WorldWideScience

Sample records for advanced cuttings transport

  1. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Evren Ozbayoglu; Lei Zhou

    2002-04-30

    This is the third quarterly progress report for Year 3 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between Jan. 1, 2002 and Mar. 31, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Separation System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9b): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b); (f) Development of a Safety program for the ACTS Flow Loop, progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S); and (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  2. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Affonso Lourenco; Evren Ozbayoglu; Lei Zhou

    2002-01-30

    This is the second quarterly progress report for Year 3 of the ACTS project. It includes a review of progress made in: (1) Flow Loop development and (2) research tasks during the period of time between Oct 1, 2001 and Dec. 31, 2001. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Collection System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  3. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Lei Zhou

    2000-01-30

    This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.

  4. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira

    2000-10-30

    This is the first quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between July 14, 2000 and September 30, 2000. This report presents information on the following specific tasks: (a) Progress in Advanced Cuttings Transport Facility design and development (Task 2), (b) Progress on research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress on research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress on research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress on research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Initiate research on project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Progress on instrumentation tasks to measure: Cuttings concentration and distribution (Tasks 11), and Foam properties (Task 12), (h) Initiate a comprehensive safety review of all flow-loop components and operational procedures. Since the previous Task 1 has been completed, we will now designate this new task as: (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  5. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  6. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  7. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu

    2000-07-30

    ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with synthetic based drilling fluids under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic oil base drilling fluids. PVT tests with Petrobras Synthetic base mud have been conducted and results are being analyzed Foam flow experiments have been conducted and the analysis of the data has been carried out to characterize the rheology of the foam. Comparison of pressure loss prediction from the available foam hydraulic models and the test results has been made. Cuttings transport experiments in horizontal annulus section have been conducted using air, water and cuttings. Currently, cuttings transport tests in inclined test section are being conducted. Foam PVT analysis tests have been conducted. Foam stability experiments have also been conducted. Effects of salt and oil concentration on the foam stability have been investigated. Design of ACTS flow loop modification for foam and aerated mud flow has been completed. A flow loop operation procedure for conducting foam flow experiments under EPET conditions has been prepared Design of the lab-scale flow loop for dynamic foam characterization and cuttings monitoring instrumentation tests has been completed. The construction of the test loop is underway. As part of the technology transport efforts, Advisory Board Meeting with ACTS-JIP industry members has been organized on May 13, 2000.

  8. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-04-30

    Experiments on the flow loop are continuing. Improvements to the software for data acquisition are being made as additional experience with three-phase flow is gained. Modifications are being made to the Cuttings Injection System in order to improve control and the precision of cuttings injection. The design details for a drill-pipe Rotation System have been completed. A US Patent was filed on October 28, 2002 for a new design for an instrument that can generate a variety of foams under elevated pressures and temperatures and then transfer the test foam to a viscometer for measurements of viscosity. Theoretical analyses of cuttings transport phenomena based on a layered model is under development. Calibrations of two nuclear densitometers have been completed. Baseline tests have been run to determine wall roughness in the 4 different tests sections (i.e. 2-in, 3-in, 4-in pipes and 5.76-in by 3.5-in annulus) of the flow loop. Tests have also been conducted with aerated fluids at EPET conditions. Preliminary experiments on the two candidate aqueous foam formulations were conducted which included rheological tests of the base fluid and foam stability reports. These were conducted after acceptance of the proposal on the Study of Cuttings Transport with Foam Under Elevated Pressure and Elevated Temperature Conditions. Preparation of a test matrix for cuttings-transport experiments with foam in the ACTF is also under way. A controller for instrumentation to measure cuttings concentration and distribution has been designed that can control four transceivers at a time. A prototype of the control circuit board was built and tested. Tests showed that there was a problem with radiated noise. AN improved circuit board was designed and sent to an external expert to verify the new design. The new board is being fabricated and will first be tested with static water and gravel in an annulus at elevated temperatures. A series of viscometer tests to measure foam properties have

  9. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-07-31

    We have tested the loop elevation system. We raised the mast to approximately 25 to 30 degrees from horizontal. All went well. However, while lowering the mast, it moved laterally a couple of degrees. Upon visual inspection, severe spalling of the concrete on the face of the support pillar, and deformation of the steel support structure was observed. At this time, the facility is ready for testing in the horizontal position. A new air compressor has been received and set in place for the ACTS test loop. A new laboratory has been built near the ACTS test loop Roughened cups and rotors for the viscometer (RS300) were obtained. Rheologies of aqueous foams were measured using three different cup-rotor assemblies that have different surface roughness. The relationship between surface roughness and foam rheology was investigated. Re-calibration of nuclear densitometers has been finished. The re-calibration was also performed with 1% surfactant foam. A new cuttings injection system was installed at the bottom of the injection tower. It replaced the previous injection auger. A mechanistic model for cuttings transport with aerated mud has been developed. Cuttings transport mechanisms with aerated water at various conditions were experimentally investigated. A total of 39 tests were performed. Comparisons between the model predictions and experimental measurements show a satisfactory agreement. Results from the ultrasonic monitoring system indicated that we could distinguish between different sand levels. We also have devised ways to achieve consistency of performance by securing the sensors in the caps in exactly the same manner as long as the sensors are not removed from the caps. A preliminary test was conducted on the main flow loop at 100 gpm flow rate and 20 lb/min cuttings injection rate. The measured bed thickness using the ultrasonic method showed a satisfactory agreement with nuclear densitometer readings. Thirty different data points were collected after the test

  10. Building Partnerships to Cut Petroleum Use in Transportation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-26

    The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies as they emerge.

  11. Building Partnerships to Cut Petroleum Use in Transportation (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies as they emerge.

  12. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  13. Clean Cities: Building Partnerships to Cut Petroleum Use in Transportation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-01-07

    This brochure provides an overview of the U.S. Department of Energy's (DOE's) Clean Cities program, which advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. At the national level, the program develops and promotes publications, tools, and other unique resources. At the local level, nearly 100 coalitions leverage these resources to create networks of stakeholders.

  14. Clean Cities: Building Partnerships to Cut Petroleum Use in Transportation

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-01

    This brochure provides an overview of the U.S. Department of Energy's (DOE's) Clean Cities program, which advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. At the national level, the program develops and promotes publications, tools, and other unique resources. At the local level, nearly 100 coalitions leverage these resources to create networks of stakeholders.

  15. Robotics Technology Development Program Cross Cutting and Advanced Technology

    International Nuclear Information System (INIS)

    Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy's complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems

  16. Distribution features of cuttings bed and sensitivity analysis of major drilling parameters for cuttings transport in gas drilling horizontal wells

    Institute of Scientific and Technical Information of China (English)

    祝效华; 易静; 刘清友

    2015-01-01

    In the current engineering methods for the gas horizontal drilling, the distribution features of cuttings bed remain an issue to be cleared, and the gas horizontal drilling is still in early stages of development. For on-site drilling, a 3-D transient model is established in this paper to simulate the distribution features and the transport mechanism of the cuttings bed, based on the gas-solid two-phase flow theory. The effects of major drilling parameters, such as the gas velocity, the drill pipe rotation, the cutting size and the eccentricity, on the cuttings transport efficiency are analyzed. The major findings of this study include that the cuttings begin to settle down and build up a fixed cuttings bed, in the most evident regions in front and behind the connector, the dominant parameter of the wellbore cleaning is the gas velocity, and, as the cutting size is increased, the thickness of the cuttings bed developed in the wellbore increases significantly. In addition, the eccentricity has some influence on the cuttings transport, and the drill pipe rotation has little effect on the cuttings transport.

  17. Advances in transport phenomena 2011

    CERN Document Server

    2014-01-01

    This new volume of the annual review “Advances in Transport Phenomena” series contains three in-depth review articles on the microfluidic fabrication of vesicles, the dielectrophoresis field-flow fractionation for continuous-flow separation of particles and cells in microfluidic devices, and the thermodynamic analysis and optimization of heat exchangers, respectively.

  18. Advanced Transport Operating Systems Program

    Science.gov (United States)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  19. Identification and characterization of a novel Cut family cDNA that encodes human copper transporter protein CutC

    International Nuclear Information System (INIS)

    Copper is an essential heavy metal trace element that plays important roles in cell physiology. The Cut family was associated with the copper homeostasis and involved in several important metabolisms, such as uptake, storage, delivery, and efflux of copper. In this study, a novel Cut family cDNA was isolated from the human fetal brain library, which encodes a 273 amino acid protein with a molecular mass of about 29.3 kDa and a calculated pI of 8.17. It was named hCutC (human copper transporter protein CutC). The ORF of hCutC gene was cloned into pQE30 vector and expressed in Escherichia coli M15. The secreted hCutC protein was purified to a homogenicity of 95% by using the Ni-NTA affinity chromatography. RT-PCR analysis showed that the hCutC gene expressed extensively in human tissues. Subcellular location analysis of hCutC-EGFP fusion protein revealed that hCutC was distributed to cytoplasm of COS-7 cells, and both cytoplasm and nucleus of AD293 cells. The results suggest that hCutC may be one shuttle protein and play important roles in intracellular copper trafficking

  20. Comparison of advanced cutting techniques on hardox 500 steel material and the effect of structural properties of the material

    OpenAIRE

    L. Dahil; İ. Dahil; A. Karabulut

    2014-01-01

    Purpose of this study is to determine the most advantageous cutting method for a better competition chance. By presenting high hardness, high strength and superior toughness Hardox 500 steel. This sample was cut by plasma, laser, wire erosion and abrasive water jet (AWJ) methods from advanced cutting technologies. By taking micro structure photos of surface of the sample cut by different cutting methods, effects of different cutting methods on metallurgical structure of material were compared.

  1. A two-region hydraulic averaging model for cuttings transport during horizontal well drilling

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Mendoza, R. [Inst. Mexicano del Petrolio (Mexico); Centro Nacional de Investigacion y Desarrollo Technologico (Mexico); Garcia-Gutierrez, A. [Inst. de Investigaciones Electricas (Mexico); Centro Nacional de Investigacion y Desarrollo Technologico (Mexico)

    2008-03-15

    The problem of cuttings transport for a two-region system was investigated to better understand the cuttings transport phenomena for horizontal well drilling applications. The complex hydraulic transport of solid particles in horizontal pipes must be well understood by the oil industry where horizontal drilling is commonly used to exploit reservoirs exhibiting thin pay zones. The two-region hydraulic averaging model for cuttings transport is a newly developed mathematical model for use during horizontal well drilling. The model considers a two-phase two region system composed of a moving bed and a stationary bed of drill cuttings modelled as a porous medium. The volume averaging method was used to obtain the volume-averaged transport equations for both the moving bed and the porous medium regions. Three main flow patterns of the horizontal cuttings transport process were analyzed. These included fully suspended flow; flow with a stationary bed; and, flow with a moving bed. The finite difference technique with an implicit scheme was used to numerically solve the one-dimensional models for all patterns. Numerical and experimental results were found to be in good agreement. 26 refs., 9 figs.

  2. Clean Cities: Cutting Petroleum Use in Transportation Since 1993 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country.

  3. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  4. Evaluation of the intestinal toxicity and transport of xenobiotics utilizing precision-cut slices

    NARCIS (Netherlands)

    Niu, Xiaoyu; de Graaf, Inge A. M.; Groothuis, Geny M. M.

    2013-01-01

    1. The precision-cut intestinal slice (PCIS) technology is a relatively new addition to the battery of in vitro assays for evaluation of xenobiotic toxicity, metabolism, and transport. 2. The intestine is an important target for drug-induced toxicity due to its high exposure after oral administratio

  5. Impact of cut-off probability on emergency planning zone sizing for advanced light water reactors

    International Nuclear Information System (INIS)

    In 1997, NRC performed an evaluation of emergency planning for the evolutionary and advanced light water reactors, and indicated that no changes to emergency planning (EP) requirements were warranted in the existing technical framework. How- ever, NRC also recognized if the lower probability of severe accidents or the longer time period between accident initiation and release of radioactive material was considered, the changes to EP requirements for advanced light water reactors might be warranted and the emergency planning zone (EPZ) sizing might be reduced. This means that if the accidents which probabilities are lower than a cut-off probability are not considered, there may be a significant impact on the EPZ sizing. AP1000 was selected as an example in this study and the probable impacts of different cut-off probabilities were studied by using MACCS code in accordance with the NUREG-0396 method. The results show that, only if the cut-off probability is higher than the occurrence probability of the accident which has relatively serious consequence and high probability, there will be a significant impact on the EPZ sizing for the advanced light water reactor. (authors)

  6. Green Propulsion Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  7. Optimization Based Heuristic Approaches for Solving an Integrated One-dimensional Cutting Stock-Transportation Problem

    Directory of Open Access Journals (Sweden)

    Sirirat Wongprakornkul

    2007-01-01

    Full Text Available In this work, the integration of the one-dimensional cutting stock problem with multiple cutting facilities and the transportation problem was formulated mathematically as a large-scale discrete optimization problem. Benders partitioning approach and the column-generation technique with the direct method and the proposed heuristic method for solving corresponding integer programming (IP were developed into three approaches and were used to solve a set of various sizes test problems within a controllable computation time. The computation time and the relative-difference percentage between the lower and upper bounds are criterions. The results indicated that the approach based on the column-generation technique with the proposed heuristic method is the most efficient method for solving this studied large-scale problems. Hence, this approach could be used in practical manners; to manage both production and transportation plans simultaneously.

  8. Mathematical models of cuttings transport and drilling fluid displacement by cement slurry in horizontal wells

    Science.gov (United States)

    Nguyen, Desmond

    Arguably the most important prerequisite to a good primary cementing job is mud displacement. In order to have effective mud displacement, complete removal of drilled cuttings from the well bore is required. This becomes more challenging in highly-deviated to horizontal wells where the casing tends to lie on the low side of the well bore creating an eccentric annular flow geometry. In this study, a theoretical approach based on the theory of particles transport and fluid mechanics is adopted to develop two new mathematical models: (1) cuttings transport; and (2) drilling fluid displacement by cement slurry in horizontal wells. Two computer algorithms are developed based on these models. The effects of various operational conditions, hole geometry and fluid properties are simulated using these computer models. The results compare favourably with those obtained by previous investigators. These simulated examples demonstrate that the two models can be used to analyse the sensitivity of the cuttings transport and displacement processes to changes in the operational conditions, hole geometry and fluid properties. Hence, they can potentially be used as design and/or analysis tools for the optimisation of these processes in highly- deviated to horizontal wells.

  9. Transport modeling and advanced computer techniques

    International Nuclear Information System (INIS)

    A workshop was held at the University of Texas in June 1988 to consider the current state of transport codes and whether improved user interfaces would make the codes more usable and accessible to the fusion community. Also considered was the possibility that a software standard could be devised to ease the exchange of routines between groups. It was noted that two of the major obstacles to exchanging routines now are the variety of geometrical representation and choices of units. While the workshop formulated no standards, it was generally agreed that good software engineering would aid in the exchange of routines, and that a continued exchange of ideas between groups would be worthwhile. It seems that before we begin to discuss software standards we should review the current state of computer technology --- both hardware and software to see what influence recent advances might have on our software goals. This is done in this paper

  10. Advanced transport systems analysis, modeling, and evaluation of performances

    CERN Document Server

    Janić, Milan

    2014-01-01

    This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...

  11. Development of tailorable advanced blanket insulation for advanced space transportation systems

    Science.gov (United States)

    Calamito, Dominic P.

    1987-01-01

    Two items of Tailorable Advanced Blanket Insulation (TABI) for Advanced Space Transportation Systems were produced. The first consisted of flat panels made from integrally woven, 3-D fluted core having parallel fabric faces and connecting ribs of Nicalon silicon carbide yarns. The triangular cross section of the flutes were filled with mandrels of processed Q-Fiber Felt. Forty panels were prepared with only minimal problems, mostly resulting from the unavailability of insulation with the proper density. Rigidizing the fluted fabric prior to inserting the insulation reduced the production time. The procedures for producing the fabric, insulation mandrels, and TABI panels are described. The second item was an effort to determine the feasibility of producing contoured TABI shapes from gores cut from flat, insulated fluted core panels. Two gores of integrally woven fluted core and single ply fabric (ICAS) were insulated and joined into a large spherical shape employing a tadpole insulator at the mating edges. The fluted core segment of each ICAS consisted of an Astroquartz face fabric and Nicalon face and rib fabrics, while the single ply fabric segment was Nicalon. Further development will be required. The success of fabricating this assembly indicates that this concept may be feasible for certain types of space insulation requirements. The procedures developed for weaving the ICAS, joining the gores, and coating certain areas of the fabrics are presented.

  12. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  13. A comparison of the energy consumption and carbon emissions for different modes of transportation in open-cut coal mines

    Institute of Scientific and Technical Information of China (English)

    Liu Fuming; Cai Qingxiang; Chen Shuzhao; Zhou Wei

    2015-01-01

    Transportation accounts for 80%of open-cut coal mine carbon emissions. With regard to the energy con-sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the work and energy consumption of a truck and belt conveyor on a theoretical basis, and con-structed a model to calculate the energy consumption of open-cut mine transportation. Life cycle carbon emission factors and power consumption calculation model were established through a Process Analysis–Life Cycle Analysis (PA–LCA). The following results were obtained:(1) the energy consumption of truck transportation was four to twelve times higher than that of the belt conveyor;(2) the CO2 emissions from truck transportation were three to ten times higher than those of the belt conveyor;(3) with the increase in the slope angle for transportation, the ratio of truck to belt conveyor for both energy consumption and carbon emissions gradually decreased;(4) based on 2013 prices in China, the energy cost of transporta-tion using a belt conveyor in open-cut coal mines could save 0.6–2.4 Yuan/(t km) compared to truck transportation.

  14. Gasification advanced research and technology development (AR and TD) cross-cut meeting and review. [US DOE supported

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The US Department of Energy gasification advanced research and technology development (AR and TD) cross-cut meeting and review was held June 24 to 26, 1981, at Germantown, Maryland. Forty-eight papers from the proceedings have been entered individually into EDB and ERA. (LTN)

  15. Conventional and advanced containers for LPG transport

    Energy Technology Data Exchange (ETDEWEB)

    Hausen, J.

    1982-04-08

    For the purpose of storage and transport, natural gas, petroleum gas, and chemical gases, must be liquefied. They are either transported in pressure or cooling vessels or in a combined type of vessel. Membrane tanks and solid tanks have been developed for LNG transport. These tanks are made of aluminium alloys or nickel steels. The production expenditure of the present systems is high. Savings may be possible by using plastics. Investigations have already shown good results.

  16. Chemical Kinetic Modeling of Advanced Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  17. Advances in the use of Halimione portulacoides stem cuttings for phytoremediation of Zn-polluted soils

    Science.gov (United States)

    Cambrollé, Jesús; Mancilla-Leytón, Juan M.; Muñoz-Vallés, Sara; Cambrón-Sena, Antonio; Figueroa, M. Enrique

    2016-06-01

    The salt-marsh shrub Halimione portulacoides can grow in soils containing extremely high concentrations of Zn and stem cuttings have recently been shown to aid the recovery of polluted soils although further work on this methodology have is required. A greenhouse experiment was carried out to analyze the effects of a range of Zn concentrations (0-130 mmol l-1) on the establishment, growth and photosynthetic performance of stem cuttings of different sizes of Halimione portulacoides, with the aim of determine the phytotoxicity thresholds and the optimal initial size of the cuttings to be used in phytoremediation strategies. Stem cuttings were able to survive and grow at external Zn concentrations of 130 mmol l-1. Plants from smaller cuttings showed greater growth inhibition, which could have been related to the inability to establish a root system sufficiently developed so as to avoid the translocation of Zn to aerial parts. The present study demonstrates that stem cuttings of H. portulacoides can establish and develop a root system under concentrations as high as 130 mmol l-1 Zn (approximately 9000 mg kg-1). In highly polluted soils, with concentrations from 50 mmol l-1, it would be advisable to use stem cuttings with a minimum size of approximately 10 cm in length and a minimum biomass of 100 mg dry weight. This study indicate that the use of H. portulacoides stem cuttings could play an important role in the restoration of coastal ecosystems contaminated with heavy metals.

  18. Sequential Soil Transport and Its Influence on the Spatial Organisation of Collective Digging in Leaf-Cutting Ants

    OpenAIRE

    Steffen Pielström; Flavio Roces

    2013-01-01

    The Chaco leaf-cutting ant Atta vollenweideri (Forel) inhabits large and deep subterranean nests composed of a large number of fungus and refuse chambers. The ants dispose of the excavated soil by forming small pellets that are carried to the surface. For ants in general, the organisation of underground soil transport during nest building remains completely unknown. In the laboratory, we investigated how soil pellets are formed and transported, and whether their occurrence influences the spat...

  19. 先进CNC复合加工刀具和复合切削技术%Summarization of Advanced CNC Composite Cutting Tools and Composite Cutting Technology

    Institute of Scientific and Technical Information of China (English)

    张平亮

    2012-01-01

    The characteristics and application area of advanced CNC composite machining tools in Germany, Japan, Italy and other countries were introduced. The essential hardware, software and expected result of CNC composite cutting technology were expounded. Development of the new CNC composite processing technology in future was proposed.%介绍了德国、日本、意大利等国生产的先进的CNC复合加工刀具的特点与应用范围,阐明了CNC复合切削技术必要的硬软件及期望达到的效果,并提出今后CNC复合加工技术发展方向.

  20. Advanced Transport Systems Showcased in La Rochelle

    OpenAIRE

    Alessandrini, Adriano; Parent, Michel; Holguin, Carlos

    2011-01-01

    International audience CityMobil project, a large integrated project co-funded by DG RESEARCH of the European Commission, organized in La Rochelle an advanced city car showcase in which it gave to the citizens the possibility to ride driverless vehicles. 256 users where interviewed. Responses where very positive with all indicators passing the threshold of positive acceptance; only the perception of safety was on the threshold but not above. Such positive response of the citizens to the ne...

  1. Advanced technologies for intelligent transportation systems

    CERN Document Server

    Picone, Marco; Amoretti, Michele; Zanichelli, Francesco; Ferrari, Gianluigi

    2015-01-01

    This book focuses on emerging technologies in the field of Intelligent Transportation Systems (ITSs) namely efficient information dissemination between vehicles, infrastructures, pedestrians and public transportation systems. It covers the state-of-the-art of Vehicular Ad-hoc Networks (VANETs), with centralized and decentralized (Peer-to-Peer) communication architectures, considering several application scenarios. With a detailed treatment of emerging communication paradigms, including cross networking  and distributed algorithms. Unlike most of the existing books, this book presents a multi-layer overview of information dissemination systems, from lower layers (MAC) to high layers (applications). All those aspects are investigated considering the use of mobile devices, such as smartphones/tablets and embedded systems, i.e. technologies that during last years completely changed the current market, the user expectations, and communication networks. The presented networking paradigms are supported and validate...

  2. The impact of emerging technologies on an advanced supersonic transport

    Science.gov (United States)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  3. A Health Impact Assessment of Proposed Public Transportation Service Cuts and Fare Increases in Boston, Massachusetts (U.S.A.

    Directory of Open Access Journals (Sweden)

    Peter James

    2014-08-01

    Full Text Available Transportation decisions have health consequences that are often not incorporated into policy-making processes. Health Impact Assessment (HIA is a process that can be used to evaluate health effects of transportation policy. We present a rapid HIA, conducted over eight weeks, evaluating health and economic effects of proposed fare increases and service cuts to Boston, Massachusetts’ public transportation system. We used transportation modeling in concert with tools allowing for quantification and monetization of multiple pathways. We estimated health and economic costs of proposed public transportation system changes to be hundreds of millions of dollars per year, exceeding the budget gap the public transportation authority was required to close. Significant health pathways included crashes, air pollution, and physical activity. The HIA enabled stakeholders to advocate for more modest fare increases and service cuts, which were eventually adopted by decision makers. This HIA was among the first to quantify and monetize multiple pathways linking transportation decisions with health and economic outcomes, using approaches that could be applied in different settings. Including health costs in transportation decisions can lead to policy choices with both economic and public health benefits.

  4. A health impact assessment of proposed public transportation service cuts and fare increases in Boston, Massachusetts (U.S.A.).

    Science.gov (United States)

    James, Peter; Ito, Kate; Buonocore, Jonathan J; Levy, Jonathan I; Arcaya, Mariana C

    2014-08-01

    Transportation decisions have health consequences that are often not incorporated into policy-making processes. Health Impact Assessment (HIA) is a process that can be used to evaluate health effects of transportation policy. We present a rapid HIA, conducted over eight weeks, evaluating health and economic effects of proposed fare increases and service cuts to Boston, Massachusetts' public transportation system. We used transportation modeling in concert with tools allowing for quantification and monetization of multiple pathways. We estimated health and economic costs of proposed public transportation system changes to be hundreds of millions of dollars per year, exceeding the budget gap the public transportation authority was required to close. Significant health pathways included crashes, air pollution, and physical activity. The HIA enabled stakeholders to advocate for more modest fare increases and service cuts, which were eventually adopted by decision makers. This HIA was among the first to quantify and monetize multiple pathways linking transportation decisions with health and economic outcomes, using approaches that could be applied in different settings. Including health costs in transportation decisions can lead to policy choices with both economic and public health benefits. PMID:25105550

  5. Advances in the use of Halimione portulacoides stem cuttings for phytoremediation of Zn-polluted soils

    Science.gov (United States)

    Cambrollé, Jesús; Mancilla-Leytón, Juan M.; Muñoz-Vallés, Sara; Cambrón-Sena, Antonio; Figueroa, M. Enrique

    2016-06-01

    The salt-marsh shrub Halimione portulacoides can grow in soils containing extremely high concentrations of Zn and stem cuttings have recently been shown to aid the recovery of polluted soils although further work on this methodology have is required. A greenhouse experiment was carried out to analyze the effects of a range of Zn concentrations (0-130 mmol l-1) on the establishment, growth and photosynthetic performance of stem cuttings of different sizes of Halimione portulacoides, with the aim of determine the phytotoxicity thresholds and the optimal initial size of the cuttings to be used in phytoremediation strategies. Stem cuttings were able to survive and grow at external Zn concentrations of 130 mmol l-1. Plants from smaller cuttings showed greater growth inhibition, which could have been related to the inability to establish a root system sufficiently developed so as to avoid the translocation of Zn to aerial parts. The present study demonstrates that stem cuttings of H. portulacoides can establish and develop a root system under concentrations as high as 130 mmol l-1 Zn (approximately 9000 mg kg-1). In highly polluted soils, with concentrations from 50 mmol l-1, it would be advisable to use stem cuttings with a minimum size of approximately 10 cm in length and a minimum biomass of 100 mg dry weight. This study indicate that the use of H. portulacoides stem cuttings could play an important role in the restoration of coastal ecosystems contaminated with heavy metals.

  6. Recent advances in mass transport in materials

    CERN Document Server

    Ochsner, Andreas

    2012-01-01

    The present topical volume presents a representative cross-section of some recent advances made in the area of diffusion. The range of topics covered is very large, and, this reflects the enormous breadth of the topic of diffusion. The areas covered include diffusion in intermetallics, phenomenological diffusion theory, diffusional creep, kinetics of steel-making, diffusion in thin films, precipitation, diffusional phase transformations, atomistic diffusion simulations, epitaxial growth and diffusion in porous media. Review from Book News Inc.: In 13 invited and peer-reviewed papers, scientist

  7. Advanced lithium battery chemistries for sustainable transportation

    OpenAIRE

    Monaco, Simone

    2014-01-01

    The specific energy of lithium-ion batteries (LIBs) is today 200 Wh/kg, a value not sufficient to power fully electric vehicles with a driving range of 400 km which requires a battery pack of 90 kWh. To deliver such energy the battery weight should be higher than 400 kg and the corresponding increase of vehicle mass would narrow the driving range to 280 km. Two main strategies are pursued to improve the energy of the rechargeable lithium batteries up to the transportation targets. The first i...

  8. Advancing Transportation through Vehicle Electrification - PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, Abdullah [Chrysler Group LLC, Auburn Hills, MI (United States); Barnhart, Steven [Chrysler Group LLC, Auburn Hills, MI (United States)

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  9. Assessment of the impact of advanced air-transport technology

    Science.gov (United States)

    Maxwell, R. L.; Dickinson, L. V., Jr.

    1981-01-01

    The long term prospects for commercial supersonic transportation appear attractive enough to keep supersonic research active and reasonably healthy. On the other hand, the uncertainties surrounding an advanced supersonic transport, (AST) specifically fuel price, fuel availability and noise, are too significant to warrant an accelerated research and development program until they are better resolved. It is estimated that an AST could capture about $50 billion (1979 dollars) of the potential $150 billion in sales up to the year 2010.

  10. Advanced cutting, welding and inspection methods for vacuum vessel assembly and maintenance

    International Nuclear Information System (INIS)

    ITER requires a 316 l stainless steel, double-skinned vacuum vessel (VV), each shell being 60 mm thick. EFDA (European Fusion Development Agreement) is investigating methods to be used for performing welding and NDT during VV assembly and also cutting and re-welding for remote sector replacement, including the development of an Intersector Welding Robot (IWR) [Jones et al. This conference]. To reduce the welding time, distortions and residual stresses of conventional welding, previous work concentrated on CO2 laser welding and cutting processes [Jones et al. Proc. Symp. Fusion Technol., Marseilles, 1998]. NdYAG laser now provides the focus for welding of the rearside root and for completing the weld for overhead positions with multipass filling. Electron beam (E-beam) welding with local vacuum offers a single-pass for most of the weld depth except for overhead positions. Plasma cutting has shown the capability to contain the backside dross and preliminary work with NdYAG laser cutting has shown good results. Automated ultrasonic inspection of assembly welds will be improved by the use of a phased array probe system that can focus the beam for accurate flaw location and sizing. This paper describes the recent results of process investigations in this R and D programme, involving five European sites and forming part of the overall VV/blanket research effort [W. Daenner et al. This conference

  11. Advanced Transport Operating System (ATOPS) control display unit software description

    Science.gov (United States)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  12. Advanced Transport Operating System (ATOPS) utility library software description

    Science.gov (United States)

    Clinedinst, Winston C.; Slominski, Christopher J.; Dickson, Richard W.; Wolverton, David A.

    1993-01-01

    The individual software processes used in the flight computers on-board the Advanced Transport Operating System (ATOPS) aircraft have many common functional elements. A library of commonly used software modules was created for general uses among the processes. The library includes modules for mathematical computations, data formatting, system database interfacing, and condition handling. The modules available in the library and their associated calling requirements are described.

  13. Advanced Reactors Thermal Energy Transport for Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  14. Transport modeling and gyrokinetic analysis of advanced high performance discharges

    International Nuclear Information System (INIS)

    Predictive transport modeling and gyrokinetic stability analyses of demonstration hybrid (HYBRID) and Advanced Tokamak (AT) discharges from the International Tokamak Physics Activity (ITPA) profile database are presented. Both regimes have exhibited enhanced core confinement (above the conventional ITER reference H-mode scenario) but differ in their current density profiles. Recent contributions to the ITPA database have facilitated an effort to study the underlying physics governing confinement in these advanced scenarios. In this paper, we assess the level of commonality of the turbulent transport physics and the relative roles of the transport suppression mechanisms (i.e. ExB shear and Shafranov shift (α) stabilization) using data for select HYBRID and AT discharges from the DIII-D, JET, and AUG tokamaks. GLF23 transport modeling and gyrokinetic stability analysis indicates that ExB shear and Shafranov shift stabilization play essential roles in producing the improved core confinement in both HYBRID and AT discharges. Shafranov shift stabilization is found to be more important in AT discharges than in HYBRID discharges. We have also examined the competition between the stabilizing effects of ExB shear and Shafranov shift stabilization and the destabilizing effects of higher safety factors and parallel velocity shear. Linear and nonlinear gyrokinetic simulations of idealized low and high safety factor cases reveals some interesting consequences. A low safety factor (i.e. HYBRID relevant) is directly beneficial in reducing the transport, and ExB shear stabilization can win out over parallel velocity shear destabilization allowing the turbulence to be quenched. However, at low-q/high current, Shafranov shift stabilization plays less of a role. Higher safety factors (as found in AT discharges), on the other hand, have larger amounts of Shafranov shift stabilization, but parallel velocity shear destabilization can prevent ExB shear quenching of the turbulent

  15. Retarded Correlators in Kinetic Theory: Branch Cuts, Poles and Transport Phase Transitions

    CERN Document Server

    Romatschke, Paul

    2015-01-01

    In this work the collective modes of an effective kinetic theory description based on the Boltzmann equation in relaxation time approximation applicable to gauge theories at weak but finite coupling and low frequencies are studied. Real time retarded two-point correlators of the energy-momentum tensor and the R-charge current are calculated at finite temperature in flat space-times for large N gauge theories. It is found that the real time correlators possess logarithmic branch cuts which in the limit of large coupling disappear and give rise to non-hydrodynamic poles that are reminiscent of quasi-normal modes in black holes. In addition to branch cuts, correlators can have simple hydrodynamic poles, generalizing the concept of hydrodynamic modes to intermediate wavelength. Surprisingly, the hydrodynamic poles cease to exist for some critical value of the wavelength and coupling reminiscent of the properties of phase transitions.

  16. Advanced Air Transportation Technologies Project, Final Document Collection

    Science.gov (United States)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  17. Short-cut transport path for Asian dust directly to the Arctic: a case study

    International Nuclear Information System (INIS)

    Asian dust can be transported long distances from the Taklimakan or Gobi desert to North America across the Pacific Ocean, and it has been found to have a significant impact on ecosystems, climate, and human health. Although it is well known that Asian dust is transported all over the globe, there are limited observations reporting Asian dust transported to the Arctic. We report a case study of a large-scale heavy dust storm over East Asia on 19 March 2010, as shown by ground-based and space-borne multi-sensor observations, as well as NCEP/NCAR reanalysis data and HYSPLIT trajectories. Our analysis suggests that Asian dust aerosols were transported from northwest China to the Arctic within 5 days, crossing eastern China, Japan and Siberia before reaching the Arctic. The results indicate that Asian dust can be transported for long distances along a previously unreported transport path. Evidence from other dust events over the past decade (2001–2010) also supports our results, indicating that dust from 25.2% of Asian dust events has potentially been transported directly to the Arctic. The transport of Asian dust to the Arctic is due to cyclones and the enhanced East Asia Trough (EAT), which are very common synoptic systems over East Asia. This suggests that many other large dust events would have generated long-range transport of dust to the Arctic along this path in the past. Thus, Asian dust potentially affects the Arctic climate and ecosystem, making climate change in the Arctic much more complex to be fully understood. (letter)

  18. Short-cut transport path for Asian dust directly to the Arctic: a case study

    Science.gov (United States)

    Huang, Zhongwei; Huang, Jianping; Hayasaka, Tadahiro; Wang, Shanshan; Zhou, Tian; Jin, Hongchun

    2015-11-01

    Asian dust can be transported long distances from the Taklimakan or Gobi desert to North America across the Pacific Ocean, and it has been found to have a significant impact on ecosystems, climate, and human health. Although it is well known that Asian dust is transported all over the globe, there are limited observations reporting Asian dust transported to the Arctic. We report a case study of a large-scale heavy dust storm over East Asia on 19 March 2010, as shown by ground-based and space-borne multi-sensor observations, as well as NCEP/NCAR reanalysis data and HYSPLIT trajectories. Our analysis suggests that Asian dust aerosols were transported from northwest China to the Arctic within 5 days, crossing eastern China, Japan and Siberia before reaching the Arctic. The results indicate that Asian dust can be transported for long distances along a previously unreported transport path. Evidence from other dust events over the past decade (2001-2010) also supports our results, indicating that dust from 25.2% of Asian dust events has potentially been transported directly to the Arctic. The transport of Asian dust to the Arctic is due to cyclones and the enhanced East Asia Trough (EAT), which are very common synoptic systems over East Asia. This suggests that many other large dust events would have generated long-range transport of dust to the Arctic along this path in the past. Thus, Asian dust potentially affects the Arctic climate and ecosystem, making climate change in the Arctic much more complex to be fully understood.

  19. Auxin transport in leafy pea stem cuttings is partially driven by photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kumpula, C.L.; Potter, J.R.

    1987-04-01

    When /sup 14/C-IAA was applied to the apex of disbudded leafy pea stem cuttings (15 cm long), the movement of /sup 14/C-IAA to the base of the cuttings after 24 h was influenced by the photosynthetic rate. In the absence of photosynthesis, light did not influence /sup 14/C-IAA movement. Photosynthesis was altered by varying light, CO/sub 2/ concentration, or stomatal aperature (blocked with an antitranspirant). Radioactivity (identified by co-chromatography) was 25, 60, and 5% IAA, IAA-aspartate, and indolealdehyde respectively regardless of treatment. Adventitious root formation was reduced 50 to 95% and movement of IAA was inhibited 50 to 70% by decreasing gross photosynthesis 90 to 100%. Apparently, photosynthesis partially drives the movement of IAA from the apex to the base where roots arise. This gives a probably role of photosynthesis in rooting, because in this system virtually no rooting will take place without exogenous auxin and at least a low level of gross photosynthesis.

  20. Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges

    OpenAIRE

    M. Szutkowska

    2012-01-01

    Purpose: Specific characteristics in fracture toughness measurements of advanced alumina ceramics and alumina matrix composites with particular reference to α-Al2O3, Al2O3-ZrO2, Al2O3-ZrO2-TiC and Al2O3-Ti(C,N) has been presented.Design/methodology/approach: The present study reports fracture toughness obtained by means of the conventional method and direct measurements of the Vickers crack length (DCM method) of selected tool ceramics based on alumina: pure alumina, alumina-zirconia composit...

  1. An advanced control system for a next generation transport aircraft

    Science.gov (United States)

    Rising, J. J.; Davis, W. J; Grantham, W. D.

    1983-01-01

    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  2. Advanced Finite Element Discretizations for High-Energy Ion Transport

    International Nuclear Information System (INIS)

    The dominant continuous slowing-down energy loss process coupled with the small (but nonnegligible) straggling poses a significant challenge for deterministic numerical solution when incident beams are monoenergetic or have discontinuous energy spectra. Such spectra broaden very slowly with depth into the target material. Advanced space-energy discretization methods are consequently necessary to achieve numerical robustness. Finite element solutions to this problem were investigated using two general families of discontinuous trial functions, one linear and the other nonlinear. The two families were numerically tested, and results are shown for 1.7-GeV protons incident on a W target. Results from quadratic and exponential-quadratic discontinuous trial functions are in excellent agreement with Monte Carlo results. It is found that very high order finite element schemes are necessary for monoenergetic charged-particle beam transport

  3. Engine Concept Study for an Advanced Single-Aisle Transport

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  4. Advanced fuel cells for transportation applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  5. Consumer Views on Transportation and Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to

  6. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    Science.gov (United States)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  7. Transport Advances in Disposable Bioreactors for Liver Tissue Engineering

    Science.gov (United States)

    Catapano, Gerardo; Patzer, John F.; Gerlach, Jörg Christian

    Acute liver failure (ALF) is a devastating diagnosis with an overall survival of approximately 60%. Liver transplantation is the therapy of choice for ALF patients but is limited by the scarce availability of donor organs. The prognosis of ALF patients may improve if essential liver functions are restored during liver failure by means of auxiliary methods because liver tissue has the capability to regenerate and heal. Bioartificial liver (BAL) approaches use liver tissue or cells to provide ALF patients with liver-specific metabolism and synthesis products necessary to relieve some of the symptoms and to promote liver tissue regeneration. The most promising BAL treatments are based on the culture of tissue engineered (TE) liver constructs, with mature liver cells or cells that may differentiate into hepatocytes to perform liver-specific functions, in disposable continuous-flow bioreactors. In fact, adult hepatocytes perform all essential liver functions. Clinical evaluations of the proposed BALs show that they are safe but have not clearly proven the efficacy of treatment as compared to standard supportive treatments. Ambiguous clinical results, the time loss of cellular activity during treatment, and the presence of a necrotic core in the cell compartment of many bioreactors suggest that improvement of transport of nutrients, and metabolic wastes and products to or from the cells in the bioreactor is critical for the development of therapeutically effective BALs. In this chapter, advanced strategies that have been proposed over to improve mass transport in the bioreactors at the core of a BAL for the treatment of ALF patients are reviewed.

  8. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    Science.gov (United States)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  9. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  10. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  11. 鲜切果蔬包装的研究现状与进展%Advance in packaging of fresh-cut fruit and vegetables

    Institute of Scientific and Technical Information of China (English)

    孙炳新; 杨金玲; 赵宏侠; 王晶晶; 吕长鑫; 冯叙桥

    2013-01-01

    Packaging plays an important role in maintaining the quality of,and extending the shelf life of fresh-cut fruit and vegetables.Advance in the studies and applications of packaging materials in relation with the packaging of fresh-cut fruit and vegetables in the last few years was reviewed and their development envisioned. Packaging technologies of fresh-cut fruit and vegetables were introduced, including the gas adjustment packaging,coating packing and intelligent packaging, and the advantages and disadvantages and application status were summarized.At last, the fresh - cut fruit and vegetables packaging development trends in the future were discussed.%包装在维持鲜切果蔬品质、延长货架寿命等方面发挥着重要的作用.本文综述了近年来国内外包装材料在鲜切果蔬保鲜方面的研究进展与应用.介绍了鲜切果蔬的包装技术,包括气调包装、涂膜包装和智能包装等,总结了其优缺点及应用现状,并且讨论了鲜切果蔬包装未来的发展趋势.

  12. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  13. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) research program annual review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-01

    This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review.

  14. Advanced physics of electron transport in semiconductors and nanostructures

    CERN Document Server

    Fischetti, Massimo V

    2016-01-01

    This textbook is aimed at second-year graduate students in Physics, Electrical Engineer­ing, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale. Understanding electronic transport in solids requires some basic knowledge of Ham­iltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry. Further topics covered include: the theory of energy bands in crystals, of second quan­tization and elementary excitations in solids, of the dielectric properties of semicon­ductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconduc...

  15. Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems

    Science.gov (United States)

    Dexter, H. B. (Editor); Davis, J. G., Jr. (Editor)

    1979-01-01

    Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.

  16. Advanced Simulation of Electron Heat Transport in Fusion Plasmas

    International Nuclear Information System (INIS)

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  17. Advanced simulation of electron heat transport in fusion plasmas

    International Nuclear Information System (INIS)

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E X B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  18. Surface cuts

    Energy Technology Data Exchange (ETDEWEB)

    Woof, M.

    2003-12-01

    The paper reports on mechanical rock cutting in surface mining. Mining technology has moved a long way in recent years and the mining equipments achieved considerable success in direct rock cutting. 3 figs.

  19. Temperature in the Primary Heat Transport Pump Bearing of the Nuclear Power Plant 'Embalse Rio Tercero' in view of the Cutting of the Service Water

    International Nuclear Information System (INIS)

    This study contains the analysis of the Primary Heat Transport Pump Bearing of the Nuclear Power Plant 'Embalse Rio Tercero', Cordoba, Argentine, in view of the cutting of the Service Water refrigeration which cools the Gland Seal System.This takes two ways: One is the study of the temperature rise of the water that cools the carbon bearing and the time involved.This is supported upon manuals and drawings.The other, on the temperature distribution in different operating conditions.This has been done by the simulation of the normal and transient conditions in the software COSMOS/M

  20. APOLLO-2: An advanced transport code for LWRs

    International Nuclear Information System (INIS)

    APOLLO-2 is a fully modular code in which each module corresponds to a specific task: access to the cross-sections libraries, creation of isotopes medium or mixtures, geometry definition, self-shielding calculations, computation of multigroup collision probabilities, flux solver, depletion calculations, transport-transport or transport-diffusion equivalence process, SN calculations, etc... Modules communicate exclusively by ''objects'' containing structured data, these objects are identified and handled by user's given names. Among the major improvements offered by APOLLO-2 the modelization of the self-shielding: it is possible now to deal with a great precision, checked versus Montecarlo calculations, a fuel rod divided into several concentric rings. So the total production of Plutonium is quite better estimated than before and its radial distribution may be predicted also with a good accuracy. Thanks to the versatility of the code some reference calculations and routine ones may be compared easily because only one parameter is changed; for example the self-shielding approximations are modified, the libraries or the flux solver being exactly the same. Other interesting features have been introduced in APOLLO-2: the new isotopes JEF.2 are available in 99 and 172 energy groups libraries, the surface leakage model improves the calculation of the control rod efficiency, the flux-current method allows faster calculations, the possibility of an automatic convergence checking during the depletion calculations coupled with fully automatic corrections, heterogeneous diffusion coefficients used for voiding analysis. 17 refs, 1 tab

  1. Advances in carbon dioxide compression and pipeline transportation processes

    CERN Document Server

    Witkowski, Andrzej; Majkut, Mirosław; Rulik, Sebastian; Stolecka, Katarzyna

    2015-01-01

    Providing a comprehensive analysis of CO2 compression, transportation processes and safety issues for post combustion CO2 capture applications for a 900 MW pulverized hard coal-fired power plant, this book assesses techniques for boosting the pressure of CO2 to pipeline pressure values with a minimal amount of energy. Four different types of compressors are examined in detail: a conventional multistage centrifugal compressor, integrally geared centrifugal compressor, supersonic shock wave compressor, and pump machines. The study demonstrates that the total compression power is closely related

  2. Advanced rocket propulsion technology assessment for future space transportation

    Science.gov (United States)

    Wilhite, A. W.

    1982-01-01

    Single-stage and two-stage launch vehicles were evaluated for various levels of propulsion technology and payloads. The evaluation included tradeoffs between ascent flight performance and vehicle sizing that were driven by engine mass, specific impulse, and propellant requirements. Numerous mission, flight, and vehicle-related requirements and constraints were satisfied in the design process. The results showed that advanced technology had a large effect on reducing both single- and two-stage vehicle size. High-pressure hydrocarbon-fueled engines that were burned in parallel with two-position nozzle hydrogen-fueled engines reduced dry mass by 23% for the two-stage vehicle and 28% for the single-stage vehicle as compared to an all-hydrogen-fueled system. The dual-expander engine reduced single-stage vehicle dry mass by 41%. Using advanced technology, the single-stage vehicle became comparable in size and sensitivity to that of the two-stage vehicle for small payloads.

  3. Advances in comprehensive gyrokinetic simulations of transport in tokamaks

    International Nuclear Information System (INIS)

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ*) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated. (author)

  4. An advanced media interface for control of modern transport aircraft navigational systems

    Science.gov (United States)

    Jones, D. R.; Parrish, R. V.; Person, L. H., Jr.; Old, J. L.

    1984-01-01

    With the advent of digital avionics, the workload of the pilot in a moderen transport aircraft is increasing significantly. This situation makes it necessary to reduce pilot workload with the aid of new advanced technologies. As part of an effort to improve information management systems, NASA has, therefore, studied an advanced concept for managing the navigational tasks of a modern transport aircraft. This concept is mainly concerned with the simplification of the pilot interface. The advanced navigational system provides a simple method for a pilot to enter new waypoints to change his flight plan because of heavy traffic, adverse weather conditions, or other reasons. The navigational system was implemented and evaluated in a flight simulator representative of a modern transport aircraft. Attention is given to the simulator, flight simulation, multimode devices, and the navigational system.

  5. Economic study of multipurpose advanced high-speed transport configurations

    Science.gov (United States)

    1979-01-01

    A nondimensional economic examination of a parametrically-derived set of supersonic transport aircraft was conducted. The measure of economic value was surcharged relative to subsonic airplane tourist-class yield. Ten airplanes were defined according to size, payload, and speed. The price, range capability, fuel burned, and block time were determined for each configuration, then operating costs and surcharges were calculated. The parameter with the most noticeable influence on nominal surcharge was found to be real (constant dollars) fuel price increase. A change in SST design Mach number from 2.4 to Mach 2.7 showed a very small surcharge advantage (on the order of 1 percent for the faster aircraft). Configuration design compromises required for an airplane to operate overland at supersonic speeds without causing sonic boom annoyance result in severe performance penalties and require high (more than 100 percent) surcharges.

  6. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Scott R. Morrison; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephen; Frank E. Anderson; Shandra Ratnasamy; Jon P. Wagner; Clive Brereton

    2004-01-30

    The objective of this project is to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites with hydrogen permeable alloys. The primary technical challenge in achieving the goals of this project will be to optimize membrane composition to enable practical hydrogen separation rates and chemical stability. Other key aspects of this developing technology include catalysis, ceramic processing methods, and separation unit design operating under high pressure. To achieve these technical goals, Eltron Research Inc. has organized a consortium consisting of CoorsTek, Sued Chemie, Inc. (SCI), Argonne National Laboratory (ANL), and NORAM. Hydrogen permeation rates in excess of 50 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were routinely achieved under less than optimal experimental conditions using a range of membrane compositions. Factors that limit the maximum permeation attainable were determined to be mass transport resistance of H{sub 2} to and from the membrane surface, as well as surface contamination. Mass transport resistance was partially overcome by increasing the feed and sweep gas flow rates to greater than five liters per minute. Under these experimental conditions, H2 permeation rates in excess of 350 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were attained. These results are presented in this report, in addition to progress with cermets, thin film fabrication, catalyst development, and H{sub 2} separation unit scale up.

  7. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  8. The Impact of Cutting Tool Advances on Machining Productivity%刀具创新对提高金属切削效率的作用与影响

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Intense global competition is forcing the manufacturing industry to reduce costs so as to maintain profitability. Since a major component of manufacturing cost is machine tool time, attention is focused on cycle time reduction through greater machining productivity. Advances in machine tools, development of stronger workpiece materials, new machining methods, and environmental regulations with regard to safe disposal of cutting fluids are providing additional challenges to the cutting tool industry. In response to these challenges, the industry has made significant innovations in every class of tool materials. This paper discusses the role of tooling advances in enhancing metalcutting productivity.

  9. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Swanson

    2005-08-30

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was

  10. Transient heat transport studies in JET conventional and advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Transient transport studies are a valuable complement to steady-state analysis for the understanding of transport mechanisms and the validation of physics-based transport models. This paper presents results from transient heat transport experiments in JET and their modelling. Edge cold pulses and modulation of ICRH (in mode conversion scheme) have been used to provide detectable electron and ion temperature perturbations. The experiments have been performed in conventional L-mode plasmas or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas, the issues of stiffness and non-locality have been addressed. Cold pulse propagation in ITB plasmas has provided useful insight into the physics of ITB formation. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations. (author)

  11. What can the changes in shield resistance tell us during the period of shearer’s cutting and neighboring shields’ advance?

    Institute of Scientific and Technical Information of China (English)

    Cheng Jingyi; Wan Zhijun; Peng Syd S.; Liu Sifei; Ji Yinlin

    2015-01-01

    In order to determine the influence of shearer’s cutting and neighboring shields’ advance on the support resistance variation, leg pressure data of all 235 shields in the panel LW61 of Cumberland coal mine were analyzed. The results show that the relationship between the leg pressure increment and the distance from shield to front drum of shearer is a quadratic function and that the higher leg pressure increment before shield advance tends to be related to adverse roof conditions. In addition, the three proposed leg pressure increment-related parameters and the three traditional parameters (time-weighted average pressure, setting pressure, and final pressure) of approximately 32000 shield supporting cycles were calculated by a self-developed software package to analyze the correlation between them. The results show that there is a powerful connection between them, and that the three proposed leg pressure increment-related parameters could be used as the indexes to evaluate the interaction between shields and the roof, and to identify the periodic weighting.

  12. Understanding and Control of Transport in Advanced Tokamak Regimes in DIII-D

    International Nuclear Information System (INIS)

    Transport phenomena are studied in Advanced Tokamak (AT) regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomics Energy Agency, Vienna, 1987), Vol. I, p. 159], with the goal of developing understanding and control during each of three phases: Formation of the internal transport barrier (ITB) with counter neutral beam injection takes place when the heating power exceeds a threshold value of about 9 MW, contrasting to CO-NBI injection, where Pthreshold NH89 = 9 for 16 confinement times has been accomplished in a discharge combining an ELMing H-mode edge and an ITB, and exhibiting ion thermal transport down to 2-3 times neoclassical. The microinstabilities usually associated with ion thermal transport are predicted stable, implying that another mechanism limits performance. High frequency MHD activity is identified as the probable cause

  13. Advanced Public Transportation Sytems; A Taxonomy, Commercial Availability And Deployment, Phase II

    OpenAIRE

    Khattak, Asad; Et. al.,

    1997-01-01

    This study explores the development and availability of Advanced Public Transportation Systems (APTS) technologies. The study refines a taxonomy of transit technologies and uses it to explore the availability of new technologies and their impacts in transit agencies. THe taxonomy is based on defining the features, functions and performance characteristics of transit technologies. Based on the taxonomy, three surveys of technology suppliers were conducted. Questions were related to technology ...

  14. Effects of modified atmosphere, associated with masterpack transport packaging, and refrigerated storage time on the quality characteristics of pork loin cuts

    Directory of Open Access Journals (Sweden)

    Alessandra F. Rosa

    2013-10-01

    Full Text Available The objective of this research was to study the effects of modified atmosphere, associated with masterpack transport packaging, and refrigerated storage time on the quality characteristics of pork loin cuts. Cuts of pork loin were packaged in trays, covered with poly(vinyl chloride film. The trays were placed in a masterpack (MP, containing three gas compositions:  A 75% O2 : 25% CO2, B 50% O2 : 50% CO2 or C 100% CO2, and stored at 2 °C. Samples were taken after 1, 8, 15, and 22 days of storage, and evaluated for numerous shelf life traits. The development of Psychrotrophic aerobic bacteria and Pseudomonas spp. was found from the 15th day of storage. There was a significant treatment effect for some of the considered parameters, such as pH (P < 0.05 and color [L* (P < 0.07, a* (P < 0.07 and b* (P < 0.01]. There was a significant interaction (P < 0.01 for the TBARS values. It can be concluded, from the microbiological point of view, that the use of modified atmospheres containing 25% to 100% CO2 promotes the conservation of meat for up to 15 days of storage under refrigeration. From the point of view of color, atmospheres containing 75% O2 : 25% CO2 and 50% O2 : 50% CO2 ensure the color of packaged pork meat when stored at 2 °C for up to 15 days. From the point of view of lipid oxidation, packages with 100% CO2 are recommended for storage periods of more than 15 days, whereas those with 75% O2 : 25% CO2 are recommended for storage periods of up to 8 days.

  15. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  16. Collisionality scaling of turbulence and transport in advanced inductive plasmas in DIII-D

    Science.gov (United States)

    Yan, Z.; McKee, G. R.; Petty, C.; Luce, T.; Chen, X.; Holland, C.; Rhodes, T.; Schmitz, L.; Wang, G.; Zeng, L.; Marinoni, A.; Solomon, W.; DIII-D Team

    2015-11-01

    The collisionality scaling of multiscale turbulence properties and thermal transport characteristics in high-beta, high confinement Advanced Inductive (AI) plasmas was determined via systematic dimensionless scaling experiments on DIII-D. Preliminary estimate indicates a weak collisionality dependence of energy confinement as v* varied by a factor of ~2. Electron density and scaled (~Bt2) temperature profiles are well matched in the scan. Interestingly, low-k density fluctuation amplitudes are observed to decrease at lower v* near ρ ~ 0 . 75 . Ion and electron thermal transport values, computed with ONETWO using experimentally measured profiles and sources, will be presented, along with multi-scale turbulence measurements obtained with various fluctuation diagnostics. Altering collisionality should change the relative contribution of different modes to transport.

  17. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    Science.gov (United States)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  18. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  19. Advanced bulk processing of lightweight materials for utilization in the transportation sector

    Science.gov (United States)

    Milner, Justin L.

    The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.

  20. Status of advanced light-duty transportation technologies in the US

    International Nuclear Information System (INIS)

    The need to reduce oil consumption and greenhouse gases is driving a fundamental change toward more efficient, advanced vehicles, and fuels in the transportation sector. The paper reviews the current status of light duty vehicles in the US and discusses policies to improve fuel efficiency, advanced electric drives, and sustainable cellulosic biofuels. The paper describes the cost, technical, infrastructure, and market barriers for alternative technologies, i.e., advanced biofuels and light-duty vehicles, including diesel vehicles, natural-gas vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel-cell electric vehicles. The paper also presents R and D targets and technology validation programs of the US government. - Highlights: ► Summary of the current status of LDVs and fuels. ► Overview of government policies and incentives for advanced vehicles and fuels. ► Technical and infrastructure barriers for biofuels, PHEVs, and FCEVs. ► Cost targets and research challenges for batteries and fuel cells. ► Summary of near- to mid-term market considerations for vehicles and fuels.

  1. RADTRAN 4.0: Advanced computer code for transportation risk assessment

    International Nuclear Information System (INIS)

    RADTRAN 4.0 is a computer code for transportation risk assessment developed by Sandia National Laboratories for the US Department of Energy. While retaining the most useful and time-proven features of its predecessors, RADTRAN 4.0 incorporates significant advances over the earlier versions. The most useful new features are: improved route-specific analysis capability, internal radionuclide data library, improved logic for analysis of multiple-radionuclide packages such as spent fuel, separate treatment of gamma and neutron components of Transport Index (TI), and increased number of accident-severity categories. In this paper, each of these features will be described, and, where appropriate, potential applications will be discussed. 11 refs

  2. Advanced Transport Operating System (ATOPS) color displays software description: MicroVAX system

    Science.gov (United States)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Display MicroVAX computer used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery of February 27, 1991, known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global references section includes subroutines, functions, and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  3. Advanced Transport Operating System (ATOPS) color displays software description microprocessor system

    Science.gov (United States)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  4. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  5. Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Liu, Zhong-Wen; Liu, Zhao-Tie

    2013-11-21

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  6. The contribution to the energy balance and transport in an advanced-fuel tokamak reactor

    International Nuclear Information System (INIS)

    The influence of synchrotron radiation emission on the energy balance of an advanced-fuel (such as D-3He, or catalyzed-D) tokamak plasma is considered. It is shown that a region in the β-T space exists, where the fusion energy delivered to the plasma overcomes synchrotron and bremsstrahlung energy losses, and which could then allow for ignited operation. 1-Dimensional codes results are also presented, which illustrate the main features of radial transport in a ignited, D-3He tokamak plasma

  7. Transport and distribution of basally applied indoleaceticacid-2-14C in bean (Phaseolus vulgaris L.) cuttings in relation to interaction of auxin and indole in adventitious root formation

    International Nuclear Information System (INIS)

    Negative interaction or antagonism between IAA and high concentration of indole in rooting of bean cuttings was associated with significant increase in upward movement and accumulation of radiocarbon of IAA-2-14C in upper parts of the cuttings. Positive interaction or synergism observed with lower concentrations of indole was not associated with such increased acropetal transport. There was also no significant difference in total radioactivity per cutting among the different concentrations of indole. The results suggest that non-promotion of upward movement of basally applied auxin from the root forming region or its increased upward movement out of the root forming region may be an important factor in the mechanism of synergism or antagonism respectively. (author)

  8. Transport and distribution of basally applied indoleaceticacid-2-/sup 14/C in bean (Phaseolus vulgaris L. ) cuttings in relation to interaction of auxin and indole in adventitious root formation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh Choudhary, K.; Basu, R.N. (University Coll. of Agriculture, Calcutta (India))

    1981-07-01

    Negative interaction or antagonism between IAA and high concentration of indole in rooting of bean cuttings was associated with significant increase in upward movement and accumulation of radiocarbon of IAA-2-/sup 14/C in upper parts of the cuttings. Positive interaction or synergism observed with lower concentrations of indole was not associated with such increased acropetal transport. There was also no significant difference in total radioactivity per cutting among the different concentrations of indole. The results suggest that non-promotion of upward movement of basally applied auxin from the root forming region or its increased upward movement out of the root forming region may be an important factor in the mechanism of synergism or antagonism respectively.

  9. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    Science.gov (United States)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  10. Ripple transport in helical-axis advanced stellarators - a comparison with classical stellarator/torsatrons

    International Nuclear Information System (INIS)

    Calculations of the neoclassical transport rates due to particles trapped in the helical ripples of a stellarator's magnetic field are carried out, based on solutions of the bounce-averaged kinetic equation. These calculations employ a model for the magnetic field strength, B, which is an accurate approximation to the actual B for a wide variety of stellarator-type devices, among which are Helical-Axis Advanced Stellarators (Helias) as well as conventional stellarators and torsatrons. Comparisons are carried out in which it is shown that the Helias concept leads to significant reductions in neoclassical transport rates throughout the entire long-mean-free-path regime, with the reduction being particularly dramatic in the ν-1 regime. These findings are confirmed by numerical simulations. Further, it is shown that the behavior of deeply trapped particles in Helias can be fundamentally different from that in classical stellarator/torsatrons; as a consequence, the beneficial effects of a radial electric field on the transport make themselves felt at lower collision frequency than is usual. (orig.)

  11. Thermal hydraulic studies for passive heat transport systems relevant to advanced reactors

    International Nuclear Information System (INIS)

    Nuclear is the only non-green house gas generating power source that can replace fossil fuels and can be commercially deployed in large scale. However, the enormous developmental efforts and safety upgrades during the past six decades have somewhat eroded the economic competitiveness of water-cooled reactors which form the mainstay of the current nuclear power programme. Further, the introduction of the supercritical Rankine cycle and the gas turbine based advanced fuel cycles have enhanced the efficiency of fossil fired power plants (FPP) thereby reducing its greenhouse gas emissions. The ongoing development of ultra-supercritical and advanced ultra-supercritical turbines aims to further reduce the greenhouse gas emissions and economic competitiveness of FPPs. In the backdrop of these developments, the nuclear industry also initiated development of advanced nuclear power plants (NPP) with improved efficiency, sustainability and enhanced safety as the main goals. A review of the advanced reactor concepts being investigated currently reveals that excepting the SCWR, all other concepts use coolants other than water. The coolants used are lead, lead bismuth eutectic, liquid sodium, molten salts, helium and supercritical water. Besides, some of these are employing passive systems to transport heat from the core under normal operating conditions. In view of this, a study is in progress at BARC to examine the performance of simple passive systems using SC CO2, SCW, LBE and molten salts as the coolant. This paper deals with some of the recent results of these studies. The study focuses on the steady state, transient and stability behaviour of the passive systems with these coolants. (author)

  12. Affordable In-Space Transportation Phase 2: An Advanced Concepts Project

    Science.gov (United States)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (TTM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIN4 was managed by NASA-Marshall Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Mankins of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TIM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIN4 in a summary for-mat. It incorporates the response to the following basic issues of the TDVL which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? 3. What is the current technology readiness level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5 . What is the proposed implementation time

  13. Affordable In-Space Transportation. Phase 2; An Advanced Concepts Project

    Science.gov (United States)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (ITM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIM was managed by NASA-Mar-shaU Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Manidns of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIM in a summary format. It incorporates the response to the following basic issues of the TPA, which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? What is the current Technology Readiness Level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5. What is the proposed implementation time frame

  14. Cutting inserts effect on heat generation in turning process

    Directory of Open Access Journals (Sweden)

    Ján Žitňanský

    2014-03-01

    Full Text Available The paper is focused on confirmation of an effect of cutting materials and cutting inserts geometry on cutting forces and temperature, quality and accuracy of machined surface in turning. The main part is devoted to description of advanced turning tools and cutting materials. The experimental part is focused on cutting forces and temperature measurement and machined surface quality in turning of steel grade 11 523 samples with one feed and depth of cut value and varying spindle speed. Measurements were performed with various types of indexable cutting inserts used. Measured values were evaluated in terms of the effect of different properties of cutting inserts and various spindle speed values.

  15. Advances in application of tropical cut flower germplasm in China%中国热带切花种质资源及其应用现状

    Institute of Scientific and Technical Information of China (English)

    何雪娇; 林金水; 卢永春; 黄阿凤; 林智明

    2011-01-01

    通过查阅相关文献、网站及实地调查,简要概述了我国海南、云南、广东、福建和台湾等地切花资源现状,介绍了部分重要热带切花品种,并推荐了几种可大力发展热带切花品种.热带切花以草本为主,乔木灌木藤本为辅,木本切花近年来也取得了一定发展.热带切花在以切花为主线传统发展模式下,切叶也崭露头角,其中以天南星科、百合科和蕨类植物居多,而切枝类当以富贵竹为首.前,热带切花主要以热带兰和姜花卉为主,如蝴蝶兰、石斛兰、文心兰和姜花、姜荷花、瓷玫瑰及赫蕉类植物,而以龙船花为代表木本切花和热带兰花杂交栽培品种莫氏兰有望成为切花新宠,老虎须是近年来新兴起奇特珍稀切花品种.随着花卉产业发展,切花产业亦蓬勃发展,为了加强热带切花品种选育及产业化研究,提高产品市场竞争力,今后需加强科研及市场协作;发展规模化生产,创建产品品牌;完善社会化服务体系,加快热带切花市场和信息体系建设;充分发挥龙头企业带动和辐射作用,为热带鲜切花提供强有力技术支持,从而促进热带切花快速发展.%According to the results of referring to relevant literature and websites, and fact survey, the characteristics and application of tropical cut flower resources in Hainan, Yunnan, Guangdong, Fujian and Taiwan (China) were summarized in the paper. With introduction to some important tropical cut flowers varieties, the possibilities of having development potentials in several tropical cut flowers varieties were discussed. The tropical cut flower varieties mainly include herbal plants, and some arbor, shrubs and vines and woody cut flowers have made some progress in recent years. Besides the cut flowers, cut leaves are also attracting the consumers in flowering market which mainly belongs to Araceae and Iiliaceae families and some pteridophytes, similarly the cut shoots of

  16. Transmutation Scenarios Impacts on Advanced Nuclear Cycles (fabrication/reprocessing/transportation)

    International Nuclear Information System (INIS)

    In the frame of the French Law for waste management, minor actinides transmutation scenarios have been studied for a sodium-cooled fast reactors fleet using homogeneous or heterogeneous recycling modes. Americium, neptunium and curium can be transmuted once included together in the standard MOX fuel, or the sole Americium can be incorporated in Am-bearing radial blanket. MAs transmutation in Accelerator Driven System has also been studied while Plutonium is recycling in SFR. Assessments and comparisons of these advanced cycles have been performed in light of technical and economic aspects criteria. The purpose of this study is to present the results in terms of impacts of the transmutation scenarios on fuel cycle plants (fabrication, reprocessing) and transportations taking into account thermal, radiation and criticality parameters. Comparison with no transmutation option is also presented. (author)

  17. A Psychoacoustic Evaluation of Noise Signatures from Advanced Civil Transport Aircraft

    Science.gov (United States)

    Rizzi, Stephen A.; Christian, Andrew

    2016-01-01

    The NASA Environmentally Responsible Aviation project has been successful in developing and demonstrating technologies for integrated aircraft systems that can simultaneously meet aggressive goals for fuel burn, noise and emissions. Some of the resulting systems substantially differ from the familiar tube and wing designs constituting the current civil transport fleet. This study attempts to explore whether or not the effective perceived noise level metric used in the NASA noise goal accurately reflects human subject response across the range of vehicles considered. Further, it seeks to determine, in a quantitative manner, if the sounds associated with the advanced aircraft are more or less preferable to the reference vehicles beyond any differences revealed by the metric. These explorations are made through psychoacoustic tests in a controlled laboratory environment using simulated stimuli developed from auralizations of selected vehicles based on systems noise assessments.

  18. Prisoners' bodies: methods and advances in convict medicine in the transportation era.

    Science.gov (United States)

    Brasier, Angeline

    2010-01-01

    Recent historical research looks upon the plight of Australian convicts not as victims of a harsh penal system, but as workers whose health had to be judiciously maintained. What then can be said for the medical treatments provided for convict patients during this chapter in Australia's past? Did convicts receive medical treatments with the same measure of importance and urgency as the free populace, or were prisoners' bodies considered with such a measure of insignificance that they provided veritable opportunities for advances in medicine? This article will provide general insight into prison medicine in Australia during the transportation era and how some convicts were subjected to experimental medical practices. It will also place these techniques into a wider global context by considering experimental practices involving convict patients in establishments in other places, such as Wakefield and Bermuda. PMID:21553693

  19. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    Science.gov (United States)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  20. CA-125 cut-off value as a predictor for complete interval debulking surgery after neoadjuvant chemotherapy in patients with advanced ovarian cancer

    OpenAIRE

    Furukawa, Naoto; Sasaki, Yoshikazu; Shigemitsu, Aiko; AKASAKA, JURIA; Kanayama, Seiji; Kawaguchi, Ryuji; Kobayashi, Hiroshi

    2013-01-01

    Objective In the present study, we evaluated changes in CA-125 cut-off values predictive of complete interval debulking surgery (IDS) after neoadjuvant chemotherapy (NAC) using receiver operating characteristic (ROC) analysis. Methods This retrospective single-institution study included patients with International Federation of Gynecology and Obstetrics (FIGO) stage III epithelial ovarian cancer and a pre-NAC serum CA-125 level of greater than 40 U/mL who were treated with neoadjuvant platinu...

  1. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    Science.gov (United States)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  2. High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems

    Science.gov (United States)

    Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)

    2001-01-01

    Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In

  3. The Advanced Re-Entry Vehicle (ARV) a Development Step from ATV Toward Manned Transportation Systems

    Science.gov (United States)

    Bottacini, M.; Berthe, P.; Vo, X.; Pietsch, K.

    2011-08-01

    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of un-pressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU's); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and deorbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat- hield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on a

  4. 鲜切果蔬中生物保鲜剂的研究进展%Research advances in biological preservatives of fresh-cut fruits and vegetables

    Institute of Scientific and Technical Information of China (English)

    董妍; 胡文忠; 姜爱丽

    2015-01-01

    随着人们对食品质量与安全的要求日益提高,鲜切果蔬保鲜技术迅速发展,生物保鲜剂因具有安全、高效等特点成为鲜切果蔬保鲜的研究热点。鲜切果蔬经分级、清洗、修整、去皮、切分、保鲜、包装等过程处理后,机械损伤、生理代谢、病原微生物污染等问题会引起鲜切果蔬腐烂、品质下降,给鲜活农产品的经济贸易带来了巨大损失,并对人类生命安全造成了重大威胁,因此本文综述了温度、气体环境、生理生化反应、微生物等几项能够导致鲜切果蔬褐变腐烂、品质下降的重要影响因素;总结了3种生物保鲜剂在鲜切果蔬保鲜中的应用,包括植物类天然保鲜剂、动物类天然保鲜剂和微生物保鲜剂;讨论了生物保鲜剂的不足,并对今后生物保鲜剂的发展进行了展望。%As the requirements of food quality and safety increasing, the preservation technology of fresh-cut fruits and vegetables are developed rapidly. Biological preservatives with safe, efficient and other characteristics becomes the hotspot of fresh-cut fruits and vegetables. Fresh-cut fruits and vegetables are processed with cleaning, trimming, peeling, cutting, and so on. In this process, mechanical damage, physiological metabolism, pathogen infection and other problems can cause decay and quality decline of fresh-cut fruits and vegetables. This has brought a huge loss to the economy and trade of fresh agricultural products, and this is also harmful for human health. This paper reviewed several important factors such as temperature, gas environment, physiological and biochemical reactions, microbial, which could cause browning, decay and poor quality of fresh-cut fruits and vegetables, and the application of biological preservatives on fresh-cut fruits and vegetables, including botanical natural preservatives, animal natural preservatives and microbial natural preservatives. Finally this paper

  5. Plasma arc cutting: speed and cut quality

    International Nuclear Information System (INIS)

    When cutting metal with plasma arc cutting, the walls of the cut are narrower at the bottom than at the top. This lack of squareness increases as the cutting speed increases. A model of this phenomenon, affecting cut quality, is suggested. A thin liquid layer, which separates the plasma from the solid metal to be melted, plays a key role in the suggested model. This layer decreases heat transfer from the plasma to the solid metal; the decrease is more pronounced the higher the speed and the thicker the liquid metal layer. Since the layer is thicker at the bottom of the cut, the heat transfer effectiveness is lower at the bottom. The decrease in heat transfer effectiveness is compensated by the narrowness of the cut. The suggested model allows one to calculate the profile of the cut. The result of the calculations of the cutting speeds for plates of various thicknesses, at which the squareness of the cut is acceptable, agrees well with the speeds recommended by manufacturers. The second effect considered in the paper is the deflection of the plasma jet from the vertical at a high cutting speed. A qualitative explanation of this phenomenon is given. We believe the considerations of this paper are pertinent to other types of cutting with moving heat sources.

  6. Induction of metabolism and transport in human intestine : Validation of precision-cut slices as a tool to study induction of drug metabolism in human intestine in vitro

    NARCIS (Netherlands)

    van de Kerkhof, Esther; De Graaf, Inge A. M.; Ungell, Anna-Lena B.; Groothuis, Geny M. M.

    2008-01-01

    Induction of drug enzyme activity in the intestine can strongly determine plasma levels of drugs. It is therefore important to predict drug-drug interactions in human intestine in vitro. We evaluated the applicability of human intestinal precision-cut slices for induction studies in vitro. Morpholog

  7. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Science.gov (United States)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.

  8. 77 FR 34194 - Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste

    Science.gov (United States)

    2012-06-11

    ... Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION: Final rule... irradiated reactor fuel and certain nuclear waste passing through or across the boundary of their States... shipment of irradiated reactor fuel and nuclear waste,'' requires licensees to provide advance notice...

  9. Recent advances on the regulation of glucose transporter 4 transport and its relationship with myocardial viability in cardiomyocytes

    International Nuclear Information System (INIS)

    Glucose plays an important role in cardiac metabolism. It is the major energy source during myocardial ischemia. Trans-membrane glucose transport is the first rate-limited step for myocardial glucose metabolism, which is facilitated by glucose transports (GLUTs) and GLUT4 represents an important mechanism that governs the entry of glucose into the heart. The quality and quantity of GLUT4 play a decisive role in transmembrane glucose transport. To better retrieve myocardial metabolism and improve myocardial function under myocardial ischemia conditions, it is urgent to elucidate the regulatory mechanism of GLUT4 expression, the regulatory mechanism of GLUT4 translocation, the regulatory mechanism of GLUT4 intrinsic activity and glucose transport in cardiomyocytes. This review summarized the current state of knowledge regarding the regulation of GLUT4 functioning and glucose transport in cardiomyocytes. (authors)

  10. Laser cutting system for nuclear fuel disassembly

    International Nuclear Information System (INIS)

    A significant advancement in fuel reprocessing technology has been made by utilizing a multikilowatt, carbon dioxide laser to perform cutting operations necessary to remove unprocessible hardware from reactor fuel assemblies. 10 figs

  11. Conceptual study of advanced VTOL transport aircraft engine; Kosoku VTOL kiyo engine no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Endo, M.; Matsuda, Y.; Sugiyama, N.; Watanabe, M.; Sugahara, N.; Yamamoto, K. [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report proposes the concept of an ultra-low noise engine for advanced high subsonic VTOL transport aircraft, and discusses its technological feasibility. As one of the applications of the previously reported `separated core turbofan engine,` the conceptual engine is composed of 3 core engines, 2 cruise fan engines for high subsonic cruising and 6 lift fan engines producing thrust of 98kN (10000kgf)/engine. The core turbojet engine bleeds a large amount of air at the outlet of a compressor to supply driving high-pressure air for fans to other engines. The lift fan engine is composed of a lift fan, driving combustor, turbine and speed reduction gear, and is featured by not only high operation stability and thin fan engine like a separated core engine but also ultra-low noise operation. The cruise fan engine adopts the same configuration as the lift fan engine. Since this engine configuration has no technological problems difficult to be overcome, its high technological feasibility is expected. 6 refs., 7 figs., 5 tabs.

  12. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  13. Sensitivity of transport aircraft performance and economics to advanced technology and cruise Mach number

    Science.gov (United States)

    Ardema, M. D.

    1974-01-01

    Sensitivity data for advanced technology transports has been systematically collected. This data has been generated in two separate studies. In the first of these, three nominal, or base point, vehicles designed to cruise at Mach numbers .85, .93, and .98, respectively, were defined. The effects on performance and economics of perturbations to basic parameters in the areas of structures, aerodynamics, and propulsion were then determined. In all cases, aircraft were sized to meet the same payload and range as the nominals. This sensitivity data may be used to assess the relative effects of technology changes. The second study was an assessment of the effect of cruise Mach number. Three families of aircraft were investigated in the Mach number range 0.70 to 0.98: straight wing aircraft from 0.70 to 0.80; sweptwing, non-area ruled aircraft from 0.80 to 0.95; and area ruled aircraft from 0.90 to 0.98. At each Mach number, the values of wing loading, aspect ratio, and bypass ratio which resulted in minimum gross takeoff weight were used. As part of the Mach number study, an assessment of the effect of increased fuel costs was made.

  14. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters

    DEFF Research Database (Denmark)

    Andersen, Jacob; Kristensen, Anders Skov; Bang-Andersen, Benny;

    2009-01-01

    The biogenic monoamine transporters are integral membrane proteins that perform active transport of extracellular dopamine, serotonin and norepinephrine into cells. These transporters are targets for therapeutic agents such as antidepressants, as well as addictive substances such as cocaine and...... antidepressant drugs that act on the serotonin and/or the norepinephrine transporters. Specifically, we focus on structure-activity relationships of these drugs with emphasis on relationships between their molecular properties and the current knowledge of transporter structure....

  15. Cuts, Scratches, and Scrapes

    Science.gov (United States)

    ... Can I Help a Friend Who Cuts? Cuts, Scratches, and Scrapes KidsHealth > For Teens > Cuts, Scratches, and Scrapes Print A A A Text Size ... is repaired. Signs of Infection Sometimes, a cut, scratch, or scrape starts out as no big deal, ...

  16. Underwater laser cutting of metal structures

    International Nuclear Information System (INIS)

    Cutting tests were carried out on stainless steel (304L) in air and under 7 meters of water (application to reactor pools), using CO2 and YAG lasers; results concerned cutting speed, quality of cut, cutting thickness. By-products of sectioning operations using a CO2 laser were studied: dross, aerosols, suspended particles in water, gas analysis, chemical analysis of the aerosols. Same measurements are currently being taken in the case of the YAG laser with beam transported via optical fiber. (from author). 16 figs., 2 tabs., 3 refs

  17. 49 CFR 236.722 - Circuit, cut-in.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, cut-in. 236.722 Section 236.722 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, cut-in. A roadway circuit at the entrance to automatic train stop, train control or cab...

  18. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber-laser...... cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  19. Multibeam Fibre Laser Cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    The appearance of the high power high brilliance fibre laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating cutting laser, the CO2-laser. However, quality problems in fibre-laser...... cutting have until now limited its application in metal cutting. In this paper the first results of proof-of-principle studies applying a new approach (patent pending) for laser cutting with high brightness short wavelength lasers will be presented. In the approach, multi beam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from 2 single mode fibre lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W of single...

  20. Field verification of advanced transport models of radionuclides in heterogeneous soils

    International Nuclear Information System (INIS)

    This report deals with a verification study of advanced transport models of radionuclides in heterogeneous soils. The study reported here is the third phase of a research program carried out by Delft Geotechnics concerning the influence of soil heterogeneities on the migration of radionuclides in the soil and soil-water system. Phases 1 and 2 have been reported earlier in the EC Nuclear Science and technology series (EUR 12111 EN, 1989). The verification study involves the predictive modelling of a field tracer experiment carried out by the British Geological Survey (BGS) at Drigg, Cumbria (UK). Conservative (I131, Cl-, H3) as well as non-conservative (Co-EDTA) tracers were used. The inverse modelling shows that micro dispersion may be considered as a soil constant related to grainsize. Micro dispersion shows a slow increase with distance from the source. This increase is caused by mass transfer between adjacent layers of different permeability. Macro dispersion is observed when sampling over a larger interval then permitted by the detail with which the heterogeneity is described in the model. The prediction of the migration of radionuclides through heterogeneous soils is possible. The advection dispersion equation seems to be an adequate description of the migration of conservative tracers. The models based on this equation give comparable results on a small field test scale (3.5 m). The prediction of the migration of adsorbing species is more difficult. The mathematical descriptions seem appropriate, but the heterogeneity in soils seems to create a higher order of uncertainty which can not be described as yet with calculation strategies available at this moment

  1. RECENT ADVANCES OF UPSCALING METHODS FOR THE SIMULATION OF FLOW TRANSPORT THROUGH HETEROGENEOUS POROUS MEDIA

    Institute of Scientific and Technical Information of China (English)

    Zhiming Chen

    2006-01-01

    We review some of our recent efforts in developing upscaling methods for simulating the flow transport through heterogeneous porous media. In particular, the steady flow transport through highly heterogeneous porous media driven by extraction wells and the flow transport through unsaturated porous media will be considered.

  2. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...... possess, despite their wide use in industry, limitations regarding speed and geometry. Research trends point towards remote laser cutting techniques which can improve speed and geometrical freedom and hereby the competitiveness of laser cutting compared to fixed-tool-based cutting technology...... such as punching. This paper presents the concepts and preliminary test results of the ROBOCUT laser cutting technology, a technology which potentially can revolutionise laser cutting....

  3. Cutting state identification

    Energy Technology Data Exchange (ETDEWEB)

    Berger, B.S.; Minis, I.; Rokni, M. [Univ. of Maryland, College Park, MD (United States)] [and others

    1997-12-31

    Cutting states associated with the orthogonal cutting of stiff cylinders are identified through an analysis of the singular values of a Toeplitz matrix of third order cumulants of acceleration measurements. The ratio of the two pairs of largest singular values is shown to differentiate between light cutting, medium cutting, pre-chatter and chatter states. Sequences of cutting experiments were performed in which either depth of cut or turning frequency was varied. Two sequences of experiments with variable turning frequency and five with variable depth of cut, 42 cutting experiments in all, provided a database for the calculation of third order cumulants. Ratios of singular values of cumulant matrices find application in the analysis of control of orthogonal cutting.

  4. A use of information and communication technologies in the framework of advanced management of transportation systems: dynamic OD matrix estimation

    OpenAIRE

    Montero Mercadé, Lídia; Barceló Bugeda, Jaime; Bullejos, Manuel

    2012-01-01

    Origin-Destination (OD) trip matrices are the primary data input used in principal traffic and transit models, which describe the patterns of trips/passengers across the area of study. In this way, OD matrices become a critical requirement in Advanced Transport Management and/or Information Systems that are supported by Dynamic Assignment models. In the future, once combined dynamic traffic and transit assignment tools will be available to practitioners, the problem of es...

  5. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    Science.gov (United States)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  6. Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    Science.gov (United States)

    Allen, J. B.; Oliver, W. R.; Spacht, L. A.

    1982-01-01

    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

  7. Achieving deep cuts in the carbon intensity of U.S. Automobile transportation by 2050: Complementary roles for electricity and biofuels

    OpenAIRE

    Scown, CD; Taptich, M; Horvath, A; McKone, TE; Nazaroff, WW

    2013-01-01

    Passenger cars in the United States (U.S.) rely primarily on petroleum-derived fuels and contribute the majority of U.S. transportation- related greenhouse gas (GHG) emissions. Electricity and biofuels are two promising alternatives for reducing both the carbon intensity of automotive transportation and U.S. reliance on imported oil. However, as standalone solutions, the biofuels option is limited by land availability and the electricity option is limited by market adoption rates and technica...

  8. Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.

  9. System and Propagation Availability Analysis for NASA's Advanced Air Transportation Technologies

    Science.gov (United States)

    Ugweje, Okechukwu C.

    2000-01-01

    This report summarizes the research on the System and Propagation Availability Analysis for NASA's project on Advanced Air Transportation Technologies (AATT). The objectives of the project were to determine the communication systems requirements and architecture, and to investigate the effect of propagation on the transmission of space information. In this report, results from the first year investigation are presented and limitations are highlighted. To study the propagation links, an understanding of the total system architecture is necessary since the links form the major component of the overall architecture. This study was conducted by way of analysis, modeling and simulation on the system communication links. The overall goals was to develop an understanding of the space communication requirements relevant to the AATT project, and then analyze the links taking into consideration system availability under adverse atmospheric weather conditions. This project began with a preliminary study of the end-to-end system architecture by modeling a representative communication system in MATLAB SIMULINK. Based on the defining concepts, the possibility of computer modeling was determined. The investigations continue with the parametric studies of the communication system architecture. These studies were also carried out with SIMULINK modeling and simulation. After a series of modifications, two end-to-end communication links were identified as the most probable models for the communication architecture. Link budget calculations were then performed in MATHCAD and MATLAB for the identified communication scenarios. A remarkable outcome of this project is the development of a graphic user interface (GUI) program for the computation of the link budget parameters in real time. Using this program, one can interactively compute the link budget requirements after supplying a few necessary parameters. It provides a framework for the eventual automation of several computations

  10. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    Science.gov (United States)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we systematically applied a variety of input flow boundary conditions, resembling natural precipitation events. We measured breakthroughs of a conservative tracer and of nitrate, originating from the application of a slow release fertilizer and serving as a reactive tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct validation of water content dynamics and tracer breakthrough under transient boundary conditions characterized noninvasively by ERT. We were able to image the advancing infiltration front and the advancing front of tracer and nitrate using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long-term displacement of the solute fronts was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential

  11. The perfect cut

    DEFF Research Database (Denmark)

    Scozzafava, G.; Mueller Loose, Simone; Corsi, A.;

    There are a large number of different beef cuts, which are produced in a complementary relationship. Research so far has mainly focused on single cuts and is often limited to either T-bone steaks or ground beef separately. Although the cuts are produced complementary, they compete against each ot...

  12. Recent advances in the brain-to-blood efflux transport across the blood-brain barrier.

    Science.gov (United States)

    Hosoya, Ken-ichi; Ohtsuki, Sumio; Terasaki, Tetsuya

    2002-11-01

    Elucidating the details of the blood-brain barrier (BBB) transport mechanism is a very important step towards successful drug targeting to the brain and understanding what happens in the brain. Although several brain uptake methods have been developed to characterize transport at the BBB, these are mainly useful for investigating influx transport across the BBB. In 1992, P-glycoprotein was found to act as an efflux pump for anti-cancer drugs at the BBB using primary cultured bovine brain endothelial cells. In order to determine the direct efflux transport from the brain to the circulating blood of exogenous compounds in vivo, the Brain Efflux Index method was developed to characterize several BBB efflux transport systems. Recently, we have established conditionally immortalized rat (TR-BBB) and mouse (TM-BBB) brain capillary endothelial cell lines from transgenic rats and mice harboring temperature-sensitive simian virus 40 large T-antigen gene to characterize the transport mechanisms at the BBB in vitro. TR-BBB and TM-BBB cells possess certain in vivo transport functions and express mRNAs for the BBB. Using a combination of newly developed in vivo and in vitro methods, we have elucidated the efflux transport mechanism at the BBB for neurosteroids, excitatory neurotransmitters, suppressive neurotransmitters, amino acids, and other organic anions to understand the physiological role played by the BBB as a detoxifying organ for the brain. PMID:12429456

  13. Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.

    1993-01-01

    Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.

  14. Advances in sediment transport under combined action of waves and currents

    Institute of Scientific and Technical Information of China (English)

    Yongjun Lu; Shouqian Li; Liqin Zuo; Huaixiang Liu; J.A. Roelvink

    2015-01-01

    The coastal zone continuously changes due to natural processes and human activities. In order to understand and predict these morphological changes, an accurate description of sediment transport, caused by waves and currents (tidal or wave-induced), is important. This paper presents a review of the state-of-the-art knowledge in this field, including sediment incipient motion, bed forms, bed roughness, bed-load transport, suspended-load transport, equilibrium sediment concentration, and sheet flow. Some possible research fields and topics for future study also are proposed.

  15. Achieving deep cuts in the carbon intensity of U.S. automobile transportation by 2050: complementary roles for electricity and biofuels.

    Science.gov (United States)

    Scown, Corinne D; Taptich, Michael; Horvath, Arpad; McKone, Thomas E; Nazaroff, William W

    2013-08-20

    Passenger cars in the United States (U.S.) rely primarily on petroleum-derived fuels and contribute the majority of U.S. transportation-related greenhouse gas (GHG) emissions. Electricity and biofuels are two promising alternatives for reducing both the carbon intensity of automotive transportation and U.S. reliance on imported oil. However, as standalone solutions, the biofuels option is limited by land availability and the electricity option is limited by market adoption rates and technical challenges. This paper explores potential GHG emissions reductions attainable in the United States through 2050 with a county-level scenario analysis that combines ambitious plug-in hybrid electric vehicle (PHEV) adoption rates with scale-up of cellulosic ethanol production. With PHEVs achieving a 58% share of the passenger car fleet by 2050, phasing out most corn ethanol and limiting cellulosic ethanol feedstocks to sustainably produced crop residues and dedicated crops, we project that the United States could supply the liquid fuels needed for the automobile fleet with an average blend of 80% ethanol (by volume) and 20% gasoline. If electricity for PHEV charging could be supplied by a combination of renewables and natural-gas combined-cycle power plants, the carbon intensity of automotive transport would be 79 g CO2e per vehicle-kilometer traveled, a 71% reduction relative to 2013. PMID:23906086

  16. Technical advances and energy substitutions in the transportation sector; Progres techniques et substitutions energetiques dans le secteur des transports

    Energy Technology Data Exchange (ETDEWEB)

    Tromenschlager-Philippe, F.

    2002-11-01

    Alternative motorization technologies have been proposed in order to achieve energy diversification and a reduction in pollutant emissions. Fuel cell vehicles are, among others, at the centre of research carried out by car manufacturers and oil companies. The use of fuel cell vehicles could contribute, first to a less stringent long-term energy dependence of oil importing countries and, second, to pollutant reduction in the transport sector. First of all, we propose the definition of 'innovation' and its treatment in the frame of mainstream economic theories. Then we proceed to a retrospective analysis of diesel motorization of the car market. In the second part of our work, we conduct a survey among French households aiming to obtain up-to-date information about their degree of acceptance of fuel cell technology. We are concerned about highlighting the determining factors of fuel cell vehicle adoption by consumers. For this, we set up a discrete choice model linking the individual decision to the whole group of technical or socio-economical factors and characteristics. Finally, we develop patterns of fuel cell equipment of passenger cars which differ according to type of vehicle and possible purchase assistance. These patterns lead us to the analysis of long-term fuel cell vehicle development on the French car market. (authors)

  17. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt

    2012-08-31

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  18. An advanced model for grain face diffusion transport in irradiated UO{sub 2} fuel. Part 1: Model formulation

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S., E-mail: vms@ibrae.ac.r [Nuclear Safety Institute (IBRAE), Russian Academy of Sciences, 52, B. Tulskaya, Moscow 115191 (Russian Federation); Tarasov, V.I. [Nuclear Safety Institute (IBRAE), Russian Academy of Sciences, 52, B. Tulskaya, Moscow 115191 (Russian Federation)

    2009-07-01

    An advanced model for the grain face transport of gas atoms, self-consistently taking into consideration the effects of atom diffusion over the grain surface, their trapping by and irradiation induced resolution from intergranular bubbles is presented. The model allows prediction of a noticeable gas release from UO{sub 2} fuel without visible interlinkage of grain face bubbles, i.e. at very low grain face coverage, below the critical value manifested by formation of bubble channels on grain faces interconnected with open porosity, in accordance with experimental observations of UO{sub 2} and MOX fuel behaviour under various irradiation conditions.

  19. Neutral particle transport based on the advanced method of characteristics (MOCHA)

    International Nuclear Information System (INIS)

    The paper describes the development of MOCHA, the advanced method of characteristics, based on the CHAR and ANEMONA codes, and its applications in a number of assembly and cell calculations. The MOCHA presents an attempt to satisfy the need imposed by the advanced reactor designs by providing the computational ability to account for all heterogeneities within the fuel assembly, the capability of general multi-dimensional geometry simulation, the flexibility in energy-group structure, the capability of multi-assembly simulation, accurate burn-up calculation, and linearly anisotropic scattering approximation

  20. Recent advances in hybrid methods applied to neutral particle transport problems

    International Nuclear Information System (INIS)

    Full text: Particle transport methods are essential for accurate simulation of nuclear systems including nuclear reactors, medical devices, nondestructive interrogation devices, and radiation imaging devices. Commonly, the Monte Carlo and deterministic discrete ordinates (Sn) approaches are used to solve radiation transport problems. Both approaches when used for simulation of large 3-D real-world problems may become inefficient. So, various hybrid methodologies have been developed; these methodologies can be categorized into four groups: coupled deterministic and Monte Carlo methods; Monte Carlo variance reduction using the deterministic importance function; acceleration of the deterministic methods based on a lower-order deterministic formulation; and coupled deterministic methods This paper compares the Sn deterministic and Monte Carlo approaches, reviews different hybrid methodologies, and discusses recent methods we (the University of Florida Transport Theory Group (UFTTG)) have developed and applied to real-world problems. (author)

  1. Research advances of chain-cutting disaster mitigation from gestation source in China%灾害链孕源断链减灾国内研究进展

    Institute of Scientific and Technical Information of China (English)

    蒙吉军; 杨倩

    2012-01-01

    孕源断链减灾是从源头上采取有效措施以防止灾害发生,遏制灾害发展或蔓延的一种防灾减灾思路.基于目前我国对灾害链孕源断链减灾相关研究成果,阐释了其内涵,梳理了孕源断链减灾的理论发展,综述了其实践应用,总结出孕源断链减灾的3种情形,即从灾变源头避免灾害启动,提前诱导载体转移以及特定灾害发生后防止灾害链蔓延.在此基础上,概括了灾害链的孕源断链减灾框架,并分析其在灾害防范中的优势与局限.针对孕源断链减灾的局限性,构建孕源断链减灾信息数据库作为综合防灾减灾的重要信息支撑.最后,指出孕源断链减灾将向功能更为普适,内容更为全面,结构更为明晰等方向发展.%This paper is inclined to make a general review of the research advances of chain-cutting disaster mitigation from the gestation source at home in China. It is for this purpose that we have illustrated the current research status quo of the chain-cutting disaster mitigation from the gestation source while giving a general survey of theoretical developments as well as the practical application of the practical innovations based on the related research achievements and the chain-styled theory of the disaster. To put the long story short, the key advances can be summarized in three ways; to avoid the disaster originating from the headstream, to induce the disaster carrier to spread and change in advance, to prevent a disaster that has happened from spreading or resulting in a disaster chain. According to the above said three situations, we can summarize a framework of chain-cutting disaster mitigation from the gestation source. And, then, we can establish a framework on the premise that the disaster extension stages can be identified and made known to the society, if it is possible to make the local people clear of the internal and external causes as well as the likely evolutionary tendencies of the

  2. Transport

    International Nuclear Information System (INIS)

    Transport is one of the major causes of environmental damage in Austria. Energy consumption, pollutants emissions, noise emissions, use of surfaces, sealing of surfaces, dissection of ecosystems and impact on landscape are the most significant environmental impacts caused by it. An overview of the transport development of passengers and freight in Austria is presented. Especially the energy consumption growth, carbon dioxide and nitrogen oxide emissions by type of transport, and the emissions development (HC, particle and carbon monoxide) of goods and passengers transport are analyzed covering the years 1980 - 1999. The health cost resulting from transport-related air pollution in Austria is given and measures to be taken for an effective control of the transport sector are mentioned. Figs. 8, Table 1. (nevyjel)

  3. Ultrasonic Cutting of Foods

    Science.gov (United States)

    Schneider, Yvonne; Zahn, Susann; Rohm, Harald

    In the field of food engineering, cutting is usually classified as a mechanical unit operation dealing with size reduction by applying external forces on a bulk product. Ultrasonic cutting is realized by superpositioning the macroscopic feed motion of the cutting device or of the product with a microscopic vibration of the cutting tool. The excited tool interacts with the product and generates a number of effects. Primary energy concentration in the separation zone and the modification of contact friction along the tool flanks arise from the cyclic loading and are responsible for benefits such as reduced cutting force, smooth cut surface, and reduced product deformation. Secondary effects such as absorption and cavitation originate from the propagation of the sound field in the product and are closely related to chemical and physical properties of the material to be cut. This chapter analyzes interactions between food products and ultrasonic cutting tools and relates these interactions with physical and chemical product properties as well as with processing parameters like cutting velocity, ultrasonic amplitude and frequency, and tool design.

  4. Verification of the Advanced Nodal Method on BWR Core Analyses by Whole-Core Heterogeneous Transport Calculations

    International Nuclear Information System (INIS)

    Recent boiling water reactor (BWR) core and fuel designs have become more sophisticated and heterogeneous to improve fuel cycle cost, thermal margin, etc. These improvements, however, tend to lead to a strong interference effect among fuel assemblies, and it my cause some inaccuracies in the BWR core analyses by advanced nodal codes. Furthermore, the introduction of mixed-oxide (MOX) fuel will lead to a much stronger interference effect between MOX and UO2 fuel assemblies. However, the CHAPLET multiassembly characteristics transport code was developed recently to solve two-dimensional cell-heterogeneous whole-core problems efficiently, and its results can be used as reference whole-core solutions to verify the accuracy of nodal core calculations. In this paper, the results of nodal core calculations were compared with their reference whole-core transport solutions to verify their accuracy (in keff, assembly power and pin power via pin power reconstruction) of the advanced nodal method on both UO2 and MOX BWR whole-core analyses. Especially, it was investigated if there were any significant differences in the accuracy between MOX and UO2 results

  5. Transmutation Scenarios Impacts on Advanced Nuclear Cycles. Fabrication, Reprocessing and Transportation

    International Nuclear Information System (INIS)

    Conclusions: First detailed assessment of plants and transportation in various transmutation scenarios. In case of curium transmutation: large difficulties and uncertainties requiring whole new technology development (more pronounced for ADS option). For Am transmutation: more feasible, still to be demonstrated on specific points for industrial extrapolation

  6. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection.

    Science.gov (United States)

    Mayor, T S; Couto, S; Psikuta, A; Rossi, R M

    2015-12-01

    The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s(-1)) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 10(2)-3 × 10(5)). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow

  7. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection

    Science.gov (United States)

    Mayor, T. S.; Couto, S.; Psikuta, A.; Rossi, R. M.

    2015-12-01

    The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s-1) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 102-3 × 105). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow patterns and

  8. Advances in Understanding Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface

    Science.gov (United States)

    Karapanagioti, H. K.; Werner, D.; Werth, C.

    2012-04-01

    The results of a call for a special issue that is now in press by the Journal of Contaminant Hydrology will be presented. This special issue is edited by the authors and is entitled "Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface". A short abstract of each paper will be presented along with the most interesting results. Nine papers were accepted. Pollutants studied include: biocolloids, metals (arsenic, chromium, nickel), organic compounds such as hydrocarbons, chlorinated hydrocarbons, micropollutants (PAHs, PCBs), pesticides (glyphosate, 2,4-D). Findings presented in the papers include a modified batch reactor system to study equilibrium-reactive transport problems of metals. Column studies along with theoretical approximations evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three biocolloids. A polluted sediment remediation method is evaluated considering site-specific conditions through monitoring results and modelling. A field study points to glogging and also sorption as mechanisms affecting the effectiveness of sub-surface flow constructed wetlands. A new isotherm model combining modified traditionally used isotherms is proposed that can be used to simulate pH-dependent metal adsorption. Linear free energy relationships (LFERs) demonstrate ability to predict slight isotope shifts into the groundwater due to sorption. Possible modifications that improve the reliability of kinetic models and parameter values during the evaluation of experiments that assess the sorption of pesticides on soils are tested. Challenges in selecting groundwater pollutant fate and transport models that account for the effect of grain-scale sorption rate limitations are evaluated based on experimental results and are discussed based on the Damköhler number. Finally, a thorough review paper presents the impact of mineral micropores on the transport and fate of

  9. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystems Concepts. Volume 3; Program Cost Estimates

    Science.gov (United States)

    Levack, Daniel J. H.

    2000-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.

  10. Advancements in Modeling Mercury Transport and Fate in a Dynamic Fluvial System

    Science.gov (United States)

    James, A. I.; Warwick, J. J.; Carroll, R. W.; Miller, J. R.

    2001-12-01

    The U.S. EPA designated the Carson River as part of a Superfund site in 1991 due to contamination by mercury used in mining operations in the 19th century. It is estimated that approximately 6.36 x 106 Kg (7,000 tons) of residual mercury is now distributed throughout the river's bank sediments and floodplain deposits. Both bank and water column mercury concentrations are high (64,242 μ g/Kg, and 28,000 ng/L, respectively). More than 95% of the mercury transported in the Carson River is affiliated with particulate matter and so it is necessary to accurately describe bank erosion and sediment transport processes in order to understand mercury transport and fate. Mercury concentrations are significantly higher in fine-grained overbank deposits, and appear to be inversely related to the slope of the channel bottom. The mercury contaminated sediment is believed to enter the system primarily during higher flow events when water levels reach overlying contaminated sediments and erosion processes become significant. The largest recorded flood event on the Carson River occurred in January 1997. This event is estimated to have eroded roughly 10 times the amount of bank material than had been eroded in the period from 1991 to 1996, and subsequently transported an estimated 200,000 tons of sediment and 3,000 lbs. of mercury into Lahontan Reservoir. Three computer models (RIVMOD, WASP5, and MERC4) are used to simulate the transport and fate of mercury within the Carson River system. For this study, inorganic mercury and methyl mercury (MeHg) are modeled and only the soluble forms of are available for chemical transformation. Modifications were made to the computer models to allow prediction of mercury transport and fate during extreme events. Enhancements include new functions that predict bank erosion rates and floodplain sedimentation during overbank flows. The bank erosion rate is modeled as proportional to the shear stress applied to the banks by the flow, while the rate

  11. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  12. Advanced system analysis for indirect methanol fuel cell power plants for transportation applications

    International Nuclear Information System (INIS)

    The indirect methanol cell fuel concept being actively pursued by the United States Department of Energy and General Motors Corporation is based on electrochemical engine (e.c.e.) an electrical generator capable for usually efficient and clean power production from methanol fuel for the transportation sector. This on-board generator works in consort with batteries to provide electric power to drive propulsion motors for a range of electric vehicles. Success in this technology could do much to improve impacted environmental areas and to convert part of the transportation fleet to natural gas- and coal-derived methanol as the fuel source. These developments parallel work in Europe and Japan where various fuel cell powered vehicles, often fueled with tanked or hydride hydrogen are under active development. This paper describes status of each of these components, and describe a model that predicts the steady state performance of the e.c.e

  13. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  14. Staged Combustion Cycle Rocket Engine Design Trade-Offs for Future Advanced Passenger Transport

    OpenAIRE

    Sippel, Martin; Yamashiro, Ryoma

    2012-01-01

    Staged combustion cycle rocket engines with a moderate nominal 16 MPa chamber pressure have been selected as the baseline propulsion system for the visionary intercontinental passenger transport SpaceLiner. Several technical engine design trade-offs are run by numerical simulations and results are pre-sented including: • Fuel rich vs. Full-flow cycle • Useful operational domain in MR • Regenerative cooling options of thrust chamber The engine operational domain is evaluated on ...

  15. Saving Seal Cutting

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On April 20, the graduation ceremony of China’s seal-cutting art postgraduates and visiting experts from the Institute of Seal Cutting Art under the China Art Academy was held in Beijing. On the same day, the exhibition of the works of the teachers and graduates of the institute was also held.

  16. Laser Prepared Cutting Tools

    Science.gov (United States)

    Konrad, Wegener; Claus, Dold; Marcel, Henerichs; Christian, Walter

    Laser pulses with a pulsewidth of a few picoseconds have recently received a lot of attention, solving the problem of manufacturing tools for new materials of superior mechanical properties. Processing thermally sensitive material, such as diamond and CBN structures, can be done without major material deterioration effects. The breakthrough of this new technology becomes possible, if the accuracy and life time requirements of those tools are met. The paper shows in three applications the potential of laser manufacturing of cutting tools. Manufacturing of cutting edges for CFRP cutting needs sharp and stable cutting edges, which are prepared in PCD tools by laser sources in the picosecond pulsewidth regime. Profiling of hybrid bond grinding wheels yields geometric flexibility, which is impossible by mechanical treatment so far. Touch dressing of grinding wheels substantially reduces cutting forces.

  17. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts

    Science.gov (United States)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined for this report. The tasks were: F-1A Restart Study, J-2S Restart Study, Propulsion Database Development, SSME Upper Stage Use, CERs for Liquid Propellant Rocket Engines, Advanced Low Cost Engines, and Tripropellant Comparison Study. The detailed study results, with the data to support the conclusions from various analyses, are being reported as a series of five separate Final Task Reports. Consequently, this volume only reports the required programmatic information concerning Computer Aided Design Documentation, and New Technology Reports. A detailed Executive Summary, covering all the tasks, is also available as Volume I of this report.

  18. Advancements in generalized-geometry discrete ordinates transport for lattice physics calculations

    International Nuclear Information System (INIS)

    This paper describes the generalized-geometry capabilities of the two-dimensional NEWT transport solver, used within the TRITON depletion sequence of the SCALE code system for lattice physics calculation. With the release of SCALE 5.1 in 2006, NEWT will introduce a new automated grid generation procedure based on simple body specifications, using an input format based on the SCALE Generalized-Geometry Processor. The paper will contrast the discretization techniques against those used in other unstructured grid treatments; illustrate the ease of model development, features, capabilities; and demonstrate the unique adaptability of NEWT for a wide range of fuel configurations. (authors)

  19. Advanced boundary condition method in quantum transport and its application in nanodevices

    Science.gov (United States)

    He, Yu

    Modern semiconductor devices have reached critical dimensions in the sub-20nm range. During the last decade, quantum transport methods have become the standard approaches to model nanoscale devices. In quantum transport methods, Schrodinger equations are solved in the critical device channel with the contacts served as the open boundary conditions. Proper and efficient treatments of these boundary conditions are essential to provide accurate prediction of device performance. The open boundary conditions, which represent charge injection and extraction effects, are described by contact self-energies. All existing contact self-energy methods assume periodic and semiinfinite contacts, which are in stark contrast to realistic devices where the contacts often have complicated geometries or imperfections. On the other hand, confined structures such as quantum dots, nanowires, and ultra-thin bodies play an important role in nanodevice designs. In the tight binding models of these confined structures, the surfaces require appropriate boundary treatments to remove the dangling bonds. The existing boundary treatments fall into two categories. One is to explicitly include the passivation atoms in the device. This is limited to passivation with atoms and small molecules due to the increasing rank of the Hamiltonian. The other is to implicitly incorporate passivation by altering the orbital energies of the dangling bonds with a passivation potential. This method only works for certain crystal structures and symmetries, and fails to distinguish different passivation scenarios, such as hydrogen and oxygen passivation. In this work, an efficient self-energy method applicable for arbitrary contact structures is developed. This method is based on an iterative algorithm which considers the explicit contact segments. The method is demonstrated on a graphene nanoribbon structure with trumpet shape contacts and a Si0.5Ge0.5 nanowire transistor with alloy disorder contacts. Furthermore

  20. Advanced brain dopamine transporter imaging in mice using small-animal SPECT/CT

    OpenAIRE

    Pitkonen, Miia; Hippeläinen, Eero; Raki, Mari; Andressoo, Jaan-Olle; Urtti, Arto; Männistö, Pekka T.; Savolainen, Sauli; Saarma, Mart; Bergström, Kim

    2012-01-01

    Background Iodine-123-β-CIT, a single-photon emission computed tomography (SPECT) ligand for dopamine transporters (DATs), has been used for in vivo studies in humans, monkeys, and rats but has not yet been used extensively in mice. To validate the imaging and analysis methods for preclinical DAT imaging, wild-type healthy mice were scanned using 123I-β-CIT. Methods The pharmacokinetics and reliability of 123I-β-CIT in mice (n = 8) were studied with a multipinhole SPECT/CT camera after intrav...

  1. Automated Cell-Cutting for Cell Cloning

    Science.gov (United States)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  2. Advanced quadratures and periodic boundary conditions in parallel 3D S{sub n} transport

    Energy Technology Data Exchange (ETDEWEB)

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G. [Nuclear and Radiological Engineering Program, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States)

    2013-07-01

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric (S{sub 2}o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  3. Development of an advanced atmospheric/transport model for emergency response purposes

    International Nuclear Information System (INIS)

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during an accidental release at the Savannah River Site (SRS). These models are based Gaussian distributions and have been incorporated into an automated menu-driven program called the WIND (Weather INformation and Display) system. The WIND system atmospheric models employ certain assumptions that allow the computations of the ground-level concentration of toxic or radioactive materials to be made quickly. Gaussian models, such as PF/PL and 2DPUF, suffer from serious limitations including the inability to represent recirculation of pollutants in complex terrain, the use of one stability class at a given time to represent turbulent mixing over heterogeneous terrain, and the use of a wind field computed at only one height in the atmosphere. These limitations arise because the fundamental conservation relations of the atmosphere have been grossly simplified. Three-dimensional coupled atmospheric-dispersion models are not limited by the over-simplifications of the Gaussian assumption and have been used in the past to predict the transport of pollutants in a variety of atmospheric circulations. The disadvantage of these models is that they require large amounts of computational time; however, technology has progressed enough so that real-time simulations of dispersion may be made. These complex models can be run in an operational mode so that routine forecasts of the wind field and particulate concentration can be made

  4. Advanced method of solution of neutron transport equation in nuclear reactor cell - 361

    International Nuclear Information System (INIS)

    Method of solution of neutron transport integral equation has been developed. It is aimed into calculation analysis of neutron flux in nuclear reactor cell with complicated geometry and different boundary conditions. On this stage of nuclear reactor calculation it is important to take into account special futures of neutron flux behavior included anisotropy scattering. Modern computational strategy requires the ability to accurately solution of Boltzmann transport equation in the shortest possible time. This approach is based on neutron flux expansion with orthogonal polynomial system in every uniform mesh of the cell. As result of this approximation the system of linear integral equation is reduced to algebraic system with coefficients that are the six-fold integrals over the cell area in general case. In this paper formulae for calculation of these values are given. The algorithm of computer code for neutron flux calculation is described. The results obtained with general version of collision probabilities method code are given. The advantage of above described approach has been demonstrated. (authors)

  5. Advances in nuclear data and all-particle transport for radiation oncology

    International Nuclear Information System (INIS)

    Fast neutrons have been used to treat over 15,000 cancer patients worldwide and proton therapy is rapidly emerging as a treatment of choice for tumors around critical anatomical structures. Neutron therapy requires evaluated data to ∼70 MeV while proton therapy requires data to ∼250 MeV. Collaboration between Lawrence Livermore National Laboratory (LLNL) and the medical physics community has revealed limitations in nuclear cross section evaluations and radiation transport capabilities that have prevented neutron and proton radiation therapy centers from using Monte Carlo calculations to accurately predict dose in patients. These evaluations require energy- and angle-dependent cross sections for secondary neutrons, charged-particles and recoil nuclei. We are expanding the LLNL nuclear databases to higher energies for biologically important elements and have developed a three-dimensional, all-particle Monte Carlo radiation transport code that uses computer-assisted-tomography (CT) images as the input mesh. This code, called PEREGRINE calculates dose distributions in the human body and can be used as a tool to determine the dependence of dose on details of the evaluated nuclear data. In this paper, we will review the status of the nuclear data required for neutron and proton therapy, describe the capabilities of the PEREGRINE package, and show the effects of tissue inhomogeneities on dose distribution

  6. Drill cuttings mount formation study

    Science.gov (United States)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  7. Heat-Pipe Development for Advanced Energy Transport Concepts Final Report Covering the Period January 1999 through September 2001

    Energy Technology Data Exchange (ETDEWEB)

    R.S.Reid; J.F.Sena; A.L.Martinez

    2002-10-01

    This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodium heat pipe to the penetration of water.

  8. Advanced surveillance technologies for used fuel long-term storage and transportation - 59032

    International Nuclear Information System (INIS)

    Utilities worldwide are using dry-cask storage systems to handle the ever-increasing number of discharged fuel assemblies from nuclear power plants. In the United States and possibly elsewhere, this trend will continue until an acceptable disposal path is established. The recent Fukushima nuclear power plant accident, specifically the events with the storage pools, may accelerate the drive to relocate more of the used fuel assemblies from pools into dry casks. Many of the newer cask systems incorporate dual-purpose (storage and transport) or multiple-purpose (storage, transport, and disposal) canister technologies. With the prospect looming for very long term storage - possibly over multiple decades - and deferred transport, condition- and performance-based aging management of cask structures and components is now a necessity that requires immediate attention. From the standpoint of consequences, one of the greatest concerns is the rupture of a substantial number of fuel rods that would affect fuel retrievability. Used fuel cladding may become susceptible to rupture due to radial-hydride-induced embrittlement caused by water-side corrosion during the reactor operation and subsequent drying/transfer process, through early stage of storage in a dry cask, especially for high burnup fuels. Radio frequency identification (RFID) is an automated data capture and remote-sensing technology ideally suited for monitoring sensitive assets on a long-term, continuous basis. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy's Packaging Certification Program for tracking and monitoring drums containing sensitive nuclear and radioactive materials. The ARG-US RFID system is versatile and can be readily adapted for dry-cask monitoring applications. The current built-in sensor suite consists of seal, temperature, humidity, shock, and radiation sensors. With the universal asynchronous receiver/transmitter interface in

  9. Laser Cutting, Development Trends

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    1999-01-01

    In this paper a short review of the development trends in laser cutting will be given.The technology, which is the fastest expanding industrial production technology will develop in both its core market segment: Flat bed cutting of sheet metal, as it will expand in heavy industry and in cutting...... of 3-dimensional shapes.The CO2-laser will also in the near future be the dominating laser source in the market, although the new developments in ND-YAG-lasers opens for new possibilities for this laser type....

  10. Online Cake Cutting

    CERN Document Server

    Walsh, Toby

    2010-01-01

    We propose an online form of the cake cutting problem. This models situations where players arrive and depart during the process of dividing a resource. We show that well known fair division procedures like cut-and-choose and the Dubins-Spanier moving knife procedure can be adapted to apply to such online problems. We propose some desirable properties that online cake cutting procedures might possess like online forms of proportionality and envy-freeness, and identify which properties are in fact possessed by the different online cake procedures.

  11. Advanced methods in global gyrokinetic full f particle simulation of tokamak transport

    International Nuclear Information System (INIS)

    A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data

  12. Design philosophy of long range LFC transports with advanced supercritical LFC airfoils. [laminar flow control

    Science.gov (United States)

    Pfenninger, Werner; Vemuru, Chandra S.

    1988-01-01

    The achievement of 70 percent laminar flow using modest boundary layer suction on the wings, empennage, nacelles, and struts of long-range LFC transports, combined with larger wing spans and lower span loadings, could make possible an unrefuelled range halfway around the world up to near sonic cruise speeds with large payloads. It is shown that supercritical LFC airfoils with undercut front and rear lower surfaces, an upper surface static pressure coefficient distribution with an extensive low supersonic flat rooftop, a far upstream supersonic pressure minimum, and a steep subsonic rear pressure rise with suction or a slotted cruise flap could alleviate sweep-induced crossflow and attachment-line boundary-layer instability. Wing-mounted superfans can reduce fuel consumption and engine tone noise.

  13. Akuna - Integrated Toolsets Supporting Advanced Subsurface Flow and Transport Simulations for Environmental Management

    Energy Technology Data Exchange (ETDEWEB)

    Schuchardt, Karen L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, Deborah A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Finsterle, Stefan A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gable, Carl W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, Ian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gosink, Luke J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keating, Elizabeth H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lansing, Carina S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Joerg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Moeglein, William A.M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pau, George S.H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purohit, Sumit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, Arie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sivaramakrishnan, Chandrika [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-04-24

    A next generation open source subsurface simulator and user environment for environmental management is being developed through a collaborative effort across Department of Energy National Laboratories. The flow and transport simulator, Amanzi, will be capable of modeling complex subsurface environments and processes using both unstructured and adaptive meshes at very fine spatial resolutions that require supercomputing-scale resources. The user environment, Akuna, provides users with a range of tools to manage environmental and simulator data sets, create models, manage and share simulation data, and visualize results. Underlying the user interface are core toolsets that provide algorithms for sensitivity analysis, parameter estimation, and uncertainty quantification. Akuna is open-source, cross platform software that is initially being demonstrated on the Hanford BC Cribs remediation site. In this paper, we describe the emerging capabilities of Akuna and illustrate how these are being applied to the BC Cribs site.

  14. Advanced Modeling and Experimental Validation of Complex Nuclear Material Forms of Potential Transportation Concern

    International Nuclear Information System (INIS)

    We present here computer modeling efforts to describe the time-dependent pressurization and gas-phase mole fractions inside sealed canisters containing actinide materials packaged with small (0.12 - 0.5 wt. %) amounts of water. The model is run using Chemkin software, and the chemical reaction mechanism includes gas generation due to radiolysis of adsorbed water, interfacial chemical reactions, and adsorption/desorption kinetics of water on PuO2 materials. The ultimate goal is to provide a verifiable computer model that can be used to predict problematic gas generation in storage forms and assure design criteria for short-term storage and transportation of less than well-characterized (with respect to gas generation) material classes. Our initial efforts are intended to assess pressurization and gas-phase mole fractions using well-defined 3013 container test cases. We have modeled gas generation on PuO2 with water loading up to 0.5 wt. %, at 300 and 525 K, for time frames of 3 years. Estimates of the initial H2 generation rates were determined using RadCalc and employed in the Chemkin model to assess time- and coverage-dependent system behavior. Results indicate that canister pressurization due to radiolysis is a relatively slow process, with pressure increases at 300 K of approximately 1.5 atm. for 5000 g of PuO2 packaged with 0.5 wt. % water. At higher temperatures (> 400 K), desorption of water into the gas phase largely dictates pressurization and the gas-phase mole fractions. These modeling efforts provide a predictive capability for potential gas generation behavior that when augmented and validated by surveillance information will provide a technical basis for safe storage and transportation

  15. Technology and Engineering Advances Supporting EarthScope's Alaska Transportable Array

    Science.gov (United States)

    Miner, J.; Enders, M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer of 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. Continued development of battery systems using LiFePO4 chemistries, integration of BGAN, Iridium, Cellular and VSAT technologies for real time data transfer, and modifications to electronic systems are a driving force for year two of the Alaska Transportable Array. Station deployment utilizes custom heliportable drills for sensor emplacement in remote regions. The autonomous station design evolution include hardening the sites for Arctic, sub-Arctic and Alpine conditions as well as the integration of rechargeable Lithium Iron Phosphate batteries with traditional AGM batteries We will present new design aspects, outcomes, and lessons learned from past and ongoing deployments, as well as efforts to integrate TA stations with other existing networks in Alaska including the Plate Boundary Observatory and the Alaska Volcano Observatory.

  16. Advances toward a transportable antineutrino detector system for reactor monitoring and safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Reyna, D. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lund, J.; Kiff, S.; Cabrera-Palmer, B. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bowden, N. S.; Dazeley, S.; Keefer, G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2011-07-01

    Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our SNL/LLNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale liquid scintillator detector at tens of meters standoff from a commercial Pressurized Water Reactor (PWR). With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. The initial detector was deployed in an underground gallery that lies directly under the containment dome of an operating PWR. The gallery is 25 meters from the reactor core center, is rarely accessed by plant personnel, and provides a muon-screening effect of some 20-30 meters of water equivalent earth and concrete overburden. Unfortunately, many reactor facilities do not contain an equivalent underground location. We have therefore attempted to construct a complete detector system which would be capable of operating in an aboveground location and could be transported to a reactor facility with relative ease. A standard 6-meter shipping container was used as our transportable laboratory - containing active and passive shielding components, the antineutrino detector and all electronics, as well as climate control systems. This aboveground system was deployed and tested at the San Onofre Nuclear Generating Station (SONGS) in southern California in 2010 and early 2011. We will first present an overview of the initial demonstrations of our below ground detector. Then we will describe the aboveground system and the technological developments of the two antineutrino

  17. Recent advances towards a theory of catchment hydrologic transport: age-ranked storage and the Ω-functions

    Science.gov (United States)

    Harman, C. J.

    2014-12-01

    Models that faithfully represent spatially-integrated hydrologic transport through the critical zone at sub-watershed scales are essential building blocks for large-scale models of land use and climate controls on non-point source contaminant delivery. A particular challenge facing these models is the need to represent the delay between inputs of soluble contaminants (such as nitrate) at the field scale, and the solute load that appears in streams. Recent advances in the theory of time-variable transit time distributions (e.g. Botter et al., GRL 38(L11403), 2011) have provided a rigorous framework for representing conservative solute transport and its coupling to hydrologic variability and partitioning. Here I will present a reformulation of this framework that offers several distinct advantages over existing formulations: 1) the derivation of the governing conservation equation is simple and intuitive, 2) the closure relations are expressed in a convenient and physically meaningful way as probability distributions Ω(ST)Omega(S_T) over the storage ranked by age STS_T, and 3) changes in transport behavior determined by storage-dependent dilution and flow-path dynamics (as distinct from those due only to changes in the rates and partitioning of water flux) are completely encapsulated by these probability distributions. The framework has been implemented to model to the rich dataset of long-term stream and precipitation chloride from the Plynlimon watershed in Wales, UK. With suitable choices for the functional form of the closure relationships, only a small number of free parameters are required to reproduce the observed chloride dynamics as well as previous models with many more parameters, including reproducing the observed fractal 1/f filtering of the streamflow chloride variability. The modeled transport dynamics are sensitive to the input precipitation variability and water balance partitioning to evapotranspiration. Apparent storage-dependent age

  18. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    International Nuclear Information System (INIS)

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides

  19. The use of regional advance mitigation planning (RAMP) to integrate transportation infrastructure impacts with sustainability; a perspective from the USA

    International Nuclear Information System (INIS)

    Globally, urban areas are expanding, and their regional, spatially cumulative, environmental impacts from transportation projects are not typically assessed. However, incorporation of a Regional Advance Mitigation Planning (RAMP) framework can promote more effective, ecologically sound, and less expensive environmental mitigation. As a demonstration of the first phase of the RAMP framework, we assessed environmental impacts from 181 planned transportation projects in the 19 368 km2 San Francisco Bay Area. We found that 107 road and railroad projects will impact 2411–3490 ha of habitat supporting 30–43 threatened or endangered species. In addition, 1175 ha of impacts to agriculture and native vegetation are expected, as well as 125 crossings of waterways supporting anadromous fish species. The extent of these spatially cumulative impacts shows the need for a regional approach to associated environmental offsets. Many of the impacts were comprised of numerous small projects, where project-by-project mitigation would result in increased transaction costs, land costs, and lost project time. Ecological gains can be made if a regional approach is taken through the avoidance of small-sized reserves and the ability to target parcels for acquisition that fit within conservation planning designs. The methods are straightforward, and can be used in other metropolitan areas. (papers)

  20. Development of integrated real-time control of internal transport barriers in advanced operation scenarios on Jet

    International Nuclear Information System (INIS)

    An important experimental programme is in progress on JET to investigate plasma control schemes which, with a limited number of actuators, could eventually enable ITER to sustain steady state burning plasmas in an 'advanced tokamak' operation scenario. A multi-variable model-based technique was recently developed for the simultaneous control of several plasma parameter profiles in discharges with internal transport barriers (ITB), using lower hybrid current drive (LHCD) together with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). The proposed distributed-parameter control scheme relies on the experimental identification of an integral linear response model operator and retains the intrinsic couplings between the plasma parameter profiles. A first set of experiments was performed to control the current density profile in the low-density/low-power LH-driven phase of the JET advanced scenarios, using only one actuator (LHCD) and a simplified (lumped-parameter) version of the control scheme. Several requested steady state magnetic equilibria were thus obtained and sustained for about 7 s, up to full relaxation of the ohmic current throughout the plasma. A second set of experiments was dedicated to the control of the q-profile with 3 actuators (LHCD, NBI and ICRH) during the intense heating phase of advanced scenarios. The safety factor profile was also shown to approach a requested profile within about 5 s. The achieved plasma equilibrium was close to steady state. Finally, during the recent high power experimental campaign, experiments have been conducted in a 3 T / 1.7 MA plasma, achieving the simultaneous control of the current density and electron temperature profiles in ITB plasmas. Here, the distributed-parameter version of the algorithm was used for the first time, again with 3 actuators. Real-time control was applied during 7 s, and allowed to reach successfully different target q-profiles (monotonic and reversed-shear ones) and

  1. Development of integrated real-time control of internal transport barriers in advanced operation scenarios on Jet

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, D.; Laborde, L.; Litaudon, X.; Mazon, D.; Zabeo, L.; Joffrin, E.; Lennholm, M. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Moreau, D. [EFDA-JET CSU, Culham Science Centre, Abingdon, OX (United Kingdom); Crisanti, F.; Pericoli-Ridolfini, V.; Riva, M.; Tuccillo, A. [Euratom-ENEA Association, C.R. Frascati (Italy); Murari, A. [Euratom-ENEA Association, Consorzio RFX, Padova (Italy); Tala, T. [Euratom-TEKES Association, VTT Processes (Finland); Albanese, R.; Ariola, M.; Tommasi, G. de; Pironti, A. [Euratom-ENEA Association, CREATE, Napoli (Italy); Felton, R.; Zastrow, K.D. [Euratom-UKAEA Association, Culham Science Centre, Abingdon(United Kingdom); Baar, M. de; Vries, P. de [Euratom-FOM Association, TEC Cluster, Nieuwegein (Netherlands); La Luna, E. de [Euratom-CIEMAT Association, CIEMAT, Madrid (Spain)

    2004-07-01

    An important experimental programme is in progress on JET to investigate plasma control schemes which, with a limited number of actuators, could eventually enable ITER to sustain steady state burning plasmas in an 'advanced tokamak' operation scenario. A multi-variable model-based technique was recently developed for the simultaneous control of several plasma parameter profiles in discharges with internal transport barriers (ITB), using lower hybrid current drive (LHCD) together with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). The proposed distributed-parameter control scheme relies on the experimental identification of an integral linear response model operator and retains the intrinsic couplings between the plasma parameter profiles. A first set of experiments was performed to control the current density profile in the low-density/low-power LH-driven phase of the JET advanced scenarios, using only one actuator (LHCD) and a simplified (lumped-parameter) version of the control scheme. Several requested steady state magnetic equilibria were thus obtained and sustained for about 7 s, up to full relaxation of the ohmic current throughout the plasma. A second set of experiments was dedicated to the control of the q-profile with 3 actuators (LHCD, NBI and ICRH) during the intense heating phase of advanced scenarios. The safety factor profile was also shown to approach a requested profile within about 5 s. The achieved plasma equilibrium was close to steady state. Finally, during the recent high power experimental campaign, experiments have been conducted in a 3 T / 1.7 MA plasma, achieving the simultaneous control of the current density and electron temperature profiles in ITB plasmas. Here, the distributed-parameter version of the algorithm was used for the first time, again with 3 actuators. Real-time control was applied during 7 s, and allowed to reach successfully different target q-profiles (monotonic and reversed-shear ones

  2. Short-cut math

    CERN Document Server

    Kelly, Gerard W

    2014-01-01

    Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method. No special math ability needed.

  3. Cutting glass by laser

    Science.gov (United States)

    Kang, Hyoung-Shik; Hong, Soon-Kug; Oh, Seok-Chang; Choi, Jong-Yoon; Song, Min-Gyu

    2002-02-01

    In FPD (Flat Panel Display) devices, the diamond wheel has been used to scribe glass by means of mechanical contact which needs grinding and cleaning processes to remove particles, glass chips, surface cracks and sharp edges. In recent years, laser glass technology that is different from the conventional method of cutting glass by melting, has been researched and utilizes cutting glass by thermal shock. Laser glass cutting by thermal shock can produce cracks in glass by surface cooling after laser heating on glass by means of stress slope on glass surface. When this technology is applied in FPD manufacturing devices, it has several advantages compared to conventional methods as follows: a) non-contact glass cutting: almost no glass chip occurs. b) according to circumstances, grinding and cleaning can be omitted. c) system maintenance can be simplified.

  4. Cuts and puncture wounds

    Science.gov (United States)

    ... needed. The person has been bitten by a human or animal. A cut or puncture is caused by a fishhook or rusty object. You step on a nail or other similar object. An object or debris is stuck. Do ...

  5. Cut without Killing.

    Science.gov (United States)

    Black, Susan

    1991-01-01

    The zero-based curriculum model can help school boards and administrators make decisions about what to keep and what to cut. All instructional programs are ranked and judged in categories ranging from required to optional. (MLF)

  6. Cutting Cakes Correctly

    CERN Document Server

    Hill, Theodore P

    2008-01-01

    Without additional hypotheses, Proposition 7.1 in Brams and Taylor's book "Fair Division" (Cambridge University Press, 1996) is false, as are several related Pareto-optimality theorems of Brams, Jones and Klamler in their 2006 cake-cutting paper.

  7. Dealing with Cuts (For Parents)

    Science.gov (United States)

    ... MORE ON THIS TOPIC Cellulitis First Aid: Cuts Staph Infections Bites and Scratches First Aid: Falls First Aid: ... What's a Scab? Cellulitis Cuts, Scratches, and Scrapes Staph Infections Dealing With Cuts and Wounds Babysitting: Dealing With ...

  8. Occurrence of blockage in cut stems of Clematis L.

    OpenAIRE

    Agata Jędrzejuk; Julia Rochala

    2013-01-01

    During vase life of cut flowers obstructions in stem xylem vessels develop. Such obstructions may restrict water uptake in stems and its transport towards flowers, thus lowering their ornamental value and longevity. Clematis is a very attractive plant which can be used as a cut flower in floral compositions. However, nothing is known about the histochemical or cytolo- gical nature of xylem blockages occurring in cut stems of this plant. Observations carried out on Clematis cv. 'Solidarność' p...

  9. Steep Cut Construction

    OpenAIRE

    Kumaraswamy, Mohan

    2002-01-01

    One element of the CIVCAL project Web-based resources containing images, tables, texts and associated data on the Steep Cut Construction. This project describes construction of a petrol filling station on Pokfulam Road, Hong Kong. The project was unique in that the necessary area for the filling station was required to be cut from the base of a steeply sloping soil/rock slope adjacent to a busy highway.

  10. Salary cuts and competitiveness

    OpenAIRE

    Haliassos, Michael

    2013-01-01

    There is a prevalent view outside Greece that promotion of competitiveness is tantamount with price reductions for Greek goods and services. Massive horizontal salary cuts appear, at first, to promote competitiveness by reducing unit labor costs and to reduce fiscal deficits by reducing the wage bill of the public sector. Upon closer look, however, horizontal salary cuts have been much greater than needed for Greek competitiveness, providing an alibi vis a vis the Troika for reforms that are ...

  11. Conceptual study of an advanced VTOL transport aircraft; Kosoku VTOL ki no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Endo, M.; Matsuda, Y.; Sugiyama, N.; Watanabe, M.; Sugahara, N.; Yamamoto, K. [National Aerospace Laboratory, Tokyo (Japan)

    1996-05-01

    The concept of the advanced 100-passenger class VTOL aircraft equipped with new lift fan engines was clarified as domestic passenger aircraft for the 21st century. Under the assumption of a total weight of 40 tons, a seat fuselage diameter of 3.3m as small as possible and a short seat pitch, the airframe shape satisfying a target performance was obtained without any problems about aerodynamic stability, operability and control capability, and noise lower than that of small helicopters was also estimated. In the case of 10 tons in airframe payload and 8 tons in fuel, even if light-weight composite materials were used for most of parts including fuselage structure, a total weight summed to 42.3 tons exceeding a target by 2.3 tons. As this VTOL aircraft was limited to domestic flight use only, the total weight could be reduced without any change in airframe shape and number of passengers by reducing the payload (baggage weight can be probably reduced by 2 tons/100 passengers in the future domestic flight) and fuel (cruising range around 2500km can be secured even if fuel is reduced by 0.3 tons). In conclusion, this concept was thus technologically reasonable. 6 refs., 15 figs., 6 tabs.

  12. Recent advances in radiation transport simulation capabilities at Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    The use of SCALE 4.3 and the ITS 3.0 codes by Atlantic Nuclear Services Ltd. for the Point Lepreau Generating Station offers an efficient and accurate means to solve radiation transport problems in many diverse areas, including health physics, plant operation and accident analysis. Two recent studies demonstrate the usefulness of these tow code suites for solving highly complex problems involving channel decay heat following shut-down and hydrogen radiolysis in containment, following a loss of coolant accident (LOCA). This paper summarizes the application of the SCALE 4.3 and ITS 3.0 codes in modelling and simulation in these studies. The objective of the decay heat study was to determine the distribution of heat in the fuel channel and its surrounding after a reactor shutdown. The purpose of the study of hydrogen radiolysis occurring in containment, following a LOCA was to determine the production rate of hydrogen gas in the sump water in the reactor building

  13. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  14. Cutting Method of the CAD model of the Nuclear facility for Dismantling Simulation

    International Nuclear Information System (INIS)

    Current methods for process simulation cannot simulate the cutting operation flexibly. As is, to simulate a cutting operation, user needs to prepare the result models of cutting operation based on pre-define cutting path, depth and thickness with respect to a dismantle scenario in advance. And those preparations should be built again as scenario changes. To be, user can change parameters and scenarios dynamically within a simulation configuration process so that the user saves time and efforts to simulate cutting operations. This study presents the methodology of cutting operation which can be applied to all the procedure in the simulation of dismantling of nuclear facilities. We developed the cutting simulation module for cutting operation in the dismantling of the nuclear facilities based on proposed cutting methodology. We defined the requirement of model cutting methodology based on the requirement of the dismantling of nuclear facilities. And we implemented cutting simulation module based on API of the commercial CAD system

  15. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    Science.gov (United States)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-06-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  16. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    Science.gov (United States)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  17. Switch to Diesels Cuts Transportation Costs.

    Science.gov (United States)

    Meyer, Kay

    1982-01-01

    Since the acquisition of diesel-powered school buses for the Half Hollow Hills (New York) School District, fuel efficiency has doubled. This has helped cover the costs of refurbishing older buses and establishing a more sophisticated shop operation and more efficient recordkeeping. (Author/MLF)

  18. Development of plasma cutting process at observation of environmental requirements

    International Nuclear Information System (INIS)

    Plasma cutting is one of the basic methods for thermal cutting of metals. It is characterized by high productivity and quality of the cut surface. However, the plasma cutting process is one of the most harmful processes for environment and human health. It results from many agents being a potential environmental risk The large amount of dust and gases emitted during the process as well as an intensive radiation of electric arc and excessive noise are considered as the most harmful hazards. The existing ventilation and filtration systems are not able to solve all problems resulting from the process. Plasma cutting under water is worthy of notice, especially during an advancement of plasma cutting process, because of human safety and environment protection. Such a solution allows to reduce considerably the emission of dust and gases, as well as to decrease the noise level and ultraviolet radiation. An additional advantage of underwater plasma cutting is a reduction in the width of material heating zone and a decrease in strains of elements being cut. However, the productivity of this process is a little lower what results in an increase in cutting cost. In the paper, it has been presented the results of the investigations made at the Institute of Welding in Gliwice on the area of plasma cutting equipment with energy-saving inverter power supplies used in automated processes of underwater plasma cutting as well as the results of testing of welding environment contamination and safety hazards. (author)

  19. The SOCOL version 3.0 chemistry–climate model: description, evaluation, and implications from an advanced transport algorithm

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2013-09-01

    Full Text Available We present the third generation of the coupled chemistry–climate model (CCM SOCOL (modeling tools for studies of SOlar Climate Ozone Links. The most notable modifications compared to the previous model version are (1 the dynamical core has been updated with the fifth generation of the middle-atmosphere general circulation model MA-ECHAM (European Centre/HAMburg climate model, and (2 the advection of the chemical species is now calculated by a mass-conserving and shape-preserving flux-form transport scheme instead of the previously used hybrid advection scheme. The whole chemistry code has been rewritten according to the ECHAM5 infrastructure and transferred to Fortran95. In contrast to its predecessors, SOCOLvs3 is now fully parallelized. The performance of the new SOCOL version is evaluated on the basis of transient model simulations (1975–2004 with different horizontal (T31 and T42 resolutions, following the approach of the CCMVal-1 model validation activity. The advanced advection scheme significantly reduces the artificial loss and accumulation of tracer mass in regions with strong gradients that was observed in previous model versions. Compared to its predecessors, SOCOLvs3 generally shows more realistic distributions of chemical trace species, especially of total inorganic chlorine, in terms of the mean state, but also of the annual and interannual variability. Advancements with respect to model dynamics are for example a better representation of the stratospheric mean state in spring, especially in the Southern Hemisphere, and a slowdown of the upward propagation in the tropical lower stratosphere. Despite a large number of improvements model deficiencies still remain. Examples include a too-fast vertical ascent and/or horizontal mixing in the tropical stratosphere, the cold temperature bias in the lowermost polar stratosphere, and the overestimation of polar total ozone loss during Antarctic springtime.

  20. The SOCOL version 3.0 chemistry-climate model: description, evaluation, and implications from an advanced transport algorithm

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2012-10-01

    Full Text Available We present the third generation of the coupled chemistry-climate model (CCM SOCOL (modeling tools for studies of SOlar Climate Ozone Links. The most notable modifications compared to the previous model version are: (1 the dynamical core has been updated with the fifth generation of the middle-atmosphere general circulation model MA-ECHAM, and (2 the advection of the chemical species is now calculated by a mass-conserving and shape-preserving flux-form transport scheme instead of the previously used hybrid advection scheme. The whole chemistry code has been rewritten according to the ECHAM5 infrastructure and transferred to Fortran95. In contrast to its predecessors, SOCOLvs3 is now fully parallelized. The performance of the new SOCOL version is evaluated on the basis of transient model simulations (1975–2004 with different horizontal (T31 and T42 resolutions, following the approach of the CCMVal-1 model validation activity. The advanced advection scheme significantly reduces the artificial loss and accumulation of tracer mass in regions with strong gradients that was observed in previous model versions. Compared to its predecessors, SOCOLvs3 generally shows more realistic distributions of chemical trace species, especially of total inorganic chlorine, in terms of the mean state, but also of the annual and interannual variability. Advancements with respect to model dynamics are for example a better representation of the stratospheric mean state in spring, especially in the Southern Hemisphere, and a slowdown of the upward propagation in the tropical lower stratosphere. Despite a large number of improvements model deficiencies still remain. Examples include a too fast vertical ascent and/or horizontal mixing in the tropical stratosphere, the cold temperature bias in the lowermost polar stratosphere, and the overestimation of polar total ozone loss during Antarctic springtime.

  1. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining t...

  2. Theoretical Models for Orthogonal Cutting

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”......This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”...

  3. Silencing of Human CutC Gene (hCutC) Induces Apoptosis in HepG2 Cells.

    Science.gov (United States)

    Kunjunni, Remesh; Sathianathan, Sandeep; Behari, Madhuri; Chattopadhyay, Parthaprasad; Subbiah, Vivekanandhan

    2016-07-01

    Copper is an essential microelement required for maintaining normal cell physiology. Copper transporter CutC is one of the six members of Cut family proteins, involved in prokaryotic copper homeostasis. Human homolog of CutC (hCutC) is an intracellular copper-binding protein with unknown physiological function. In the present study using HepG2 cells, we report the effects of hCutC knockdown on copper sensitivity and morphology of cells that ultimately leads to apoptosis. We silenced hCutC using specific small interfering RNA (siRNA), and its downregulation was confirmed by quantitative real-time PCR. Though there was no significant variation in total cellular copper as estimated by inductively coupled plasma-atomic emission spectrometry (ICP-AES), knockdown of hCutC caused an increase in sensitivity of HepG2 cells to copper loads when compared to control cells (studied by MTT-based cell viability assay). Morphological analysis by transmission electron microscopy (TEM) indicated onset of apoptosis in hCutC-silenced cells which was exacerbated upon copper treatment. Mitochondrial transmembrane potential (ΔΨm) assay and DNA fragmentation assay further ensured apoptosis occurring in cells upon hCutC silencing. The present study reveals copper induced damage in cells upon hCutC silencing and provides evidence for the role of hCutC protein in intracellular copper homeostasis. PMID:26660891

  4. Development of integrated real-time control of internal transport barriers in advanced operation scenarios on JET

    International Nuclear Information System (INIS)

    Full text: An important experimental programme is in progress on JET to investigate plasma control schemes which could enable advanced tokamak operation scenarios to eventually provide steady state burning plasmas in ITER. In particular, we have recently developed a multi-variable model-based technique for the simultaneous control of the current and pressure profiles in discharges with internal transport barriers (ITB), using lower hybrid current drive (LHCD) together with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). The proposed control scheme relies on the experimental identification of a linearized integral model operator and retains the intrinsic couplings between the plasma parameter profiles, as well as their distributed nature. A first set of experiments was performed in the low-density/ low-power LH-driven phase of the JET advanced scenarios, using only one actuator (LHCD) and a lumped-parameter version of the algorithm. Several requested steady state magnetic equilibria (defined by the values of the safety factor at 5 specified radii) were thus obtained and sustained for about 7s, up to full relaxation of the ohmic current throughout the plasma. Then, more interestingly in view of high power operation, a second set of experiments was dedicated to the control of the q-profile during the intense heating phase of advanced scenarios. The safety factor profile was also shown to approach a requested profile (again defined by its values at 5 radii) within about 5s. The achieved plasma equilibrium state was close to steady state. Finally, during the recent high power experimental campaign, experiments have been conducted in a 3T/1.7MA plasma, achieving for the first time the simultaneous control of the current density and electron temperature profiles in ITB plasmas. Here, the distributed-parameter version of the algorithm was used, with 3 actuators (LHCD, NBI and ICRH), and 8 output parameters [the profiles are projected upon 5 cubic

  5. Collaborating To Cut Costs.

    Science.gov (United States)

    Strosnider, Kim

    1998-01-01

    Private colleges across the country are collaborating to cut costs, streamline services, and increase efficiency. An ambitious Ohio project, involving 35 colleges, to redesign business operations hopes to save $20-25 million. Other efforts include joint classes using interactive television, shared library resources, cross-registration, jointly…

  6. Cutting Cakes Carefully

    Science.gov (United States)

    Hill, Theodore P.; Morrison, Kent E.

    2010-01-01

    This paper surveys the fascinating mathematics of fair division, and provides a suite of examples using basic ideas from algebra, calculus, and probability which can be used to examine and test new and sometimes complex mathematical theories and claims involving fair division. Conversely, the classical cut-and-choose and moving-knife algorithms…

  7. The size effect in metal cutting

    Indian Academy of Sciences (India)

    Milton C Shaw

    2003-10-01

    When metal is removed by machining there is substantial increase in the specific energy required with decrease in chip size. It is generally believed this is due to the fact that all metals contain defects (grain boundaries, missing and impurity atoms, etc.), and when the size of the material removed decreases, the probability of encountering a stress-reducing defect decreases. Since the shear stress and strain in metal cutting is unusually high, discontinuous microcracks usually form on the metal-cutting shear plane. If the material being cut is very brittle, or the compressive stress on the shear plane is relatively low, microcracks grow into gross cracks giving rise to discontinuous chip formation. When discontinuous microcracks form on the shear plane they weld and reform as strain proceeds, thus joining the transport of dislocations in accounting for the total slip of the shear plane. In the presence of a contaminant, such as CCl4 vapour at a low cutting speed, the rewelding of microcracks decreases, resulting in decrease in the cutting force required for chip formation. A number of special experiments are described in the paper that support the transport of microcracks across the shear plane, and the important role compressive stress plays on the shear plane. Relatively recently, an alternative explanation for the size effect in cutting was provided based on the premise that shear stress increases with increase in strain rate. When an attempt is made to apply this to metal cutting by Dinesh et al (2001) it is assumed in the analysis that the von Mises criterion pertains to the shear plane. This is inconsistent with the experimental findings of Merchant. Until this difficulty is taken care of, together with the promised experimental verification of the strain rate approach, it should be assumed that the strain rate effect may be responsible for some notion of the size effect in metal cutting. However, based on the many experiments discussed here, it is

  8. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Quantum Dynamical Resonances in Ch

  9. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study o

  10. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  11. Advances in chemical Physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  12. Methods of Cut-Elimination

    CERN Document Server

    Baaz, Matthias

    2011-01-01

    This is the first book on cut-elimination in first-order predicate logic from an algorithmic point of view. Instead of just proving the existence of cut-free proofs, it focuses on the algorithmic methods transforming proofs with arbitrary cuts to proofs with only atomic cuts (atomic cut normal forms, so-called ACNFs). The first part investigates traditional reductive methods from the point of view of proof rewriting. Within this general framework, generalizations of Gentzen's and Sch\\"utte-Tait's cut-elimination methods are defined and shown terminating with ACNFs of the original proof. M

  13. Laser cutting nozzle

    Science.gov (United States)

    Ramos, Terry J.

    1984-01-01

    A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece. BACKGROUND OF THE INVENTION

  14. How Can I Stop Cutting?

    Science.gov (United States)

    ... 2 • 3 • 4 For Teens For Kids For Parents MORE ON THIS TOPIC Teens Talk About Cutting Do People Who Self-Injure Have to Be Hospitalized? Stress & Coping Center Stress Cutting How Can I Help a ...

  15. Cutting agents for special metals

    International Nuclear Information System (INIS)

    The quantity of use of special metals has increased year after year in the Plasma Research Institute, Nagoya University, with the development of researches on plasma and nuclear fusion. Most of these special metals are hard to cut, and in order to secure the surface smoothness and dimensional accuracy, considerable efforts are required. The method of experiment is as follows: cutting agents salt water and acetone, rape-seed oil, sulfide and chloride oil and water soluble cutting oil W grade 3; metals to be cut niobium, molybdenum, tantalum, titanium and tungsten; cutting conditions cutting speed 4.7 to 90 m/min, feed 0.07 to 0.2 mm/rev, depth of cut 0.1 to 0.4 mm, tool cemented carbide bit. Chemicals such as tetrachloromethane and trichloroethane give excellent cutting performance, but the toxicity is intense and the stimulative odor exists, accordingly they are hard to use practically. Cutting was easier when the salt water added with acetone was used than the case of rape-seed oil, but salt water is corrosive. Recently, the machining of molybdenum has been often carried out, and the water soluble cutting oil was the best. It is also good for cutting stainless steel, and its lubricating property is improved by adding some additives such as sulfur, chlorine, phosphorus and molybdenum disulfide. However after cutting with it, washing is required. (Kako, I.)

  16. 粉末表面涂层陶瓷的硬质合金刀具材料%Advanced Cutting Tool Material by Hot-Pressing Ceramic Coated Carbide Powders

    Institute of Scientific and Technical Information of China (English)

    陈元春; 黄传真; 艾兴; 王宝友

    2000-01-01

    Carbide powders were coated with very thin alumina films by the sol-gel process. The coated powders were then hot-pressed as a novel cutting tool material. This material possessed relatively high hardness, which led to similar wear resistant ability with ceramics. At the same time, its bending strength and toughness were higher than that of the ceramic cutting tool materials with similar composition. As a result, these tools show good performance in cutting high-hardness materials. SEM and TEM photographs of coated powders and fracture surface were presented as an aid to illustrate the strengthen mechanism.%使用溶胶-凝胶法在硬质合金粉末表面涂覆了一层氧化铝陶瓷,涂层粉末经热压烧结后, 制得一种新型的涂层刀具材料. 这种刀具材料的耐磨性与陶瓷材料接近,并且具有较高的强度和韧性,在切削高硬度材料时表现出良好性能,具有广阔的应用前景.

  17. High performance cutting of aircraft and turbine components

    Science.gov (United States)

    Krämer, A.; Lung, D.; Klocke, F.

    2012-04-01

    Titanium and nickel-based alloys belong to the group of difficult-to-cut materials. The machining of these high-temperature alloys is characterized by low productivity and low process stability as a result of their physical and mechanical properties. Major problems during the machining of these materials are low applicable cutting speeds due to excessive tool wear, long machining times, and thus high manufacturing costs, as well as the formation of ribbon and snarled chips. Under these conditions automation of the production process is limited. This paper deals with strategies to improve machinability of titanium and nickel-based alloys. Using the example of the nickel-based alloy Inconel 718 high performance cutting with advanced cutting materials, such as PCBN and cutting ceramics, is presented. Afterwards the influence of different cooling strategies, like high-pressure lubricoolant supply and cryogenic cooling, during machining of TiAl6V4 is shown.

  18. Drilling cost-cutting

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, L.E. Jr.

    1996-12-31

    This presentation by Louis E. Capuano, Jr., President, ThermaSource, Inc., discusses cost-cutting in the drilling phase of geothermal energy exploration and production. All aspects of a geothermal project including the drilling must be streamlined to make it viable and commercial. If production could be maximized from each well, there would be a reduction in drilling costs. This could be achieved in several ways, including big hole and multi-hole completion, directional drilling, better knowledge of the resource and where to penetrate, etc.

  19. Simultaneous Cake Cutting

    DEFF Research Database (Denmark)

    Balkanski, Eric; Branzei, Simina; Kurokawa, David;

    2014-01-01

    We introduce the simultaneous model for cake cutting (the fair allocation of a divisible good), in which agents simultaneously send messages containing a sketch of their preferences over the cake. We show that this model enables the computation of divisions that satisfy proportionality — a popular...... fairness notion — using a protocol that circumvents a standard lower bound via parallel information elicitation. Cake divisions satisfying another prominent fairness notion, envy-freeness, are impossible to compute in the simultaneous model, but admit arbitrarily good approximations....

  20. Advanced reactors and novel reactions for the conversion of triglyceride based oils into high quality renewable transportation fuels

    Science.gov (United States)

    Linnen, Michael James

    Sustainable energy continues to grow more important to all societies, leading to the research and development of a variety of alternative and renewable energy technologies. Of these, renewable liquid transportation fuels may be the most visible to consumers, and this visibility is further magnified by the long-term trend of increasingly expensive petroleum fuels that the public consumes. While first-generation biofuels such as biodiesel and fuel ethanol have been integrated into the existing fuel infrastructures of several countries, the chemical differences between them and their petroleum counterparts reduce their effectiveness. This gives rise to the development and commercialization of second generation biofuels, many of which are intended to have equivalent properties to those of their petroleum counterparts. In this dissertation, the primary reactions for a second-generation biofuel process, known herein as the University of North Dakota noncatalytic cracking process (NCP), have been studied at the fundamental level and improved. The NCP is capable of producing renewable fuels and chemicals that are virtually the same as their petroleum counterparts in performance and quality (i.e., petroleum-equivalent). In addition, a novel analytical method, FIMSDIST was developed which, within certain limitations, can increase the elution capabilities of GC analysis and decrease sample processing times compared to other high resolution methods. These advances are particularly useful for studies of highly heterogeneous fuel and/or organic chemical intermediates, such as those studied for the NCP. However the data from FIMSDIST must be supplemented with data from other methods such as for certain carboxylic acid, to provide accurate, comprehensive results, From a series of TAG cracking experiments that were performed, it was found that coke formation during cracking is most likely the result of excessive temperature and/or residence time in a cracking reactor. Based on this

  1. CO2 laser cutting

    CERN Document Server

    Powell, John

    1998-01-01

    The laser has given manufacturing industry a new tool. When the laser beam is focused it can generate one of the world's most intense energy sources, more intense than flames and arcs, though similar to an electron beam. In fact the intensity is such that it can vaporise most known materials. The laser material processing industry has been growing swiftly as the quality, speed and new manufacturing possibilities become better understood. In the fore of these new technologies is the process of laser cutting. Laser cutting leads because it is a direct process substitu­ tion and the laser can usually do the job with greater flexibility, speed and quality than its competitors. However, to achieve these high speeds with high quality con­ siderable know how and experience is required. This information is usually carefully guarded by the businesses concerned and has to be gained by hard experience and technical understanding. Yet in this book John Powell explains in lucid and almost non­ technical language many o...

  2. Advances in chemical physics

    CERN Document Server

    Prigogine, Ilya

    2009-01-01

    The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

  3. Simulation of the Cuttings Cleaning During the Drilling Operation

    Directory of Open Access Journals (Sweden)

    Hussain H. Al-Kayiem

    2010-01-01

    Full Text Available Problem statement: Oil well cleaning is the ability of a drilling fluid to suspend and transport drilled cuttings from the down hole (bit face to the surface. The cleaning performance was affected by many factors such as fluid viscosity, annular flow velocity, angle of inclination and drill cuttings size and shape and. Approach: Navier-Stoke equations, the continuity equation and the power law of non-Newtonian viscosity model were adopted to establish the mathematical model of the cutting transport process in the annulus of the well. The constants of the power law model were evaluated experimentally for three different mud types. The CFD simulation to solve the governing equations was carried out by using FLUENT commercial code. The specifications of the particles, the pumping head and feeding conditions were obtained from a drilling site in Sudan. Results: Simulation of the mud flow in the annulus had shown that in spite of the laminar nature of the flow, the velocity profile was flattening over wide area of the annulus. Such condition was referred to as fog flow and was preferable to produce uniform drag distribution to lift the particles without rotation during the transportation process. The analysis had been conducted for various mud charging rates ranging from 600-900 GPM, in 30° diverted orientation well. The investigation of cuttings size was conducted for 2.54, 4.45 and 7 mm. Also, the effect of the cuttings shape with 1, 0.9 and 0.85 was investigated and it was found that higher sphereicity have better cleaning efficiency. Conclusion: The analyses revealed that for 30° diverted orientation; the effective cleaning performance was achieved when the drilling mud charging was higher than 800 GPM for all types of tested cuttings. The simulation results revealed that there was a significant effect of the cuttings size on the cuttings transport. Fine particles are the easiest to clean out.

  4. 鲜切果蔬变色及其控制技术研究进展%Research advances on discoloration of fresh-cut fruits and vegetables and its control

    Institute of Scientific and Technical Information of China (English)

    何凤平; 潘永贵

    2015-01-01

    Discoloration, which is the most important factors affecting the appearance quality of fresh-cut fruits and vegetables, can also affect its nutritional value and flavor. This paper summarized the discolored phenomenon and mechanism of fresh-cut fruits and vegetables, including browning, etiolation, leucismus, degreening, and so on. In addition, current control technologies for discoloration of fresh-cut fruits and vegetables are also reviewed, mainly including chemical methods such as chemical color fixatives, edible coating films, natural plants extract, etc., physical methods such as low temperature storage, heat treatment, modified atmosphere packaging (MAP), ultrasonic treatment, etc. and comprehensive treatment methods, which could provide reference for later related researchers.%影响鲜切果蔬外观品质最主要因素之一是变色。变色不仅影响鲜切果蔬外观品质,而且会影响其营养价值、风味等。本文主要概述了鲜切果蔬主要变色现象,包括褐变、黄化、白变和脱绿等,阐述了几种变色的机制及极易出现这几种变色现象的鲜切果蔬种类,同时还综述了目前控制鲜切果蔬变色的技术,主要包括化学方法(如化学护色剂处理、可食性涂膜、天然植物提取液处理等)、物理方法(如低温贮藏、热处理、气调贮藏、超声波处理等)和综合处理方法,以期为以后相关研究者提供参考借鉴。

  5. Checking Out Cuts, Scratches, and Abrasions

    Science.gov (United States)

    ... Skating Crushes What's a Booger? Checking Out Cuts, Scratches, and Abrasions KidsHealth > For Kids > Checking Out Cuts, ... weren't wearing kneepads. How Do Cuts and Scratches Heal? After getting a cut, scratch, or abrasion, ...

  6. The Cutting Process, Chips and Cutting Forces in Machining CFRP

    DEFF Research Database (Denmark)

    Koplev, A.; Lystrup, Aage; Vorm, T.

    1983-01-01

    The cutting of unidirectional CFRP, perpendicular as well as parallel to the fibre orientation, is examined. Shaping experiments, ‘quick-stop’ experiments, and a new chip preparation technique are used for the investigation. The formation of the chips, and the quality of the machined surface is d...... discussed. The cutting forces parallel and perpendicular to the cutting direction are measured for various parameters, and the results correlated to the formation of chips and the wear of the tool....

  7. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    Science.gov (United States)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  8. Vortex cutting in superconductors

    Science.gov (United States)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  9. Unconventional methods of material cutting

    OpenAIRE

    Rusz, Radek

    2009-01-01

    The present bachelor thesis summarizes the findings of unconventional methods of materials cutting. The thesis is only concerned with the most common and most appropriate methods used in practice. The described methods include cutting by laser, plasma, water jet, electron beam and ultrasound. For each of these methods, the principle of current technologies and technological equipment used for materials cutting in industrial practice is described. This thesis compares the individual methods in...

  10. Cutting sequences on translation surfaces

    OpenAIRE

    Davis, Diana

    2013-01-01

    We analyze the cutting sequences associated to geodesic flow on a large class of translation surfaces, including Bouw-Moller surfaces. We give a combinatorial rule that relates a cutting sequence corresponding to a given trajectory, to the cutting sequence corresponding to the image of that trajectory under the parabolic element of the Veech group. This extends previous work for regular polygon surfaces to a larger class of translation surfaces. We find that the combinatorial rule is the same...

  11. An Advanced Integrated Diffusion/Transport Method for the Design, Analysis and Optimization of the Very-High-Temperature Reactors

    International Nuclear Information System (INIS)

    The main objective of this research is to develop an integrated diffusion/transport (IDT) method to substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High Temperature Reactors (VHTR). Because of the presence of control rods in the reflector regions in the Pebble Bed Reactor (PBR-VHTR), traditional nodal diffusion methods do not accurately model these regions, within which diffusion theory breaks down in the vicinity of high neutron absorption and steep flux gradients. The IDT method uses a local transport solver based on a new incident flux response expansion method in the controlled nodes. Diffusion theory is used in the rest of the core. This approach improves the accuracy of the core solution by generating transport solutions of controlled nodes while maintaining computational efficiency by using diffusion solutions in nodes where such a treatment is sufficient. The transport method is initially developed and coupled to the reformulated 3-D nodal diffusion model in the CYNOD code for PBR core design and fuel cycle analysis. This method is also extended to the prismatic VHTR. The new method accurately captures transport effects in highly heterogeneous regions with steep flux gradients. The calculations of these nodes with transport theory avoid errors associated with spatial homogenization commonly used in diffusion methods in reactor core simulators

  12. An Advanced Integrated Diffusion/Transport Method for the Design, Analysis and Optimization of the Very-High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Farzad Rahnema; Dingkang Zhang; Abderrafi Ougouag; Frederick Gleicher

    2011-04-04

    The main objective of this research is to develop an integrated diffusion/transport (IDT) method to substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High Temperature Reactors (VHTR). Because of the presence of control rods in the reflector regions in the Pebble Bed Reactor (PBR-VHTR), traditional nodal diffusion methods do not accurately model these regions, within which diffusion theory breaks down in the vicinity of high neutron absorption and steep flux gradients. The IDT method uses a local transport solver based on a new incident flux response expansion method in the controlled nodes. Diffusion theory is used in the rest of the core. This approach improves the accuracy of the core solution by generating transport solutions of controlled nodes while maintaining computational efficiency by using diffusion solutions in nodes where such a treatment is sufficient. The transport method is initially developed and coupled to the reformulated 3-D nodal diffusion model in the CYNOD code for PBR core design and fuel cycle analysis. This method is also extended to the prismatic VHTR. The new method accurately captures transport effects in highly heterogeneous regions with steep flux gradients. The calculations of these nodes with transport theory avoid errors associated with spatial homogenization commonly used in diffusion methods in reactor core simulators

  13. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period Phase 2

    Science.gov (United States)

    Morgenstern, John; Buonanno, Michael; Yao, Jixian; Murugappan, Mugam; Paliath, Umesh; Cheung, Lawrence; Malcevic, Ivan; Ramakrishnan, Kishore; Pastouchenko, Nikolai; Wood, Trevor; Martens, Steve; Viars, Phil; Tersmette, Trevor; Lee, Jason; Simmons, Ron; Plybon, David; Alonso, Juan; Palacios, Francisco; Lukaczyk, Trent; Carrier, Gerald

    2015-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR) and Stanford University, executed a 19 month program responsive to the NASA sponsored "N+2 Supersonic Validation: Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period" contract. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies necessary to realize a supersonic vehicle capable of meeting the N+2 environmental and performance goals. The N+2 program is aligned with NASA's Supersonic Project and is focused on providing system level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight. The N+2 environmental and performance goals are outlined in the technical paper, AIAA-2014-2138 (Ref. 1) along with the validated N+2 Phase 2 results. Our Phase 2 efforts built upon our Phase 1 studies (Ref. 2) and successfully demonstrated the ability to design and test realistic configurations capable of shaped sonic booms over the width of the sonic boom carpet. Developing a shaped boom configuration capable of meeting the N+2 shaped boom targets is a key goal for the N+2 program. During the LM Phase 1 effort, LM successfully designed and tested a shaped boom trijet configuration (1021) capable of achieving 85 PLdB under track (forward and aft shock) and up to 28 deg off-track at Mach 1.6. In Phase 2 we developed a refined configuration (1044-2) that extended the under 85 PLdB sonic boom level over the entire carpet of 52 deg off-track at a cruise Mach number of 1.7. Further, the loudness level of the configuration throughout operational conditions calculates to an average of 79 PLdB. These calculations rely on propagation employing Burger's (sBOOM) rounding methodology, and there are indications that the configuration average loudness would actually be 75 PLdB. We also added

  14. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  15. Recent advances in the application of Boltzmann equation and fluid equation methods to charged particle transport in non-equilibrium plasmas

    International Nuclear Information System (INIS)

    The kinetic theory of charged particles in gases has come a long way in the last 60 years or so, but many of the advances have yet to find their way into contemporary studies of low-temperature plasmas. This review explores the way in which this gap might be bridged, and focuses in particular on the analytic framework and numerical techniques for the solution of Boltzmann's equation for both electrons and ions, as well as on the development of fluid models and semi-empirical formulae. Both hydrodynamic and non-hydrodynamic regimes are considered and transport properties are calculated in various configurations of dc and ac electric and magnetic fields. We discuss in particular the duality in transport coefficients arising from non-conservative collisions (attachment, ionization). (review article)

  16. Proceedings of the Prop'Elec 2000 colloquium. Advances of electric drive in urban transportation systems; Actes du colloque Prop'Elec 2000. Progres de la traction electrique dans les transports urbains

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document is the proceedings of Prop'Elec 2000 colloquium on the advances in electric power drive in urban transportation systems. The colloquium comprises 5 sessions dealing with: 1 - public collective electric-powered transportation system: synthesis of urban guided systems (C. Soulas, INRETS), the fast travelator (A. Cote, RATP), the power supply system of METEOR automatic underground railway (P. Lagrange, W. Seiler, RATP); 2 - electrical drive in urban transportation systems: start-up of a thermal engine with super-capacitors (D. Bouquain (CREEBEL), H. Gualous, A. Djerdir, A. Berthon, J.M. Kauffmann (L2ES, IGE)), The LEV (light weight electric vehicle) project in Mendrisio (U. Schwegler, LEV/Suisse), prototype of electrical bike that use a wheel-engine (C. Espanet, F. Gustin, J.M. Kauffmann (IGE), S. Robert, M. Karmous (EICN)), TWIL: a new generation of small electrical bikes (E. Escallot, T. Bontems (EPMI)), thermal and magnetic analysis of a rectilinear movement actuator (J.C. Vannier, M. Kadiri (SUPELEC)), torque undulation and vibrations in automobile electrical drives (A.L. Bui-Van (Renault), A. Fonseca (LEG)); 3 - collective electric-powered transportation systems: STARS: autonomous transportation system with flywheel charging at the station (P. Gibard (Alstom Transport), K. Abuda, J.M. Vinassa (IXL Bordeaux)), Translhor tramway: presentation of the drive system (L. Verdier, LHOR); 4 - electric-powered and hybrid vehicles: batteries for electric-powered vehicles (J.F. Fauvarque, CNAM), Li-ion batteries and their application in automotive industry (T. Faugeras, SAFT), optimized drive systems for electric-powered vehicles (J. Saint-Michel, Leroy Somer), the Citroen Xsara Dynactive (S. Derou, PSA), 5 - electric-powered and hybrid vehicles: the electrical car in tomorrows' city (M. Parent, INRIA), the market of electric-powered vehicles in France and Europe (M. Valet, PSA). (J.S.)

  17. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton;

    2016-01-01

    The constructions of advanced architectural designs are presently very labour intensive, time consuming, and expensive. They are therefore only applied to a few prestige projects, and it is a major challenge for the building industry to bring the costs down and thereby offer the architects more....... The project aims to reduce the amount of manual labour as well as production time by applying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology where the surfaces are essentially swept out...

  18. Will Intel Grow Through Cuts?

    Institute of Scientific and Technical Information of China (English)

    DAN; STEINBOCK

    2006-01-01

    Short-term cuts, perhaps, but long-term growth in China may be inevitable T he world's largest chipmaker, Intel, is sending a ripple effect through its pool of labor globally, including in China, with the announcement of deep workforce cuts.

  19. OPTIMAL CONTROL OF CNC CUTTING PROCESS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The intelligent optimizing method of cutting parameters and the cutting stable districts searching method are set up. The cutting parameters of each cutting pass could be optimized automatically, the cutting chatter is predicted through setting up the dynamic cutting force AR(2) model on-line, the spindle rotation speed is adjusted according to the predicting results so as to ensure the cutting system work in stable district.

  20. Online Cake Cutting (published version)

    CERN Document Server

    Walsh, Toby

    2011-01-01

    We propose an online form of the cake cutting problem. This models situations where agents arrive and depart during the process of dividing a resource. We show that well known fair division procedures like cut-and-choose and the Dubins-Spanier moving knife procedure can be adapted to apply to such online problems. We propose some fairness properties that online cake cutting procedures can possess like online forms of proportionality and envy-freeness. We also consider the impact of collusion between agents. Finally, we study theoretically and empirically the competitive ratio of these online cake cutting procedures. Based on its resistance to collusion, and its good performance in practice, our results favour the online version of the cut-and-choose procedure over the online version of the moving knife procedure.

  1. Novel fungal disease in complex leaf-cutting ant societies

    DEFF Research Database (Denmark)

    Hughes, David Peter; Evans, Harry C.; Hywel-Jones, Nigel;

    2009-01-01

    1. The leaf-cutting ants practise an advanced system of mycophagy where they grow a fungus as a food source. As a consequence of parasite threats to their crops, they have evolved a system of morphological, behavioural, and chemical defences, particularly against fungal pathogens (mycopathogens). 2....... Specific fungal diseases of the leaf-cutting ants themselves have not been described, possibly because broad spectrum anti-fungal defences against mycopathogens have reduced their susceptibility to entomopathogens. 3. Using morphological and molecular tools, the present study documents three rare infection...... events of Acromyrmex and Atta leaf-cutting ants by Ophiocordyceps fungi, agenus of entomopathogens that is normally highly specific in its host choice. 4. As leaf-cutting ants have been intensively studied, the absence of prior records of Ophiocordyceps suggests that these infections may be a novel event...

  2. NATO Advanced Study Institute on International Summer School on Chaotic Dynamics and Transport in Classical and Quantum Systems

    CERN Document Server

    Collet, P; Métens, S; Neishtadt, A; Zaslavsky, G; Chaotic Dynamics and Transport in Classical and Quantum Systems

    2005-01-01

    This book offers a modern updated review on the most important activities in today dynamical systems and statistical mechanics by some of the best experts in the domain. It gives a contemporary and pedagogical view on theories of classical and quantum chaos and complexity in hamiltonian and ergodic systems and their applications to anomalous transport in fluids, plasmas, oceans and atom-optic devices and to control of chaotic transport. The book is issued from lecture notes of the International Summer School on "Chaotic Dynamics and Transport in Classical and Quantum Systems" held in Cargèse (Corsica) 18th to the 30th August 2003. It reflects the spirit of the School to provide lectures at the post-doctoral level on basic concepts and tools. The first part concerns ergodicity and mixing, complexity and entropy functions, SRB measures, fractal dimensions and bifurcations in hamiltonian systems. Then, models of dynamical evolutions of transport processes in classical and quantum systems have been largely expla...

  3. Editorial: Advanced learning technologies

    OpenAIRE

    Yu-Ju Lan; Gang-Shan Fu; Stephen J.H. Yang; Jeff J.S. Huang

    2012-01-01

    Recent rapid development of advanced information technology brings high expectations of its potential to improvement and innovations in learning. This special issue is devoted to using some of the emerging technologies issues related to the topic of education and knowledge sharing, involving several cutting edge research outcomes from recent advancement of learning technologies. Advanced learning technologies are the composition of various related technologies and concepts such as mobile tech...

  4. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  5. Advances in colloid and biocolloid transport in porous media: particle size-dependent dispersivity and gravity effects

    Science.gov (United States)

    Chrysikopoulos, Constantinos V.; Manariotis, Ioannis D.; Syngouna, Vasiliki I.

    2014-05-01

    Accurate prediction of colloid and biocolloid transport in porous media relies heavily on usage of suitable dispersion coefficients. The widespread procedure for dispersion coefficient determination consists of conducting conservative tracer experiments and subsequently fitting the collected breakthrough data with a selected advection-dispersion transport model. The fitted dispersion coefficient is assumed to characterize the porous medium and is often used thereafter to analyze experimental results obtained from the same porous medium with other solutes, colloids, and biocolloids. The classical advection-dispersion equation implies that Fick's first law of diffusion adequately describes the dispersion process, or that the dispersive flux is proportional to the concentration gradient. Therefore, the above-described procedure inherently assumes that the dispersive flux of all solutes, colloids and biocolloids under the same flow field conditions is exactly the same. Furthermore, the available mathematical models for colloid and biocoloid transport in porous media do not adequately account for gravity effects. Here an extensive laboratory study was undertaken in order to assess whether the dispersivity, which traditionally has been considered to be a property of the porous medium, is dependent on colloid particle size, interstitial velocity and length scale. The breakthrough curves were successfully simulated with a mathematical model describing colloid and biocolloid transport in homogeneous, water saturated porous media. The results demonstrated that the dispersivity increases very slowly with increasing interstitial velocity, and increases with column length. Furthermore, contrary to earlier results, which were based either on just a few experimental observations or experimental conditions leading to low mass recoveries, dispersivity was positively correlated with colloid particle size. Also, transport experiments were performed with biocolloids (bacteriophages:

  6. Recent advances in the V and V of the new french cea APOLLO3® neutron transport code. Benchmarks analysis of the flux solvers

    International Nuclear Information System (INIS)

    This paper presents a synthesis of the latest advances in the Verification and Validation (V and V) process of the new French (CEA) deterministic neutron transport code APOLLO3® developed within the framework of a common CEA, AREVA and EDF project. It focuses more precisely on the generic V and V of the main transport flux solvers of the code (namely IDT, Minaret, Pastis, TDT and Minos,) through 1D to 3D international benchmarks (ZPR-1D, Stepanek, C5G7, Takeda). Precise criteria have been defined to assess the quality of each solver by comparison with TRIPOLI4® multigroup Monte-Carlo calculations that have been performed for each configuration. We show that pure transport flux solvers (IDT, Minaret, Pastis and TDT-MOC) based on Sn , Pn and characteristics methods meet the keff target precision criteria (100 pcm) whereas SPn solver (Minos) give satisfactory results within reasonable computation time. The complementary of the APOLLO3® flux solvers set is globally highlighted. (author)

  7. Effect of cutting parameters on chip formation in orthogonal cutting

    OpenAIRE

    Ben Salem, S.; E. Bayraktar; M. Boujelbene; D. Katundi

    2012-01-01

    Purpose: of this paper is to study the chip formation to obtain the optimal cutting conditions and to observe the different chip formation mechanisms. Analysis of machining of a hardened alloy, X160CrMoV12-1 (cold work steel: AISI D2 with a ferritic and cementite matrix and coarse primary carbides), showed that there are relationships between the chip geometry, cutting conditions and the different micrographs under different metallurgical states.Design/methodology/approach: Machining of harde...

  8. An advanced algorithm for construction of Integral Transport Matrix Method operators using accumulation of single cell coupling factors

    International Nuclear Information System (INIS)

    The Integral Transport Matrix Method (ITMM) has been shown to be an effective method for solving the neutron transport equation in large domains on massively parallel architectures. In the limit of very large number of processors, the speed of the algorithm, and its suitability for unstructured meshes, i.e. other than an ordered Cartesian grid, is limited by the construction of four matrix operators required for obtaining the solution in each sub-domain. The existing algorithm used for construction of these matrix operators, termed the differential mesh sweep, is computationally expensive and was developed for a structured grid. This work proposes the use of a new algorithm for construction of these operators based on the construction of a single, fundamental matrix representing the transport of a particle along every possible path throughout the sub-domain mesh. Each of the operators is constructed by multiplying an element of this fundamental matrix by two factors dependent only upon the operator being constructed and on properties of the emitting and incident cells. The ITMM matrix operator construction time for the new algorithm is demonstrated to be shorter than the existing algorithm in all tested cases with both isotropic and anisotropic scattering considered. While also being a more efficient algorithm on a structured Cartesian grid, the new algorithm is promising in its geometric robustness and potential for being applied to an unstructured mesh, with the ultimate goal of application to an unstructured tetrahedral mesh on a massively parallel architecture. (authors)

  9. Investigations into fibre laser cutting

    OpenAIRE

    Hashemzadeh, Majid

    2014-01-01

    Fibre laser cutting of mild steel using oxygen and nitrogen is widely used in industries throughout the world. An IPG YLR-2000 Ytterbium fibre machine with a maximum power of 2 kW and a wavelength of 1.06 µm is used throughout this research. The effects of oxygen and nitrogen as assist gases on the feature of laser cutting process are different in terms of kerf width, surface roughness, heat affected zone and striation pattern. The kerf width in oxygen laser cutting is wider than that for nit...

  10. Preferences of cut flowers consumers

    Directory of Open Access Journals (Sweden)

    Sylwia Kierczyńska

    2010-01-01

    Full Text Available The results of interviews suggest that majority of the cut flowers’ consumers has favourite kind of flower, among which most frequently pointed one was the rose. More than half of the interviewed favour the uniform colour of cut flowers and red colour was the most favourite one. The subtle smell of flowers was the most preferable one but the intensive fragrance was favoured for more consumers than odourless flowers. The data from selected florists’ confirm the information from interviews – in spite of the occasion, roses were the most demanded cut flowers.

  11. Micro Shot Blasting of Machine Tools for Improving Surface Finish and Reducing Cutting Forces in Manufacturing

    OpenAIRE

    Vahey, James, (Thesis); Kennedy, David

    2005-01-01

    Micro blasting of cutting tips and tools is a very effective and reliable method of advancing the life of tools under the action of turning, milling, drilling, punching and cutting. This paper outlines the ways in which micro blasted tools, both coated and un coated have benefited from shot blasting and resulted in greater productivity, lower cutting forces, improved surface finish of the work pieces and less machine downtime. The process of micro blasting is discussed in the paper. Its effec...

  12. The use of advanced communications and internet technology in car transportation to facilitate improvements for both driver and passengers

    OpenAIRE

    Saftah, Rehab Omar

    2015-01-01

    People love and at the same time need to travel. The society grows and develops based on a distributed environment, and the people’s ability to move freely from one place to another is fundamental to keep it functional. Along with trains and commercial trucks for moving goods and materials, the car gives individuals the virtually unlimited ability to travel anywhere in the country in just a matter of hours or days. This thesis focuses on the usage of advanced communications internet techno...

  13. Dining centers cut trans fats

    OpenAIRE

    Gehrt, Katie

    2007-01-01

    Dining Services has pulled ahead of the pack in cutting trans fat from its menus--surpassing restaurants like Burger King, KFC, Taco Bell, and others who have announced that they also will be making the change this spring.

  14. Economic technology of laser cutting

    Science.gov (United States)

    Fedin, Alexander V.; Shilov, Igor V.; Vassiliev, Vladimir V.; Malov, Dmitri V.; Peskov, Vladimir N.

    2000-02-01

    The laser cutting of color metals and alloys by a thickness more than 2 mm has significant difficulties due to high reflective ability and large thermal conduction. We made it possible to raise energy efficiency and quality of laser cutting by using a laser processing system (LPS) consisting both of the YAG:Nd laser with passive Q-switching on base of LiF:F2- crystals and the CO2 laser. A distinctive feature of the LPS is that the radiation of different lasers incorporated in a coaxial beam has simultaneously high level of peak power (more than 400 kW in a TEM00 mode) and significant level of average power (up to 800 W in a TEM01 mode of the CO2 laser). The application of combined radiation for cutting of an aluminum alloy of D16 type made it possible to decrease the cutting energy threshold in 1.7 times, to increase depth of treatment from 2 up to 4 mm, and velocity from 0.015 up to 0.7 m/min, and also to eliminate application of absorptive coatings. At cutting of steels the velocity of treatment was doubled, and also an oxygen flow was eliminated from the technological process and replaced by the air. The obtained raise of energy efficiency and quality of cutting is explained by an essential size reducing of a formed penetration channel and by the shifting of a thermal cutting mode from melting to evaporation. The evaluation of interaction efficiency of a combined radiation was produced on the basis of non-stationary thermal-hydrodynamic model of a heating source moving as in the cutting direction, and also into the depth of material.

  15. Optimization of Cutting Variables in Machining

    Institute of Scientific and Technical Information of China (English)

    Zhang Xueyan; Wu Zhenye; Zhou Guohua

    1996-01-01

    With the three criteria for cutting variables proposed by W. W. Gilbert and K.Hitomi, th is paper analyzes the reasonable selection of cutting variables, and further states the relations among maximum profit-oriented cutting speed,minimum cost-oriented cutting speed and maximum productivity-oriented cutting speed. It puts forward a mathematical model for the optimization of cutting variables in machining.

  16. Hybrid deterministic and stochastic x-ray transport simulation for transmission computed tomography with advanced detector noise model

    Science.gov (United States)

    Popescu, Lucretiu M.

    2016-03-01

    We present a model for simulation of noisy X-ray computed tomography data sets. The model is made of two main components, a photon transport simulation component that generates the noiseless photon field incident on the detector, and a detector response model that takes as input the incident photon field parameters and given the X-ray source intensity and exposure time can generate noisy data sets, accordingly. The photon transport simulation component combines direct ray-tracing of polychromatic X-rays for calculation of transmitted data, with Monte Carlo simulation for calculation of the scattered-photon data. The Monte Carlo scatter simulation is accelerated by implementing particle splitting and importance sampling variance reduction techniques. The detector-incident photon field data are stored as energy expansion coefficients on a refined grid that covers the detector area. From these data the detector response model is able to generate noisy detector data realizations, by reconstituting the main parameters that describe each detector element response in statistical terms, including spatial correlations. The model is able to generate very fast, on the fly, CT data sets corresponding to different radiation doses, as well as detector response characteristics, facilitating data management in extensive optimization studies by reducing the computation time and storage space demands.

  17. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2014-01-01

    Advances in Chemical Physics is the only series of volumes available that explores the cutting edge of research in chemical physics. This is the only series of volumes available that presents the cutting edge of research in chemical physics.Includes contributions from experts in this field of research.Contains a representative cross-section of research that questions established thinking on chemical solutions.Structured with an editorial framework that makes the book an excellent supplement to an advanced graduate class in physical chemistry or chemical physics.

  18. Advanced Virgo

    CERN Multimedia

    Virgo, a first-generation interferometric gravitational wave (GW) detector, located in the European Gravitational Observatory, EGO, Cascina (Pisa-Italy) and constructed by the collaboration of French and Italian institutes (CNRS and INFN) has successfully completed its long-duration data taking runs. It is now undergoing a fundamental upgrade that exploits available cutting edges technology to open an exciting new window on the universe, with the first detection of a gravitational wave signal. Advanced Virgo (AdV) is the project to upgrade the Virgo detector to a second-generation instrument. AdV will be able to scan a volume of the Universe 1000 times larger than initial Virgo. AdV will be hosted in the same infrastructures as Virgo. The Advanced VIRGO project is funded and at present carried on by a larger collaboration of institutes belonging to CNRS- France , RMKI - Hungary, INFN- Italy, Nikhef - The Netherlands Polish Academy of Science - Poland.

  19. An advanced model for grain face diffusion transport in irradiated UO{sub 2} fuel. Part 2: Model implementation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, V.I. [Nuclear Safety Institute (IBRAE), Russian Academy of Sciences, 52, B. Tulskaya, Moscow 115191 (Russian Federation); Veshchunov, M.S., E-mail: vms@ibrae.ac.r [Nuclear Safety Institute (IBRAE), Russian Academy of Sciences, 52, B. Tulskaya, Moscow 115191 (Russian Federation)

    2009-07-01

    The advanced model for intergranular diffusion transport in irradiated UO{sub 2} fuel described in Part 1 is numerically realized. The important model parameters are specified and improvement of the model for the irradiation induced re-solution of gas atoms from the intergranular bubbles is carried out. Implementation of the model in the MFPR code and numerical treatment of various available data on gas release from irradiated fuel and grain face microstructure show a satisfactory agreement of the code predictions with experimental observations. In particular, the main model prediction concerning the onset of gas release from fuel at very low grain face bubble coverage, below the saturation value manifested by formation of bubble network on grain faces, was confirmed by calculations.

  20. 49 CFR 234.237 - Reverse switch cut-out circuit.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reverse switch cut-out circuit. 234.237 Section... Maintenance, Inspection, and Testing Maintenance Standards § 234.237 Reverse switch cut-out circuit. A switch, when equipped with a switch circuit controller connected to the point and interconnected with...

  1. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    International Nuclear Information System (INIS)

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: Charged Particle Beam Transport and the Computation of Electromagnetic Fields and Beam-Cavity Interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates

  2. Ethanol as a fuel for road transportation. Main report; Contribution to IEA Implementing Agreement on Advanced Motor Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Ulrik; Johansen, T.; Schramm, J.

    2009-05-15

    Bioethanol as a motor fuel in the transportation sector, mainly for road transportation, has been subject to many studies and much discussion. Furthermore, the topic involves not only the application and engine technical aspects, but also the understanding of the entire life cycle of the fuel, well-to-wheels, including economical, environmental, and social aspects. It is not, however, the aim of this report to assess every single one of these aspects. The present report aims to address the technical potential and problems as well as the central issues related to the general application of bioethanol as an energy carrier in the near future. In discussions of the advantages and drawbacks of ethanol, the type of application is important. Generalization is not possible, because ethanol can be used in many forms. Furthermore, a wide range of ethanol/gasoline blends has not yet been investigated sufficiently. The most favorable type of application is determined by infrastructural factors, especially vehicle fleet configuration. From a technical point of view, optimal usage involves a high degree of water content in the ethanol, and this excludes low-percentage-ethanol fuels. The benefits seem strongly related to the amount of ethanol in a given blend, that is, the more the better. Both engine efficiencies and emissions improve with more ethanol in the fuel. Wet ethanol constitutes an even cleaner fuel in both the production and application phases. In summary, ethanol application has many possibilities, but with each type of application comes a set of challenges. Nevertheless, technical solutions for each challenge are available. (ln)

  3. On cosmic-ray cut-off terminology

    International Nuclear Information System (INIS)

    The study of cosmic-ray access to location within the geomagnetic field has evolved over the past fifty years. Cosmic-ray cut-off terminology, originally developed to describe particle access and cut-off rigidities, has not evolved with the scientific advances in the field, and misunderstandings and misapplications of historical work have occurred. This paper is an attempt to remedy this situation by clarifying the areas in which changes have occurred and by providing a cross reference between the historical terms and those terms now in use for innovative cosmic-ray studies which are underway in several laboratories

  4. Extensions of cutting problems: setups

    Directory of Open Access Journals (Sweden)

    Sebastian Henn

    2013-08-01

    Full Text Available Even though the body of literature in the area of cutting and packing is growing rapidly, research seems to focus on standard problems in the first place, while practical aspects are less frequently dealt with. This is particularly true for setup processes which arise in industrial cutting processes whenever a new cutting pattern is started (i.e. a pattern is different from its predecessor and the cutting equipment has to be prepared in order to meet the technological requirements of the new pattern. Setups involve the consumption of resources and the loss of production time capacity. Therefore, consequences of this kind must explicitly be taken into account for the planning and control of industrial cutting processes. This results in extensions to traditional models which will be reviewed here. We show how setups can be represented in such models, and we report on the algorithms which have been suggested for the determination of solutions of the respective models. We discuss the value of these approaches and finally point out potential directions of future research.

  5. Cutting inlays with a laser

    Science.gov (United States)

    Swaczyna, Irena; Grabczewski, Zbigniew

    1995-03-01

    To cut inlay from a stack of glued veneer a CO2 HEBAR-1A laser was used. For setting optimal working parameters of the set used in industrial production of inlay the following elements were defined: the shape and dimensions of the cutting fissure, the dependence between the width of the cutting fissure and the speed with which the laser beam moves and the total thickness of the stack of veneer sheets, the application of the laser for cutting various patterns. Computer aided designing and computer steering of the laser beam enables fast and precise production of large numbers of inlay elements not only from wood but also from other materials like glass, stone, metal, etc. Taking into consideration the high running cost of such a laser set and its very big production only few factories or even one factory in the given area could produce inlay ready for gluing. Further investigation should be carried out on this field particularly considering the lowering of costs not only in inlay production but generally where cutting of wood is concerned.

  6. Advanced Control Algorithms for Compensating the Phase Distortion Due to Transport Delay in Human-Machine Systems

    Science.gov (United States)

    Guo, Liwen; Cardullo, Frank M.; Kelly, Lon C.

    2007-01-01

    The desire to create more complex visual scenes in modern flight simulators outpaces recent increases in processor speed. As a result, simulation transport delay remains a problem. New approaches for compensating the transport delay in a flight simulator have been developed and are presented in this report. The lead/lag filter, the McFarland compensator and the Sobiski/Cardullo state space filter are three prominent compensators. The lead/lag filter provides some phase lead, while introducing significant gain distortion in the same frequency interval. The McFarland predictor can compensate for much longer delay and cause smaller gain error in low frequencies than the lead/lag filter, but the gain distortion beyond the design frequency interval is still significant, and it also causes large spikes in prediction. Though, theoretically, the Sobiski/Cardullo predictor, a state space filter, can compensate the longest delay with the least gain distortion among the three, it has remained in laboratory use due to several limitations. The first novel compensator is an adaptive predictor that makes use of the Kalman filter algorithm in a unique manner. In this manner the predictor can accurately provide the desired amount of prediction, while significantly reducing the large spikes caused by the McFarland predictor. Among several simplified online adaptive predictors, this report illustrates mathematically why the stochastic approximation algorithm achieves the best compensation results. A second novel approach employed a reference aircraft dynamics model to implement a state space predictor on a flight simulator. The practical implementation formed the filter state vector from the operator s control input and the aircraft states. The relationship between the reference model and the compensator performance was investigated in great detail, and the best performing reference model was selected for implementation in the final tests. Theoretical analyses of data from offline

  7. Capture and Transport of Laser Accelerated Protons by Pulsed Magnetic Fields: Advancements Toward Laser-Based Proton Therapy

    Science.gov (United States)

    Burris-Mog, Trevor J.

    might look like. A theoretical beam transport system is presented at the end of this dissertation. It shows us that pulse power magnetic optics generating reasonable field strengths can transport a large bandwidth, high kinetic energy proton beam around and into a patient. This gives us insight into the spectrum available per laser pulse at the exit-port of the gantry as well as what types of dose deposition routines and spectral shaping techniques will need to be developed to contour a given dose to a given tumor volume.

  8. Advanced transportation system studies technical area 2 (TA-2): Heavy lift launch vehicle development. volume 3; Program Cost estimates

    Science.gov (United States)

    McCurry, J. B.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.

  9. Equilibrium Analysis in Cake Cutting

    DEFF Research Database (Denmark)

    Branzei, Simina; Miltersen, Peter Bro

    2013-01-01

    Cake cutting is a fundamental model in fair division; it represents the problem of fairly allocating a heterogeneous divisible good among agents with different preferences. The central criteria of fairness are proportionality and envy-freeness, and many of the existing protocols are designed to...... guarantee proportional or envy-free allocations, when the participating agents follow the protocol. However, typically, all agents following the protocol is not guaranteed to result in a Nash equilibrium. In this paper, we initiate the study of equilibria of classical cake cutting protocols. We consider one...... of the simplest and most elegant continuous algorithms -- the Dubins-Spanier procedure, which guarantees a proportional allocation of the cake -- and study its equilibria when the agents use simple threshold strategies. We show that given a cake cutting instance with strictly positive value density...

  10. Cutting temperature measurement and material machinability

    Directory of Open Access Journals (Sweden)

    Nedić Bogdan P.

    2014-01-01

    Full Text Available Cutting temperature is very important parameter of cutting process. Around 90% of heat generated during cutting process is then away by sawdust, and the rest is transferred to the tool and workpiece. In this research cutting temperature was measured with artificial thermocouples and question of investigation of metal machinability from aspect of cutting temperature was analyzed. For investigation of material machinability during turning artificial thermocouple was placed just below the cutting top of insert, and for drilling thermocouples were placed through screw holes on the face surface. In this way was obtained simple, reliable, economic and accurate method for investigation of cutting machinability.

  11. Advances in applications of burnup credit to enhance spent fuel transportation, storage, reprocessing and disposition. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    Given a trend towards higher burnup power reactor fuel, the IAEA began an active programme in burnup credit (BUC) with major meetings in 1997 (IAEA-TECDOC-1013), 2000 (IAEA-TECDOC-1241) and 2002 (IAEA-TECDOC-1378) exploring worldwide interest in using BUC in spent fuel management systems. This publication contains the proceedings of the IAEA's 4th major BUC meeting, held in London. Sixty participants from 18 countries addressed calculation methodology, validation and criticality, safety criteria, procedural compliance with safety criteria, benefits of BUC applications, and regulatory aspects in BUC. This meeting encouraged the IAEA to continue its activities on burnup credit including dissemination of related information, given the number of Member States having to deal with increased spent fuel quantities and extended durations. A 5th major meeting on burnup credit is planned 2008. Burnup credit is a concept that takes credit for the reduced reactivity of fuel discharged from the reactor to improve loading density of irradiated fuel assemblies in storage, transportation, and disposal applications, relative to the assumption of fresh fuel nuclide inventories in loading calculations. This report has described a general four phase approach to be considered in burnup credit implementation. Much if not all of the background research and data acquisition necessary for successful burnup credit development in preparation for licensing has been completed. Many fuel types, facilities, and analysis methods are encompassed in the public knowledge base, such that in many cases this guidance will provide a means for rapid development of a burnup credit program. For newer assembly designs, higher enrichment fuels, and more extensive nuclide credit, additional research and development may be necessary, but even this work can build on the foundation that has been established to date. Those, it is hoped that this report will serve as a starting point with sufficient reference to

  12. Quick cut-elimination for strictly positive cuts

    OpenAIRE

    Arai, Toshiyasu

    2010-01-01

    In this paper we show that the intuitionistic theory for finitely many iterations of strictly positive operators is a conservative extension of the Heyting arithmetic. The proof is inspired by the quick cut-elimination due to G. Mints. This technique is also applied to fragments of Heyting arithmetic.

  13. Quick cut-elimination for strictly positive cuts

    CERN Document Server

    Arai, Toshiyasu

    2010-01-01

    In this paper we show that the intuitionistic theory $\\textyen widehat{ID}^{i}_{<\\textyen ome}(SP)$ for finitely many iterations of strictly positive operators is a conservative extension of the Heyting arithmetic. The proof is inspired by the quick cut-elimination due to G. Mints. This technique is also applied to fragments of Heyting arithmetic.

  14. Female genital cutting: nursing implications.

    Science.gov (United States)

    Goldenstein, Rachel A

    2014-01-01

    Female genital cutting (FGC) is a practice that affects millions of girls and women worldwide. This deeply rooted practice has cultural, religious, and psychosexual meaning to its practitioners, but it also carries long-term physical and mental complications. Decried as a human rights violation, nonetheless this practice is still carried out today. Nurses are in a unique position to contact and educate women who have been cut or are at risk for mutilation. To advocate for these women, a thorough understanding of the practice of FGC, its cultural overtones, religious implications, and psychosexual effects is needed. PMID:23835896

  15. EVALUATION OF PIPE CUTTING TECHNOLOGIES IN SHIPBUILDING

    OpenAIRE

    Kafali, Mustafa; Ozkok, Murat; Cebi, Selcuk

    2014-01-01

    Pipes are the most significant ones of the components which constitutes the vessel body. Pipes are fabricated in piping plant at shipyard and exposed to some processes such as cutting, bending, hydrostatic tests, galvanizing and so on. Cutting operation is also vital process among the other ones since it is very crucial that the cutting surfaces are flat and the right angles. In shipyards, there are various pipe cutting methods such as plasma, oxygen, metal saw, band saw and abrasive cutting ...

  16. Why I like power cuts...

    CERN Multimedia

    Computer Security Team

    2012-01-01

    Accidental power cuts - a permanent nuisance when running accelerators or computing services, since it takes a lot of time to recover from them. While I feel very sorry for those who are under pressure to get their service running again and deeply regret the loss of down-time and availability, I must admit that I like power cuts: power cuts make computers reboot! And rebooting computers at CERN means all the pending software patches are automatically applied.   But don’t think I am egotistic enough to endorse power cuts. Not necessarily! I am already happy if you regularly patch your computer(s) yourself, where regularly means at least once a month: · If you run a centrally or locally managed Windows computer, give that small orange blinking “CMF” icon in the taskbar a chance in the evening to apply all the pending patches. Also, let it initiate a reboot at the end! · If you have a personal computer with your own Windows operating system, ...

  17. Selection of cutting fluids in machining processes

    Directory of Open Access Journals (Sweden)

    E. Kilickap

    2007-12-01

    Full Text Available Purpose: During machining operation, friction between workpiece-cutting tool and cutting tool-chip interfaces result high temperature on cutting tool. The effect of this generated heat affects shorter tool life, higher surface roughness and lowers the dimensional sensitiveness of work material. This result is more important when machining of difficult-to-cut materials, due to occurrence of higher heat.Design/methodology/approach: Different methods have been reported to protect cutting tool from the generated heat during machining operations. The selection of coated cutting tools are an expensive alternative and generally it is a suitable approach for machining some materials such as titanium alloys, heat resistance alloys etc. Another alternative is to apply cutting fluids in machining operation. They are used to provide lubrication and cooling effects between cutting tool and workpiece and cutting tool and chip during machining operation. Hence the influence of generated heat on cutting tool would be prevented.Findings: As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. The selection of cutting fluids should be carefully carried out to obtain optimum result in machining processes. Various factors are affecting the selection of cutting fluid type in machining operation such as type of workpiece materials, cutting tool material and the method of machining processes.Research limitations/implications: In this study, the selection of cutting fluids for machining processes was examined. The effects of workpiece material, cutting tool and machining process type were determined in detail.Originality/value: In this study, the studies about cutting fluid application in machining processes have been evaluated. The selection criteria of cutting fluids have been examined. Suitable cutting fluids for various material machining processes have been determined

  18. CO2-Laser Cutting Fiber Reinforced Polymers

    Science.gov (United States)

    Mueller, R.; Nuss, Rudolf; Geiger, Manfred

    1989-10-01

    Guided by experimental investigations laser cutting of glass fiber reinforced reactive injection moulded (RRIM)-polyurethanes which are used e.g. in car industry for bumpers, spoilers, and further components is described. A Comparison with other cutting techniques as there are water jet cutting, milling, punching, sawing, cutting with conventional knife and with ultrasonic excited knife is given. Parameters which mainly influence cutting results e.g. laser power, cutting speed, gas nature and pressure will be discussed. The problematic nature in characterising micro and macro geometry of laser cut edges of fiber reinforced plastic (FRP) is explained. The topography of cut edges is described and several characteristic values are introduced to specify the obtained working quality. The surface roughness of laser cut edges is measured by both, an optical and a mechanical sensor and their reliabilities are compared.

  19. Development of underwater laser cutting technology

    International Nuclear Information System (INIS)

    In is desirable to use remote underwater device for the decommissioning work of highly radioactive components such as the nuclear internals from a view point of reducing the ranitidine exposure to the worker. Underwater laser cutting technology has advantages. First advantage in underwater laser cutting technology is that low reaction force during cutting, namely, remote operability is superior. Second point is that underwater laser cutting generates a little amount of secondary waste, because cutting kerf size is very small. Third point is that underwater laser cutting has low risk of the process delay, because device trouble is hard to happen. While underwater laser cutting has many advantages, the careful consideration in the safe treatment of the offgas which underwater laser cutting generates is necessary. This paper describes outline of underwater laser cutting technology developed by IHI Corporation (IHI) and that this technology is effective in various dismantling works in water. (author)

  20. Occurrence of blockage in cut stems of Clematis L.

    Directory of Open Access Journals (Sweden)

    Agata Jędrzejuk

    2013-04-01

    Full Text Available During vase life of cut flowers obstructions in stem xylem vessels develop. Such obstructions may restrict water uptake in stems and its transport towards flowers, thus lowering their ornamental value and longevity. Clematis is a very attractive plant which can be used as a cut flower in floral compositions. However, nothing is known about the histochemical or cytolo- gical nature of xylem blockages occurring in cut stems of this plant. Observations carried out on Clematis cv. 'Solidarność' proved that tyloses appeared as a principal source of xylem blockage in cut stems. The preservative composed of 200 mg × dm-3 8-HQC (8-hydroxyquinolin citrate and 2% sucrose arre-sted development of xylem blockage, while the vessels in stems kept in water were filled with tyloses or an amorphic substance. PAS reaction proved that polysaccharides were present in the xylem occlusions, whereas no homogalacturonans were immunolocalized in tyloses using JIM 5 and JIM 7 antibodies. The present study provides new information on the origin of xylem occlusions in clematis and their development in two different vase solutions. Such information can be useful to develop pro- per postharvest treatments aiming to improve keeping qualities of this new cut flower.

  1. Theory and experiment testing flux-line cutting physics

    International Nuclear Information System (INIS)

    We discuss predictions of five proposed theories for the critical state of type-II superconductors accounting for both flux cutting and flux transport (depinning). The theories predict different behaviours for the ratio Ey/Ez of the transverse and parallel components of the in-plane electric field produced just above the critical current of a type-II superconducting slab as a function of the angle of an in-plane applied magnetic field. We present experimental results measured using an epitaxially grown YBCO thin film favouring one of the five theories, i.e. the extended elliptic critical-state model. We conclude that when the current density J is neither parallel nor perpendicular to the local magnetic flux density B, both flux cutting and flux transport occur simultaneously when J exceeds the critical current density Jc, indicating an intimate relationship between flux cutting and depinning. We also conclude that the dynamical properties of the superconductor when J exceeds Jc depend in detail upon two nonlinear effective resistivities for flux cutting (ρc) and flux flow (ρf) and their ratio r = ρc/ρf. (rapid communication)

  2. Advanced Nodal P3/SP3 Axial Transport Solvers for the MPACT 2D/1D Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Stimpson, Shane G [ORNL; Collins, Benjamin S [ORNL

    2015-01-01

    As part of its initiative to provide multiphysics simulations of nuclear reactor cores, the Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). The MPACT code, which is the primary neutron transport solver of VERA-CS, employs the two-dimensional/one-dimensional (2D/1D) method to solve 3-dimensional neutron transport problems and provide sub-pin-level resolution of the power distribution. While 2D method of characteristics is used to solve for the transport effects within each plane, 1D-nodal methods are used axially. There have been extensive studies of the 2D/1D method with a variety nodal methods, and the P3/SP3 solver has proved to be an effective method of providing higher-fidelity solutions while maintaining a low computational burden.The current implementation in MPACT wraps a one-node nodal expansion method (NEM) kernel for each moment, iterating between them and performing multiple sweeps to resolve flux distributions. However, it has been observed that this approach is more sensitive to convergence problems. This paper documents the theory and application two new nodal P3/SP3 approaches to be used within the 2D/1D method in MPACT. These two approaches aim to provide enhanced stability compared with the pre-existing one-node approach. Results from the HY-NEM-SP3 solver show that the accuracy is consistent with the one-node formulations and provides improved convergence for some problems; but the solver has issues with cases in thin planes. Although the 2N-SENM-SP3 solver is still under development, it is intended to resolve the issues with HY-NEM-SP3 but it will incur some additional computational burden by necessitating an additional 1D-CMFD-P3 solver to generate the second moment cell-averaged scalar flux.

  3. CO2 laser cutting of natural granite

    Science.gov (United States)

    Riveiro, A.; Mejías, A.; Soto, R.; Quintero, F.; del Val, J.; Boutinguiza, M.; Lusquiños, F.; Pardo, J.; Pou, J.

    2016-01-01

    Commercial black granite boards (trade name: "Zimbabwe black granite") 10 mm thick, were successfully cut by a 3.5 kW CO2 laser source. Cutting quality, in terms of kerf width and roughness of the cut wall, was assessed by means of statistically planned experiments. No chemical modification of the material in the cutting walls was detected by the laser beam action. Costs associated to the process were calculated, and the main factors affecting them were identified. Results reported here demonstrate that cutting granite boards could be a new application of CO2 laser cutting machines provided a supersonic nozzle is used.

  4. Cutting

    Science.gov (United States)

    ... but not always) associated with depression, bipolar disorder , eating disorders, obsessive thinking, or compulsive behaviors. It can also be a sign of mental health problems that cause people to have trouble controlling their impulses or ...

  5. Effect of cutting parameters on chip formation in orthogonal cutting

    Directory of Open Access Journals (Sweden)

    S. Ben Salem

    2012-01-01

    Full Text Available Purpose: of this paper is to study the chip formation to obtain the optimal cutting conditions and to observe the different chip formation mechanisms. Analysis of machining of a hardened alloy, X160CrMoV12-1 (cold work steel: AISI D2 with a ferritic and cementite matrix and coarse primary carbides, showed that there are relationships between the chip geometry, cutting conditions and the different micrographs under different metallurgical states.Design/methodology/approach: Machining of hardened alloys has some metallurgical and mechanical difficulties even if many successful processes have been increasingly developed. A lot of study has been carried out on this subject, however only with modest progress showing specific results concerning the real efficiency of chip formation. Hence, some crucial questions remain unanswered: the evolution of white layers produced during progressive tool flank wear in dry hard turning and to correlate this with the surface integrity of the machined surface. For the experimental study here, various cutting speeds and feed rates have been applied on the work material.Findings: The “saw-tooth type chips” geometry has been examined and a specific attention was given to the chip samples that were metallographically processed and observed under scanning electronic microscope (SEM to determine if white layers are present.Research limitations/implications: This research will be followed by a detail modelling and need more experimental results for a given a good prediction of the results occurred on the damage related to the microstructure by using the cutting parameters.Practical implications: A special detail was given to the mechanism of chip formation resulting from hard machining process and behaviour of steel at different metallurgical states on the material during the case of annealing and or the case of quench operations.Originality/value: For the sake of simplicity, ANOVA (Analysis of Variance was used to

  6. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  7. Influence of the Magnetic High-speed Steel Cutting Tool on Cutting Capability

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The high-speed steel cutting tool has advantaged i n modern cutting tool for its preferable synthetical performance, especially, in a pplication of complicated cutting tools. Therefore, the study of the high-speed steel cutting tools that occupied half of cutting tools has become an importa nt way of studying on modern cutting technology. The cutting performance of hi gh speed-steel cutting tools will be improved by magnetization treating method. Microstructure of high-speed steel will be changed as a ...

  8. Reservoir management cost-cutting

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, M.S.

    1996-12-31

    This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.

  9. Welding and cutting '93. Lectures

    International Nuclear Information System (INIS)

    This volume contains 46 lectures on the following ten groups of subjects: New knowledge and experience for welding firms; European welding process testing; welding developments in Europe - process and equipment; progress in material technique; accreditation and certification in the Single European Market; development of equipment in welding and cutting techniques; quality assurance in welding technique; welding additives and welding aid materials; work and health protection in welding technique; training and qualification of personnel; basis of welding technique in Europe - test technique. (MM)

  10. Femtosecond Laser Cutting of Graphene

    OpenAIRE

    Zhang, Wen

    2012-01-01

    Graphene is a single atomic layer 2D graphite that has unusual properties that would open up wide industrial applications. As graphite is the toughest material on earth, challenges exist to cut and shape the materials. This MPhil thesis presents the outcome of femtosecond laser micro-patterning of single layer graphene on a glass substrate, which has resulted in a journal publication. A literature review was carried out to understand the process, basic characteristics and challenges in laser ...

  11. European labs fight back against cuts

    CERN Multimedia

    König, R

    1997-01-01

    Germany's 1997 budget contains cuts amounting to 3.7% in funding of domestic research programs and in contributions to international labs. Contributions will be cut to the European Space Agency, the European Synchrotron facility and CERN.

  12. Editorial: Advanced learning technologies

    Directory of Open Access Journals (Sweden)

    Yu-Ju Lan

    2012-03-01

    Full Text Available Recent rapid development of advanced information technology brings high expectations of its potential to improvement and innovations in learning. This special issue is devoted to using some of the emerging technologies issues related to the topic of education and knowledge sharing, involving several cutting edge research outcomes from recent advancement of learning technologies. Advanced learning technologies are the composition of various related technologies and concepts such as mobile technologies and social media towards learner centered learning. This editorial note provides an overview of relevant issues discussed in this special issue.

  13. Intelligent transportation systems dependable vehicular communications for improved road safety

    CERN Document Server

    Ferreira, Joaquim; Fonseca, José

    2016-01-01

    This book presents cutting-edge work on the most challenging research issues concerning intelligent transportation systems (ITS), introducing selected, highly relevant advanced research on scheduling and real-time communication for vehicular networks, as well as fault tolerance, test beds and simulations for ITS. The authors define new architectures that support cooperative sensing in ITS and offer guidance for the development of a reference end-to-end implementation. The presented results allow advanced traffic and travel management strategies to be formulated on the basis of reliable and real-time input data. The effectiveness of these new strategies, together with the proposed systems, is assessed in field trials and via simulations. The chapters in this book detail new research findings, algorithms, protocols, and the development of an implementation platform for ITS that merges and integrates heterogeneous data sources into a common system. In addition, they provide a set of advanced tools for the contro...

  14. Chip-ejection interference in cutting processes of modern cutting tools

    Institute of Scientific and Technical Information of China (English)

    师汉民

    1999-01-01

    Based on the “principle of minimum energy”, the basic characteristics of non-free cutting are studied; the phenomenon and the nature of chip-ejection interference commonly existing in the cutting process of modem cutting tools are explored. A "synthesis method of elementary cutting tools" is suggested for modeling the cutting process of modem complex cutting tools. The general equation governing the chip-ejection motion is deduced. Real examples of non-free cutting are analyzed and the theoretically predicted results are supported by the experimental data or facts. The sufficient and necessary conditions for eliminating chip-ejection interference and for realizing free cutting are given; the idea and the technical approach of "the principle of free cutting" are also discussed, and a feasible way for improving or optimizing the cutting performance of modem cutting tools is, therefore, found.

  15. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    Science.gov (United States)

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  16. Teaching Budget Cuts to Third Graders

    Science.gov (United States)

    Weiss, Dale

    2011-01-01

    As a teacher in the Milwaukee Public Schools (MPS) for the past 16 years, this author has grown used to dismal budget cut news arriving each February. Although cuts are always frustrating and their results burdensome, his school has been able to "hang on" reasonably well. This year, however, the budget cuts were extreme. The school's budget was…

  17. Identification of Xylem Occlusions Occurring in Cut Clematis (Clematis L., fam. Ranunculaceae Juss.) Stems during Their Vase Life

    OpenAIRE

    Agata Jedrzejuk; Julia Rochala; Jacek Zakrzewski; Julita Rabiza-Świder

    2012-01-01

    During the vase life of cut stems obstruction of xylem vessels occurs due to microbial growth, formation of tyloses, deposition of materials in the lumen of xylem vessels and the presence of air emboli in the vascular system. Such obstructions may restrict water uptake and its transport towards upwards thus lowering their ornamental value and longevity of cut flowers. Clematis is a very attractive plant material which may be used as cut flower in floral compositions. Nothing is known about th...

  18. Rocketdyne's advanced coal slurry pumping program

    Science.gov (United States)

    Davis, D. E.; Wong, G. S.; Gilman, H. H.

    1977-01-01

    The Rocketdyne Division of Rockwell International Corporation is conducting a program for the engineering, fabrication, and testing of an experimental/prototype high-capacity, high-pressure centrifugal slurry feed pump for coal liquefaction purposes. The abrasion problems in a centrifugal slurry pump are primarily due to the manner in which the hard, solid particles contained in the slurry are transported through the hydraulic flow passages within the pump. The abrasive particles can create scraping, grinding, cutting, and sandblasting effects on the various exposed parts of the pump. These critical areas involving abrasion and impact erosion wear problems in a centrifugal pump are being addressed by Rocketdyne. The mechanisms of abrasion and erosion are being studied through hydrodynamic analysis, materials evaluation, and advanced design concepts.

  19. Laser Cutting of Carbon Fiber Fabrics

    Science.gov (United States)

    Fuchs, A. N.; Schoeberl, M.; Tremmer, J.; Zaeh, M. F.

    Due to their high weight-specific mechanical stiffness and strength, parts made from carbon fiber reinforced polymers (CFRP) are increasingly used as structural components in the aircraft and automotive industry. However, the cutting of preforms, as with most automated manufacturing processes for CFRP components, has not yet been fully optimized. This paper discusses laser cutting, an alternative method to the mechanical cutting of preforms. Experiments with remote laser cutting and gas assisted laser cutting were carried out in order to identify achievable machining speeds. The advantages of the two different processes as well as their fitness for use in mass production are discussed.

  20. Effect of Type of Cutting Tips on Cutting Forces in Turning

    Directory of Open Access Journals (Sweden)

    Polák Pavel

    2014-10-01

    Full Text Available The aim of this article is to demonstrate the efect of cutting materials and geometry of cutting tips on cutting forces in turning as well as the quality and precision of machined surface. The experiment focuses on measuring cutting forces when turning a sample of steel 11 523 at a constant feed rate and cut depth and at varying speeds of a spindle. Measurements were made using exchangeable cutting tips of diferent types. The results will be evaluated in terms of the impact of diferent characteristics of cutting tips and variable spindle speeds.

  1. Semantic versus syntactic cutting planes

    Czech Academy of Sciences Publication Activity Database

    Filmus, Y.; Hrubeš, Pavel; Lauria, M.

    Dagstuhl: Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 2016 - (Ollinger, N.; Vollmer, H.), s. 1-13. (Leibniz International Proceedings in Informatics. 47). ISBN 978-3-95977-001-9. ISSN 1868-8969. [33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). Orléans (FR), 17.02.2016-20.02.2016] EU Projects: European Commission(XE) 339691 - FEALORA Keywords : proof complexity * cutting planes * lower bounds Subject RIV: BA - General Mathematics http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=5736

  2. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina;

    2013-01-01

    Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of...... preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya....

  3. Deep-Cut Vacuum Distillation in the 10 Mt/a CDUNDU

    Institute of Scientific and Technical Information of China (English)

    Lin Zhuwei; Mao Fuzhong; Jiang Bing; Chen Kaibei; Chi Ling; Yan Chun

    2009-01-01

    This article introduces the concepts relating to deep-cut vacuum distillation and its suitability, and analyzes the deep-cut vacuum distillation technique licensed by the KBC Advanced Technologies to the 10 Mt/a CDUNDU of the Qingdao refinery and makes comparison on the test run data after commissioning of the distillation unit. The test results have confirmed that the operation of the CDU/VDU had reached the expected goal to achieve good social and economic benefits.

  4. Cutting Properties and Wearing Process of Diamond Film Coated Tools in the Dry-Cutting

    Science.gov (United States)

    Zhong, Qimao

    Dry cutting can eliminate a series of negative effects of coolant. Based on tribology principle of coated tool, diamond film coated tool is used to cut the same workpiece under the conditions of dry-cutting and coolant. The tool's cutting properties and wear mechanism are studied by tests. Results imply that this coated tool will be applied more widely day by day in the dry-cutting.

  5. Nation-wide clear-cut mapping in Sweden using ALOS PALSAR strip images

    OpenAIRE

    Anders Persson; Jonas Dahlgren; Maurizio Santoro; Andreas Pantze; Fransson, Johan E. S.

    2012-01-01

    Advanced Land Observing Satellite (ALOS) Phased Array L-band type Synthetic Aperture Radar (PALSAR) backscatter images with 50 m pixel size (strip images) at HV-polarization were used to map clear-cuts at a regional and national level in Sweden. For a set of 31 clear-cuts, on average 59.9% of the pixels within each clear-cut were correctly detected. When compared with a one-pixel edge-eroded version of the reference dataset, the accuracy increased to 88.9%. With respect to statistics from the...

  6. Phase unwrapping via graph cuts.

    Science.gov (United States)

    Bioucas-Dias, José M; Valadão, Gonçalo

    2007-03-01

    Phase unwrapping is the inference of absolute phase from modulo-2pi phase. This paper introduces a new energy minimization framework for phase unwrapping. The considered objective functions are first-order Markov random fields. We provide an exact energy minimization algorithm, whenever the corresponding clique potentials are convex, namely for the phase unwrapping classical Lp norm, with p > or = 1. Its complexity is KT (n, 3n), where K is the length of the absolute phase domain measured in 2pi units and T (n, m) is the complexity of a max-flow computation in a graph with n nodes and m edges. For nonconvex clique potentials, often used owing to their discontinuity preserving ability, we face an NP-hard problem for which we devise an approximate solution. Both algorithms solve integer optimization problems by computing a sequence of binary optimizations, each one solved by graph cut techniques. Accordingly, we name the two algorithms PUMA, for phase unwrappping max-flow/min-cut. A set of experimental results illustrates the effectiveness of the proposed approach and its competitiveness in comparison with state-of-the-art phase unwrapping algorithms. PMID:17357730

  7. Intelligent cutting-off of pipes and bars

    OpenAIRE

    Machado, Carlos; Mendes, José A.; Fonseca, Jaime C.

    2003-01-01

    Traditionally, automatic cutting-off machines, of metallic pipes or bars, use a constant cutting velocity mode. This mode of operation, constant cutting velocity combined with different profiles of materials to be cut, exposes the cutting saw to variable cutting forces. Therefore, the cutting off machine is usually set for the worst expected conditions, otherwise excessive wear of the saw and machine will occur. Further, traditional cutting-off machines require the adjust...

  8. Personal use of heavy cutting tools with the steady-cut-system

    International Nuclear Information System (INIS)

    Decommissioning of nuclear plants, it is necessary to cut technical components and infrastructural elements. The container dimensions for waste disposal determine the size of the fragmented parts. The main cutting techniques are sawing, milling, flame cutting, plasma arc cutting, laser cutting and water abrasive suspension cutting. For radiological and technical reasons, especially size and weight, the cutting tools are remote controlled. The main issues concerning remote controlled cutting tools are the high equipment cost, the long time for planning, installation and transaction. Another problem is the small flexibility towards technical and unpredictable difficulties. These are the reasons for the development of the Steady-Cut-System. This system works in non, weak or middle radiation areas without remote controlled cutting techniques. An operator, equipped with the appropriate cutting tools and the Steady-Cut-System, executes the necessary disassembling under permanent radiological control. After termination of the disassembling the user leaves the radiologically contaminated area with the cutting tool and the Steady-Cut-System. Time- and costintensive installations, assemblies and transfers in this area are not necessary. The operator can immediately intervene in case of sudden problems and changes. (orig.)

  9. Cut performance levels and testing.

    Science.gov (United States)

    Bennett, Bill; Moreland, Jeff

    2011-11-01

    While the ISEA performance levels and general recommendations detailed above can help tp provide guidance when selecting hand protection products, the responsibility for testing products for specific end-user applications still rests with the end user. We can indicate, for example, that a medium-weight, uncoated Kevlar glove will typically have an ISEA cut rating of 3, but we cannot say the glove will provide the level of protection needed for the range of jobs on an automobile assembly line. Another Level 3 glove might be better suited to an application the require the worker to have an oil grip. As glove manufacturers, we know gloves. We do not know the details about every workplace. We therefore, must look to our customers to provide us the properties they need for hand protection products that will sufficiently protect their workers on the job. PMID:22135955

  10. Testing of Commercial Cutting Heads for Abrasive Water Jet Technology

    OpenAIRE

    Klich, J. (Jiří); Hlaváček, P.; M. Zeleňák; Sitek, L. (Libor); Foldyna, J.

    2013-01-01

    Five different cutting heads designed for cutting by high-speed abrasive water jet technology were tested from cutting ability point of view. Straight kerfs were cut in several metal materials by abrasive water jet. Material removal volume was determined as a measure of performance of specific cutting head. Quality of cutting surface was observed, too. Results are compared and discussed.

  11. Theoretical aspects of fibre laser cutting

    International Nuclear Information System (INIS)

    Fibre lasers offer distinct advantages over established laser systems with respect to power efficiency, beam guidance and beam quality. Consequently, the potential of these new laser beam sources will be increasingly exploited for laser cutting applications that are conventionally carried out with CO2 lasers. However, theoretical estimates of the effective absorptivity at the cut front suggest that the shorter wavelength of the fibre laser in combination with its high focusability seems to be primarily advantageous for thin sheet metal cutting whereas the CO2 laser is probably still capable of cutting thicker materials more efficiently. This surprising result is a consequence of the absorptivity behaviour of metals that shows essential quantitative differences for the corresponding wavelengths of both laser sources as a function of the angle of incidence between the laser beam and the material to be cut. In evaluation of the revealed dependences, solution strategies for an improvement of the efficiency of fibre laser cutting of thicker metal sheets are suggested.

  12. Theoretical aspects of fibre laser cutting

    Science.gov (United States)

    Mahrle, A.; Beyer, E.

    2009-09-01

    Fibre lasers offer distinct advantages over established laser systems with respect to power efficiency, beam guidance and beam quality. Consequently, the potential of these new laser beam sources will be increasingly exploited for laser cutting applications that are conventionally carried out with CO2 lasers. However, theoretical estimates of the effective absorptivity at the cut front suggest that the shorter wavelength of the fibre laser in combination with its high focusability seems to be primarily advantageous for thin sheet metal cutting whereas the CO2 laser is probably still capable of cutting thicker materials more efficiently. This surprising result is a consequence of the absorptivity behaviour of metals that shows essential quantitative differences for the corresponding wavelengths of both laser sources as a function of the angle of incidence between the laser beam and the material to be cut. In evaluation of the revealed dependences, solution strategies for an improvement of the efficiency of fibre laser cutting of thicker metal sheets are suggested.

  13. Advances in the research of intestinal glutamine transporters%肠道谷氨酰胺转运载体研究进展

    Institute of Scientific and Technical Information of China (English)

    吴炜; 彭曦

    2014-01-01

    Glutamine,the most abundant amino acid in bloodstream,is the preferred fuel source for enterocytes.Glutamine exerts its functions through the activity of its transporters,which are located in cytomembrane,to transport it into or out of intestinal epithelial cells.Intestine is the primary center for glutamine metabolism in the body.As ASCT2 and B0AT1 are the most important glutamine transporters in the intestine,it wound be helpful to gain the knowledge of the structure,function,and pathologic changes and control strategy of the two transporters in order to have a better understanding of the metabolism and function of glutamine.

  14. Towards high cutting speed in wood milling

    OpenAIRE

    COSTES, Jean-Philippe; Larricq, Pierre

    2002-01-01

    International audience High cutting speed machining processes have been used for about 10 years for metals. This technology presents many advantages related to output and surface quality. For timber machining, commonly used velocities are already high. However, literature about cutting velocity function during a machining process is rare. Nevertheless, some published results have shown the effect of speed on chip formation. In order to perform experiments at high cutting speeds, we used a ...

  15. A cactus theorem for end cuts

    CERN Document Server

    Evangelidou, Anastasia

    2011-01-01

    Dinits-Karzanov-Lomonosov showed that it is possible to encode all minimal edge cuts of a graph by a tree-like structure called a cactus. We show here that minimal edge cuts separating ends of the graph rather than vertices can be `encoded' also by a cactus. We apply our methods to finite graphs as well and we show that several types of cuts can be encoded by cacti.

  16. Cutting sequences on square-tiled surfaces

    OpenAIRE

    Johnson, Charles C.

    2016-01-01

    We characterize cutting sequences of infinite geodesics on square-tiled surfaces by considering interval exchanges on specially chosen intervals on the surface. These interval exchanges can be thought of as skew products over a rotation, and we convert cutting sequences to symbolic trajectories of these interval exchanges to show that special types of combinatorial lifts of Sturmian sequences completely describe all cutting sequences on a square-tiled surface. Our results extend the list of f...

  17. Solving maximum cut problems by simulated annealing

    OpenAIRE

    Myklebust, Tor G. J.

    2015-01-01

    This paper gives a straightforward implementation of simulated annealing for solving maximum cut problems and compares its performance to that of some existing heuristic solvers. The formulation used is classical, dating to a 1989 paper of Johnson, Aragon, McGeoch, and Schevon. This implementation uses no structure peculiar to the maximum cut problem, but its low per-iteration cost allows it to find better solutions than were previously known for 40 of the 89 standard maximum cut instances te...

  18. A finite element model for ultrasonic cutting.

    Science.gov (United States)

    Lucas, Margaret; MacBeath, Alan; McCulloch, Euan; Cardoni, Andrea

    2006-12-22

    Using a single-blade ultrasonic cutting device, a study of ultrasonic cutting of three very different materials is conducted using specimens of cheese, polyurethane foam and epoxy resin. Initial finite element models are created, based on the assumption that the ultrasonic blade causes a crack to propagate in a controlled mode 1 opening, and these are validated against experimental data from three point bend fracture tests and ultrasonic cutting experiments on the materials. Subsequently, the finite element model is developed to represent ultrasonic cutting of a multi-layered material. Materials are chosen whose properties allow a model to be developed that could represent a multi-layer food product or biological structure, to enable ultrasonic cutting systems to be designed for applications both in the field of food processing and surgical procedures. The model incorporates an estimation of the friction condition between the cutting blade and the material to be cut and allows adjustment of the frequency, cutting amplitude and cutting speed. PMID:16814351

  19. Sketching Cuts in Graphs and Hypergraphs

    OpenAIRE

    Kogan, Dmitry; Krauthgamer, Robert

    2014-01-01

    Sketching and streaming algorithms are in the forefront of current research directions for cut problems in graphs. In the streaming model, we show that $(1-\\epsilon)$-approximation for Max-Cut must use $n^{1-O(\\epsilon)}$ space; moreover, beating $4/5$-approximation requires polynomial space. For the sketching model, we show that $r$-uniform hypergraphs admit a $(1+\\epsilon)$-cut-sparsifier (i.e., a weighted subhypergraph that approximately preserves all the cuts) with $O(\\epsilon^{-2} n (r+\\...

  20. Towards a MIP-Cut Metascheme

    Science.gov (United States)

    Fischetti, Matteo

    Cutting planes (cuts) are very popular in the OR community, where they are used to strengthen the Linear Programming (LP) relaxation of Mixed-Integer Programs (MIPs) in the hope of improving the performance of an exact LP-based solver. In particular, an intense research effort has been devoted to the study of families of general cuts, whose validity does not require the presence of a specific MIP structure - as opposed to problem-specific cuts such as, e.g., subtour elimination or comb inequalities for the traveling salesman problem.

  1. Machining Challenges: Macro to Micro Cutting

    Science.gov (United States)

    Shunmugam, M. S.

    2016-04-01

    Metal cutting is an important machining operation in the manufacture of almost all engineering components. Cutting technology has undergone several changes with the development of machine tools and cutting tools to meet challenges posed by newer materials, complex shapes, product miniaturization and competitive environments. In this paper, challenges in macro and micro cutting are brought out. Conventional and micro end-milling are included as illustrative examples and details are presented along with discussion. Lengthy equations are avoided to the extent possible, as the emphasis is on the basic concepts.

  2. Cutting Properties of Austenitic Stainless Steel by Using Laser Cutting Process without Assist Gas

    Directory of Open Access Journals (Sweden)

    Hitoshi Ozaki

    2012-01-01

    Full Text Available Recently, laser cutting is used in many industries. Generally, in laser cutting of metallic materials, suitable assist gas and its nozzle are needed to remove the molten metal. However, because of the gas nozzle should be set closer to the surface of a workpiece, existence of the nozzle seems to prevent laser cutting from being used flexible. Therefore, the new cutting process, Assist Gas Free laser cutting or AGF laser cutting, has been developed. In this process, the pressure at the bottom side of a workpiece is reduced by a vacuum pump, and the molten metal can be removed by the air flow caused by the pressure difference between both sides of the specimen. In this study, cutting properties of austenitic stainless steel by using AGF laser cutting with 2 kW CO2 laser were investigated. Laser power and cutting speed were varied in order to study the effect of these parameters on cutting properties. As a result, austenitic stainless steel could be cut with dross-free by AGF laser cutting. When laser power was 2.0 kW, cutting speed could be increased up to 100 mm/s, and kerf width at specimen surface was 0.28 mm.

  3. Reachability cuts for the vehicle routing problem with time windows

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    2004-01-01

    This paper introduces a class of cuts, called reachability cuts, for the Vehicle Routing Problem with Time Windows (VRPTW). Reachability cuts are closely related to cuts derived from precedence constraints in the Asymmetric Traveling Salesman Problem with Time Windows and to k-path cuts for the...... VRPTW. In particular, any reachability cut dominates one or more k-path cuts. The paper presents separation procedures for reachability cuts and reports computational experiments on well-known VRPTW instances. The computational results suggest that reachability cuts can be highly useful as cutting...

  4. Underwater plasma arc cutting of in-reactor tube of In-Pile Creep Test Facility

    International Nuclear Information System (INIS)

    The in-reactor tube of the In-Pile Creep Facility had been irradiated periodically for over 6 years in the Japan Materials Testing Reactor (JMTR) up to the end of 1978 under an operating condition of high temperature and high pressure identical to that of the Prototype Advanced Thermal Reactor, FUGEN, to gain the basic data for estimating the amount of creep which would occur in the pressure tubes of FUGEN. Following the removal of the in-reactor tube out of the JMTR, the test sections in the tube which were to be subjected to post irradiation examination were cut out. Underwater plasma arc cutting was employed to prevent the spread of contamination to the work area, to confine the heat affected zone in the test pieces to a minimum and to simplify disposal of the unneeded portions of the pressure tube. Setup of the cutting machine, cutting operations, radiological conditions during cutting of the highly radioactive portion of the tube and disassembly of the cutting equipment are described. In addition a brief description of the underwater plasma arc cutting machine is presented. The hot-cutting operations were done remotely to control personal exposure. The containment envelope prevented the spread of contamination to the environment and radioactive particles deposited on the cutting machine were removed without any difficulties. External exposure received by cutting personnel was small. Internal radionuclide deposit examinations were conducted, determining no crew member inhaled radioactive substances. Contamination spreads to the work area were minimal and release of radionuclide was well controlled. (author)

  5. Cutting Watermelon: Lessons in Instructional Coaching

    Science.gov (United States)

    Sandstead, Martha

    2016-01-01

    Literacy coordinator Martha Sandstead finds inspiration for her coaching work in a quote from civil rights organizer Lawrence Guyot: "Let's say you're riding past a picnic, and people are cuttin' watermelons. You don't immediately go and say, "stop the watermelon cutting" and let's talk. … You cut some watermelons, or you help…

  6. Cutting the L3 torque tube

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    Workers cut the torque tube, with a plasma-cutting device on the L3 experiment, which closed with the LEP accelerator in 2000. L3 was housed in a huge red solenoid, which will be taken over by the ALICE detector when the new LHC is completed.

  7. Overhead and operations: cutting where it counts.

    Science.gov (United States)

    Shorr, Jay A

    2014-01-01

    To remain a profitable entity, whether a retail operation, manufacturing plant, or a medical practice, the common denominator is the same: where can you cut your costs, increase your revenue, and maintain additional profitability? Learning where to cut your operational expenses is as important to your business's profit-ability as bringing in additional dollars. PMID:25807622

  8. Don't Camouflage Budget Cuts.

    Science.gov (United States)

    DeLuca, Nicholas M.

    1982-01-01

    Instead of shielding the public from the effects of budget cuts by making small across-the-board cuts on many programs, school administrators should slash whole programs. This will maintain the system's overall educational effectiveness while making clear the consequences of the public's political actions. (Author/RW)

  9. President's Budget Would Cut Education Spending

    Science.gov (United States)

    Davis, Michelle R.

    2006-01-01

    This article discusses President Bush's budget cut on education spending. The president's blueprint for federal education spending in the next fiscal year includes a high-profile plan to boost math and science education, new money for private school vouchers, a renewed push to improve high schools--and the most drastic cut in Department of…

  10. Postharvest: Cut flowers and potted plants

    Science.gov (United States)

    In the past fifty years, the cut flower market has changed dramatically, from a local market with growers located on city outskirts, to a global one; flowers and cut foliage sourced from throughout the world are sold as bunches or combined into arrangements and bouquets in the major target markets. ...

  11. Plywood Inlays Thourgh CO2 Laser Cutting

    Science.gov (United States)

    Pires, Margarida C.; Araujo, J. L.; Teixeira, M. Ribau; Rodrigues, F. Carvalho

    1989-07-01

    Furniture with inlays is rather expensive. This is so on two accounts: Firstly, furniture with inlays is generally manufactured with solid wood.Secondly,wood carving and figure cutting are both time consuming and they produce a high rate of rejections. To add to it all the cutting and carving of minute figures requires an outstanding craftmanship. In fact the craftman is in most instance the artist and also the manufacturer. While desiring that the high artistic level is maintained in the industry the search for new method to produce inlays for furniture in not son expensive materials and to produce them in a repetitive and flexible way laser cutting of plywood was found to be quite suitable. This paper presents the charts for CO2 laser cutting of both positive and negatives in several types of plywood. The main problem is not so much the cutting of the positive and negatives pieces but to be able to cut the piece in a way that the fitting is done without any problems caused by the ever present charring effect, which takes palce at the edges of the cut pieces. To minimise this aspect positive and negative pieces have to be cut under stringent focusing conditions and with slight different scales. The condittions for our machine are presented.

  12. Laser cutting - trends in the development,

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2002-01-01

    Since the laser was invented in 1960, the industrial applications of this tool has grown and grown. And - since the beginning of the 1980'ies, the major industrial application of lasers in production has been laser cutting. In this paper a short review of the development of the laser cutting...

  13. Drilling subsurface wellbores with cutting structures

    Science.gov (United States)

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  14. Temperature measurement in the bundle of metal sheets being cut on a guillotine with respect to heating process

    Directory of Open Access Journals (Sweden)

    J. Kaczmarczyk

    2012-12-01

    Full Text Available Purpose: The work was aimed at temperature measurement with respect to the heating process in the bundles of metal sheets in the direct cutting zone during the cutting process conducted on a guillotine.Design/methodology/approach: The paper presents a methodology to analyse the process of heating the bundles of metal sheets during cutting on a guillotine, designed and built from scratch. The temperature in bundles in the direct cutting zone has been determined in an experimental way using a specialised infrared camera. The research has been conducted in order to reduce the number of randomly occurring defects during cutting of metal sheets on a guillotine.Findings: Possibilities of finding of the optimum cutting parameters on account of maximum permissible temperature in the bundles of metal sheets have been determined. The experimental data indicates that it is possible to select a set of guillotine parameters which allow for reducing of temperature measured in the direct cutting zone. Temperature reduction allows for avoidance of defects which might occur in the direct cutting zone as the result of progressing heat transfer during cutting. The defects occurring on the blade of a cutting tool might also contribute to the local growth of temperature corresponding to the positions of the defects on the blade.Research limitations/implications: The experimentally assumed characteristics of temperature versus time for in advance chosen cutting parameters may be generalized for a wide gamut of materials and for changeable cutting conditions; however, the obtained experimentally values of temperature are specific and related to the chosen types of materials and fixed cutting conditions of a guillotine.Practical implications: The appropriate selection of the cutting parameters on account of temperature characteristics is essential in terms of industrial economy. It enables reducing the amount of waste caused by defects in cutting bundles of sheets and

  15. Nd:YAG pulsed laser cutting of metals

    Czech Academy of Sciences Publication Activity Database

    Chmelíčková, Hana; Polák, Marek

    Praha : Faculty of Transportation Sciences CTU, Institute of Theoretical and Applied Mechanics AS CR Czech Society of Mechanics, 2001 - (Jírová, J.; Jiroušek, O.; Kult, J.), s. 115-120 ISBN 80-86246-09-4. [International Conference Experimental Stress Analysis 2001 /39./. Tábor (CZ), 04.06.2001-06.06.2001] R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : Nd:YAG laser * cutting * metal * speed * pulse energy Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Automatic velocity control in cutting-off machines

    OpenAIRE

    Machado, Carlos; Fonseca, Jaime C.; Mendes, José A.

    2003-01-01

    Usually, automatic cutting-off machines, of metallic pipes or bars, use constant cutting velocity. This mode of operation, constant cutting velocity combined with different profiles of materials to be cut, causes variable cutting forces to be applied to the saw. As a result, the cutting off machine is generally set for the worst expected conditions, otherwise excessive wear of the saw and machine will occur. Further, traditional cutting-off machines require adjustments to be made in order to ...

  17. High precision tungsten cutting for optics

    International Nuclear Information System (INIS)

    The results obtained during the INTEGRAL masks development program an implementing the HURA and MURA codes on tungsten plates of different thickness are presented. Hard scientific requirements on pixels size and location tolerances (tenths of microns over large areas -1 m2- and thickness from 0.5 mm to 60 mm) required the set up of a dedicated program for testing cutting technologies: laser, photochemical milling, spark machining and electro discharge wire cutting. After a very intensive test campaign the wire cutting process was selected as the optimum technology for code manufacturing . Accuracies achieved an the code cutting fulfill scientific requirements. In fact, they are 5 times better than required. Pixel size and centroids location accuracies of 0.01 mm over a 1 m2 area have been obtained for the 10,000 pixels on IBIS, 100 pixels on SPI and 24000 pixels on JEM-X masks. Comparative results among different cutting technologies are also discussed. (author)

  18. Laser cutting of sheets for Tailored Blanks

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1999-01-01

    Over the past few years there has been an enormous increase in the use of tailored blanks, especially in the automotive industry. Often the sheets for tailored blanks are shear cut, but results have been reported that the allowable sheet gap distance should not exceed 0.1 mm in order to obtain...... the squareness, the surface roughness and the burr height. Mild steel as well as high strength steel with and with out galvanisation with thickness' of 0.7(5) and 1.25 were used.In the tests the difference in cut quality between a 5" and a 7.5" focusing lens were tested and the effect of using pulsed...... mode laser cutting instead of continuous wave cutting at average power settings of approximately 500, 1000, 1500 and 2000 W were analysed. Furthermore the optimum assist gas pressure and optimum cutting speeds were identified. The results showed that the highest qualities are obtained with a 7...

  19. Cutting as a continuous business process

    Directory of Open Access Journals (Sweden)

    Miro Gradišar

    2009-11-01

    Full Text Available A review of state-of-the-art methods for cutting stock problem optimisation shows that the current methods lead to near-optimum results for the instantaneous optimisation of trim loss. Further optimisation of this activity would not bring a considerable improvement. Therefore, the paper treats cutting stock as a continuous business process and not as an isolated activity. An exact method for a general one-dimensional cutting stock problem is presented and tested. The method is mainly suitable for smaller orders. It is then applied to continuous cutting and used to develop a method for assessing cutting costs in consecutive time periods. The modified method finds a good solution over the whole time-span, rather than just local optima.

  20. The Advanced Energy Initiative

    Science.gov (United States)

    Milliken, JoAnn; Joseck, Fred; Wang, Michael; Yuzugullu, Elvin

    The President's Advanced Energy Initiative (AEI), launched in 2006, addresses the challenges of energy supply and demand facing our Nation by supporting research and development of advanced technologies for transportation and stationary power generation. The AEI portfolio includes clean coal, nuclear and renewable energy technologies (solar and wind) for stationary power generation and advanced battery technologies, cellulosic ethanol as a fuel and hydrogen fuel cells for transportation. These research and development programs are underpinned by comprehensive life-cycle analysis efforts using models such as Hydrogen Analysis (H2A) and Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) to enable a better understanding of the characteristics and trade-offs associated with advanced energy options and to help decision makers choose viable pathways for clean, reliable and affordable energy.

  1. Under Water Thermal Cutting of the Moderator Vessel and Thermal Shield

    International Nuclear Information System (INIS)

    This paper presents the segmentation of the in 8 meter depth of water and for cutting through super alloyed moderator vessel and of the thermal shield of the MZFR stainless steel up to 130 mm wall thickness. Depending on the research reactor by means of under water plasma and contact arc metal cutting. The moderator vessel and the thermal shield are the most essential parts of the MZFR reactor vessel internals. These components have been segmented in 2005 by means of remotely controlled under water cutting utilizing a special manipulator system, a plasma torch and CAMC (Contact Arc Metal Cutting) as cutting tools. The engineered equipment used is a highly advanced design developed in a two years R and D program. It was qualified to cut through steel walls of more than 100 mm thickness in 8 meters water depth. Both the moderator vessel and the thermal shield had to be cut into such size that the segments could afterwards be packed into shielded waste containers each with a volume of roughly 1 m3. Segmentation of the moderator vessel and of the thermal shield was performed within 15 months. (author)

  2. Implementation of cutting tool management system

    Directory of Open Access Journals (Sweden)

    G. Svinjarević

    2007-07-01

    Full Text Available Purpose: of this paper is to show the benefits of implementation of management of cutting tools in the company which specializes in metal cutting process, after which the production conditions alows new possibilities for improvement of the tool management.Design/methodology/approach: applied in this paper was identification current state and exploatation conditions of cutting tools on lathes and milling machines and organization of the departments and other services, which are directly involved in the cutting tools management system.Findings: of the controlled testings and analyses in every phase of tool management in departments and other services which are directly involved in the tool management system will help to reduce stock and costs. It is possible to identify which operator makes errors and is responsible for inappropriate use of cutting tool. Some disadvantages have been identified and a few suggestions for the improvement in the tool management system have been given. A result of research is easy to apply in company with developed informatic infrastructure and is mostly interesting for CNC workshops. Small companies and specialized low volume productions have to made additional effort to integrate in clusters.Practical implications: are reduction of cutting tool on stock, reduction of employee, quick access to the necessary cutting tools and data, simplicity in tool order and supply. The most important is possibility to monitor and to identify which cutting tools and employees are weakest parts of chain in tool management system. Management activity should be foreseeable in all its segments, which includes both the appropriate choice and use of cutting tools, and monitoring of unwanted phenomena during the cutting process and usage of these data for further purchase of tools.Originality/value: in the paper is turnover methodology applied for determination of management efficacy and formation of employees from different departments in

  3. The precision cutting control research of automotive stainless steel thin wall pipe

    Directory of Open Access Journals (Sweden)

    Jin Lihong

    2015-01-01

    Full Text Available Stainless steel thin-walled tube are widely used in automobile industry at present, but as a result of thin wall pipe is poor strength and poor rigidity,which lead to deformation, shaped differencer and other problems in the process, it is hard to ensure the processing quality of parts. This paper proposes a method of thin stainless steel thin wall pipe cutting process in vehicle, greatly improved the problems and technical difficulties in the traditional process, the main research is about the cutting system and the hydraulic fixture design, obtained under low cost circumstances, it can realize high precision stainless steel pipes, high degree of automation to automatic cutting,simplified operation steps at the same time, increased the applicability of the system, provided a kind of advanced stainless steel thin wall pipe cutting device for the small and medium-sized enterprises.

  4. The mechanics of slitting and cutting webs

    Science.gov (United States)

    Meehan, Richard Raymond

    The quality of edges formed during cutting and slitting of thin polymer webs is important for many industrial applications. In order to control the edge quality of the separated material, it is necessary to understand cutting. A model is proposed and the mechanics of cutting are described. An apparatus was constructed to instrument, monitor and control the web slitting process. The slitting speed, tension in the web, blade sharpness and angle of cut were varied during tests. This allowed a quantitative understanding of the cutting mechanisms to be established. The results of the experiments showed the in-plane cutting forces were minimally affected by changes in rate or speed and independent of web tension for sharp blades. The angle of cut had a pronounced effect on the in-plane cutting forces and the stability of the cut. Further experimentation was designed to relate force to plastic deformation caused by a wedge indenting the edge surface of a polymer sample. These experiments clearly revealed the shape of the plastic deformation zone ahead of and around the wedges. Data from the experiments showed increasing cutting force with wedge displacement until the sample fractured. Plastic deformation of the samples was then examined in detail. The results showed out-of-plane plastic volume was equal to the volume displaced by the wedge. Samples also exhibited constant hardness during initial phases of wedge indenting. A finite element model concurred with the empirical plastic zone data. An innovative method was developed to take a dynamic "snapshot" of web displacement around the blade. The results clearly showed the web buckling ahead of the blade producing major instability during the cutting and slitting of thin webs. A finite element model supported the characteristics of the buckling phenomena observed in thin webs. An understanding of the interaction of cutting parameters and the buckling instability will allow quality web edges with minimal deformation and

  5. Mist, substrate water potential and cutting water potential influence rooting of stem cuttings of loblolly pine.

    Science.gov (United States)

    Lebude, Anthony V; Goldfarb, Barry; Blazich, Frank A; Wise, Farrell C; Frampton, John

    2004-07-01

    We investigated the influence of cutting water potential (Psicut) on rooting of juvenile hardwood (dormant) and softwood (succulent) stem cuttings of loblolly pine (Pinus taeda L.) propagated under varying substrate water potentials (Psisub) and volumes of mist application. Mist treatment and Psisub contributed to the Psicut of unrooted stem cuttings. When Psisub was held constant across mist treatments, mist treatment contributed strongly to Psicut. Substrate water potential affected rooting percentage when mist treatment was sub-optimal or excessive, otherwise mist treatment had a stronger effect than Psisub on rooting percentage. Cuttings rooted best when subjected to moderate cutting water potentials (-0.5 to -1.2 MPa) during the initial 4 or 5 weeks of the rooting period. Cuttings experiencing either severe water deficit or no water deficit rooted poorly. We conclude that the rooting environment should impose a moderate water stress on loblolly pine stem cuttings to achieve optimum rooting. PMID:15123454

  6. Restraining and neck cutting or stunning and neck cutting of veal calves.

    Science.gov (United States)

    Lambooij, E; van der Werf, J T N; Reimert, H G M; Hindle, V A

    2012-05-01

    Brain and heart activities were measured in 31 veal calves during restraining and rotating followed by neck cutting with or without stunning to evaluate welfare. After neck cutting correlation dimension analyses and %power of EEG beta wave fraction decreased gradually to lower values resulting in an induction of unconsciousness lasting on average 80s. Corneal reflex response ceased 135±57s after neck cutting. The CD scores and the %power of beta waves fell immediately after post-cut captive bolt and pre-cut electrical stunning to levels indicating unconsciousness. Heart rate in lairage increased upon entrance to the restrainer and again after rotation, heart rate variability decreased. Rotating the restrainer 90°, 120° or 180° compromised veal calf welfare and should be avoided. It is recommended to use post-cut captive bolt stunning or pre-cut electrical stunning inducing immediate unconsciousness. PMID:22209298

  7. Cost-Cutting Powdered Lubricant

    Science.gov (United States)

    2005-01-01

    Scientists at NASA's Glenn Research Center developed a high-temperature, solid lubricant coating material that is saving the manufacturing industry millions of dollars. The material came out of 3 decades of tribological research, work studying high-temperature friction, lubrication, and the wearing of interacting surfaces that are in relative motion. It was developed as a shaft coating deposited by thermal spraying to protect foil air bearings used in oil-free turbomachinery, like gas turbines, and is meant to be part of a larger project: an oil-free aircraft engine capable of operating at high temperatures with increased reliability, lowered weight, reduced maintenance requirements, and increased power. This advanced coating, PS300, is a self-lubricating bearing material containing chromium oxide, with additions of a low-temperature start up lubricant (silver) and a high-temperature lubricant, making it remarkably stable at high temperatures, and better suited than previously available materials for high-stress conditions. It improves efficiency, lowers friction, reduces emissions, and has been used by NASA in advanced aeropropulsion engines, refrigeration compressors, turbochargers, and hybrid electrical turbogenerators. PS300 is ideal in any application where lowered weight and reduced maintenance are desired, and high-temperature uses and heavy operating speeds are expected. It has notable uses for the Space Agency, but it has even further-reaching potential for the industrial realm.

  8. Westinghouse experience in using mechanical cutting for reactor vessel internals segmentation

    International Nuclear Information System (INIS)

    Some commercial nuclear power plants have been permanently shut down to date and decommissioned using dismantling methods. Other operating plants have decided to undergo an upgrade process that includes replacement of reactor internals. In both cases, there is a need to perform a segmentation of the reactor vessel internals with proven methods for long term waste disposal. Westinghouse has developed several concepts to dismantle reactor internals based on safe and reliable techniques. Mechanical cutting has been used by Westinghouse since 1999 for both PWRs and BWRs and its process has been continuously improved over the years. Detailed planning is essential to a successful project, and typically a 'Segmentation and Packaging Plan' is prepared to document the effort. The usual method is to start at the end of the process, by evaluating the waste disposal requirements imposed by the waste disposal agency, what type and size of containers are available for the different disposal options, and working backwards to select the best cutting tools and finally the cut geometry required. These plans are made utilizing advanced 3-D CAD software to model the process. Another area where the modelling has proven invaluable is in determining the logistics of component placement and movement in the reactor cavity, which is typically very congested when all the internals are out of the reactor vessel in various stages of segmentation. The main objective of the segmentation and packaging plan is to determine the strategy for separating the highly activated components from the less activated material, so that they can be disposed of in the most cost effective manner. Usually, highly activated components cannot be shipped off-site, so they must be packaged such that they can be dry stored with the spent fuel in an Independent Spent Fuel Storage Installation (ISFSI). Less activated components can be shipped to an off-site disposal site depending on space availability. Several of the

  9. Equilibria of Generalized Cut and Choose Protocols

    DEFF Research Database (Denmark)

    Branzei, Simina; Caragiannis, Ioannis; Kurokawa, David; Procaccia, Ariel

    Classic cake cutting protocols — which fairly allocate a divisible good among agents with heterogeneous preferences — are susceptible to manipulation. Do their strategic outcomes still guarantee fairness? To answer this question we adopt a novel algo rithmic approach, proposing a concrete...... computational model and reasoning about the game-theoretic properties of algorithms that operate in this model. Specifically, we show that each protocol in the class of generalized cut and choose (GCC) protocols — which includes the most important discrete cake cutting protocols — is guaranteed to have...

  10. Polylogarithmic Cuts in Models of V^0

    OpenAIRE

    Müller, Sebastian

    2013-01-01

    We study initial cuts of models of weak two-sorted Bounded Arithmetics with respect to the strength of their theories and show that these theories are stronger than the original one. More explicitly we will see that polylogarithmic cuts of models of $\\mathbf{V}^0$ are models of $\\mathbf{VNC}^1$ by formalizing a proof of Nepomnjascij's Theorem in such cuts. This is a strengthening of a result by Paris and Wilkie. We can then exploit our result in Proof Complexity to observe that Frege proof sy...

  11. Cutting Balloon angioplasty for cardiac transplant vasculopathy.

    OpenAIRE

    Takano, Y.; Currier, JW; Yeatman, LA; Kobashigawa, JA; Rogers, AD; Cianfichi, LJ; Fishbein, MC; Tobis, JM

    2002-01-01

    We performed Cutting Balloon angioplasty on 20 lesions in 11 heart transplant recipients 7.5 +/- 3.8 years after transplantation. The mean percentage of diameter stenosis decreased from 88.3% +/- 13.8% to 19.6% +/- 13.7% after Cutting Balloon angioplasty without complication. Seven patients underwent follow-up angiography at 4.9 +/- 1.7 months in a total of 12 lesions, and all lesions showed restenosis with a mean diameter stenosis of 84.4% +/- 19.2%. Cutting Balloon angioplasty can be used t...

  12. The economics of a temporary VAT cut

    OpenAIRE

    Crossley, Thomas; Low, Hamish; Wakefield, Matthew

    2009-01-01

    1. The rate of VAT has been cut temporarily to 15%, with a return to 17.5% in place for the end of 2009. The government has predicted that this will increase consumer spending by about 0.5%. Much of the analysis of this tax cut has been critical of the policy and concluded that the government's estimates of the impact on spending are over-optimistic. The source of this criticism is a misunderstanding of the mechanism through which the tax cut will have an impact. In fact, we believe the gover...

  13. Cut elimination in multifocused linear logic

    DEFF Research Database (Denmark)

    Guenot, Nicolas; Brock-Nannestad, Taus

    2015-01-01

    We study cut elimination for a multifocused variant of full linear logic in the sequent calculus. The multifocused normal form of proofs yields problems that do not appear in a standard focused system, related to the constraints in grouping rule instances in focusing phases. We show that cut...... elimination can be performed in a sensible way even though the proof requires some specific lemmas to deal with multifocusing phases, and discuss the difficulties arising with cut elimination when considering normal forms of proofs in linear logic....

  14. The need and necessity for the M/S Sigyns advanced communication and navigation systems, adapted for marine transport of radioactive materials

    International Nuclear Information System (INIS)

    As far back as 1978, the Swedish Nuclear Fuel and Waste Management Co., SKB, decided to design and develop an integrated marine transport system, ISTS, a system that would meet the transportation needs of the Swedish nuclear power plants for the present and for the future, a system that would satisfy all the requirements and expectations that the principals, public authorities and the general public could have in respect of SKB. The system as conceived was at that time, and is still today, unique. Despite the fact that the highest safety standards were applied, it was completed, though not entirely finalized, in 1982. Pending completion of the central interim storage facility for spent fuel, CLAB, some shipments were sent during the years 1983-1984 to the reprocessing plant at La Hague in France, but from the summer of 1985, when CLAB was ready for operation, the fuel shipments have mainly been to Swedish facilities. Since the final repository for low- and intermediate-level waste was commissioned in the spring of 1988, the entire transportation system has been finished and operation. The ISTS consists of a specially designed ship, M/S SIgyn, ten transport casks for spent fuel, two casks for core components and five terminal vehicles for local transport at CLAB, reactor sites and SFR. Specially designed containers are used for the transport of reactor waste from the reactor sites to SFR. The ISTS is now in routine operation with about 30 trips with M/S Sigyn every year. On the average, 15 of these are used for fuel and the rest for ILW container shipments

  15. Auditing to the cutting edge

    Energy Technology Data Exchange (ETDEWEB)

    Good, L.; Wirdzek, P.

    1999-07-01

    Equipment? System? Building? Campus? Neighborhood? Community? Region? What is to be audited and what needs to be corrected? Can the energy management professional decide, or should the customer? Over the last few decades, energy professionals have been evaluating energy use in order to balance clients' expenditures with acceptable levels of service. Traditionally, professional expertise and creativity have been limited more by budget than any other single element. Today, energy and the environment are tightly intertwined. In the future, effective energy management may not be possible without considering the relationships between them. Conversely, environmental protection cannot be achieved without considering energy production, distribution, and use. To this end, two powerful federal organizations, the US Environmental Protection Agency (EPA) and the US Department of Energy (DOE), have been engaged in defining the interrelationships of these areas and fashioning national energy policies aimed at awakening Americans to these facts. Environmental demands are becoming a factor in efficiency equations. Energy management professionals should prepare a response. They will face demands for cutting-edge audits that reach further than giving utility power just a trim in the energy barber shop. Survival in the business of energy management will require a broader perspective. One need only look to current advertisements by national and international corporations which praise the environmental benefits of their products and even their places of business as cleaner than their competitors'. For the energy management professional then, energy diversity and source versus site considerations are opportunities to be identified in the audit process, in addition to replacement of inefficient equipment. The country is rich with technology choices, with documented experience, and with the knowledge to create systems that can mine deep savings. True, some have niche

  16. An FMS Dynamic Production Scheduling Algorithm Considering Cutting Tool Failure and Cutting Tool Life

    Science.gov (United States)

    Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.

    2016-02-01

    This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.

  17. LTE advanced 3GPP solution for IMT-advanced

    CERN Document Server

    Holma, Harri

    2012-01-01

    From the editors of the highly successful LTE for UMTS: Evolution to LTE-Advanced, this new book examines the main technical enhancements brought by LTE-Advanced, thoroughly covering 3GPP Release 10 specifications and the main items in Release 11. Using illustrations, graphs and real-life scenarios, the authors systematically lead readers through this cutting-edge topic to provide an outlook on existing technologies as well as possible future developments. The book is structured to follow the main technical areas that will be enhanced by the LTE-Advanced specifications. The mai

  18. Laser Cutting of Leather: Tool for Industry or Designers?

    Science.gov (United States)

    Stepanov, Alexander; Manninen, Matti; Pärnänen, Inni; Hirvimäki, Marika; Salminen, Antti

    Currently technologies which are applied for leather cutting include slitting knifes, die press techniques and manual cutting. Use of laser technology has grown significantly during recent years due to number of advantages over conventional cutting methods; flexibility, high production speed, possibility to cut complex geometries, easier cutting of customized parts, and less leftovers of leather makes laser cutting more and more economically attractive to apply for leather cutting. Laser technology provides advantages in cutting complex geometries, stable cutting quality and possibility to utilize leather material in economically best way. Constant quality is important in industrial processes and laser technology fulfills this requirement: properly chosen laser cutting parameters provides identical cuts. Additionally, laser technology is very flexible in terms of geometries: complex geometries, individual designs, prototypes and small scale products can be manufactured by laser cutting. Variety of products, which needed to be cut in small volumes, is also the application where laser cutting can be more beneficial due to possibility to change production from one product to another only by changing geometry without a need to change cutting tool. Disadvantages of laser processing include high initial investment costs and some running costs due to maintenance and required gas supply for the laser. Higher level of operator's expertise is required due to more complicated machinery in case of laser cutting. This study investigates advantages and disadvantages of laser cutting in different areas of application and provides comparison between laser cutting and mechanical cutting of leather.

  19. Rational cutting height for large cutting height fully mechanized top-coal caving

    Institute of Scientific and Technical Information of China (English)

    Huang Bingxiang; Li Hongtao; Liu Changyou; Xing Shijun; Xue Weichao

    2011-01-01

    Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production.It also allows safe and efficient mining.A rational cutting height is one key parameter of this technique.Numerical simulation and a granular-media model experiment were used to analyze the effect of cutting height on the rock pressure of a fully mechanized top-coal caving work face.The recovery ratio was also studied.As the cutting height increases the top-coal thickness is reduced.Changing the ratio of cutting to drawing height intensifies the face pressure and the top-coal shattering.A maximum cutting height exists under a given set of conditions due to issues with surrounding rock-mass control.An increase in cutting height makes the top-coal cave better and the recovery ratio when drawing top-coal is then improved.A method of adjusting the face rock pressure is presented.Changing the cutting to drawing height ratio is the technique used to control face rock pressure.The recovery ratio when cutting coal exceeds that when caving top-coal so the face recovery ratio may be improved by over sizing the cutting height and increasing the top-coal drawing ratio.An optimum ratio of cutting to drawing height exists that maximizes the face recovery ratio.A rational cutting height is determined by comprehensively considering the surrounding rock-mass control and the recovery ratio.At the same time increasing the cutting height can improve single pass mining during fully mechanized top-coal caving.

  20. Advanced drilling systems study.

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  1. Development of Filter-Blower Unit for use in the Advanced Nuclear Biological Chemical Protection System (ANBCPS) Helicopter/Transport-aircraft version

    NARCIS (Netherlands)

    Sabel, R.; Reffeltrath, P.A.; Jonkman, A.; Post, T.

    2006-01-01

    As a participant in the three-nation partnership for development of the ANBCP-S for use in Helicopters, Transport Aircraft and Fast Jet, the Royal Netherlands Airforce (RNLAF) picked up the challenge to design a Filter- Blower-Unit (FBU). Major Command (MajCom) of the RNLAF set priority to develop a

  2. First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Wang, H. Q.; Wan, B. N.; Guo, H. Y.; Naulin, Volker; Diamond, P. H.; Tynan, G. R.; Xu, M.; Yan, Ning; Zhang, W.; Chang, J. F.; Wang, L.; Chen, R.; Liu, S. C.; Ding, S. Y.; Shao, L. M.; Xiong, H.; Zhao, H. L.

    2012-01-01

    A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05-1MHz) turbulence was observed in the steep-gradient region...

  3. Flu Shot Might Cut Stillbirth Risk

    Science.gov (United States)

    ... nih.gov/medlineplus/news/fullstory_158080.html Flu Shot Might Cut Stillbirth Risk Australian researchers find possible ... March 31, 2016 (HealthDay News) -- A seasonal flu shot may reduce a pregnant woman's risk of stillbirth, ...

  4. Throat-cutting of accidental origin.

    Science.gov (United States)

    Demirci, Serafettin; Dogan, Kamil Hakan; Gunaydin, Gursel

    2008-07-01

    Incised wounds of the neck can be accidental, homicidal, or suicidal. In this paper, a death case has been presented where a spinning circular saw of a cutting machine in a workshop came off its place and cut the throat of a 30-year-old male who was operating the machine. There was an incision (15 cm x 5 cm) that began in the middle of the neck down the thyroid cartilage, extended horizontally to the left of the neck and ended on the outer part of the neck in the outer left side of m. trapezius. Death occurred because of exsanguination caused by the cutting of carotis artery and jugular vein. In the case we presented, although the cut in the neck initially suggested homicide, it was found to have occurred as a result of an accident after the autopsy and death scene investigation. PMID:18489556

  5. Magnetofluidic testing of rock cutting knives

    International Nuclear Information System (INIS)

    The nondestructive testing of cutting knives consists in the determination of nonuniformity of a magnetic fluid layer applied on the horizontally placed surface of the magnetized cutting plate of the knife. A low constant magnetic field was applied perpendicular to the knife surface and a uniform magnetic fluid layer was applied. The defects as nonuniform brass layer, fissures or small cavities between the cutting plate and knife core determine the apparition of magnetic field gradients and therefore magnetic forces acting on the magnetic fluid which migrates to the zones with higher magnetic field intensity. After several minutes, a nonuniform layer of magnetic fluid was directly observed. Quantitative results, concerning the position and dimensions of the defect, were obtained by computer aided processing of the magnetic fluid layer image. Experimental data for several cutting knives are presented in the paper

  6. Climate science hit by job cuts

    Science.gov (United States)

    Randall, Ian

    2016-03-01

    Climate researchers in Australia are bracing themselves for heavy job cuts as the country's national scientific agency - the Commonwealth Scientific and Industrial Research Organisation (CSIRO) - said last month it will reprioritize towards innovation.

  7. Facets and cuts from additive systems

    Energy Technology Data Exchange (ETDEWEB)

    Araoz, J.

    1994-12-31

    Integer Program Facets with non-negative entries could be derived from Additive System Problems, like Semigroup or Gomory`s Group Problems. These facets can be used as cuts for Branch and Cuts Algorithms. In fact, any Master Problem facet with some equal coefficients came from lifting a facet of a easily related Multivalued Additive System. A morphism type relation between problems allow us to obtain facets for Master Problems or cuts for Integer Programs. We use Knapsack Problems as examples either to present results about sequential lifting for non-Master Problems, pseudo-morphisms for facet generation for Master Problems and cut generation for Integer Programs solving small subadditive linear programs or to state open problems.

  8. IAEA's Cross Cutting Activities on Research Reactors

    International Nuclear Information System (INIS)

    Full text: For nuclear research and technology development to continue to advance, research reactors (RRs) must be safely and reliably operated, adequately utilized, refurbished when necessary, provided with adequate proliferation-resistant fuel cycle services and safely decommissioned at the end of life. The IAEA has established its competence in the area of RRs with a long history of assistance to Member States in improving their utilization, by taking the lead in the development of safety standards, norms and dissemination of information on good practices for all aspects of the nuclear fuel cycle and in the planning and implementation of decommissioning. IAEA activities on RRs are formulated to cover a broad range of RR issues and to promote the continued development of scientific research and technological development using RRs. Member States look to the IAEA for coordination of the worldwide effort in this area and for help in solving specific problems. Today RR operating organizations need to overcome challenges such as the on-going management of ageing facilities, pressures for increased vigilance with respect to non-proliferation, and shrinking resources (financial as well as human) while fulfilling an expanding role in support of nuclear technology development. The IAEA coordinates and implements an array of activities that together provide broad support for RRs. As with other aspects of nuclear technology, RR activities within the IAEA are spread through diverse groups in different Departments. To ensure harmonized approaches a Cross-cutting coordination Group on Research Reactors (CCCGRR) has been established, with representatives from all IAEA Departments actively supporting RR activities. Utilization and application activities are generally lead from within the Department of Nuclear Sciences and Applications (NA). With respect to RRs, NA is primarily carrying out IAEA activities to assist and advise Member States in assessing their needs for research

  9. Link between chips and cutting moments evolution

    CERN Document Server

    Cahuc, Olivier; Gérard, Alain; 10.4028/WWW.scientific.net/AMR.423.89

    2012-01-01

    The better understanding of the material cutting process has been shown with the benefit of the forces and moments measurement since some years ago. In paper, simultaneous six mechanical components and chip orientation measurements were realized during turning tests. During these tests, the influence of the depth of cut or feed rate has been observed and a link between the chip orientation and the moment vector orientation or the central axis characteristics has been shown.

  10. Microwave processing of oil contaminated drill cuttings

    OpenAIRE

    Pereira, Igor S. M.

    2013-01-01

    Easily accessible oil reserves are currently decreasing, leading to an increase in more complex offshore deep-sea drilling programs, which require increasingly greater depths to be drilled. Such wells are commonly drilled using oil based muds, which leads to the production of drilled rock fragments, drill cuttings, which are contaminated with the base oil present in the mud. It is a legal requirement to reduce oil content to below 1 wt% in order to dispose of these drill cuttings in the North...

  11. Theoretical aspects of fibre laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Mahrle, A; Beyer, E, E-mail: achim.mahrle@iws.fraunhofer.d [University of Technology Dresden, Institute for Surface and Manufacturing Technology, PO Box, 01062 Dresden (Germany)

    2009-09-07

    Fibre lasers offer distinct advantages over established laser systems with respect to power efficiency, beam guidance and beam quality. Consequently, the potential of these new laser beam sources will be increasingly exploited for laser cutting applications that are conventionally carried out with CO{sub 2} lasers. However, theoretical estimates of the effective absorptivity at the cut front suggest that the shorter wavelength of the fibre laser in combination with its high focusability seems to be primarily advantageous for thin sheet metal cutting whereas the CO{sub 2} laser is probably still capable of cutting thicker materials more efficiently. This surprising result is a consequence of the absorptivity behaviour of metals that shows essential quantitative differences for the corresponding wavelengths of both laser sources as a function of the angle of incidence between the laser beam and the material to be cut. In evaluation of the revealed dependences, solution strategies for an improvement of the efficiency of fibre laser cutting of thicker metal sheets are suggested.

  12. Demonstrating diamond wire cutting of the TFTR

    International Nuclear Information System (INIS)

    The Tokamak Fusion Test Reactor (TFTR) ceased operation in April 1997 and decommissioning commenced in October 1999. The deuterium-tritium fusion experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak (100 cubic meters) present a unique and challenging task for dismantling. Plasma arc cutting is the current baseline technology for the dismantlement of fission reactors. This technology is typically used because of its faster cutting times. Alternatively, an innovative approach for dismantlement of the TFTR is the use of diamond wire cutting technology. Recent improvements in diamond wire technology have allowed the cutting of carbon steel components such as pipe, plate, and tube bundles in heat exchangers. Some expected benefits of this technology include: significantly reduction in airborne contaminates, reduced personnel exposure, a reduced risk of spread of tritium contamination, and reduced overall costs as compared to using plasma arc cutting. This paper will provide detailed results of the diamond wire cutting demonstration that was completed in September of 1999, on a mock-up of this complex reactor. The results will identify cost, safety, industrial and engineering parameters, and the related performance of each situation

  13. Road and Rail Side Vegetation Management Implications of Habitat Use by Moose Relative to Brush Cutting Season

    Science.gov (United States)

    Rea, Roy V.; Child, Kenneth N.; Spata, David P.; MacDonald, Douglas

    2010-07-01

    Plants cut at different times produce resprouts that vary in their nutritional value relative to when they are cut. To determine how vegetation management in transportation (road and rail) corridors at different times of the year could influence browse quality in the years following cutting, and how this could potentially influence encounters between herbivores and vehicles, we undertook a 3-year study. In 2001, at a wildlife viewing area near Prince George, British Columbia, Canada, we established a control area and treatment areas where shrubs and trees that are used as food by moose ( Alces alces) were cut at the beginning of June, July, August, September, and October. In the fall, moose were most often observed browsing the resprouts of plants cut in August (years 1 and 2 post-treatment) and September (year 3). Cumulative winter track counts were highest in the uncut control area in the years following cutting. Spring pellet counts revealed that most pellets were deposited in the uncut (years 1 and 2) and August-cut (year 3) areas during winter. With the exception of the first year after cutting, browse removal by moose was highest for plants cut later in the growing season. Overall, our findings suggest that following cutting, plants cut later in the year are selected more often by moose relative to those cut earlier. To reduce browse use of corridor vegetation in areas where concerns for moose-vehicle collisions exist, we recommend that vegetation maintenance activities be conducted in the early summer months of June and July.

  14. Selected Malaysian Wood CO2 -Laser Cutting Parameters And Cut Quality

    OpenAIRE

    Nukman Yusoff; Saifu R. Ismail; Azuddin Mamat; Aznijar Ahmad-Yazid

    2008-01-01

    Laser has been used to cut most non-metallic materials very efficiently and successfully because these materials are highly absorptive by the CO2 laser wavelength of 10.6µm. Laser cutting process has been found to be reliable in loads of applications, with several advantages over other mechanical means in producing successful cut of even thermally sensitive materials such as wood. Various works which have been conducted to resolve the interaction between laser and wood but an ultimate guideli...

  15. Convective transport in tokamaks

    International Nuclear Information System (INIS)

    Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)

  16. Advanced computer technology - An aspect of the Terminal Configured Vehicle program. [air transportation capacity, productivity, all-weather reliability and noise reduction improvements

    Science.gov (United States)

    Berkstresser, B. K.

    1975-01-01

    NASA is conducting a Terminal Configured Vehicle program to provide improvements in the air transportation system such as increased system capacity and productivity, increased all-weather reliability, and reduced noise. A typical jet transport has been equipped with highly flexible digital display and automatic control equipment to study operational techniques for conventional takeoff and landing aircraft. The present airborne computer capability of this aircraft employs a multiple computer simple redundancy concept. The next step is to proceed from this concept to a reconfigurable computer system which can degrade gracefully in the event of a failure, adjust critical computations to remaining capacity, and reorder itself, in the case of transients, to the highest order of redundancy and reliability.

  17. Dynamic Process Analysis In Cutting Zone During Machining Of Nickel Alloys

    Science.gov (United States)

    Czán, Andrej; Šajgalík, Michal; Martikáň, Anton; Mrázik, Jozef

    2015-12-01

    To generally improve effectivity of parts production and metal cutting process, there are used process models of super alloys together with finite element modeling simulations. Advanced measurement methods of the process could improve and verify the accuracy of these models. These methods cause many error sources when using empiric or exact methods such as infrared radiation thermography to measure the temperature distribution of the tool, workpiece, and chip during metal cutting. Measuring of metal machining is challenging due to factors such as the high magnification required, high surface speeds and deformations, micro-blackbody effects, changing emissivity and deformations present at metal cutting. As part of an ongoing effort to improve our understanding of uncertainties associated with these measurement methods, multimeasurement sets of experiments were performed. First set of measurements observed connection between surface temperature and the internal temperature of the cutting tool. This was accomplished by measuring the temperature using a thermal camera in cutting zone. Second set performed high-speed scan of dynamic processes such as formation of elastic and plastic deformation. During this operation was applied high-speed scannning system using macro conversion lens for monitoring of micro-structural changes in deformation areas. Next necessary applied set is recording of dynamic processes by implementation of piezoelectric measurement device for monitoring of cutting forces. The outputs from multimeasuring system are the basis for verification of theoretical knowledge from this field and elimination of uncertainties, which arise by using computer simulation systems.

  18. The optimal cutting parametre design of rough cutting process in side milling

    Directory of Open Access Journals (Sweden)

    H.-S. Lu

    2008-08-01

    Full Text Available Purpose: This paper is focused on the optimal cutting parameters design of rough cutting processes in side milling for SKD61 tool steels.Design/methodology/approach: The fuzzy logics can be a proper basis to perform the optimization procedure with complicated multiple performance characteristics in this paper. Using this approach combined with the grey-relational analysis, the design algorithm is transformed into optimization of a single and simple grey-fuzzy reasoning grade rather than multiple performance characteristics. The Taguch method is also adopted to search for an optimal combination of cutting parameters for this rough cutting process in side milling.Findings: The improvement of tool life and metal removal rate from the initial cutting parameters to the optimal cutting parameters are 54% and 9.7%. Hence, this reveals that the proposed approach in this study can effectively improve the cutting performance.Research limitations/implications: In this paper only four cutting parameters are taken into consideration. Many other parameters such as tool geometric shape are not applied to this study.Practical implications: It is believed that this optimal result can be applied to practical processes to effectively reduce manufacturing cost and greatly enhance manufacturing efficiency.Originality/value: A systematic and effective optimization method is presented in this paper. Using this method can effectively acquire an optimal combination of the cutting parameters.

  19. Spreading and deposition of drill cuttings in the Barents Sea - Plans of the Barents Sea drill cuttings research initiative (BARCUT) project

    Science.gov (United States)

    Junttila, Juho; Aagaard Sørensen, Steffen; Dijkstra, Noortje

    2016-04-01

    The increasing petroleum exploration activity in the Barents Sea will lead to increased release of drill cuttings onto the ocean bottom in the future. Drilling mud consists of both drilling fluid with contaminants and fine sediments. This increasing discharge of drill cuttings provides a need for further knowledge of ocean current transportation of both contaminants and fine sediment particles (clay and silt), their impact on microfauna and the prediction of their accumulation areas. The main object is to study the current status of the sediments and microfauna exposed to different types of drill cuttings in the proximity of drilled exploration wells. Detailed objectives are: 1) To identify the main physical and geochemical characteristics of the sediments near the drilled wells including main areas for drill cutting accumulation and the influence of ocean currents on sediments and drill cuttings; 2) To identify the influence of drill cutting discharge on benthic foraminifera; 3) Monitoring and prediction of future spreading, accumulation and distribution of drill cutting related pollutants. We have conducted two field sampling campaigns, and in total visited seven drilling sites, ranging in age from recently drilled (in 2015) to nearly 30 years since abandonment. In this project, we study mainly push cores taken with a remote operated underwater vehicle (ROV) in the close proximity of exploration wells in the SW Barents Sea. We will determine the modern sedimentation rates based on the ²¹°Pb dating method. We analyze sediment grain-size, heavy metal and polyaromatic hydrocarbon (PAH) contents. Additionally analysis on benthic foraminifera, smectite clay minerals and the total organic carbon (TOC) content will be performed.

  20. Research advances on air contaminant transport in ship cabin%船舶舱室污染物传播研究进展

    Institute of Scientific and Technical Information of China (English)

    周爱民; 余涛; 沈旭东

    2014-01-01

    According to the characteristics of ship cabin, this paper has systematically summarized the related researches for indoor contaminant transport into three kinds of typical methods, and evaluated their advantages and disadvantages. Through analyzing above ship theory models in the application situation and prospect, points out that their integration use is the development direction to simulate the ship cabin contaminant transport law. Finally this paper suggests the next step research direction, which has import reference value for the cabin contaminant transport.%针对船舶舱室特点,将相关室内污染物传播研究成果系统地总结成3类典型方法,并评价各自优缺点。通过分析各类理论模型在船舶领域的应用现状和前景,指出将其整合运用是模拟船舶舱室污染物传播规律的发展方向,并提出下一步的研究方向,对开展传播舱室污染物的研究具有重要参考价值。

  1. IBFAN: on the cutting edge.

    Science.gov (United States)

    Allain, A

    1989-01-01

    The story of IBFAN, the International Baby Food Action Network, from its beginning with 6 members in 1979, to its status of 140 groups worldwide in 1989 is told by its founder, Annelies Allain. IBFAN celebrated its 10th anniversary in October 1989 with a week-long Forum of 350 organizers from 67 countries. IBFAN is a single-tissue grass-roots organization, almost entirely women: the issue is that bottle-feeding kills babies. It has mounted a successful campaign ending in passage of the WHO/UNICEF International Code of Marketing of Breast-milk Substitutes in 1981. With this success, the political power of the "third system," of people, as opposed to government and transnational corporations, was recognized. The most important fundamental activity of IBFAN is to amass information to make its point that million of babies, primarily in developing countries, have died from consuming powdered formula instead of breast milk. IBFAN also set out to show that milk companies have influenced medical school training, health care providers, UN and WHO policies, and governments of developing countries through advertising and tax income. IBFAN's methods are boycott, corporate marketing analysis, shareholder, resolutions, and numerous strategies invented by local activists. The baby food industry responded by forming the International Council of Infant Food Industries, headed by a former WHO Assistant Director General, and applied for registration as an official NGO with the WHO. Again in 1987 they formed the Infant Food Manufacturers Associations, headed by a former WHO staff member, and gained WHO NGO status, claiming to advance infant nutrition and adhere to the WHO Code. Ibfan's current emphasis is on combatting free infant formula given out at maternity hospitals, the most effective way to block successful lactation, is developed as well as developing countries. An effort to monitor this activity will mark the 10th anniversary of the Code in 1991. PMID:12343253

  2. Fabrication of low cost cutting wheel via thermal spray process

    Science.gov (United States)

    Anasyida, A. S.; Nurulakmal, M. S.

    2012-09-01

    The present study is mainly focused on development of metal cutting wheel. The process involved hard particles (abrasives) being bonded on the wheel to enhance the cutting capability by thermal spraying process and followed by polymer bonding. The purpose of this work is to produce low cost cutting wheel and study the performance of cutting behavior. Two different types of powders; silicon carbide (SiC) as bonding agent and chromium carbide (Cr3C2) as abrasives were used. Wear loss and depth of cut as function of load, cutting time and cutting speed were evaluated. The results showed that the speed and load were the main factors that affected the cutting efficiency and the optimum cutting process can be performed at low cutting speed and high load or at high cutting speed and low load.

  3. Powerful demolition techniques - plasma fusion cutting, contact arc metal cutting (CAMC), and contact arc metal grinding (CAMG); Leistungsfaehige Rueckbautechnologien - Plasmaschmelzschneiden, Kontakt-Lichtbogen-Metall-Schneiden (CAMC) und Kontakt-Lichtbogen-Metall-Trennschleifen (CAMG)

    Energy Technology Data Exchange (ETDEWEB)

    Bach, F.W.; Kremer, G.; Ruemenapp, T. [Leibniz Univ. Hannover, Inst. fuer Werkstoffkunde, Garbsen (Germany)

    2006-10-15

    One of the most complicated steps in the demolition of nuclear power plants is the disassembly of radiologically burdened large components. Most of this work must be performed remotely and under a cover of water. Moreover, dimensions, structures, and locations pose problems. Various techniques of disassembly are available which have specific pros and cons. Thermal cutting techniques, i.e. plasma fusion cutting, contact arc metal cutting (CAMC), and contact arc metal grinding (CAMG), can be used with comparatively simple handling systems even for large material thicknesses and complex geometries. These thermal cutting techniques have been advanced considerably at the Institute for Materials Technology of the University of Hanover in recent years. In plasma fusion cutting, the workpiece is molten, partly evaporated, and the melt is blown out of the kerf by the gas jet. CAMC and CAMG are based on the thermal abrasion of electrically conducting materials under water by means of repeated non-steady short-circuit high-current arcs resulting from contacts between the electrode and the workpiece. Unlike plasma or laser beam cutting, hollow structures and sandwich structures pose no problems. The performance capability of plasma fusion cutting and contact arc metal cutting has been demonstrated impressively in the disassembly of reactor internals of the Karlsruhe multi-purpose research reactor (MZFR). (orig.)

  4. Advanced development and using of space nuclear power systems as a part of transport power supply modules for general purpose spacecraft

    International Nuclear Information System (INIS)

    Nuclear transport power systems (NTPS) can provide solving such important science, commerce and defense tasks in space as radar surveillance, information affording, global ecological monitoring, defense of Earth from dangerous space objects, manufacturing in space, investigations of asteroids, comets and solar systems close-quote planets (Kuzin et al. 1993a, 1993b). The creation of NTPS for real space systems, however, must be based on proved NTPS effectiveness in comparison with other power and propulsion systems such as, nonnuclear electric-rocket systems and so on. When the NTPS effectiveness is proved, the operation safety of such systems must be suited to the UN requirements for all stages of the life cycle in view of possible failures. A nuclear transport power module provides both a large amount of thermal and electrical power and a long acting time (about 6 endash 7 years after completing the delivery task). For this reason such module is featured with the high power supplying-mass delivery effectiveness and the considerable increasing of the total effectiveness of a spacecraft with the module. In the report, the such NTPS three types, namely the system on the base of thermionic reactor-converter with electric rocket propulsion system (ERPS), the dual mode thermionic nuclear power system with pumping of working fluid through the active reactor zone, and the system on the base of the nuclear thermal rocket engine technology is compared with the transport power modules on the base of solar power system from the point of view of providing the highest degree of the effectiveness. copyright 1996 American Institute of Physics

  5. An Innovative Three-Dimensional Heterogeneous Coarse-Mesh Transport Method for Advanced and Generation IV Reactor Core Analysis and Design

    International Nuclear Information System (INIS)

    This project has resulted in a highly efficient method that has been shown to provide accurate solutions to a variety of 2D and 3D reactor problems. The goal of this project was to develop (1) an accurate and efficient three-dimensional whole-core neutronics method with the following features: based solely on transport theory, does not require the use of cross-section homogenization, contains a highly accurate and self-consistent global flux reconstruction procedure, and is applicable to large, heterogeneous reactor models, and to (2) create new numerical benchmark problems for code cross-comparison.

  6. An Innovative Three-Dimensional Heterogeneous Coarse-Mesh Transport Method for Advanced and Generation IV Reactor Core Analysis and Design

    Energy Technology Data Exchange (ETDEWEB)

    Farzad Rahnema

    2009-11-12

    This project has resulted in a highly efficient method that has been shown to provide accurate solutions to a variety of 2D and 3D reactor problems. The goal of this project was to develop (1) an accurate and efficient three-dimensional whole-core neutronics method with the following features: based sollely on transport theory, does not require the use of cross-section homogenization, contains a highly accurate and self-consistent global flux reconstruction procedure, and is applicable to large, heterogeneous reactor models, and to (2) create new numerical benchmark problems for code cross-comparison.

  7. Rooting cuttings of yam (Dioscorea spp.

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Rocha e Silva

    2014-12-01

    Full Text Available The culture of yams (Dioscorea spp. has great importance for the entire Brazilian population, mainly in the Northeast, either by its nutritional or commercial value. This work aimed to study a new method of seedling production of yams by stem cuttings collected from plants with age of 120 days. The experiment was carried out in the CECA/UFAL, in a green house with intermittent fogging, in a fully randomized block design with a factorial 3 × 2 × 2, 12 treatments and 4 replications. Three factors were evaluated: height of the cuttings collection in plant (top, center and bottom, position of the cuttings on the branch (proximal and distal and concentration of Indolebutyric acid (IBA applied (0 and 1 mg/L. The cuttings were planted in plastic trays of 32 cells, containing commercial Bioplant ® substrate. After 30 days, the presence, the number and length of roots was acessed. All variables were subjected to analysis of variance and averages were compared by Tukey test. The results obtained in this study showed that the use of IBA (1 g/L did not influence the rooting process. Cuttings collected in the basal third of the plants in the proximal part of the branches, independent of the concentration of IBA, presented the best results for the percentage of rooting, root number and length of roots per stake.

  8. Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based hastelloy - 276

    International Nuclear Information System (INIS)

    Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.

  9. Budget Cuts: Financial Aid Offices Face Budget Cuts and Increasing Workload. Quick Scan Survey Results

    Science.gov (United States)

    National Association of Student Financial Aid Administrators (NJ1), 2010

    2010-01-01

    The majority of college financial aid offices have seen cuts to their operating budgets this year compared to the 2007-08 academic year when the recession began, according to the National Association of Student Financial Aid Administrator's latest QuickScan Survey. Sixty-two percent of financial aid offices reported operating budget cuts this year…

  10. Traveling Salesman Problem with Transportation

    Directory of Open Access Journals (Sweden)

    Valeriu Ungureanu

    2006-09-01

    Full Text Available Traveling Salesman Problem (TSP is a generic name that includes diverse practical models. Motivated by applications, a new model of TSP is examined – a synthesis of classical TSP and classical Transportation Problem. Algorithms based on Integer Programming cutting-plane methods and Branch and Bound Techniques are obvious.

  11. Recent Advances in the Modeling of the Transport of Two-Plasmon-Decay Electrons in the 1-D Hydrodynamic Code LILAC

    Science.gov (United States)

    Delettrez, J. A.; Myatt, J. F.; Yaakobi, B.

    2015-11-01

    The modeling of the fast-electron transport in the 1-D hydrodynamic code LILAC was modified because of the addition of cross-beam-energy-transfer (CBET) in implosion simulations. Using the old fast-electron with source model CBET results in a shift of the peak of the hard x-ray (HXR) production from the end of the laser pulse, as observed in experiments, to earlier in the pulse. This is caused by a drop in the laser intensity of the quarter-critical surface from CBET interaction at lower densities. Data from simulations with the laser plasma simulation environment (LPSE) code will be used to modify the source algorithm in LILAC. In addition, the transport model in LILAC has been modified to include deviations from the straight-line algorithm and non-specular reflection at the sheath to take into account the scattering from collisions and magnetic fields in the corona. Simulation results will be compared with HXR emissions from both room-temperature plastic and cryogenic target experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  12. Advanced Analysis of Nontraditional Machining

    CERN Document Server

    Tsai, Hung-Yin

    2013-01-01

    Nontraditional machining utilizes thermal, chemical, electrical, mechanical and optical sources of energy to form and cut materials. Advanced Analysis of Nontraditional Machining explains in-depth how each of these advanced machining processes work, their machining system components, and process variables and industrial applications, thereby offering advanced knowledge and scientific insight. This book also documents the latest and frequently cited research results of a few key nonconventional machining processes for the most concerned topics in industrial applications, such as laser machining, electrical discharge machining, electropolishing of die and mold, and wafer processing for integrated circuit manufacturing. This book also: Fills the gap of the advanced knowledge of nonconventional machining between industry and research Documents latest and frequently cited research of key nonconventional machining processes for the most sought after topics in industrial applications Demonstrates advanced multidisci...

  13. Evaluation of Cutting Fluids in Multiple Reaming of Stainless Steel

    DEFF Research Database (Denmark)

    Belluco, Walter; Zeng, Z.; De Chiffre, Leonardo

    2001-01-01

    An investigation on the effect of different cutting fluids in reaming is presented. The performance of three water based cutting fluids and one cutting oil was compared to that of a reference water based commercial product by measurement of cutting forces, surface roughness and part accuracy. Three...

  14. Influence of cutting conditions on chip side curl

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    2004-01-01

    The paper describes the influence of local variations of contact length, cutting speed and material constraint, showing the effect of lubrication, on the side curl of the chip. The following examples are illustrated by experiments: cutting of a tube vs. cutting of a bar; cutting using a tool...

  15. Investigations of Cutting Fluid Performance Using Different Machining Operations

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Belluco, Walter

    An analysis of cutting fluid performance in dif-ferent metal cutting operations is presented based on performance criteria, work material and fluid type. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping operations, with respect to tool life, cutting forces and pro...

  16. 7 CFR 58.413 - Cutting and packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cutting and packaging rooms. 58.413 Section 58.413....413 Cutting and packaging rooms. When small packages of cheese are cut and wrapped, separate rooms... outward to minimize the entrance of unfiltered air into the cutting and packaging room. The...

  17. COMPUTER AIDED DESIGN OF CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Jakub Matuszak

    2015-11-01

    Full Text Available Correct and stable machining process requires an appropriate cutting tool. In most cases the tool can be selected by using special tool catalogs often available in online version. But in some cases there is a need to design unusual tools, for special treatment, which are not available in tool manufacturers’ catalogs. Proper tool design requires strength and geometric calculations. Moreover, in many cases specific technical documentation is required. By using Computer Aided Design of cutting tools this task can be carried out quickly and with high accuracy. Cutting tool visualization in CAD programs gives a clear overview of the design process. Besides, these programs provide the ability to simulate real machining process. Nowadays, 3D modeling in CAD programs is a fundamental tool for engineers. Therefore, it is important to use them in the education process.

  18. Homicidal Cut Throat: The Forensic Perspective

    Science.gov (United States)

    Samaraweera, Jeewana C

    2016-01-01

    The forensic pathologists have a challenging task during the ascertainment of the manner of death in cut throat injuries when presented with no proper history or witnesses. We report a rare homicide, where a person was killed by the father of his gay partner. A 51-year-old married man was found dead in his car on the driving seat at a road. There were blood stains on the dash board and windscreen. No weapon had been recovered. At autopsy, a deep, oblique, long incised injury was found on the front of the neck. There were no hesitant or defense injuries. The cause of death was cut throat. The findings were compatible with a homicidal cut throat by a right handed person from behind after head being restrained firmly. Findings were compatible with the history provided by the suspect. PMID:27134896

  19. ENVIRONMENTALLY REDUCING OF COOLANTS IN METAL CUTTING

    Directory of Open Access Journals (Sweden)

    Veijo KAUPPINEN

    2012-11-01

    Full Text Available Strained environment is a global problem. In metal industries the use of coolant has become more problematic in terms of both employee health and environmental pollution. It is said that the use of coolant forms approximately 8 - 16 % of the total production costs.The traditional methods that use coolants are now obviously becoming obsolete. Hence, it is clear that using a dry cutting system has great implications for resource preservation and waste reduction. For this purpose, a new cooling system is designed for dry cutting. This paper presents the new eco-friendly cooling innovation and the benefits gained by using this method. The new cooling system relies on a unit for ionising ejected air. In order to compare the performance of using this system, cutting experiments were carried out. A series of tests were performed on a horizontal turning machine and on a horizontal machining centre.

  20. Manipulation and cutting of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanomanipulation plays an important role in nanofabrication, it is also a technology necessary in exploring the secrets of nanoworld, and it thus beco mesa start point to research future nanomachine. In this study, manipulation and cutting of carbon nanotubes have been conducted in order to examine whether we can move a nanocomponent from one site to another by using the tip of atomic fo rce microscope (AFM). The technique may also be valuable for providing the const ructive materials of nanofabrication. While exploring the method for manipulatin g and cutting of nanotubes, some new phenomena have been observed during the process. Results show that carbon nanotubes present a feature of deformation combin ing bending and distortion when subjected to large mechanical forces exerted by the tip of AFM. In special cases, long carbon nanotubes can be cut into two part s, by which we can remove the part where crystal lattice is flawed, and therefor e a perfect nanocomponent can be obtained.

  1. Basics of cutting and abrasive processes

    CERN Document Server

    Toenshoff, Hans Kurt

    2013-01-01

    Manufacturing is the basic industrial activity generating real value. Cutting and abrasive technologies are the backbone of precision production in machine, automotive and aircraft building as well as of production of consumer goods. We present the knowledge of modern manufacturing in these technologies on the basis of scientific research. The theory of cutting and abrasive processes and the knowledge about their application in industrial practice are a prerequisite for the studies of manufacturing science and an important part of the curriculum of the master study in German mechanical engineering. The basis of this book is our lecture “Basics of cutting and abrasive processes” (4 semester hours/3 credit hours) at the Leibniz University Hannover, which we offer to the diploma and master students specializing in manufacturing science.

  2. Bayesian network learning with cutting planes

    CERN Document Server

    Cussens, James

    2012-01-01

    The problem of learning the structure of Bayesian networks from complete discrete data with a limit on parent set size is considered. Learning is cast explicitly as an optimisation problem where the goal is to find a BN structure which maximises log marginal likelihood (BDe score). Integer programming, specifically the SCIP framework, is used to solve this optimisation problem. Acyclicity constraints are added to the integer program (IP) during solving in the form of cutting planes. Finding good cutting planes is the key to the success of the approach -the search for such cutting planes is effected using a sub-IP. Results show that this is a particularly fast method for exact BN learning.

  3. A Gradient Descent Approximation for Graph Cuts

    Science.gov (United States)

    Yildiz, Alparslan; Akgul, Yusuf Sinan

    Graph cuts have become very popular in many areas of computer vision including segmentation, energy minimization, and 3D reconstruction. Their ability to find optimal results efficiently and the convenience of usage are some of the factors of this popularity. However, there are a few issues with graph cuts, such as inherent sequential nature of popular algorithms and the memory bloat in large scale problems. In this paper, we introduce a novel method for the approximation of the graph cut optimization by posing the problem as a gradient descent formulation. The advantages of our method is the ability to work efficiently on large problems and the possibility of convenient implementation on parallel architectures such as inexpensive Graphics Processing Units (GPUs). We have implemented the proposed method on the Nvidia 8800GTS GPU. The classical segmentation experiments on static images and video data showed the effectiveness of our method.

  4. Photonic mesophases from cut rod rotators

    Energy Technology Data Exchange (ETDEWEB)

    Stelson, Angela C.; Liddell Watson, Chekesha M., E-mail: cml66@cornell.edu [Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Avendano, Carlos [Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-01-14

    The photonic band properties of random rotator mesophases are calculated using supercell methods applied to cut rods on a hexagonal lattice. Inspired by the thermodynamic mesophase for anisotropic building blocks, we vary the shape factor of cut fraction for the randomly oriented basis. We find large, stable bandgaps with high gap isotropy in the inverted and direct structures as a function of cut fraction, dielectric contrast, and filling fraction. Bandgap sizes up to 34.5% are maximized at high dielectric contrast for rods separated in a matrix. The bandgaps open at dielectric contrasts as low as 2.0 for the transverse magnetic polarization and 2.25 for the transverse electric polarization. Additionally, the type of scattering that promotes the bandgap is correlated with the effect of disorder on bandgap size. Slow light properties are investigated in waveguide geometry and slowdown factors up to 5 × 10{sup 4} are found.

  5. Experimental analysis of cut welding in aluminium

    DEFF Research Database (Denmark)

    Dorph, Pernille; De Chiffre, Leonardo; Bay, Niels

    1993-01-01

    Cut welding is a newly developed cold pressure welding process. In the present work, an experimental investigation was carried out analyzing the mechanisms involved in cut welding of a block to a strip. Experiments were carried out in technically pure aluminium. The investigation has involved...... tensile testing and metallographic investigations of the welds. The results show that this variant of cut welding is a very reproducible process giving a weld strength equal to 30-40% the strength of the parent material. The experiments have shown that the reason for this relatively low strength is an...... uneven pressure distribution along the weld due to a wave formed during sliding. Attempts to alter the material flow during sliding are presented....

  6. Cutting, compression and shear of silicon small single crystals

    International Nuclear Information System (INIS)

    This paper describes the results of high speed deformations of pure silicon small crystals using molecular dynamics. The paper suggests that plastic deformation may be possible for silicon with a high speed deformation at room temperature. The potential used was the three body Stillinger-Weber potential. The size of the crystal is 6(x) x 16(y) x 2(z) [nm], with x, y and z axes being taken in the [1=macron 1 0], [1=macron 1=macron 2] and [1 1 1] directions, respectively. (1 1 1) is the cutting plane and a slip plane. [1=macron 1 0] is the cutting direction. A sharp vertical solid edge was advanced in the x direction with a speed of 10 m/s. Surfaces are free and no periodic boundary conditions were used. The time step interval was taken to be 1x10-16 s. In another numerical experiment, the same crystal was compressed in the [1=macron 1=macron 1=macron] direction also using molecular dynamics. It was found that silicon crystals can be compressed with a high speed deformation, and suggests that silicon may be plastically deformed under such conditions

  7. Study of elementary micro-cutting in hardened tool steel

    OpenAIRE

    PIQUARD, Romain; Gilbin, Alexandre; Fontaine, Michael; D'ACUNTO, Alain; Thibaud, Sébastien; DUDZINSKI, Daniel

    2014-01-01

    In order to model micro-milling cutting forces, a way is to apply a local model on discretized elements of the cutting edge and then summing on the whole edge to obtain the global cutting forces. This local model is usually obtained by numerical simulation or cutting experimentation. This paper focuses on orthogonal and oblique micro-cutting experiments of AISI 6F7 with tungsten carbide tools. Results show the influence of cutting edge sharpness on cutting forces and the existence of differen...

  8. A case of "atypical homicidal" cut-throat injury.

    Science.gov (United States)

    Kumar S, Ajay; Kumar Ms, Vinay; Babu, Yp Raghavendra; Prasad, Mahadeshwara

    2016-09-01

    Cut-throats can be of homicidal, suicidal or accidental origin. In cases of death from a cut-throat, distinguishing the cause is one of the important functions in crime investigation. The features that differentiate suicidal and homicidal cut-throat injuries are the presence of hesitation cuts, depth of wound, signs of struggle, edges of the wound, etc. In the case of a suicidal cut-throat, it is not uncommon to find hesitation cuts but in a homicidal cut-throat, it is uncommon. We present a case of a homicidal cut-throat injury but with hesitation cuts and tailing over the neck, unlike the classical description of homicidal cut-throat injury. This resulted from a curved, sharp and moderately heavy weapon. PMID:27381317

  9. Cutting line determination for plant propagation

    Science.gov (United States)

    Lo, Li-Yun; Hsia, Chi-Chun; Sun, Hua-Hong; Chen, Hsiang-Ju; Wu, Xin-Ting; Hu, Min-Chun

    2014-01-01

    Investigating an efficient method for plant propagation can help not only prevent extinction of plants but also facilitate the development of botanical industries. In this paper, we propose to use image processing techniques to determine the cutting-line for the propagation of two kinds of plants, i.e. Melaleuca alternifolia Cheel and Cinnamomum kanehirai Hay, which have quite different characteristics in terms of shape, structure, and propagation way (e.g. propagation by seeding and rooting, respectively). The proposed cutting line determination methods can be further applied to develop an automatic control system to reduce labor cost and increase the effectiveness of plant propagation.

  10. Cut Locus Construction using Deformable Simplicial Complexes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Bærentzen, Jakob Andreas; Anton, François;

    2011-01-01

    In this paper we present a method for appproximating cut loci for a given point p on Riemannian 2D manifolds, closely related to the notion of Voronoi diagrams. Our method finds the cut locus by advecting a front of points equally distant from p along the geodesics originating at p and finding the...... lines of self-intersections of the front in the parametric space. This becomes possible by using the deformable simplicial complexes (DSC, [1]) method for deformable interface tracking. DSC provide a simple collision detection mechanism, allows for interface topology control, and does not require the...

  11. Cut Times for Simple Random Walk

    OpenAIRE

    Lawler, Gregory

    1996-01-01

    Let $S(n)$ be a simple random walk taking values in $Z^d$. A time $n$ is called a cut time if \\[ S[0,n] \\cap S[n+1,\\infty) = \\emptyset . \\] We show that in three dimensions the number of cut times less than $n$ grows like $n^{1 - \\zeta}$ where $\\zeta = \\zeta_d$ is the intersection exponent. As part of the proof we show that in two or three dimensions \\[ P(S[0,n] \\cap S[n+1,2n] = \\emptyset ) \\sim n^{-\\zeta}, \\] where $\\sim$ denotes that each side is bounded by a constant times the other side.

  12. Laser cutting technology using water jet waveguide

    International Nuclear Information System (INIS)

    Laser with water jet is examined to cut in-vessel structure. However, it is necessary to increase the break-up length of water jet to cut a thick plate. Therefore, the effects of the water jet parameter (water pressure, assist gas, laser power) on break-up length were investigated. It was found from observation results of water jet that the longest break-up length is about 135mm under condition of water pressure 40 MPa, laser power 30W and helium assist gas 1L/min. (author)

  13. Numerical modeling of a cutting torch

    International Nuclear Information System (INIS)

    A two-dimensional turbulent model of a low-current intensity (30 A) cutting plasma torch was developed using the local thermodynamic equilibrium approximation. A good agreement was found between measured and modelled results of plasma temperature and velocity, the latter of which has not been previously reported in the literature for high energy density torches. The cutting performance was also studied in terms of the heat flux to the work-piece and the value of the force exerted by the impinging plasma jet.

  14. Three-Dimensional Dynamic Cutting Model

    CERN Document Server

    Ispas, Constantin; Gérard, Alain; Bardac, Doru

    2009-01-01

    The determination of a dynamic law of cut is complex and often very difficult to develop. Several formulations were developed, in very complex ways being given that 3 AD crosses from there, the number of variables is much higher than out of orthogonal cut. The existence of the plan of displacements and the correlations with the elastic characteristics of the machining system thus make it possible to simplify the dynamic model 3D. A dynamic model on the basis of experimental approach is proposed. Simulation is in concord with the experimental results.

  15. Region growing for multi-route cuts

    OpenAIRE

    Barman, Siddharth; Chawla, Shuchi

    2009-01-01

    We study a number of multi-route cut problems: given a graph G=(V,E) and connectivity thresholds k_(u,v) on pairs of nodes, the goal is to find a minimum cost set of edges or vertices the removal of which reduces the connectivity between every pair (u,v) to strictly below its given threshold. These problems arise in the context of reliability in communication networks; They are natural generalizations of traditional minimum cut problems where the thresholds are either 1 (we want to completely...

  16. Spending and Cutting Are Two Different Worlds

    DEFF Research Database (Denmark)

    Houlberg, Kurt; Olsen, Asmus Leth; Holm Pedersen, Lene

    2016-01-01

    Danish local councillors, who are randomly assigned to a decision-making situation, where the block grant provided to their municipality is either increased or reduced. The results show that the politicians’ preferences for cutting and spending are asymmetric, in the sense that the policy areas, which...... are assigned the least cuts when the grant is reduced, are rarely the ones which are assigned extra money when the grant is increased. Areas with well-organised interests and a target group which is perceived as deserving are granted more money, whereas policy areas where the target group is perceived...

  17. Advances in machining process modeling

    International Nuclear Information System (INIS)

    Ever increasing speed and affordability of computing resources together with the advances in the modeling techniques made it possible to use the numerical models like finite element method (FEM), to simulate the metal cutting processes numerically. This paper explains the recent technological advances made in the commercial DEFORMTM system to facilitate the modeling of metal cutting process. During the first phase of this work a 2D system has been developed which assumes orthogonal cutting conditions. The second phase of this work has resulted in the development of a modeling system for 3D machining processes with main focus on turning. The modeling tools developed in this project utilize a hybrid procedure including both transient and steady state approaches. Automated remeshing procedure is being used with great success. Multiple coating layers on the insert can be modeled to study their thermal effects. Elastic and thermal response of the insert during the machining process can also be modeled using this system. The Usui's wear model has also been implemented in the system to study the tool wear. The system developed has been validated with various results reported from actual cutting tests and comparisons are found to be reasonably accurate

  18. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Progress report, July 1993--August 1994

    International Nuclear Information System (INIS)

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: the computation of charged particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates. Substantial progress in research has been made during the past year. These achievements are summarized in the following report

  19. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project. ACT/Control/Guidance System study, volume 1

    Science.gov (United States)

    1982-01-01

    The active control technology (ACT) control/guidance system task of the integrated application of active controls (IAAC) technology project within the NASA energy efficient transport program was documented. The air traffic environment of navigation and air traffic control systems and procedures were extrapolated. An approach to listing flight functions which will be performed by systems and crew of an ACT configured airplane of the 1990s, and a determination of function criticalities to safety of flight, are the basis of candidate integrated ACT/Control/Guidance System architecture. The system mechanizes five active control functions: pitch augmented stability, angle of attack limiting, lateral/directional augmented stability, gust load alleviation, and maneuver load control. The scope and requirements of a program for simulating the integrated ACT avionics and flight deck system, with pilot in the loop, are defined, system and crew interface elements are simulated, and mechanization is recommended. Relationships between system design and crew roles and procedures are evaluated.

  20. Grain size evaluation of pulsed TiAlN nanocomposite coatings for cutting tools

    International Nuclear Information System (INIS)

    Nowadays advanced TiAlN coatings enable high performance and high speed cutting. A side from excellent coating adhesion at the cutting edges and choice of material, a fine grained physical vapour deposition coating is the enabler for these high performance cutting operations. Isotropy and composition is of vital importance for the coating performance. On industrial scale equipment, composition (Ti-Al ratio), crystallite size and orientation are altered by changing pulse energy, duty cycle and cathode power. The synthesized coatings are then analyzed by common thin film and application oriented techniques, regarding the grain size and its influence on the coating properties. For the determination of the crystallite size, two methods, Debye Scherrer and Warren Averbach are compared. Finally, crystallite size is determined by using the Warren Averbach method and transmission electron microscopy for comparison reasons

  1. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "Advanced Dissolution, Absorption, Metabolism (ADAM)" model.

    Science.gov (United States)

    Darwich, A S; Neuhoff, S; Jamei, M; Rostami-Hodjegan, A

    2010-11-01

    Bioavailability of orally administered drugs can be influenced by a number of factors including release from the formulation, dissolution, stability in the gastrointestinal (GI) environment, permeability through the gut wall and first-pass gut wall and hepatic metabolism. Although there are various enzymes in the gut wall which may contribute to gut first pass metabolism, Cytochrome P450 (CYP) 3A has been shown to play a major role. The efflux transporter P-glycoprotein (P-gp; MDR1/ABCB1) is the most extensively studied drug efflux transporter in the gut and might have a significant role in the regulation of GI absorption. Although not every CYP3A substrate will have a high extent of gut wall first-pass extraction, being a substrate for the enzyme increases the likelihood of a higher first-pass extraction. Similarly, being a P-gp substrate does not necessarily pose a problem with the gut wall absorption however it may reduce bioavailability in some cases (e.g. when drug has low passive permeability). An on-going debate has focused on the issue of the interplay between CYP3A and P-gp such that high affinity to P-gp increases the exposure of drug to CYP3A through repeated cycling via passive diffusion and active efflux, decreasing the fraction of drug that escapes first pass gut metabolism (F(G)). The presence of P-gp in the gut wall and the high affinity of some CYP3A substrates to this transporter are postulated to reduce the potential for saturating the enzymes, thus increasing gut wall first-pass metabolism for compounds which otherwise would have saturated CYP3A. Such inferences are based on assumptions in the modelling of oral drug absorption. These models should be as mechanistic as possible and tractable using available in vitro and in vivo information. We review, through simulation, this subject and examine the interplay between gut wall metabolism and efflux transporters by studying the fraction of dose absorbed into enterocytes (F(a)) and F(G) via

  2. Analysis of striation formation mechanism in abrasive water jet cutting

    OpenAIRE

    Junkar, Mihael; Orbanić, Henri

    2015-01-01

    In this paper the macro-mechanism of abrasive water jet (AWJ) cutting is studied from the point of cutting front and striation formation analysis. The striation on the surface cut with AWJ is a characteristic phenomena which is strongly present when cutting with high traverse velocities for particular material type and thickness of workpiece. The connection between the cutting front step formation and striation formation is explained through series of experiments, which include visual observa...

  3. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  4. Space Transportation Propulsion Systems

    Science.gov (United States)

    Liou, Meng-Sing; Stewart, Mark E.; Suresh, Ambady; Owen, A. Karl

    2001-01-01

    This report outlines the Space Transportation Propulsion Systems for the NPSS (Numerical Propulsion System Simulation) program. Topics include: 1) a review of Engine/Inlet Coupling Work; 2) Background/Organization of Space Transportation Initiative; 3) Synergy between High Performance Computing and Communications Program (HPCCP) and Advanced Space Transportation Program (ASTP); 4) Status of Space Transportation Effort, including planned deliverables for FY01-FY06, FY00 accomplishments (HPCCP Funded) and FY01 Major Milestones (HPCCP and ASTP); and 5) a review current technical efforts, including a review of the Rocket-Based Combined-Cycle (RBCC), Scope of Work, RBCC Concept Aerodynamic Analysis and RBCC Concept Multidisciplinary Analysis.

  5. Operation and maintenance cost-cutting

    Energy Technology Data Exchange (ETDEWEB)

    Hollingshead, T.W.

    1996-12-31

    This presentation by Timothy W. Hollingshead, Technical Services Manager, Pacific Gas and Electric, is about cutting costs in the Operation and Maintenance phase of geothermal energy production. The necessity of cost control, keeping workers well-trained and avoiding OSHA fines, taking advantages of new technologies, and establishing predictive maintenance programs are some of the issues discussed in this article.

  6. Breeding lettuce for fresh-cut processing

    Science.gov (United States)

    Lettuce is increasingly consumed in fresh-cut packaged salads. New cultivars specifically bred for this use can enhance production and processing efficiency and extend shelf life. Cultivars with novel head architectures and leaf traits are being released by private and public breeding programs with ...

  7. Dental abrasion as a cutting process.

    Science.gov (United States)

    Lucas, Peter W; Wagner, Mark; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S; Michael, Shaji; Thai, Lidia A; Strait, David S; Swain, Michael V; van Casteren, Adam; Renno, Waleed M; Shekeban, Ali; Philip, Swapna M; Saji, Sreeja; Atkins, Anthony G

    2016-06-01

    A mammalian tooth is abraded when a sliding contact between a particle and the tooth surface leads to an immediate loss of tooth tissue. Over time, these contacts can lead to wear serious enough to impair the oral processing of food. Both anatomical and physiological mechanisms have evolved in mammals to try to prevent wear, indicating its evolutionary importance, but it is still an established survival threat. Here we consider that many wear marks result from a cutting action whereby the contacting tip(s) of such wear particles acts akin to a tool tip. Recent theoretical developments show that it is possible to estimate the toughness of abraded materials via cutting tests. Here, we report experiments intended to establish the wear resistance of enamel in terms of its toughness and how friction varies. Imaging via atomic force microscopy (AFM) was used to assess the damage involved. Damage ranged from pure plastic deformation to fracture with and without lateral microcracks. Grooves cut with a Berkovich diamond were the most consistent, suggesting that the toughness of enamel in cutting is 244 J m(-2), which is very high. Friction was higher in the presence of a polyphenolic compound, indicating that this could increase wear potential. PMID:27274807

  8. Cern faces 260m euro budget cuts

    CERN Multimedia

    Banks, Michael

    2010-01-01

    "The Cern particle-physics lab near Geneva is to slash about 260m euro ($340m) from its budget for 2011-2015. The cut, which was approved by Cern's council last month, will require the lab to scale back research into future particles accelerators" (0.5 page)

  9. On Non-Abelian Symplectic Cutting

    DEFF Research Database (Denmark)

    Martens, Johan; Thaddeus, Michael

    2012-01-01

    We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro...

  10. Cutting work in thick section cryomicrotomy.

    Science.gov (United States)

    Saubermann, A J; Riley, W D; Beeuwkes, R

    1977-09-01

    The forces during cryosectioning were measured using miniature strain gauges attached to a load cell fitted to the drive arm of the Porter-Blum MT-2 cryomicrotome. Work was calculated and the data normalized to a standard (1 mm X 1 mm X 0.5 micrometer) section. Thermal energy generated was also calculated. Five parameters were studied: cutting angle, thickness, temperature, hardness, and block shape. Force patterns could be divided into three major groups thought to represent cutting (Type I), large fracture planes greater than 10 micrometer in length (Type II), and small fracture planes less than 10 micrometer in length (Type III). Type I and Type II produced satisfactory sections. Work in cutting ranged from an average of 78.4 muJ to 568.8 muJ. Cutting angle and temperature had the greatest effect on sectioning. Heat generated would be sufficient to cause through-section melting for 0.5 micrometer thick sections assuming the worst possible case, namely that all heat went into the section without loss. Presence of a Type II pattern (large fracture pattern) is thought to be presumptive evidence against thawing. PMID:606833

  11. Power Price Cuts to Drive Economic Growth

    Institute of Scientific and Technical Information of China (English)

    Ma Lei

    2002-01-01

    @@ The economy of South China's Guangdong Province should developed more rapidly thanks to recent cuts in electricity prices, Lin Lin, deputy director of Guangdong Price Bureau, predicted in an interview with news media in early June, adding that the reduction in electricity prices would benefit economic development in Guangdong Province.

  12. Fatigue Lives of Materials Cut by Lasers

    Science.gov (United States)

    Martin, Michael R.

    1987-01-01

    Laser machining helps to balance high-speed rotating machinery. Report describes continuing studies of fatigue lives of materials cut by lasers. One long-term objective of such studies is use of laser machining to balance rotors operating at high speeds. To achieve objective, necessary to know relationship between effects of conventional and laser machining on fatigue lives of machined materials.

  13. Does School District Consolidation Cut Costs?

    Science.gov (United States)

    Duncombe, William; Yinger, John

    2007-01-01

    Consolidation has dramatically reduced the number of school districts in the United States. Using data from rural school districts in New York, this article provides the first direct estimation of consolidation's cost impacts. We find economies of size in operating spending: all else equal, doubling enrollment cuts operating costs per pupil by…

  14. Splinter detection of half-cut peaches

    Science.gov (United States)

    Vizmanos, Juan L. G.; Fuentes, Luis M.; Gutierrez, Jose A.

    1997-09-01

    A machine vision system has been developed to separate half cut peaches with small splinters from clean ones. The system uses the different spectral profile of both together with an ad hoc illuminating system. The system is capable of processing 30 half peaches per second. The hardware and software solutions are described.

  15. Nanopillar Fabrication with Focused Ion Beam Cutting

    NARCIS (Netherlands)

    Kuzmin, Oleksii V.; Pei, Yutao T.; De Hosson, Jeff T. M.

    2014-01-01

    A versatile method to fabricate taper-free micro-/nanopillars of large aspect ratio was developed with focused ion beam (FIB) cutting. The key features of the fabrication are a FIB with an incident angle of 90 degrees to the long axis of the pillar that enables milling of the pillar sideways avoidin

  16. Selected Malaysian Wood CO2 -Laser Cutting Parameters And Cut Quality

    Directory of Open Access Journals (Sweden)

    Nukman Yusoff

    2008-01-01

    Full Text Available Laser has been used to cut most non-metallic materials very efficiently and successfully because these materials are highly absorptive by the CO2 laser wavelength of 10.6µm. Laser cutting process has been found to be reliable in loads of applications, with several advantages over other mechanical means in producing successful cut of even thermally sensitive materials such as wood. Various works which have been conducted to resolve the interaction between laser and wood but an ultimate guideline to produce the best cutting results are still undecided. This latest experiment was performed on Malaysian light hardwood namely, Nyatoh (Palaquium spp., Kembang Semangkok (Scaphium spp., Meranti (Shorea spp. and normal Plywood using low power carbon dioxide laser machine with 500 Watt maximum output. The low power laser machine (Zech Laser model ZL 1010, equipped with a slow flow CO2 laser producing maximum output power of 500 watt on beam mode of TEM01 is employed. The processing variables taken into investigation were laser power, nozzle-standoff distance (SOD or focal point position, nozzle size, assist gas pressure, types of assist gas, cutting speed and delay time. The wood properties observed were thickness, density and moisture content of the wood. The analyses considered were of the geometric and dimensional accuracy (straight sideline length, diameter of circle, kerf width, and percent over cut, material removal rate, and severity of burns of the matters upon machining with compressed air or any assist gases. The relationship between processing parameters and types of wood with different properties were outlined in terms of optimum cutting conditions, the minimum burnt-effect achievable and the best cut quality obtained with minimal surface deterioration and acceptable in accuracy. From this present study a guideline for cutting a wide range of Malaysian wood has been outlined.

  17. Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system

    International Nuclear Information System (INIS)

    The optimisation of the performance of products with smart/active functionalities (e. g. in protective clothing, home textiles products, automotive seats, etc.) is still a challenge for manufacturers and developers. The aim of this study was to optimise the thermal performance of a heating product by a numerical approach, by analysing several opposing requirements and defining solutions for the identified limitations, before the construction of the first prototype. A transfer model was developed to investigate the transport of heat from the skin to the environment, across a heating blanket with an embedded smart heating system. Several parameters of the textile material and of the heating system were studied, in order to optimise the thermal performance of the heating blanket. Focus was put on the effects of thickness and thermal conductivity of each layer, and on parameters associated with the heating elements, e.g. position of the heating wires relative to the skin, distance between heating wires, applied heating power, and temperature range for operation of the heating system. Furthermore, several configurations of the blanket (and corresponding heating powers) were analysed in order to minimise the heat loss from the body to the environment, and the temperature distribution along the skin. The results show that, to ensure an optimal compromise between the thermal performance of the product and the temperature oscillation along its surface, the distance between the wires should be small (and not bigger than 50 mm), and each layer of the heating blanket should have a specific thermal resistance, based on the expected external conditions during use and the requirements of the heating system (i.e. requirements regarding energy consumption/efficiency and capacity to effectively regulate body exchanges with surrounding environment). The heating system should operate in an ON/OFF mode based on the body heating needs and within a temperature range specified based on

  18. Influence of cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd:YAG laser

    Institute of Scientific and Technical Information of China (English)

    Dong-Gyu AHN; Kyung-Won BYUN

    2009-01-01

    Recently, laser cutting technologies begin to use for manufacturing mechanical parts of lnconel super-alloy sheet due to difficulties of machining of the Inconel material as a results of its extremely tough nature. The objective of this work is to investigate the influence of cutting parameters on surface characteristics of the cut section in the cutting of Inconel 718 super-alloy sheet using CW Nd:YAG laser through laser cutting experiments. Normal cutting experiments were performed using a laser cutting system with six-axis controlled automatic robot and auto-tracking system of the focal distance. From the results of the experiments, the effects of the cutting parameters on the surface roughness, the striation formation and the microstructure of the cut section were examined. In addition, an optimal cutting condition, at which the surface roughness is minimized and both the delayed cutting phenomenon and the micro-cracking are not initiated, is estimated to improve both the part quality and the cutting efficiency.

  19. Recent advances in the spectral green's function method for monoenergetic slab-geometry fixed-source adjoint transport problems in S{sub N} formulation

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Jesus P.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: jperez@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-Graduacao em Modelagem Computacional; Hernandez, Carlos R.G., E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2015-07-01

    The spectral Green's function (SGF) method is a numerical method that is free of spatial truncation errors for slab-geometry fixed-source discrete ordinates (S{sub N}) adjoint problems. The method is based on the standard spatially discretized adjoint S{sub N} balance equations and a nonstandard adjoint auxiliary equation expressing the node-average adjoint angular flux, in each discretization node, as a weighted combination of the node-edge outgoing adjoint fluxes. The auxiliary equation contains parameters which act as Green's functions for the cell-average adjoint angular flux. These parameters are determined by means of a spectral analysis which yields the local general solution of the S{sub N} equations within each node of the discretization grid. In this work a number of advances in the SGF adjoint method are presented: the method is extended to adjoint S{sub N} problems considering linearly anisotropic scattering and non-zero prescribed boundary conditions for the forward source-detector problem. Numerical results to typical model problems are considered to illustrate the efficiency and accuracy of the o offered method. (author)

  20. Recent advances in the spectral green's function method for monoenergetic slab-geometry fixed-source adjoint transport problems in SN formulation

    International Nuclear Information System (INIS)

    The spectral Green's function (SGF) method is a numerical method that is free of spatial truncation errors for slab-geometry fixed-source discrete ordinates (SN) adjoint problems. The method is based on the standard spatially discretized adjoint SN balance equations and a nonstandard adjoint auxiliary equation expressing the node-average adjoint angular flux, in each discretization node, as a weighted combination of the node-edge outgoing adjoint fluxes. The auxiliary equation contains parameters which act as Green's functions for the cell-average adjoint angular flux. These parameters are determined by means of a spectral analysis which yields the local general solution of the SN equations within each node of the discretization grid. In this work a number of advances in the SGF adjoint method are presented: the method is extended to adjoint SN problems considering linearly anisotropic scattering and non-zero prescribed boundary conditions for the forward source-detector problem. Numerical results to typical model problems are considered to illustrate the efficiency and accuracy of the o offered method. (author)

  1. Conception of transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel of power reactors, which meets the requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Il' kaev, R.I.; Matveev, V.Z.; Morenko, A.I.; Shapovalov, V.I. [Russian Federal Nuclear Center - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation); Semenov, A.G.; Sergeyev, V.M.; Orlov, V.K. [All-Russian Research Inst. of Inorganic Materials, Moscow (Russian Federation); Shatalov, V.V.; Gotovchikov, V.T.; Seredenko, V.A. [All-Russian Research Inst. of Applied Chemistry, Moscow (Russian Federation); Haire, Jonathan M.; Forsberg, C.W. [Oak Ridge National Lab., Oak Ridge (United States)

    2004-07-01

    The report is devoted to the problem of creation of a new generation of multi-purpose universal transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel (SNF) of power reactors, which meets all requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism. Meeting all IAEA requirements in terms of safety both in normal operation conditions and accidents, as well as increased stability of transport cask (TC) with SNF under the conditions of beyond-design-basis accidents and acts of terrorism has been achieved in the design of multi-purpose universal TC due to the use of DU (depleted uranium) in it. At that, it is suggested to use DU in TC, which acts as effective gamma shield and constructional material in the form of both metallic depleted uranium and metal-ceramic mixture (cermet), based on stainless or carbon steel and DU dioxide. The metal in the cermet is chosen to optimize cask performance. The use of DU in the design of multi-purpose universal TC enables getting maximum load of the container for spent nuclear fuel when meeting IAEA requirements in terms of safety and providing increased stability of the container with SNF under conditions of beyond-design-basis accident and acts of terrorism.

  2. Conception of transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel of power reactors, which meets the requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism

    International Nuclear Information System (INIS)

    The report is devoted to the problem of creation of a new generation of multi-purpose universal transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel (SNF) of power reactors, which meets all requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism. Meeting all IAEA requirements in terms of safety both in normal operation conditions and accidents, as well as increased stability of transport cask (TC) with SNF under the conditions of beyond-design-basis accidents and acts of terrorism has been achieved in the design of multi-purpose universal TC due to the use of DU (depleted uranium) in it. At that, it is suggested to use DU in TC, which acts as effective gamma shield and constructional material in the form of both metallic depleted uranium and metal-ceramic mixture (cermet), based on stainless or carbon steel and DU dioxide. The metal in the cermet is chosen to optimize cask performance. The use of DU in the design of multi-purpose universal TC enables getting maximum load of the container for spent nuclear fuel when meeting IAEA requirements in terms of safety and providing increased stability of the container with SNF under conditions of beyond-design-basis accident and acts of terrorism

  3. Performance of clonal olive tree gardens in successive cuts aiming cutting propagation

    OpenAIRE

    João Vieira Neto; Adelson Francisco de Oliveira; Csaignon Mariano Caproni; Fabíola Villa; Luiz Fernando de Oliveira da Silva

    2011-01-01

    This work evaluated the performance of clonal olive tree gardens in successive cuts aiming cutting propagation. The clonal garden was installed in March 2006, in grooves 40 cm deep. Two cultivars (Ascolano 315 and Arbequina) were evaluated and cut in 2007, 2008 and 2009. The test was carried out in split plot in time in a randomized block design with five replications. The plots were composed of three lines, one meter spaced between them, three plants in each line, spaced 0,5 m from each othe...

  4. Influence of particle size on Cutting Forces and Surface Roughness in Machining of B4Cp - 6061 Aluminium Matrix Composites

    Science.gov (United States)

    Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.

    2016-02-01

    Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.

  5. Achieving deep reductions in US transport greenhouse gas emissions: Scenario analysis and policy implications

    International Nuclear Information System (INIS)

    This paper investigates the potential for making deep cuts in US transportation greenhouse gas (GHG) emissions in the long-term (50-80% below 1990 levels by 2050). Scenarios are used to envision how such a significant decarbonization might be achieved through the application of advanced vehicle technologies and fuels, and various options for behavioral change. A Kaya framework that decomposes GHG emissions into the product of four major drivers is used to analyze emissions and mitigation options. In contrast to most previous studies, a relatively simple, easily adaptable modeling methodology is used which can incorporate insights from other modeling studies and organize them in a way that is easy for policymakers to understand. Also, a wider range of transportation subsectors is considered here-light- and heavy-duty vehicles, aviation, rail, marine, agriculture, off-road, and construction. This analysis investigates scenarios with multiple options (increased efficiency, lower-carbon fuels, and travel demand management) across the various subsectors and confirms the notion that there are no 'silver bullet' strategies for making deep cuts in transport GHGs. If substantial emission reductions are to be made, considerable action is needed on all fronts, and no subsectors can be ignored. Light-duty vehicles offer the greatest potential for emission reductions; however, while deep reductions in other subsectors are also possible, there are more limitations in the types of fuels and propulsion systems that can be used. In all cases travel demand management strategies are critical; deep emission cuts will not likely be possible without slowing growth in travel demand across all modes. Even though these scenarios represent only a small subset of the potential futures in which deep reductions might be achieved, they provide a sense of the magnitude of changes required in our transportation system and the need for early and aggressive action if long-term targets are to be met.

  6. Effects of Exogenous Calcium on Some Postharvest Characteristics of Cut Gladiolus

    Institute of Scientific and Technical Information of China (English)

    BAI Ji-gang; XU Pei-lei; ZONG Cheng-shun; WANG Cai-yun

    2009-01-01

    In order to apply calcium to the vase solutions of cut gladiolus (Gladiolus hybridus), the vase life and some physiological characteristics were studied in this article. A gladiolus cultivar, Mascagni, was chosen for experiments, and its cut flowers were held into solutions, which contained calcium acetate, ethylene glycol bis-amino tetmacetate (EGTA), and water,respectively. The effects of calcium were probed by measuring the ornamental quality of cut gladiolus and the physiological characteristics such as ealmodulin (CAM), abscisic acid (ABA), gibberellins (GA), zeatin (ZRs), endogenous calcium,malondialdehyde (MDA), and soluble sugar in florets. In a solution of 2 mmol L-1 calcium acetate, the opening rate of cut gladiolus was higher than that of control, and the vase life and ornamental value of flowers were better than that in control and other treatments of calcium acetate. Thus, the solution of 2 mmol L-1 calcium acetate has the best effect on the fresh keeping of cut gladiolus. In petals and bracts of cut gladiolus, the contents of CaM and GA and the ratios of GA/ABA and ZRs/ABA were higher in treatment of 2 mmol L-1 calcium acetate than that in control, while the contents of ABA and MDA were lower. Compared with the control, the solution of 2 mmol L-1 calcium acetate increased the endogenous calcium contents, and decreased the MDA contents, and alleviated the effects of EGTA on CaM, GA, GA/ABA, and ZRs/ABA. It made the soluble sugar content higher in petals than the control, but lower in bracts. Thus, the solution of 2 mmol L-1calcium acetate not only stabilizes the membrane structure of cut gladiolus, but also activates CaM. It thereby controls the endogenous hormone levels, and transports soluble sugar into petals, and increases the vase life of the flower.

  7. Comparison of CO2 Laser Cutting with Different Laser Sources

    DEFF Research Database (Denmark)

    Ketting, Hans-Ole; Olsen, Flemmming Ove

    1996-01-01

    This paper contains CO2 laser cutting results in mild and stainless steel with different laser sources. The main factors which affect the cutting speed and quality are the power, the cutting gas and focal point conditions. Keeping the power and cutting gas constant, the focal point conditions have...... is proven at least for oxyfuel cutting of mild steel, whereas fusion cutting of stainless steel is more complicated.Cutting results from 7 different indus-trial laser sources connected to different moving systems, were used to get information about the importance of the Beam Quality Number K and focal spot...... size,for the maximum cutting speed. One of the 7 laser sources with different focal length and thus different minimum spot size, was then used to investigate more in details the importance of the focal spot size cutting stainless steel with high pressure nitrogen. It looks as if there is a strong...

  8. Comparison of CO2 Laser Cutting with Different Laser Sources

    DEFF Research Database (Denmark)

    Ketting, Hans-Ole; Olsen, Flemmming Ove

    1996-01-01

    This paper contains CO2 laser cutting results in mild and stainless steel with different laser sources. The main factors which affect the cutting speed and quality are the power, the cutting gas and focal point conditions. Keeping the power and cutting gas constant, the focal point conditions have...... is proven at least for oxyfuel cutting of mild steel, whereas fusion cutting of stainless steel is more complicated.Cutting results from 7 different indus-trial laser sources connected to different moving systems, were used to get information about the importance of the Beam Quality Number K and...... focal spot size,for the maximum cutting speed. One of the 7 laser sources with different focal length and thus different minimum spot size, was then used to investigate more in details the importance of the focal spot size cutting stainless steel with high pressure nitrogen. It looks as if there is a...

  9. Leaves Of Cut Rose Flower Convert Exogenously Applied Glucose To Sucrose And Translocate It To Petals

    Directory of Open Access Journals (Sweden)

    Horibe Takanori

    2014-12-01

    Full Text Available To understand the role that the leaves play in the translocation of soluble carbohydrates in cut rose flowers, we first evaluated the effect of leaf removal on flower quality and the sugar content in petals. Cut rose flowers with leaves had higher soluble sugar content in petals compared with cut flower without leaves. Next, we treated cut flowers with radioactive glucose to clarify translocation routes of exogenously applied sugar. There was no significant difference between the specific radioactivity of sucrose and glucose in leaves, but specific radioactivity of sucrose in petals was much higher than that of glucose. These results suggested that most of the exogenously applied glucose first moved to the leaves, where it was converted into sucrose and then the synthesised sucrose was translocated to the petals. Our results showed that the leaves of cut rose flowers play an important role in the metabolism and transportation of exogenously applied soluble carbohydrates toward the petals, thus contributing to sustaining the post-harvest quality.

  10. Distribution of 137Cs in surface soils as affected by forest clear-cutting

    International Nuclear Information System (INIS)

    The distribution of 137Cs was studied in podzol soil profiles from a 5 year old forest clear-cut area and an adjacent mature spruce forest in central Norway in order to assess the effects of clear-cutting on the distribution and mobility of radiocaesium in surface soils. A distinctly higher radiocaesium activity observed in the humus layer from the clear-cut compared to the forest area strongly indicates an increase in organic surface soil 137Cs activity within the first 5 years following forest clear-cutting. Such an increase, previously observed for Ca, Mg, Mn and Zn, is explained by increased supply of radiocaesium from decomposing logging residue, such as lichens and needles. Roughly 25% of the activity leached from decomposing residue had been transported into the A-E layer 5 years after clear-cutting. High 137Cs activity in the eluvial (E) horizon and a distinct decrease in deeper horizons indicates a certain leaching of 137Cs from the humus layer into the E horizon, which may act as an effective barrier against further leaching of radiocaesium. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. The use of alarm pheromones to enhance bait harvest by grass-cutting ants.

    Science.gov (United States)

    Hughes, W O H; Goulson, D

    2002-06-01

    The enhancement of bait for the control of grass-cutting ants was investigated using two species of grass-cutting ant, Atta bisphaerica (Forel) and Atta capiguara (Gonçalves) (Hymenoptera: Formicidae). Bait was applied in loose piles to obtain a direct relationship between ant attraction and bait harvest. Enhancement with alarm pheromone compounds significantly increased the attractiveness and harvest of bait under certain conditions. A large proportion of the ants attracted to the enhanced bait were minor workers. These ants rarely transport bait because of their small size, and so it may be possible to increase the effect of bait enhancement by using smaller bait granules. Foragers of A. capiguara were less inclined to transport citrus-pulp bait than were those of Atta laevigata (Fr. Smith), a species that also harvests dicotyledonous plants. This emphasizes the importance of developing a bait matrix that is more acceptable to grass-cutting species. Nevertheless, the results suggest that alarm pheromone compounds have significant potential to improve the efficacy of baits for the control of grass-cutting ants. PMID:12088538

  12. NUMERICAL SIMULATION OF HEAD-CUT WITH A TWO-LAYERED BED

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Gully erosion is one of the main causes of top soil loss, land deterioration and sources of sediment deposition in streams. Headcut often occurs in the gully erosion process when erodability of the soil layers varies, and the gully cuts through a hard layer at a point. A scouring hole appears downstream of the head cut which migrates upstream due to strong erosion in the scour hole. This paper presents numerical analyses of turbulent flow and sediment transport processes of a head-cut associated with a two-layer soil stratigraphic formation. The flow in the scour hole is three-dimensional induced by the water jet from the brink of the top layer; the sediment transport model considers sediment entrainment by the impinging jet, erosion underneath the hard layer and the retreat of the brink of the hard layer. The 3D flow simulation in the scour hole and the scouring process was verified with physical model data. The two-layer head cut migration is simulated with different flow and soil parameters, the trends of the simulated results reasonably revealed contributions of these parameters to the scouring and migration process.

  13. Machining, joining and modifications of advanced materials

    CERN Document Server

    Altenbach, Holm

    2016-01-01

    This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quali...

  14. Explaining Intelligent Transportation Systems to the Public: California transportation planning agencies and the World Wide Web

    OpenAIRE

    Flamm, Bradley; Deakin, Elizabeth

    2001-01-01

    Transportation planning agencies in California are increasingly using advanced technologies to improve highways, local roads, transit, bicycle, and pedestrian facilities and other transportation infrastructure by developing "Intelligent Transportation Systems." ITS, as these transportation technologies are known, use communication and information systems to improve the efficiency, safety, and cost-effectiveness of passenger and freight transportation systems. To communicate about the...

  15. Edge Cut Domination, Irredundance, and Independence in Graphs

    OpenAIRE

    Fenstermacher, Todd; Hedetniemi, Stephen; Laskar, Renu

    2016-01-01

    An edge dominating set $F$ of a graph $G=(V,E)$ is an \\textit{edge cut dominating set} if the subgraph $\\langle V,G-F \\rangle$ is disconnected. The \\textit{edge cut domination number} $\\gamma_{ct}(G)$ of $G$ is the minimum cardinality of an edge cut dominating set of $G.$ In this paper we study the edge cut domination number and investigate its relationships with other parameters of graphs. We also introduce the properties edge cut irredundance and edge cut independence.

  16. Laser remote cutting of metallic materials: opportunities and limitations

    Science.gov (United States)

    Wetzig, Andreas; Baumann, Robert; Herwig, Patrick; Siebert, René; Beyer, Eckhard

    2015-07-01

    The fundamentals of laser remote cutting will be introduced as well as a comparison to the conventional laser fusion cutting process. The opportunities and limitations of this alternative laser cutting technology will be discussed in detail by means of recent application examples. Here to name cutting of typical punching and bending parts, battery foils, metals foams and electrical steel sheets. Questions that are concerning the cutting thickness, the cutting quality, the cycle time, and the impact on the material will be answered. Finally, conclusions and an outlook on future developments will be presented.

  17. Striation-free fibre laser cutting of mild steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sobih, M.; Crouse, P.L.; Li, L. [University of Manchester, Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, Sackville Street Building, P.O. Box 88, Manchester (United Kingdom)

    2008-01-15

    High-power laser cutting is extensively used in many industrial applications. An important weakness of this process is the formation of striations, i.e. regular lines on the cut surface, which lowers the quality of the surfaces produced. The elimination of striation formation is thus of considerable importance, since it could open a variety of novel high-precision applications. This study presents the initial results of a laser cutting study using a 1 kW single-mode fibre laser, a relative newcomer in the field of laser metal cutting. Striation-free laser cuts are demonstrated when cutting 1 mm thick mild steel sheets. (orig.)

  18. Visualization of Water Jet Cutting by Means of Ultrasonic Waves

    Science.gov (United States)

    Warisawa, Shin'Ichi; Kida, Ayumi; Ito, Yoshimi

    It has been recognized from many investigations on water jet cutting mechanism that visualization of a cutting front is very effective to deepen understanding of the mechanism. However, an in-process visualization method, especially those applicable to opaque materials such as metals has not been established even now. This paper newly proposes a method of visualization of cutting front using ultrasonic waves. Several experiments have shown that in-process visualisation of a shape of the cutting front, inclination and profile waviness of cutting surface can be realized using the proposed method. Furthermore, this paper also proposes a water jet cutting process model based on detail analyses of visualization results.

  19. Is Cheeger-type Approximation Possible for Nonuniform Sparsest Cut?

    OpenAIRE

    Trevisan, Luca

    2013-01-01

    In the {\\em nonuniform sparsest cut} problem, given two undirected graphs $G$ and $H$ over the same set of vertices $V$, we want to find a cut $(S,V-S)$ that minimizes the ratio between the fraction of $G$-edges that are cut and the fraction of $H$-edges that are cut. The ratio (which is at most 1 in an optimal solution) is called the {\\em sparsity} of the cut. In the {\\em uniform sparsest cut} problem, $H$ is a clique over $V$. If $G$ is regular, it is possible to find a solution to the unif...

  20. Tenderness charactherization of ostrich meat commercial cuts

    Directory of Open Access Journals (Sweden)

    Janaina Conte Hadlich

    2012-12-01

    Full Text Available The ostrich meat has become an interesting source of protein as well as being an alternative to red meat, because of its healthy fatty acid profile, with a high content of polyunsaturated fatty acids and low content of intramuscular fat, which arouses the interest of people who want a low animal fat diet. Ostrich meat is also appreciated by the tenderness, since it is one of the larger impact characteristics on the acceptance of a meat product for consumers. The aim of this study was to evaluate the tenderness of different ostrich meat commercial cuts and certificate that all studied cuts present tenderness acceptable by consumers. The laboratory tests were performed at the Laboratory of Biochemistry of Proteins (FMVZ, being measured shear force of seven commercial cuts of ostrich meat. The cuts were: internal thigh, external thigh, filet plan, filet out, filet small, rump and filet fan. The samples were boiled in water bath controlled by time and temperature. After chilling, fragments of 1.0 x 1.0 x 3.0 cm were removed from samples. Shear force measurements were performed using a mechanical Warner-Bratzler Shear Force equipment. The shear force means were: internal thigh (3.5 kg, external thigh (2.8 kg, filet plan (2.4 kg, filet out (1.6 kg, filet small (3.5 kg, rump (3.3 kg and filet fan (2.0 kg. All the commercial cuts evaluated had very low values of shear force, denoting meat extremely tender. The classification of meat tenderness is based on shear force values, being values below 4.6 kg considered meat with desirable tenderness. All ostrich meat commercial cuts analyzed had shear force values lower than 4.6 kg, being classified as meat of extreme tenderness. The results found in this work allow concluding that ostrich meat can be considered tender. These findings lead us to consider the ostrich meat as an interesting alternative to red meat, in relation to tenderness and healthy fatty acid profile, being favorable for people suffering from

  1. Cornea and Ocular Surface Disease: Application of Cutting Edge Optometric Research

    OpenAIRE

    Robertson, Danielle M.; Alexander, Larry J.; Bonanno, Joseph A.; Fleiszig, Suzanne M. J.; McNamara, Nancy

    2014-01-01

    Clinician-scientists bridge the gap between basic research and patient care. At the 2012 Annual Meeting, a symposium highlighting the application of cutting edge optometric research within the anterior segment was held to present and discuss some of the recent basic scientific advances that will both shape and guide the development of future clinical care practices. This paper summarizes this work, bringing together four experts, all clinician-scientists in the field of cornea and ocular surf...

  2. Laser cutting technology which use the water jet guiding the laser beam. Application examination for the thick plate cutting

    International Nuclear Information System (INIS)

    Due to the increase of aged nuclear reactors, reduction of radioactive wastes is expected and cutting technology for thick structure would be necessary. Thermal cutting technology would be convenient for cutting thick materials, but generation of radioactive fume is one of the problems. A water jet-guided laser cutting is one of the suitable technologies for this application, because radioactive fume would be confined in the water and dose level won't be increased. However, this technology was developed for precision machining like dicing and slotting of silicon wafers, it is difficult to cut thick materials. In this study, cutting technology for thick material with a water jet-guided laser was discussed. Phenomenon during cutting thick stainless steel was observed by using high speed camera and optimum conditions for both water jet and laser cutting were derived. Finally, 50 mm thick stainless steel plate was successfully cut by using this technology. (author)

  3. Development of lathe tool dynamometer and finding cutting forces using negative and positive rake angle cutting tool

    International Nuclear Information System (INIS)

    Most output parameters in machining, such as cutting forces, temperatures, strains and the work-hardening of the chip material, are directly related to the chip formation process. The characteristics of machining processes can be well understood if the forces and strains during chip formation are known. In this research a lathe tool dynamometer was used to measure cutting forces involved in machining of Steel 1045 and Aluminum 2219 T62. High Speed Steel (HSS), cutting tools with positive and negative rake angles were used. It was observed that more cutting forces are experienced by the cutting tool with positive rake angle as compared to the forces experienced by the cutting tool with negative rake angle. For steel 1045 the cutting forces using positive rake angle cutting tool were much higher. This suggested that for harder materials using a negative rake angle is more suitable for cutting. (author)

  4. Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the measurement and modeling of electrical signatures of microbe-mineral transformations impacting contaminant transport

    Energy Technology Data Exchange (ETDEWEB)

    Prodan, Camelia [NJIT

    2013-06-14

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic

  5. FINAL REPORT: Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the Measurement and Modeling of Electrical Signatures of Microbe-Mineral Transformations Impacting Contaminant Transport

    Energy Technology Data Exchange (ETDEWEB)

    PRODAN, CAMELIA; SLATER, LEE; NTARLAGIANNIS, DIMITRIOS

    2012-09-01

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic

  6. Cutting techniques of reinforced concrete by wire sawing rear cutting tests for separation of radioactive concrete

    International Nuclear Information System (INIS)

    The biological shielding wall of the reactor is very thick and high density reinforced concrete structures. The wall is partially activated by neutron exposure, and the activation level gradually decrease from the reactor side to outside and then the outermost side is not activated quite. Activated part and non-activated part should be separately dismantled, so that high activated and low activated area is also rationally discriminated on the point of radioactive waste management. Moreover, waste treatment and disposal of dismantled blocks will become ready to reuse or disposal in comparison with the trash from smash techniques, controlled pyrotechnical explosion, excavator and rock drill. A rear cutting technique is necessary in order to cut off the activated concrete block from the biological shielding wall. Therefore, devising and manufacturing by way of trial the unrestricted pulley, the practicability of rear cutting technique has been confirmed. On the rear cutting, wire saw has to be set up into the about 11 mm kerf width at the determined depth point. Assistant arm and pulley allowed for remote set up of the wire saw. The cutting efficiency of the rear cutting method is about 1 m2/h almost equal to the pushing method. (author)

  7. Study on carbide cutting tool life using various cutting speeds for α-β Ti-alloy machining

    Directory of Open Access Journals (Sweden)

    K.B. Ahsan

    2012-12-01

    Full Text Available Current experimental studies have yielded that cutting speed, using carbide cutters, has no significant influence on surface roughness obtained for machining the α-β Titanium alloy Ti-6Al-4V. This paper presents results of experimental investigations carried out on the widely used titanium alloy Ti-6Al-4V using variable cutting speeds as well as different cutting tools at a constant feed rate and depth of cut. The effects of varying cutting speeds on the tool life have been analysed by inspecting the surface roughness of the machined samples and the tool wear observed during machining. As the cutting speed increases, the tool life drops off very rapidly and at higher cutting speed the chips start to ignite because of high heat generation at the cutting zone which is mainly caused by the low thermal conductivity of titanium alloys as postulated. Consequently higher cutting speeds may be used to dramatically reduce the production costs, but the currently available cutting tools will have a very poor tool life. According to this study, it has been identified that the uncoated carbide tool life is comparatively better than that of coated ones at lower cutting speeds whereas the coated ones are preferable at higher cutting speeds. It is expected that the metal manufacturing industries will be highly benefitted by this outcome in selecting the appropriate cutting tool as well as cutting speed according to their desired surface finish and tool life.

  8. Machinability study of steels in precision orthogonal cutting

    Directory of Open Access Journals (Sweden)

    Leonardo Roberto Silva

    2012-08-01

    Full Text Available The miniaturization of components and systems is advancing steadily in many areas of engineering. Consequently, micro-machining is becoming an important manufacture technology due to the increasing demand for miniaturized products in recent years. Precision machining aims the production of advanced components with high dimensional accuracy and acceptable surface integrity. This work presents an experimental study based on Merchant and Lee & Shaffer theories applied to precision radial turning of AISI D2 cold work tool and AISI 1045 medium carbon steels with uncoated carbide tools ISO grade K15. The aim of this study is to evaluate the influence of feed rate on chip compression ratio (Rc, chip deformation (ε, friction angle (ρ, shear angle (Φ, normal stress (σ and shear stress (• for both work materials. The results indicated that the shear angle decreased and chip deformation increased as the chip compression ratio was elevated without significant differences between both materials. Additionally, higher cutting and thrust forces and normal and shear stresses were observed for the tool steel. Finally, the Lee & Shaffer model gave shear plane angle values closer to the experimental data.

  9. Female genital mutilation/cutting: an update.

    Science.gov (United States)

    Rouzi, A A; Alturki, F

    2015-01-01

    Female genital mutilation/cutting (FGM/C) is a cultural practice involving several types of external female genitalia cutting. FGM/C is known to occur in all parts of the world but is most prevalent in 28 countries in Africa and the Middle East and among immigrant communities in Europe, Australia, New Zealand, Canada, and the United States. Studies of FGM/C suffer from many methodological problems including inadequate analysis and an unclear reporting of results. The evidence to link FGM/C to infertility is weak. The management of epidermal clitoral inclusion cysts includes expensive investigations like comprehensive endocrinology tests and MRI resulting in unnecessary anxiety due to delay in surgical treatment. Similarly, unnecessary cesarean sections or rupture of the infibulation scar continue to occur because of the inadequate use of intrapartum defibulation. A significant amount of efforts is required to improve and correct the inadequate care of FGM/C women and girls. PMID:26151997

  10. Factors influencing laser cutting of wood

    International Nuclear Information System (INIS)

    Factors influencing the ability of lasers to cut wood may be generally classified into these three areas: 1) characteristics of the laser beam; 2) equipment and processing variables; and 3) properties of the work piece. Effects of beam power, mode, polarization, and stability are discussed as are aspects of optics, location of focal point, feed speed, gas-jet assist system and work piece thickness, density, and moisture content. (author)

  11. Photothermal nanoblade for patterned cell membrane cutting

    OpenAIRE

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A.; Chiou, Pei-Yu

    2010-01-01

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-mic...

  12. Race-To-The-Bottom Tariff Cutting

    OpenAIRE

    Vézina, Pierre-Louis

    2010-01-01

    This paper provides an empirical assessment of race-to-the-bottom unilateralism. It suggests that decades of unilateral tariff cutting in Asia's emerging economies have been driven by a competition to attract FDI from Japan. Using spatial econometrics, I show that tariffs on parts and components, a crucial locational determinant for Japanese firms, converged across countries following a contagion pattern. Tariffs followed those of competing countries if the latter were lower, if FDI jealousy ...

  13. Cutting tool materials for high speed machining

    Institute of Scientific and Technical Information of China (English)

    LIU Zhanqiang; AI Xing

    2005-01-01

    High speed machining (HSM) is one of the emerging cutting processes, which is machining at a speed significantlyhigher than the speed commonly in use on the shop floor. In the last twenty years, high speed machining has received great attentions as a technological solution for high productivity in manufacturing. This article reviews the developments of tool materials in high speed machining operations, and the properties, applications and prospective developments of tool materials in HSM are also presented.

  14. Rock cutting by pulsing water jets

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Josef; Sitek, Libor; Martinec, Petr; Ščučka, Jiří; Jekl, Pavel; Mlynarczuk, M.

    Leiden : A.A.Balkema Publishers, 2005 - (Konečný, P.), s. 129-134 ISBN 04-1538-042-1. [Eurock 2005. Impact of Human Activity on the Geological Environment. Brno (CZ), 18.05.2005-20.05.2005] R&D Projects: GA ČR(CZ) GA105/03/0183 Institutional research plan: CEZ:AV0Z30860518 Keywords : rock cutting * pulsing water jet Subject RIV: BK - Fluid Dynamics

  15. Indirect Revelation Mechanisms for Cake Cutting

    DEFF Research Database (Denmark)

    Branzei, Simina; Miltersen, Peter Bro

    We consider discrete protocols for the classical Steinhaus cake cutting problem. Under mild technical conditions, we show that any deterministic strategy-proof protocol in the standard Robertson-Webb query model is dictatorial, that is, there is a fixed agent to which the protocol allocates the...... entire cake. In contrast, we exhibit randomized protocols that are truthful in expectation and compute approximately fair allocations....

  16. A Dictatorship Theorem for Cake Cutting

    DEFF Research Database (Denmark)

    Branzei, Simina; Miltersen, Peter Bro

    2015-01-01

    We consider discrete protocols for the classical Steinhaus cake cutting problem. Under mild technical conditions, we show that any deterministic strategy-proof protocol in the standard Robertson-Webb query model is dictatorial, that is, there is a fixed agent to which the protocol allocates the...... entire cake. In contrast, we exhibit randomized protocols that are truthful in expectation and compute approximately fair allocations....

  17. Global Transport Program

    Science.gov (United States)

    Oliver, Howard

    The aim of the NATO Science Committee's Global Transport Mechanisms in the Geosciences program is to stimulate and facilitate international collaboration among scientists of the member countries in the study of selected global transport mechanisms. The program organizers intend to sponsor advanced research workshops, advanced study institutes, conferences, collaborative research, research study, and lecture visits. NATO grants are available, but they are intended to cover only part of the expenses involved in the international aspects of the sponsored activities. Citizens or permanent residents of one of the member countries of NATO who possess qualifications appropriate to the proposed activity are eligible to apply.

  18. Risk evaluation on internal corrosion of a gas pipeline cut section based on metal mechanic tests and physiochemical analysis of the solids deposited in the pipes; Determinacion del riesgo por corrosion interna de un tramo cortado de una linea de transporte de gas natural a partir de ensayos metalmecanicos y del analisis fisicoquimico de los solidos depositados en la tuberia

    Energy Technology Data Exchange (ETDEWEB)

    Ditta Sarmiento, Johanna Milena [PETROBRAS International (BRASPETRO) (Colombia). Ingenieria de Corrosion DPSU

    2003-07-01

    After inspecting a one of the most important pipelines in Colombia, using intelligent tool, the pipe sections were selected that presented losses of thickness which probably they would be risking integrity of the same one and after, these sections were cut and replaced. To one of the cut sections a study with the objective was made him establish the present forms of corrosion and to determine the phenomena that influenced the presence of the damages. For this study were moderate thicknesses of the wall of the tube and was determined the criticality comparing it with its nominal thickness, according to Standard ASME B - 31G. Taking advantage of the presence solids in the surface, one became both, physical and chemical analysis, DRX and elementary analysis, with the objective to determine its origin and to correlate it with the types of corrosion that were in the line. The morphology that determined were Microbiological Influenced Corrosion, Erosion - Corrosion, Pitting and CO2 corrosion. Then, from all this information the analysis becomes of risks by internal corrosion in pipeline, the plan of mitigation and the plans of monitoring and inspection of the line to avoid the presence of anyone of these forms of corrosion in the future immediate. (author)

  19. Multidimensional Brain MRI segmentation using graph cuts

    International Nuclear Information System (INIS)

    This thesis deals with the segmentation of multimodal brain MRIs by graph cuts method. First, we propose a method that utilizes three MRI modalities by merging them. The border information given by the spectral gradient is then challenged by a region information, given by the seeds selected by the user, using a graph cut algorithm. Then, we propose three enhancements of this method. The first consists in finding an optimal spectral space because the spectral gradient is based on natural images and then inadequate for multimodal medical images. This results in a learning based segmentation method. We then explore the automation of the graph cut method. Here, the various pieces of information usually given by the user are inferred from a robust expectation-maximization algorithm. We show the performance of these two enhanced versions on multiple sclerosis lesions. Finally, we integrate atlases for the automatic segmentation of deep brain structures. These three new techniques show the adaptability of our method to various problems. Our different segmentation methods are better than most of nowadays techniques, speaking of computation time or segmentation accuracy. (authors)

  20. Cutting Path Planning for Ruled Surface Impellers

    Institute of Scientific and Technical Information of China (English)

    Liang Quan; Wang Yongzhang; Fu Hongya; Han Zhenyu

    2008-01-01

    At present, most commercial computer-aided manufacturing (CAM) systems are deficient in efficiency and performances on generating tool path during machining impellers. To solve the problem, this article develops a special software to plan cutting path for ruled surface impellers. An approximation algorithm to generate cutting path for machining integral ruled surface impellers is proposed. By fitting sampling data points of an impeller blade into a curve, a model of ruled surface blade of an impeller is built up. Furthermore, by calculating the points where the cutter axis vector intersects the flee-form hub surface of an impeller, problems about, for instance, the ambiguity in calculation and machining the wide blade surface with a short flute cutter are solved. Finally, an integral impeller cutting path is planned by way of an integrated cutter location control algorithm. Simulation and machining tests with an impeller are performed on a 5-axis computer numerically controlled (CNC) mill machine, which shows the feasibility of the proposed algorithm.