cyclonic circulation on 17 August.

    Real-time forecasts were produced using operational global prediction model data to support scientific missions during TCS

  15. The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment - Part 1: The role of the easterly wave critical layer

    Science.gov (United States)

    Montgomery, M. T.; Lussier, L. L., III; Moore, R. W.; Wang, Z.

    2010-10-01

    An observational and real-time model forecast study of the genesis of Typhoon Nuri during the Tropical Cyclone Structure 2008 (TCS-08) field campaign in the western North Pacific sector is presented. Analysis and observational data show that the surrounding base state is an easterly trade wind flow and the precursor disturbance to Typhoon Nuri is an easterly wave that originates in the ITCZ in the Central Pacific. This disturbance can be tracked more than 10 days prior to tropical storm formation. An overview of the field data is presented here using a newly proposed dynamical framework for tropical cyclone formation within the critical layer of an easterly wave. Despite propagating through a hostile environment ripe with strong vertical wind shear and relatively dry air, the easterly wave critical layer protects the proto-vortex and allows it to gestate until it reaches a more favorable environment. Within this protective "Kelvin cat's eye flow" located within the wave's critical layer existed a sweet spot, defined as the intersection between the wave trough and critical latitude, which is the preferred location for tropical cyclogenesis. Global Forecast System Final Analyses and IR satellite imagery, which shows convective bands wrapping around the sweet spot as genesis nears, confirm that this sweet spot is the location where Typhoon Nuri's dominant low-level circulation emerges. United States Air Force C130 and Naval Research Laboratory P3 research flights on 16 and 17 August collected flight-level, dropwindsonde, and Doppler radar data that allowed an evaluation of the dynamic and thermodynamic processes within the cat's eye circulation. The dropwindsonde analyses identifies the precursor easterly wave disturbance on 16 August and identifies an area of weak low-level cyclonic circulation on 17 August. Real-time forecasts were produced using operational global prediction model data to support scientific missions during TCS-08. These forecasts were found to be

  16. The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08 field experiment – Part 1: The role of the easterly wave critical layer

    Directory of Open Access Journals (Sweden)

    M. T. Montgomery

    2009-09-01

    Full Text Available An observational and real-time model forecast study of the genesis of Typhoon Nuri during the Tropical Cyclone Structure 2008 (TCS-08 field campaign in the western North Pacific sector is presented. Analysis and observational data show that the surrounding base state flow was an easterly trade wind flow and the precursor disturbance to Typhoon Nuri was an easterly wave that originated in the ITCZ in the Central Pacific and can be tracked more than 10 days prior to tropical storm formation. An overview of the field data is presented here using a newly proposed dynamical framework for tropical cyclone formation within the critical layer of an easterly wave. Despite propagating through a hostile environment ripe with strong vertical wind shear and relatively dry air, the easterly wave critical layer protected the proto-vortex and allowed it to gestate until it reached a more favorable environment. Within this protective "Kelvin's cat's eye flow" located within the wave's critical layer existed a "sweet spot", defined as the intersection between the wave trough and critical latitude, which was the preferred location for tropical cyclogenesis. Global Forecast System Final Analyses and IR satellite imagery, which shows convective bands wrapping around the sweet spot as genesis nears, confirm that this sweet spot is the location where Typhoon Nuri's dominant low-level circulation emerges.

    United States Air Force C130 and Naval Research Laboratory P3 research flights on 16 and 17 August collected flight-level, dropwindsonde, and Doppler radar data that allowed an evaluation of the dynamic and thermodynamic processes within the cat's eye. The dropwindsonde analyses identified the precursor easterly wave disturbance on 16 August and identified an area of weak low-level cyclonic circulation on 17 August.

    During the TCS-08 experiment "real-time forecasts" were produced in real-time using operational global prediction model data to support

  17. FABRICATION PROCESS AND PRODUCT QUALITY IMPROVEMENTS IN ADVANCED GAS REACTOR UCO KERNELS

    Energy Technology Data Exchange (ETDEWEB)

    Charles M Barnes

    2008-09-01

    A major element of the Advanced Gas Reactor (AGR) program is developing fuel fabrication processes to produce high quality uranium-containing kernels, TRISO-coated particles and fuel compacts needed for planned irradiation tests. The goals of the AGR program also include developing the fabrication technology to mass produce this fuel at low cost. Kernels for the first AGR test (“AGR-1) consisted of uranium oxycarbide (UCO) microspheres that werre produced by an internal gelation process followed by high temperature steps tot convert the UO3 + C “green” microspheres to first UO2 + C and then UO2 + UCx. The high temperature steps also densified the kernels. Babcock and Wilcox (B&W) fabricated UCO kernels for the AGR-1 irradiation experiment, which went into the Advance Test Reactor (ATR) at Idaho National Laboratory in December 2006. An evaluation of the kernel process following AGR-1 kernel production led to several recommendations to improve the fabrication process. These recommendations included testing alternative methods of dispersing carbon during broth preparation, evaluating the method of broth mixing, optimizing the broth chemistry, optimizing sintering conditions, and demonstrating fabrication of larger diameter UCO kernels needed for the second AGR irradiation test. Based on these recommendations and requirements, a test program was defined and performed. Certain portions of the test program were performed by Oak Ridge National Laboratory (ORNL), while tests at larger scale were performed by B&W. The tests at B&W have demonstrated improvements in both kernel properties and process operation. Changes in the form of carbon black used and the method of mixing the carbon prior to forming kernels led to improvements in the phase distribution in the sintered kernels, greater consistency in kernel properties, a reduction in forming run time, and simplifications to the forming process. Process parameter variation tests in both forming and sintering steps led

  18. Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shafarman, William N. [Univ. of Delaware, Newark, DE (United States)

    2015-10-12

    This project “Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells”, completed by the Institute of Energy Conversion (IEC) at the University of Delaware in collaboration with the Department of Chemical Engineering at the University of Florida, developed the fundamental understanding and technology to increase module efficiency and improve the manufacturability of Cu(InGa)(SeS)2 films using the precursor reaction approach currently being developed by a number of companies. Key results included: (1) development of a three-step H2Se/Ar/H2S reaction process to control Ga distribution through the film and minimizes back contact MoSe2 formation; (2) Ag-alloying to improve precursor homogeneity by avoiding In phase agglomeration, faster reaction and improved adhesion to allow wider reaction process window; (3) addition of Sb, Bi, and Te interlayers at the Mo/precursor junction to produce more uniform precursor morphology and improve adhesion with reduced void formation in reacted films; (4) a precursor structure containing Se and a reaction process to reduce processing time to 5 minutes and eliminate H2Se usage, thereby increasing throughput and reducing costs. All these results were supported by detailed characterization of the film growth, reaction pathways, thermodynamic assessment and device behavior.

  19. An investigation to adopt zero liquid discharge in textile dyeing using advanced oxidation processes

    International Nuclear Information System (INIS)

    In this study, a novel idea of using ozone oxidation at the end of reactive dyeing process was explored in order to achieve zero discharge dyeing. An advanced oxidative treatment was given during the dyeing process to remove unfixed and hydrolyzed reactive dyes from cotton substrate. Three different shades were dyed using vinylsulphone reactive class of dyes. At the end of fixation step, washing of fabrics was carried out using appropriate quantities of ozone in the process. Ozone oxidation continued until the liquor was decolorized around 95-100% and COD (Chemical Oxygen Demand) was reduced about 80-90%, thus achieving zero liquid discharge dyeing process. The decolouration efficiency of wastewater was regarded as an indicative of removal of dyes from the textile materials because fabric was being washed continuously in the same liquor. Fabric samples dyed with conventional and new methods were compared in terms of change in shade, colourfastness properties, colour stripping, and fabric appearance. Overall results showed that the use of ozone during reactive dyeing can result in less water consumption, reduced process time, and zero discharge of coloured effluents from textile dyeing factories. (author)

  20. Development of the advanced coolside sorbent injection process for SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Withum, J.A.; Maskew, J.T.; Rosenhoover, W.A. [Consol, Inc., Library, PA (United States)] [and others

    1995-11-01

    The goal of this work was to develop a low-capital-cost process capable of over 90% SO{sub 2} removal as an economically attractive option for compliance with the Clean Air Act. The Advanced Coolside Process uses a contactor to simultaneously remove fly ash and saturate the flue gas with water, followed by sorbent injection into the highly humid flue gas and collection of the sorbent by the existing particulate collector High sorbent utilization is achieved by sorbent recycle. The original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization were exceeded in 1000 acfm pilot plant operations using commercial hydrated lime as the only sorbent. Process optimization simplified the process equipment, resulting in significant cost reduction. Recent accomplishments include completion of equipment testing and sorbent optimization, a waste management study, and a long-term performance test. An economic evaluation for the optimized process projects capital costs 55% to 60 % less than those of limestone forced oxidation wet FGD. The projected levelized control cost is 15% to 35% lower than wet FGD (25% lower for a 260 MWe plant burning a 2.5% sulfur coal), depending on plant size and coal sulfur content.