WorldWideScience

Sample records for advanced control system

  1. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  2. Advanced Coordinating Control System for Power Plant

    Institute of Scientific and Technical Information of China (English)

    WU Peng; WEI Shuangying

    2006-01-01

    The coordinating control system is popular used in power plant. This paper describes the advanced coordinating control by control methods and optimal operation, introduces their principals and features by using the examples of power plant operation. It is wealthy for automation application in optimal power plant operation.

  3. Advances in dynamical systems and control

    CERN Document Server

    Zgurovsky, Mikhail

    2016-01-01

    Focused on recent advances, this book covers theoretical foundations as well as various applications. It presents modern mathematical modeling approaches to the qualitative and numerical analysis of solutions for complex engineering problems in physics, mechanics, biochemistry, geophysics, biology and climatology. Contributions by an international team of respected authors bridge the gap between abstract mathematical approaches, such as applied methods of modern analysis, algebra, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. As such, the book will be of interest to mathematicians and engineers working at the interface of these fields. .

  4. Prototyping Advanced Control Systems on FPGA

    Directory of Open Access Journals (Sweden)

    Simard Stéphane

    2009-01-01

    Full Text Available In advanced digital control and mechatronics, FPGA-based systems on a chip (SoCs promise to supplant older technologies, such as microcontrollers and DSPs. However, the tackling of FPGA technology by control specialists is complicated by the need for skilled hardware/software partitioning and design in order to match the performance requirements of more and more complex algorithms while minimizing cost. Currently, without adequate software support to provide a straightforward design flow, the amount of time and efforts required is prohibitive. In this paper, we discuss our choice, adaptation, and use of a rapid prototyping platform and design flow suitable for the design of on-chip motion controllers and other SoCs with a need for analog interfacing. The platform consists of a customized FPGA design for the Amirix AP1000 PCI FPGA board coupled with a multichannel analog I/O daughter card. The design flow uses Xilinx System Generator in Matlab/Simulink for system design and test, and Xilinx Platform Studio for SoC integration. This approach has been applied to the analysis, design, and hardware implementation of a vector controller for 3-phase AC induction motors. It also has contributed to the development of CMC's MEMS prototyping platform, now used by several Canadian laboratories.

  5. Advanced and controlled drug delivery systems in clinical disease management

    NARCIS (Netherlands)

    Brouwers, JRBJ

    1996-01-01

    Advanced and controlled drug delivery systems are important for clinical disease management. In this review the most important new systems which have reached clinical application are highlighted. Microbiologically controlled drug delivery is important for gastrointestinal diseases like ulcerative co

  6. Advanced CIDI Emission Control System Development

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key

  7. Advanced control of a water supply system: a case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  8. Generic Model Predictive Control Framework for Advanced Driver Assistance Systems

    NARCIS (Netherlands)

    Wang, M.

    2014-01-01

    This thesis deals with a model predictive control framework for control design of Advanced Driver Assistance Systems, where car-following tasks are under control. The framework is applied to design several autonomous and cooperative controllers and to examine the controller properties at the microsc

  9. Advanced control systems research at UPC Terrassa Campus

    OpenAIRE

    Quevedo Casín, Joseba Jokin; Puig Cayuela, Vicenç

    2013-01-01

    Advanced Control Systems (SAC) is a multidiscip linary research group involving UPC professors and Spanish National Research Council (CSIC) researchers, focused on the wide subject of control and supervision of dynamic systems. The group uses theory of signal/systems tools, modelling, simulation and optimization in order to face real problems of systems and automated processes, specifically in the next subjects: Optimal/predictive control of large scale systems (mainly related with water cycl...

  10. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2013-01-01

    Most advanced process control systems are based on Model Predictive Control (MPC). In this paper we discuss three critical issues for the practical implementation of linear MPC for process control applications. The rst issue is related to oset free control and disturbance models; the second issue...

  11. Advances in Future Computer and Control Systems v.2

    CERN Document Server

    Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)

    2012-01-01

    FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.

  12. Advances in Future Computer and Control Systems v.1

    CERN Document Server

    Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)

    2012-01-01

    FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.

  13. Advanced nonlinear engine speed control systems

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert

    1994-01-01

    Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one...

  14. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  15. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...... presented firstly, where much more attention has been paid on specific requirements, like Low Voltage Ride-Through (LVRT) and reactive power injection capability. To perform the functions of those systems, advanced control strategies are presented with much more emphasis on the LVRT operation with reactive...... power injection for both single-phase and three-phase systems. Other control strategies like constant power generation control for PV systems to further increase the penetration level, and the improvements of LVRT performance for a doubly fed induction generator based wind turbine system by means...

  16. Advanced control of piezoelectric micro-nano-positioning systems

    CERN Document Server

    Xu, Qingsong

    2016-01-01

    This book explores emerging methods and algorithms that enable precise control of micro-/nano-positioning systems. The text describes three control strategies: hysteresis-model-based feedforward control and hysteresis-model-free feedback control based on and free from state observation. Each paradigm receives dedicated attention within a particular part of the text. Readers are shown how to design, validate and apply a variety of new control approaches in micromanipulation: hysteresis modelling, discrete-time sliding-mode control and model-reference adaptive control. Experimental results are provided throughout and build up to a detailed treatment of practical applications in the fourth part of the book. The applications focus on control of piezoelectric grippers. Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems will assist academic researchers and practising control and mechatronics engineers interested in suppressing sources of nonlinearity such as hysteresis and drift when combining positi...

  17. Supervisory Control System Architecture for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M [ORNL; Cole, Daniel L [University of Pittsburgh; Fugate, David L [ORNL; Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Muhlheim, Michael David [ORNL; Rao, Nageswara S [ORNL; Wood, Richard Thomas [ORNL

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  18. Access control and interlock system at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Forrestal, J.; Hogrefe, R.; Knott, M.; McDowell, W.; Reigle, D.; Solita, L.; Koldenhoven, R.; Haid, D. [Argonne National Lab., IL (United States). Advanced Photon Source

    1997-08-01

    The Advanced Photon Source (APS) consists of a linac, position accumulator ring (PAR), booster synchrotron, storage ring, and up to 70 experimental beamlines. The Access Control and Interlock System (ACIS) utilizes redundant programmable logic controllers (PLCs) and a third hard-wired chain to protect personnel from prompt radiation generated by the linac, PAR, synchrotron, and storage ring. This paper describes the ACIS`s design philosophy, configuration, hardware, functionality, validation requirements, and operational experience.

  19. Status and design of the Advanced Photon Source control system

    International Nuclear Information System (INIS)

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  20. Planner-Based Control of Advanced Life Support Systems

    Science.gov (United States)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  1. An advanced control system for a next generation transport aircraft

    Science.gov (United States)

    Rising, J. J.; Davis, W. J; Grantham, W. D.

    1983-01-01

    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  2. The Advanced Photon Source Injector Test Stand Control System

    CERN Document Server

    MacLean, J F

    2001-01-01

    The Advanced Photon Source (APS) primary and backup injectors consist of two thermionic-cathode rf guns. These guns are being upgraded to provide improved performance, to improve ease of maintenance, and to reduce downtime required for repair or replacement of a failed injector. As part of the process, an injector test stand is being prepared. This stand is effectively independent of the APS linac and will allow for complete characterization and validation of an injector prior to its installation into the APS linac. A modular control system for the test stand has been developed using standard APS control solutions with EPICS to deliver a flexible and comprehensive control system. The modularity of the system will allow both the future expansion of test stand functionality and the evaluation of new control techniques and solutions.

  3. Advances in Intelligent Control Systems and Computer Science

    CERN Document Server

    2013-01-01

    The conception of real-time control networks taking into account, as an integrating approach, both the specific aspects of information and knowledge processing and the dynamic and energetic particularities of physical processes and of communication networks is representing one of the newest scientific and technological challenges. The new paradigm of Cyber-Physical Systems (CPS) reflects this tendency and will certainly change the evolution of the technology, with major social and economic impact. This book presents significant results in the field of process control and advanced information and knowledge processing, with applications in the fields of robotics, biotechnology, environment, energy, transportation, et al.. It introduces intelligent control concepts and strategies as well as real-time implementation aspects for complex control approaches. One of the sections is dedicated to the complex problem of designing software systems for distributed information processing networks. Problems as complexity an...

  4. Advanced Fuzzy Logic Based Admission Control for UMTS System

    Directory of Open Access Journals (Sweden)

    P. Kejik

    2010-12-01

    Full Text Available The capacity of CDMA (Code Division Multiple Access systems is interference limited. Therefore radio resources management (RRM functions are used. They are responsible for supplying optimum coverage, ensuring efficient use of physical resources, and providing the maximum planned capacity. This paper deals with admission control techniques for UMTS (Universal Mobile Telecommunication System. A UMTS system model and four fuzzy logic based admission control algorithms are presented in this paper. Two new versions of fuzzy logic based admission control algorithms are presented there. All algorithms are mutually compared via simulations. Simulations show that the novel advanced fuzzy algorithm outperforms the other simulated algorithms (in terms of blocking probability, dropping probability and the number of active UEs in cell.

  5. Advanced Transport Operating System (ATOPS) control display unit software description

    Science.gov (United States)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  6. Advances and applications in sliding mode control systems

    CERN Document Server

    Zhu, Quanmin

    2015-01-01

    This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.    

  7. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    Science.gov (United States)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  8. GPS based Advanced Vehicle Tracking and Vehicle Control System

    Directory of Open Access Journals (Sweden)

    Mashood Mukhtar

    2015-02-01

    Full Text Available Security systems and navigators have always been a necessity of human‟s life. The developments of advanced electronics have brought revolutionary changes in these fields. In this paper, we will present a vehicle tracking system that employs a GPS module and a GSM modem to find the location of a vehicle and offers a range of control features. To complete the design successfully, a GPS unit, two relays, a GSM Modem and two MCU units are used. There are five features introduced in the project. The aim of this project is to remotely track a vehicle‟s location, remotely switch ON and OFF the vehicle‟s ignition system and remotely lock and unlock the doors of the vehicle. An SMS message is sent to the tracking system and the system responds to the users request by performing appropriate actions. Short text messages are assigned to each of these features. A webpage is specifically designed to view the vehicle‟s location on Google maps. By using relay based control concept introduced in this paper, number of control features such as turning heater on/off, radio on/off etc. can be implemented in the same fashion.

  9. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process and a lineari...... on pilot plant equipment on the department of Chemical Engineering DTU Lyngby.......This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process...... cannot be achieved without violation of process constraints. A target calculation function can be used to calculate the optimal achievable target for the process. The use of hard and soft constraints for process input constraints in the MPC controllers, ensures feasible solutions. The computational load...

  10. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  11. Modeling and Advanced Control for Sustainable Process Systems (chapter 5)

    Science.gov (United States)

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  12. Control Systems with Saturating Inputs Analysis Tools and Advanced Design

    CERN Document Server

    Corradini, Maria Letizia; Giannoni, Fabio; Orlando, Giuseppe

    2012-01-01

    This series aims to report new developments in the fields of control and information sciences - quickly, informally and at a high level. The type of material considered for publication includes: 1. Preliminary drafts of monographs and advanced textbooks 2. Lectures on a new field, or presenting a new angle on a classical field 3. Research reports 4. Reports of meetings, provided they are a) of exceptional interest and b) devoted to a specific topic. The timeliness of subject material is very important.

  13. An advanced plasma control system for Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.; Martin, G.

    1996-01-01

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author). 12 refs.

  14. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    International Nuclear Information System (INIS)

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs

  15. Nuclear developments: the DMAX advanced reactor control system

    International Nuclear Information System (INIS)

    Framatome has recently developed a new system for controlling the rod cluster control assemblies of pressurized water reactors, called the DMAX. The associated reactor control method is called 'mode X'. The DMAX system will be installed in all 'N4' model Framatome nuclear steam supply systems, the first two of which are presently under construction on the Chooz site in France. It will enable fine controlling of the reactor coolant temperature and the axial power offset, entirely automatically, due to double closed-loop regulation. The new DMAX system allows temperature control and continuous maintenance of a stable reactor core power distribution, because of an original method for controlling the movements of the control rods within the reactor. The disturbing xenon oscillations are practically eliminated and the operator is freed from the need of constantly monitoring the axial power offset, which is necessary in the commonly used 'A' or 'G' control modes. The probability of penalizing initial conditions in case an incident or accident occurs is considerably reduced in mode X, with the DMAX system, and the reactor's load-following performances are improved. In addition, the reactivity variations that must necessarily be compensated for in mode G by changing the boric acid concentration of the reactor coolant can be simply compensated for by control rod movements in mode X. This possibility yields a major reduction in the volume of liquid effluents that must subsequently be created. The system is outlined and its operation explained. (author)

  16. Advanced Control System Design for Hypersonic Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Guidance and control system design for hypersonic vehicles is more challenging than their subsonic and supersonic counterparts. Some of these challenges are (i)...

  17. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  18. Benchmarking Advanced Control Algorithms for a Laser Scanner System

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Ordys, A.W.; Smillie, I.

    1996-01-01

    The paper describes tests performed on the laser scanner system toassess feasibility of modern control techniques in achieving a requiredperformance in the trajectory following problem. The two methods tested areQTR H-infinity and Predictive Control. The results are ilustated ona simulation example....

  19. Guest Editorial Advanced Distributed Control of Energy Conversion Devices and Systems

    DEFF Research Database (Denmark)

    Davoudi, Ali; Guerrero, Josep M.; Lewis, Frank;

    2014-01-01

    The papers in this special issue on advanced distributed control of energy conversion devices and systems are loosely grouped into three categories: 1) ac energy conversion systems; 2) dc energy conversion systems; and 3) optimization and standards.......The papers in this special issue on advanced distributed control of energy conversion devices and systems are loosely grouped into three categories: 1) ac energy conversion systems; 2) dc energy conversion systems; and 3) optimization and standards....

  20. System design and control integration for advanced manufacturing

    CERN Document Server

    Li, Han-Xiong

    2014-01-01

    Most existing robust design books address design for static systems, or achieve robust design from experimental data via the Taguchi method. Little work considers model information for robust design particularly for the dynamic system. This book covers robust design for both static and dynamic systems using the nominal model information or the hybrid model/data information, and also integrates design with control under a large operating region. This design can handle strong nonlinearity and more uncertainties from model and parameters.

  1. Advances in control system technology for aerospace applications

    CERN Document Server

    2016-01-01

    This book is devoted to Control System Technology applied to aerospace and covers the four disciplines Cognitive Engineering, Computer Science, Operations Research, and Servo-Mechanisms. This edited book follows a workshop held at the Georgia Institute of Technology in June 2012, where the today's most important aerospace challenges, including aerospace autonomy, safety-critical embedded software engineering, and modern air transportation were discussed over the course of two days of intense interactions among leading aerospace engineers and scientists. Its content provide a snapshot of today's aerospace control research and its future, including Autonomy in space applications, Control in space applications, Autonomy in aeronautical applications, Air transportation, and Safety-critical software engineering.

  2. Microgrid Controller and Advanced Distribution Management System Survey Report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Starke, Michael R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Herron, Andrew N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    A microgrid controller, which serves as the heart of a microgrid, is responsible for optimally managing the distributed energy resources, energy storage systems, and responsive demand and for ensuring the microgrid is being operated in an efficient, reliable, and resilient way. As the market for microgrids has blossomed in recently years, many vendors have released their own microgrid controllers to meet the various needs of different microgrid clients. However, due to the absence of a recognized standard for such controllers, vendor-supported microgrid controllers have a range of functionalities that are significantly different from each other in many respects. As a result the current state of the industry has been difficult to assess. To remedy this situation the authors conducted a survey of the functions of microgrid controllers developed by vendors and national laboratories. This report presents a clear indication of the state of the microgrid-controller industry based on analysis of the survey results. The results demonstrate that US Department of Energy funded research in microgrid controllers is unique and not competing with that of industry.

  3. The Advanced Light Source Accelerator Control System at Ten Years from Commissioning

    OpenAIRE

    Biocca, A.; Brown, W.; Domning, E.; Fowler, K; Jacobson, S; McDonald, J.; Molinari, P.; Robb, A; Shalz, L.; Spring, J; Timossi, C.

    2001-01-01

    The Advanced Light Source was commissioned 10 years ago using the newly constructed control system. Further experience with the control system was reported in 1993. In this publication, we report on recent experience with the operation and especially growth of the computer control system and expansion to accommodate the new superconducting bend magnets and fast orbit feedback for the ALS electron storage ring.

  4. Advanced Control and Protection system Design Methods for Modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL; Wilson Jr, Thomas L [ORNL; Wood, Richard Thomas [ORNL

    2012-06-01

    The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs

  5. Prescriptive concepts for advanced nuclear materials control and accountability systems

    International Nuclear Information System (INIS)

    Networking- and distributed-processing hardware and software have the potential of greatly enhancing nuclear materials control and accountability (MC and A) systems, from both safeguards and process operations perspectives, while allowing timely integrated safeguards activities and enhanced computer security at reasonable cost. A hierarchical distributed system is proposed consisting of groups of terminal and instruments in plant production and support areas connected to microprocessors that are connected to either larger microprocessors or minicomputers. These micros and/or minis are connected to a main machine, which might be either a mainframe or a super minicomputer. Data acquisition, preliminary input data validation, and transaction processing occur at the lowest level. Transaction buffering, resource sharing, and selected data processing occur at the intermediate level. The host computer maintains overall control of the data base and provides routine safeguards and security reporting and special safeguards analyses. The research described outlines the distribution of MC and A system requirements in the hierarchical system and distributed processing applied to MC and A. Implications of integrated safeguards and computer security concepts for the distributed system design are discussed. 10 refs., 4 figs

  6. Advances in dynamics and control of tethered satellite systems

    Institute of Scientific and Technical Information of China (English)

    Hao Wen; Dongping P. Jin; Haiyan Y. Hu

    2008-01-01

    The concept of tethered satellite system (TSS) promises to revolutionize many aspects of space exploration and exploitation. It provides not only numerous possible and valuable applications, but also challenging and interesting problems related to their dynamics, control, and physical implementation. Over the past decades, this exciting topic has attracted significant attention from many researchers and gained a vast number of analytical, numerical and experimental achievements with a focus on the two essential aspects of both dynamics and control. This review article presents the historic background and recent hot topics for the space tethers, and introduces the dynamics and control of TSSs in a progressive manner, from basic operating principles to the state-of-the-art achievements.

  7. Advanced Controls for Residential Whole-House Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  8. Control and dynamic systems v.42 advances in theory and applications

    CERN Document Server

    Leonides, CT

    1991-01-01

    Control and Dynamic Systems: Advances in Theory and Applications, Volume 42: Analysis and Control System Techniques for Electric Power Systems, Part 2 of 4 covers the research studies on the significant advances in areas including economic operation of power systems and voltage and power control techniques.This book is composed of eight chapters and begins with a survey of the application of parallel processing to power system analysis as motivated by the requirement for faster computation. The next chapters deal with the issues of power system protection from a system point of view, t

  9. The environmental control and life support system advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.

  10. Advances in the control of markov jump linear systems with no mode observation

    CERN Document Server

    Vargas, Alessandro N; do Val, João B R

    2016-01-01

    This brief broadens readers’ understanding of stochastic control by highlighting recent advances in the design of optimal control for Markov jump linear systems (MJLS). It also presents an algorithm that attempts to solve this open stochastic control problem, and provides a real-time application for controlling the speed of direct current motors, illustrating the practical usefulness of MJLS. Particularly, it offers novel insights into the control of systems when the controller does not have access to the Markovian mode.

  11. Advanced Control Structures of Turbo Generator System of Nuclear Power Plant

    OpenAIRE

    Paweł Sokólski; Karol Kulkowski; Anna Kobylarz; Kazimierz Duzinkiewicz; Tomasz A. Rutkowski; Michał Grochowski

    2015-01-01

    In the paper a synthesis of advanced control structures of turbine and synchronous generator for nuclear power plant working under changing operating conditions (supplied power level) is presented. It is based on the nonlinear models of the steam turbine and synchronous generator cooperating with the power system. The considered control structure consists of multi-regional fuzzy control systems with local linear controllers, including PID controllers, in particular control loops of turbine...

  12. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    of controllers have been studied and compared. The possibility of using the information about grid variables into the control structure in order to improve the control of DPGS has also been investigated. As a consequence, improved behavior of resonant controller has been noticed if grid frequency information...... is forwarded to its internal model. Additionally, controllers such as dead beat and hysteresis controller improve their robustness to parameter mismatch if the identi ed value of grid impedance is passed to the controller. Moreover, several control strategies to provide exible active and reactive power control...

  13. Economic Benefits of Advanced Control Strategies in Biological Nutrient Removal Systems

    DEFF Research Database (Denmark)

    Carstensen, J.; Nielsen, M.K.; Harremoës, Poul

    1994-01-01

    Advances in on-line monitoring of nutrient salt concentrations and computer technology has created a large potential for the implementation of advanced and complex control strategies in biological nutrient removal systems. The majority of wastewater treatment plants today are operated with very...

  14. Integrated controls/structures study of advanced space systems

    Science.gov (United States)

    Greene, C. S.; Cunningham, T. B.

    1982-01-01

    A cost tradeoff is postulated for a stiff structure utilizing minimal controls (and control expense) to point and stabilize the vehicle. Extra costs for a stiff structure are caused by weight, packaging size, etc. Likewise, a more flexible vehicle should result in reduced structural costs but increased costs associated with additional control hardware and data processing required for vibration control of the structure. This tradeoff occurs as the ratio of the control bandwidth required for the mission to the lowest (significant) bending mode of the vehicle. The cost of controlling a spacecraft for a specific mission and the same basic configuration but varying the flexibility is established.

  15. Design methodology for fault-tolerant control of advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.; Ploeg, J.; Schutter, B. de; Verhaegen, M.H.G.

    2003-01-01

    The objective of this project is to develop a methodology for the design, testing, evaluation and implementation of control systems for Advanced Driver Assistance Systems (ADAS). Examples of ADAS are collision avoidance systems, lane departure warning systems, pre-crash sensing, and adaptive cruise

  16. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    Science.gov (United States)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  17. Guest Editorial Special Issue on Recent Advances and New Directions in Switched Control Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ As guest editors, it is our great honor to bring this special issue of the Journal of Control Theory and Applications devoted to Recent Advances and New Directions in Switched Control Systems. Recently, switched control systems have attracted much attention in the control systems community. Problems in this area are not only academically challenging for the inherent mathematical complexity, but also are derived or motivated from advanced applications in natural sciences, engineering, and social sciences. For survival, natural biological systems switch their survival strategies in accordance with environmental changes. For improved performance, switching has been extensively utilized/exploited in engineering systems such as automotive drive train control, electronic devices, control of power systems, etc.

  18. Advanced topics in control and estimation of state-multiplicative noisy systems

    CERN Document Server

    Gershon, Eli

    2013-01-01

    Advanced Topics in Control and Estimation of State-Multiplicative Noisy Systems begins with an introduction and extensive literature survey. The text proceeds to cover solutions of measurement-feedback control and state problems and the formulation of the Bounded Real Lemma for both continuous- and discrete-time systems. The continuous-time reduced-order and stochastic-tracking control problems for delayed systems are then treated. Ideas of nonlinear stability are introduced for infinite-horizon systems, again, in both the continuous- and discrete-time cases. The reader is introduced to six practical examples of noisy state-multiplicative control and filtering associated with various fields of control engineering. The book is rounded out by a three-part appendix containing stochastic tools necessary for a proper appreciation of the text: a basic introduction to nonlinear stochastic differential equations and aspects of switched systems and peak to peak  optimal control and filtering. Advanced Topics in Contr...

  19. ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,DA; FERRON,JR; GAROFALO,AM; HYATT,AW; JERNIGAN,TC; JOHNSON,RD; LAHAYE,RJ; LEUER,JA; OKABAYASHI,M; PENAFLOR,BG; SCOVILLE,JT; STRAIT,EJ; WALKER,ML; WHYTE,DG

    2002-10-01

    A271 ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. The principal focus of experimental operations in the DIII-D tokamak is the advanced tokamak (AT) regime to achieve, which requires highly integrated and flexible plasma control. In a high performance advanced tokamak, accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating must be well coordinated with MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Sophisticated monitors of the operational regime must provide detection of off-normal conditions and trigger appropriate safety responses with acceptable levels of reliability. Many of these capabilities are presently implemented in the DIII-D plasma control system (PCS), and are now in frequent or routine operational use. The present work describes recent development, implementation, and operational experience with AT regime control elements for equilibrium control, MHD suppression, and off-normal event detection and response.

  20. Advances in power system modelling, control and stability analysis

    CERN Document Server

    Milano, Federico

    2016-01-01

    This book describes the variety of new methodologies and technologies that are changing the way modern electric power systems are modelled, simulated and operated. It mixes theoretical aspects with practical considerations, as well as benchmarks test systems and real-world applications.

  1. Advanced control and instrumentation systems in nuclear power plants. Design, verification and validation

    International Nuclear Information System (INIS)

    The Technical Committee Meeting on design, verification and validation of advanced control and instrumentation systems in nuclear power plants was held in Espoo, Finland on 20 - 23 June 1994. The meeting was organized by the International Atomic Energy Agency's (IAEA) International Working Group's (IWG) on Nuclear Power Plant Control and Instrumentation (NPPCI) and on Advanced Technologies for Water Cooled Reactors (ATWR). VTT Automation together with Imatran Voima Oy and Teollisuuden Voima Oy responded about the practical arrangements of the meeting. In total 96 participants from 21 countries and the Agency took part in the meeting and 34 full papers and 8 posters were presented. Following topics were covered in the papers: (1) experience with advanced and digital systems, (2) safety and reliability analysis, (3) advanced digital systems under development and implementation, (4) verification and validation methods and practices, (5) future development trends. (orig.)

  2. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  3. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    OpenAIRE

    Guo Lie; Ren Zejian; Ge Pingshu; Chang Jing

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the cu...

  4. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    Science.gov (United States)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  5. The environmental control and life support system advanced automation project. Phase 1: Application evaluation

    Science.gov (United States)

    Dewberry, Brandon S.

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to advanced automation primarily due to the comparatively large reaction times of its subsystem processes. This allows longer contemplation times in which to form a more intelligent control strategy and to detect or prevent faults. The objective of the ECLSS Advanced Automation Project is to reduce the flight and ground manpower needed to support the initial and evolutionary ECLS system. The approach is to search out and make apparent those processes in the baseline system which are in need of more automatic control and fault detection strategies, to influence the ECLSS design by suggesting software hooks and hardware scars which will allow easy adaptation to advanced algorithms, and to develop complex software prototypes which fit into the ECLSS software architecture and will be shown in an ECLSS hardware testbed to increase the autonomy of the system. Covered here are the preliminary investigation and evaluation process, aimed at searching the ECLSS for candidate functions for automation and providing a software hooks and hardware scars analysis. This analysis shows changes needed in the baselined system for easy accommodation of knowledge-based or other complex implementations which, when integrated in flight or ground sustaining engineering architectures, will produce a more autonomous and fault tolerant Environmental Control and Life Support System.

  6. Advanced Adaptive Particle Swarm Optimization based SVC Controller for Power System Stability

    Directory of Open Access Journals (Sweden)

    Poonam Singhal

    2014-12-01

    Full Text Available The interconnected systems is continually increasing in size and extending over whole geographical regions, it is becoming increasingly more difficult to maintain synchronism between various parts of the power system. This paper work presents an advanced adaptive Particle swarm optimization technique to optimize the SVC controller parameters for enhancement of the steady state stability & overcoming the premature convergence & stagnation problems as in basic PSO algorithm & Particle swarm optimization with shrinkage factor & inertia weight approach (PSO-SFIWA. In this paper SMIB system along with PID damped SVC controller is considered for study. The generator speed deviation is used as an auxiliary signal to SVC, to generate the desired damping. This controller improves the dynamic performance of power system by reducing the steady-state error. The controller parameters are optimized using basic PSO, PSO-SFIWA & Advanced Adaptive PSO. Computational results show that Advanced Adaptive based SVC controller is able to find better quality solution as compare to conventional PSO & PSO-SFIWA Techniques.

  7. Introduction to the special issue on Advances in intelligent nonlinear control for robotic systems

    Institute of Scientific and Technical Information of China (English)

    Chee Khiang PANG; Huajin TANG; Qing Wei JIA

    2010-01-01

    @@ In the last two decades, robotic systems have achieved wide applications in every aspect of human society, including industrial manufacturing, automotive production, medical devices, and social lives. With the diversity of application do-mains, control techniques have pervaded from industrial robot manipulators, wheeled or legged mobile robots, unmanned autonomous aerial, ground, and underwater vehicles, to humanoid robots, and haptic devices, etc. The growing number of applications of robotics and increasing requirements for system stability, reliability, and safety, are posing new and challenging theoretical and technological problems for modeling and control of these highly nonlinear systems. Control of these complex systems is highly challenging due to the inherent nonlinear response and strong heterogeneity in dif-ferent parts as computers, sensors, hardware objects, etc. As such, novel nonlinear control strategies are essential to the advancement of robotic systems and corresponding technologies.

  8. Standards and the design of the Advanced Photon Source control system

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. In the conceptual stage the control system design group faced the challenges that face all control system designers: to force the machine designers to quantify and codify the system requirements, to protect the investment in hardware and software from rapid obsolescence, and to find methods of quickly incorporating new generations of equipment and replace of obsolete equipment without disrupting the exiting system. To solve these and related problems, the APS control system group made an early resolution to use standards in the design of the system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. It will explain the APS control system and illustrate how the use of standards has allowed APS to design a control system whose implementation addresses these issues. The system will use high performance graphic workstations using an X-Windows Graphical User Interface at the operator interface level. It connects to VME-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  9. Standards and the design of the Advanced Photon Source control system

    Science.gov (United States)

    McDowell, W. P.; Knott, M. J.; Lenkszus, F. R.; Kraimer, M. R.; Daly, R. T.; Arnold, N. D.; Anderson, M. D.; Anderson, J. B.; Zieman, R. C.; Cha, Ben-Chin K.

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. In the conceptual stage the control system design group faced the challenges that face all control system designers: to force the machine designers to quantify and codify the system requirements, to protect the investment in hardware and software from rapid obsolescence, and to find methods of quickly incorporating new generations of equipment and replace of obsolete equipment without disrupting the exiting system. To solve these and related problems, the APS control system group made an early resolution to use standards in the design of the system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. It will explain the APS control system and illustrate how the use of standards has allowed APS to design a control system whose implementation addresses these issues. The system will use high performance graphic workstations using an X-Windows Graphical User Interface at the operator interface level. It connects to VME-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  10. Advanced control approach for hybrid systems based on solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: • Advanced new control system for SOFC based hybrid plants. • Proportional–Integral approach with feed-forward technology. • Good control of fuel cell temperature. • All critical properties maintained inside safe conditions. - Abstract: This paper shows a new advanced control approach for operations in hybrid systems equipped with solid oxide fuel cell technology. This new tool, which combines feed-forward and standard proportional–integral techniques, controls the system during load changes avoiding failures and stress conditions detrimental to component life. This approach was selected to combine simplicity and good control performance. Moreover, the new approach presented in this paper eliminates the need for mass flow rate meters and other expensive probes, as usually required for a commercial plant. Compared to previous works, better performance is achieved in controlling fuel cell temperature (maximum gradient significantly lower than 3 K/min), reducing the pressure gap between cathode and anode sides (at least a 30% decrease during transient operations), and generating a higher safe margin (at least a 10% increase) for the Steam-to-Carbon Ratio. This new control system was developed and optimized using a hybrid system transient model implemented, validated and tested within previous works. The plant, comprising the coupling of a tubular solid oxide fuel cell stack with a microturbine, is equipped with a bypass valve able to connect the compressor outlet with the turbine inlet duct for rotational speed control. Following model development and tuning activities, several operative conditions were considered to show the new control system increased performance compared to previous tools (the same hybrid system model was used with the new control approach). Special attention was devoted to electrical load steps and ramps considering significant changes in ambient conditions

  11. Advanced turbine systems sensors and controls needs assessment study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.L.; Fry, D.N.; McEvers, J.A.

    1997-02-01

    The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

  12. Dynamics and Control of Switched Electronic Systems Advanced Perspectives for Modeling, Simulation and Control of Power Converters

    CERN Document Server

    Iannelli, Luigi

    2012-01-01

    The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal approaches to the analysis and control of power electronics converters. Switched systems represent a useful framework for modeling these converters and the peculiarities of their operating conditions and control goals justify the specific classification of “switched electronic systems”. Indeed, idealized switched models of power converters introduce problems not commonly encountered when analyzing generic switched models or non-switched electrical networks. In that sense the analysis of switched electronic systems represents a source for new ideas and benchmarks for switched and hybrid systems generally. Dynamics and Control of Switched Electronic Systems draws on the expertise of an international group of expert contributors to give an overview of recent advances in the modeling, simulation and control of switched electronic systems. The reader is provided...

  13. Advanced nonlinear control: Robustness and stability with applications to aircraft flight control systems

    Science.gov (United States)

    Frye, Michael Takaichi

    This dissertation examines the problem of global decentralized control by output feedback for large-scale uncertain nonlinear systems whose subsystems are interconnected not only by their outputs but also by their unmeasurable states. Several innovative techniques will be developed to create decentralized output feedback controllers rendering the closed-loop systems globally asymptotically stable. This is accomplished by extending an output feedback domination design that requires only limited information about the nonlinear system. We will apply our design to lower, upper, and non-triangular nonlinear systems. A time-varying output feedback controller is also constructed for use with large-scale systems that have unknown parameters. Furthermore, a mixed large-scale system consisting of both lower and upper triangular systems is shown to be stabilizable by employing a combined high and low gain domination technique. The significance of our results is that we do not need to have prior information about the nonlinearities of the system. In addition, a new design technique was developed using homogeneous system theory, which allows for the design of nonsmooth controllers and observers to stabilize a class of feedforward system with uncontrollable and unobservable linearization. An example of a large-scale system is a group of autonomous airships performing the function of a temporary mobile cell phone network. An airship mobile cell phone network is a novel solution to the problem of maintaining communication during the advent of extensive damage to the communication infrastructure; be it from a flood, earthquake, hurricane, or terrorist attack. A first principle force-based dynamic model for the Tri-Turbofan Airship was developed and will be discussed in detail. The mathematical model was based on actual flight test data that has been collected at the Gait Analysis and Innovative Technologies Laboratory. This model was developed to research autonomous airship

  14. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  15. Advanced Control of Wind Electric Pumping System for Isolated Areas Application

    Directory of Open Access Journals (Sweden)

    Mohamed Barara

    2014-12-01

    Full Text Available The supply water in remote areas of windy region is one of most attractive application of wind energy conversion .This paper proposes an advanced controller suitable for wind-electric pump in isolated applications in order to have a desired debit from variation of reference speed of the pump also the control scheme of DC voltage of SIEG for feed the pump are presented under step change in wind speed. The simulation results showed a good performance of the global proposed control system.

  16. Advanced control systems to improve nuclear power plant reliability and efficiency

    International Nuclear Information System (INIS)

    The TECDOC is the result of a series of an advisory and consultants meetings held by the IAEA in 1995-1996 in Vienna (March 1995), in Erlangen Germany (December 1995), in Garching, Germany (June 1996) and in Vienna (November 1996). It was prepared with the participation and contributions of experts from Austria, Canada, Finland, France, Germany, the Republic of Korea, Norway, the Russian Federation, the United Kingdom and the United States of America. The publication not only describes advanced control systems for the improvement of nuclear power plant reliability and efficiency, but also provides a road map to guide interested readers to plan and execute an advanced instrumentation and control project. The subjects include: identification of needs and requirements, justification for safety and user acceptance, and the development of an engineering process. The report should be of interest to nuclear power plant staff, I and C system designers and integrators as well as regulators and researchers. Refs, figs, tabs

  17. Development of human factors validation system for the advanced control room of APR1400

    International Nuclear Information System (INIS)

    A human factors validation system for the main control room (MCR) of Advanced Power Reactor 1400 MWe (APR1400) has been developed as it adopts digitalized human-system interfaces (HSIs). The integrated validation system is composed of process/plant models, HSIs, and the human performance evaluation support system (HUPESS). A real-time thermal-hydraulic code, RELAP5 R/T, was used and modified to simulate the dynamic characteristics of the APR1400, and simulation software, 3KeyMaster, was used to model the balance of plant systems. The HSIs developed in this study include all facilities in the APR1400 MCR, such as large display panels, 3 identified operator workstations, and a safety console. In addition, the remote shutdown workstation has been developed. The display systems in the HSIs have been developed using ProcSee, which is a software tool for developing and displaying dynamic graphical user interfaces. This paper describes the configurations of HSIs including display systems, the dynamic models of the APR1400 simulator, the instructor station, and the HUPESS. This paper also presents the results of plant simulation performance tests at transient compared with the results of RELAP5/MOD3.3 calculations. The human factors validation system for the advanced control room of APR1400 provides high degrees of physical, functional, and dynamic fidelities, and can be used in the validation process of the APR1400 HSI design. (author)

  18. Advanced Wavefront Control Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In the case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of

  19. The Environmental Control and Life Support System (ECLSS) advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  20. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  1. Advanced Control of Permanent Magnet Synchronous Generators for Variable Speed Wind Energy Conversion Systems

    Science.gov (United States)

    Hostettler, Jacob

    Various environmental and economic factors have lead to increased global investment in alternative energy technologies such as solar and wind power. Although methodologies for synchronous generator control are well researched, wind turbines present control systems challenges not presented by traditional generation. The varying nature of wind makes achieving synchronism with the existing electrical power grid a greater challenge. Departing from early use of induction machines, permanent magnet synchronous generators have become the focus of power systems and control systems research into wind energy systems. This is due to their self excited nature, along with their high power density. The problem of grid synchronism is alleviated through the use of high performance power electronic converters. In achievement of the optimal levels of efficiency, advanced control systems techniques oer promise over more traditional approaches. Research into sliding mode control, and linear matrix inequalities with nite time boundedness and Hinfinity performance criteria, when applied to the dynamical models of the system, demonstrate the potential of these control methodologies as future avenues for achieving higher levels of performance and eciency in wind energy.

  2. Advanced Control of Turbofan Engines

    CERN Document Server

    Richter, Hanz

    2012-01-01

    Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. This book also: Develops a thorough understanding of the challenges associated with engine operability from a control systems perspective, describing performance demands and operational constraints into the framework and language of modern control theory Presents solid theoretical support for classical and advanced engine co...

  3. Advances in Statistical Control, Algebraic Systems Theory, and Dynamic Systems Characteristics A Tribute to Michael K Sain

    CERN Document Server

    Won, Chang-Hee; Michel, Anthony N

    2008-01-01

    This volume - dedicated to Michael K. Sain on the occasion of his seventieth birthday - is a collection of chapters covering recent advances in stochastic optimal control theory and algebraic systems theory. Written by experts in their respective fields, the chapters are thematically organized into four parts: Part I focuses on statistical control theory, where the cost function is viewed as a random variable and performance is shaped through cost cumulants. In this respect, statistical control generalizes linear-quadratic-Gaussian and H-infinity control. Part II addresses algebraic systems th

  4. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    Directory of Open Access Journals (Sweden)

    Guo Lie

    2014-01-01

    Full Text Available Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  5. Advanced Instrumentation, Information, and Control Systems Technologies Research in Support of Light Water Reactors

    International Nuclear Information System (INIS)

    The Advanced Instrumentation, Information, and Control (II and C) Systems Technologies Pathway conducts targeted research and development (R and D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals to ensure that legacy analog II and C systems are not life-limiting issues for the LWR fleet, and to implement digital II and C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II and C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security

  6. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-07-01

    The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet, and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security.

  7. Deepwell water system control and monitoring in a nuclear power plant by telemetry and advanced instrumentation

    International Nuclear Information System (INIS)

    The potable water in the Philippine Nuclear Power Plant is supplied by a network of ten interconnected deepwell turbine pumps. These underground submersible pumps are installed very deep in the ground. The region is hilly and large. Adequate protection of the expensive pumps, a high degree of automation, reliability and flexibility were the overall goals of the control and instrumentation. The advanced instrumentation consisted of: digital control and digital monitoring; a telemetry system for transmission of all signals between the master station and the ten satellite stations; radiofrequency water level measurement in the wells. This paper describes the system in details. It also points out the characteristics of the system which may be considered as unique or uncommon in a Nuclear Power Plant

  8. Building highly available control system applications with Advanced Telecom Computing Architecture and open standards

    International Nuclear Information System (INIS)

    Requirements for modern and future control systems for large projects like International Linear Collider demand high availability for control system components. Recently telecom industry came up with a great open hardware specification - Advanced Telecom Computing Architecture (ATCA). This specification is aimed for better reliability, availability and serviceability. Since its first market appearance in 2004, ATCA platform has shown tremendous growth and proved to be stable and well represented by a number of vendors. ATCA is an industry standard for highly available systems. On the other hand Service Availability Forum, a consortium of leading communications and computing companies, describes interaction between hardware and software. SAF defines a set of specifications such as Hardware Platform Interface, Application Interface Specification. SAF specifications provide extensive description of highly available systems, services and their interfaces. Originally aimed for telecom applications, these specifications can be used for accelerator controls software as well. This study describes benefits of using these specifications and their possible adoption to accelerator control systems. It is demonstrated how EPICS Redundant IOC was extended using Hardware Platform Interface specification, which made it possible to utilize benefits of the ATCA platform.

  9. Advanced Approach to Information Security Management System Model for Industrial Control System

    Directory of Open Access Journals (Sweden)

    Sanghyun Park

    2014-01-01

    Full Text Available Organizations make use of important information in day-to-day business. Protecting sensitive information is imperative and must be managed. Companies in many parts of the world protect sensitive information using the international standard known as the information security management system (ISMS. ISO 27000 series is the international standard ISMS used to protect confidentiality, integrity, and availability of sensitive information. While an ISMS based on ISO 27000 series has no particular flaws for general information systems, it is unfit to manage sensitive information for industrial control systems (ICSs because the first priority of industrial control is safety of the system. Therefore, a new information security management system based on confidentiality, integrity, and availability as well as safety is required for ICSs. This new ISMS must be mutually exclusive of an ICS. This paper provides a new paradigm of ISMS for ICSs, which will be shown to be more suitable than the existing ISMS.

  10. Advanced Approach to Information Security Management System Model for Industrial Control System

    Science.gov (United States)

    2014-01-01

    Organizations make use of important information in day-to-day business. Protecting sensitive information is imperative and must be managed. Companies in many parts of the world protect sensitive information using the international standard known as the information security management system (ISMS). ISO 27000 series is the international standard ISMS used to protect confidentiality, integrity, and availability of sensitive information. While an ISMS based on ISO 27000 series has no particular flaws for general information systems, it is unfit to manage sensitive information for industrial control systems (ICSs) because the first priority of industrial control is safety of the system. Therefore, a new information security management system based on confidentiality, integrity, and availability as well as safety is required for ICSs. This new ISMS must be mutually exclusive of an ICS. This paper provides a new paradigm of ISMS for ICSs, which will be shown to be more suitable than the existing ISMS. PMID:25136659

  11. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    Science.gov (United States)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a

  12. Advanced Control Engineering

    DEFF Research Database (Denmark)

    Zhou, Jianjun

    1999-01-01

    This book is developed as a textbook for the course Advanced Control Engineering. The book is intended for students in mechanical engineering and its aim is to provide an understanding of modern control theory as well as methodologies and applications for state space modeling and design...

  13. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  14. IEDA Thesaurus: A Controlled Vocabulary for IEDA Systems to Advance Integration

    Science.gov (United States)

    Ji, P.; Lehnert, K. A.; Arko, R. A.; Song, L.; Hsu, L.; Carter, M. R.; Ferrini, V. L.; Ash, J.

    2014-12-01

    Integrated Earth Data Applications (IEDA) is a community-based facility that serves to support, sustain, and advance the geosciences by providing data services for observational geoscience data from the Ocean, Earth, and Polar Sciences. Many dedicated systems such as the Petrological Database (PetDB), Marine Geoscience Data System (MGDS), System for Earth Sample Registration (SESAR), Data Coordination Center for the U.S. Antarctic Program (USAP-DCC), etc., under the umbrella of the IEDA framework, were developed to support the preservation, discovery, retrieval, and analysis of a wide range of observational field and analytical data types from diverse communities. However, it is currently difficult to maintain consistency of indexing content within IEDA schema, and perform unified or precise searching of the data in these diverse systems as each system maintains separate vocabularies, hierarchies, authority files, or sub taxonomies. We present here the IEDA Thesaurus, a system, which combines existing separate controlled vocabularies from the different systems under the IEDA schema into a single master controlled vocabulary, also introducing some new top facets for future long-term use. The IEDA thesaurus contains structured terminology for petrology, geochemistry, sedimentology, oceanography, geochronology, and volcanology, and other general metadata fields. 18 top facets (also called 'top categories') are defined, including equipment, geographic gazetteer, geologic ages, geologic units, materials, etc. The terms of the thesaurus are cross validated with others popular geoscience vocabularies such as GeoRef Thesaurus, U.S. Geological Survey Library Classification System, Global Change Master Directory (GCMD), and Semantic Web for Earth and Environmental Terminology (SWEET) ontologies. The thesaurus is organized along with the ANSI/NISO Z39.19-2005 Guidelines for the Construction, Format, and Management of Monolingual Controlled Vocabularies, and is published using

  15. Overview of Modelling and Advanced Control Strategies for Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Silvio Simani

    2015-11-01

    Full Text Available The motivation for this paper comes from a real need to have an overview of the challenges of modelling and control for very demanding systems, such as wind turbine systems, which require reliability, availability, maintainability, and safety over power conversion efficiency. These issues have begun to stimulate research and development in the wide control community particularly for these installations that need a high degree of “sustainability”. Note that this represents a key point for offshore wind turbines, since they are characterised by expensive and/or safety critical maintenance work. In this case, a clear conflict exists between ensuring a high degree of availability and reducing maintenance times, which affect the final energy cost. On the other hand, wind turbines have highly nonlinear dynamics, with a stochastic and uncontrollable driving force as input in the form of wind speed, thus representing an interesting challenge also from the modelling point of view. Suitable control methods can provide a sustainable optimisation of the energy conversion efficiency over wider than normally expected working conditions. Moreover, a proper mathematical description of the wind turbine system should be able to capture the complete behaviour of the process under monitoring, thus providing an important impact on the control design itself. In this way, the control scheme could guarantee prescribed performance, whilst also giving a degree of “tolerance” to possible deviation of characteristic properties or system parameters from standard conditions, if properly included in the wind turbine model itself. The most important developments in advanced controllers for wind turbines are also briefly referenced, and open problems in the areas of modelling of wind turbines are finally outlined.

  16. Advances in robust fractional control

    CERN Document Server

    Padula, Fabrizio

    2015-01-01

    This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially-oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, becau...

  17. Intelligent software system for the advanced control room of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Choi, Seong Soo; Park, Jin Kyun; Heo, Gyung Young [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Han Gon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The intelligent software system for nuclear power plants (NPPs) has been conceptually designed in this study. Its design goals are to operate NPPs in an improved manner and to support operators` cognitive takes. It consists of six major modules such as {sup I}nformation Processing,{sup {sup A}}larm Processing,{sup {sup P}}rocedure Tracking,{sup {sup P}}erformance Diagnosis,{sup a}nd {sup E}vent Diagnosis{sup m}odules for operators and {sup M}alfunction Diagnosis{sup m}odule for maintenance personnel. Most of the modules have been developed for several years and the others are under development. After the completion of development, they will be combined into one system that would be main parts of advanced control rooms in NPPs. 5 refs., 4 figs. (Author)

  18. Advanced intelligent systems

    CERN Document Server

    Ryoo, Young; Jang, Moon-soo; Bae, Young-Chul

    2014-01-01

    Intelligent systems have been initiated with the attempt to imitate the human brain. People wish to let machines perform intelligent works. Many techniques of intelligent systems are based on artificial intelligence. According to changing and novel requirements, the advanced intelligent systems cover a wide spectrum: big data processing, intelligent control, advanced robotics, artificial intelligence and machine learning. This book focuses on coordinating intelligent systems with highly integrated and foundationally functional components. The book consists of 19 contributions that features social network-based recommender systems, application of fuzzy enforcement, energy visualization, ultrasonic muscular thickness measurement, regional analysis and predictive modeling, analysis of 3D polygon data, blood pressure estimation system, fuzzy human model, fuzzy ultrasonic imaging method, ultrasonic mobile smart technology, pseudo-normal image synthesis, subspace classifier, mobile object tracking, standing-up moti...

  19. Description of the tasks of control room operators in German nuclear power plants and support possibilities by advanced computer systems

    International Nuclear Information System (INIS)

    In course of the development of nuclear power plants the instrumentation and control systems and the information in the control room have been increasing substantially. With this background it is described which operator tasks might be supported by advanced computer aid systems with main emphasis to safety related information and diagnose facilities. Nevertheless, some of this systems under development may be helpful for normal operation modes too. As far as possible recommendations for the realization and test of such systems are made. (orig.)

  20. A survey on the development of advanced instrumentation and control system in NPP

    International Nuclear Information System (INIS)

    Many developed countries are improving or operating the advanced I and C systems of NPPs. They are: 1) N4 of EDF in France, 2) AP 600 of Westinghouse in USA, 3) NUPLEX-80+ of ABB-CE in USA, 4) CANDU in Canada, 5) Ohi 3 and 4, APWR and ABWR in Japan, 6) Belt-D in Germany, 7) Sizewell B in Britain, 8) Halden Reactor Projector in Norway, 9) I and C systems in Russia and Eastern Europe. This report describes the development trend, background, system architecture, characteristics with the new safety concerns, licensing problems, future plan, and retrofit experiences of these advanced nuclear I and C systems. The biggest difference between the existing systems and the advanced systems is the application of software rather than hardware for the functional implementation. All of the improved I and C systems accepted the standard modules and off-the shelf devices. Their characteristics are focused on EPRI URD Chapter 10. (author)

  1. A survey on the development of advanced instrumentation and control system in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Chang Sik; Kwon, Kee Choon; Chung, Chul Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-12-01

    Many developed countries are improving or operating the advanced I and C systems of NPPs. They are: (1) N4 of EDF in France, (2) AP 600 of Westinghouse in USA, (3) NUPLEX-80+ of ABB-CE in USA, (4) CANDU in Canada, (5) Ohi 3 and 4, APWR and ABWR in Japan, (6) Belt-D in Germany, (7) Sizewell B in Britain, (8) Halden Reactor Projector in Norway, (9) I and C systems in Russia and Eastern Europe. This report describes the development trend, background, system architecture, characteristics with the new safety concerns, licensing problems, future plan, and retrofit experiences of these advanced nuclear I and C systems. The biggest difference between the existing systems and the advanced systems is the application of software rather than hardware for the functional implementation. All of the improved I and C systems accepted the standard modules and off-the shelf devices. Their characteristics are focused on EPRI URD Chapter 10. (author).

  2. Advanced international training course on state systems of accounting for and control of nuclear materials

    International Nuclear Information System (INIS)

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington

  3. Advanced international training course on state systems of accounting for and control of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

  4. Investigation on the design of human-system interface for advanced nuclear plant control room

    International Nuclear Information System (INIS)

    The Lungmen Nuclear Power Project (LMNPP), under construction in Taiwan, consists of two GE Advanced Boiling Water Reactor (ABWR) units, each with 1350 MW electrical output. Major Human-System Interfaces (HSIs) of LMNPP are different from traditional ones. Video display units (VDUs) are the main human-system interface for operators to manipulate and to know the status of the equipment and plant information. Based upon NUREG-0711, the applicable human factors engineering (HFE) guideline in the design of HSIs has been adopted. An important aspect of the Lungmen HFE program has been the direct involvement of the end user, Taiwan Power Company (TPC), throughout the design development and implementation to ensure not only that the process for the design is compliant with the HFE principles, but also that the necessary displays, control, and alarms are provided to support the identified personnel tasks. This paper reviews the applicable HFE principles and verification and validation (V and V) processes in the design of HSIs for the advanced LMNPP. This paper also presents three investigated topics of the LMNPP HSI design development and implementation process. From the perspective of licensing concern and experience feedback, the focus of this paper is on the topics of validation with simulator, alarm auto reset, and VDU operational configuration strategy. The objectives of investigating the latter topic were to ensure the VDU operational configuration strategy, after appropriate V and V, achieves its goals of reinforcing operation discipline and distributing operator crew task assignments and workload during typical operations, and to confirm the need for an intensive training program that addresses the knowledge and skill requirements of the operators to meet the task characteristics and the responses of the plant processes. The results to date and implications for going forward from this process are also presented. (authors)

  5. PREVENTING LITHOGRAPHY-INDUCED MAVERICK YIELD EVENTS WITH A DISPENSE SYSTEM ADVANCED EQUIPMENT CONTROL METHOD

    Institute of Scientific and Technical Information of China (English)

    Jennifer Broggin

    2012-01-01

    As semiconductor manufacturers march to thedrum beat of Moore's Law there is very little roomfor yield maverieks, especially those that can beprevented. Critical process errors are costly andphotolithography is one of the few processes insemiconductor manufacturing where there is anopportunity to correct errors. Small changes inphotoresist-dispensed volume may have severeimpact on film thickness uniformity and can ulti-mately affect patterning It is important to monitorphoto dispense conditions to detect real-timeevents that may have a direct negative impact onprocess yield and be able to react to these eventsas quickly as possible.This paper presents an evaluation of the IntelliGen Mini, a photoresist dispense system manufacturedby Entegris, Inc. This system utilizes advancedequipment control software, known as dispenseconfirmation, to detect variations in photo dis-pense. These variations, caused by bubbles inthe dispense line, valve errors and accidentally-changed chemistries can all create maverick yieldevents that can go undetected until metrology,defeet inspection or wafer final testThe ability of an advanced dispense system todetect events and create alerts is a very powerfultool, but it can be most effective when that infor-mation is collected and analyzed by an automatedsystem. In a modern fabricator this is most likely astatistical process control chart that is monitoringa track's progress and is ready to stop the trackwhen a maverick event occurs or alert personnelto trends they may not otherwise catch with otherinline ntetrology data. Dispense confirmation,when Combined with networking capabilities,can meet this need.After a brief description of the pump, data from sim-ulated yield-affecting events will be examined toevaluate the IntelliGen Mini's ability to detect them.This discussion will eonclude with a brief analysisof the ultilnate time and cost savings of utilizingdispense confirmation with networking capabilitiesto detect and eliminate poorly

  6. Advanced Agriculture system

    Directory of Open Access Journals (Sweden)

    Shrinivas R. Zanwar

    2012-05-01

    Full Text Available This article addresses the advanced system which improves agriculture processes like cultivation on ploughed land, based on robotic platform. We have developed a robotic vehicle having four wheels and steered by DC motor. The advanced autonomous system architecture gives us the opportunity to develop a complete new range of agricultural equipment based on small smart machines. The machine will cultivate the farm by considering particular rows and specific column at fixed distance depending on crop. The obstacle detection problem will also be considered, sensed by infrared sensor. The whole algorithm, calculation, processing, monitoring are designed with motors & sensor interfaced with microcontroller. The result obtained through example activation unit is also presented. The dc motor simulation with feedforward and feedback technique shows precise output. With the help of two examples, a DC motor and a magnetic levitation system, the use of MATLAB and Simulink for modeling, analysis and control is designed.

  7. Detecting method of subjects' 3D positions and experimental advanced camera control system

    Science.gov (United States)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  8. Towards Certifiable Advanced Flight Control Systems, A Sensor Based Backstepping Approach

    NARCIS (Netherlands)

    Falkena, W.; Van Oort, E.R.; Chu, Q.P.

    2011-01-01

    This paper uses singular perturbation theory in order to design a backstepping control system. Earlier applications using singular perturbation theory for control of non-affine systems exist, but here the focus is shifted to uncertain systems. Dealing with uncertainties in this way could be a major

  9. Advanced support systems development and supporting technologies for Controlled Ecological Life Support Systems (CELSS)

    Science.gov (United States)

    Simon, William E.; Li, Ku-Yen; Yaws, Carl L.; Mei, Harry T.; Nguyen, Vinh D.; Chu, Hsing-Wei

    1994-01-01

    A methyl acetate reactor was developed to perform a subscale kinetic investigation in the design and optimization of a full-scale metabolic simulator for long term testing of life support systems. Other tasks in support of the closed ecological life support system test program included: (1) heating, ventilation and air conditioning analysis of a variable pressure growth chamber, (2) experimental design for statistical analysis of plant crops, (3) resource recovery for closed life support systems, and (4) development of data acquisition software for automating an environmental growth chamber.

  10. Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Ostergaard, Jacob;

    2012-01-01

    This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy, the...... instantaneous DC-link current of the rotor side converter in order to smooth the DC-link voltage fluctuations during the grid fault. A major difference from other methods is that the proposed control strategy can absorb the additional kinetic energy during the fault conditions, and significantly reduce the...... oscillations in the stator and rotor currents and the DC bus voltage. The effectiveness of the proposed control strategy has been demonstrated through various simulation cases. Compared with conventional crowbar protection, the proposed control method can not only improve the LVRT capability of the DFIG WT...

  11. Qualification issues associated with the use of advanced instrumentation and control systems hardware in nuclear power plants

    International Nuclear Information System (INIS)

    The instrumentation and control (I ampersand C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and fiber-optic transmission. Elements of these advances in I ampersand C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying I ampersand C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I ampersand C for present-day plants was compared to that proposed for advanced light water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light water reactor. The template was then used to address reliability issues for microprocessor-based protection systems. Standards (or lack thereof) for the qualification of microprocessor-based safety I ampersand C systems were also identified. This approach addresses in part issues raised in Nuclear Regulatory Commission policy document SECY-91-292, which recognizes that advanced I ampersand C systems for the nuclear industry are open-quotes being developed without consensus standards, as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.close quotes

  12. Time series modeling for analysis and control advanced autopilot and monitoring systems

    CERN Document Server

    Ohtsu, Kohei; Kitagawa, Genshiro

    2015-01-01

    This book presents multivariate time series methods for the analysis and optimal control of feedback systems. Although ships’ autopilot systems are considered through the entire book, the methods set forth in this book can be applied to many other complicated, large, or noisy feedback control systems for which it is difficult to derive a model of the entire system based on theory in that subject area. The basic models used in this method are the multivariate autoregressive model with exogenous variables (ARX) model and the radial bases function net-type coefficients ARX model. The noise contribution analysis can then be performed through the estimated autoregressive (AR) model and various types of autopilot systems can be designed through the state–space representation of the models. The marine autopilot systems addressed in this book include optimal controllers for course-keeping motion, rolling reduction controllers with rudder motion, engine governor controllers, noise adaptive autopilots, route-tracki...

  13. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  14. Advanced emission control system: CO2 sequestration using algae integrated management system (AIMS)

    International Nuclear Information System (INIS)

    One of the companies under Algae tech, Sasaran Bio fuel Sdn. Bhd. provides project management, technology transfer and technical expertise to develop a solution to minimize and mitigate Carbon Dioxide (CO2) emissions through the diversion of the CO2 to open algal ponds and enclosed photo-bioreactors as algal propagation technologies to consume CO2 waste stream. The company is presently consulting a listed company from Indonesia to address the technology know-how and implementation of microalgae development from the flue gas of the Groups power plants. Nowadays, one of the aspects that contribute to the air pollution is the emission of flue gases from the factories. So, we provide a system that can reduce the emission of flue gas to the atmosphere and at the same time, cultivate certain strain of algae. With the technology, Algae Integrated Management System (AIMS), it will be for sure a new beginning for way to reduce air pollution. The utilization of power plant resources for growing selected microalgae at a low energy cost for valuable products and bio-fuels while providing CO2 sequestering. In the same time, it also a low cost algae agriculture. By doing so, it provides all year algae production which can be an income. This residual energy used CO2 produced from power stations and industrial plants to feed the process (CO2 recycling and bio-fixation) in cultivation of algae. This will be a low cost flue gas (CO2) to the developer. In a nutshell, CO2 Sequestration by algae reactors is a potential to reduce greenhouse gas emission by using the CO2 in the stack gases to produce algae. (author)

  15. Development of advanced radioactivity control method (ARCOM) in LWR primary systems

    International Nuclear Information System (INIS)

    In the commercial Light-Water Reactors (LWRs), dose rate reduction is one of the most important subjects. So far, much effort has been spent in research and development to reduce the dose rate. At present, zinc injection seems the most effective technology to reduce the dose rate not only in BWRs (Boiling Water Reactors) but also in PWRs (Pressurized Water Reactors). The authors consider that further reduction of the dose rate would be beneficial to utilities. In the present paper, an Advanced Radioactivity Control Method (ARCOM) is proposed. ARCOM is addition of organic chemical compounds into LWR primary systems. ARCOM is a common technology which may be applied to BWRs and PWRs. It is expected that ARCOM prevents corrosion products from depositing on fuel cladding surface and suppresses deposition of radioactive corrosion products on surface of structural materials. Several specimens of Inconel 600 (I600) and type 316L stainless steels (SS316L) were prefilmed under PWR conditions. From the immersion tests of the prefilmed specimens in various dispersant solutions at room temperature, PAA(16,000) (Polyacrylic acid, weight-average molecular weight 16,000) was selected as the most effective dispersant under PWR conditions. Growth of oxide film on I600 was suppressed in the presence of PAA(16,000) at 320°C. Thermal decomposition of PAA(16,000) at 320°C was investigated. Thermal decomposition of PAA(16,000) is slow, and little products were found after 3 h. The major product is acetate, after 24 h. (author)

  16. PEM Fuel Cells with Bio-Ethanol Processor Systems A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control

    CERN Document Server

    Feroldi, Diego; Outbib, Rachid

    2012-01-01

    An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aid...

  17. Advanced Control Strategy of Back-to-Back PWM Converters in PMSG Wind Power System

    Directory of Open Access Journals (Sweden)

    Tan Luong Van

    2015-01-01

    Full Text Available This paper proposes a control scheme of back-to-back PWM converters for the permanent magnet synchronous generator (PMSG wind turbine system. The DC-link voltage can be controlled at the machine-side converter (MSC, while the grid-side converter (GSC controls the grid active power for a maximum power point tracking (MPPT. At the grid fault condition, the DC-link voltage controller is designed using a feedback linearization (FL theory. For the MPPT, a proportional control loop is added to the torque control to reduce the influence of the inertia moment in the wind turbines, which can improve its dynamic performance. The validity of this control algorithm has been verified by the simulation of the 2-MW PMSG wind turbine system.

  18. Development of an advanced pitch active control system for a wide body jet aircraft

    Science.gov (United States)

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.

    1984-01-01

    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  19. Next Generation Advanced Binder Chemistries for High Performance, Environmentally DurableThermal Control Material Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative SBIR Phase II proposal will develop next generation products for Thermal Control Material Systems (TCMS) an adhesives based on the next generation...

  20. Advanced control system for the scattering chamber of K-130 cyclotron

    International Nuclear Information System (INIS)

    The old relay based position control system of the Scattering Chamber of K-130 Cyclotron was more than 30 years old, developed multiple problems over the years, and the components of the control system like relays, potentiometers, limit switches, radiation resistant cables were not functioning as per specifications. It has been replaced recently by a new PLC based embedded control system. This has been developed using Advantech ADAM-5510EKW 16 bit CPU together with required I/O modules. MULTIPROG Basic V.4.6 has been used as programming software and Ladder Diagram has been used to realize control scheme of the PLC. A resistive type touch screen based operator panel, WebOP-2104VN4AE has been mounted on the control rack for local control. iFIX SCADA, 75 tags Runtime Version 5.1 has been used to operate from remote PC connected to the PLC by 70m CAT6 cable. The PLC communicates with the touch panel and remote PC through 100 Mbps Ethernet switch. The Graphical User Interfaces of the local control panel and the remote panel have been developed as per the requirement from the users. All the old sensors, limit switches, relays and cables have been replaced by new items. This paper reports about the development and commissioning of basic hardware, software and operation of the control system for last six months. (author)

  1. Advanced Error-Control Coding Methods Enhance Reliability of Transmission and Storage Data Systems

    Directory of Open Access Journals (Sweden)

    K. Vlcek

    2003-04-01

    Full Text Available Iterative coding systems are currently being proposed and acceptedfor many future systems as next generation wireless transmission andstorage systems. The text gives an overview of the state of the art initerative decoded FEC (Forward Error-Correction error-control systems.Such systems can typically achieve capacity to within a fraction of adB at unprecedented low complexities. Using a single code requires verylong code words, and consequently very complex coding system. One wayaround the problem of achieving very low error probabilities is turbocoding (TC application. A general model of concatenated coding systemis shown - an algorithm of turbo codes is given in this paper.

  2. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  3. Advanced control system for the Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    A computerized control system has been developed for the remotely-operated fuel pin processor used in the Integral Fast Reactor Program, Fuel Cycle Facility (FCF). The pin processor remotely shears cast EBR- reactor fuel pins to length, inspects them for diameter, straightness, length, and weight, and then inserts acceptable pins into new sodium-loaded stainless-steel fuel element jackets. Two main components comprise the control system: (1) a programmable logic controller (PLC), together with various input/output modules and associated relay ladder-logic associated computer software. The PLC system controls the remote operation of the machine as directed by the OCS, and also monitors the machine operation to make operational data available to the OCS. The OCS allows operator control of the machine, provides nearly real-time viewing of the operational data, allows on-line changes of machine operational parameters, and records the collected data for each acceptable pin on a central data archiving computer. The two main components of the control system provide the operator with various levels of control ranging from manual operation to completely automatic operation by means of a graphic touch screen interface

  4. Advanced stability control of multi-machine power system by vips apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, A. [Tokyo Univ., Tokyo (Japan). Dept. of Electrical Engineering; Sekine, Y. [Science Univ. of Tokyo, Tokyo (Japan). Dept. of Electrical Engineering

    1994-12-31

    New technology such as synchronized switching and power electronics will make it possible to change the configuration of transmission network, the impedances of transmission lines and the phase angles of voltage in the future power systems. This paper presents a comprehensive power system damping control by power electronics based variable impedance apparatus such as variable series capacitor and high speed phase shifter and also shows a novel switching-over control of transmission lines by synchronized switching for the first awing stability and damping enhancement. The control scheme discussed in this paper is based on an energy function of multi-machine power system and its time derivative. Its effectiveness is demonstrated by digital simulations and eigenvalue analysis in multi-machine test systems. It is demonstrated that multiple switching of transmission lines improves damping in the post-fault conditions. (author) 13 refs., 24 figs., 5 tabs.

  5. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  6. A role for distributed processing in advanced nuclear materials control and accountability systems

    International Nuclear Information System (INIS)

    Networking and distributed processing hardware and software have the potential of greatly enhancing nuclear materials control and account-ability (MCandA) systems, both from safeguards and process operations perspectives while allowing timely integrated safeguards activities and enhanced computer security at reasonable cost. A hierarchical distributed system is proposed consisting of groups of terminals and instruments in plant production and support areas connected to microprocessors that are connected to either larger microprocessors or minicomputers. The structuring and development of a limited distributed MCandA prototype system, including human engineering concepts, are described. Implications of integrated safeguards and computer security concepts to the distributed system design are discussed

  7. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    Science.gov (United States)

    Mcruer, Duane T.; Myers, Thomas T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  8. Advanced Control of Electrochromic Windows

    OpenAIRE

    Scartezzini, Jean-Louis; Zarkadis, Nikos; Morel, Nicolas

    2013-01-01

    In our research we use the technology of electrochromic (EC) glazing to maximize the use of daylight and minimize the energy consumption in buildings while preserving visual and thermal comfort of the users. We propose an advanced automatic control of EC windows coupled with an anidolic daylighting system (ADS), blinds and dimmable fluorescent lights. EC windows with a visible transmittance range (Tv) of 0.15 – 0.50 were installed on the southern façade of an office room of the LESO experimen...

  9. Design, analysis, operation, and advanced control of hybrid renewable energy systems

    Science.gov (United States)

    Whiteman, Zachary S.

    Because using non-renewable energy systems (e.g., coal-powered co-generation power plants) to generate electricity is an unsustainable, environmentally hazardous practice, it is important to develop cost-effective and reliable renewable energy systems, such as photovoltaics (PVs), wind turbines (WTs), and fuel cells (FCs). Non-renewable energy systems, however, are currently less expensive than individual renewable energy systems (IRESs). Furthermore, IRESs based on intermittent natural resources (e.g., solar irradiance and wind) are incapable of meeting continuous energy demands. Such shortcomings can be mitigated by judiciously combining two or more complementary IRESs to form a hybrid renewable energy system (HRES). Although previous research efforts focused on the design, operation, and control of HRESs has proven useful, no prior HRES research endeavor has taken a systematic and comprehensive approach towards establishing guidelines by which HRESs should be designed, operated, and controlled. The overall goal of this dissertation, therefore, is to establish the principles governing the design, operation, and control of HRESs resulting in cost-effective and reliable energy solutions for stationary and mobile applications. To achieve this goal, we developed and demonstrated four separate HRES principles. Rational selection of HRES type: HRES components and their sizes should be rationally selected using knowledge of component costs, availability of renewable energy resources, and expected power demands of the application. HRES design: by default, the components of a HRES should be arranged in parallel for increased efficiency and reliability. However, a series HRES design may be preferred depending on the operational considerations of the HRES components. HRES control strategy selection: the choice of HRES control strategy depends on the dynamics of HRES components, their operational considerations, and the practical limitations of the HRES end-use. HRES data

  10. Flexible System Integration and Advanced Hierarchical Control Architectures in the Microgrid Research Laboratory of Aalborg University

    DEFF Research Database (Denmark)

    Meng, Lexuan; Hernández, Adriana Carolina Luna; Diaz, Enrique Rodriguez;

    2016-01-01

    This paper presents the system integration and hierarchical control implementation in an inverter-based microgrid research laboratory (MGRL) in Aalborg University, Denmark. MGRL aims to provide a flexible experimental platform for comprehensive studies of microgrids. The structure of the laboratory...

  11. Joint System Prognostics For Increased Efficiency And Risk Mitigation In Advanced Nuclear Reactor Instrumentation and Control

    Energy Technology Data Exchange (ETDEWEB)

    Donald D. Dudenhoeffer; Tuan Q. Tran; Ronald L. Boring; Bruce P. Hallbert

    2006-08-01

    The science of prognostics is analogous to a doctor who, based on a set of symptoms and patient tests, assesses a probable cause, the risk to the patient, and a course of action for recovery. While traditional prognostics research has focused on the aspect of hydraulic and mechanical systems and associated failures, this project will take a joint view in focusing not only on the digital I&C aspect of reliability and risk, but also on the risks associated with the human element. Model development will not only include an approximation of the control system physical degradation but also on human performance degradation. Thus the goal of the prognostic system is to evaluate control room operation; to identify and potentially take action when performance degradation reduces plant efficiency, reliability or safety.

  12. Advance of Study on Design Methods of Hydraulic System of Radio Remote Control of Construction Machinery

    Institute of Scientific and Technical Information of China (English)

    FENG Kai-lin; YANG Wei-min; CHEN kang-ning

    2003-01-01

    The working principle of radio remote controlling of construction machinery should be that signals of the radio wave from the transmitter obtained in the receiver were controlled and then changed into electronic analog or digital signals which can be used to drive different actuators and mechanisms of the vehicle.The vehicle could be acted by following the controlling instructions sent by the operator.The best operation mode of construction machinery is suitable not only to manual operating but also to remote controlling in the same vehicle.The design methods of the hydraulic system used for the radio remote controlling of construction machinery are discussed.The design methods of hydraulic circuits for the actuators controlled by solenoid on-off type valves,hydro-electronic multi-way proportional valves,closed loop proportional servo driver or three-way proportional reducing valves are discussed in detail (with real example).The design methods of the power shift transmission of electro-hydraulic controlling,the devices of braking and the directional streering are discussed in this paper.

  13. Status and prospect of JT-60 plasma control and diagnostic data processing systems for advanced operation scenarios

    International Nuclear Information System (INIS)

    The large tokamak fusion device JT-60 is expected to explore more advanced tokamak discharge scenarios toward the ITER and a future power reactor. Since various experimental issues are to be adequately discussed, and possibly to be solved in JT-60, the plasma real-time control system has been drastically improved with remodelling in hardware as well as in software. To satisfy the requirements, a 'multiple networks' structure is employed as a basic principle of the remodelling. Distributed processors for diagnostics, actuators, and supervisory controllers are linked through a reflective memory (RM) network for fast, real-time communication. Similarly, advanced and complex calculations to reproduce plasma shape and profiles are performed by several processors connected to the same RM network. In this report, we discuss the developments to improve the JT-60 plasma control and data processing systems. In addition, a future plasma control system leading to a standard design for a power reactor is outlined, which is based on the 20-year plasma operation experience

  14. Progress of nuclear safety for symbiosis and sustainability advanced digital instrumentation, control and information systems for nuclear power plants

    CERN Document Server

    Yoshikawa, Hidekazu

    2014-01-01

    This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human?machine interface technologies (ii) Risk? monitoring methods for large and? complex? plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and val

  15. Advanced Control Strategies to Enable a More Wide-Scale Adoption of Single-Phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng

    The installations of PhotoVoltaic (PV) systems, including grid-connected PV systems, have experienced a significant increase in the past few decades. More PV capacity is expected for the future power grid to be of intelligence and flexibility. This thriving scenario also raises concerns about...... the availability, quality and reliability of the whole power grid. Consequently, grid codes/standards are continuously being revised to host more PV energy in the grid. Ancillary services required initially by wind power systems, e.g. fault ride-through and grid support, are becoming more preferable in PV systems...... today than they were. In addition, achieving high efficiency and high reliability is always of importance for PV systems in order to reduce the cost of energy. Both goals can be enabled by advanced control strategies for PV systems, which are typically based on power electronics technology. In the light...

  16. Advanced design technique of human-machine interfaces for PLC control of complex systems

    Directory of Open Access Journals (Sweden)

    Árpád-István Sütő

    2008-05-01

    Full Text Available Touchscreen operator panels proved to be a convenient succesor for clasical operator panels for implementing human-machine interfaces (HMIs in programmable logic controllers (PLC systems. The paper introduces a new technique for HMIs design in such systems, based on the idea of touchscreens replication. This redundancy allow actions which are not possible within the menus and sub-menus of a single touchscreen. Its strenght is revealed especially in complex systems, where operators can easily be overwhelmed by the huge amount of process information. The technique was applied on a mill tube rolling installation. The results also proved an increase of system security and zero downtime for HMI maintenance activities.

  17. Development of advanced controlled-potential coulometry system for accountability analysis of plutonium in reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Kuno, Takehiko; Sato, Soichi; Ikeda, Hisashi [Techinical Service Division, Tokai Reprocessing Center, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Holland, Micheal K.; Cordaro, Joseph V. [Westinghouse Savannah River Co., Aiken, SC (United States)

    2000-12-01

    A controlled-potential coulometry system (CPC) has been developed to analyze the accountability of plutonium products at the Tokai Reprocessing Plant (TRP). There has been demand to standardize CPC as highly accurate analysis method because, since 1995, the International organization for Standards (ISO) has been advocating ISO12183. To increase TRP's CPC system efficiency, a high performance potentiostat and a high performance coulometer (the principal measuring instruments used in the CPC system) were designed and constructed in collaboration with Westinghouse Savannah River Company (WSRC). Also, the optimization of the procedure was examined. As a results of these efforts, the latest CPC system (complying with ISO12183) has demonstrated long-term measurement reliability of up to 0.1% for 20 mg of plutonium. (author)

  18. NATO Advanced Research Institute on Adaptive Control of Ill-Defined Systems

    CERN Document Server

    Rissland, Edwina; Arbib, Michael

    1984-01-01

    There are some types of complex systems that are built like clockwork, with well-defined parts that interact in well-defined ways, so that the action of the whole can be precisely analyzed and anticipated with accuracy and precision. Some systems are not themselves so well-defined, but they can be modeled in ways that are like trained pilots in well-built planes, or electrolyte balance in healthy humans. But there are many systems for which that is not true; and among them are many whose understanding and control we would value. For example, the model for the trained pilot above fails exactly where the pilot is being most human; that is, where he is exercising the highest levels of judgment, or where he is learning and adapting to new conditions. Again, sometimes the kinds of complexity do not lead to easily analyzable models at all; here we might include most economic systems, in all forms of societies. There are several factors that seem to contribute to systems being hard to model, understand, or control. ...

  19. Regulatory perspective on digital instrumentation and control systems for future advanced nuclear power plants

    International Nuclear Information System (INIS)

    This paper deals with the question of using digital technology in instrumentation and control systems for modern nuclear power reactors. The general opinion in the industry and among NRC staff is that such technology provides the opportunity for enhanced safety and reliable reactor operations. The major concern is the safe application of this technology so as to avoid common mode or common cause failures in systems. There are great differences between digital and analog system components. SECY-91-292 identifies some general regulatory concerns with regard to digital systems. There is clearly a lack of adequate regulatory direction on the application of digital equipment at this time, but the issue is being addressed by the industry, outside experts, and NRC staff. NRC staff presents a position on the issue of defense-in-depth and diversity with regard to insuring plant safety. Independent manual controls and readouts must be available to allow safe shutdown and monitoring of the plant in the event of safety system failures

  20. Formulation of advanced consumables management models: Environmental control and electrical power system performance models requirements

    Science.gov (United States)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    Software design specifications for developing environmental control and life support system (ECLSS) and electrical power system (EPS) programs into interactive computer programs are presented. Specifications for the ECLSS program are at the detail design level with respect to modification of an existing batch mode program. The FORTRAN environmental analysis routines (FEAR) are the subject batch mode program. The characteristics of the FEAR program are included for use in modifying batch mode programs to form interactive programs. The EPS program specifications are at the preliminary design level. Emphasis is on top-down structuring in the development of an interactive program.

  1. Advanced nitrogen removal using pilot-scale SBR with intelligent control system built on three layer network

    Institute of Scientific and Technical Information of China (English)

    YANG Qing; WANG Shuying; YANG Anming; GUO Jianhua; BO Fengyang

    2007-01-01

    Since eutrophication has become increasingly severe in China,nitrogen and phosphorous have been the concern of wastewater treatment,especially nitrogen removal.The stabilization of the intelligent control system and nitrogen removal efficiency were investigated in a pilot-scale aerobic-anoxic sequencing batch reactor(SBR)with a treatment capacity of 60 m3/d.Characteristic points on the profiles of dissolved oxygen(DO),pH,and oxidation reduction potential(ORP)could exactly reflect the process of nitrification and denitrification.Using the intelligent control system not only could save energy,but also could achieve advanced nitrogen removal.Applying the control strategy water quality of the effluent could stably meet the national first discharge standard during experiment of 10 months.Even at low temperature(t=13℃),chemical oxygen demand(COD)and total nitrogen(TY)in the effluent were under 50 and 5 mg/L,respectively.

  2. Advanced Emissions Control Development Program: Mercury Control

    International Nuclear Information System (INIS)

    McDermott Technology, Inc. (a subsidiary of Babcock ampersand Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA's) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation's abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock ampersand Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of

  3. Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems

    Science.gov (United States)

    Anderson, Bernhard H.; Mace, James L.; Mani, Mori

    2009-01-01

    The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.

  4. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  5. Assistance tools for generic definition of ITER maintenance tasks and scenarios in advanced supervisory control systems

    International Nuclear Information System (INIS)

    Highlights: ► Improve supervisory control systems for ITER in-vessel and hot cell maintenance. ► Optimize remote handling operations effectiveness, reliability and safety. ► Provide a generic description of the maintenance tasks and scenarios. ► Development of context-based assistances for operators and supervisor. ► Improvement of operator's situation awareness. -- Abstract: This paper concerns the improvement of supervisory control systems in the context of remote handling for the maintenance tasks in ITER. This work aims at providing a single formalism and tools to define in a generic way the ITER maintenance tasks and scenarios for in-vessel and hot cell operations. A three-layered approach is proposed to model these tasks and scenarios. Physical actions are defined for the scene elements. From these physical actions, behaviours are defined to represent high-level functionalities. Finally, interaction modes define the way that behaviours are achieved in terms of human–machine interactions. Case study concerning the blanket maintenance procedure is discussed concerning the contributions of the descriptive model and the context-based assistances to the activities of supervisory control

  6. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant model and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.

  7. Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus

    Science.gov (United States)

    Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud

    1996-01-01

    The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the

  8. Development of human performance evaluation battery for integrated system validation of the HSI for an advanced control room

    International Nuclear Information System (INIS)

    The human-system interface (HSI) plays a vital role in the operation of a nuclear power plant. To ensure a human factors engineered advanced control room HSI design in support of reliable and safe operation of the plant, Taiwan Power Company has incorporated elements of the HFE Program Review Model (HFE PRM), prescribed in NUREG-0711 [1], into the HFE program for its Lungmen Nuclear Power Project. At present, the control room HSI design is undergoing verification and validation. Although NUREG/CR-6393[2] has introduced review criteria and methodology for integrated system validation, these criteria and methodology need to be elaborated for proper implementation. The purpose of this paper is to describe the development of suitable performance evaluation tools to be used to collect objective task performance measures, cognitive measures, as well as physical measures for HFE validation for the Lungmen project. (authors)

  9. Alarm system advances and innovations

    International Nuclear Information System (INIS)

    Alarm: 'a signal (as a loud noise or flashing light) that warns or alerts; also: a device that signals... '. This statement, this definition as simple as it is sums up every alarm system for every control system that has ever existed, but what it's missing from it is the complexity and uniqueness required by a Nuclear Power Plant. With advances in computerized control and engineering technologies within these plants, the need for more comprehensive alarm control and monitoring systems is as critical as the operation itself. (authors)

  10. Advanced lung ventilation system (ALVS) with linear respiratory mechanics assumption for waveform optimization of dual-controlled ventilation.

    Science.gov (United States)

    Montecchia, F; Guerrisi, M; Canichella, A

    2007-03-01

    The present paper describes the functional features of an advanced lung ventilation system (ALVS) properly designed for the optimization of conventional dual-controlled ventilation (DCV), i.e. with pressure-controlled ventilation with ensured tidal or minute volume. Considering the particular clinical conditions of patients treated with controlled ventilation the analysis and synthesis of ALVS control have been performed assuming a linear respiratory mechanics. Moreover, new airways pressure waveforms with more physiological shape can be tested on simulators of respiratory system in order to evaluate their clinical application. This is obtained through the implementation of a compensation procedure making the desired airways pressure waveform independent on patient airways resistance and lung compliance variations along with a complete real-time monitoring of respiratory system parameters leading the ventilator setting. The experimental results obtained with a lung simulator agree with the theoretical ones and show that ALVS performance is useful for the research activity aiming at the improvement of both diagnostic evaluation and therapeutic outcome relative to mechanical ventilation treatments.

  11. Advanced Distribution Management System

    Science.gov (United States)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  12. Advances in chaos theory and intelligent control

    CERN Document Server

    Vaidyanathan, Sundarapandian

    2016-01-01

    The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate s...

  13. An advanced automation system for operation of Sao Paulo pumping stations from TRANSPETRO Master Control Center - CNCO

    Energy Technology Data Exchange (ETDEWEB)

    Corcioli, Mario Sergio; Barreto, Camila Maria Benevenuto [TRANSPETRO, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Since 2000 the operations of the TRANSPETRO pumping stations in the state of Sao Paulo region began to be transferred from local control centers located at the transfer and storage terminals to the National Operational Control Center (CNCO) of TRANSPETRO, located at the headquarters of the company, in Rio de Janeiro. The proposed paper aims to presenting an overview of the automation system that was developed to enable such pumping stations to be operated from CNCO in a reliable and secure manner, focusing on tools that offer an embedded system alarms completely free of false alarms with automatic determining of the root cause, and also automatic and advanced diagnoses of problems caused by failures of hardware, human error and abnormal conditions of the process, providing the CNCO SCADA system of accurate and quality information that help operators to make decisions. The referred automation system was integrated for the first time to CNCO SCADA system in 2000, for pipeline pumps of Osvat (Sao Sebastiao - Vale do Paraiba pipeline) station at the Sao Sebastiao Terminal - northern coast of Sao Paulo region. (author)

  14. The P20 system: the advanced control system for the new French and British nuclear power plants

    International Nuclear Information System (INIS)

    Both the latest French pressurized water reactors (PWR), the 1450MW N4 series, and the British Sizewell-B PWR are to use the P20 microprocessor based control system. It is fully decentralized by means of data highways and incorporates many technological improvements in microprocessor and data processing techniques. The first N4 plant to use the P20 system, the CH00Z-B units, are due to be commissioned in 1991. The P20 system, which has three main parts, is described and explained. (UK)

  15. Transputers in Fluid Power - Design and Applications. Chapter 5 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with results and trends on mechatronics in fluid power and intelligent control of machines and robots. New results are presented concerning transputer-basen distributed control of machines and robots. Experimental results with the DTU mechatronic test facility are presented and discussed...

  16. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  17. Next Generation Advanced Binder Chemistries for High Performance, Environmetally DurableThermal Control Material Systems. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative SBIR Phase I proposal will develop new binder systems through the systematic investigations to tailor required unique performance properties and...

  18. Advanced Integrated Traction System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  19. Management of complex multi-reservoir water distribution systems using advanced control theoretic tools and techniques

    CERN Document Server

    Chmielowski, Wojciech Z

    2013-01-01

    This study discusses issues of optimal water management in a complex distribution system. The main elements of the water-management system under consideration are retention reservoirs, among which water transfers are possible, and a network of connections between these reservoirs and water treatment plants (WTPs). System operation optimisation involves determining the proper water transport routes and their flow volumes from the retention reservoirs to the WTPs, and the volumes of possible transfers among the reservoirs, taking into account transport-related delays for inflows, outflows and water transfers in the system. Total system operation costs defined by an assumed quality coefficient should be minimal. An analytical solution of the optimisation task so formulated has been obtained as a result of using Pontriagin’s maximum principle with reference to the quality coefficient assumed. Stable start and end conditions in reservoir state trajectories have been assumed. The researchers have taken into accou...

  20. An Advanced Rapid Cycling CO2 and H2O Control System for PLSS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's planned future missions set stringent demands on the design of the Portable Life Support Systems (PLSS), requiring dramatic reductions in weight, decreased...

  1. An Advanced Rapid Cycling CO2 and H2O Control System for PLSS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's planned future missions set stringent demands on the design of the Portable Life Support Systems (PLSS) used to cool the astronaut and provide them with air....

  2. Advanced Microturbine Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a

  3. Advanced luminance control and black offset correction for multi-projector display systems

    OpenAIRE

    Zietlow, Timon; Heinz, Marcel; Brunnett, Guido

    2015-01-01

    In order to display a homogeneous image using multiple projectors, differences in the projected intensities must be compensated. In this paper, we present novel approaches to combine and extend existing techniques for edge blending and luminance harmonization to achieve a detailed luminance control. Furthermore, we apply techniques for improving the contrast ratio of multi-segmented displays also to the black offset correction. We also present a simple scheme to involve the displayed context ...

  4. Advanced Thermal Control Flight Experiment.

    Science.gov (United States)

    Kirkpatrick, J. P.; Brennan, P. J.

    1973-01-01

    The advanced Thermal Control Flight Experiment on the Applications Technology Satellite (ATS-F) will evaluate, for the first time in a space environment, the performance of a feedback-controlled variable conductance heat pipe and a heat pipe thermal diode. In addition, the temperature control aspects of a phase-change material (PCM) will be demonstrated. The methanol/stainless steel feedback-controlled heat pipe uses helium control gas that is stored in a wicked reservoir. This reservoir is electrically heated through a solid state controller that senses the temperature of the heat source directly. The ammonia/stainless steel diode heat pipe uses excess liquid to block heat transfer in the reverse direction. The PCM is octadecane. Design tradeoffs, fabrication problems, and performance during qualification and flight acceptance tests are discussed.

  5. Broadband Advanced Spectral System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NovaSol proposes to develop an advanced hyperspectral imaging system for earth science missions named BRASS (Broadband Advanced Spectral System). BRASS combines...

  6. Advanced drilling systems study.

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  7. Evaluation of Advanced Control for Li-ion Battery Balancing Systems using Convex Optimization

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; Schaltz, Erik;

    2016-01-01

    systems are evaluated in this paper by means of convex optimization. More than one hundred cases in a pure EV application are evaluated. Balancing circuits' efficiency models are implemented and realistic cell-to-cell parameter distributions are considered based on experimental data. Different battery...... of energy losses, available capacity or temperature are obtained for the last three categories, even for moderate balancing currents. In particular, remarkable improvements are observed under conditions of high power demand with high variability, i.e., smaller battery sizes and more demanding driving cycles....

  8. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  9. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  10. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation

  11. Models of human operators: Their need and usefulness for improvement of advanced control systems and control rooms

    International Nuclear Information System (INIS)

    Models of human behavior and cognition (HB ampersand C) are necessary for understanding the total response of complex systems. Many such model have come available over the past thirty years for various applications. Many potential model users remain skeptical about their practically, acceptability, and usefulness. Such hesitancy stems in part from disbelief in the ability to model complex cognitive processes, and a belief that relevant human behavior can be adequately accounted for through the use of common-sense heuristics. This paper will highlight several models of HB ampersand C and identify existing and potential applications in attempt to dispel such notions. 26 refs

  12. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    International Nuclear Information System (INIS)

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors

  13. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  14. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  15. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  16. Advanced worker protection system

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, B.; Duncan, P.; Myers, J. [Oceaneering Space Systems, Houston, TX (United States)

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  17. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  18. ADVANCED WORKER PROTECTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Judson Hedgehock

    2001-03-16

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify

  19. ADVANCED WORKER PROTECTION SYSTEM

    International Nuclear Information System (INIS)

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify

  20. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  1. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  2. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  3. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project. ACT/Control/Guidance System study, volume 1

    Science.gov (United States)

    1982-01-01

    The active control technology (ACT) control/guidance system task of the integrated application of active controls (IAAC) technology project within the NASA energy efficient transport program was documented. The air traffic environment of navigation and air traffic control systems and procedures were extrapolated. An approach to listing flight functions which will be performed by systems and crew of an ACT configured airplane of the 1990s, and a determination of function criticalities to safety of flight, are the basis of candidate integrated ACT/Control/Guidance System architecture. The system mechanizes five active control functions: pitch augmented stability, angle of attack limiting, lateral/directional augmented stability, gust load alleviation, and maneuver load control. The scope and requirements of a program for simulating the integrated ACT avionics and flight deck system, with pilot in the loop, are defined, system and crew interface elements are simulated, and mechanization is recommended. Relationships between system design and crew roles and procedures are evaluated.

  4. An Advanced Fly-By-Wire Flight Control System for the RASCAL Research Rotorcraft: Concept to Reality

    Science.gov (United States)

    Rediess, Nicholas A.; Dones, Fernando; McManus, Bruce L.; Ulmer, Lon; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Design features of a new fly-by-wire flight control system for the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these pro-rams and the design implementation of the research flight control system (RFCS), with emphasis on safety-of-flight, adaptability to multiple requirements and performance considerations.

  5. Proceeding of JSPS-CAS Core University Program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Guilin Bravo Hotel, Guilin, China, 1-4 November 2010. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. Two special talks and 46 oral talks were presented in the seminar including 36 Chinese, 18 Japanese and 4 Korean attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results in the field of fusion experiments obtained through CUP activities during recent two years were summarized. Possible direction of future collaboration and further encouragement of scientific activity of younger scientists were also discussed in this seminar with future experimental plans in both countries. (author)

  6. Proceeding of JSPS-CAS core university program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Shiner hotel, Lijiang, China, 4-7 November 2008. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. One special talk and 34 oral talks were presented in the seminar including 16 Japanese attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results obtained from CUP activities during recent four years were summarized. Several crucial issues to be resolved near future were also extracted in this seminar. The 31 of the papers are indexed individually. (J.P.N.)

  7. Advanced border monitoring sensor system

    Science.gov (United States)

    Knobler, Ronald A.; Winston, Mark A.

    2008-04-01

    McQ has developed an advanced sensor system tailored for border monitoring that has been delivered as part of the SBInet program for the Department of Homeland Security (DHS). Technology developments that enhance a broad range of features are presented in this paper, which address the overall goal of the system to improving unattended ground sensor system capabilities for border monitoring applications. Specifically, this paper addresses a system definition, communications architecture, advanced signal processing to classify targets, and distributed sensor fusion processing.

  8. Multi-Objective Advanced Inverter Controls to Dispatch the Real and Reactive Power of Many Distributed PV Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lave, Matthew Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seuss, John [Georgia Inst. of Technology, Atlanta, GA (United States); Grijalva, Santiago [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-01-01

    The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.

  9. Applications of advanced data analysis and expert system technologies in the ATLAS Trigger-DAQ Controls framework

    CERN Document Server

    Avolio, G; The ATLAS collaboration; Kazarov, A; Lehmann Miotto, G; Magnoni, L

    2012-01-01

    The Trigger and DAQ system of the ATLAS experiment is a very complex distributed computing system, composed of more than 15000 applications running on more than 2000 computers. The TDAQ Controls system has to guarantee the smooth and synchronous operations of all the TDAQ components and has to provide the means to minimize the downtime of the system caused by runtime failures. During data taking runs, streams of information messages sent or published by running applications are the main sources of knowledge about correctness of running operations. The huge flow of operational monitoring data produced is constantly monitored by experts in order to detect problems or misbehaviours. Given the scale of the system and the rates of data to be analyzed, the automation of the system functionality in the areas of operational monitoring, system verification, error detection and recovery is a strong requirement. To accomplish its objective, the Controls system includes some high-level components which are based on advan...

  10. Design and simulation of an automation system of a production process and fractionation of 131I, using strategies of advanced control

    International Nuclear Information System (INIS)

    In this report, the results are obtained in the design and simulation of a control system using advanced strategies in a production cell in the Plant Production of Radioisotopes of IPEN. The results demonstrate that the temperature of the coalition oven is stabilized after 30 minutes, being constituted in an advantage to obtain the maximum yield of the cell production of 131I; also, an integral good controller has been designed that allows to obtain a mathematical model that reproduces with enough accuracy the behavior of the process. With the final simulation it has been to demonstrate that the System Control of Temperature of the Cell Production of 131I is a controllable system and allows to carry out the respective sequence with other variables of control of the production cell. (author)

  11. Assurance Technology Challenges of Advanced Space Systems

    Science.gov (United States)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  12. Space Testing of the Advanced Instrument Controller

    OpenAIRE

    Goforth, Todd; Cannon, Scott; Lyke, James

    1999-01-01

    An extremely compact, low-power instrument controller and data processor system has been developed for space-based applications. Known as the Advanced Instrument Controller (AIC), this hybrid device contains both digital and analog components in a package less than 5 grams in weight and 2 x 3 em in size. Based on the Intel 8031151 microprocessor and implementing a superset of the 8051 instruction set, the AIC supports l28k of SRAM, 128k of EEPROM, four 8-bit parallel ports, six serial communi...

  13. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  14. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Thomas, Ken [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  15. Development of advanced automatic control system for nuclear ship. 2. Perfect automatic operation after reactor scram events

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, Noriaki; Nakazawa, Toshio; Takahashi, Hiroki; Shimazaki, Junya; Hoshi, Tsutao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    An automatic operation system has been developed for the purpose of realizing a perfect automatic plant operation after reactor scram events. The goal of the automatic operation after a reactor scram event is to bring the reactor hot stand-by condition automatically. The basic functions of this system are as follows; to monitor actions of the equipments of safety actions after a reactor scram, to control necessary control equipments to bring a reactor to a hot stand-by condition automatically, and to energize a decay heat removal system. The performance evaluation on this system was carried out by comparing the results using to Nuclear Ship Engineering Simulation System (NESSY) and the those measured in the scram test of the nuclear ship `Mutsu`. As the result, it was showed that this system had the sufficient performance to bring a reactor to a hot syand-by condition quickly and safety. (author)

  16. The development of Advanced robotic technology - Development of target-tracking algorithm for remote-control robot system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Sun; Lee, Joon Whan; Kim, Hyong Suk; Yoon, Sook; Lee, Jin Ho; Han, Jeong Soo; Baek, Seong Hyun; Choi, Gap Chu [Chonbuk National University, Chonju (Korea, Republic of)

    1996-07-01

    The utilization of remote-control robot system in atomic power plants or nuclear-related facilities grows rapidly, to protect workers from high radiation environments. Such applications require complete stability of the robot system, then precisely tracking the robot is essential for the whole system. This research is to accomplish the goal by developing appropriate algorithms for remote-control robot systems. The research consists of two different approaches: target-tracking systems using kalman filters and neural networks. The tracking system under study uses vision sensors to obtain features of targets. A kalman filter model using the moving-position estimation technique is designed, and tested for tracking an object with a circle movement. Attributions of the tracking object are investigated and best features are extracted from the input imagery for the kalman filter model. A neural network tracking system is designed and experimented to trace a robot endeffector. This model is aimed to utilize the excellent capabilities of neural networks; nonlinear mapping between inputs and outputs, learning capability, and generalization capability. The neural tracker consists of two networks for position detection and prediction. Tracking algorithms are developed and experimented for the two models. Results to the experiments show that both models are promising as real-time target-tracking systems for remote-control robot systems. 20 refs., 34 figs. (author)

  17. Advanced control systems to improve nuclear power plant reliability and efficiency. Working material. Report of an advisory group meeting held in Vienna, 13-17 March, 1995

    International Nuclear Information System (INIS)

    The Advisory Group Meeting as a consequence of the recommendations of the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation to produce a practical guidance on the application of the advanced control systems available for nuclear power plant operation. The objective of the IAEA advisory group meeting were: To provide an international forum of exchange of ideas and views for the purpose of enhancement of nuclear power plant reliability and efficiency by adopting advanced control technologies; to develop a scope, table of content, and extended outlines for an IAEA technical document on the subject. The present volume contains summary report, materials prepared by the meeting, and reports presented by national delegates. Refs, figs and tabs

  18. Advanced satellite communication system

    Science.gov (United States)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  19. JPL Advanced Thermal Control Technology Roadmap - 2008

    Science.gov (United States)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  20. Advanced Green Micropropulsion System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Systima in collaboration with University of Washington is developing a high performance injection system for advanced green monopropellant AF-M315E micropropulsion...

  1. Advanced Launch System Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Description: Area 1-120 consists of three liquid rocket stands, with five firing positions, a control center and various support facilities. Vertical Stand 1A is a...

  2. Advanced space recovery systems

    Science.gov (United States)

    Wailes, William K.

    1989-01-01

    The design evolution of a space recovery system designed by a NASA-contracted study is described, with particular attention given to the design of a recovery system for a propulsion/avionics module (P/AM), which weighs 60,000 lb at the recovery initiation and achieves subsonic terminal descent at or above 50,000 ft msl. The components of the recovery system concept are described together with the operational sequences of the recovery. The recovery system concept offers low cost, low weight, good performance, a potential for pinpoint landing, and an operational flexibility.

  3. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  4. Advanced integrated enhanced vision systems

    Science.gov (United States)

    Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha

    2003-09-01

    In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.

  5. Advances and applications in chaotic systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.

  6. Power Systems Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  7. Advanced Algal Systems Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  8. Advanced capability RFID system

    Science.gov (United States)

    Gilbert, Ronald W.; Steele, Kerry D.; Anderson, Gordon A.

    2007-09-25

    A radio-frequency transponder device having an antenna circuit configured to receive radio-frequency signals and to return modulated radio-frequency signals via continuous wave backscatter, a modulation circuit coupled to the antenna circuit for generating the modulated radio-frequency signals, and a microprocessor coupled to the antenna circuit and the modulation circuit and configured to receive and extract operating power from the received radio-frequency signals and to monitor inputs on at least one input pin and to generate responsive signals to the modulation circuit for modulating the radio-frequency signals. The microprocessor can be configured to generate output signals on output pins to associated devices for controlling the operation thereof. Electrical energy can be extracted and stored in an optional electrical power storage device.

  9. Ervaringen met Advanced Cruise Control (ACC) in een korte praktijkproef.

    OpenAIRE

    Oei, H.-l.

    2003-01-01

    Experiences with Advanced Cruise Control in traffic; a limited experiment. Advanced Cruise Control (ACC) is an ordinary cruise control in which the desired speed is installed manually, but in which the headway time to the vehicle in front is also taken into account. If the headway time becomes less than the installed critical threshold value, the system brakes the vehicle gradually. If the vehicle in front is no longer there, or the headway time is greater than the threshold value, the instal...

  10. Advanced Wavefront Sensing and Control Testbed (AWCT)

    Science.gov (United States)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  11. Advanced Dewatering Systems Development

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  12. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  13. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  14. Advances in luminescence instrument systems

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.;

    2000-01-01

    We report on recent advances in the development of luminescence measurement systems and techniques at Riso. These include: (1) optical stimulation units based on new-generation powerful blue light (470 nm) emitting diodes providing up to 28 mW/cm(2) for OSL measurements; (2) an infrared (830 nm) ...

  15. Ten years of advanced control systems in Brazil's most complex refinery: history and future perspectives; Dez anos de sistemas de controle avancado na refinaria mais complexa do Brasil: historia e perspectivas futuras

    Energy Technology Data Exchange (ETDEWEB)

    Pinotti, Rafael; Wanderley, Alexandre; Areal, Oswaldo Fraga; Romeiro, Murillo Terroso; Caneschi, Jose Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    In 1994 Duque de Caxias Refinery implemented its first Multivariable Predictive Controller (MPC), in the Fluid Catalytic Cracking Unit. The software, then licensed under contract by the DMCC company, used the Dynamic Matrix Control (DMC) technique. This enterprise culminated with the development, by PETROBRAS engineers, of a proprietary MPC. Since 1994, other units have been contemplated with MPC and advanced regulatory projects, which have been suffering adaptations in order to keep pace with new control and information systems (DCS, Data Bank). The Integrated Control Center, designed to host units controlled by DCS, was inaugurated in 1998, allowing a simpler monitoring routine of the MPC systems by control engineers, easing the tuning of regulatory control loops, and helping in the implementation of new MPC projects. This work depicts the evolution of advanced control systems at REDUC, and explores future perspectives and challenges in an ever-changing environment, where new units are constantly being added-up to an already very complex net of more than thirty units. (author)

  16. Advanced Emissions Control Development Program: Phase III

    Energy Technology Data Exchange (ETDEWEB)

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses - BH), and wet flue gas desulfurization systems (WFGD). Development work concentrated on the capture of trace metals, fine particulate, hydrogen chloride and hydrogen fluoride, with an emphasis on the control of mercury. The AECDP project is jointly funded by the US Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (OCDO), and Babcock and Wilcox, a McDermott company (B and W). This report discusses results of all three phases of the AECDP project with an emphasis on Phase III activities. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on characterization of the emissions of mercury and other air toxics and the control of these emissions for typical operating conditions of conventional flue gas clean-up equipment. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP's and baghouses do a good job of removing non-volatile trace metals, (2) particulate control devices (ESPs and baghouses) effectively remove the particulate-phase mercury, but the particulate-phase mercury was only a small fraction of the total for the coals tested, (3) wet scrubbing can effectively remove hydrogen chloride and hydrogen fluoride, and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however, for certain applications, system enhancements can be required to achieve

  17. Advanced Transport Operating Systems Program

    Science.gov (United States)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  18. Cooperative research for human factors review of advanced control rooms

    International Nuclear Information System (INIS)

    This project has been performed as cooperative research between KAERI and USNRC. Human factors issues related to soft controls, which is one of key features of advanced HSI, are identified in this project. The issues are analyzed for the evaluation approaches in either experimental or analytical ways. Also, issues requiring additional researches for the evaluation of advanced HSI are identified in the areas of advanced information systems design, computer-based procedure systems, soft controls, human systems interface and plant modernization process, and maintainability of digital systems. The issues are analyzed to discriminate the urgency of researches on it to high, medium, and low levels in consideration of advanced HSI development status in Korea, and some of the issues that can be handled by experimental researches are identified. Additionally, an experimental study is performed to compare operator's performance on human error detection in advanced control rooms vs. in conventional control rooms. It is found that advanced control rooms have several design characteristics hindering operator's error detection performance compared to conventional control rooms

  19. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    Science.gov (United States)

    Cinke, Martin; Li, Jing; Chen, Bin; Wignarajah, Kanapathipillai; Pisharody, Suresh A.; Fisher, John W.; Delzeit, Lance; Meyyappan, Meyya; Partridge, Harry; Clark, Kimberlee

    2003-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT's.

  20. Advances in communication systems and electrical engineering

    CERN Document Server

    Huang, Xu

    2008-01-01

    This volume contains contributions from participants in the 2007 International Multiconference of Engineers and Computer Scientists Topics covered include communications theory, communications protocols, network management, wireless networks, telecommunication, electronics, power engineering, control engineering, signal processing, and industrial applications. The book will offer the states of arts of tremendous advances in communication systems and electrical engineering and also serve as an excellent reference work for researchers and graduate students working with/on communication systems a

  1. Model-free adaptive control of advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  2. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures

  3. ISTTOK control system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Carvalho, Bernardo B.

    2013-10-15

    Highlights: •ISTTOK fast controller. •All real-time diagnostic and actuators were integrated in the control platform. •100 μs control cycle under the MARTe framework. •The ISTTOK control system upgrade provides reliable operation with an improved operational space. -- Abstract: The ISTTOK tokamak (Ip = 4 kA, BT = 0.5 T, R = 0.46 m, a = 0.085 m) is one of the few tokamaks with regular alternate plasma current (AC) discharges scientific programme. In order to improve the discharge stability and to increase the number of AC discharge cycles a novel control system was developed. The controller acquires data from 50 analog-to-digital converter (ADC) channels of real-time diagnostics and measurements: tomography, Mirnov coils, interferometer, electric probes, sine and cosine probes, bolometer, current delivered by the power supplies, loop voltage and plasma current. The system has a control cycle of 100 μs during which it reads all the diagnostics connected to the advanced telecommunications computing architecture (ATCA) digitizers and sends the control reference to ISTTOK actuators. The controller algorithms are executed on an Intel{sup ®} Q8200 chip with 4 cores running at 2.33 GHz and connected to the I/O interfaces through an ATCA based environment. The real-time control system was programmed in C++ on top of the Multi-threaded Application Real-Time executor (MARTe). To extend the duration of the AC discharges and the plasma stability a new magnetising field power supply was commissioned and the horizontal and vertical field power supplies were also upgraded. The new system also features a user-friendly interface based on HyperText Markup Language (HTML) and Javascript to configure the controller parameters. This paper presents the ISTTOK control system and the consequent update of real-time diagnostics and actuators.

  4. Advanced control room design review guidelines: Integration of the NUREG-0700 guidelines and development of new human-system interface guidelines

    International Nuclear Information System (INIS)

    This report documents the work conducted in four tasks of the Nuclear Regulatory Commission (NRC) project entitled Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation. The purpose of the first task was to integrate the applicable sections of NUREG-0700 into the advanced control room design review (ACRDR) guidelines to ensure that all applicable guidelines are together in one document and conveniently accessible to users. The primary objective of the second task was to formulate a strategy for the development of new ACRDR guidelines that have not otherwise been identified. The main focus of the third task was to modify the individual ACRDR guidelines generated to date to ensure that they are suitable for the intended nuclear power plant (NPP) control station system application. The goal of the fourth task was to develop human factors guidelines for two human-system interface categories that are missing from the current ACRDR guidelines document. During the first task those areas in NUREG-0700 that are not addressed by the ACRDR guidelines document were identified, the areas were subsequently reviewed against six recent industry human factors engineering review guidelines, and the NUREG-0700 guidelines were updated as necessary. In the second task 13 general categories of human-system interface guidelines that are either missing from or not adequately addressed by the ACRDR document were discovered. An approach was derived for the development of new ACRDR guidelines, a preliminary assessment of the available sources that may be useful in the creation of new guidelines and their applicability to the identified human-system interface categories was performed, and an estimate was made of the amount of time and level of effort required to complete the development of needed new ACRDR guidelines. During the third task those NPP control station systems to which the NUREG-0700 and ACRDR guidelines apply were identified, matrices of such

  5. Advanced control room design review guidelines: Integration of the NUREG-0700 guidelines and development of new human-system interface guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.J.

    1997-07-01

    This report documents the work conducted in four tasks of the Nuclear Regulatory Commission (NRC) project entitled Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation. The purpose of the first task was to integrate the applicable sections of NUREG-0700 into the advanced control room design review (ACRDR) guidelines to ensure that all applicable guidelines are together in one document and conveniently accessible to users. The primary objective of the second task was to formulate a strategy for the development of new ACRDR guidelines that have not otherwise been identified. The main focus of the third task was to modify the individual ACRDR guidelines generated to date to ensure that they are suitable for the intended nuclear power plant (NPP) control station system application. The goal of the fourth task was to develop human factors guidelines for two human-system interface categories that are missing from the current ACRDR guidelines document. During the first task those areas in NUREG-0700 that are not addressed by the ACRDR guidelines document were identified, the areas were subsequently reviewed against six recent industry human factors engineering review guidelines, and the NUREG-0700 guidelines were updated as necessary. In the second task 13 general categories of human-system interface guidelines that are either missing from or not adequately addressed by the ACRDR document were discovered. An approach was derived for the development of new ACRDR guidelines, a preliminary assessment of the available sources that may be useful in the creation of new guidelines and their applicability to the identified human-system interface categories was performed, and an estimate was made of the amount of time and level of effort required to complete the development of needed new ACRDR guidelines. During the third task those NPP control station systems to which the NUREG-0700 and ACRDR guidelines apply were identified, matrices of such

  6. JPL Advanced Thermal Control Technology Roadmap - 2012

    Science.gov (United States)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  7. Advanced gas turbine systems program

    Energy Technology Data Exchange (ETDEWEB)

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  8. Regional intra-arterial vs. systemic chemotherapy for advanced pancreatic cancer: a systematic review and meta-analysis of randomized controlled trials.

    Directory of Open Access Journals (Sweden)

    Fenghua Liu

    Full Text Available OBJECTIVE: To investigate the efficacy and safety of regional intra-arterial chemotherapy (RIAC versus systemic chemotherapy for stage III/IV pancreatic cancer. METHODS: Randomized controlled trials of patients with advanced pancreatic cancer treated by regional intra-arterial or systemic chemotherapy were identified using PubMed, ISI, EMBASE, Cochrane Library, Google, Chinese Scientific Journals Database (VIP, and China National Knowledge Infrastructure (CNKI electronic databases, for all publications dated between 1960 and December 31, 2010. Data was independently extracted by two reviewers. Odds ratios and relative risks were pooled using either fixed- or random-effects models, depending on I(2 statistic and Q test assessments of heterogeneity. Statistical analysis was performed using RevMan 5.0. RESULTS: Six randomized controlled trials comprised of 298 patients met the standards for inclusion in the meta-analysis, among 492 articles that were identified. Eight patients achieved complete remission (CR with regional intra-arterial chemotherapy (RIAC, whereas no patients achieved CR with systemic chemotherapy. Compared with systemic chemotherapy, patients receiving RIAC had superior partial remissions (RR = 1.99, 95% CI: 1.50, 2.65; 58.06% with RIAC and 29.37% with systemic treatment, clinical benefits (RR = 2.34, 95% CI: 1.84, 2.97; 78.06% with RAIC and 29.37% with systemic treatment, total complication rates (RR = 0.72, 95% CI: 0.60, 0.87; 49.03% with RIAC and 71.33% with systemic treatment, and hematological side effects (RR = 0.76, 95% CI: 0.63, 0.91; 60.87% with RIAC and 85.71% with systemic treatment. The median survival time with RIAC (5-21 months was longer than for systemic chemotherapy (2.7-14 months. Similarly, one year survival rates with RIAC (28.6%-41.2% were higher than with systemic chemotherapy (0%-12.9%.. CONCLUSION: Regional intra-arterial chemotherapy is more effective and has fewer complications than

  9. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    Science.gov (United States)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  10. Study and Development of a Simulation System for Dynamic Evaluation on Man-machine Interface Design of Advanced Main Control Rooms of Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    YangXiaojing; ZhouZhiwei; ChenXiaoming; MaYuanle; LiFu; DongYujie; WuWei; OhiTadashi

    2005-01-01

    Since the man-machine interfaces (MMI) of a main control room provide the control platform of a nuclear power plant (NPP),the development of the design quality of MMIs plays a very important role in the operation of a NPP. With the development of digital technology, the development of the advanced main control rooms (AMCRs) has become an inexorable trend. Therefore, the positive and the negative effects of AMCRs on human factors engineering need to be evaluated. For this p~, a simulation system has been studied and developed to quantitatively evaluate a MMI design from the viewpoint of human factors. The simulation system takes advantage of computer simulation technology to simulate an operating process of an interaction between operators and a MMI design under an instruction of an operation procedure of the AMCR of a NPP. Meanwhile, the necessary data are recorded for evaluation. It integrates two editors and one simulator. In the paper, the simulation system is presented in detail. Furthermore, one sample is given to show the results of each of these three subsystems.

  11. Research on advanced transportation systems

    Science.gov (United States)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  12. Design-related influencing factors of the computerized procedure system for inclusion into human reliability analysis of the advanced control room

    International Nuclear Information System (INIS)

    This paper presents major design factors of the computerized procedure system (CPS) by task characteristics/requirements, with individual relative weight evaluated by the analytic hierarchy process (AHP) technique, for inclusion into human reliability analysis (HRA) of the advanced control rooms. Task characteristics/requirements of an individual procedural step are classified into four categories according to the dynamic characteristics of an emergency situation: (1) a single-static step, (2) a single-dynamic and single-checking step, (3) a single-dynamic and continuous-monitoring step, and (4) a multiple-dynamic and continuous-monitoring step. According to the importance ranking evaluation by the AHP technique, ‘clearness of the instruction for taking action’, ‘clearness of the instruction and its structure for rule interpretation’, and ‘adequate provision of requisite information’ were rated as of being higher importance for all the task classifications. Importance of ‘adequacy of the monitoring function’ and ‘adequacy of representation of the dynamic link or relationship between procedural steps’ is dependent upon task characteristics. The result of the present study gives a valuable insight on which design factors of the CPS should be incorporated, with relative importance or weight between design factors, into HRA of the advanced control rooms. (author)

  13. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  14. Coordination control of distributed systems

    CERN Document Server

    Villa, Tiziano

    2015-01-01

    This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to  increasing degrees of cooperation of local controllers:  fully distributed or decentralized controlcontrol with communication between controllers,  coordination control, and multilevel control.  The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...

  15. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  16. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  17. Multivariable quadratic synthesis of an advanced turbofan engine controller

    Science.gov (United States)

    Dehoff, R. L.; Hall, W. E., Jr.

    1978-01-01

    A digital controller for an advanced turbofan engine utilizing multivariate feedback is described. The theoretical background of locally linearized control synthesis is reviewed briefly. The application of linear quadratic regulator techniques to the practical control problem is presented. The design procedure has been applied to the F100 turbofan engine, and details of the structure of this system are explained. Selected results from simulations of the engine and controller are utilized to illustrate the operation of the system. It is shown that the general multivariable design procedure will produce practical and implementable controllers for modern, high-performance turbine engines.

  18. Advanced theoretical and experimental studies in automatic control and information systems. [including mathematical programming and game theory

    Science.gov (United States)

    Desoer, C. A.; Polak, E.; Zadeh, L. A.

    1974-01-01

    A series of research projects is briefly summarized which includes investigations in the following areas: (1) mathematical programming problems for large system and infinite-dimensional spaces, (2) bounded-input bounded-output stability, (3) non-parametric approximations, and (4) differential games. A list of reports and papers which were published over the ten year period of research is included.

  19. Advanced Space Surface Systems Operations

    Science.gov (United States)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  20. Advanced control room evaluation: General approach and rationale

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M. (Brookhaven National Lab., Upton, NY (USA)); Wachtel, J. (Nuclear Regulatory Commission, Washington, DC (USA))

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants (NPPs) are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale and general approach to the development of a human factors review guideline for ACRs. The factors influencing the guideline development are discussed, including the review environment, the types of advanced technologies being addressed, the human factors issues associated with advanced technology, and the current state-of-the-art of human factors guidelines for advanced human-system interfaces (HSIs). The proposed approach to ACR review would track the design and implementation process through the application of review guidelines reflecting four review modules: planning, design process analysis, human factors engineering review, and dynamic performance evaluation. 21 refs.

  1. Overview of the US program of controls for advanced reactors

    International Nuclear Information System (INIS)

    An automated control system can incorporate control goals and strategies, assessment of present and future plant status, diagnostic evaluation and maintenance planning, and signal and command validation. It has not been feasible to employ these capabilities in conventional hard-wired, analog, control systems. Recent advances in computer-based digital data acquisition systems, process controllers, fiber-optic signal transmission artificial intelligence tools and methods, and small inexpensive, fast, large-capacity computers---with both numeric and symbolic capabilities---have provided many of the necessary ingredients for developing large, practical automated control systems. Furthermore, recent reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. This paper presents an overall US national perspective for advanced controls research and development. The goals of high reliability, low operating cost and simple operation are described. The staged approach from conceptualization through implementation is discussed. Then the paper describes the work being done by ORNL, ANL and GE. The relationship of this work to the US commercial industry is also discussed

  2. Advanced integrated solvent extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A. [Argonne National Lab., IL (United States)

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  3. Advanced reactor instrumentation and control reliability and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R.; Gunther, W.; Valente, J.; Azarm, M.A.

    1991-12-31

    Advanced nuclear power reactors will used different approaches to achieving a higher level of safety than the first generation. One approach used the technological developments in computation and electronics in the form of digital instrumentation and control (I&C) to enhance the reliability, and accuracy of information for plant control, responding to the information, and controlling the plant and its systems under normal and upset environments in various states of degradation. Evaluating the reliability and safety of advanced I&C systems requires determining the reliability of the I&C used in the advanced reactors which involves distributed processing, data pile-up, interactive systems, the man-machine interface, various forms of automatic control, and systems interactions. From these analyses will come an understanding of the potential of the new I&C, and protection from its vulnerabilities to enhance the safe operation of the new plants. Technological, safety, reliability, and regulatory issues associated with advanced I&C for the new reactors are discussed herein. The issues are presented followed by suggested approaches to their resolution.

  4. Advanced reactor instrumentation and control reliability and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R.; Gunther, W.; Valente, J.; Azarm, M.A.

    1991-01-01

    Advanced nuclear power reactors will used different approaches to achieving a higher level of safety than the first generation. One approach used the technological developments in computation and electronics in the form of digital instrumentation and control (I C) to enhance the reliability, and accuracy of information for plant control, responding to the information, and controlling the plant and its systems under normal and upset environments in various states of degradation. Evaluating the reliability and safety of advanced I C systems requires determining the reliability of the I C used in the advanced reactors which involves distributed processing, data pile-up, interactive systems, the man-machine interface, various forms of automatic control, and systems interactions. From these analyses will come an understanding of the potential of the new I C, and protection from its vulnerabilities to enhance the safe operation of the new plants. Technological, safety, reliability, and regulatory issues associated with advanced I C for the new reactors are discussed herein. The issues are presented followed by suggested approaches to their resolution.

  5. Recent Advances in Iterative Learning Control

    Institute of Scientific and Technical Information of China (English)

    Jian-Xin XU

    2005-01-01

    In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC), and 3) nonlinear ILC for general nonlinear processes. For linear processes, we focus on several basic configurations of linear ILC. For nonlinear processes with linear ILC, we concentrate on the design and transient analysis which were overlooked and missing for a long period. For general classes of nonlinear processes, we demonstrate nonlinear ILC methods based on Lyapunov theory, which is evolving into a new control paradigm.

  6. Dependability Evaluation of Advanced Diverse Protection System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yang Gyun; Lee, Yoon Hee; Sohn, Se Do; Baek, Seung Min [KEPCO, Daejeon (Korea, Republic of); Lee, Sang Jeong [Chungnam National University, Daejeon (Korea, Republic of)

    2014-08-15

    For the mitigation of anticipated transients without scram (ATWS) as well as common cause failure (CCF) within the plant protection system (PPS) and the emergency safety feature . component control system (ESF-CCS), the diverse protection system (DPS) has been designed by KEPCO Engineering and Construction Company. Recently KEPCO E and C has developed the advanced diverse protection system (ADPS), which has four redundant channels, in an attempt to enhance a fault-tolerant capability of the system. For the evaluation of overall system improvement effects of the ADPS compared with the DPS, the dependability evaluation results are described herein. For all dependability attributes, this paper suggests a practical dependability evaluation method which uses quantitative dependability scores and indices. An overall dependability evaluation index (DEI) for the ADPS is evaluated with the average value of reliability/ security/maintainability/safety indices (i.e., RID, SID, MID, and SID') for dependability. The evaluation results show that the DEI value of ADPS can be improved by approximately 23% compared with that of the DPS, thanks to its fault-tolerant system architecture, software design changes, and external interface design features. Several suggestions have been made, in this paper, of an overall quantitative dependability evaluation method for the nuclear instrumentation and control (I and C) systems including the DPS and ADPS, and the usefulness of dependability evaluation on nuclear I and C systems has been confirmed.

  7. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  8. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  9. Advanced Space Power Systems (ASPS): Advanced Energy Storage Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of high specific energy devices will enable NASA’s future robotic and human-exploration missions.  The need for advances in energy...

  10. Advances in Solar Heating and Cooling Systems

    Science.gov (United States)

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  11. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  12. Advanced Microgravity Compatible, Integrated Laundry System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Microgravity Compatible, Integrated Laundry (AMCIL) is a microgravity compatible liquid / liquid vapor, two-phase laundry system with water jet...

  13. Advanced Wastewater Photo-oxidation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes an advanced photocatalytic oxidation reactor for enhancing the reliability and performance of Water Recovery Post Processing systems...

  14. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    is usually optimized to have high output power, high efficiency, optimum heat dissipation and high gain. The third part of this book presents power amplifier designs through a series of design examples. Designs undertaken include a switching mode power amplifier, Doherty power amplifier, and flexible power...... such as voltage-controlled oscillators and electron devices for millimeter wave and submillimeter wave applications. This part also covers studies of integrated buffer circuits. Passive components are indispensable elements of any electronic system. The increasing demands to miniaturization and cost effectiveness...

  15. Advanced discrete-time control designs and applications

    CERN Document Server

    Abidi, Khalid

    2015-01-01

    This book covers a wide spectrum of systems such as linear and nonlinear multivariable systems as well as control problems such as disturbance, uncertainty and time-delays. The purpose of this book is to provide researchers and practitioners a manual for the design and application of advanced discrete-time controllers.  The book presents six different control approaches depending on the type of system and control problem. The first and second approaches are based on Sliding Mode control (SMC) theory and are intended for linear systems with exogenous disturbances. The third and fourth approaches are based on adaptive control theory and are aimed at linear/nonlinear systems with periodically varying parametric uncertainty or systems with input delay. The fifth approach is based on Iterative learning control (ILC) theory and is aimed at uncertain linear/nonlinear systems with repeatable tasks and the final approach is based on fuzzy logic control (FLC) and is intended for highly uncertain systems with heuristi...

  16. Advanced Green Micropropulsion System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Systima in collaboration with the University of Washington will develop a high performance, advanced green monopropellant microthruster (0.1 – 1.0 N) for...

  17. Impact of bathymetric system advances on hydrography

    Digital Repository Service at National Institute of Oceanography (India)

    Ranade, G.

    /plain; charset=UTF-8 88 IMPACT OF BATHYMETRIC SYSTEM ADVANCES ON HYDROGRAPHY By Govind Ranade National Institute of Oceanography Dona Paula Goa - 403 004 Introduction 1. History of determining the sea floor depths dates backs to more than... advancement in all the fields. The science of the hydrography also gained vastly from these advances. Hydrography can be divided mainly in to sounding techniques, navigation techniques & reference frame, the ancillary systems like motion or the inertial...

  18. Guidelines for the review of advanced controls and displays

    International Nuclear Information System (INIS)

    Advanced control room (ACR) concepts are being developed and refined in the commercial nuclear industry as part of future reactor designs. These ACRs will utilize advanced human-system interface (HSI) technologies which may have significant implications for plant safety in that they may affect: (1) the operators' overall role (function) in the system; (2) the methods by which operators receive information about system status; (3) the ways in which the operators interact with the system; and (4) the requirements on operators to understand and supervise an increasingly complex system. The Nuclear Regulatory Commission (NRC) reviews control room designs to ensure that they incorporate good human factors engineering principles so as to support operator performance and reliability necessary to protect public health and safety. The principal guidance available to the NRC (NUREG-0700) was developed more than ten years ago and does not address new technologies. Accordingly, the guidance must be updated. This paper discusses the development of an NRC Advanced Control Room Design Review Guideline

  19. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Science.gov (United States)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  20. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    International Nuclear Information System (INIS)

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  1. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wali, W A; Hassan, K H; Cullen, J D; Al-Shamma' a, A I; Shaw, A; Wylie, S R, E-mail: w.wali@2009.ljmu.ac.uk [Built Environment and Sustainable Technologies Institute (BEST), School of the Built Environment, Faculty of Technology and Environment Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2011-08-17

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  2. Advanced design of local ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, I. [VTT Manufacturing Technology, Espoo (Finland). Safety Technology

    1997-12-31

    Local ventilation is widely used in industry for controlling airborne contaminants. However, the present design practices of local ventilation systems are mainly based on empirical equations and do not take quantitatively into account the various factors affecting the performance of these systems. The aim of this study was to determine the applicability and limitations of more advanced fluid mechanical methods to the design and development of local ventilation systems. The most important factors affecting the performance of local ventilation systems were determined and their effect was studied in a systematic manner. The numerical calculations were made with the FLUENT computer code and they were verified by laboratory experiments, previous measurements or analytical solutions. The results proved that the numerical calculations can provide a realistic simulation of exhaust openings, effects of ambient air flows and wake regions. The experiences with the low-velocity local supply air showed that these systems can also be modelled fairly well. The results were used to improve the efficiency and thermal comfort of a local ventilation unit and to increase the effective control range of exhaust hoods. In the simulation of the interaction of a hot buoyant source and local exhaust, the predicted capture efficiencies were clearly higher than those observed experimentally. The deviations between measurements and non-isothermal flow calculations may have partly been caused by the inability to achieve grid independent solutions. CFD simulations is an advanced and flexible tool for designing and developing local ventilation. The simulations can provide insight into the time-averaged flow field which may assist us in understanding the observed phenomena and to explain experimental results. However, for successful calculations the applicability and limitations of the models must be known. (orig.) 78 refs.

  3. Control system design method

    Science.gov (United States)

    Wilson, David G.; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  4. Motion control in advanced driving simulators

    OpenAIRE

    Elloumi, Hatem

    2006-01-01

    Driving simulators are advanced devices composed of four components: a virtual scene projected on a wide screen to imitate the road and the traffic, an audio system to play the driving sounds (horn, squeal of brakes, etc.), a car cockpit (including a real dashboard, the pedals and the seat of the driver) to copy the body position and the interaction of the driver with a real vehicle and finally a robot carrying the car cockpit to provide its motion. While the first three components could be c...

  5. An Advanced Buffet Load Alleviation System

    Science.gov (United States)

    Burnham, Jay K.; Pitt, Dale M.; White, Edward V.; Henderson, Douglas A.; Moses, Robert W.

    2001-01-01

    This paper describes the development of an advanced buffet load alleviation (BLA) system that utilizes distributed piezoelectric actuators in conjunction with an active rudder to reduce the structural dynamic response of the F/A-18 aircraft vertical tails to buffet loads. The BLA system was defined analytically with a detailed finite-element-model of the tail structure and piezoelectric actuators. Oscillatory aerodynamics were included along with a buffet forcing function to complete the aeroservoelastic model of the tail with rudder control surface. Two single-input-single-output (SISO) controllers were designed, one for the active rudder and one for the active piezoelectric actuators. The results from the analytical open and closed loop simulations were used to predict the system performance. The objective of this BLA system is to extend the life of vertical tail structures and decrease their life-cycle costs. This system can be applied to other aircraft designs to address suppression of structural vibrations on military and commercial aircraft.

  6. Bumpless Transfer Between Advanced Controllers with Applications to Power Plant Control

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Stoustrup, Jakob; Trangbæk, Klaus

    2003-01-01

    This paper deals with bumpless transfer between a number of advanced controllers, e.g. in a gain-scheduling architecture. Linear observer-based controllers are designed for a number of linear approximations of the system model in a set of operating points, and gain scheduling control can subseque......This paper deals with bumpless transfer between a number of advanced controllers, e.g. in a gain-scheduling architecture. Linear observer-based controllers are designed for a number of linear approximations of the system model in a set of operating points, and gain scheduling control can....... In this paper we propose a systematic approach to achieve bumpless transfer between different nominal controllers. The approach is tested on a simple, but highly nonlinear model of a coal-fired power plant....

  7. Advanced Microgravity Compatible, Integrated Laundry System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An Advanced Microgravity Compatible, Integrated laundry System (AMCILS) is proposed that uses a two phase water / water vapor system to allow good agitation of...

  8. GCFR plant control system

    International Nuclear Information System (INIS)

    A plant control system is being designed for a gas-cooled fast breeder reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. The load control portion of the plant control system provides stable automatic (closed-loop) control of the plant over the 25% to 100% load range. Simulation results are presented to demonstrate load control system performance. The results show that the plant is controllable at full load with the control system structure selected, but gain scheduling is required to achieve desired performance over the load range

  9. Advanced mobile networking, sensing, and controls.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  10. Materiel Command and the Materiality of Commands: An Historical Examination of the US Air Force, Control Data Corporation, and the Advanced Logistics System

    OpenAIRE

    Yost, Jeffrey R.

    2010-01-01

    In the late 1960s the US Air Force Logistics Command (AFLC) engaged in an unparalleled, real-time computer networking project to manage all its logistics (location, inventory, maintenance, and transportation of personnel, aircraft, weapons, components, spare parts, etc.), the Advanced Logistics System (ALS). The $250 million ALS project was substantially larger in size and cost than earlier real-time computer networking projects (including SAGE programming and SABRE), but it has received virt...

  11. Recent advances in opinion modeling: control and social influence

    CERN Document Server

    Albi, Giacomo; Toscani, Giuseppe; Zanella, Mattia

    2016-01-01

    We survey some recent developments on the mathematical modeling of opinion dynamics. After an introduction on opinion modeling through interacting multi-agent systems described by partial differential equations of kinetic type, we focus our attention on two major advancements: optimal control of opinion formation and influence of additional social aspects, like conviction and number of connections in social networks, which modify the agents' role in the opinion exchange process.

  12. Advances in Computer, Communication, Control and Automation

    CERN Document Server

    011 International Conference on Computer, Communication, Control and Automation

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011). 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011) has been held in Zhuhai, China, November 19-20, 2011. This volume  topics covered include signal and Image processing, speech and audio Processing, video processing and analysis, artificial intelligence, computing and intelligent systems, machine learning, sensor and neural networks, knowledge discovery and data mining, fuzzy mathematics and Applications, knowledge-based systems, hybrid systems modeling and design, risk analysis and management, system modeling and simulation. We hope that researchers, graduate students and other interested readers benefit scientifically from the proceedings and also find it stimulating in the process.

  13. Information management systems improve advanced plant design

    Energy Technology Data Exchange (ETDEWEB)

    Turk, R.S.; Serafin, S.A.; Leckey, J.B. [ABB-Combustion Engineering, Inc., Windsor, CT (United States); Morgan, J.S. [Duke Engineering & Services, Charlotte, NC (United States)

    1994-12-31

    Computer-aided engineering tools are proving invaluable in both the design and operation of nuclear power plants. ABB Combustion Engineering`s Advanced Light Water Reactor (ALWR) features a computerized Information Management System (IMS) as an integral part of the design. The System 80+ IMS represents the most powerful information management tool for Nuclear Power Plants commercially available today. Developed by Duke Power Company specifically for use by nuclear power plant owner operators, the IMS consists of appropriate hardware and software to manage and control information flow for all plant related work or tasks in a systematic, consistent, coordinated and informative manner. A significant feature of this IMS is that it is primarily based on plant data. The principal design tool, PASCE (Plant Application and Systems from Combustion Engineering), is comprised of intelligent databases that describe the design and from which accurate plant drawings are created. Additionally the IMS includes, at its hub, a relational database management system and an associated document management system. During the design phase, the IMS captures all design information in a database as it is generated. Interrelated data are automatically checked for consistency. Engineers and managers from various disciplines are automatically and simultaneously notified of pending changes. The 3-D model automatically checks for interferences and can be used to simulate the removal and replacement of equipment. Thus any potential difficulties can be corrected in the design phase. Document and data search times are greatly reduced by the querying capabilities of the system.

  14. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  15. The development of advanced robotic technology. A study on the tele-existence and intelligent control of a robot system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung Jin; Byun, Jueng Nam; Kim, Jong Hwan; Lee, Ju Jang; Bang, Seok Won; Chu, Gil Hwan; Park, Jong Cheol; Choi, Jong Seok; Yang, Jung Min; Hong, Sun Ki [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-07-01

    To increase the efficiency of human intelligence it is required to develop an intelligent monitoring and system. In this research, we develop intelligent control methods related with tele-operation, tele-existence, real-time control technique, and intelligent control technique. Those are key techniques in tele-operation, especially for the repair and maintenance of nuclear power plants. The objective of this project is to develop of the tele-existence and intelligent control system for a robot used in the nuclear power plants. (author). 20 refs.

  16. Control of Smart Building Using Advanced SCADA

    Science.gov (United States)

    Samuel, Vivin Thomas

    For complete control of the building, a proper SCADA implementation and the optimization strategy has to be build. For better communication and efficiency a proper channel between the Communication protocol and SCADA has to be designed. This paper concentrate mainly between the communication protocol, and the SCADA implementation, for a better optimization and energy savings is derived to large scale industrial buildings. The communication channel used in order to completely control the building remotely from a distant place. For an efficient result we consider the temperature values and the power ratings of the equipment so that while controlling the equipment, we are setting a threshold values for FDD technique implementation. Building management system became a vital source for any building to maintain it and for safety purpose. Smart buildings, refers to various distinct features, where the complete automation system, office building controls, data center controls. ELC's are used to communicate the load values of the building to the remote server from a far location with the help of an Ethernet communication channel. Based on the demand fluctuation and the peak voltage, the loads operate differently increasing the consumption rate thus results in the increase in the annual consumption bill. In modern days, saving energy and reducing the consumption bill is most essential for any building for a better and long operation. The equipment - monitored regularly and optimization strategy is implemented for cost reduction automation system. Thus results in the reduction of annual cost reduction and load lifetime increase.

  17. On Controlled P Systems

    OpenAIRE

    Krithivasan, Kamala; Paun, Gheorghe; Ramanujan, Ajeesh; Research Group on Natural Computing (Universidad de Sevilla) (Coordinador)

    2013-01-01

    We introduce and brie y investigate P systems with controlled computations. First, P systems with label restricted transitions are considered (in each step, all rules used have either the same label, or, possibly, the empty label, ), then P systems with the computations controlled by languages (as in context-free controlled grammars). The relationships between the families of sets of numbers computed by the various classes of controlled P systems are investigated, also comp...

  18. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  19. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  20. Control principles of complex systems

    Science.gov (United States)

    Liu, Yang-Yu; Barabási, Albert-László

    2016-07-01

    A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: it requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in dynamical systems and control theory, notions of control and controllability have taken a new life recently in the study of complex networks, inspiring several fundamental questions: What are the control principles of complex systems? How do networks organize themselves to balance control with functionality? To address these questions here recent advances on the controllability and the control of complex networks are reviewed, exploring the intricate interplay between the network topology and dynamical laws. The pertinent mathematical results are matched with empirical findings and applications. Uncovering the control principles of complex systems can help us explore and ultimately understand the fundamental laws that govern their behavior.

  1. Improved safety in advanced control complexes, without side effects

    International Nuclear Information System (INIS)

    If we only look for a moment at the world around us, it is obvious that advances in digital electronic equipment and Human-System Interface (HSI) technology are occurring at a phenomenal pace. This is evidenced from our home entertainment systems to the dashboard and computer-based operation of our new cars. Though the nuclear industry has less vigorously embraced these advances, their application is being implemented through individual upgrades to current generation nuclear plants and as plant-wide control complexes for advanced plants. In both venues modem technology possesses widely touted advantages for improving plant availability as well as safety. The well-documented safety benefits of digital Instrumentation and Controls (I ampersand C) include higher reliability resulting from redundancy and fault tolerance, inherent self-test and self-diagnostic capabilities which have replaced error-prone human tasks, resistance to setpoint drift increasing available operating margins, and the ability to run complex, real-time, computer-based algorithms directly supporting an operator's monitoring and control task requirements. 22 refs., 3 figs., 5 tabs

  2. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  3. Advanced 3D Object Identification System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  4. Advanced dynamics of mechanical systems

    CERN Document Server

    Cheli, Federico

    2015-01-01

    This book introduces a general approach for schematization of mechanical systems with rigid and deformable bodies. It proposes a systems approach to reproduce the interaction of the mechanical system with different force fields such as those due to the action of fluids or contact forces between bodies, i.e., with forces dependent on the system states, introducing the concepts of the stability of motion. In the first part of the text mechanical systems with one or more degrees of freedom with large motion and subsequently perturbed in the neighborhood of the steady state position are analyzed. Both discrete and continuous systems (modal approach, finite elements) are analyzed. The second part is devoted to the study of mechanical systems subject to force fields, the rotor dynamics, techniques of experimental identification of the parameters, and random excitations. The book will be especially valuable for students of engineering courses in Mechanical Systems, Aerospace, Automation, and Energy but will also b...

  5. Distributed Sensor Coordination for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing

  6. Beyond advanced mechatronics: new design challenges of social-cyber-physical systems

    NARCIS (Netherlands)

    Horváth, I.

    2012-01-01

    In the last two decades, an intense shift Irom advanced mechatronics systems to cyberphysical systems is taking place. The former systems, which integrate mechanical, electronics, computing, control and situated reasoning components, are typically implemented as closed, predefined, controlled, and d

  7. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  8. Conceptual study on advanced PWR system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Young; Chang, M. H.; Yu, K. J.; Lee, D. J.; Cho, B. H.; Kim, H. Y.; Yoon, J. H.; Lee, Y. J.; Kim, J. P.; Park, C. T.; Seo, J. K.; Kang, H. S.; Kim, J. I.; Kim, Y. W.; Kim, Y. H.

    1997-07-01

    In this study, the adoptable essential technologies and reference design concept of the advanced reactor were developed and related basic experiments were performed. (1) Once-through Helical Steam Generator: a performance analysis computer code for heli-coiled steam generator was developed for thermal sizing of steam generator and determination of thermal-hydraulic parameters. (2) Self-pressurizing pressurizer : a performance analysis computer code for cold pressurizer was developed. (3) Control rod drive mechanism for fine control : type and function were surveyed. (4) CHF in passive PWR condition : development of the prediction model bundle CHF by introducing the correction factor from the data base. (5) Passive cooling concepts for concrete containment systems: development of the PCCS heat transfer coefficient. (6) Steam injector concepts: analysis and experiment were conducted. (7) Fluidic diode concepts : analysis and experiment were conducted. (8) Wet thermal insulator : tests for thin steel layers and assessment of materials. (9) Passive residual heat removal system : a performance analysis computer code for PRHRS was developed and the conformance to EPRI requirement was checked. (author). 18 refs., 55 tabs., 137 figs.

  9. Design techniques for mutlivariable flight control systems

    Science.gov (United States)

    1981-01-01

    Techniques which address the multi-input closely coupled nature of advanced flight control applications and digital implementation issues are described and illustrated through flight control examples. The techniques described seek to exploit the advantages of traditional techniques in treating conventional feedback control design specifications and the simplicity of modern approaches for multivariable control system design.

  10. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  11. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  12. Ervaringen met Advanced Cruise Control (ACC) in een korte praktijkproef.

    NARCIS (Netherlands)

    Oei, H.-l.

    2003-01-01

    Experiences with Advanced Cruise Control in traffic; a limited experiment. Advanced Cruise Control (ACC) is an ordinary cruise control in which the desired speed is installed manually, but in which the headway time to the vehicle in front is also taken into account. If the headway time becomes less

  13. US Advanced Freight and Passenger MAGLEV System

    Science.gov (United States)

    Morena, John J.; Danby, Gordon; Powell, James

    1996-01-01

    Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.

  14. Multicriteria Gain Tuning for Rotorcraft Flight Controls (also entitled The Development of the Conduit Advanced Control System Design and Evaluation Interface with a Case Study Application Fly by Wire Helicopter Design)

    Science.gov (United States)

    Biezad, Daniel

    1997-01-01

    Handling qualities analysis and control law design would seem to be naturally complimenting components of aircraft flight control system design, however these two closely coupled disciplines are often not well integrated in practice. Handling qualities engineers and control system engineers may work in separate groups within an aircraft company. Flight control system engineers and handling quality specialists may come from different backgrounds and schooling and are often not aware of the other group's research. Thus while the handling qualities specifications represent desired aircraft response characteristics, these are rarely incorporated directly in the control system design process. Instead modem control system design techniques are based on servo-loop robustness specifications, and simple representations of the desired control response. Comprehensive handling qualities analysis is often left until the end of the design cycle and performed as a check of the completed design for satisfactory performance. This can lead to costly redesign or less than satisfactory aircraft handling qualities when the flight testing phase is reached. The desire to integrate the fields of handling qualities and flight,control systems led to the development of the CONDUIT system. This tool facilitates control system designs that achieve desired handling quality requirements and servo-loop specifications in a single design process. With CONDUIT, the control system engineer is now able to directly design and control systems to meet the complete handling specifications. CONDUIT allows the designer to retain a preferred control law structure, but then tunes the system parameters to meet the handling quality requirements.

  15. Discrete Control Systems

    CERN Document Server

    Lee, Taeyoung; McClamroch, N Harris

    2007-01-01

    Discrete control systems, as considered here, refer to the control theory of discrete-time Lagrangian or Hamiltonian systems. These discrete-time models are based on a discrete variational principle, and are part of the broader field of geometric integration. Geometric integrators are numerical integration methods that preserve geometric properties of continuous systems, such as conservation of the symplectic form, momentum, and energy. They also guarantee that the discrete flow remains on the manifold on which the continuous system evolves, an important property in the case of rigid-body dynamics. In nonlinear control, one typically relies on differential geometric and dynamical systems techniques to prove properties such as stability, controllability, and optimality. More generally, the geometric structure of such systems plays a critical role in the nonlinear analysis of the corresponding control problems. Despite the critical role of geometry and mechanics in the analysis of nonlinear control systems, non...

  16. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Hee Je [Argonne National Lab. (ANL), Argonne, IL (United States); Choi, Seungmok [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.

  17. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  18. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  19. Integrated metrology: an enabler for advanced process control (APC)

    Science.gov (United States)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  20. Multicontroller: an object programming approach to introduce advanced control algorithms for the GCS large scale project

    CERN Document Server

    Cabaret, S; Coppier, H; Rachid, A; Barillère, R; CERN. Geneva. IT Department

    2007-01-01

    The GCS (Gas Control System) project team at CERN uses a Model Driven Approach with a Framework - UNICOS (UNified Industrial COntrol System) - based on PLC (Programming Language Controller) and SCADA (Supervisory Control And Data Acquisition) technologies. The first' UNICOS versions were able to provide a PID (Proportional Integrative Derivative) controller whereas the Gas Systems required more advanced control strategies. The MultiController is a new UNICOS object which provides the following advanced control algorithms: Smith Predictor, PFC (Predictive Function Control), RST* and GPC (Global Predictive Control). Its design is based on a monolithic entity with a global structure definition which is able to capture the desired set of parameters of any specific control algorithm supported by the object. The SCADA system -- PVSS - supervises the MultiController operation. The PVSS interface provides users with supervision faceplate, in particular it links any MultiController with recipes: the GCS experts are ab...

  1. A modular control system

    International Nuclear Information System (INIS)

    The main objective of the modular control system is to provide the requirements to most of the processes supervision and control applications within the industrial automatization area. The design is based on distribution, modulation and expansion concepts. (Author)

  2. Advanced control system for temperature control in the pressurized fluid bed of Escatron Thermal Plant Power; Sistema de Control Avanzado para Control de la Temperatura del Lecho Fluido a Presion de la Central Termica de Escatron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the P. F-B. C a small problem appears, particularly in Escatron the bed temperature gradient is very high. Such gradient very occasionally reaches 50 degree centigree in a same plane. With the reduction of bed difference of temperature, the average bed temperature could be increased with the result steam cycle benefit, at the same time combustion gases would go at a higher temperature to the gas turbine, increasing therefore its performance. The SCAP system will allow to face the resolution of the injection of combustible problem and in this manner achieve the homogenization of bed temperature in Escatron PFBC Thermal Power Station. (Author)

  3. Motion control systems

    CERN Document Server

    Sabanovic, Asif

    2011-01-01

    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  4. Systems to advance and enhance exotic pest control: A case study of a global partnership in developing monitoring systems for use in SIT management of the Mediterranean fruit fly

    International Nuclear Information System (INIS)

    Full text: incidence of introduction of exotic insect pests into pest-free areas of the world, threatening crop and ornamental plant production. The threat of invasion is very pronounced in areas of the world that receive plant and produce shipments from countries with established populations. There are a number of pests identified from these areas that pose a serious threat to global agriculture. This threat is exacerbated by the loss of methyl bromide and other strategies used as quarantine treatments. The continuous threat of exotic pest introduction has mandated that scientists and regulatory agencies initiate proactive efforts to understand the biology and to develop management strategies that will mitigate the threat of exotic insect pest introduction. A critical component is development of detection systems that will provide an early warning of pest presence in pathways vulnerable to pest invasion. This presentation will appraise critically the decade of efforts to develop and implement female-biased trapping system(s) for the Mediterranean fruit fly that is critical to the success of SIT programmes used to control this insect. A historical review of basic and applied research, and implementation of new technologies will be presented, together with a review of the successful partnership at local, national and global levels. The advancement and subsequent enhancement of research related to development and use of female-targeted Mediterranean fruit fly systems in SIT under the stewardship of FAO/IAEA will be presented. (author)

  5. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  6. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  7. Vacuum system for Advanced Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  8. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.; Fleming, P.

    2010-12-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  9. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant (NPP) control rooms. These developments may have significant implications for plant safety in that they will greatly affect the ways in which operators interact with systems. At present, however, the only guidance available to the US Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces, NUREG-0700, was written prior to these technological changes and is thus not designed to address them. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline for use in performing human factors reviews of advanced operator interfaces. This guideline will be implemented, in part, as a portable, computer-based, interactive document for field use. The paper describes the overall guideline development methodology, the present status of the document, and the plans for further guideline testing and development. 21 refs., 3 figs

  10. Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    Science.gov (United States)

    Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.

    2011-01-01

    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.

  11. Advanced smartgrids for distribution system operators

    CERN Document Server

    Boillot, Marc

    2014-01-01

    The dynamic of the Energy Transition is engaged in many region of the World. This is a real challenge for electric systems and a paradigm shift for existing distribution networks. With the help of "advanced" smart technologies, the Distribution System Operators will have a central role to integrate massively renewable generation, electric vehicle and demand response programs. Many projects are on-going to develop and assess advanced smart grids solutions, with already some lessons learnt. In the end, the Smart Grid is a mean for Distribution System Operators to ensure the quality and the secu

  12. Advanced nuclear systems in comparison

    International Nuclear Information System (INIS)

    This study aims at a comparison of future reactor concepts, paying particular attention to aspects of safety, of the fuel cycle, the economics, the experience-base and the state of development. Representative examples of typical development lines, that could possibly be 'of interest' within a time horizon of 50 years were selected for comparison. This can be divided into three phases: - Phase I includes the next 10 years and will be characterised mainly by evolutionary developments of light water reactors (LWR) of large size; representative: EPR, - Phase II: i.e. the time between 2005 and 2020 approximately, encompasses the forecasted doubling of today's world-wide installed nuclear capacity; along with evolutionary reactors, innovative systems like AP600, PIUS, MHTGR, EFR will emerge, - Phase III covers the time between 2020 and 2050 and is characterised by the issue of sufficient fissile material resources; novel fast reactor systems including hybrid systems can, thus, become available; representatives: IFR, EA, ITER (the latter being). The evaluated concepts foresee partly different fuel cycles. Fission reactors can be operated in principle on the basis of either a Uranium-Plutonium-cycle or a Thorium-Uranium-cycle, while combinations of these cycles among them or with other reactor concepts than proposed are possible. With today's nuclear park (comprising mainly LWRs), the world-wide plutonium excess increases annually by about 100 t. Besides strategies based on reprocessing like: - recycling in thermal and fast reactors with mixed oxide fuels, - plutonium 'burning' in reactors with novel fuels without uranium or in 'hybrid' systems, allowing a reduction of this excess, direct disposal of spent fuel elements including their plutonium content ('one-through') is being considered. (author) figs., tabs., 32 refs

  13. Step Motor Control System

    Institute of Scientific and Technical Information of China (English)

    ZhangShuochengt; WangDan; QiaoWeimin; JingLan

    2003-01-01

    All kinds of step motors and servomotors are widely used in CSR control system, such as many vacuum valves control that set on the HIRFL-CSR; all kinds of electric switches and knobs of ECR Ion Source; equipment of CSR Beam Diagnostics and a lot of large equipment like Inside Gun Toroid and Collector Toroid of HIRFL. A typical control system include up to 32 16-I/O Control boards, and each 16-I/O Control board can control 4 motors at the same time (including 8 Limit Switches).

  14. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  15. Evaluation of information display at advanced main control room

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dae Hwan; Yu, Seon Jae; Choi, Eui Sun [Korea Univ., Seoul (Korea, Republic of)

    2000-03-15

    This year we plan to survey information in order to have basic understanding of digital information display and control at the advanced MCR. At first we collect different ways of presenting information at the advanced MCR. Secondly, we conduct literature survey on studies that have investigated information representation techniques and their effects. Then, we need compare differences between conventional NPPs and advanced NPPs. Thirdly, we need to check HMI styles and evaluation techniques that are used currently at foreign NPPs. Indeed, HMI at the advanced MCR is quite different from that at a conventional MCR. It is not desirable to apply the same evaluation technique that has veen used at the conventional MCR. We need to develop an evaluation technique that is valid in theory and applicable in practice. Finally, we identify the requirements for a support system for an HMI evaluator, since it is not easy to carry out an evaluation task even though one has firm background on cognitive engineering theories and practical experiences.

  16. Evaluation of information display at advanced main control room

    International Nuclear Information System (INIS)

    This year we plan to survey information in order to have basic understanding of digital information display and control at the advanced MCR. At first we collect different ways of presenting information at the advanced MCR. Secondly, we conduct literature survey on studies that have investigated information representation techniques and their effects. Then, we need compare differences between conventional NPPs and advanced NPPs. Thirdly, we need to check HMI styles and evaluation techniques that are used currently at foreign NPPs. Indeed, HMI at the advanced MCR is quite different from that at a conventional MCR. It is not desirable to apply the same evaluation technique that has veen used at the conventional MCR. We need to develop an evaluation technique that is valid in theory and applicable in practice. Finally, we identify the requirements for a support system for an HMI evaluator, since it is not easy to carry out an evaluation task even though one has firm background on cognitive engineering theories and practical experiences

  17. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  18. Advances in Cognitive Information Systems

    CERN Document Server

    Ogiela, Lidia

    2012-01-01

    The development of computer science is now so rapid that we, the readers, in-creasingly receive technology news about new solutions and applications which very often straddle the border between the real and the virtual worlds. Computer science is also the area in which cognitive science is witnessing a renaissance, be-cause its combination with technical sciences has given birth to a broad scientific discipline called cognitive informatics. And it is this discipline which has become the main theme of this monograph, which is also to serve as a kind of guide to cognitive informatics problems. This book is the result of work on systems for the cognitive analysis and inter-pretation of various data. The purpose of such an analytical approach is to show that for an in-depth analysis of data, the layers of semantics contained in these sets must be taken into account. The interdisciplinary nature of the solutions proposed means that the subject of cognitive systems forming part of cognitive informatics becomes a ne...

  19. Discrete control systems

    CERN Document Server

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  20. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  1. Instrumentation, Control, and Intelligent Systems

    Energy Technology Data Exchange (ETDEWEB)

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

  2. Mead photovoltaic system controller

    Energy Technology Data Exchange (ETDEWEB)

    Millner, A.R.

    1979-01-31

    A system controller has been designed, built, tested, and in operation for one year at MIT/Lincoln Laboratory's 25-kW-peak Solar Photovoltaic Power System located at Mead, Nebraska. The controller allows the site to operate without human intervention, and has brought to light some of the problems of charge-control algorithms in a deep-discharge environment.

  3. Absorber materials, control rods and designs of shutdown systems for advanced liquid metal fast reactors. Proceeding of a technical committee meeting

    International Nuclear Information System (INIS)

    Thirty-five specialists from France, Germany, India, Japan, the Republic of Kazakhsan, the Russian Federation and the Republic of Georgia (observer) attended the meeting. The meeting had seven sessions. The main topics of discussions were: Status of control rod designs for fast reactors and experience with operation; properties and behaviour of absorber materials for control rods; results of post-irradiation examination of absorber materials, and mechanisms affecting their properties and behaviour; design of a backup reactivity shutdown system utilizing passive mechanisms: Curie point electromagnetic mechanism; enhancement of thermal expansion of absorber rdo drive lines; hydraulically suspended control rods; gas expansion modules in the core; and the possibility of optimizing the reactivity coefficients and the efficiency of Pu burning by using absorber and moderator materials in the core. A total of 23 papers were presented, and a technical tour of the IPPE also took place. Refs, figs, tabs

  4. Recent developments in the dynamics of advanced rotor systems

    Science.gov (United States)

    Johnson, W.

    1985-01-01

    The problems that were encountered in the dynamics of advanced rotor systems are described. The methods for analyzing these problems are discussed, as are past solutions of the problems. To begin, the basic dynamic problems of rotors are discussed: aeroelastic stability, rotor and airframe loads, and aircraft vibration. Next, advanced topics that are the subject of current research are described: vibration control, dynamic upflow, finite element analyses, and composite materials. Finally, the dynamics of various rotorcraft configurations are considered: hingeless rotors, bearingless rotors, rotors with circulation control, coupled rotor/engine dynamics, articulated rotors, and tilting proprotor aircraft.

  5. Advanced numerical techniques for the acoustic modelling of materials and noise control devices in the exhaust system of internal combustion engines

    OpenAIRE

    Sánchez Orgaz, Eva María

    2016-01-01

    [EN] This Thesis is focused on the development and implementation of efficient numerical methods for the acoustic modelling and design of noise control devices in the exhaust system of combustion engines. Special attention is paid to automotive perforated dissipative silencers, in which significant differences are likely to appear in their acoustic behaviour, depending on the temperature variations within the absorbent material. Also, material heterogeneities can alter the silencer attenuatio...

  6. Equipment system for advanced nuclear fuel development

    International Nuclear Information System (INIS)

    The purpose of the settlement of equipment system for nuclear Fuel Technology Development Facility(FTDF) is to build a seismic designed facility that can accommodate handling of nuclear materials including <20% enriched Uranium and produce HANARO fuel commercially, and also to establish the advanced common research equipment essential for the research on advanced fuel development. For this purpose, this research works were performed for the settlement of radiation protection system and facility special equipment for the FTDF, and the advanced common research equipment for the fuel fabrication and research. As a result, 11 kinds of radiation protection systems such as criticality detection and alarm system, 5 kinds of facility special equipment such as environmental pollution protection system and 5 kinds of common research equipment such as electron-beam welding machine were established. By the settlement of exclusive domestic facility for the research of advanced fuel, the fabrication and supply of HANARO fuel is possible and also can export KAERI-invented centrifugal dispersion fuel materials and its technology to the nations having research reactors in operation. For the future, the utilization of the facility will be expanded to universities, industries and other research institutes

  7. Common Control System Vulnerability

    Energy Technology Data Exchange (ETDEWEB)

    Trent Nelson

    2005-12-01

    The Control Systems Security Program and other programs within the Idaho National Laboratory have discovered a vulnerability common to control systems in all sectors that allows an attacker to penetrate most control systems, spoof the operator, and gain full control of targeted system elements. This vulnerability has been identified on several systems that have been evaluated at INL, and in each case a 100% success rate of completing the attack paths that lead to full system compromise was observed. Since these systems are employed in multiple critical infrastructure sectors, this vulnerability is deemed common to control systems in all sectors. Modern control systems architectures can be considered analogous to today's information networks, and as such are usually approached by attackers using a common attack methodology to penetrate deeper and deeper into the network. This approach often is composed of several phases, including gaining access to the control network, reconnaissance, profiling of vulnerabilities, launching attacks, escalating privilege, maintaining access, and obscuring or removing information that indicates that an intruder was on the system. With irrefutable proof that an external attack can lead to a compromise of a computing resource on the organization's business local area network (LAN), access to the control network is usually considered the first phase in the attack plan. Once the attacker gains access to the control network through direct connections and/or the business LAN, the second phase of reconnaissance begins with traffic analysis within the control domain. Thus, the communications between the workstations and the field device controllers can be monitored and evaluated, allowing an attacker to capture, analyze, and evaluate the commands sent among the control equipment. Through manipulation of the communication protocols of control systems (a process generally referred to as ''reverse engineering''), an

  8. Drone Control System

    Science.gov (United States)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  9. Magnetic spectrometer control system

    International Nuclear Information System (INIS)

    The design and implementation of a new computerized control system for the several devices of the magnetic spectrometer at TANDAR Laboratory is described. This system, as a main difference from the preexisting one, is compatible with almost any operating systems of wide spread use available in PC. This allows on-line measurement and control of all signals from any terminal of a computer network. (author)

  10. Advanced Controls for the Multi-pod Centipod WEC device

    Energy Technology Data Exchange (ETDEWEB)

    McCall, Alan [Dehlsen Associates, LLC, Santa Barabara, CA (United States); Fleming, Alex [Dehlsen Associates, LLC, Santa Barabara, CA (United States)

    2016-02-15

    Dehlsen Associates, LLC (DA) has developed a Wave Energy Converter (WEC), Centipod, which is a multiple point absorber, extracting wave energy primarily in the heave direction through a plurality of point absorber floats sharing a common stable reference structure. The objective of this project was to develop advanced control algorithms that will be used to reduce Levelized Cost of Energy (LCOE). This project investigated the use of Model Predictive Control (MPC) to improve the power capture of the WEC. The MPC controller developed in this work is a state-space, “look ahead” controller approach using knowledge of past and current states to predict future states to take action with the PTO to maximize power capture while still respecting system constraints. In order to maximize power, which is the product of force and velocity, the controller must aim to create phase alignment between excitation force and velocity. This project showed a 161% improvement in the Annual Energy Production (AEP) for the Centipod WEC when utilizing MPC, compared to a baseline, fixed passive damping control strategy. This improvement in AEP was shown to provide a substantial benefit to the WEC’s overall Cost of Energy, reducing LCOE by 50% from baseline. The results of this work proved great potential for the adoption of Model Predictive Controls in Wave Energy Converters.

  11. Overview of progress in quantum systems control

    Institute of Scientific and Technical Information of China (English)

    CONG Shuang; ZHENG Yisong; JI Beichen; DAI Yi

    2007-01-01

    The development of the theory on quantum systems control in the last 20 years is reviewed in detail.The research on the controllability of quantum systems is first introduced,then the study on the quantum open-loop control methods often used for controlling simple quantum systems is analyzed briefly.The learning control method and the feedback control method are mainly discussed for they are two important methods in quantum systems control and their advantages and disadvantages are presented.According to the trends in quantum systems control development,the paper predicts the future trends of its development and applications.A complete design procedure necessary for the quantum control system is presented.Finally,several vital problems hindering the advancement of quantum control are pointed out.

  12. A modern control room for Indian Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Advanced Heavy Water Reactor (AHWR) is a next generation nuclear power plant being developed by Bhabha Atomic Research Centre, India. AHWR is a vertical, pressure tube type, heavy-water-moderated, boiling light-water-cooled, innovative reactor, relying on natural circulation for core cooling in all operating and accident conditions. In addition, it incorporates various passive systems for decay heat removal, containment cooling and isolation. In addition to the many passive safety features, AHWR has state of the art I and C architecture based on extensive use of computers and networking. In tune with the many advanced features of the reactor, a centralized modern control room has been conceived for operation and monitoring of the plant. The I and C architecture enables the implementation of a fully computerised operator friendly control room with soft Human Machine Interfaces (HMI). While doing so, safety has been given due consideration. The control and monitoring of AHWR systems are carried out from the fully computer-based operator interfaces, except safety systems, for which only monitoring is provided from soft HMI. The control of the safety systems is performed from dedicated hardwired safety system panels. Soft HMI reduces the number of individual control devices and improves their reliability. The paper briefly describes the I and C architecture adopted for the AHWR plant along with the interfaces to the main and backup control rooms. There are many issues involved while introducing soft HMI based operator interfaces for Nuclear Power Plants (NPP) compared to the conventional plants. Besides discussing the implementation issues, the paper elaborates the design considerations that have undergone in the design of various components in the main control room especially operator workstations, shift supervisor console, safety system panels and large display panels. Mainly task based displays have been adopted for the routine operator interactions of the plant

  13. Load Control System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Trudnowski, Daniel [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  14. Advanced robot vision system for nuclear power plants

    International Nuclear Information System (INIS)

    We have developed a robot vision system for advanced robots used in nuclear power plants, under a contract with the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. This work is part of the large-scale 'advanced robot technology' project. The robot vision system consists of self-location measurement, obstacle detection, and object recognition subsystems, which are activated by a total control subsystem. This paper presents details of these subsystems and the experimental results obtained. (author)

  15. Regolith Advanced Surface Systems Operations Robot Excavator

    Science.gov (United States)

    Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew

    2013-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.

  16. PREFACE: European Workshop on Advanced Control and Diagnosis

    Science.gov (United States)

    Schulte, Horst; Georg, Sören

    2014-12-01

    The European Workshop on Advanced Control and Diagnosis is an annual event that has been organised since 2003 by Control Engineering departments of several European universities in Germany, France, the UK, Poland, Italy, Hungary and Denmark. The overall planning of the workshops is conducted by the Intelligent Control and Diagnosis (ICD) steering committee. This year's ACD workshop took place at HTW Berlin (University of Applied Sciences) and was organised by the Control Engineering group of School of Engineering I of HTW Berlin. 38 papers were presented at ACD 2014, with contributions spanning a variety of fields in modern control science: Discrete control, nonlinear control, model predictive control, system identification, fault diagnosis and fault-tolerant control, control applications, applications of fuzzy logic, as well as modelling and simulation, the latter two forming a basis for all tasks in modern control. Three interesting and high-quality plenary lectures were delivered. The first plenary speaker was Wolfgang Weber from Pepperl+Fuchs, a German manufacturer of state-of-the-art industrial sensors and process interfaces. The second and third plenary speakers were two internationally high-ranked researchers in their respective fields, Prof. Didier Theilliol from Université de Lorraine and Prof. Carsten Scherer from Universität Stuttgart. Taken together, the three plenary lectures sought to contribute to closing the gap between theory and applications. On behalf of the whole ACD 2014 organising committee, we would like to thank all those who submitted papers and participated in the workshop. We hope it was a fruitful and memorable event for all. Together we are looking forward to the next ACD workshop in 2015 in Pilsen, Czech Republic. Horst Schulte (General Chair), Sören Georg (Programme Chair)

  17. Advanced Technology Lifecycle Analysis System (ATLAS)

    Science.gov (United States)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  18. ROV Motion Control Systems

    OpenAIRE

    Dukan, Fredrik

    2014-01-01

    This thesis is about automatic motion control systems for remotely operated vehicles (ROV). The work has focused on topics within guidance and navigation. In addition, a motion control system has been developed, implemented, tested and used on two ROVs in sea trials.The main motivation for the work has been the need to automate ROV tasks in order to make the ROV a more efficient tool for exploring the ocean space. Many parts of a motion control system for a ROV is similar to that of surface v...

  19. Control system integration

    CERN Document Server

    Shea, T J

    2008-01-01

    This lecture begins with a definition of an accelerator control system, and then reviews the control system architectures that have been deployed at the larger accelerator facilities. This discussion naturally leads to identification of the major subsystems and their interfaces. We shall explore general strategies for integrating intelligent devices and signal processing subsystems based on gate arrays and programmable DSPs. The following topics will also be covered: physical packaging; timing and synchronization; local and global communication technologies; interfacing to machine protection systems; remote debugging; configuration management and source code control; and integration of commercial software tools. Several practical realizations will be presented.

  20. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  1. Combustion modeling in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H. [Brigham Young Univ., Provo, UT (United States)] [and others

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  2. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2002-02-01

    Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  3. Control systems under attack?

    CERN Document Server

    Lüders, Stefan

    2005-01-01

    The enormous growth of the Internet during the last decade offers new means to share and distribute both information and data. In Industry, this results in a rapprochement of the production facilities, i.e. their Process Control and Automation Systems, and the data warehouses. At CERN, the Internet opens the possibility to monitor and even control (parts of) the LHC and its four experiments remotely from anywhere in the world. However, the adoption of standard IT technologies to Distributed Process Control and Automation Systems exposes inherent vulnerabilities to the world. The Teststand On Control System Security at CERN (TOCSSiC) is dedicated to explore the vulnerabilities of arbitrary Commercial-Of-The-Shelf hardware devices connected to standard Ethernet. As such, TOCSSiC should discover their vulnerabilities, point out areas of lack of security, and address areas of improvement which can then be confidentially communicated to manufacturers. This paper points out risks of accessing the Control and Automa...

  4. Optimal control applications in electric power systems

    CERN Document Server

    Christensen, G S; Soliman, S A

    1987-01-01

    Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...

  5. Advances in control of ectoparasites in large animals.

    Science.gov (United States)

    Hiepe, T

    1988-11-01

    In continuation of a publication on "Large-scale management systems and parasite populations: ectoparasites" in Vet. Parasitol. 11 (1982): 61-68, advances and present state of the control of ectoparasites in herds of cattle, sheep and camels are discussed. An intensified animal production necessitates permanent veterinary control of the status of ectoparasites. Strategically, control is basically directed towards achieving three aims: eradication, reduction of losses by means of dilution of ectoparasites regulations, and therapeutic measures. In the last few years, important progress has been made in effective ectoparasites control, mainly resulting from the discovery of new insecticides and acaricides, the improvement of the application techniques and the recent results in the biological control of arthropods; finally, an immunological approach will open new alternative ways of control. The control of mange and demodicosis in cattle; sarcoptic mange and sucking lice infestations in pigs; mange, biting lice infestations and nasal bots in sheep; ectoparasite infestations in camels and tick infestations are the main topics of the paper. The discovery of Ivermectin, a derivate of Streptomyces avermitilis which is now already fully integrated in to the spectrum of antiparasitic drugs, created a new generation of broad spectrum insecticides/acaricides. Current problems of the chemical control of arthropods, like the risk of residues in meat, milk and their products, the insecticide resistance and the possible environment pollution are critically outlined. But on the other hand, it can be predicted hypothetically that the amount of pest control measures in farm animals will increase in the near future to eliminate arthropods as causes of skin diseases and of damages to hides entailing negative effects on leather processing and as vectors of important infection agents. Finally, the proposal is submitted to elaborate international control programmes against ectoparasite

  6. Control and Information Systems

    Directory of Open Access Journals (Sweden)

    Jiri Zahradnik

    2003-01-01

    Full Text Available The article deals with main tends of scientific research activities of Department of Control and Information Systems at the Faculty of Electrical Engineering of University of Zilina and its perspectives in this area.

  7. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S.A.

    requirements for a dedicated software environment for fault tolerant control systems design. The second detailed study addressed the detection of a fault event and determination of the failed component. A variety of algorithms were compared, based on two fault scenarios in the speed governor actuator setup......This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...... failures. It is often feasible to increase availability for these control loops by designing the control system to perform on-line detection and reconfiguration in case of faults before the safety system makes a close-down of the process. A general development methodology is given in the thesis...

  8. Reset Control Systems

    CERN Document Server

    Baños, Alfonso

    2012-01-01

    Reset Control Systems addresses the analysis for reset control treating both its basic form which requires only that the state of the controller be reinitialized to zero (the reset action) each time the tracking error crosses zero (the reset condition), and some useful variations of the reset action (partial reset with fixed or variable reset percentage) and of the reset condition (fixed or variable reset band and anticipative reset). The issues regarding reset control – concepts and motivation; analysis tools; and the application of design methodologies to real-world examples – are given comprehensive coverage. The text opens with an historical perspective which moves from the seminal work of the Clegg integrator and Horowitz FORE to more recent approaches based on impulsive/hybrid control systems and explains the motivation for reset compensation. Preliminary material dealing with notation, basic definitions and results, and with the definition of the control problem under study is also included. The fo...

  9. Tautological control systems

    CERN Document Server

    Lewis, Andrew D

    2014-01-01

    This brief presents a description of a new modelling framework for nonlinear/geometric control theory. The framework is intended to be—and shown to be—feedback-invariant. As such, Tautological Control Systems provides a platform for understanding fundamental structural problems in geometric control theory. Part of the novelty of the text stems from the variety of regularity classes, e.g., Lipschitz, finitely differentiable, smooth, real analytic, with which it deals in a comprehensive and unified manner. The treatment of the important real analytic class especially reflects recent work on real analytic topologies by the author. Applied mathematicians interested in nonlinear and geometric control theory will find this brief of interest as a starting point for work in which feedback invariance is important. Graduate students working in control theory may also find Tautological Control Systems to be a stimulating starting point for their research.

  10. Flexible AC transmission systems modelling and control

    CERN Document Server

    Zhang, Xiao-Ping; Pal, Bikash

    2012-01-01

    The extended and revised second edition of this successful monograph presents advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS). The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. In the six years since the first edition of the book has been published research on the FACTS has continued to flourish while renewable energy has developed into a mature and

  11. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Science.gov (United States)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  12. Advanced Stellar Compass, SAC-C, Interface Control Document

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Betto, Maurizio; Riis, Troels;

    Interface Control Document for the Advanced Stellar Compass for the SAC-C satellite. The SAC-C is Argentine, Danish and NASA satellite. On the SAC-C satellite there are a simplified version of the Ørsted instrumentation platform. The Advanced Stellar Compass is a improved version of the Ørsted Star...... Imager. This document descibes the interface between the Advanced Stellar Compass and OBDH, the size of the DPU and the Camera etc....

  13. Advanced connection systems for architectural glazing

    CERN Document Server

    Afghani Khoraskani, Roham

    2015-01-01

    This book presents the findings of a detailed study to explore the behavior of architectural glazing systems during and after an earthquake and to develop design proposals that will mitigate or even eliminate the damage inflicted on these systems. The seismic behavior of common types of architectural glazing systems are investigated and causes of damage to each system, identified. Furthermore, depending on the geometrical and structural characteristics, the ultimate horizontal load capacity of glass curtain wall systems is defined based on the stability of the glass components. Detailed attention is devoted to the incorporation of advanced connection devices between the structure of the building and the building envelope system in order to minimize the damage to glazed components. An innovative new connection device is introduced that results in a delicate and functional system easily incorporated into different architectural glazing systems, including those demanding maximum transparency.

  14. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    necessary for commercial fuel processing supporting transmutation of transplutonium elements. This research project continued basic themes investigated by this research group during the past decade. In the Fuel Cycle Research and Development program at DOE, the current favorite process for accomplishing the separation of trivalent actinides from fission product lanthanides is the TALSPEAK process. TALSPEAK is a solvent extraction method (developed at Oak Ridge National Lab in the 1960s) based on the combination of a cation exchanging extractant (e.g., HDEHP), an actinide-selective aminopolycarboxylate complexing agent (e.g., DTPA), and a carboxylic acid buffer to control pH in the range of 3-4. Considerable effort has been expended in this research group during the past 8 years to elaborate the details of TALSPEAK in the interest of developing improved approaches to the operation of TALSPEAK-like systems. In this project we focused on defining aggregation phenomena in conventional TALSPEAK separations, on supporting the development of Advanced TALSPEAK processes, on profiling the aqueous complexation kinetics of lanthanides in TALSPEAK relevant aqueous media, on the design of new diglycolamide and N-donor extractants, and on characterizing cation-cation complexes of pentavalent actinides.

  15. Advanced Technology System Scheduling Governance Model

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carnes, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoang, Thuc [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vigil, Manuel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  16. Adaptive Inflow Control System

    CERN Document Server

    Volkov, Vasily Y; Zhuravlev, Oleg N; Nukhaev, Marat T; Shchelushkin, Roman V

    2014-01-01

    This article presents the idea and realization for the unique Adaptive Inflow Control System being a part of well completion, able to adjust to the changing in time production conditions. This system allows to limit the flow rate from each interval at a certain level, which solves the problem of water and gas breakthroughs. We present the results of laboratory tests and numerical calculations obtaining the characteristics of the experimental setup with dual-in-position valves as parts of adaptive inflow control system, depending on the operating conditions. The flow distribution in the system was also studied with the help of three-dimensional computer model. The control ranges dependences are determined, an influence of the individual elements on the entire system is revealed.

  17. Recent Advances in Antitank Guided Missile Systems

    Directory of Open Access Journals (Sweden)

    N. R. Iyer

    1995-07-01

    Full Text Available The recent advances in tactical antitank guided missile (ATGM systems are discussed. The main driving factors for the technological advances towards realisation of third generation ATGM systems have been the more demanding operational needs of the user services and limitations of earlier generation ATGM systems. The tasks of system design, hardware realisation, integration, testing and qualification have become extremely challenging to meet these stringent operational requirements. The technologies required to be mobilised for meeting these operational requirements and performance envelope and satisfying the operational and logistics constraints are again very demanding. The high technology content and the high level of performance required out of the subsystems have led to the present generation missile systems. The evolution from the earlier generations to current systems has been briefly discussed. Imaging infrared (IIR and Millimetre wave (MMW guidance systems employed for achieving the fire and forget capability of the third generation ATGM are described with specific reference to progress achieved so far. Translating the mission requirements to preliminary system specifications is another area wherein an innovative approach only can lead to meet the multiple performance criteria. Performance growth profile and emerging trends in ATGM systems are also analysed.

  18. Advanced Combustion and Emission Control Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  19. Advanced Turbine Systems Program industrial system concept development

    Energy Technology Data Exchange (ETDEWEB)

    Gates, S. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The objective of Phase II of the Advanced Turbine Systems Program is to develop conceptual designs of gas fired advanced turbine systems that can be adapted for operation on coal and biomass fuels. The technical, economic, and environmental performance operating on natural gas and in a coal fueled mode is to be assessed. Detailed designs and test work relating to critical components are to be completed and a market study is to be conducted.

  20. Advanced EMS and its trial operation in Shanghai power system

    Institute of Scientific and Technical Information of China (English)

    LU Qiang; HE GuangYu; MEI ShengWei; SUN YingYun; RUAN QianTu; WANG Wei; ZHANG WangJun; YU XuFeng

    2008-01-01

    To meet the demand of high stability, high quality, and low losses of power systems, the advanced energy management system (AEMS) is established and revealed in this bulletin, which has been put into trial operation in Shanghai power system for almost half a year. The AEMS is novel from all aspects covering idea, theory, method, software, and engineering. The essence of AEMS is exercising the hybrid automatic control theory and technology to realize multi-objective optimal closedloop control of power systems. Based on an "event-driven" strategy, the AEMS transforms multi-objective optimal control problems into event identification and elimination by defining the unsatisfactory states of a power system as events. This bulletin concisely presents the theory and main advantages of AEMS, as well as its implementation in Shanghai power system.

  1. Facility level thermal systems for the Advanced Technology Solar Telescope

    Science.gov (United States)

    Phelps, LeEllen; Murga, Gaizka; Fraser, Mark; Climent, Tània

    2012-09-01

    The management and control of the local aero-thermal environment is critical for success of the Advanced Technology Solar Telescope (ATST). In addition to minimizing disturbances to local seeing, the facility thermal systems must meet stringent energy efficiency requirements to minimize impact on the surrounding environment and meet federal requirements along with operational budgetary constraints. This paper describes the major facility thermal equipment and systems to be implemented along with associated energy management features. The systems presented include the central plant, the climate control systems for the computer room and coudé laboratory, the carousel cooling system which actively controls the surface temperature of the rotating telescope enclosure, and the systems used for active and passive ventilation of the telescope chamber.

  2. Advanced EMS and its trial operation in Shanghai power system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To meet the demand of high stability,high quality,and low losses of power systems,the advanced energy management system (AEMS) is established and revealed in this bulletin,which has been put into trial operation in Shanghai power system for almost half a year. The AEMS is novel from all aspects covering idea,theory,method,software,and engineering. The essence of AEMS is exercising the hybrid automatic control theory and technology to realize multi-objective optimal closed-loop control of power systems. Based on an "event-driven" strategy,the AEMS transforms multi-objective optimal control problems into event identification and elimination by defining the unsatisfactory states of a power system as events. This bulletin concisely presents the theory and main advantages of AEMS,as well as its implementation in Shanghai power system.

  3. The ISOLDE control system

    Science.gov (United States)

    Deloose, I.; Pace, A.

    1994-12-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.

  4. Identification and Control of Mechanical Systems

    Science.gov (United States)

    Juang, Jer-Nan; Phan, Minh Q.

    2001-08-01

    The control of vibrating systems is a significant issue in the design of aircraft, spacecraft, bridges, and high-rise buildings. This book discusses the control of vibrating systems, integrating structural dynamics, vibration analysis, modern control, and system identification. By integrating these subjects engineers will need only one book, rather than several texts or courses, to solve vibration control problems. The authors cover key developments in aerospace control and identification theory, including virtual passive control, observer and state-space identification, and data-based controller synthesis. They address many practical issues and applications, and show examples of how various methods are applied to real systems. Some methods show the close integration of system identification and control theory from the state-space perspective, rather than from the traditional input-output model perspective of adaptive control. This text will be useful for advanced undergraduate and beginning graduate students in aerospace, mechanical, and civil engineering, as well as for practicing engineers.

  5. Advanced CHP Control Algorithms: Scope Specification

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Brambley, Michael R.

    2006-04-28

    The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.

  6. FMIT facility control system

    International Nuclear Information System (INIS)

    The control system for the Fusion Materials Irradiation Test (FMIT) Facility, under construction at Richland, Washington, uses current techniques in distributed processing to achieve responsiveness, maintainability and reliability. Developmental experience with the system on the FMIT Prototype Accelerator (FPA) being designed at the Los Alamos National Laboratory is described as a function of the system's design goals and details. The functional requirements of the FMIT control system dictated the use of a highly operator-responsive, display-oriented structure, using state-of-the-art console devices for man-machine communications. Further, current technology has allowed the movement of device-dependent tasks into the area traditionally occupied by remote input-output equipment; the system's dual central process computers communicate with remote communications nodes containing microcomputers that are architecturally similar to the top-level machines. The system has been designed to take advantage of commercially available hardware and software

  7. CNEOST Control Software System

    Science.gov (United States)

    Wang, Xin; Zhao, Hai-bin; Xia, Yan; Lu, Hao; Li, Bin

    2016-01-01

    In 2013, CNEOST (China Near Earth Object Survey Telescope) adapted its hardware system for the new CCD camera. Based on the new system architecture, the control software is re-designed and implemented. The software system adopts the messaging mechanism based on the WebSocket protocol, and possesses good flexibility and expansibility. The user interface based on the responsive web design has realized the remote observations under both desktop and mobile devices. The stable operation of the software system has greatly enhanced the operation efficiency while reducing the complexity, and has also made a successful attempt for the future system design of telescope and telescope cloud.

  8. Recent advances in high power RF systems of Indus synchrotron

    International Nuclear Information System (INIS)

    In Indus accelerator complex at Raja Ramanna Centre for Advanced Technology, three major RF systems namely booster synchrotron RF system, Indus-1 Storage ring RF System and Indus-2 Storage ring RF System were commissioned and are running in round the clock operation mode for beam line users. High Power RF amplifier system of a particle accelerator required for energizing the Resonating structures is complex in nature and to run it smoothly with better performance various up gradations are needed. Booster and Indus-1 RF system operating at 31.6 MHz were conventional tetrode tube based system and were being used for more than 10 years. Indus-2 RF system consists of four Klystron based amplifier system with maximum output power of 64 kW each at 505.8 MHz. With recent advances in solid state RF amplifying devices and its inherent advantages like graceful degradation, low maintenance, better quality of signal, absence of high voltage points as compared to traditional tube based RF amplifiers, SSPAs of several tens of kW of RF power level are being successfully deployed in RF systems of Indus synchrotron. Booster RF system and Indus-1 RF system has been already replaced by Solid State RF amplifier system and is working satisfactorily. Presently three Klystron based RF systems for Indus-2 are already replaced with Solid State RF amplifier system with total installed power of 200 kW. In particle accelerators the beam parameters depend highly on the stability of the RF field. Due to dynamic beam loading conditions the variations in RF parameters of accelerating structures needs to be controlled precisely, hence low level RF feedback control system plays vital role. Considering revolutionary development in the field of digital electronics and inherent advantages of digital systems, FPGA based digital LLRF control system development work was taken up. In this paper recent up gradation in RF Systems of Indus Synchrotron will be presented. (author)

  9. Application of CyboCon Advanced Adjustment and Control Software Package in Delayed Coking Unit

    Institute of Scientific and Technical Information of China (English)

    Guo Hua

    2002-01-01

    This article refers to application of the CyboCon software package based upon the model-free adaptive control (MFA) in the 800-kt/a delayed coking unit to realize an advanced adjustment and control strategy for the temperature control of the heater. Operation tests have revealed the convenience in operating system and simplicity in maintenance, leading to good economic benefits.

  10. AECL programs in advanced systems research

    International Nuclear Information System (INIS)

    The AECL program in advanced systems research is directed in the long term to securing the option of obtaining fissile fuel by electronuclear breeding (accelerator breeder or fusion breeder) and to providing a basis from which AECL might move into stand alone fusion energy if warranted. In the short term the program is directed to reaping benefits from electronuclear technology. This report outlines the main activities and research facilities in both the long-term and short-term subprograms

  11. On-Board Advanced Traveler Information Systems

    OpenAIRE

    Ni, Jason; Deakin, Elizabeth

    2002-01-01

    Advanced Traveler Information Systems (ATIS) acquire, analyze, communicate, and present information to assist travelers to have a safer, more reliable and more enjoyable travel experience. Two major types of ATIS are available: (1) Real-time network information, including traffic and transit information and (2) Traveler information such as pre-trip or on-route route guidance or destination information. This information can be provided in a variety of ways: at kiosks, on websites, using mobile...

  12. Light distribution through advanced fenestration systems

    OpenAIRE

    Andersen, Marilyne

    2002-01-01

    Most energy-saving applications of advanced fenestration systems, e.g. solar blinds, novel types of glazing and daylight redirecting devices, require a precise knowledge of their directional light-transmission features. These photometric properties are described by a Bi-directional Transmission Distribution Function (BTDF), which is experimentally assessed by a bi-directional photogoniometer. As such a function represents a heavy amount of data, there is a need for a synthetic and intuitive v...

  13. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  14. Modeling, Control and Coordination of Helicopter Systems

    CERN Document Server

    Ren, Beibei; Chen, Chang; Fua, Cheng-Heng; Lee, Tong Heng

    2012-01-01

    Modeling, Control and Coordination of Helicopter Systems provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems,providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved. This book also: Presents a complete picture of modeling, control and coordination for helicopter systems Provides a modeling platform for a general class of ro...

  15. Neural Flight Control System

    Science.gov (United States)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  16. Nature-inspired computing for control systems

    CERN Document Server

    2016-01-01

    The book presents recent advances in nature-inspired computing, giving a special emphasis to control systems applications. It reviews different techniques used for simulating physical, chemical, biological or social phenomena at the purpose of designing robust, predictive and adaptive control strategies. The book is a collection of several contributions, covering either more general approaches in control systems, or methodologies for control tuning and adaptive controllers, as well as exciting applications of nature-inspired techniques in robotics. On one side, the book is expected to motivate readers with a background in conventional control systems to try out these powerful techniques inspired by nature. On the other side, the book provides advanced readers with a deeper understanding of the field and a broad spectrum of different methods and techniques. All in all, the book is an outstanding, practice-oriented reference guide to nature-inspired computing addressing graduate students, researchers and practi...

  17. Review of advanced control theory and application in power system%先进控制理论在电力系统中的应用综述及展望

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      自20世纪50、60代以钱学森《工程控制论》为代表的经典控制理论和以线性系统及最优控制为代表的现代控制理论问世以来,理论创新与工业应用成果丰硕,特别在电力系统中获得了广泛的应用。鉴于该领域文献众多,主要以大型发电机组励磁控制为主线,从稳定性、最优性、鲁棒性与实用性情况等方面综合对比经典控制与现代控制理论在电力系统中的应用情况,明确指出现代控制是经典控制的发展,经典控制是现代控制的基础,二者不可分割,具有天然的互补性,为此将二者合称为先进控制理论。进一步,在总结综述经典与现代控制理论在电力系统应用状况的基础上,对未来电力系统先进控制技术的发展做了若干展望。%Since the classical control theory which was represented by Qian Xue-sen’s Engineering Cybernetics and modern control theory which was represented by the linear system and optimal control came into being in the 1950’s -1960’s, fruitful results of theoretical innovation and industrial application have been made and widely adopted in power system. In view of the numerous literatures in this research field, this paper borrows the achievements in the area of large generator excitation control during the past four decades as clues, launches a comprehensive survey and compares the classic control theory with modern control theory from respects of stability, optimality and robustness, finally reveals the intrinsic complementary between them. The modern control is the extension and development of classical control, while the classical control is the basis of modern control, so their combination is so called advanced control theory. Moreover, based on summarizing the application of advanced control theory in power system, this paper gives some outlook on the future development of advanced power system control technologies.

  18. 先进AGC及汽温控制系统在1000 MW超超临界机组的应用%The Application of Advanced AGC and Steam Temperature Control System in 1 000 MW Ultra Supercritical Units

    Institute of Scientific and Technical Information of China (English)

    郑卫东; 柳卫荣; 李晓燕; 李捍华

    2013-01-01

    This paper introduces the application and commissioning of Advanced AGC and Steam Temperature Control System of 1 000 MW Ultra Supercritical Units project in Huaneng Yuhuan Power Plant and analyzes the existing problems in using traditional PID control system in domestic thermal power plants and the appli-cation prospect of the advantage control system. The paper puts forward a scheme for AGC and temperature optimization control in large generating units , which handles the instability of steam temperature of thermal power plant and load-varying operating condition.%介绍了“1000 MW超超临界机组先进AGC及汽温控制系统”项目在华能玉环发电厂的应用及调试情况,分析了传统PID控制系统在国内火电厂运用存在的问题和先进控制系统的运用前景。提出了大型机组AGC及汽温优化控制的方案,解决了火电厂汽温、变负荷工况参数不稳的问题。

  19. Control Systems with Friction

    OpenAIRE

    Olsson, Henrik

    1996-01-01

    Friction-related problems are frequently encountered in control systems. This thesis treats three aspects of such problems: modeling, analysis, and friction compensation. A new dynamic friction model is presented and investigated. The model is described by a first order nonlinear differential equation with a reasonable number of parameters, yet it captures most of the experimentally observed friction phenomena. The model is suitable both for simulation purposes and control design. Analysis of...

  20. AMBA Based Advanced DMA Controller for SoC

    Directory of Open Access Journals (Sweden)

    Abdullah Aljumah

    2016-03-01

    Full Text Available this paper describes the implementation of an AMBA Based Advanced DMA Controller for SoC. It uses AMBA Specifications, where two buses AHB and APB are defined and works for processor as system bus and peripheral bus respectively. The DMA controller functions between these two buses as a bridge and allow them to work concurrently. Depending on the speed of peripherals it uses buffering mechanism. Therefore an asynchronous FIFO is used for synchronizing the speed of peripherals. The proposed DMA controller can works in SoC along with processor and achieve fast data rate. The method introduced significant volume of data transfer with very low timing characteristics. Thus it is a better choice in respect of timing and volume of data. These two issues have been resolved under this research study. The results are compared with the AMD processors, like Geode GX 466, GX 500 and GX 533, and the presence and absence of DMA controller with processor is discussed and compared. The DMAC stands to be better alternative in SoC design.

  1. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  2. Data-Driven Control of Refrigeration System

    DEFF Research Database (Denmark)

    Vinther, Kasper

    traditionally are a pressure and a temperature sensor. In this thesis, a novel maximum slope-seeking (MSS) control method is developed. This has resulted in a control implementation, which successfully has been able to control the evaporator superheat in four widely different refrigeration system test...... conditions make optimal tuning of controllers a difficult and time consuming task. These are also some of the challenges which make advanced model-based control difficult, and a model-based controller will often be tailored to a specific system. The focus in this thesis is therefore instead on development...... of data-driven control strategies with a higher plug and play potential. One of the main control challenges in refrigeration systems is proper control of superheat for efficient and safe operation of the system. This task can be performed by an electronic expansion valve and requires two sensors, which...

  3. Advanced nuclear power plant solidification system

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M. [Hitachi Ltd., Tokyo (Japan); Hirayama, S.; Nishi, T. [Hitachi Ltd., Ibaraki (Japan); Huang, C. T. [Institute of Nuclear Energy Research, Lungtan (Taiwan)

    2003-07-01

    'Slim-Rad' is an advanced radioactive waste treatment system reflecting Hitachi's long experience as a supplier of nuclear plants. The system utilizes new technologies such as a hollow fiber filter, high-performance cement solidification and laundry and shower drain treatment. By adopting this Slim-Rad system, not only the final waste volume but also the number of radwaste tanks can be reduced 1/8 and 1/2, respectively, compared with previous Hitachi radwaste treatment systems. Moreover, release of radioactivity into the environment from the treated waste is reduced effectively. This paper outlines the system and describes its features, as well as the features of the key technology such as volume reduction and solidification technology.

  4. Human factors survey of advanced instrumentation and controls

    International Nuclear Information System (INIS)

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I ampersand C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I ampersand C. Fifteen potential human factors problems were identified. They include: the need for an advanced I ampersand C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I ampersand C; and operator acceptance and trust. 11 refs., 1 tab

  5. neural control system

    International Nuclear Information System (INIS)

    Automatic power stabilization control is the desired objective for any reactor operation , especially, nuclear power plants. A major problem in this area is inevitable gap between a real plant ant the theory of conventional analysis and the synthesis of linear time invariant systems. in particular, the trajectory tracking control of a nonlinear plant is a class of problems in which the classical linear transfer function methods break down because no transfer function can represent the system over the entire operating region . there is a considerable amount of research on the model-inverse approach using feedback linearization technique. however, this method requires a prices plant model to implement the exact linearizing feedback, for nuclear reactor systems, this approach is not an easy task because of the uncertainty in the plant parameters and un-measurable state variables . therefore, artificial neural network (ANN) is used either in self-tuning control or in improving the conventional rule-based exper system.the main objective of this thesis is to suggest an ANN, based self-learning controller structure . this method is capable of on-line reinforcement learning and control for a nuclear reactor with a totally unknown dynamics model. previously, researches are based on back- propagation algorithm . back -propagation (BP), fast back -propagation (FBP), and levenberg-marquardt (LM), algorithms are discussed and compared for reinforcement learning. it is found that, LM algorithm is quite superior

  6. Advanced Stellar Compass, CHAMP, Interface Control Document

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Betto, Maurizio;

    1999-01-01

    The German government research establishment "GeoForschungsZentrum" developed under a contract to the German government a microsatellite named "Champ". The Space Instrumentation Group has made a Interface Control Document for the CHAMP, witch describes the Star Imager, the electrical interface, t...

  7. Simulation of advanced concepts for damage control

    NARCIS (Netherlands)

    Gillis, M.P.W.; Keijer, W.; Smit, C.S.; Wolff, P.A.

    2003-01-01

    Damage control on board navy ships requires a lot of manpower. On a frigate-sized ship of the Royal Netherlands Navy, up to ninety people can be involved in tasks like fire fighting, battle damage repair and treatment of casualties. In present times this is no longer attainable or affordable. To red

  8. Advanced Control Techniques for WEC Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Jasinski, M.;

    2007-01-01

    This paper presents the ongoing work on control of the Wave Dragon wave energy converter. Research is being conducted in and between several centers across Europe. This is building upon the knowledge gained in the prototype project, and will enable much better performance of the future deployment...... of the full scale Wave Dragon....

  9. Advanced Control Techniques for WEC Wave Dragon

    OpenAIRE

    Tedd, James; Kofoed, Jens Peter; Jasinski, M; Morris, A.; Friis-Madsen, E.; Wisniewski, Rafal; Bendtsen, Jan Dimon

    2007-01-01

      This paper presents the ongoing work on control of the Wave Dragon wave energy converter. Research is being conducted in and between several centers across Europe. This is building upon the knowledge gained in the prototype project, and will enable much better performance of the future deployment of the full scale Wave Dragon.

  10. Encyclopedia of systems and control

    CERN Document Server

    Samad, Tariq

    2015-01-01

    The Encyclopedia of Systems and Control collects a broad range of short expository articles that describe the current state of the art in the central topics of control and systems engineering as well as in many of the related fields in which control is an enabling technology. The editors have assembled the most comprehensive reference possible, and this has been greatly facilitated by the publisher’s commitment continuously to publish updates to the articles as they become available in the future. Although control engineering is now a mature discipline, it remains an area in which there is a great deal of research activity, and as new developments in both theory and applications become available, they will be included in the online version of the encyclopedia. A carefully chosen team of leading authorities in the field has written the well over 200 articles that comprise the work. The topics range from basic principles of feedback in servomechanisms to advanced topics such as the control of Boolean networks...

  11. Tools for Advanced Hadoop Cluster Control

    OpenAIRE

    Cimerman, Gregor

    2013-01-01

    Hadoop is a platform for storing and processing big data. This kind of platform that stretches over multiple servers is difficult to manage. Traditional management systems for computer grids do not allow complete management over Hadoop services because the dynamic and elastic properties. Because the complexity of Hadoop services, the combination of management systems are necessary for complete management. In this thesis we describe this combination of tools for Hadoop cluster management. We d...

  12. Advanced Life Support System Value Metric

    Science.gov (United States)

    Jones, Harry W.; Rasky, Daniel J. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have led to the following approach. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are considered to be exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is defined after many trade-offs. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, SVM/[ESM + function (TRL)], with appropriate weighting and scaling. The total value is given by SVM. Cost is represented by higher ESM and lower TRL. The paper provides a detailed description and example application of a suggested System Value Metric and an overall ALS system metric.

  13. 先进控制与西门子PCS7系统接口的应用开发%Application development of advanced control and Siemens PCS37 system interface

    Institute of Scientific and Technical Information of China (English)

    董庆龙

    2015-01-01

    文中结合某炼油厂常减压装置炉温优化项目的实施过程,阐述了在西门子PCS7控制系统中嵌入第三方先进控制程序和控制接口程序的开发。炉温优化先进控制项目,综合考虑了影响炉温的众多因素,应用复杂控制策略,控制加热炉出口温度平稳,实现了装置的平稳运行。%Combined with the implementation process of the furnace temperature optimization project of the atmospheric and vacuum distillation unit,this paper set forth the development of insertion of the third-party’s advanced control program and control interface program into Siemens PCS37 control system. In the furnace temperature optimization control project, numerous factors influencing furnace temperature were considered,complex control strategy was applied,the heating furnace exit temperature was controlled stable,smooth operation of the unit was realized.

  14. Advanced nuclear reactor systems - an Indian perspective

    International Nuclear Information System (INIS)

    The Indian nuclear power programme envisages use of closed nuclear fuel cycle and thorium utilisation as its mainstay for its sustainable growth. The current levels of deployment of nuclear energy in India need to be multiplied nearly hundred fold to reach levels of electricity generation that would facilitate the country to achieve energy independence as well as a developed status. The Indian thorium based nuclear energy systems are being developed to achieve sustainability in respect of fuel resource along with enhanced safety and reduced waste generation. Advanced Heavy Water Reactor and its variants have been designed to meet these objectives. The Indian High Temperature Reactor programme also envisages use of thorium-based fuel with advanced levels of passive safety features. (author)

  15. Advances in Primary Central Nervous System Lymphoma.

    Science.gov (United States)

    Patrick, Lauren B; Mohile, Nimish A

    2015-12-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma that is limited to the CNS. Although novel imaging techniques aid in discriminating lymphoma from other brain tumors, definitive diagnosis requires brain biopsy, vitreoretinal biopsy, or cerebrospinal fluid analysis. Survival rates in clinical studies have improved over the past 20 years due to the addition of high-dose methotrexate-based chemotherapy regimens to whole-brain radiotherapy. Long-term survival, however, is complicated by clinically devastating delayed neurotoxicity. Newer regimens are attempting to reduce or eliminate radiotherapy from first-line treatment with chemotherapy dose intensification. Significant advances have also been made in the fields of pathobiology and treatment, with more targeted treatments on the horizon. The rarity of the disease makes conducting of prospective clinical trials challenging, requiring collaborative efforts between institutions. This review highlights recent advances in the biology, detection, and treatment of PCNSL in immunocompetent patients.

  16. Control of complex systems

    CERN Document Server

    Albertos, Pedro; Blanke, Mogens; Isidori, Alberto; Schaufelberger, Walter; Sanz, Ricardo

    2001-01-01

    The world of artificial systems is reaching complexity levels that es­ cape human understanding. Surface traffic, electricity distribution, air­ planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi­ neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re­ search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu­ ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimula...

  17. Underwater hydraulic shock shovel control system

    Institute of Scientific and Technical Information of China (English)

    LIU He-ping; LUO A-ni; XIAO Hai-yan

    2008-01-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel.This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems.A new type of control system's mathematical model was built and analyzed according to those principles.Since the initial control system's response time could not fulfill the design requirements,a PID controller was added to the control system.System response time was still slower than required,so a neural network was added to nonlinearly regulate the proportional element,integral element and derivative element coefficients of the PID controller.After these improvements to the control system,system parameters fulfilled the design requirements.The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can't satisfy a shovel's requirements,so advanced and normal control methods were combined to improve the control system,bringing good results.

  18. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    Science.gov (United States)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  19. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  20. Electric turbocompound control system

    Energy Technology Data Exchange (ETDEWEB)

    Algrain, Marcelo C. (Dunlap, IL)

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  1. Advanced I and C systems for nuclear power plants

    International Nuclear Information System (INIS)

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Additionally specific requirements arising from nuclear qualification have to be fulfilled. To meet both subjects adequately in the future, Siemens has developed advanced I and C technology consisting of the two complementary I and C systems TELEPERM XP and TELEPERM XS. The main features of these systems are a clear task related architecture with adaptable redundancy, a consequent application of standards for interfaces and communication, comprehensive tools for easy design and service and a highly ergonomic screen based man-machine-interface. The engineering tasks are supported by an integrated engineering system, which has the capacity for design, test and diagnosis of all I and C functions and the related equipment. TELEPERM XP is designed to optimally perform all automatic functions, which require no nuclear specific qualification. This includes all sequences and closed-loop controls as well as most man-machine-interface functions. TELEPERM XS is designed for all control tasks which require a nuclear specific qualification. This especially includes all function to initiated automatic countermeasures to prevent or to cope with accidents. By use of the complementary I and C systems TELEPERM XP and TELEPERM XS, advanced and likewise economical plant automation and man-machine-interfaces can be implemented into Nuclear Power Plant, assuring compliance with the relevant international safety standards. (author). 10 figs

  2. Advanced I and C systems for nuclear power plants

    International Nuclear Information System (INIS)

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Additionally, specific requirements coming from the nuclear qualification have to be fulfilled. To meet both subjects adequately in the future, Siemens has developed advanced I and C technology consisting of the two complementary I and C systems TELEPERM XP and TELEPERM XS. The main features of these systems are the clear task related architecture with adaptable redundancy, the consequent application of standards for interfaces and communication, comprehensive tools for easy design and service and a highly ergonomic screen based man-machine-interface. The engineering tasks are supported by an integrated engineering system, which has the capacity for design, test and diagnosis of all I and C functions and the related equipment. TELEPERM XP is designed to optimally perform all automatic functions, which require no nuclear specific qualification. This includes all sequences and closed-loop controls as well as most man-machine-interface functions. TELEPERM XS is designed for all control tasks which require a nuclear specific qualification. This especially includes all functions to initiate automatic countermeasures to prevent or to cope with accidents. By use of the complementary I and C systems TELEPERM XP and TELEPERM XS, economical as well as advanced plant automation and man-machine-interfaces can be implemented into Nuclear Plants, assuring the compliance with the relevant international safety standards. (author). 10 figs

  3. Wind energy systems control engineering design

    CERN Document Server

    Garcia-Sanz, Mario

    2012-01-01

    IntroductionBroad Context and MotivationConcurrent Engineering: A Road Map for EnergyQuantitative Robust ControlNovel CAD Toolbox for QFT Controller DesignOutline Part I: Advanced Robust Control Techniques: QFT and Nonlinear SwitchingIntroduction to QFTQuantitative Feedback TheoryWhy Feedback? QFT OverviewInsight into the QFT TechniqueBenefits of QFTMISO Analog QFT Control SystemIntroductionQFT Method (Single-Loop MISO System)Design Procedure OutlineMinimum-Phase System Performance SpecificationsJ LTI Plant ModelsPlant Templates of P?(s), P( j_i )Nominal PlantU-Contour (Stability Bound)Trackin

  4. Advanced lubrication systems and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.

    1998-05-07

    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  5. International conference on Advances in Intelligent Control and Innovative Computing

    CERN Document Server

    Castillo, Oscar; Huang, Xu; Intelligent Control and Innovative Computing

    2012-01-01

    In the lightning-fast world of intelligent control and cutting-edge computing, it is vitally important to stay abreast of developments that seem to follow each other without pause. This publication features the very latest and some of the very best current research in the field, with 32 revised and extended research articles written by prominent researchers in the field. Culled from contributions to the key 2011 conference Advances in Intelligent Control and Innovative Computing, held in Hong Kong, the articles deal with a wealth of relevant topics, from the most recent work in artificial intelligence and decision-supporting systems, to automated planning, modelling and simulation, signal processing, and industrial applications. Not only does this work communicate the current state of the art in intelligent control and innovative computing, it is also an illuminating guide to up-to-date topics for researchers and graduate students in the field. The quality of the contents is absolutely assured by the high pro...

  6. Second Generation Advanced Reburning for High Efficiency NOx Control

    International Nuclear Information System (INIS)

    Energy and Environmental Research Corporation is developing a family of high efficiency and low cost NOx control technologies for coal fired utility boilers based on Advanced Reburning (AR), a synergistic integration of basic reburning with injection of an N-agent. In conventional AR, injection of the reburn fuel is followed by simultaneous N-agent and overfire air injection. The second generation AR systems incorporate several components which can be used in different combinations. These components include: (1) Reburning Injection of the reburn fuel and overfire air. (2) N-agent Injection The N-agent (ammonia or urea) can be injected at different locations: into the reburning zone, along with the overfire air, and downstream of the overfire air injection. (3) N-agent Promotion Several sodium compounds can considerably enhance the NOx control from N-agent injection. These ''promoters'' can be added to aqueous N-agents. (4) Two Stages of N-agent Injection and Promotion Two N-agents with or without promoters can be injected at different locations for deeper NOx control. AR systems are intended for post-RACT applications in ozone non-attainment areas where NOx control in excess of 80% is required. AR will provide flexible installations that allow NOx levels to be lowered when regulations become more stringent. The total cost of NOx control for AR systems is approximately half of that for SCR. Experimental and kinetic modeling results for development of these novel AR systems are presented. Tests have been conducted in a 1.0 MMBtu/hr Boiler Simulator Facility with coal as the main fuel and natural gas as the reburning fuel. The results show that high efficiency NOx control, in the range 84-95%, can be achieved with various elements of AR. A comparative byproduct emission study was performed to compare the emissions from different variants of AR with commercial technologies (reburning and SNCR). For each technology sampling included: CO, SO2, N2O, total hydrocarbons, NH

  7. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  8. Design and simulation of an automation system of a production process and fractionation of {sup 131}I, using strategies of advanced control; Diseno y simulacion de un sistema de automatizacion del proceso de produccion y fraccionamiento de {sup 131}I, utilizando estrategias de control avanzado

    Energy Technology Data Exchange (ETDEWEB)

    Paez, Jose; Arias, Pablo; Miranda, Jesus, E-mail: jpaez@jpen.gob.pe, E-mail: parias@ipen.gob.pe, E-mail: jmiranda@ipen.gob.pe [Instituto Peruano de Energia Nuclear (lPEN), Lima (Peru). Direccion de Servicios. Division de Instrumentacion Nuclear

    2013-10-01

    In this report, the results are obtained in the design and simulation of a control system using advanced strategies in a production cell in the Plant Production of Radioisotopes of IPEN. The results demonstrate that the temperature of the coalition oven is stabilized after 30 minutes, being constituted in an advantage to obtain the maximum yield of the cell production of {sup 131}I; also, an integral good controller has been designed that allows to obtain a mathematical model that reproduces with enough accuracy the behavior of the process. With the final simulation it has been to demonstrate that the System Control of Temperature of the Cell Production of {sup 131}I is a controllable system and allows to carry out the respective sequence with other variables of control of the production cell. (author)

  9. Development of an advanced intelligent robot navigation system

    International Nuclear Information System (INIS)

    As part of the US Department of Energy's Robotics for Advanced Reactors Project, the authors are in the process of assembling an advanced intelligent robotic navigation and control system based on previous work performed on this project in the areas of computer control, database access, graphical interfaces, shared data and computations, computer vision for positions determination, and sonar-based computer navigation systems. The system will feature three levels of goals: (1) high-level system for management of lower level functions to achieve specific functional goals; (2) intermediate level of goals such as position determination, obstacle avoidance, and discovering unexpected objects; and (3) other supplementary low-level functions such as reading and recording sonar or video camera data. In its current phase, the Cybermotion K2A mobile robot is not equipped with an onboard computer system, which will be included in the final phase. By that time, the onboard system will play important roles in vision processing and in robotic control communication

  10. Recent advances in systems safety and security

    CERN Document Server

    Stamatescu, Grigore

    2016-01-01

    This book represents a timely overview of advances in systems safety and security, based on selected, revised and extended contributions from the 2nd and 3rd editions of the International Workshop on Systems Safety and Security – IWSSS, held in 2014 and 2015, respectively, in Bucharest, Romania. It includes 14 chapters, co-authored by 34 researchers from 7 countries. The book provides an useful reference from both theoretical and applied perspectives in what concerns recent progress in this area of critical interest. Contributions, broadly grouped by core topic, address challenges related to information theoretic methods for assuring systems safety and security, cloud-based solutions, image processing approaches, distributed sensor networks and legal or risk analysis viewpoints. These are mostly accompanied by associated case studies providing additional practical value and underlying the broad relevance and impact of the field.

  11. Industrial Advanced Turbine Systems Program overview

    Energy Technology Data Exchange (ETDEWEB)

    Esbeck, D.W. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  12. Commercial introduction of the Advanced NOxTECH system

    Energy Technology Data Exchange (ETDEWEB)

    Sudduth, B.C. [NOxTECH, Inc., Irvine, CA (United States)

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  13. Fuels for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Fuels for advanced nuclear reactors differ greatly from conventional light water reactor fuels and vary widely between the different concepts, due differences in reactor architecture and deployment. Functional requirements of all fuel designs include (1) retention of fission products and fuel nuclides, (2) dimensional stability, and (3) maintaining a coolable geometry. In all cases, the anticipated fuel performance under normal or off-normal conditions is the limiting factor in reactor system design, and cumulative effects of increased exposure to higher burnup degrades fuel performance. In high-temperature (thermal) gas reactor systems, fuel particles of uranium dioxide or uranium oxycarbide particles are coated with layers of carbon and SiC (or ZrC). Such fuels have been used successfully to very high burnup (10-20% of heavy-metal atoms) and can withstand transient temperatures up to 1600 C. Oxide (pellet-type) and metal (pin-type) fuels clad in stainless steel tubes have been successfully used in liquid metal cooled fast reactors, attaining burnup of 20% or more of heavy-metal atoms. Those fuel designs are being adapted for actinide management missions, requiring greater contents of minor actinides (e.g. Am, Np, Cm). The current status of each fuel system is reviewed and technical challenges confronting the implementation of each fuel in the context of the entire advanced reactor fuel cycle (fabrication, reactor performance, recycle) are discussed

  14. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  15. Removal heat extraction systems in advanced reactors

    International Nuclear Information System (INIS)

    The two main problems generally attributed to the electricity generation by nuclear power are the security of the facility and the radioactivity of the nuclear wastes, in a way that the only tasks of the European Commission on this matter are to make sure a high level of security in the facilities, as well as an adequate fuel and waste management. In this paper we discuss about the main lines in which the CIEMAT and the Polytechnic University of Valencia are working relative to the study of the passive working systems of the advanced designs reactors. (Author) 24 refs

  16. System Level Analysis of LTE-Advanced

    DEFF Research Database (Denmark)

    Wang, Yuanye

    This PhD thesis focuses on system level analysis of Multi-Component Carrier (CC) management for Long Term Evolution (LTE)-Advanced. Cases where multiple CCs are aggregated to form a larger bandwidth are studied. The analysis is performed for both local area and wide area networks. In local area......, Time Division Duplexing (TDD) is chosen as the duplexing mode in this study. The performance with different network time synchronization levels is compared, and it is observed that achieving time synchronization significantly improves the uplink performance without penalizing much of the downlink...

  17. Mine hoist automation and control systems

    Energy Technology Data Exchange (ETDEWEB)

    Cock, M.J.L. [CEGELEC Projects Ltd., Rugby (United Kingdom). Mining Marine and Industrial Drives Division

    1995-06-01

    In the past control systems for mine hoists have used many technologies including analogue control, relays and static logic. The dramatic advances in technology in recent years now means that all control functions can be performed using a distributed microprocessor system which minimises training, and gives superior diagnostic information, provides very high reliability. The modern distributed microprocessor system covers all the needs of a mine hoist, from advanced control through automation sequencing to safety systems and electronic speed distance protection. The safety core remains as a proven dual line relay system, but is enhanced by comprehensive first up and status monitoring. The advantages of a distributed microprocessor control system are outlined. Details are presented of the proven MWS2000 system as applied to a cycloconvertor winder, and on the range of options available, which includes the elimination of all drum driven auxiliary shafts, cam gear units and mechanical speed distance protection. Special control techniques for deep level hoisting are incorporated in the system, including `S` shaped speed control of emergency mechanical brakes to minimise rope stress. Finally, a review is given of the latest developments in control technology, and the implications for future developments in mine hoisting. 10 figs.

  18. Advanced vehicle systems assessment. Volume 3: Systems assessment

    Science.gov (United States)

    Hardy, K.

    1985-01-01

    The systems analyses integrate the advanced component and vehicle characteristics into conceptual vehicles with identical performance (for a given application) and evaluates the vehicles in typical use patterns. Initial and life-cycle costs are estimated and compared to conventional reference vehicles with comparable technological advances, assuming the vehicles will be in competition in the early 1990s. Electric vans, commuter vehicles, and full-size vehicles, in addition to electric/heat-engine hybrid and fuel-cell powered vehicles, are addressed in terms of performance and economics. System and subsystem recommendations for vans and two-passenger commuter vehicles are based on the economic analyses in this volume.

  19. Second Generation Advanced Reburning for High Efficiency NOx Control

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski; Mark S. Sheldon; David Moyeda; Roy Payne

    2001-06-30

    This project develops a family of novel Second Generation Advanced Reburning (SGAR) NO{sub x} control technologies, which can achieve 95% NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction (SCR). The conventional Advanced Reburning (AR) process integrates basic reburning and N-agent injection. The SGAR systems include six AR variants: (1) AR-Lean--injection of the N-agent and promoter along with overfire air; (2) AR-Rich--injection of N-agent and promoter into the reburning zone; (3) Multiple Injection Advanced Reburning (MIAR)--injection of N-agents and promoters both into the reburning zone and with overfire air; (4) AR-Lean + Promoted SNCR--injection of N-agents and promoters with overfire air and into the temperature zone at which Selective Non-Catalytic Reduction (SNCR) is effective; (5) AR-Rich + Promoted SNCR--injection of N-agents and promoters into the reburning zone and into the SNCR zone; and (6) Promoted Reburning + Promoted SNCR--basic or promoted reburning followed by basic or promoted SNCR process. The project was conducted in two phases over a five-year period. The work included a combination of analytical and experimental studies to confirm the process mechanisms, identify optimum process configurations, and develop a design methodology for full-scale applications. Phase I was conducted from October, 1995 to September, 1997 and included both analytical studies and tests in bench and pilot-scale test rigs. Phase I moved AR technology to Maturity Level III-Major Subsystems. Phase II is conducted over a 45 month period (October, 1997-June, 2001). Phase II included evaluation of alternative promoters, development of alternative reburning fuel and N-Agent jet mixing systems, and scale up. The goal of Phase II was to move the technology to Maturity Level I-Subscale Integrated System. Tests in combustion facility ranging in firing rate from 0.1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr demonstrated the

  20. Power Control Technique for Efficient Call Admission Control in Advanced Wirless Networks

    Directory of Open Access Journals (Sweden)

    Ch. Sreenivasa Rao

    2012-06-01

    Full Text Available In 4G networks, call admission control techniques have been proposed to provide Quality of Service (QoS in a network by restricting the access to network resources. Power control is essential in call admission control in order to provide fair access to all users, improve battery lifetime and system performance. But the existing call admission control algorithms rarely consider the power controlling techniques in the handoff process for different traffic classes. In this paper, we propose to develop a power controlled call admission control scheme for handoff in the advanced wireless networks. The incoming call measures the initial interference on it and then the base station starts transmitting the packets to the new call. The new call is rejected when the interference reaches a threshold value.Whenever an existing call meets the power constraint, the transmit power is decremented based on thetraffic class and incoming call obtains this information by monitoring the interference received on it. Theconvergence of the power control algorithm is checked and the power levels of all incoming calls areadjusted. From our simulation results we prove that this power control technique provides efficienthandoff in the 4G networks by increasing the throughput and reducing the delay of the existing users.

  1. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Charlene R. Crocker; Steven A. Benson; Stanley J. Miller

    2003-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  2. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  3. Contribution to the study and design of advanced controllers : application to smelting furnaces

    OpenAIRE

    Ojeda Sarmiento, Juan Manuel

    2013-01-01

    In this doctoral thesis, contributions to the study and design of advanced controllers and their application to metallurgical smelting furnaces are discussed. For this purpose, this kind of plants has been described in detail. The case of study is an Isasmelt plant in south Peru, which yearly processes 1.200.000 tons of copper concentrate. The current control system is implemented on a distributed control system. The main structure includes a cascade strategy to regulate the molten bath tempe...

  4. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  5. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  6. Advanced h∞ control towards nonsmooth theory and applications

    CERN Document Server

    Orlov, Yury V

    2014-01-01

    This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H∞ approach in the nonsmooth setting. Similar to the standard nonlinear H∞ approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements.    Advanced H∞ Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton–Jacobi–Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is exten...

  7. New Asymmetric Fuzzy PID Control for Pneumatic Position Control System

    Institute of Scientific and Technical Information of China (English)

    薛阳; 彭光正; 范萌; 伍清河

    2004-01-01

    A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.

  8. Advanced Electric Traction System Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  9. Advanced radiant combustion system. Final report, September 1989--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  10. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Science.gov (United States)

    2010-01-01

    .../bone separation machinery; process control. 318.24 Section 318.24 Animals and Animal Products FOOD.../bone separation machinery; process control. (a) General. Meat, as defined in § 301.2 of this subchapter... this subchapter, using advances in mechanical meat/bone separation machinery (i.e., AMR systems)...

  11. An empirical study on the basic human error probabilities for NPP advanced main control room operation using soft control

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Inseok, E-mail: nuclear82@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Ar Ryum, E-mail: arryum@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Harbi, Mohamed Ali Salem Al, E-mail: 100035556@kustar.ac.ae [Department of Nuclear Engineering, Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); Lee, Seung Jun, E-mail: sjlee@kaeri.re.kr [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, 150-1, Dukjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kang, Hyun Gook, E-mail: hyungook@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Seong, Poong Hyun, E-mail: phseong@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2013-04-15

    Highlights: ► The operation environment of MCRs in NPPs has changed by adopting new HSIs. ► The operation action in NPP Advanced MCRs is performed by soft control. ► Different basic human error probabilities (BHEPs) should be considered. ► BHEPs in a soft control operation environment are investigated empirically. ► This work will be helpful to verify if soft control has positive or negative effects. -- Abstract: By adopting new human–system interfaces that are based on computer-based technologies, the operation environment of main control rooms (MCRs) in nuclear power plants (NPPs) has changed. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, soft controls, and so on, are called Advanced MCRs. Among the many features in Advanced MCRs, soft controls are an important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, touch screens, and so on, operators can select a specific screen, then choose the controller, and finally manipulate the devices. However, because of the different interfaces between soft control and hardwired conventional type control, different basic human error probabilities (BHEPs) should be considered in the Human Reliability Analysis (HRA) for advanced MCRs. Although there are many HRA methods to assess human reliabilities, such as Technique for Human Error Rate Prediction (THERP), Accident Sequence Evaluation Program (ASEP), Human Error Assessment and Reduction Technique (HEART), Human Event Repository and Analysis (HERA), Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR), Cognitive Reliability and Error Analysis Method (CREAM), and so on, these methods have been applied to conventional MCRs, and they do not consider the new features of advance MCRs such as soft controls. As a result, there is an insufficient database for assessing human reliabilities in advanced

  12. Advanced systems: Status and development prospects

    International Nuclear Information System (INIS)

    World reserves of coal, uranium, thorium and thermonuclear fuel (deuterium and lithium) are sufficient to provide mankind with energy for many centuries. The rate of increase in demand is unlikely to be a limiting factor, and it would seem that any ''limits to growth'' will be dictated by other, in particular ecological, factors. In the last two decades, world power production has developed a structure in which a predominant place is occupied by oil and gas; this will have to change as a result of the marked depletion of oil resources and the enhanced role played in the fuel balance by power from coal and nuclear fission, on which, it would seem, the long-term growth of world energy production will be based. The contribution of nuclear fission power towards meeting world energy needs will depend on a number of factors, the most important of which from a long-term point of view is the time and rate of introduction of advanced nuclear power systems and fuel cycles with high nuclear fuel surpluses (breeding ratios). The results of almost 30 years of development of nuclear power with thermal-neutron reactors may serve as a basis for the analysis, evaluation and forecasting of the development of advanced systems. (author)

  13. Advances in Packaging Methods, Processes and Systems

    Directory of Open Access Journals (Sweden)

    Nitaigour Premchand Mahalik

    2014-10-01

    Full Text Available The food processing and packaging industry is becoming a multi-trillion dollar global business. The reason is that the recent increase in incomes in traditionally less economically developed countries has led to a rise in standards of living that includes a significantly higher consumption of packaged foods. As a result, food safety guidelines have been more stringent than ever. At the same time, the number of research and educational institutions—that is, the number of potential researchers and stakeholders—has increased in the recent past. This paper reviews recent developments in food processing and packaging (FPP, keeping in view the aforementioned advancements and bearing in mind that FPP is an interdisciplinary area in that materials, safety, systems, regulation, and supply chains play vital roles. In particular, the review covers processing and packaging principles, standards, interfaces, techniques, methods, and state-of-the-art technologies that are currently in use or in development. Recent advances such as smart packaging, non-destructive inspection methods, printing techniques, application of robotics and machineries, automation architecture, software systems and interfaces are reviewed.

  14. Incoherent control of locally controllable quantum systems

    International Nuclear Information System (INIS)

    An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.

  15. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case

  16. Modular thyristor controlled series capacitor control system

    Energy Technology Data Exchange (ETDEWEB)

    Clark, K.; Larsen, E.V.; Wegner, C.A.; Piwko, R.J.

    1995-06-13

    A modular thyristor controlled series capacitor (TCSC) system, including a method and apparatus, uses phase controlled firing based on monitored capacitor voltage and line current. For vernier operation, the TCSC system predicts an upcoming firing angle for switching a thyristor controlled commutating circuit to bypass line current around a series capacitor. Each bypass current pulse changes the capacitor voltage proportionally to the integrated value of the current pulse. The TCSC system promptly responds to an offset command from a higher-level controller to control bypass thyristor duty to minimize thyristor damage, and to prevent capacitor voltage drift during line current disturbances. In a multi-module TCSC system, the higher level controller accommodates competing objectives of various system demands, including minimizing losses in scheduling control, stabilizing transients, damping subsynchronous resonance (SSR) oscillations, damping direct current (DC) offset, and damping power-swings. 67 figs.

  17. System and method for advanced power management

    Science.gov (United States)

    Atcitty, Stanley; Symons, Philip C.; Butler, Paul C.; Corey, Garth P.

    2009-07-28

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  18. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  19. Telerobotic virtual control system

    Science.gov (United States)

    Zhai, Shumin; Milgram, Paul

    1992-03-01

    A project to develop a telerobotic `virtual control' capability, currently underway at the University of Toronto, is described. The project centers on a new mode of interactive telerobotic control based on the technology of combining computer generated stereographic images with remotely transmitted stereoscopic video images. A virtual measurement technique, in conjunction with a basic level of digital image processing, comprising zooming, parallax adjustment, edge enhancement, and edge detection has been developed to assist the human operator in visualization of the remote environment and in spatial reasoning. The aim is to maintain target recognition, tactical planning, and high-level control functions in the hands of the human operator with the computer performing low-level computation and control. Control commands initiated by the operator are implemented through manipulation of a virtual image of the robot system, merged with a live video image of the remote scene. This paper discusses the philosophy and objectives of the project, with emphasis on the underlying human factor considerations in the design, and reports the progress made to date in this effort.

  20. Control rod drive system

    International Nuclear Information System (INIS)

    The present invention concerns an electromotive driving-type control rod driving system of a BWR type reactor, for which sliding resistance (friction) test can be performed of a movable portion of the control rod driving mechanisms. Namely, a hydraulic pressure control unit has following constitutions in addition to a conventional constitution as a sliding resistance test performing function. (1) A restricting valve is disposed downstream of the scram valve of scram pipelines to control flow rate and pressure of pressurized water flown in the pipelines. (2) A pressure gauge detects a pressure between the scram valve and the restricting valve. (3) A flow meter detects the flow rate of pipelines controlled by the restricting valve. (4) A recording pressure detector detects the pressure at the downstream of the restricting valve. (5) The recording device is attached when the sliding resistant test is performed for tracing the pressure measured by the pressure detection device. Further, the scram valve sends electric signals to a central operation chamber when it is fully closed. The central operation chamber has a function of fully opening the restricting valve by way of the electric signals. (I.S.)

  1. Topological theory of dynamical systems recent advances

    CERN Document Server

    Aoki, N

    1994-01-01

    This monograph aims to provide an advanced account of some aspects of dynamical systems in the framework of general topology, and is intended for use by interested graduate students and working mathematicians. Although some of the topics discussed are relatively new, others are not: this book is not a collection of research papers, but a textbook to present recent developments of the theory that could be the foundations for future developments. This book contains a new theory developed by the authors to deal with problems occurring in diffentiable dynamics that are within the scope of general topology. To follow it, the book provides an adequate foundation for topological theory of dynamical systems, and contains tools which are sufficiently powerful throughout the book. Graduate students (and some undergraduates) with sufficient knowledge of basic general topology, basic topological dynamics, and basic algebraic topology will find little difficulty in reading this book.

  2. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  3. Advanced Proportional Servo Valve Control with Customized Control Code using White Space

    OpenAIRE

    Lauer, Peter

    2016-01-01

    An industrial control valve has been designed by Eaton (AxisPro® valve). The servo performance valve has onboard electronics that features external and internal sensor interfaces, advanced control modes and network capability. Advanced control modes are implement in the valves firmware. With the help of the white space it is possilbe to execute custom code directly on the valve that interact with these controls. Small OEM applications, like rubber moulding machines, benefit from the cominatio...

  4. Advanced and intelligent control in power electronics and drives

    CERN Document Server

    Blaabjerg, Frede; Rodríguez, José

    2014-01-01

    Power electronics and variable frequency drives are continuously developing multidisciplinary fields in electrical engineering, and it is practically not possible to write a book covering the entire area by one individual specialist. Especially by taking account the recent fast development in the neighboring fields like control theory, computational intelligence and signal processing, which all strongly influence new solutions in control of power electronics and drives. Therefore, this book is written by individual key specialist working on the area of modern advanced control methods which penetrates current implementation of power converters and drives. Although some of the presented methods are still not adopted by industry, they create new solutions with high further research and application potential. The material of the book is presented in the following three parts: Part I: Advanced Power Electronic Control in Renewable Energy Sources (Chapters 1-4), Part II: Predictive Control of Power Converters and D...

  5. Contributions of CCLM to advances in quality control.

    Science.gov (United States)

    Kazmierczak, Steven C

    2013-01-01

    Abstract The discipline of laboratory medicine is relatively young when considered in the context of the history of medicine itself. The history of quality control, within the context of laboratory medicine, also enjoys a relatively brief, but rich history. Laboratory quality control continues to evolve along with advances in automation, measurement techniques and information technology. Clinical Chemistry and Laboratory Medicine (CCLM) has played a key role in helping disseminate information about the proper use and utility of quality control. Publication of important advances in quality control techniques and dissemination of guidelines concerned with laboratory quality control has undoubtedly helped readers of this journal keep up to date on the most recent developments in this field.

  6. Intelligent Facial Recognition Systems: Technology advancements for security applications

    Energy Technology Data Exchange (ETDEWEB)

    Beer, C.L.

    1993-07-01

    Insider problems such as theft and sabotage can occur within the security and surveillance realm of operations when unauthorized people obtain access to sensitive areas. A possible solution to these problems is a means to identify individuals (not just credentials or badges) in a given sensitive area and provide full time personnel accountability. One approach desirable at Department of Energy facilities for access control and/or personnel identification is an Intelligent Facial Recognition System (IFRS) that is non-invasive to personnel. Automatic facial recognition does not require the active participation of the enrolled subjects, unlike most other biological measurement (biometric) systems (e.g., fingerprint, hand geometry, or eye retinal scan systems). It is this feature that makes an IFRS attractive for applications other than access control such as emergency evacuation verification, screening, and personnel tracking. This paper discusses current technology that shows promising results for DOE and other security applications. A survey of research and development in facial recognition identified several companies and universities that were interested and/or involved in the area. A few advanced prototype systems were also identified. Sandia National Laboratories is currently evaluating facial recognition systems that are in the advanced prototype stage. The initial application for the evaluation is access control in a controlled environment with a constant background and with cooperative subjects. Further evaluations will be conducted in a less controlled environment, which may include a cluttered background and subjects that are not looking towards the camera. The outcome of the evaluations will help identify areas of facial recognition systems that need further development and will help to determine the effectiveness of the current systems for security applications.

  7. Recent Advances in Bidirectional Modeling and Structural Control

    OpenAIRE

    Paul, Satyam; Yu, Wen; Li, Xiaoou

    2016-01-01

    This paper provides an overview of building structure modeling and control under bidirectional seismic waves. It focuses on different types of bidirectional control devices, control strategies, and bidirectional sensors used in structural control systems. This paper also highlights the various issues like system identification techniques, the time-delay in the system, estimation of velocity and position from acceleration signals, and optimal placement of the sensors and control devices. The i...

  8. Recent Advances in Bidirectional Modeling and Structural Control

    OpenAIRE

    Satyam Paul; Wen Yu; Xiaoou Li

    2016-01-01

    This paper provides an overview of building structure modeling and control under bidirectional seismic waves. It focuses on different types of bidirectional control devices, control strategies, and bidirectional sensors used in structural control systems. This paper also highlights the various issues like system identification techniques, the time-delay in the system, estimation of velocity and position from acceleration signals, and optimal placement of the sensors and control devices. Th...

  9. Controlled Quantum Open Systems

    CERN Document Server

    Alicki, R

    2003-01-01

    The theory of controlled quantum open systems describes quantum systems interacting with quantum environments and influenced by external forces varying according to given algorithms. It is aimed, for instance, to model quantum devices which can find applications in the future technology based on quantum information processing. One of the main problems making difficult the practical implementations of quantum information theory is the fragility of quantum states under external perturbations. The aim of this note is to present the relevant results concerning ergodic properties of open quantum systems which are useful for the optimization of quantum devices and noise (errors) reduction. In particular we present mathematical characterization of the so-called "decoherence-free subspaces" for discrete and continuous-time quantum dynamical semigroups in terms of $C^*$-algebras and group representations. We analyze the non-Markovian models also, presenting the formulas for errors in the Born approximation. The obtain...

  10. Fault tolerant control for switched linear systems

    CERN Document Server

    Du, Dongsheng; Shi, Peng

    2015-01-01

    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  11. Adaptive LIDAR Vision System for Advanced Robotics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced robotic systems demand an enhanced vision system and image processing algorithms to reduce the percentage of manual operation required. Unstructured...

  12. Final Report Advanced Quasioptical Launcher System

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  13. Advanced Quasioptical Launcher System. Final Report

    International Nuclear Information System (INIS)

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  14. Lessons Learned from the Advanced Topographic Laser Altimeter System

    Science.gov (United States)

    Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave

    2016-01-01

    The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.

  15. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  16. Crawling the Control System

    Energy Technology Data Exchange (ETDEWEB)

    Theodore Larrieu

    2009-10-01

    Information about accelerator operations and the control system resides in various formats in a variety of places on the lab network. There are operating procedures, technical notes, engineering drawings, and other formal controlled documents. There are programmer references and API documentation generated by tools such as doxygen and javadoc. There are the thousands of electronic records generated by and stored in databases and applications such as electronic logbooks, training materials, wikis, and bulletin boards and the contents of text-based configuration files and log files that can also be valuable sources of information. The obvious way to aggregate all these sources is to index them with a search engine that users can then query from a web browser. Toward this end, the Google "mini" search appliance was selected and implemented because of its low cost and its simple web-based configuration and management. In addition to crawling and indexing electronic documents, the appliance provides an API that has been used to supplement search results with live control system data such as current values of EPICS process variables and graphs of recent data from the archiver.

  17. MIRADAS control system

    Science.gov (United States)

    Rosich Minguell, Josefina; Garzón Lopez, Francisco

    2012-09-01

    The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS, a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5μm bandpass) was selected in 2010 by the Gran Telescopio Canarias (GTC) partnership as the next-generation near-infrared spectrograph for the world's largest optical/infrared telescope, and is being developed by an international consortium. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofísica de Canarias, Institut de Física d'Altes Energies, Institut d'Estudis Espacials de Catalunya and Universidad Nacional Autónoma de México. This paper shows an overview of the MIRADAS control software, which follows the standards defined by the telescope to permit the integration of this software on the GTC Control System (GCS). The MIRADAS Control System is based on a distributed architecture according to a component model where every subsystem is selfcontained. The GCS is a distributed environment written in object oriented C++, which runs components in different computers, using CORBA middleware for communications. Each MIRADAS observing mode, including engineering, monitoring and calibration modes, will have its own predefined sequence, which are executed in the GCS Sequencer. These sequences will have the ability of communicating with other telescope subsystems.

  18. Robust H∞ control for networked control systems

    Institute of Scientific and Technical Information of China (English)

    Ma Weiguo; Shao Cheng

    2008-01-01

    The robust H∞ control for networked control systems with both stochastic network-induced delay and data packet dropout is studied.When data are transmitted over network,the stochastic data packet dropout process can be described by a two-state Markov chain.The networked control systems with stochastic network-induced delay and data packet dropout are modeled as a discrete time Markov jump linear system with two operation modes.The sufficient condition of robust H∞ control for networked control systems stabilized by state feedback controller is presented in terms of linear matrix inequality.The state feedback controller can be constructed via the solution of a set of linear matrix inequalities.An example is given to verify the effectiveness of the method proposed.

  19. Recent Advances in Understanding Integrative Control of Potassium Homeostasis

    Science.gov (United States)

    Youn, Jang H.; McDonough, Alicia A.

    2016-01-01

    The potassium homeostatic system is very tightly regulated. Recent studies have shed light on the sensing and molecular mechanisms responsible for this tight control. In addition to classic feedback regulation mediated by a rise in extracellular fluid (ECF) [K+], there is evidence for a feedforward mechanism: Dietary K+ intake is sensed in the gut, and an unidentified gut factor is activated to stimulate renal K+ excretion. This pathway may explain renal and extrarenal responses to altered K+ intake that occur independently of changes in ECF [K+]. Mechanisms for conserving ECF K+ during fasting or K+ deprivation have been described: Kidney NADPH oxidase activation initiates a cascade that provokes the retraction of K+ channels from the cell membrane, and muscle becomes resistant to insulin stimulation of cellular K+ uptake. How these mechanisms are triggered by K+ deprivation remains unclear. Cellular AMP kinase–dependent protein kinase activity provokes the acute transfer of K+ from the ECF to the ICF, which may be important in exercise or ischemia. These recent advances may shed light on the beneficial effects of a high-K+ diet for the cardiovascular system. PMID:18759636

  20. Hybrid Control System for the ATLAS Facility

    International Nuclear Information System (INIS)

    A thermal-hydraulic integral effect test (IET) loop, advanced thermal-hydraulic test loop for accident simulation (ATLAS), has been constructed in the Korea Atomic Energy Research Institute (KAERI). For the data acquisition and control system, hybrid control system (HCS) was adopted to enhance the integrated performance of demanding process control application for acquiring of experimental data. The whole feature of the data acquisition and control system consists of 1 set of the HCS for headware connection, 1 server station for signal processing schemes, 1 engineering work station (EWS) for control logics, and 3 operator interface station (OPS) for human-machine interface. The total number of signals for the data acquisition and the system control of the atlas facility is up to about 2010 channels, which are distributed in 16 chasses which are installed in 10 cabinets. The main focus of this paper is to present the technical configuration of the HCS of the atlas facility

  1. Comparison of Advanced Distillation Control Methods, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  2. Structural materials challenges for advanced reactor systems

    Science.gov (United States)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  3. BLTC control system software

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J.B., Fluor Daniel Hanford

    1997-02-10

    This is a direct revision to Rev. 0 of the BLTC Control System Software. The entire document is being revised and released as HNF-SD-FF-CSWD-025, Rev 1. The changes incorporated by this revision include addition of a feature to automate the sodium drain when removing assemblies from sodium wetted facilities. Other changes eliminate locked in alarms during cold operation and improve the function of the Oxygen Analyzer. See FCN-620498 for further details regarding these changes. Note the change in the document number prefix, in accordance with HNF-MD-003.

  4. Matlab control systems engineering

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Control Systems Engineering introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an in

  5. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  6. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    Science.gov (United States)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  7. Basic researches for advancement of man-machine systems

    International Nuclear Information System (INIS)

    The historical development of plant instrumentation and control system accompanying the introduction of automation is shown by the example of nuclear power plants. It is explained, and the change in the role of operators in the man-machine system is mentioned. Human errors are the serious problem in various fields, and automation resolves it. But complex systems also caused various disasters due to the relation of men and machines. The problem of human factors in high risk system automation is considered as the heightening of reliability and the reduction of burden on workers by decreasing human participation, and the increase of the risk of large accidents due to the lowering of reliability of human elements and the strengthening of the training of workers. Human model and the framework of human error analysis, the development of the system for man-machine system design and information analysis and evaluation, the significance of physiological index measurement and the perspective of the application, the analysis of the behavior of subjects in the abnormality diagnosis experiment using a plant simulator, and the development to the research on mutual adaptation interface are discussed. In this paper, the problem of human factors in system safety, that technical advancement brings about is examined, and the basic research on the advancement of man-machine systems by the author is reported. (K.I.)

  8. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    International Nuclear Information System (INIS)

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation

  9. Advanced modelling of optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, L.; Yura, H.T.;

    2004-01-01

    Analytical and numerical models for describing and understanding the light propagation in samples imaged by optical coherence tomography (OCT) systems are presented. An analytical model for calculating the OCT signal based on the extended Huygens–Fresnel principle valid both for the single...... and multiple scattering regimes is reviewed. An advanced Monte Carlo model for calculating the OCT signal is also reviewed, and the validity of this model is shown through a mathematical proof based on the extended Huygens–Fresnel principle. Moreover, for the first time the model is verified experimentally....... From the analytical model, an algorithm for enhancing OCT images is developed; the so-called true-reflection algorithm in which the OCT signal may be corrected for the attenuation caused by scattering. For the first time, the algorithm is demonstrated by using the Monte Carlo model as a numerical...

  10. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  11. Controlling death: the false promise of advance directives.

    Science.gov (United States)

    Perkins, Henry S

    2007-07-01

    Advance directives promise patients a say in their future care but actually have had little effect. Many experts blame problems with completion and implementation, but the advance directive concept itself may be fundamentally flawed. Advance directives simply presuppose more control over future care than is realistic. Medical crises cannot be predicted in detail, making most prior instructions difficult to adapt, irrelevant, or even misleading. Furthermore, many proxies either do not know patients' wishes or do not pursue those wishes effectively. Thus, unexpected problems arise often to defeat advance directives, as the case in this paper illustrates. Because advance directives offer only limited benefit, advance care planning should emphasize not the completion of directives but the emotional preparation of patients and families for future crises. The existentialist Albert Camus might suggest that physicians should warn patients and families that momentous, unforeseeable decisions lie ahead. Then, when the crisis hits, physicians should provide guidance; should help make decisions despite the inevitable uncertainties; should share responsibility for those decisions; and, above all, should courageously see patients and families through the fearsome experience of dying.

  12. Application of Advanced Process Control techniques to a pusher type reheating furnace

    Science.gov (United States)

    Zanoli, S. M.; Pepe, C.; Barboni, L.

    2015-11-01

    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.

  13. Design concepts for KSTAR plasma control system

    International Nuclear Information System (INIS)

    We present design concepts and features of the plasma control system (PCS) in Korea Superconducting Tokamak Advanced Research (KSTAR). A design structure of the PCS is proposed as an effort to achieve research objectives of the KSTAR project. The PCS architecture is characterized by the real-time data communication using reflective-memory network, the hierarchical organization of dedicated controllers, and the integrated generation of actuator signals. Discussions are made of the functions and present design choices of the KSTAR PCS

  14. Advanced continuous cultivation methods for systems microbiology.

    Science.gov (United States)

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  15. Advanced continuous cultivation methods for systems microbiology.

    Science.gov (United States)

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories. PMID:26220303

  16. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  17. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  18. Spectrophotometric Procedure for Fast Reactor Advanced Coolant Manufacture Control

    Science.gov (United States)

    Andrienko, O. S.; Egorov, N. B.; Zherin, I. I.; Indyk, D. V.

    2016-01-01

    The paper describes a spectrophotometric procedure for fast reactor advanced coolant manufacture control. The molar absorption coefficient of dimethyllead dibromide with dithizone was defined as equal to 68864 ± 795 l·mole-1·cm-1, limit of detection as equal to 0.583 · 10-6 g/ml. The spectrophotometric procedure application range was found to be equal to 37.88 - 196.3 g. of dimethyllead dibromide in the sample. The procedure was used within the framework of the development of the method of synthesis of the advanced coolant for fast reactors.

  19. Guaranteed cost control for networked control systems

    Institute of Scientific and Technical Information of China (English)

    Linbo XIE; Huajing FANG; Ying ZHENG

    2004-01-01

    The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynamic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ performance cost function.

  20. Resource characterization and residuals remediation, Task 1.0: Air quality assessment and control, Task 2.0: Advanced power systems, Task 3.0: Advanced fuel forms and coproducts, Task 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, S.B.; Timpe, R.C.; Hartman, J.H. [and others

    1994-02-01

    This report addresses three subtasks related to the Resource Characterization and Residuals Remediation program: (1) sulfur forms in coal and their thermal transformations, (2) data resource evaluation and integration using GIS (Geographic Information Systems), and (3) supplementary research related to the Rocky Mountain 1 (RM1) UCG (Underground Coal Gasification) test program.

  1. Theoretical and algorithmic advances in multi-parametric programming and control

    KAUST Repository

    Pistikopoulos, Efstratios N.

    2012-04-21

    This paper presents an overview of recent theoretical and algorithmic advances, and applications in the areas of multi-parametric programming and explicit/multi-parametric model predictive control (mp-MPC). In multi-parametric programming, advances include areas such as nonlinear multi-parametric programming (mp-NLP), bi-level programming, dynamic programming and global optimization for multi-parametric mixed-integer linear programming problems (mp-MILPs). In multi-parametric/explicit MPC (mp-MPC), advances include areas such as robust multi-parametric control, multi-parametric nonlinear MPC (mp-NMPC) and model reduction in mp-MPC. A comprehensive framework for multi-parametric programming and control is also presented. Recent applications include a hydrogen storage device, a fuel cell power generation system, an unmanned autonomous vehicle (UAV) and a hybrid pressure swing adsorption (PSA) system. © 2012 Springer-Verlag.

  2. Robust control systems theory and case studies

    CERN Document Server

    Mackenroth, Uwe

    2004-01-01

    "Robust Control Systems" gives a self-contained introduction to modern Control Theory. It thus adds a textbook to the existing research-oriented literature on Robust Control. The author lays emphasis on the modern aspects of the design of controllers with prescribed performance and robustness properties. Different to the classical engineering approach, a rigorous mathematical treatment is essential for the full understanding and applicability of the modern methods such as H2 or H8 control or methods based on the structured singular value µ. Nevertheless, no prior knowledge of Control Theory is required as the classical fundamentals are introduced within the first few chapters. Subsequently a large part of the text provides elementary examples and industrial case studies, which are developed in full detail to show how modern methods can be applied to advanced problems. They make intensive use of MATLAB, especially the Control Systems Toolbox and the µ-Analysis and Synthesis Toolbox.

  3. Advanced information processing system: Input/output system services

    Science.gov (United States)

    Masotto, Tom; Alger, Linda

    1989-01-01

    The functional requirements and detailed specifications for the Input/Output (I/O) Systems Services of the Advanced Information Processing System (AIPS) are discussed. The introductory section is provided to outline the overall architecture and functional requirements of the AIPS system. Section 1.1 gives a brief overview of the AIPS architecture as well as a detailed description of the AIPS fault tolerant network architecture, while section 1.2 provides an introduction to the AIPS systems software. Sections 2 and 3 describe the functional requirements and design and detailed specifications of the I/O User Interface and Communications Management modules of the I/O System Services, respectively. Section 4 illustrates the use of the I/O System Services, while Section 5 concludes with a summary of results and suggestions for future work in this area.

  4. Communication and control for networked complex systems

    CERN Document Server

    Peng, Chen; Han, Qing-Long

    2015-01-01

    This book reports on the latest advances in the study of Networked Control Systems (NCSs). It highlights novel research concepts on NCSs; the analysis and synthesis of NCSs with special attention to their networked character; self- and event-triggered communication schemes for conserving limited network resources; and communication and control co-design for improving the efficiency of NCSs. The book will be of interest to university researchers, control and network engineers, and graduate students in the control engineering, communication and network sciences interested in learning the core principles, methods, algorithms and applications of NCSs.

  5. Optically controlled welding system

    Science.gov (United States)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  6. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Argonne National Lab. (ANL), Argonne, IL (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  7. Experience with synchronous and asynchronous digital control systems

    Science.gov (United States)

    Regenie, V. A.; Chacon, C. V.; Lock, W. P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  8. Concept and System of Personification Control System

    Institute of Scientific and Technical Information of China (English)

    Bai,Fengshuang; Yin,Yixin; Tu,Xuyan; Zhang,Ying

    2006-01-01

    This paper provides the system and conception of the Personification Control System (PCS) on the basis of Intelligent Control System based on Artificial life (ICS/AL), Artificial Emotion, Humanoid Control, and Intelligent Control System based on Field bus. According to system science and deciding of organize of biology, the Pyramid System of PCS are created. Then Pyramid System of PCS which is made up of PCS1/H, PCS1/S, PCS1/O, PCS1/C and PCS1/G is described.

  9. Advanced Technologies for Intelligent Systems of National Border Security

    CERN Document Server

    Simek, Krzysztof; Świerniak, Andrzej

    2013-01-01

    One of the world’s leading problems in the field of national security is protection of borders and borderlands. This book addresses multiple issues on advanced innovative methods of multi-level control of both ground (UGVs) and aerial drones (UAVs). Those objects combined with innovative algorithms become autonomous objects capable of patrolling chosen borderland areas by themselves and automatically inform the operator of the system about potential place of detection of a specific incident. This is achieved by using sophisticated methods of generation of non-collision trajectory for those types of objects and enabling automatic integration of both ground and aerial unmanned vehicles. The topics included in this book also cover presentation of complete information and communication technology (ICT) systems capable of control, observation and detection of various types of incidents and threats. This book is a valuable source of information for constructors and developers of such solutions for uniformed servi...

  10. Advanced Ground Systems Maintenance Prognostics Project

    Science.gov (United States)

    Perotti, Jose M.

    2015-01-01

    The project implements prognostics capabilities to predict when a component system or subsystem will no longer meet desired functional or performance criteria, called the end of life. The capability also provides an assessment of the remaining useful life of a hardware component. The project enables the delivery of system health advisories to ground system operators. This project will use modeling techniques and algorithms to assess components' health andpredict remaining life for such components. The prognostics capability being developed will beused:during the design phase and during pre/post operations to conduct planning and analysis ofsystem design, maintenance & logistics plans, and system/mission operations plansduring real-time operations to monitor changes to components' health and assess their impacton operations.This capability will be interfaced to Ground Operations' command and control system as a part ofthe AGSM project to help assure system availability and mission success. The initial modelingeffort for this capability will be developed for Liquid Oxygen ground loading applications.

  11. The advanced flame quality indicator system

    Energy Technology Data Exchange (ETDEWEB)

    Oman, R.; Rossi, M.J.; Calia, V.S.; Davis, F.L.; Rudin, A. [Insight Technologies, Inc., Bohemia, NY (United States)

    1997-09-01

    By combining oil tank monitoring, systems diagnostics and flame quality monitoring in an affordable system that communicates directly with dealers by telephone modem, Insight Technologies offers new revenue opportunities and the capability for a new order of customer relations to oil dealers. With co-sponsorship from New York State Energy Research and Development Authority, we have incorporated several valuable functions to a new product based on the original Flame Quality Indicator concept licensed from the US DOE`s Brookhaven National Laboratory. The new system is the Advanced Flame Quality Indicator, or AFQI. As before, the AFQI monitors and reports the intensity of the burner flame relative to a calibration established when the burner is set up at AFQI installation. Repairs or adjustments are summoned by late-night outgoing telephone calls when limits are exceeded in either direction, indicating an impending contamination or other malfunction. A independently, a pressure transducer for monitoring oil tank level and filter condition, safety lockout alarms and a temperature monitor; all reporting automatically at instructed intervals via an on-board modem to a central station PC computer (CSC). Firmware on each AFQI unit and Insight-supplied software on the CSC automatically interact to maintain a customer database for an oil dealer, an OEM, or a regional service contractor. In addition to ensuring continuously clean and efficient operation, the AFQI offers the oil industry a new set of immediate payoffs, among which are reduced outages and emergency service calls, shorter service calls from cleaner operation, larger oil delivery drops, the opportunity to stretch service intervals to as along as three years in some cases, new selling features to keep and attract customers, and greatly enhanced customer contact, quality and reliability.

  12. Thermal control system technology discipline

    Science.gov (United States)

    Ellis, Wilbert E.

    1990-01-01

    Viewgraphs on thermal control systems technology discipline for Space Station Freedom are presented. Topics covered include: heat rejection; heat acquisition and transport; monitoring and control; passive thermal control; and analysis and test verification.

  13. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  14. Advanced EVA Suit Camera System Development Project

    Science.gov (United States)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  15. RECENT ADVANCES IN NOVEL DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Manivannan Rangasamy

    2010-12-01

    Full Text Available Drug delivered can have significant effect on its efficacy. Some drugs have an optimum concentration range with in which maximum benefit is derived and concentrations above (or below the range can be toxic or produce no therapeutic effect. Various drug delivery and drug targeting systems are currently under development. The main goal for developing such delivery systems is to minimize drug degradation and loss, to prevent harmful side effects and to increase bioavailability. Targeting is the ability to direct the drug loaded system to the site of interest. Among drug carrier one can name soluble polymers, microparticles made of insoluble (or biodegradable natural and synthetic polymers, microcapsules, cells, cell ghosts, lipoproteins, liposomes and micelles. Two major mechanisms can be distinguished for addressing the desired sites for drug release, (a Passive and (b Active targeting. Controlled drug carrier systems such as micellar solutions, vescicles and liquid crystal dispersions, as well as nanoparticle dispersions consisting of small particles of 10 – 400 nm show great promise as drug delivery systems. Hydrogels are three dimensional, hydrophilic, polymer networks capable of imbibing large amounts of water or biological fluids. Buckyballs, a novel delivery system with 60 carbon atoms formed in the shape of hollow ball. They are other type’s namely bucky babies, fuzzy balls, gadofullereness, and giant fullerenes. Nanoparticles can be classified as nano tubes, nano wires, nano cantilever, nanoshells, quantum dots, nano pores. Researchers at north western university using gold particles to develop ultra sensitive detection systems for DNA and protein markers associated with many forms of cancer, including breast and prostrate cancer. Drug loaded erythrocytes is one of the growing and potential systems for delivery of drugs and enzymes.

  16. Integrated modeling of advanced optical systems

    Science.gov (United States)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  17. Microeconomics of advanced process window control for 50-nm gates

    Science.gov (United States)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  18. Advanced Three-Dimensional Display System

    Science.gov (United States)

    Geng, Jason

    2005-01-01

    A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the

  19. Control system for HIMAC injector

    International Nuclear Information System (INIS)

    A control system for HIMAC injector has been designed. The system consists of three mini-computers and many intelligent device controllers. The device controller is a single-board computer with a real time monitor and is installed in each device. Almost man-machine interactions for an operation of the injector system are performed by touch panels and rotary encoders. (author)

  20. Radiation Hard Electronics for Advanced Communication Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced reconfigurable/reprogrammable communication systems will require use of commercial sub 100 nm electronics. Legacy radiation tolerant circuits fail to...