WorldWideScience

Sample records for advanced control room

  1. The Advanced Photon Source main control room

    International Nuclear Information System (INIS)

    The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today's requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout

  2. AP1000's advanced control room

    International Nuclear Information System (INIS)

    AP1000 is a passive Advanced Light Water Reactor designed by Westinghouse Electric Company to comply with the Electric Power Research Institute's (EPRI) Advanced Light Water Reactor (ALWR) Utility Requirements Document (URD). AP600, the predecessor to AP1000, received Design Certification by the US Nuclear Regulatory Commission (USNRC) in 1999. The AP1000 received its Final Design Approval in the Fall of 2004 and Design Certification is expected in the fall of 2005. During both of these licensing efforts a control room and Human Machine Interface (HMI) design process was submitted and approved. Realizing that Instrumentation and Control (I and C) and HMI technology changes rapidly, Westinghouse chose to delay the detailed design of the control room and operator interfaces. This allows the latest technology to be used when a plant is actually going to be built. That time has now come. This paper describes the preliminary designs of the AP1000 main control room (MCR) and HMI planned for use in new plants both in the United States and abroad. The paper also addresses how the certified design process is being conducted to complete the detailed HMI designs. (authors)

  3. Cooperative research for human factors review of advanced control rooms

    International Nuclear Information System (INIS)

    This project has been performed as cooperative research between KAERI and USNRC. Human factors issues related to soft controls, which is one of key features of advanced HSI, are identified in this project. The issues are analyzed for the evaluation approaches in either experimental or analytical ways. Also, issues requiring additional researches for the evaluation of advanced HSI are identified in the areas of advanced information systems design, computer-based procedure systems, soft controls, human systems interface and plant modernization process, and maintainability of digital systems. The issues are analyzed to discriminate the urgency of researches on it to high, medium, and low levels in consideration of advanced HSI development status in Korea, and some of the issues that can be handled by experimental researches are identified. Additionally, an experimental study is performed to compare operator's performance on human error detection in advanced control rooms vs. in conventional control rooms. It is found that advanced control rooms have several design characteristics hindering operator's error detection performance compared to conventional control rooms

  4. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  5. Intelligent main control room for advanced PWR plants

    International Nuclear Information System (INIS)

    The design targets of the main control room of nuclear power plants are as follows. (1) To make a good working environment where operators can operate easily. (2) To reduce the work load and operators error. To this end, MHI has been improving main control room design for advanced PWR plants. The new intelligent main control room consists of a soft operation console and a large display panel. According to our evaluation, the work load and human error of the new main control room are reduced by about 35% compared with the latest plants. This new design will be used to plan new plants and will have the additional feature of saving costs by standardizing plant design. (author)

  6. Advanced control room evaluation: General approach and rationale

    International Nuclear Information System (INIS)

    Advanced control rooms (ACRs) for future nuclear power plants (NPPs) are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale and general approach to the development of a human factors review guideline for ACRs. The factors influencing the guideline development are discussed, including the review environment, the types of advanced technologies being addressed, the human factors issues associated with advanced technology, and the current state-of-the-art of human factors guidelines for advanced human-system interfaces (HSIs). The proposed approach to ACR review would track the design and implementation process through the application of review guidelines reflecting four review modules: planning, design process analysis, human factors engineering review, and dynamic performance evaluation. 21 refs

  7. Replacement of the Advanced Test Reactor control room

    International Nuclear Information System (INIS)

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor

  8. Advanced interaction media in nuclear power plant control rooms.

    Science.gov (United States)

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration. PMID:22317419

  9. A modern control room for Indian Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Advanced Heavy Water Reactor (AHWR) is a next generation nuclear power plant being developed by Bhabha Atomic Research Centre, India. AHWR is a vertical, pressure tube type, heavy-water-moderated, boiling light-water-cooled, innovative reactor, relying on natural circulation for core cooling in all operating and accident conditions. In addition, it incorporates various passive systems for decay heat removal, containment cooling and isolation. In addition to the many passive safety features, AHWR has state of the art I and C architecture based on extensive use of computers and networking. In tune with the many advanced features of the reactor, a centralized modern control room has been conceived for operation and monitoring of the plant. The I and C architecture enables the implementation of a fully computerised operator friendly control room with soft Human Machine Interfaces (HMI). While doing so, safety has been given due consideration. The control and monitoring of AHWR systems are carried out from the fully computer-based operator interfaces, except safety systems, for which only monitoring is provided from soft HMI. The control of the safety systems is performed from dedicated hardwired safety system panels. Soft HMI reduces the number of individual control devices and improves their reliability. The paper briefly describes the I and C architecture adopted for the AHWR plant along with the interfaces to the main and backup control rooms. There are many issues involved while introducing soft HMI based operator interfaces for Nuclear Power Plants (NPP) compared to the conventional plants. Besides discussing the implementation issues, the paper elaborates the design considerations that have undergone in the design of various components in the main control room especially operator workstations, shift supervisor console, safety system panels and large display panels. Mainly task based displays have been adopted for the routine operator interactions of the plant

  10. Advanced control room design review guidelines: Merging old and new

    International Nuclear Information System (INIS)

    The nuclear power industry is currently developing operator interface systems based on innovative applications of digital computers. To assure that this advanced technology is incorporated in a way that maximizes the potential safety benefits of the technology and minimizes the potential negative effects on human performance, human factors principles must be considered. NUREG-0700 contains guidelines for the review of operator interfaces. However, in light of the rapid technological advances in digital technology which have taken place in the eleven years since its publication, it is no longer adequate to assess the rapidly changing human-system interfaces. A research program, the purpose of which is to upgrade NUREG-0700, has been initiated. Thus far a set of draft advanced control room design review (ACRDR) guidelines has been complied. Three tasks, which were oriented towards integrating the applicable guidelines in NUREG-0700 into the ACRDR document, are described in the paper

  11. Function analysis and function assignment of NPP advanced main control room

    International Nuclear Information System (INIS)

    The author addresses the requirements of function analysis and function assignment, which should be carried out in the design of main control room in nuclear power plant according to the design research of advanced main control room, then states its contents, functions, importance and necessity as well as how to implement these requirements and how to do design verification and validation in the design of advanced main control room of nuclear power plant

  12. Human factors design review guidelines for advanced nuclear control room technologies

    International Nuclear Information System (INIS)

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig

  13. Verbal Communication in the APR1400 Advanced Control Room

    International Nuclear Information System (INIS)

    This paper introduces the characteristics of communication in advanced main controlghd rooms (MCRs) and some observations from a case study performed for APR1400 MCR. In advanced MCRs, operators need not maintain the same communication patterns as they do in conventional ones. For example, a senior reactor operator (SRO) does not have to rely on board operators for information acquisition and can get any information from his/her own workstation. This situation may also bring about new problems in MCRs such as lack of shared situation awareness and collaboration between MCR operators. To cope with these problems, the APR1400 MCR adapts several approaches in design and training for encouraging operators to communicate with each other. This paper introduces the possible changes of communication patterns and the countermeasures in design and training. Some findings from an integrated system validation for Shin Kori Units 3 and 4 are also presented

  14. LOFT advanced control room operator diagnostic and display system (ODDS)

    International Nuclear Information System (INIS)

    The Loss-of-Fluid Test (LOFT) Reactor Facility in Idaho includes a highly instrumented nuclear reactor operated by the Department of Energy for the purpose of establishing nuclear safety requirements. The results of the development and installation into LOFT of an Operator Diagnostic and Display System (ODDS) are presented. The ODDS is a computer-based graphics display system centered around a PRIME 550 computer with several RAMTEK color graphic display units located within the control room and available to the reactor operators. Use of computer-based color graphics to aid the reactor operator is discussed. A detailed hardware description of the LOFT data system and the ODDS is presented. Methods and problems of backfitting the ODDS equipment into the LOFT plant are discussed

  15. Concept of advanced back-up control panel design of digital control room

    International Nuclear Information System (INIS)

    Back-up control panel (BCP) of digital main control room (DMCR) is the back-up means for main computerized control means (MCM). This paper focus on technical issues for advanced design of back-up panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. Human factors engineering (HFE) issues also have been considered in the BCP design. Then, as the mean to fulfill safety target of nuclear power plant (NPP), an ideal ergonomic design method is exploited for advanced BCP design. (author)

  16. Concept of Advanced Back-up Control Panel Design of Digital Main Control Room

    International Nuclear Information System (INIS)

    Back-up control panel (BCP) of digital main control room (DMCR) is the backup means for main computerized control means (MCM). This paper focus on technical issues for advanced design of Backup Panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. HFE issues also have been considered in the BCP design. Then, mean to fulfill safety target of NPP, best ergonomic effect has been described. At last conclusion on advanced BCP design is provided

  17. Evaluation of information display at advanced main control room

    International Nuclear Information System (INIS)

    This year we plan to survey information in order to have basic understanding of digital information display and control at the advanced MCR. At first we collect different ways of presenting information at the advanced MCR. Secondly, we conduct literature survey on studies that have investigated information representation techniques and their effects. Then, we need compare differences between conventional NPPs and advanced NPPs. Thirdly, we need to check HMI styles and evaluation techniques that are used currently at foreign NPPs. Indeed, HMI at the advanced MCR is quite different from that at a conventional MCR. It is not desirable to apply the same evaluation technique that has veen used at the conventional MCR. We need to develop an evaluation technique that is valid in theory and applicable in practice. Finally, we identify the requirements for a support system for an HMI evaluator, since it is not easy to carry out an evaluation task even though one has firm background on cognitive engineering theories and practical experiences

  18. Evaluation of information display at advanced main control room

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dae Hwan; Yu, Seon Jae; Choi, Eui Sun [Korea Univ., Seoul (Korea, Republic of)

    2000-03-15

    This year we plan to survey information in order to have basic understanding of digital information display and control at the advanced MCR. At first we collect different ways of presenting information at the advanced MCR. Secondly, we conduct literature survey on studies that have investigated information representation techniques and their effects. Then, we need compare differences between conventional NPPs and advanced NPPs. Thirdly, we need to check HMI styles and evaluation techniques that are used currently at foreign NPPs. Indeed, HMI at the advanced MCR is quite different from that at a conventional MCR. It is not desirable to apply the same evaluation technique that has veen used at the conventional MCR. We need to develop an evaluation technique that is valid in theory and applicable in practice. Finally, we identify the requirements for a support system for an HMI evaluator, since it is not easy to carry out an evaluation task even though one has firm background on cognitive engineering theories and practical experiences.

  19. Reviewing the impact of advanced control room technology

    International Nuclear Information System (INIS)

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed

  20. ISACS-1, a limited prototype of an advanced control room

    International Nuclear Information System (INIS)

    The concept of an Integrated Surveillance And Control System (ISACS) has been developed into a prototype, ISACS-1, which presently is in operation at the simulator-based experimental control room HAMMLAB of the OECD Halden Reactor Project. Characteristics of ISACS is that it covers the whole interface between the process and the operator, and this interface is fully computerized using tools like Cathode Ray Tubes (CRTs) and dynamic keyboards. In addition, a large number of computerized operator support systems (COSSs) are included in ISACS, assisting the operator in functions like disturbance detection and diagnosis, identification of relevant actions, and implementation of procedures. An information coordinator called ''Intelligent Coordinator'' (IC) in ISACS observes the information received from the process and the COSSs, generates new high-level information and structures and prioritizes information to be presented to the operator. The limited ISACS-1 prototype was completed in early 1991. An extensive evaluation programme is in progress. This paper will describe main features of the system and some of the conclusions to be drawn from the evaluation programme. (author). 5 refs, 2 figs

  1. Integrated surveillance and control system (ISACS-1): The prototype of an advanced control room

    International Nuclear Information System (INIS)

    At the OECD Halden Reactor Project in Norway, development and validation of computerized operator support system (COSS) in realistic environments have taken place for a number of years. But as advanced operator support systems are used to cover a wider spectrum of functions, the question of efficient integration of a large number of COSS into the whole control room design becomes increasingly important. The Halden Project is therefore developing a prototype of the Integrated Surveillance and Control System (ISACS). Typical questions being considered in this project are how to cope with the large amount of information available to the operator, how to design the man-machine interface to function efficiently in all operational situations, how to guide the operator in a positive manner, while still keeping him in charge of the plant control. It is hoped that these and other relevant questions will be answered in the coming years on the basis of experiments with the new control room concept as implemented in the simulator based experimental control room in the Halden Man-Machine Laboratory, HAMMLAB. 6 refs, 3 figs, 1 tab

  2. Evaluation of information display at advanced main control room

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dai Hwan; Jo, Heon Jin; Jeon, Byung Ho [Korea Univ., Seoul (Korea, Republic of)

    2001-03-15

    The purpose of this research is first to establish an evaluation method for CBPs(Computer-Based Procedures) at the advanced MCR as a part of regulation technology for the safety of KNGR. The second purpose is to design a prototype of a support system for the evaluation. We have selected the guideline method for the evaluation, since currently there is not any better alternative. Several guidelines have been published for the design of CBPs. The guidelines include both guidance for CBP design process review and guidance for CBP design product review. Although CBPs have many advantages over PBPs(Pater-Based Procedures), they have some drawbacks since CBPs show the information on display screens instead of papers, and generate some new issues that have not been raised with PBPs. For the new issues, we need to be cautious because it is hard to generalize the effects of CBPs and there is no conclusive answer yet. A support system is necessary for the evaluation of CBPs, since it is not easy to carry out an evaluation task even though an evaluator has firm background on cognitive engineering theories and practical experiences. The support system is going to have web-style interface and databases of evaluation items, guidelines for each evaluation item, and technical bases from which a guideline is derived. Evaluation items include those for desirable feature of CBPs and those for a subjective evaluation by the operating crew. The support system will facilitate the task of evaluators by linking evaluation items with technical basis and by providing features for recording and tracing the evaluation result and efforts for resolving the issues identified.

  3. Advanced control rooms and crew performance issues: Implications for human reliability

    International Nuclear Information System (INIS)

    Recent trends in advanced control room (ACR) design are considered with respect to their impact on human performance. It is concluded that potentially negative influences exist, however, a variety of factors make it difficult to model, analyze, and quantify these effects for human reliability analyses (HRAs)

  4. Evaluation program of the integrated surveillance and control ISACS -- An advanced control room prototype

    International Nuclear Information System (INIS)

    The concept of an integrated surveillance and control system (ISACS) has been developed into a first prototype, ISACS-1, which is now in operation at the pressurized water reactor simulator-based experimental control room HAMMLAB of the Organization for Economic Cooperation and Development's Halden Reactor Project, Halden, Norway. It is characteristic of ISACS that it covers the whole interface between the process and the operator, and this interface is fully computerized using tools like cathode ray tubes and dynamic keyboards. In addition, a large number of computerized operator support systems are included in ISACS. The ISACS-1 is presently subject to extensive evaluation. The test and evaluation program aims at both providing design feedback and addressing general human-machine topics in advanced control rooms. The program is separated into three stages, starting with basic human factors work concerning layout and coding remedies. The next stage focuses on the qualitative aspects of the ISACS interface. In the final stage, the evaluation addresses higher level human factors issues, including experiments to evaluate ISAC's impact on the operator's overview and understanding of the current status of the process. The goal is to investigate how modern computer technology can be used to improve operational safety and efficiency of nuclear power plants and other complex processes

  5. Operational Strategy of CBPs for load balancing of Operators in Advanced Main Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seunghwan; Kim, Yochan; Jung, Wondea [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    With the using of a computer-based control room in an APR1400 (Advanced Pressurized Reactor-1400), the operators' behaviors in the main control room had changed. However, though the working environment of operators has been changed a great deal, digitalized interfaces can also change the cognitive tasks or activities of operators. First, a shift supervisor (SS) can confirm/check the conduction of the procedures and the execution of actions of board operators (BOs) while confirming directly the operation variables without relying on the BOs. Second, all operators added to their work the use of a new CBP and Soft Controls, increasing their procedural workload. New operational control strategies of CBPs are necessary for load balancing of operator's task load in APR1400. In this paper, we compared the workloads of operators in an APR1400 who work with two different usages of the CBP. They are SS oriented usage and SS-BO collaborative usage. In this research, we evaluated the workloads of operators in an advanced main control room by the COCOA method. Two types of CBP usages were defined and the effects of these usages on the workloads were investigated. The obtained results showed that the workloads between operators in a control room can be balanced according to the CBP usages by assigning control authority to the operators.

  6. Evaluations of the computerized procedure system at an advanced main control room

    International Nuclear Information System (INIS)

    An advanced main control room is planned for the next generation of nuclear power plants in Korea. Among the new features of the advanced main control room, a lot of controversies exist about the CPS(computerized procedure system). This paper presents the result from two evaluations on the CPS. First, an evaluation was conducted on the basis of guidelines recommended by regulation agencies or utility companies. This paper indicates some deviations from guidelines and suggests corrections. However, there are several issues for which guidelines do not exist currently. For those issues, the second evaluation was conducted empirically by observing the process of executing an emergency operating procedure by an operating team. We hope that the result from these evaluation would contribute to future improvements and safety of the CPS

  7. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    International Nuclear Information System (INIS)

    has recently assisted INL in establishing the technical infrastructure for implementation of HSI prototypes from HAMMLAB into the HSSL to demonstrate relevant control room replacement systems in support of the LWRS program. In March, 2014, IFE delivered the first HSI prototype utilizing this infrastructure - a large screen overview display for INL's simulator. The co-operation now continues by developing Procedure Support Displays targeted for operators in hybrid control room settings. These prototypes are being validated with U.S. reactor operators in the HSSL and optimized to enhance their performance. This research serves as a crucial stepping stone toward incorporation of advanced display technologies into conventional main control rooms.

  8. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    Energy Technology Data Exchange (ETDEWEB)

    Jokstad, Håkon [Inst. for Energy Technology, Halden (Norway); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    recently assisted INL in establishing the technical infrastructure for implementation of HSI prototypes from HAMMLAB into the HSSL to demonstrate relevant control room replacement systems in support of the LWRS program. In March, 2014, IFE delivered the first HSI prototype utilizing this infrastructure — a large screen overview display for INL's simulator. The co-operation now continues by developing Procedure Support Displays targeted for operators in hybrid control room settings. These prototypes are being validated with U.S. reactor operators in the HSSL and optimized to enhance their performance. This research serves as a crucial stepping stone toward incorporation of advanced display technologies into conventional main control rooms.

  9. Review of advanced control rooms: Methodological considerations for the use of HFE guidelines

    International Nuclear Information System (INIS)

    Control rooms for advanced nuclear power plants use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system and the ways in which operators interact with the system. The US Nuclear Regulatory Commission (NRC) reviews HSIs to ensure that they are designed to accepted human factors engineering (HFE) principles. The principal review guidance, however, is more than ten-years old (US NRC, 1981). Accordingly, an Advanced HSI Design Review Guideline (DRG) was developed to provide criteria for these reviews. The DRG contains seven major sections: Information Display, User-System Interaction, Process Control and Input Devices, Alarms, Analysis and Decision Aids, Inter-Personnel Communication, and Workplace Design (see O'Hara ampersand Brown, 1993). The purpose of this paper is to describe the methodology for DRG use

  10. Intelligent software system for the advanced control room of a nuclear power plant

    International Nuclear Information System (INIS)

    The intelligent software system for nuclear power plants (NPPs) has been conceptually designed in this study. Its design goals are to operate NPPs in an improved manner and to support operator's cognitive tasks. It consists of six major modules such as 'Information Processing,' 'Alarm Processing,' 'Procedure Tracking,' 'Performance Diagnosis', and 'Event Diagnosis' modules for operators and 'Malfunction Diagnosis' module for maintenance personnel. Most ot the modules have been developed for several years and the others are under development . After the completion of development, they will be combined into one system that would be main parts of advanced control rooms in NPPs

  11. Development of a framework to estimate human error for diagnosis tasks in advanced control room

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ar Ryum; Jang, In Seok; Seong, Proong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    In the emergency situation of nuclear power plants (NPPs), a diagnosis of the occurring events is crucial for managing or controlling the plant to a safe and stable condition. If the operators fail to diagnose the occurring events or relevant situations, their responses can eventually inappropriate or inadequate Accordingly, huge researches have been performed to identify the cause of diagnosis error and estimate the probability of diagnosis error. D.I Gertman et al. asserted that 'the cognitive failures stem from erroneous decision-making, poor understanding of rules and procedures, and inadequate problem solving and this failures may be due to quality of data and people's capacity for processing information'. Also many researchers have asserted that human-system interface (HSI), procedure, training and available time are critical factors to cause diagnosis error. In nuclear power plants, a diagnosis of the event is critical for safe condition of the system. As advanced main control room is being adopted in nuclear power plants, the operators may obtain the plant data via computer-based HSI and procedure. Also many researchers have asserted that HSI, procedure, training and available time are critical factors to cause diagnosis error. In this regards, using simulation data, diagnosis errors and its causes were identified. From this study, some useful insights to reduce diagnosis errors of operators in advanced main control room were provided.

  12. Development of human factors validation system for the advanced control room of APR1400

    International Nuclear Information System (INIS)

    A human factors validation system for the main control room (MCR) of Advanced Power Reactor 1400 MWe (APR1400) has been developed as it adopts digitalized human-system interfaces (HSIs). The integrated validation system is composed of process/plant models, HSIs, and the human performance evaluation support system (HUPESS). A real-time thermal-hydraulic code, RELAP5 R/T, was used and modified to simulate the dynamic characteristics of the APR1400, and simulation software, 3KeyMaster, was used to model the balance of plant systems. The HSIs developed in this study include all facilities in the APR1400 MCR, such as large display panels, 3 identified operator workstations, and a safety console. In addition, the remote shutdown workstation has been developed. The display systems in the HSIs have been developed using ProcSee, which is a software tool for developing and displaying dynamic graphical user interfaces. This paper describes the configurations of HSIs including display systems, the dynamic models of the APR1400 simulator, the instructor station, and the HUPESS. This paper also presents the results of plant simulation performance tests at transient compared with the results of RELAP5/MOD3.3 calculations. The human factors validation system for the advanced control room of APR1400 provides high degrees of physical, functional, and dynamic fidelities, and can be used in the validation process of the APR1400 HSI design. (author)

  13. Interim results of the study of control room crew staffing for advanced passive reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, B.P.; Sebok, A.; Haugset, K. [OECD Halden Reactor Project (Norway)

    1996-03-01

    Differences in the ways in which vendors expect the operations staff to interact with advanced passive plants by vendors have led to a need for reconsideration of the minimum shift staffing requirements of licensed Reactor Operators and Senior Reactor Operators contained in current federal regulations (i.e., 10 CFR 50.54(m)). A research project is being carried out to evaluate the impact(s) of advanced passive plant design and staffing of control room crews on operator and team performance. The purpose of the project is to contribute to the understanding of potential safety issues and provide data to support the development of design review guidance. Two factors are being evaluated across a range of plant operating conditions: control room crew staffing; and characteristics of the operating facility itself, whether it employs conventional or advanced, passive features. This paper presents the results of the first phase of the study conducted at the Loviisa nuclear power station earlier this year. Loviisa served as the conventional plant in this study. Data collection from four crews were collected from a series of design basis scenarios, each crew serving in either a normal or minimum staffing configuration. Results of data analyses show that crews participating in the minimum shift staffing configuration experienced significantly higher workload, had lower situation awareness, demonstrated significantly less effective team performance, and performed more poorly as a crew than the crews participating in the normal shift staffing configuration. The baseline data on crew configurations from the conventional plant setting will be compared with similar data to be collected from the advanced plant setting, and a report prepared providing the results of the entire study.

  14. Operator’s cognitive, communicative and operative activities based workload measurement of advanced main control room

    International Nuclear Information System (INIS)

    Highlights: • An advanced MMIS in the advanced MCR requires new roles and tasks of operators. • A new workload evaluation framework is needed for a new MMIS environment. • This work suggests a new workload measurement approach (COCOA) for an advanced MCR. • COCOA enables 3-dimensional measurement of cognition, communication and operation. • COCOA workload evaluation of the reference plant through simulation was performed. - Abstract: An advanced man–machine interface system (MMIS) with a computer-based procedure system and high-tech control/alarm system is installed in the advanced main control room (MCR) of a nuclear power plant. Accordingly, though the task of the operators has been changed a great deal, owing to a lack of appropriate guidelines on the role allocation or communication method of the operators, operators should follow the operating strategies of conventional MCR and the problem of an unbalanced workload for each operator can be raised. Thus, it is necessary to enhance the operation capability and improve the plant safety by developing guidelines on the role definition and communication of operators in an advanced MCR. To resolve this problem, however, a method for measuring the workload according to the work execution of the operators is needed, but an applicable method is not available. In this research, we propose a COgnitive, Communicative and Operational Activities measurement approach (COCOA) to measure and evaluate the workload of operators in an advanced MCR. This paper presents the taxonomy for additional operation activities of the operators to use the computerized procedures and soft control added to an advanced MCR, which enables an integrated measurement of the operator workload in various dimensions of cognition, communication, and operation. To check the applicability of COCOA, we evaluated the operator workload of an advanced MCR of a reference power plant through simulation training experiments. As a result, the amount

  15. How to measure human performance in main control room of an advanced NPP?

    International Nuclear Information System (INIS)

    As CRT-based display and advanced information technology were applied to advanced reactor such as APR-1400 (Advanced Power Reactor-1400), human operators' tasks became more cognitive works. Human Factors Engineering (HFE) became more important in designing the MCR (Main Control Room) of an advanced reactor. In order to support the advanced reactor design certification reviews, the Human Factors Engineering Program Review Model (HFE PRM) was developed with the support of U.S. NRC. The HFE PRM describes the HFE program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design and provides the review criteria for their evaluation. One of the review elements is human factors verification and validation (V and V). The role of V and V evaluations in the HFE PRM is to comprehensively determine that the design conforms to HFE design principles and it enables plant personnel to successfully perform their tasks to achieve plant safety and other operational goals. Integrated System Validation (ISV) is part of this review activity. An integrated system design is evaluated through performance-based tests to determine whether it acceptably supports safe operation of the plant. The performance- based tests are based on several human (operator) performance measures such as plant performance, personnel task, situation awareness, workload, team work, and anthropometric/physiological factors. In this work, some techniques already developed in nuclear or other industry and new techniques are incorporated into a methodology for the human performance evaluation

  16. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    International Nuclear Information System (INIS)

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy's Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  17. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  18. Development of the staffing evaluation technique for mental tasks of the advanced main control room

    International Nuclear Information System (INIS)

    The key goals of staffing and qualifications review element are to ensure that the right numbers of people with the appropriate skills and abilities are available to support plant operations and events. If the staffing level is too few, excessive stress that caused human errors possibly will be placed on the operators. Accordingly, this study developed a staffing evaluation technique based on CPM-GOMS for the mental tasks such as operations in the advanced main control room. A within-subject experiment was designed to examine the validity of the staffing evaluation technique. The results indicated the performance of evaluated staffing level via the staffing evaluation technique was significantly higher than that of non-evaluated staffing level; thus, validity of the staffing evaluation technique can be accepted. Finally, the implications for managerial practice on the findings of this study were discussed. (author)

  19. Intelligent software system for the advanced control room of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Choi, Seong Soo; Park, Jin Kyun; Heo, Gyung Young [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Han Gon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The intelligent software system for nuclear power plants (NPPs) has been conceptually designed in this study. Its design goals are to operate NPPs in an improved manner and to support operators` cognitive takes. It consists of six major modules such as {sup I}nformation Processing,{sup {sup A}}larm Processing,{sup {sup P}}rocedure Tracking,{sup {sup P}}erformance Diagnosis,{sup a}nd {sup E}vent Diagnosis{sup m}odules for operators and {sup M}alfunction Diagnosis{sup m}odule for maintenance personnel. Most of the modules have been developed for several years and the others are under development. After the completion of development, they will be combined into one system that would be main parts of advanced control rooms in NPPs. 5 refs., 4 figs. (Author)

  20. Ergonomics evaluation as a powerful tool to redesign advanced interfaces of nuclear control rooms

    International Nuclear Information System (INIS)

    Ergonomics is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system. Ergonomics contributes to the design and evaluation of tasks, jobs, products, environments and systems in order to make them compatible with the needs, abilities and limitations of people. In the safe operation of nuclear power plant the performance of the control room crews plays an important role. In this respect, well-designed human-system interfaces (HSI) are crucial for safe and efficient operation of the plant, reducing the occurrence of incidents, accidents and the risks for human error. The aim of this paper is to describe a case study in which a methodological framework was applied to redesign advanced interfaces of a nuclear simulator. (author)

  1. An empirical study on the basic human error probabilities for NPP advanced main control room operation using soft control

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Inseok, E-mail: nuclear82@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Ar Ryum, E-mail: arryum@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Harbi, Mohamed Ali Salem Al, E-mail: 100035556@kustar.ac.ae [Department of Nuclear Engineering, Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); Lee, Seung Jun, E-mail: sjlee@kaeri.re.kr [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, 150-1, Dukjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kang, Hyun Gook, E-mail: hyungook@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Seong, Poong Hyun, E-mail: phseong@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2013-04-15

    Highlights: ► The operation environment of MCRs in NPPs has changed by adopting new HSIs. ► The operation action in NPP Advanced MCRs is performed by soft control. ► Different basic human error probabilities (BHEPs) should be considered. ► BHEPs in a soft control operation environment are investigated empirically. ► This work will be helpful to verify if soft control has positive or negative effects. -- Abstract: By adopting new human–system interfaces that are based on computer-based technologies, the operation environment of main control rooms (MCRs) in nuclear power plants (NPPs) has changed. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, soft controls, and so on, are called Advanced MCRs. Among the many features in Advanced MCRs, soft controls are an important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, touch screens, and so on, operators can select a specific screen, then choose the controller, and finally manipulate the devices. However, because of the different interfaces between soft control and hardwired conventional type control, different basic human error probabilities (BHEPs) should be considered in the Human Reliability Analysis (HRA) for advanced MCRs. Although there are many HRA methods to assess human reliabilities, such as Technique for Human Error Rate Prediction (THERP), Accident Sequence Evaluation Program (ASEP), Human Error Assessment and Reduction Technique (HEART), Human Event Repository and Analysis (HERA), Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR), Cognitive Reliability and Error Analysis Method (CREAM), and so on, these methods have been applied to conventional MCRs, and they do not consider the new features of advance MCRs such as soft controls. As a result, there is an insufficient database for assessing human reliabilities in advanced

  2. An empirical study on the basic human error probabilities for NPP advanced main control room operation using soft control

    International Nuclear Information System (INIS)

    Highlights: ► The operation environment of MCRs in NPPs has changed by adopting new HSIs. ► The operation action in NPP Advanced MCRs is performed by soft control. ► Different basic human error probabilities (BHEPs) should be considered. ► BHEPs in a soft control operation environment are investigated empirically. ► This work will be helpful to verify if soft control has positive or negative effects. -- Abstract: By adopting new human–system interfaces that are based on computer-based technologies, the operation environment of main control rooms (MCRs) in nuclear power plants (NPPs) has changed. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, soft controls, and so on, are called Advanced MCRs. Among the many features in Advanced MCRs, soft controls are an important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, touch screens, and so on, operators can select a specific screen, then choose the controller, and finally manipulate the devices. However, because of the different interfaces between soft control and hardwired conventional type control, different basic human error probabilities (BHEPs) should be considered in the Human Reliability Analysis (HRA) for advanced MCRs. Although there are many HRA methods to assess human reliabilities, such as Technique for Human Error Rate Prediction (THERP), Accident Sequence Evaluation Program (ASEP), Human Error Assessment and Reduction Technique (HEART), Human Event Repository and Analysis (HERA), Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR), Cognitive Reliability and Error Analysis Method (CREAM), and so on, these methods have been applied to conventional MCRs, and they do not consider the new features of advance MCRs such as soft controls. As a result, there is an insufficient database for assessing human reliabilities in advanced

  3. Analysis for Secondary Task in Advanced Main Control Room Using Soft Controls

    International Nuclear Information System (INIS)

    The purpose of this study is to analyze operator tasks using soft controls from the simulation data of an advanced MCR. In this study, the primary and secondary tasks of eighteen simulation data were analyzed. The results showed that secondary tasks were required to perform scenarios more than primary task needs. Among these secondary tasks, the 'switch screen' made up the largest portion. This indicates that operator workload would increase with an increase of the 'switch screen' task. To reduce operator workload, Cps designers put the screen link buttons in the Cps. According to an analysis of secondary tasks using the screen link buttons, it is recognized that using the screen link buttons of the Cps helps reduce the number of secondary tasks and reduce errors of the 'switch screen'. Therefore, although increased secondary tasks can affect the increase of operator workload according to the adapting soft controls in advanced MCRs, using supporting designs such as the screen link buttons helps to reduce operator workload and errors

  4. A study on dynamic evaluation methods for human-machine interfaces in advanced control rooms

    International Nuclear Information System (INIS)

    Extensive efforts have been performed to reveal factors that largely affect to the safety of nuclear power plants (NPPs). Among them, human factors were known as a dominant cause of a severe accident, such as Three Mile Island and Chernobyl accidents. Thus a lot of efforts to resolve human factors related problems have been spent, and one of these efforts is an advanced control room (ACR) design to enhance human performance and the safety of NPPs. There are two important trends in the design of ACRs. The first one is increasing automation level, and the second one is the development of computer based compact workstations for control room operations including intelligent operator aid systems. However, several problems have been reported when another factors are not properly incorporated into the design of ACRs. Among them, one of the most important factors that significantly affect to operator performance is the design of human machine interfaces (HMIs). Thus, HMI evaluation should be emphasized to ensure appropriateness of HMI designs and the safety of NPPs. In general, two kinds of evaluations have been frequently used to assess appropriateness of the proposed HMI design. The one is the static evaluation and the other is the dynamic evaluation. Here, the static evaluation is the one based on guidelines that are extracted from various researches on HMI designs. And the dynamic evaluation generally attempts to evaluate and predict human performance through a model that can describe cognitive behaviors of human or interactions between HMIs and human. However, the static evaluation seems to be inappropriate because it can't properly capture context of task environment that strongly affects to human performance. In addition, in case of dynamic evaluations, development of a model that can sufficiently describe interactions or cognitive behaviors of human operators is very arduous and laborious. To overcome these problems, dynamic evaluation methods that can

  5. Human factors verification and validation of the advanced nuclear plant control room design

    International Nuclear Information System (INIS)

    The GE Advanced Boiling Water Reactor (ABWR) design has implemented the applicable human factors engineering (HFE) principles in the design of human-system interfaces (HSI). The ABWR uses unique features such as large mimic and touch-screen technology to present plant overviews and system operating details to the control room operating staff. The HSI designs, both in the console panels and the software generated graphical user interfaces, have been developed and evaluated using HFE guidelines. In addition to HFE guidelines reviews performed during design and implementation, broader reviews have been performed under the HFE Verification and Validation Implementation Plan (HFE V and VIP). Based upon the NUREG-0711, Nuclear Regulatory Commission (NRC) HFE Program Review Model (HFE PRM) (Reference 1), the HFE V and VIP, hereafter also referred to as V and V, has provided feedback during the various phases of design, implementation, and integration of the HSI. As one of the ten elements of the HFE PRM, the V and V activities reaffirm that the design of the HSI conforms to the HFE design principles and that the plant operating staff in the control room can perform their assigned tasks. This rigorous HFE V and V process is now being applied in the implementation of the ABWR design for Taiwan Power Company's Lungmen Power Station. Two 1350 MWe ABWR units are currently under construction at Lungmen. The HFE V and V ensures that the process for the design is compliant with the HFE principles. An important aspect of the Lungmen HFE program has been the direct involvement of the end user, Taiwan Power Company (TPC), throughout the design development and implementation. These HFE V and V activities, performed in three phases, ensures that the necessary displays, control, and alarms are provided to support the identified personnel tasks. The HFE V and V also checks to determine that the design of each identified component is compliant with the HFE principles. The V and V ensures

  6. Applying CPM-GOMS to Analyze Mental Tasks of the Advanced Main Control Room

    International Nuclear Information System (INIS)

    GOMS techniques produce quantitative and qualitative predictions of how people will use a proposed system, though the different versions have different emphases. All of the techniques can speak to the coverage of the functionality of a system and all provide estimates of task performance time. This study aimed for analyze the tasks that operators deal with in the main control room of advanced nuclear power plant, and most of the tasks need high mental activity. The mental tasks would overlap and be dealt with at the same time, namely, most of them can be assumed highly parallel in nature. Therefore, this study would prefer the CPM-GOMS to be the basic pattern for developing the mental task analysis for digital work environment. A within-subjects experiment design has been conducted to examine the validity of the modified CPM-GOM. Thirty subjects participated in two task types included high and low compatible type. The results indicated the performance criteria of high compatible task type was significantly higher than that of low compatible task type, that is, the modified CPM-GOMS could distinguish the difference between high and low compatible mental tasks definitely

  7. Description of the tasks of control room operators in German nuclear power plants and support possibilities by advanced computer systems

    International Nuclear Information System (INIS)

    In course of the development of nuclear power plants the instrumentation and control systems and the information in the control room have been increasing substantially. With this background it is described which operator tasks might be supported by advanced computer aid systems with main emphasis to safety related information and diagnose facilities. Nevertheless, some of this systems under development may be helpful for normal operation modes too. As far as possible recommendations for the realization and test of such systems are made. (orig.)

  8. Investigation on the advanced control room design for next generation nuclear power plants

    International Nuclear Information System (INIS)

    An advanced human-machine interface (HMI) has been developed to enhance the safety and availability of a nuclear power plant (NPP) by improving operational reliability. The key elements of the proposed HMI are the large display panels which present synopsis of plant status and the compact, computer-based work stations for monitoring, control and protection functions. The work station consists of four consoles such as a dynamic alarm console (DAC), a system information console (SIC), a computerized operating-procedure console (COC), and a safety system information console (SSIC). The DAC provides clean alarm pictures, in which information overlapping is excluded and alarm impacts are discriminated, for quick situation awareness. The SIC supports a normal operation by offering all necessary system information and control functions over non-safety systems. In addition, it is closely linked to the other consoles in order to automatically display related system information according to situations of the DAC and the COC. The COC aids operators with proper operating procedures during normal plant startup and shutdown or after a plant trip, and it also reduces their physical/mental burden through soft automation. The SSIC continuously displays safety system status and enables operators to control safety systems. With regard to automation, the automating strategies of emergency operation are developed for achieving safe shutdown in pressurized water reactors. These strategies can make emergency operation optimal, and as well they considerably lengthen the operator response time. Decision-making and control are investigated in order to develop the automating strategies. In decision-making, diagnostic trees are established to automate the diagnostic tasks for selecting appropriate emergency operations, and the decision-making procedure is developed to automate some decisions which must be made on a plant- and event-specific basis. In control, cooldown is planned by

  9. CEBAF Control Room Renovation

    International Nuclear Information System (INIS)

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on work-flow processes and ergonomic attributes. The renovation was performed in two phases during the summer of 2004, with one phase occurring during machine operations and the latter, more extensive phase, occurring during our semi-annual shutdown period. The new facility takes advantage of advances in display technology, analog and video signal management, server technology, ergonomic workspace design, lighting engineering, acoustic ceilings and raised flooring solutions to provide a marked improvement in the overall environment of machine operations

  10. Applying the crew reliability model for team error analysis in the modernized main control room of advanced nuclear power plants

    International Nuclear Information System (INIS)

    This study implemented a crew reliability model (CRM) for analyzing human errors in a modernized main control room of advanced nuclear power plants. Instrumentation and controls systems in the main control room recently have changed most significantly with the digitalization of human-system interfaces. Ensuring the safe operation of nuclear power plants is an important driving force of these changes. Probabilistic risk assessment (PRA) is one of the most common methods to respond to these changes. PRA uses human reliability analysis (HRA) to assess human risk. In emergency situation, failure to detect a problem can have significant influences in process control and considerable effort has been invested in attempting to minimize this error through improved interface design, training, and the allocation of responsibilities within a control room team. This study provides a direction related to the crew errors. Furthermore, this study found that implementing the CRM fully considers the influences of team errors on the target system. The proposed model can be applied to specific systems in conjunction with a consideration of critical elements; they are design basis accidents, critical human actions, human error modes, and performance shaping factors. This model can be used to assist human error analysis in the main control room. Advanced technologies can reduce the occurrence of existed human errors from tradition human-system interfaces. However, the highly integrated room may hide some potential human errors that need to be further investigated. Furthermore, the use of a single example in this study is insufficient. Investigation of further examples in a future study would be useful for verification and validation of the proposed model. (author)

  11. Layout design of advanced control room of pressurized water reactor NPP

    International Nuclear Information System (INIS)

    The design function of MCR is to guarantee the safety of NPP operation, reduce the operation pressure of operators. The diversity of DCS platform, digital HMI, back-up panels and the different control place for MCR/SCR should be carefully considered in the design of MCR. Due to the different standards and regulations are adopted by the Suppliers, the layout designs of control rooms are quite different. The Suppliers' national standards and regulations also should be considered in the design and procurement of MCR, especially the requirements in Chinese standards and regulations should be considered. (authors)

  12. Development of staffing evaluation principle for advanced main control room and the effect on situation awareness and mental workload

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiuhsiang Joe, E-mail: cjoelin@mail.ntust.edu.tw [Department of Industrial Management, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Hsieh, Tsung-Ling, E-mail: bm1129@gmail.com [Institute of Nuclear Energy Research, 1000, Wenhua Road, Chiaan Village, Lungtan 32546, Taiwan (China); Lin, Shiau-Feng, E-mail: g9602411@cycu.edu.tw [Department of Industrial Engineering, Chung-Yuan Christian University, 200, Chung Pei Road, Chung-Li 32023, Taiwan (China)

    2013-12-15

    Highlights: • A staffing evaluation principle was developed for the advanced main control room. • The principle proposed to improve situation awareness and mental workload. • The principle has good validity that was examined by experimental design. - Abstract: Situation awareness and mental workload, both of which influence operator performance in the advanced main control room of a nuclear power plant, can be affected by staffing level. The key goal of staffing is to ensure the proper number of personnel to support plant operations and events. If the staffing level is not adaptive, the operators may have low situation awareness and an excessive mental workload, which lead to human error. Accordingly, this study developed a staffing evaluation principle based on CPM-GOMS modeling for operations in the advanced main control room. A within-subject experiment was designed to examine the validity of the staffing evaluation principle. The results indicated that the situation awareness, mental workload, and operating performance of the staffing level determined by the staffing evaluation principle was significantly better than that of the non-evaluated staffing level; thus, the validity of the staffing evaluation technique is acceptable. The implications of the findings of this study on managerial practice are discussed.

  13. Development of staffing evaluation principle for advanced main control room and the effect on situation awareness and mental workload

    International Nuclear Information System (INIS)

    Highlights: • A staffing evaluation principle was developed for the advanced main control room. • The principle proposed to improve situation awareness and mental workload. • The principle has good validity that was examined by experimental design. - Abstract: Situation awareness and mental workload, both of which influence operator performance in the advanced main control room of a nuclear power plant, can be affected by staffing level. The key goal of staffing is to ensure the proper number of personnel to support plant operations and events. If the staffing level is not adaptive, the operators may have low situation awareness and an excessive mental workload, which lead to human error. Accordingly, this study developed a staffing evaluation principle based on CPM-GOMS modeling for operations in the advanced main control room. A within-subject experiment was designed to examine the validity of the staffing evaluation principle. The results indicated that the situation awareness, mental workload, and operating performance of the staffing level determined by the staffing evaluation principle was significantly better than that of the non-evaluated staffing level; thus, the validity of the staffing evaluation technique is acceptable. The implications of the findings of this study on managerial practice are discussed

  14. Impact of Advanced Alarm Systems and Information Displays on Human Reliability in the Digital Control Room of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyun; Dang, Vinh N [Paul Scherrer Institut, Villigen PSI (Switzerland)

    2011-08-15

    This paper discusses the potential impacts of two advanced features of digital control rooms, alarm systems and information display systems, on the Human Reliability Analysis (HRA) in nuclear power plants. Although the features of digital control rooms have already been implemented in new or upgraded nuclear power plants, HRAs have so far not taken much credit for these features. In this circumstance, this paper aims at examining the potential effects of these features on human performance and discussing how these effects can be addressed with existing HRA methods. A conclusion derivable from past experimental studies is that those features are supportive in the severe conditions such as complex scenarios and knowledge-based works. However, in the less complex scenarios and rule-based work, they may have no difference with or sometimes negative impacts on operator performance. The discussion about the impact on the HRA is provided on the basis on the THERP method.

  15. Development of human performance evaluation battery for integrated system validation of the HSI for an advanced control room

    International Nuclear Information System (INIS)

    The human-system interface (HSI) plays a vital role in the operation of a nuclear power plant. To ensure a human factors engineered advanced control room HSI design in support of reliable and safe operation of the plant, Taiwan Power Company has incorporated elements of the HFE Program Review Model (HFE PRM), prescribed in NUREG-0711 [1], into the HFE program for its Lungmen Nuclear Power Project. At present, the control room HSI design is undergoing verification and validation. Although NUREG/CR-6393[2] has introduced review criteria and methodology for integrated system validation, these criteria and methodology need to be elaborated for proper implementation. The purpose of this paper is to describe the development of suitable performance evaluation tools to be used to collect objective task performance measures, cognitive measures, as well as physical measures for HFE validation for the Lungmen project. (authors)

  16. Impact of Advanced Alarm Systems and Information Displays on Human Reliability in the Digital Control Room of Nuclear Power Plants

    International Nuclear Information System (INIS)

    This paper discusses the potential impacts of two advanced features of digital control rooms, alarm systems and information display systems, on the Human Reliability Analysis (HRA) in nuclear power plants. Although the features of digital control rooms have already been implemented in new or upgraded nuclear power plants, HRAs have so far not taken much credit for these features. In this circumstance, this paper aims at examining the potential effects of these features on human performance and discussing how these effects can be addressed with existing HRA methods. A conclusion derivable from past experimental studies is that those features are supportive in the severe conditions such as complex scenarios and knowledge-based works. However, in the less complex scenarios and rule-based work, they may have no difference with or sometimes negative impacts on operator performance. The discussion about the impact on the HRA is provided on the basis on the THERP method

  17. Proceedings of the International Atomic Energy Agency specialists' meeting on advanced information methods and artificial intelligence in nuclear power plant control rooms

    International Nuclear Information System (INIS)

    The main objective of the meeting is to provide a forum for exchange of information among the participating experts both at this meeting and later through the publication of the meeting's proceedings. The following topics are considered: experiences from use of information technology in the control room, including operator interfaces, operator support systems and complete control rooms; human aspects of introducing information technology in the control room; design and evaluation of advanced control rooms. 26 papers were presented at the meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  18. PS Control Room

    CERN Multimedia

    1963-01-01

    The good old PS Control Room, all manual. For each parameter, a knob or a button to control it; for each, a light or meter or oscilloscope to monitor it; carefully written pages serve as the data bank; phones and intercom for communication. D.Dekkers is at the microphone, M.Valvini sits in front.

  19. Investigation on the design of human-system interface for advanced nuclear plant control room

    International Nuclear Information System (INIS)

    The Lungmen Nuclear Power Project (LMNPP), under construction in Taiwan, consists of two GE Advanced Boiling Water Reactor (ABWR) units, each with 1350 MW electrical output. Major Human-System Interfaces (HSIs) of LMNPP are different from traditional ones. Video display units (VDUs) are the main human-system interface for operators to manipulate and to know the status of the equipment and plant information. Based upon NUREG-0711, the applicable human factors engineering (HFE) guideline in the design of HSIs has been adopted. An important aspect of the Lungmen HFE program has been the direct involvement of the end user, Taiwan Power Company (TPC), throughout the design development and implementation to ensure not only that the process for the design is compliant with the HFE principles, but also that the necessary displays, control, and alarms are provided to support the identified personnel tasks. This paper reviews the applicable HFE principles and verification and validation (V and V) processes in the design of HSIs for the advanced LMNPP. This paper also presents three investigated topics of the LMNPP HSI design development and implementation process. From the perspective of licensing concern and experience feedback, the focus of this paper is on the topics of validation with simulator, alarm auto reset, and VDU operational configuration strategy. The objectives of investigating the latter topic were to ensure the VDU operational configuration strategy, after appropriate V and V, achieves its goals of reinforcing operation discipline and distributing operator crew task assignments and workload during typical operations, and to confirm the need for an intensive training program that addresses the knowledge and skill requirements of the operators to meet the task characteristics and the responses of the plant processes. The results to date and implications for going forward from this process are also presented. (authors)

  20. Local control room

    CERN Multimedia

    1972-01-01

    Local control room in the ejection building : all electronics pertaining to proton distribution and concomitants such as beam gymnastics and diagnostics at high energies will eventually be gathered here. Shown is the first of two rows of fast ejection electronic racks. It includes only what is necessary for operation.

  1. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ulrich, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.

  2. Guidelines for control room design reviews

    International Nuclear Information System (INIS)

    The control room design review is part of a broad program being undertaken by the nuclear industry and the government to ensure consideration of human factors in nuclear power plant design and operation. The purpose of the control room design review described by these guidelines is to (1) review and evaluate the control room workspace, instrumentation, controls, and other equipment from a human factors engineering point of view that takes into account both system demands and operator capabilities; and (2) to identify, assess, and implement control room design modifications that correct inadequate or unsuitable items. The scope of the control room design review described by these guidelines covers the human engineering review of completed control rooms; i.e., operational control rooms or those at that stage of the licensing process where control room design and equipment selection are committed. These guidelines should also be of use during the design process for new control rooms. However, additional analyses to optimize the allocation of functions to man and machine, and further examination of advanced control system technology, are recommended for new control rooms. Guidelines and references for comprehensive system analyses designed to incorporate human factors considerations into the design and development of new control rooms are presented in Appendix B. Where possible, a generic approach to the control room design review process is encouraged; for example, when control room designs are replicated wholly or in part in two or more units. Even when designs are not replicated exactly, generic reviews which can be modified to account for specific differences in particular control rooms should be considered. Industry organizations and owners groups are encouraged to coordinate joint efforts and share data to develop generic approaches to the design review process. The control room design review should accomplish the following specific objectives. To determine

  3. ISR main control room

    CERN Multimedia

    1970-01-01

    The ISR main control room (SRC) on the night of 20 October when beam was first successfully injected into Ring I. The panels along the left contain controls and observational information about the beam-transfer system and injection. Along the right are recorders showing beam intensity (in the centre) and controls for currents in the main magnets, the pole face windings, and auxiliary magnets, and the magnetic field display panel (further for the rear). At the far back are controls and observations for the r.f. system and the betatron-frequency meter. Also at the far back (in the centre) are oscilloscopes for looking at signals from the pick-up electrodes.

  4. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  5. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    Energy Technology Data Exchange (ETDEWEB)

    BLanc, Katya Le [Idaho National Lab. (INL), Idaho Falls, ID (United States); Powers, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fitzgerald, Kirk [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  6. Empirical research on an ecological interface design for improving situation awareness of operators in an advanced control room

    International Nuclear Information System (INIS)

    Highlights: ► An EID prototype for monitoring primary side of nuclear power plant is proposed. ► The effectiveness of the prototype is validated using a partial scoped dynamic mockup in terms of situation awareness. ► The validation is based on comparison of a mimic display with an EID plus mimics. - Abstract: The purpose of this study is to validate whether an ecological interface design (EID) improves operators’ situation awareness in an advanced control room of a nuclear power plant (NPP). EID is defined as an approach to interface design that was introduced specifically for complex socio-technical, real-time, and dynamic systems. The EID technology has not yet been adapted to the nuclear power industry due to lack of empirical studies. Especially in a situational awareness aspect, many researchers have predicted that the EID will support operators to detect unanticipated events. Just a few studies, however, unveiled the positive effect of the EID display on human performance using a full scoped simulator. In this study, to investigate whether an EID improves operators’ situational awareness, we developed an EID prototype for nuclear power operations and a partial scoped dynamic mockup to validate the effectiveness of the EID prototype. Three experienced operators were involved as subjects in our study and they were fully well trained for using the EID prototype. We compared two types of situations in terms of situation awareness. One is mimic based information display and the other is a mimic plus EID based information display. The result of our study revealed that a mimic plus EID based information display is more effective than a mimic based information display in terms of situation awareness. This study is significant in that the EID as an emerging technology is adoptable to a digitalized control room in an aspect of improving operators’ situation awareness.

  7. CEBAF Control Room Renovation

    CERN Document Server

    Spata, Michael; Fanning, Harry; Oren, Tom C

    2005-01-01

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort.

  8. CEBAF Control Room Renovation

    International Nuclear Information System (INIS)

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort

  9. CEBAF Control Room Renovation

    International Nuclear Information System (INIS)

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facility's 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week maintenance period with no interruption to beam operations. We present the results of this effort

  10. An Investigation for Arranging the Video Display Unit Information in a Main Control Room of Advanced Nuclear Power Plants

    International Nuclear Information System (INIS)

    Current digital instrumentation and control and main control room (MCR) technology has extended the capability of integrating information from numerous plant systems and transmitting needed information to operations personnel in a timely manner that could not be envisioned when previous generation plants were designed and built. A MCR operator can complete all necessary operating actions on the video display unit (VDU). It is extremely flexible and convenient for operators to select and to control the system display on the screen. However, a high degree of digitalization has some risks. For example, in nuclear power plants, failures in the instrumentation and control devices could stop the operation of the plant. Human factors engineering (HFE) approaches would be a manner to solve this problem. Under HFE considerations, there exists 'population stereotype' for operation. That is, the operator is used to operating a specific display on the specific VDU for operation. Under emergency conditions, there is possibility that the operator will response with this habit population stereotype, and not be aware that the current situation has already changed. Accordingly, the advanced nuclear power plant should establish the MCR VDU configuration plan to meet the consistent teamwork goal under normal operation, transient and accident conditions. On the other hand, the advanced nuclear power plant should establish the human factors verification and validation plan of the MCR VDU configuration to verify and validate the configuration of the MCR VDUs, and to ensure that the MCR VDU configuration allows the operator shift to meet the HFE consideration and the consistent teamwork goal under normal operation, transient and accident conditions. This paper is one of the HF V V plans of the MCR VDU configuration of the advanced nuclear power plant. The purpose of this study is to confirm whether the VDU configuration meets the human factors principles and the consistent

  11. An Investigation for Arranging the Video Display Unit Information in a Main Control Room of Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chong Cheng; Yang, Chih Wei [Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan (China)

    2014-08-15

    Current digital instrumentation and control and main control room (MCR) technology has extended the capability of integrating information from numerous plant systems and transmitting needed information to operations personnel in a timely manner that could not be envisioned when previous generation plants were designed and built. A MCR operator can complete all necessary operating actions on the video display unit (VDU). It is extremely flexible and convenient for operators to select and to control the system display on the screen. However, a high degree of digitalization has some risks. For example, in nuclear power plants, failures in the instrumentation and control devices could stop the operation of the plant. Human factors engineering (HFE) approaches would be a manner to solve this problem. Under HFE considerations, there exists 'population stereotype' for operation. That is, the operator is used to operating a specific display on the specific VDU for operation. Under emergency conditions, there is possibility that the operator will response with this habit population stereotype, and not be aware that the current situation has already changed. Accordingly, the advanced nuclear power plant should establish the MCR VDU configuration plan to meet the consistent teamwork goal under normal operation, transient and accident conditions. On the other hand, the advanced nuclear power plant should establish the human factors verification and validation plan of the MCR VDU configuration to verify and validate the configuration of the MCR VDUs, and to ensure that the MCR VDU configuration allows the operator shift to meet the HFE consideration and the consistent teamwork goal under normal operation, transient and accident conditions. This paper is one of the HF V V plans of the MCR VDU configuration of the advanced nuclear power plant. The purpose of this study is to confirm whether the VDU configuration meets the human factors principles and the consistent

  12. Applying the Skill-Rule-Knowledge Framework to Understanding Operators’ Behaviors and Workload in Advanced Main Control Rooms

    International Nuclear Information System (INIS)

    Highlights: • Operator behaviors were analyzed according to Rasmussen's SRK classification. • Different job positions connote different abilities to perform the job successfully. • Rule-based behavior comprised the main behavior patterns of the operating crew. - Abstract: For the past years, a number of researches have focused on operators’ behaviors and workloads in advanced main control rooms (MCRs) in either the procedure-domain or knowledge-domain and in either workload-increased or workload-decreased conditions. Different job positions connote different responsibilities and abilities that are required to perform the job successfully. However, it may be inappropriate to apply a dichotomy in these issues. In this study, we clarified these controversial points through the analysis of the time, frequency, and workload of the behaviors based on Rasmussen's skill–rule–knowledge classification (SRK framework) according to the supervisor operator (SRO), reactor operator (RO), and assistant reactor operator (ARO). The results showed that, for the SRO, rule- and knowledge-based behaviors occurred more often than skill-based behavior in terms of time and frequency, and knowledge-based behavior was the main source of workload. For the RO, no significant differences were found among the three behavior types in terms of frequency and workload, but more time was spent on rule-based behaviors than on skill- and knowledge-based behaviors. The ARO spent more time performing skill-based behaviors than rule- and knowledge-based behaviors, but in terms of frequency and workload, rule-based behavior was the predominant type. Operators’ behaviors contribute to a plant's defense-in-depth approach to safety and serve a vital function in ensuring its safe operation. Research on behavioral taxonomies of advanced MCRs has many significant benefits in both scientific-theoretical and applied practical fields

  13. Applying the Skill-Rule-Knowledge Framework to Understanding Operators’ Behaviors and Workload in Advanced Main Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiuhsiang Joe, E-mail: cjoelin@mail.ntust.edu.tw [Department of Industrial Management, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan, ROC (China); Shiang, Wei-Jung, E-mail: wjs001@cycu.edu.tw [Department of Industrial Engineering, Chung-Yuan Christian University, 200, Chung Pei Rd., Chung-Li 32023, Taiwan, ROC (China); Chuang, Chun-Yu, E-mail: chunyu@iner.gov.tw [Department of Industrial Engineering, Chung-Yuan Christian University, 200, Chung Pei Rd., Chung-Li 32023, Taiwan, ROC (China); Institute of Nuclear Energy Research, 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan 32546, Taiwan, ROC (China); Liou, Jin-Liang, E-mail: u683437@taipower.com.tw [Taiwan Power Company, 20F, 242, Roosevelt Rd., Sec. 3, Taipei 10016, Taiwan, ROC (China)

    2014-04-01

    Highlights: • Operator behaviors were analyzed according to Rasmussen's SRK classification. • Different job positions connote different abilities to perform the job successfully. • Rule-based behavior comprised the main behavior patterns of the operating crew. - Abstract: For the past years, a number of researches have focused on operators’ behaviors and workloads in advanced main control rooms (MCRs) in either the procedure-domain or knowledge-domain and in either workload-increased or workload-decreased conditions. Different job positions connote different responsibilities and abilities that are required to perform the job successfully. However, it may be inappropriate to apply a dichotomy in these issues. In this study, we clarified these controversial points through the analysis of the time, frequency, and workload of the behaviors based on Rasmussen's skill–rule–knowledge classification (SRK framework) according to the supervisor operator (SRO), reactor operator (RO), and assistant reactor operator (ARO). The results showed that, for the SRO, rule- and knowledge-based behaviors occurred more often than skill-based behavior in terms of time and frequency, and knowledge-based behavior was the main source of workload. For the RO, no significant differences were found among the three behavior types in terms of frequency and workload, but more time was spent on rule-based behaviors than on skill- and knowledge-based behaviors. The ARO spent more time performing skill-based behaviors than rule- and knowledge-based behaviors, but in terms of frequency and workload, rule-based behavior was the predominant type. Operators’ behaviors contribute to a plant's defense-in-depth approach to safety and serve a vital function in ensuring its safe operation. Research on behavioral taxonomies of advanced MCRs has many significant benefits in both scientific-theoretical and applied practical fields.

  14. Development of human performance evaluation methods and systems for human factors validation in an advanced control room

    International Nuclear Information System (INIS)

    Advanced control room (ACR) human-machine interface (HMI) design of advanced nuclear power plants (NPPs) such as APR (advanced power reactor)-1400 can be validated through performance-based tests to determine whether it acceptably supports safe operation of the plant. In this paper, plant performance, personnel task performance, situation awareness, workload, teamwork, and anthropometric/ physiological factor are considered as factors for the human performance evaluation. For development of measures in each of the factors, measures generally used in various industries and empirically proven to be useful are adopted as main measures with some modifications. In addition, helpful measures are developed as complementary measures in order to overcome some of the limitations associated with the main measures. The development of the measures is addressed based on the theoretical and empirical background and also based on the regulatory guidelines. A computerized system, which is called HUPESS (human performance evaluation support system), is developed based on the measures developed in this paper. The development of HUPESS is described with respect to the system configuration, the development process, and integrated measurement, evaluation, and analysis. HUPESS supports evaluators (or experimenters) to effectively measure, analyze, and evaluate the human performance for the HMI design validation in ACRs. Hence HUPESS is expected to be used as an effective tool for the human factors validation in the ACR of Shin Kori 3 and 4 NPPs (APR-1400 type) which are under construction in South-Korea. Also two measures of attentional-resource effectiveness based on cost-benefit analysis are developed. One of them is Fixation to Importance Ratio (FIR) which represents the attentional resources spent on an information source compared to the importance of the information source. The other measure is selective attention effectiveness (SAE) which incorporates the FIRs for all information

  15. Leadership in the control room

    International Nuclear Information System (INIS)

    This paper discusses the importance of leadership within the control rooms at nuclear power facilities. the leadership capability of control room staff has a significant influence over the improvement of human performance and the development of an 'event free' culture within the business. The development of leadership competency in the control room must be an important part of any nuclear power utility business improvement plan. (author)

  16. Control room lay-out

    International Nuclear Information System (INIS)

    TRIUMF (Tri-University Meson Facility) is Canada's national laboratory for particle and nuclear physics. There are 6 accelerators and 3 Control Rooms at TRIUMF. The main control room serves the big cyclotron, the 500 MeV, and the adjacent experiment. The 42 MeV and two 32 MeV ones are production dedicated. These cyclotrons belong to a private company but are operated by TRIUMF staff from ATG (Applied Technology Group) Control Room. The last is ISAC (Isotope Acceleration and Separation) Control Room, from which the LINAC is controlled. Research areas cover theoretical (2 subjects), pure (5 subjects) and applied (8 subjects) physics. In the early '70s, as the 500 MeV was being completed, the first Control Room was built in the main accelerator building. The recent topics covered by this paper are proton and pion therapy, what are the operator's duties?, the CP42, TR30 and TR13 cyclotron control rooms, the ISAC control systems including control room modification. Due to the nature of an operator's job, the Control Room layout is pretty important. This is true for any work environment, but when working shifts it becomes essential. Lots of time and effort, not to mention money, were spent to figure out the optimum configuration. It seems to me that the key factor in the control room layout is versatility, and this is because it has to keep happy a group of people with different inclinations, which have a tendency to become quite moody after the second night shift. No matter what, there will still be unhappy people, but we are trying our best. (Y. Tanaka)

  17. In the LEAR control room

    CERN Multimedia

    1983-01-01

    View into the control room of the Low Energy Antiproton Ring (LEAR). Edgar Asseo (sitting) and Dieter Möhl and Georges Carron reflecting upon some beam dynamics (or hardware?) problem. Vassilis Agoritsas, in the background, leaning over a plan or a keyboard. LEAR in its early years (1982 to about 1990) was run from this local control room in building 363 close to the end of the PS South Hall, where the ring was installed. Later-on the operation was surveyed from the PS main control room.

  18. SIROCCO project: 15 advanced instructor desk and 4 simulated control room for 900MW and 1300MW EDF power plant simulators

    International Nuclear Information System (INIS)

    This presentation describes the fifteen advanced instructors station and four simulated control delivered to EDF in the frame of the SIROCCO project by the Consortium formed by ATOS Origin, CORYS Tess, for the Electricite de France (EDF). These instructor stations are installed on fifteen replica training simulators located on different sites throughout France for the purposes of improving the job-related training of the EDF PWR nuclear power plant operating teams. This covers all 900 MW and 1300MW nuclear power plant of EDF. The simulated control rooms are installed on maintenance platform located at EDF and the consortium facilities. The consortium uses it to maintain and upgrade the simulators. EDF uses it to validate the upgrade delivered by the consortium before on site installation and to perform engineering analysis. This presentation sets out successively: - The major advantages of the generic and configurable connected module concept for flexible and quick adaptation to different simulators; - The innovative functionalities of the advanced Instructor Desk (IS) which make the instructor's tasks of preparation, monitoring and postanalysis of a training session easier and more homogeneous; - The use of the Simulated Control Room (SCR) for training purposes but also for those of maintenance and design studies for upgrades of existing control rooms

  19. Control room philosophy: Principles of control room design and control room work

    International Nuclear Information System (INIS)

    In order to provide insights for improvement of work in control rooms several factors have to be considered. Knowledge of principles including control room philosophies will guide the recommended improvements. In addition to knowledge about specific principles an advantage for an organization can be an understanding of similarities and policies used in other high risk industry. The report has been developed on the basis of a document analysis of international standards and other guiding documents. (NUREG 0711, ISO 11064, ISO 6385, IEC 60964). In addition to the document analysis which has strived to compare the documents to see similarities in important principals, experience from working with control room design, modifications and evaluations in other high risk industries has pervaded the report. Important principles have been identified which are recommended to be included in a control room philosophy. Many of these are similar to the principles identified in the international standards. An additional principal which is regarded as important is the utilization of Key Performance Indicators (KPI) which can be used as a measure to target preventative means. Further more it is critical that the control room philosophy is easy to access and comprehend for all users. One of the challenges that remain after having developed a control room philosophy is how to utilize it in the daily work situation. It is vital that the document remains as a living document, guiding the continual improvement of the control room in the various life cycle stages

  20. Nuclear reactor control room construction

    International Nuclear Information System (INIS)

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures

  1. Control room and ergonomic design

    International Nuclear Information System (INIS)

    The important basis for the configuration of the control room of a nuclear power station is the concept for controlling a fault and that for controlling normal operation. The tasks resulting from this for the control room personnel are decided by the control room concept. In this configuration process (from the division of process control tasks between the system components operators and control technology to the configuration of individual means of operation) the characteristics and capabilities of the personnel, which are subject to special requirements as regards their qualifications, are observed. New concepts which are only now technically feasible are therefore being developed for information processing and display, in order to give the personnel a better oversight of the state and trends of the plant. (orig./DG)

  2. ISOLDE target zone control room

    CERN Multimedia

    2016-01-01

    Operating the ISOLDE target handling robots from the dedicated control room in building 197. Monitors showing the movements of the robots (GPS in this case) in the target zone. The footage shows the actual operation by the operator as well as the different equipment such as camera electronics, camera motor controls, camera monitors and Kuka robot controls touch panel.

  3. Design-related influencing factors of the computerized procedure system for inclusion into human reliability analysis of the advanced control room

    International Nuclear Information System (INIS)

    This paper presents major design factors of the computerized procedure system (CPS) by task characteristics/requirements, with individual relative weight evaluated by the analytic hierarchy process (AHP) technique, for inclusion into human reliability analysis (HRA) of the advanced control rooms. Task characteristics/requirements of an individual procedural step are classified into four categories according to the dynamic characteristics of an emergency situation: (1) a single-static step, (2) a single-dynamic and single-checking step, (3) a single-dynamic and continuous-monitoring step, and (4) a multiple-dynamic and continuous-monitoring step. According to the importance ranking evaluation by the AHP technique, ‘clearness of the instruction for taking action’, ‘clearness of the instruction and its structure for rule interpretation’, and ‘adequate provision of requisite information’ were rated as of being higher importance for all the task classifications. Importance of ‘adequacy of the monitoring function’ and ‘adequacy of representation of the dynamic link or relationship between procedural steps’ is dependent upon task characteristics. The result of the present study gives a valuable insight on which design factors of the CPS should be incorporated, with relative importance or weight between design factors, into HRA of the advanced control rooms. (author)

  4. Study and Development of a Simulation System for Dynamic Evaluation on Man-machine Interface Design of Advanced Main Control Rooms of Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    YangXiaojing; ZhouZhiwei; ChenXiaoming; MaYuanle; LiFu; DongYujie; WuWei; OhiTadashi

    2005-01-01

    Since the man-machine interfaces (MMI) of a main control room provide the control platform of a nuclear power plant (NPP),the development of the design quality of MMIs plays a very important role in the operation of a NPP. With the development of digital technology, the development of the advanced main control rooms (AMCRs) has become an inexorable trend. Therefore, the positive and the negative effects of AMCRs on human factors engineering need to be evaluated. For this p~, a simulation system has been studied and developed to quantitatively evaluate a MMI design from the viewpoint of human factors. The simulation system takes advantage of computer simulation technology to simulate an operating process of an interaction between operators and a MMI design under an instruction of an operation procedure of the AMCR of a NPP. Meanwhile, the necessary data are recorded for evaluation. It integrates two editors and one simulator. In the paper, the simulation system is presented in detail. Furthermore, one sample is given to show the results of each of these three subsystems.

  5. The function of the alarm system in advanced control rooms: an analysis of operator visual activity during a simulated nuclear power plant disturbance

    International Nuclear Information System (INIS)

    In 1996, the US Nuclear Regulatory Commission, Brookhaven National Laboratory (US), and the OECD Halden Reactor Project conducted a large experiment, investigating the effects of alarm reduction and display on operator and plant performance (O'Hara et al., 1997), The results from this experiment indicated that the number of alarms presented to the operators, and the type of alarm display, had no impact on human performance during simulated disturbances. One possible interpretation of these surprising results is that operators in advanced control rooms use the alarm system only for limited purposes, i.e., the introduction of process formats, trend curves, overview displays, and computerized support systems have made the alarm system superfluous. Given the massive efforts put into the design and development of sophisticated alarm systems intended to maximize safety, this would be a paradoxical conclusion. To explore the role of the alarm system in more detail, we performed an analysis of eye-movement tracking data collected in the Halden Man-Machine Laboratory (HAMMLAB). The objective of the study was to examine to which extent, and for what purposes, licensed operators use the alarm system in advanced control rooms during complex problem solving. According to Funke (1991), complex problem solving situations are non-transparent, ill-defined, and dynamic, i.e., the underlying state of the system must be inferred from symptoms, the goal state is ambiguous, and the problem is in continuous change. This seems to be an appropriate description of the working conditions when operators are confronted with challenging scenarios in a full scope nuclear simulator. Five experts on nuclear power plant operation from the OECD Halden Reactor Project were convened in order to generate initial hypotheses about the operators' use of the alarm system. The expert panel estimated that operators in advanced control rooms would use the alarm system less than 10 percent of the available

  6. Preliminary considerations on safety of computerized control rooms

    International Nuclear Information System (INIS)

    Safety problems are analyzed in this report by the study of the interaction: ''human behavior in a rigid environment/information overload in perturbed situation''. For pedagogy the study is presented as a research of factors influencing operator performance in a control room and a dialogue between an analyst and a conceiving engineer. Danger of all control room where the strategy for data acquisition is too rigid and without spatial reference is stressed in conclusion. Orientations for an advanced control room are outlined

  7. Large HTGR control room design

    International Nuclear Information System (INIS)

    The standard HTGR control room arrangement is based on an extensive program that started with a study of human engineering principles and evolved with the use of a full-scale mock-up employed to arrive at an optimized control board layout and select proper components for the man-machine interface. The integrated control system makes extensive use of a dual computer as a tool for data collection, alarming, and formating information for the operator, using cathode ray tubes (CRTs) as the prime display. Window type annunciators, recorders, and large pistol-grip switches have been replaced by multicolor CRTs, line printers, and miniature pushbutton switches designed into a compact monitoring and control console. The console is designed for stand-up and sit-down operation and is shaped for maximum operator convenience. Indicators and controls are functionally arranged so the operator can easily scan, compare like parameters, and respond to abnormal conditions. A summary is presented of the features General Atomic has included in the HTGR control room design and of approaches used to develop a modern design that meets General Atomic's objectives as well as current regulatory and code requirements. (U.S.)

  8. Ergonomics and control room design

    International Nuclear Information System (INIS)

    The application of ergonomic principles to the design process and some aspects of the Sizewell B control room is discussed. Also outlined is the management process which ensures that these principles are applied systematically throughout the design development activity and highlights the functional requirements which must also be met in the creation of a total man-machine system package which meets all the technical design criteria. The ergonomics requirements are part of this process and extend into all aspects of design ranging from such matters as workplace organization to environmental factors, social engineering, communications and aesthetics. (author)

  9. Requirements for Control Room Computer-Based Procedures for use in Hybrid Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna Helene [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Many plants in the U.S. are currently undergoing control room modernization. The main drivers for modernization are the aging and obsolescence of existing equipment, which typically results in a like-for-like replacement of analogue equipment with digital systems. However, the modernization efforts present an opportunity to employ advanced technology that would not only extend the life, but enhance the efficiency and cost competitiveness of nuclear power. Computer-based procedures (CBPs) are one example of near-term advanced technology that may provide enhanced efficiencies above and beyond like for like replacements of analog systems. Researchers in the LWRS program are investigating the benefits of advanced technologies such as CBPs, with the goal of assisting utilities in decision making during modernization projects. This report will describe the existing research on CBPs, discuss the unique issues related to using CBPs in hybrid control rooms (i.e., partially modernized analog control rooms), and define the requirements of CBPs for hybrid control rooms.

  10. Nuclear power plant control room operator control and monitoring tasks

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today's NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters

  11. Nuclear power plant control room operator control and monitoring tasks

    Energy Technology Data Exchange (ETDEWEB)

    Bovell, C.R.; Beck, M.G. [Concord Associates, Inc., Knoxville, TN (United States); Carter, R.J. [Oak Ridge National Labs., TN (United States)

    1998-07-01

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today`s NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters

  12. Visualization of information display at main control room

    International Nuclear Information System (INIS)

    An advanced main control room is planned for the next generation of nuclear power plants in Korea. Display devices such as LDP(Large Display Panel) and CRTs(Cathode Ray Tubes) are going to be utilized in that control room. Operating staff would have to perform tasks by monitoring displayed information about overall plant situation, subsystems, equipments, and components. However, if operators work with these new types of HMI(Human-Machine Interface), there are a lot of chances for unexperienced cognitive problems. Therefore, the designers of HMI should consider not only the information to be represented on display devices, but also visual information processing by operators and their cognitive limitations during information processing. This study reviews human's visual information processing process, classify information to be represented on display devices at the advanced control room, and possible representation formats for the classified information. We hope that the evaluation of HMI at the advanced control room would consider the result of this study

  13. Advanced control room design review guidelines: Integration of the NUREG-0700 guidelines and development of new human-system interface guidelines

    International Nuclear Information System (INIS)

    This report documents the work conducted in four tasks of the Nuclear Regulatory Commission (NRC) project entitled Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation. The purpose of the first task was to integrate the applicable sections of NUREG-0700 into the advanced control room design review (ACRDR) guidelines to ensure that all applicable guidelines are together in one document and conveniently accessible to users. The primary objective of the second task was to formulate a strategy for the development of new ACRDR guidelines that have not otherwise been identified. The main focus of the third task was to modify the individual ACRDR guidelines generated to date to ensure that they are suitable for the intended nuclear power plant (NPP) control station system application. The goal of the fourth task was to develop human factors guidelines for two human-system interface categories that are missing from the current ACRDR guidelines document. During the first task those areas in NUREG-0700 that are not addressed by the ACRDR guidelines document were identified, the areas were subsequently reviewed against six recent industry human factors engineering review guidelines, and the NUREG-0700 guidelines were updated as necessary. In the second task 13 general categories of human-system interface guidelines that are either missing from or not adequately addressed by the ACRDR document were discovered. An approach was derived for the development of new ACRDR guidelines, a preliminary assessment of the available sources that may be useful in the creation of new guidelines and their applicability to the identified human-system interface categories was performed, and an estimate was made of the amount of time and level of effort required to complete the development of needed new ACRDR guidelines. During the third task those NPP control station systems to which the NUREG-0700 and ACRDR guidelines apply were identified, matrices of such

  14. Advanced control room design review guidelines: Integration of the NUREG-0700 guidelines and development of new human-system interface guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.J.

    1997-07-01

    This report documents the work conducted in four tasks of the Nuclear Regulatory Commission (NRC) project entitled Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation. The purpose of the first task was to integrate the applicable sections of NUREG-0700 into the advanced control room design review (ACRDR) guidelines to ensure that all applicable guidelines are together in one document and conveniently accessible to users. The primary objective of the second task was to formulate a strategy for the development of new ACRDR guidelines that have not otherwise been identified. The main focus of the third task was to modify the individual ACRDR guidelines generated to date to ensure that they are suitable for the intended nuclear power plant (NPP) control station system application. The goal of the fourth task was to develop human factors guidelines for two human-system interface categories that are missing from the current ACRDR guidelines document. During the first task those areas in NUREG-0700 that are not addressed by the ACRDR guidelines document were identified, the areas were subsequently reviewed against six recent industry human factors engineering review guidelines, and the NUREG-0700 guidelines were updated as necessary. In the second task 13 general categories of human-system interface guidelines that are either missing from or not adequately addressed by the ACRDR document were discovered. An approach was derived for the development of new ACRDR guidelines, a preliminary assessment of the available sources that may be useful in the creation of new guidelines and their applicability to the identified human-system interface categories was performed, and an estimate was made of the amount of time and level of effort required to complete the development of needed new ACRDR guidelines. During the third task those NPP control station systems to which the NUREG-0700 and ACRDR guidelines apply were identified, matrices of such

  15. Strategy for Modernization of Main Control Rooms

    International Nuclear Information System (INIS)

    Lifetime of most information devices spans 5 years at most. Both memory capacity and CPU performance nearly double every 2 years. A new operating system is released every year. New information technology appears rapidly and disappears. Even though there is time delay, this phenomena is observed in I and C (instrument and control) devices in nuclear power plants. It is assumed that lifetime of I and C is about 20 years. At that time, spare parts are difficult to purchase. However, main control rooms in nuclear power plant have not changed dramatically. Once MCR is built, it stays almost forever. Why do the operators in NPP insist using the old and traditional devices? Traditional MCR has some advantage over advanced MCR. For example tradition MCR provides operators panoramic view, and dedicated and strong devices. On the other hand, advanced MCR provide them powerful presentation and information. When new power plants are built, advanced MCR is preferred. But when old MCR is modernized, most operators still insist the old style. This is because the transition from traditional MCR to advanced MCR is not clear and has challenges to overcome. This paper will explain the challenges and provide a strategy to overcome

  16. Taking account of human factors in control-room design

    International Nuclear Information System (INIS)

    Since the Three Mile Island accident two ways for improving the Human-Machine Interface have mainly been followed: the development of computerized operator aids in existing control-rooms and the design of advanced control-rooms. Insufficient attention paid to human factors in the design of operator aids has generally led to these aids being neglected or unused by their potential users. While for the design of advanced control-rooms efforts have been made for dealing with human factors in more extensive way. Based upon this experience, a general method for taking account of human factors in a control-room design has been devised and is described in this paper. (author)

  17. Occurrences in control room equipment, procedures and personnel performances: IRS control room events

    International Nuclear Information System (INIS)

    The IAEA/NEA Incident Reporting System (IRS) was established in the early 1980, its objective being to gain from operating experience achieved in countries with nuclear power programmes by means of exchanging information on events relevant to safety. Among the 2171 events in the database, 175 events (i.e. 8%) were identified as ''control room events''. It was decided to group these into three sets for further study: 65 events with common mode/cause failures (CCFs), 22 events with cognitive errors and 30 events with unforeseen interaction between NPP systems. It is expected that the pitfalls experienced in the IRS and the questions derived from this study will help to gain a better understanding of the needs and interests of specialists in advanced information methods and artificial intelligence in NPP control rooms. (author)

  18. Control room philosophy: Principles of control room design and control room work; Kontrollrumsfilosofi: Principer foer kontrollrumsutformning och kontrollrumsarbete

    Energy Technology Data Exchange (ETDEWEB)

    Skriver, Jan; Ramberg, Jasmine; Allwin, Pernilla [Scandpower Risk Management AB, Uppsala (Sweden)

    2006-01-15

    In order to provide insights for improvement of work in control rooms several factors have to be considered. Knowledge of principles including control room philosophies will guide the recommended improvements. In addition to knowledge about specific principles an advantage for an organization can be an understanding of similarities and policies used in other high risk industry. The report has been developed on the basis of a document analysis of international standards and other guiding documents. (NUREG 0711, ISO 11064, ISO 6385, IEC 60964). In addition to the document analysis which has strived to compare the documents to see similarities in important principals, experience from working with control room design, modifications and evaluations in other high risk industries has pervaded the report. Important principles have been identified which are recommended to be included in a control room philosophy. Many of these are similar to the principles identified in the international standards. An additional principal which is regarded as important is the utilization of Key Performance Indicators (KPI) which can be used as a measure to target preventative means. Further more it is critical that the control room philosophy is easy to access and comprehend for all users. One of the challenges that remain after having developed a control room philosophy is how to utilize it in the daily work situation. It is vital that the document remains as a living document, guiding the continual improvement of the control room in the various life cycle stages.

  19. Virtual power plant control room and Crew modeling using MIDAS

    International Nuclear Information System (INIS)

    This paper summarizes an emerging collaboration between Idaho National Laboratory and NASA Ames Research Center regarding the utilization of high-fidelity MIDAS simulations for modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error with novel control room equipment and configurations, (ii) the investigative determination of risk significance in recreating past event scenarios involving control room operating crews, and (iii) the certification of novel staffing levels in control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of risk in next generation control rooms. The Man-machine Integration Design and Analysis System (MIDAS) is a modeling environment developed by NASA Ames Research Center over a 20-year period (Hart, et al., 2001). MIDAS combines in a single environment a dynamic simulation scenario builder, a 3-D graphical environment modeling system, an ergonomically correct virtual human, and a series of cognitive and perceptual models (Gore and Jarvis, 2005). Using this interplay of components, it is possible to create high-fidelity simulations of humans interacting with systems, including human performance modeling over repeated simulation trials. While MIDAS has to date been used extensively in aerospace to model astronautic crew performance in microgravity, it also holds considerable promise for the simulation of control room scenarios in nuclear power plants. The Idaho National Laboratory (INL) is currently working with NASA Ames Research Center (ARC) to develop this control room simulation capability. These efforts center on incorporating CAD models of control rooms, modeling advanced instrumentation and functionality in these control rooms, developing realistic crew interaction scenarios, and implementing human reliability analysis logging techniques within MIDAS. The goal of this novel implementation of

  20. Screen-based control rooms: a vision of the future

    International Nuclear Information System (INIS)

    So much progress has been made in developing digital operational and safety instrumentation and control systems, and screen-based visualization systems are now so advanced, that the screen-based control room will soon be a viable option for nuclear power plants. The possibilities are examined here. (author)

  1. Advanced CANDU control centre

    International Nuclear Information System (INIS)

    The CANDU 9 design is based upon the 900 MWe class Darlington station in Canada, which is among the world leading nuclear power stations for capacity factor with low operation, maintenance and administration costs. The CANDU 9 design provides an advanced control centre with enhanced operations features. The advanced AECL control centre design includes the proven functionality of existing CANDU control centres, those implementable characteristics identified by systematic design combined with a human factors analysis of operations requirements and features needed to improve station operability which are made possible by the application of current technology. The design strategy is to preserve the general main control room operations staff work area as unchanged as possible to facilitate the inclusion of past features and operational experience while incorporating operability improvements. The author will present those features of the advanced CANDU control centre which facilitates improved operability capabilities. As well, aspects of the design process utilized, application of simulation technology and conclusions regarding this design approach will be reviewed

  2. Evaporation Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    -scale ventilated room when the emission is fully or partly evaporation controlled. The objective of the present research work has been to investigate the change of emission rates from small-scale experiments to full-scale ventilated rooms and to investigate the influence of the local air velocity field near the...

  3. Ergonomics influence on control room layout

    International Nuclear Information System (INIS)

    Nowadays, human factors has become an important aspect of the design of work places. Since the control room in a nuclear power plant is a work place, too, its layout is also influenced by ergonomics. With the KWU control room concept for the 1300 MW PWR as an example, we show how assured and applicable ergonomic findings enter into the control room design. On the basis of general design principles for work places, specific methods for control room planning have been developed. By working with these methods a concept that makes it possible to build a man-machine interface able to fulfill the process control tasks with all their underlying conditions has been derived. (author)

  4. Virtual Training of Compressor Control Room Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MYMIC will analyze, design, develop and evaluate the Virtual Control Room – Compressor Station (VCoR-CS) training system. VCoR-CS will provide procedural...

  5. Using a Research Simulator for Validating Control Room Modernization Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Vivek Agarwal; Julius J. Persensky; Jeffrey C. Joe

    2012-05-01

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I&C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across.

  6. Using a Research Simulator for Validating Control Room Modernization Concepts

    International Nuclear Information System (INIS)

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I and C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I and C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across. (author)

  7. ISOLDE target zone control room HD

    CERN Multimedia

    2016-01-01

    Operating the ISOLDE target handling robots from the dedicated control room in building 197. Monitors showing the movements of the robots (GPS in this case) in the target zone. The footage shows the actual operation by the operator as well as the different equipment such as camera electronics, camera motor controls, camera monitors and Kuka robot controls touch panel.

  8. The third generation CANDU control room

    International Nuclear Information System (INIS)

    In CANDU stations, as in most complex industrial plants, the man/machine interface design has progressed through three generations. First Generation control rooms consisted entirely on fixed, discrete components (handswitches, indicator lights, strip chart, recorder, annunciator windows, etc.). Human factors input was based on intuitive common sense factors which varied considerably from one designer to another. Second Generation control rooms incorporated video display units and keyboards in the control panels. Computer information processing and display are utilized. There is systematic application of human factors through ergonomic and anthropometric standards and cookbooks. The human factors are applied mainly to the physical layout of the control panels and the physical manipulation performed by the operators. Third Generation control rooms exploit the dramatic performance/cost improvements in computer, electronic display and communication technologies of the 1980's. Further applications of human factors address the cognitive aspects of operator performance. At AECL, second generation control rooms were installed on CANDU stations designed in the mid 70s and early 80s. Third generation features will be incorporated in the CANDU 3 station design and future CANDU stations. There have been significant improvements in the man/machine interface in CANDU stations over the past three decades. The continuing rapid technological developments in computers and electronics coupled with an increasing understanding and application of human factors principles is leading to further enhancements. This paper outlines progress achieved in earlier stations and highlights the features of the CANDU 3rd generation control room. (author). 13 refs, 5 figs

  9. Control room habitability study: findings and recommendations

    International Nuclear Information System (INIS)

    The Advisory Committee on Reactor Safeguards (ACRS) has raised a number of concerns related to control room habitability and has recommended actions which they believe could alleviate these concerns. As a result of the ACRS's concerns, the US Nuclear Regulatory Commission's (NRC) Office of Nuclear Reactor Regulation (NRR) in conjunction with the Offices of Research and Inspection and Enforcement, and the NRC regional offices, embarked upon a program to reevaluate Control Room Habitability. Argonne National Laboratory was contracted by the NRC to perform a Control Room Habitability Study on twelve licensed power reactors. The plants selected for the study were chosen based upon architect engineer, nuclear steam system supplier, utility, and plant location. Participants in the study review the plant design as contained in the Updated Safety Analysis Report, Technical Specifications, Three Mile Island action item III.D.3.4 submittal on Control Room Habitability, NRC staff evaluation of the III.D.3.4 submittal, appropriate plant operating procedures, system drawings, and significant Licensee Event Reports on Loss of Cooling to the Control Room Envelope. A two-day visit is then made to the plant to determine if the as-built systems are built, operated, and surveillance performed as described in the documentation reviewed prior to the visit. The major findings of this study are included in this report along with generic recommendations of the review team that apply to control room HVAC systems. Although the study is not complete, at the time of publication of this report, the results obtained to date should be useful to persons responsible for Control Room Habitability in evaluating their own systems

  10. A feasibility study for the establishment of HSIF for the research of advanced control room and nuclear human resource education/training

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Inseok; Lee, C. K.; Kim, J. T.; and others

    2013-08-15

    According to the objective; A feasibility study for the establishment of HSIF(human system interface facility) for the research of advanced using APR 1400 simulator for R and D(research and development) of advanced I and C system/HMI and nuclear human resource education/training, the following are researched. - Concept for establishment of APR 1400 simulation model - Concept for development of Interface and Program for nuclear human resource education/training - Concept of the Interface development for the validation of NPP I and C system - Concept of Graphic Builder to easily establish the interface of control board.

  11. Software Support during a Control Room Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Michele Joyce; Michael Spata; Thomas Oren; Anthony Cuffe; Theo McGuckin; Isadoro Carlino; C. Higgins; Harry Fanning; Matthew Bickley; Brian Bevins

    2005-09-21

    In 2004, after 14 years of accelerator operations and commissioning, Jefferson Lab renovated its main control room. Changes in technology and lessons learned during those 14 years drove the control room redesign in a new direction, one that optimizes workflow and makes critical information and controls available to everyone in the control room. Fundamental changes in a variety of software applications were required to facilitate the new operating paradigm. A critical component of the new control room design is a large-format video wall that is used to make a variety of operating information available to everyone in the room. Analog devices such as oscilloscopes and function generators are now displayed on the video wall through two crosspoint switchers: one for analog signals and another for video signals. A new software GUI replaces manual configuration of the oscilloscopes and function generators and helps automate setup. Monitoring screens, customized for the video wall, now make important operating information visible to everyone, not just a single operator. New alarm handler software gives any operator, on any workstation, access to all alarm handler functionality, and multiple users can now contribute to a single electronic logbook entry. To further support the shift to distributed access and control, many applications have been redesigned to run on servers instead of on individual workstations.

  12. Developing control room operator selection procedures

    International Nuclear Information System (INIS)

    PDRI is performing a two-year study to identify the tasks performed and attributes required in electric power generating plant operating jobs, and focusing on the control room operator position. Approximately 65 investor-owned utilities are participating in the study

  13. PS Main Control Room (partial view)

    CERN Multimedia

    1974-01-01

    Jean-Pierre Potier (turning buttons) and Bertran Frammery (telephoning) on shift. The 26 GeV Synchrotron and later also its related machines (Linacs 1,2,3; PS-Booster; LEP-Injector Linacs and Electron-Positron Accumulator; Antiproton Accumulator, Antiproton Collector, Low Energy Antiproton Ring and more recently Antiproton Decelerator) were all controlled from the PS control room situated on the Meyrin site. The SPS and LEP were controlled from a separat control centre on the Prevessin site. In 2005 all controls were transferred to the Prevessin centre.

  14. NRC study of control room habitability

    International Nuclear Information System (INIS)

    Since 1980, the Advisory Committee on Reactor Safeguards (ACRS) has held several meetings with the NRC staff to discuss the subject of control room habitability. Several meetings between the ACRS and the staff have resulted in ACRS letters that express specific concerns, and the staff has provided responses in reports and meetings. In June of 1983, the NRC Executive Director for Operations directed the Offices of Nuclear Reactor Regulation and Inspection and Enforcement to develop a plan to handle the issues raised by the ACRS and to report to him specific proposed courses of action to respond to the ACRS's concerns. The NRC control room habitability working group has reviewed the subject in such areas as NRR review process, transformation of control room habitability designs to as-built systems, and determination of testing protocol. The group has determined that many of the ACRS concerns and recommendations are well founded, and has recommended actions to be taken to address these as well as other concerns which were raised independent of the ACRS. The review has revealed significant areas where the approach presently utilized in reviews should be altered

  15. Recent Development in the ATLAS Control Room

    CERN Multimedia

    Armen Vartapetian

    Only recently the name ATLAS Control Room (ACR) was more associated with the building at Point 1 (SCX1) than with the real thing. But just within the last several months, with the installation of the ACR hardware, that perception has changed significantly. The recently furnished ATLAS control room. But first of all, if you are not familiar with the ATLAS experimental site and are interested in visiting the ATLAS control room to see the place that in the near future will become the brain of the detector operations, it is quite easy to do so. You don't even need safety helmet or shoes! The ACR is located on the ground floor of a not so typical, glass-covered building in Point 1. The building number on the CERN map is 3162, or SCX1 as we call it. It is also easy to recognize that building by its shiny appearance within the cluster of Point 1 buildings if you are driving from Geneva. Final design and prototyping of the ACR hardware started at the beginning of 2006. Evaluation of the chosen hardware confi...

  16. Skill retention and control room operator competency

    International Nuclear Information System (INIS)

    The problem of skill retention in relation to the competency of control room operators is addressed. Although there are a number of related reviews of the literature, this particular topic has not been examined in detail before. The findings of these reviews are summarised and their implications for the area discussed. The limited research on skill retention in connection with process control is also reviewed. Some topics from cognitive and instructional psychology are also raised. In particular overlearning is tackled and the potential value of learning strategies is assessed. In conclusion the important topic of measurement of performance is introduced and a number of potentially valuable training approaches are outlined. (author)

  17. How does a change in the control room design affect diagnostic strategies in nuclear power plants?

    International Nuclear Information System (INIS)

    Recently, main control rooms have been considerably changed by modern computer techniques. Some of the features that distinguish digital control rooms from conventional, analog rooms in nuclear power plants include advanced alarm systems, graphic information display systems, computerized procedure systems, and soft control. These features can bring changes in operator tasks, changing the characteristics of tasks or creating new tasks for operators. It is especially expected that these features may bring out changes in the operator's diagnostic tasks and strategies in a digital control room as compared with an analog control room. This study investigates the differences in the operator's diagnostic tasks and strategies in analog and digital control rooms. This study also attempts to evaluate how new systems in a digital control room affect diagnostic strategies. Three different approaches, which are complementary, are used to identify diagnostic strategies in the digital control room and in the analog control room: (1) observation in the simulator, (2) interview with operators, and (3) a literature review. The results show that the digital control room introduces new diagnosis strategies compared with the analog control room while also changing the characteristics of the strategies, mostly by gaining more support from the computerized system. (author)

  18. Subjective task complexity in the control room

    International Nuclear Information System (INIS)

    Understanding of what makes a control room situation difficult to handle is important when studying operator performance, both with respect to prediction as well as improvement of the human performance. Previous exploratory work on complexity showed a potential for prediction and explanation of operator performance. This report investigates in further detail the theoretical background and the structure of operator rated task complexity. The report complements the previous work on complexity to make a basis for development of operator performance analysis tools. The first part of the report outlines an approach for studying the complexity of the control room crew's work. The approach draws upon man-machine research as well as problem solving research. The approach identifies five complexity-shaping components: 'task work characteristics', 'teamwork characteristics', 'individual skill', 'teamwork skill', and 'interface and support systems'. The crew's work complexity is related to concepts of human performance quality and human error. The second part of the report is a post-hoc exploratory analysis of four empirical HRP studies, where operators' conception of the complexity of control room work is assessed by questionnaires. The analysis deals with the structure of complexity questionnaire ratings, and the relationship between complexity ratings and human performance measures. The main findings from the analysis of structure was the identification of three task work factors which were named Masking, Information load and Temporal demand, and in addition the identification of one interface factor which was named Navigation. Post-hoc analysis suggests that operator's subjective complexity, which was assessed by questionnaires, is related to workload, task and system performance, and operator's self-rated performance. (Author). 28 refs., 47 tabs

  19. Stress, performance, and control room operations

    International Nuclear Information System (INIS)

    The notion of control room operator performance being detrimentally affected by stress has long been the focus of considerable conjecture. It is important to gain a better understanding of the validity of this concern for the development of effective severe-accident management approaches. This paper illustrates the undeniable negative impact of stress on a wide variety of tasks. A computer-controlled simulated work environment was designed in which both male and female operators were closely monitored during the course of the study for both stress level (using the excretion of the urine catecholamines epinephrine and norepinephrine as an index) and job performance. The experimental parameters employed by the study when coupled with the subsequent statistical analyses of the results allow one to make some rather striking comments with respect to how a given operator might respond to a situation that he or she perceives to be psychologically stressful (whether the stress be externally or internally generated). The findings of this study clearly indicated that stress does impact operator performance on tasks similar in nature to those conducted by control room operators and hence should be seriously considered in the development of severe-accident management strategies

  20. Continuous User Identity Verification for Trusted Operators in Control Rooms

    OpenAIRE

    Schiavone, Enrico; Ceccarelli, Andrea; Bondavalli, Andrea

    2015-01-01

    Human operators in control rooms are often responsible of issuing critical commands, and in charge of managing sensitive data. Insiders must be prevented to operate on the system: they may benefit of their position in the control room to fool colleagues, and gain access to machines or accounts. This paper proposes an authentication system for deterring and detecting malicious access to the workstations of control rooms. Specifically tailored for the operators in the control room of the crisis...

  1. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  2. Hybrid control rooms: the effects of introducing new technology into existing control rooms

    International Nuclear Information System (INIS)

    The goal of this part of the Hybrid Control Room Project is to gain a perspective on the issues and problems that are an integral part of introducing new technology, automated systems, or support systems into nuclear power plant (NPP) control rooms, particularly when they are introduced on a system-by-system basis. For purposes of this project, hybrid control rooms are defined as those into which new technology, such as digital and computer-based controls are gradually incorporated as opposed to those that are completely, or nearly completely, refitted with new technology. Although the focus of this project is the introduction of computer based, digital systems into NPP control rooms, it is not possible to exclude the effects throughout the process that are inevitable when new technology is introduced anywhere in complex process control systems. Thus, this document examines the effects of such changes within the context of the organisation in which they occur, including the management of change, work procedures and work methods, communications and crew interaction, training, and the interdependent functions in the operational context. (Author)

  3. [Controlling systems for operating room managers].

    Science.gov (United States)

    Schüpfer, G; Bauer, M; Scherzinger, B; Schleppers, A

    2005-08-01

    Management means developing, shaping and controlling of complex, productive and social systems. Therefore, operating room managers also need to develop basic skills in financial and managerial accounting as a basis for operative and strategic controlling which is an essential part of their work. A good measurement system should include financial and strategic concepts for market position, innovation performance, productivity, attractiveness, liquidity/cash flow and profitability. Since hospitals need to implement a strategy to reach their business objectives, the performance measurement system has to be individually adapted to the strategy of the hospital. In this respect the navigation system developed by Gälweiler is compared to the "balanced score card" system of Kaplan and Norton. PMID:15959742

  4. Advanced Control of Electrochromic Windows

    OpenAIRE

    Scartezzini, Jean-Louis; Zarkadis, Nikos; Morel, Nicolas

    2013-01-01

    In our research we use the technology of electrochromic (EC) glazing to maximize the use of daylight and minimize the energy consumption in buildings while preserving visual and thermal comfort of the users. We propose an advanced automatic control of EC windows coupled with an anidolic daylighting system (ADS), blinds and dimmable fluorescent lights. EC windows with a visible transmittance range (Tv) of 0.15 – 0.50 were installed on the southern façade of an office room of the LESO experimen...

  5. Designing an Alternate Mission Operations Control Room

    Science.gov (United States)

    Montgomery, Patty; Reeves, A. Scott

    2014-01-01

    The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a service-oriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building.

  6. The NuStart AP1000 Compact Control Room Implementation

    International Nuclear Information System (INIS)

    The nuclear power industry in the United States is experiencing renewed optimism that new nuclear power plants may be constructed in the foreseeable future. Presently a number of utilities in the U.S. are considering new nuclear plant construction. Among the reasons supporting the industry's optimism is the formation of the NuStart Energy Consortium. This consortium of leading energy companies, including Westinghouse Electric Company, is working with the U.S. Department of Energy to demonstrate and test the new licensing process for obtaining a Combined Construction and Operating License (COL) for an advanced light water reactor (ALWR). One ALWR design for which the NuStart Energy Consortium is pursuing a COL application is Westinghouse's passive AP1000. AP1000 received its Final Design Approval from the USNRC in the Fall of 2004 and was granted Design Certification by the NRC on December 30, 2005. A key element of the AP1000 COL application will be to close out Design Certification COL items related to the Main Control Room (MCR) and Human System Interface (HSI) design. During the AP1000 design certification licensing efforts, a control room and HSI design process was submitted and approved. Realizing that Instrumentation and Control (I and C) and HSI technology changes rapidly, Westinghouse chose to defer the detailed design of the control room and operator interfaces. This allows the latest technology to be used when a plant is actually going to be built. To fulfill the COL items for the upcoming application Westinghouse is performing a comprehensive Human Factors Engineering program in conjunction with development of an advanced set of HSI resources for a compact control room. This paper will discuss human factors program elements completed to date and the efforts currently in progress to complete the remaining elements. It will also describe the design progress for each HSI resource including a Wall Panel Information System, computerized procedure system

  7. Guidelines for control room systems design. Working material. Report

    International Nuclear Information System (INIS)

    This report contains comprehensive technical and methodological information and recommendations for the benefit of Member States for advice and assistance in ''NPP control room systems'' design backfitting existing nuclear power plants and design for future stations. The term ''Control Room Systems'' refers to the entire human/machine interface for the nuclear stations - including the main control room, back-ups control room and the emergency control rooms, local panels, technical support centres, operating staff, operating procedures, operating training programs, communications, etc. Refs, figs and tabs

  8. First-of-A-Kind Control Room Modernization Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Kenneth David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This project plan describes a comprehensive approach to the design of an end-state concept for a modernized control room for Palo Verde. It describes the collaboration arrangement between the DOE LWRS Program Control Room Modernization Project and the APS Palo Verde Nuclear Generating Station. It further describes the role of other collaborators, including the Institute for Energy Technology (IFE) and the Electric Power Research Institute (EPRI). It combines advanced tools, methodologies, and facilities to enable a science-based approach to the validation of applicable engineering and human factors principles for nuclear plant control rooms. It addresses the required project results and documentation to demonstrate compliance with regulatory requirements. It describes the project tasks that will be conducted in the project, and the deliverable reports that will be developed through these tasks. This project plan will be updated as new tasks are added and as project milestones are completed. It will serve as an ongoing description on the project both for project participants and for industry stakeholders.

  9. Considerations concerning the ergonomics of power plant control rooms

    International Nuclear Information System (INIS)

    Modern control rooms for the monitoring and control of large power plants have a high degree of automation. However, it is the responsibility of the control room personnel to ensure optimum process control during all operational states. The proper ergonomic design of a control room is one of the prerequisites to ensure that the operators are able to perceive the often large flow of current information and, after processing, to respond properly. (orig.)

  10. Information presentation in power plant control rooms

    International Nuclear Information System (INIS)

    The objective of this study is to support operators' work especially in the control rooms of power plant. The exemplified process is a pressurized water (nuclear) reactor (PWR). The man-process interface is an information system that covers information refining, information presentation, information system handling, and process control. THe emphasis in this study is on the organization and presentation of information and on the alert function that is part of the information system. Another goal is to design the alert function so as to radically reduce the number of alarms during plant shutdown, e.g. during the refuelling or maintenance period and during a disturbance. Further, the experimental validation of CFMS (Critical Function Monitoring System), developed by Combustion Engineering, Inc. in the U.S.A. is described briefly. The validation was made at the Loviisa training simulator in the autumn of 1982. CFMS is a safety-related functional alarm system. The functional decomposition of information has turned out to be successful and it is helpful in designing displays. Preliminary criteria for designing displays, the structure of the information presentation system and the illustration of main interactions are presented. General practical ideas on designing the alert function seem very promising. Preliminary results of the CFMS validation are presented. Further, some ideas are presented on how to carry out the analysis and how to make such validations in the future. A new idea for the evaluation of core safety is presented, based on control theory concepts

  11. Advanced Control Engineering

    DEFF Research Database (Denmark)

    Zhou, Jianjun

    1999-01-01

    This book is developed as a textbook for the course Advanced Control Engineering. The book is intended for students in mechanical engineering and its aim is to provide an understanding of modern control theory as well as methodologies and applications for state space modeling and design. For this...

  12. Operation Aspect of the Main Control Room of NPP

    International Nuclear Information System (INIS)

    The main control room of Nuclear Power Plant (NPP) is operational centre to control all of the operation activity of NPP. NPP must be operated carefully and safely. Many aspect that contributed to operation of NPP, such as man power whose operated, technology type used, ergonomic of main control room, operational management, etc. The disturbances of communication in control room must be anticipated so the high availability of NPP can be achieved. The ergonomic of the NPP control room that will be used in Indonesia must be designed suitable to anthropometric of Indonesia society. (author)

  13. Human reliability analysis of control room operators

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L.; Carvalho, Paulo Victor R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Human reliability is the probability that a person correctly performs some system required action in a required time period and performs no extraneous action that can degrade the system Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. Significant progress has been made in the HRA field during the last years, mainly in nuclear area. Some first-generation HRA methods were developed, as THERP (Technique for human error rate prediction). Now, an array of called second-generation methods are emerging as alternatives, for instance ATHEANA (A Technique for human event analysis). The ergonomics approach has as tool the ergonomic work analysis. It focus on the study of operator's activities in physical and mental form, considering at the same time the observed characteristics of operator and the elements of the work environment as they are presented to and perceived by the operators. The aim of this paper is to propose a methodology to analyze the human reliability of the operators of industrial plant control room, using a framework that includes the approach used by ATHEANA, THERP and the work ergonomics analysis. (author)

  14. Evaluation of new control rooms by operator performance analysis

    International Nuclear Information System (INIS)

    An advanced supervisory and control system called PODIATM (Plant Operation by Displayed Information and Automation) was developed by Toshiba. Since this system utilizes computer driven CRTs as a main device for information transfer to operators, thorough system integration tests were performed at the factory and evaluations were made of operators' assessment from the initial experience of the system. The PODIA system is currently installed at two BWR power plants. Based on the experiences from the development of PODIA, a more advanced man-machine interface, Advanced-PODIA (A-PODIA), is developed. A-PODIA enhances the capabilities of PODIA in automation, diagnosis, operational guidance and information display. A-PODIA has been validated by carrying out systematic experiments with a full-scope simulator developed for the validation. The results of the experiments have been analyzed by the method of operator performance analysis and applied to further improvement of the A-PODIA system. As a feedback from actual operational experience, operator performance data in simulator training is an important source of information to evaluate human factors of a control room. To facilitate analysis of operator performance, a performance evaluation system has been developed by applying AI techniques. The knowledge contained in the performance evaluation system was elicited from operator training experts and represented as rules. The rules were implemented by employing an object-oriented paradigm to facilitate knowledge management. In conclusion, it is stated that the feedback from new control room operation can be obtained at an early stage by validation tests and also continuously by comprehensive evaluation (with the help of automated tools) of operator performance in simulator training. The results of operator performance analysis can be utilized for improvement of system design as well as operator training. (author)

  15. Advanced Control Engineering

    DEFF Research Database (Denmark)

    Zhou, Jianjun

    1999-01-01

    This book is developed as a textbook for the course Advanced Control Engineering. The book is intended for students in mechanical engineering and its aim is to provide an understanding of modern control theory as well as methodologies and applications for state space modeling and design. For this...... reason, the book puts emphasis on the state-space approach. The main contents of the book includes state-space representation of dynamic systems, analysis of linear control systems, feedback control and observer design. Both continuous-time and discrete-time systems have been addressed in this book....

  16. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, Casey Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bower, Gordon Ross [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary Alexander [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, Rachael Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States); LeBlanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  17. Re-envisioning the operator consoles for Dhruva control room

    International Nuclear Information System (INIS)

    Control Room design is undergoing rapid changes with the progressive adoption of computerization and Automation. Advances in man-machine interfaces have further accelerated this trend. This paper presents the design and main features of Operator consoles (OC) for Dhruva control room developed using new technologies. The OCs have been designed so as not to burden the operator with information overload but to help him quickly assess the situation and timely take appropriate steps. The consoles provide minimalistic yet intuitive interfaces, context sensitive navigation, display of important information and progressive disclosure of situation based information. The use of animations, 3D graphics, and real time trends with the benefit of hardware acceleration to provide a resolution independent rich user experience. The use of XAML, an XML based Mark-up Language for User Interface definition and C for application logic resulted in complete separation of visual design, content, and logic. This also resulted in a workflow where separate teams could work on the UI and the logic of an application. The introduction of Model View View-Model has led to more testable and maintainable software. (author)

  18. A new main control room for the AGS complex

    International Nuclear Information System (INIS)

    A new Main Control Room (MCR) has been built to control the accelerators of the AGS Complex. A new physical environment was produced to better control light, sound, temperature, and traffic. New control consoles were built around the work-stations that make up the distributed control system. Equipment placement within consoles and console placement within the room reflect attention to the ''human factors'' needs of the operator. 1 ref., 2 figs

  19. Control room human engineering influences on operator performance

    International Nuclear Information System (INIS)

    Three general groups of factors influence operator performance in fulfilling their responsibilities in the control room: (1) control room and control system design, informational data displays (operator inputs) as well as control board design (for operator output); (2) operator characteristics, including those skills, mental, physical, and emotional qualities which are functions of operator selection, training, and motivation; (3) job performance guides, the prescribed operating procedures for normal and emergency operations. This paper presents some of the major results of an evaluation of the effect of human engineering on operator performance in the control room. Primary attention is given to discussion of control room and control system design influence on the operator. Brief observations on the influences of operator characteristics and job performance guides (operating procedures) on performance in the control room are also given. Under the objectives of the study, special emphasis was placed on the evaluation of the control room-operator relationships for severe emergency conditions in the power plant. Consequently, this presentation is restricted largely to material related to emergency conditions in the control room, though it is recognized that human engineering of control systems is of equal (or greater) importance for many other aspects of plant operation

  20. The development of KNGR control room man-machine interface design

    International Nuclear Information System (INIS)

    KNGR MMI design has been developed for the last 7 years as a part of Korea Next Generation Reactor (KNGR) design development. The KNGR control room has the common features of advanced control room such as large display panel, redundant compact workstations, soft control, and computerized procedure system. A conventional type safety console is provided as a backup when operation at the workstations is impossible. The strong points of an advanced control room are based on the powerful information processing and flexible graphic presentation capability of computer technology. On the other hand, workstation based design has a weak point that the amount of information to be presented in one VDU is limited. This can cause navigational overload and inconsistent interfaces and provide chances for performance errors/failures, if not designed carefully. From this background, the regulators require licensees to follow strict top-down human factor engineering design process. Analysis of operating experiences and iterative evaluations are used to address the potential problems of the KNGR advanced control room MMI design. But, further study is necessary in design area like CPS design, where experiences or design guidance is insufficient. Further study topics for KNGR advanced control room MMI design development are discussed briefly in this paper. (author)

  1. Advances in materials for room temperature hydrogen sensors.

    Science.gov (United States)

    Arya, Sunil K; Krishnan, Subramanian; Silva, Hayde; Jean, Sheila; Bhansali, Shekhar

    2012-06-21

    Hydrogen (H(2)), as a source of energy, continues to be a compelling choice in applications ranging from fuel cells and propulsion systems to feedstock for chemical, metallurgical and other industrial processes. H(2), being a clean, reliable, and affordable source, is finding ever increasing use in distributed electric power generation and H(2) fuelled cars. Although still under 0.1%, the distributed use of H(2) is the fastest growing area. In distributed H(2) storage, distribution, and consumption, safety continues to be a critical aspect. Affordable safety systems for distributed H(2) applications are critical for the H(2) economy to take hold. Advances in H(2) sensors are driven by specificity, reliability, repeatability, stability, cost, size, response time, recovery time, operating temperature, humidity range, and power consumption. Ambient temperature sensors for H(2) detection are increasingly being explored as they offer specificity, stability and robustness of high temperature sensors with lower operational costs and significantly longer operational lifetimes. This review summarizes and highlights recent developments in room temperature H(2) sensors. PMID:22582176

  2. An approach to enhanced control room crew performance

    International Nuclear Information System (INIS)

    The function of a nuclear power plant control room team is similar to that of an airline cockpit crew or a critical task military team such as a flight crew, tank crew, combat squad or platoon. These teams encounter many of the same problems or challenges in their environments when dealing with abnormal or emergency situations. The competency of these teams in bringing about successful conclusions in situations depends on their ability to coordinate their actions. This is often referred to as teamwork and includes the interactions between team members which must occur during highly critical situations. The purpose of this paper is to present team skills training and the advances made in this crucial area by utilizing both classroom and high fidelity simulator training

  3. Control console of the gamma calibration room

    International Nuclear Information System (INIS)

    The Nuclear Centre of Mexico has a Ionizing Radiation Metrology Center (CMRI). This is in charge of the calibration in Mexico and Latin America of equipment dedicated to radiation measurement as industrial, medical as other fields. The importance to ensure that the equipment stay justly calibrated, it is imposed the necessity of automating the different rooms which the CMRI has. in this case it will be exposed the Calibration room for gamma radiation type. The operation of this application was carried out with the LabVIEW development platform and also in C language. The hardware associated is: personal computer with two cards using the 8255 device, 16 channels with optical isolation to manage input/output TTL type, 16 channels with optical isolation to management of charges to 127 V a.c., and 2 channels for 90V d.c. motors. (Author)

  4. Design of a multisystem remote maintenance control room

    International Nuclear Information System (INIS)

    The Remote Systems Development Section of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL) and Japan's Power Reactor and Nuclear Fuel Development Corporation (PNC) recently collaborated in the development of a control room concept for remote operations. This report describes design methods and the resulting control room concept. The design project included five stages. The first was compilation of a complete function list; functions are tasks performed by operators in the control room while operating equipment located in the remote area. The second step was organization of the function list into ''function groups;'' function groups are sets of functions that operate one piece of equipment. The third stage was determination of crew size and requirements for supervision. The fourth stage was development of conceptual designs of displays and controls. The fifth stage was development of plans for placement of crew stations within the control room. 5 figs., 1 tab

  5. Bruce B main control room facilities improvement project

    International Nuclear Information System (INIS)

    Bruce B is a four unit CANDU station located on the shore of Lake Huron near Tiverton, Ontario. Designed in the 1970's and built in the mid 1980's, the station is rated at 840 Megawatts per unit. The Main Control Room (MCR) was designed as a single, large and spacious room comprising an area of approximately 5600 square feet. The MCR consists of five main control panel sections, which comprise the walls of the room. The five sections include the control panels for reactor units 5,6,7,8 and unit 0 (common services and switchyard controls). Three fuelling machine and fuel handling control consoles are located in the center of the MCR. In effect, the Bruce B MCR comprises no less than six separate operating islands in one large room. (author)

  6. Design of a multisystem remote maintenance control room

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V.; Handel, S.J.; Kring, C.T.; Kawatsuma, S.

    1988-01-01

    The Remote Systems Development Section of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL) and Japan's Power Reactor and Nuclear Fuel Development Corporation (PNC) recently collaborated in the development of a control room concept for remote operations. This report describes design methods and the resulting control room concept. The design project included five stages. The first was compilation of a complete function list; functions are tasks performed by operators in the control room while operating equipment located in the remote area. The second step was organization of the function list into ''function groups;'' function groups are sets of functions that operate one piece of equipment. The third stage was determination of crew size and requirements for supervision. The fourth stage was development of conceptual designs of displays and controls. The fifth stage was development of plans for placement of crew stations within the control room. 5 figs., 1 tab.

  7. Perception of tomorrow's nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Major development programs are upgrading today's light water reactor nuclear power plant (NPP) control rooms. These programs involve displays, control panel architecture, procedures, staffing, and training, and are supported by analytical efforts to refine the definitions of the dynamics and the functional requirements of NPP operation. These programs demonstrate that the NPP control room is the visible command/control/communications center of the complex man/machine system that operates the plant. These development programs are primarily plant specific, although the owners' groups and the Institute of Nuclear Power Operations (INPO) do provide some standardization. The Idaho National Engineering Laboratory recently completed a project to categorize control room changes and estimate the degree of change. That project, plus related studies, provides the basis for this image of the next generation of NPP control rooms. The next generation of NPP control rooms is envisioned as being dominated by three current trends: (1) application of state-of-the-art computer hardware and software; (2) use of NPP dynamic analyses to provide the basis for the control room man/machine system design; and (3) application of empirical principles of human performance

  8. Advanced Wavefront Control Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  9. Have it your way. A modular approach to custom compact control rooms

    International Nuclear Information System (INIS)

    In spite of the recent lack of growth in the nuclear power industry, a transition is taking place to compact main control rooms as the design of choice for power generating facilities. This is evident in the design and construction of new facilities, including Advanced Light Water Reactors such as the Korean Shin Kori 3 and 4 units, as well as Generation IV reactors. Also, compact control rooms are increasingly preferred for the modernization of current generation plants. This shift reflects that compact control rooms combine cost savings through equipment reduction and standardization with operability improvements through increased functionality and flexibility and improved presentation. Though compact control rooms feature significantly fewer Human Machine Interface (HMI) devices than their conventional counterparts, customers still require a wide variety of different configurations to accommodate their individual operations philosophies, cultural norms, licensing regulations and physical constraints. To meet this need, Westinghouse Electric Company has developed an innovative, modular approach to designing compact control rooms for nuclear power plants. This approach features a small set of standard HMI devices serving as building blocks for all compact control room functions. The building blocks include qualified and non-safety video devices for implementing displays, alarms, multi-channel soft controls, computerized procedures, etc. These building blocks can be used for (1) large screen overview displays, (2) console-based control and monitoring and (3) HMI devices for conventional, benchboard-style control panels. Their modular design allows these building blocks to be arranged in various physical configurations to meet a wide variety of customer's control room preferences and constraints. For example, a compact control room could use the qualified building blocks (1) to configure a dedicated safety panel independent of the normal operational consoles, or (2

  10. Control room concept for remote maintenance in high radiation areas

    International Nuclear Information System (INIS)

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. Each of these activities is summarized below. 6 references, 3 figures

  11. Control room concept for remote maintenance in high radiation areas

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. Each of these activities is summarized below. 6 references, 3 figures.

  12. Control room concept for remote maintenance in high radiation areas

    International Nuclear Information System (INIS)

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. 6 references, 3 figures

  13. The application of human engineering in control room of HFETR

    International Nuclear Information System (INIS)

    The human-machine system for improving the working environment in the control room of HFETR is described. The reliability of the equipment, instruments and operation by human engineering is increased. The relations between human engineering and lowering human failure in HFETR are also discussed. It is concluded that the further application of human engineering can increase interaction of the human and machine in the control room and provide assurances for the safe and reliable operation of reactor. (authors)

  14. Use of control room simulators for training of NPP personnel

    International Nuclear Information System (INIS)

    The objective of this report is to provide NPP managers, training center managers and personnel involved with control room simulator training with practical information they can use to improve the performance of their personnel. While the emphasis in this report is on simulator training of control room personnel using full scope simulators, information is also provided on how organizations have effectively used control room simulators for training of other NPP Personnel, Vienna (AT) including simulators other than full-scope simulators. The documents includes: the main body with current practices and recommendations; selected examples from countries; a CD ROM with all examples (different languages). The document will be available on the IAEA web site. The topics describes are: trends in simulators training; designing and developing training involving room simulators; implementation of simulator training; evaluating the effectiveness of simulator training; simulator instructor competence; application of different types of simulators in the training of NPP personnel (other than full scope simulators

  15. HUMAN FACTORS GUIDANCE FOR CONTROL ROOM EVALUATION

    International Nuclear Information System (INIS)

    The Human-System Interface Design Review Guideline (NUREG-0700, Revision 1) was developed by the US Nuclear Regulatory Commission (NRC) to provide human factors guidance as a basis for the review of advanced human-system interface technologies. The guidance consists of three components: design review procedures, human factors engineering guidelines, and a software application to provide design review support called the ''Design Review Guideline.'' Since it was published in June 1996, Rev. 1 to NUREG-0700 has been used successfully by NRC staff, contractors and nuclear industry organizations, as well as by interested organizations outside the nuclear industry. The NRC has committed to the periodic update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool in the face of emerging and rapidly changing technology. This paper addresses the current research to update of NUREG-0700 based on the substantial work that has taken place since the publication of Revision 1

  16. Man-machine considerations in nuclear power plant control room design

    International Nuclear Information System (INIS)

    Although human factors is a subject that has been around for a number of years, this area of design has only recently become known to the power industry. As power plants have grown in size and complexity, the instrumentation required to control and monitor plant processes has increased tremendously. This has been especially true in nuclear power facilities. Although operators are better trained and qualified, very little consideration has been devoted to man-machine interface and the limitations of human operators. This paper explores the historic aspects and design philosophy associated with nuclear plant control rooms. Current problems and solutions are explored along with the components of a control room review. Finally, a survey of future advances in control room design are offered. This paper is concerned with instrumentation, controls, and displays

  17. Cognitive allocation and the control room

    International Nuclear Information System (INIS)

    One of the weakest links in the design of nuclear power plants is the inattention to the needs and capabilities of the operators. This flaw causes decreased plant reliability and reduced plant safety. To solve this problem the designer must, in the earliest stages of the design process, consider the operator's abilities. After the system requirements have been established, the designer must consider what functions to allocate to each part of the system. The human must be considered as part of this system. The allocation of functions needs to consider not only the mechanical tasks to be performed, but also the control requirements and the overall control philosophy. In order for the designers to consider the control philosophy, they need to know what control decisions should be automated and what decisions should be made by an operator. They also need to know how these decisions will be implemented: by an operator or by automation. ''Cognitive Allocation'' is the allocation of the decision making process between operators and machines. It defines the operator's role in the system. When designing a power plant, a cognitive allocation starts the process of considering the operator's abilities. This is the first step to correcting the weakest link in the current plant design

  18. Control room development at nuclear power stations in France

    International Nuclear Information System (INIS)

    Improvements in 900-MW pressurized-water reactor plant control rooms and safety panels are discussed. Ergonomic modifications have been introduced in the layout of the control and safety systems in order to reduce the risk of error. Main principles applied are discussed. At the safety panel an operator-aid is installed for event detection, diagnostics and procedure application. 3 types of personnel training simulation are used: basic principle simulators, function simulators and integral simulators. In addition, computer assisted training has been developed for training of the operators at a remote terminal whenever it is wanted. Future control rooms for the new 1300-MW units are briefly discussed. (orig.)

  19. Control console for the X-ray room

    International Nuclear Information System (INIS)

    It is presented the design and construction of Control console for the X-ray room of Metrology Center for ionizing radiations at National Institute of Nuclear Research (ININ). This system controls the positioning of 6 different filters for an X-ray beam. Also it controls a shutter which blockades the beam during periods established by user, these periods can be fixed from hours until tenth of second. The shutter opening periods, as well as the X-ray beam filter are establish and monitoring from a Personal computer outside of room. (Author)

  20. Human-machine interface aspects and use of computer-based operator support systems in control room upgrades and new control room designs for nuclear power plants

    International Nuclear Information System (INIS)

    At the Halden Project efforts are made to explore the possibilities through design, development and validation of Computer-based Operator Support Systems (COSSes) which can assist the operators in different operational situations, ranging from normal operation to disturbance and accident conditions. The programme comprises four main activities: 1) verification and validation of safety critical software systems; 2) man-machine interaction research emphasizing improvements in man-machine interfaces on the basis of human factors studies; 3) computerized operator support systems assisting the operator in fault detection/diagnosis and planning of control actions; and 4) control room development providing a basis for retrofitting of existing control rooms and for the design of advanced concepts. The paper presents the status of this development programme, including descriptions of specific operator support functions implemented in the simulator-based, experimental control room at Halden (HAMMLAB, HAlden Man-Machine LABoratory). These operator aids comprise advanced alarms systems, diagnostic support functions, electronic procedures, critical safety functions surveillance and accident management support systems. The different operator support systems development at the Halden Project are tested and evaluated in HAMMLAB with operators from the Halden Reactor, and occasionally from commercial NPPs, as test subjects. These evaluations provide data on the merits of different operator support systems in an advanced control room setting, as well as on how such systems should be integrated to enhance operator performance. The paper discusses these aspects and the role of computerized operator support systems in plant operation based on the experience from this work at the Halden Project. 15 refs, 5 figs

  1. Control room crew operations research project. Final report

    International Nuclear Information System (INIS)

    This report presents an assessment of the current state of the art in human reliability analysis (HRA) and highlights the principal shortcomings of current approaches. Issues that should be addressed in an improved HRA approach as well as the constraints imposed by current methodologies used to perform Probabilistic Safety Assessment (PSAs) are identified. A generalized conceptual model for estimating the probabilities of the human failure events that are included in a PSA logic model is presented. The model is expressed as a sum over error modes and error causes. The report emphasizes the importance of understanding the causality of error and suggests one approach to the representation of error causes. An example approach to the qualitative screening of errors of commission is presented. The second part of the report describes an alternative approach to modeling accident scenarios that explicitly considers the dynamic interactions of the various elements and provides the needed environment for implementation of advanced human reliability models. This approach has been incorporated into the Accident Dynamic Simulator (ADS), a computer tool that removes the main roadblock to implementation of this methodology by handling the computational complexities of an integrated model of a large system, its physical processes, and the human behavior of the control room operators. ADS runs on a personal computer and is designed to facilitate the PSA of nuclear power plants. The application of the code to a SGTR initiating event at a Westinghouse PWR is presented

  2. Intelligent systems supporting the control room operators

    International Nuclear Information System (INIS)

    The operational experience obtained with the various applications of the systems discussed in this paper shows that more consequent use of the systems will make detection and management of disturbances still more efficient and faster. This holds true both for a low level of process automation and for power plants with a high level of automation. As for conventional power plants, the trend clearly is towards higher degrees of automation and consequent application of supporting systems. Thus, higher availability and rapid failure management are achieved, at low effects on normal operation. These systems are monitoring and process control systems, expert systems, and systems for optimal use of the equipment, or systems for post-incident analyses and computer-assisted on-shift protocols, or operating manuals. (orig./CB)

  3. 49 CFR 192.631 - Control room management.

    Science.gov (United States)

    2010-10-01

    ... control room who monitors and controls all or part of a pipeline facility through a SCADA system. Each... SCADA system is added, expanded or replaced, unless the operator demonstrates that certain provisions of sections 1, 4, 8, 9, 11.1, and 11.3 of API RP 1165 are not practical for the SCADA system used; (2)...

  4. Teamwork and problem solving in the control room

    International Nuclear Information System (INIS)

    The importance of teamwork and communications in the control room of a nuclear power plant has been the subject of significant attention during the 10 yr since the Three Mile Island accident. The ability to conduct effective problem solving, especially under unexpected conditions, requires that the control room crew be well trained in techniques that produce synergism and avoid ambiguous or conflicting interactions. This paper describes the foundations of a training program developed and conducted by Combustion Engineering to produce a winning team in the control room. The complete licensed operations staffs of three utilities, Florida Power ampersand Light, Louisiana Power ampersand Light, and Omaha Public Power District, have completed this program. Thus, the results of the experience of ∼150 licensed operators is reported

  5. Assessment of control rooms of nuclear power plants

    International Nuclear Information System (INIS)

    To identify and correct the lacks in control rooms of operating power plants and plants under construction an extensive program has been started in the USA. In Finland as in other countries using nuclear power, the development in the USA particularly with regard to the requirements imposed on nuclear power plants is carefully followed. The changes in these requirements are sooner or later also reflected in the guidelines given by the Finnish authorities. It is therefore important to be able to form a notion of how the new requirements apply to Finnish conditions. Especially it is important to review the latest assessment guidelines for control room implementation (NUREG-0700). Thus we can avoid possible over hasty conclusions. The aim of the analysis of the method and experiments presented in NUREG 0700 report was to create a basis for assessment of the suitability of the method for Finnish control room implementation. The task group has made a general methodical analysis of the method, and partly tried it in assessment of the TVO2 control room. It is obvious that direct conclusions from the American situation are misleading. It can be considered unfeasible to follow the American requirements as such, because they can lead to unwanted results. If the review is limited to control room details, the NRC program (checklist) can be considered successful. It can also be used during planning to observation of small discrepancies. However, we can question the applicability of some requirements. It is, though, more essential that the control room entity has neither in this nor in several other programs been reached or standardized. In spite of the difficulties we should try to reach this most important goal. (author)

  6. Control room systems design for nuclear power plants

    International Nuclear Information System (INIS)

    This publication provides a resource for those who are involved in researching, managing, conceptualizing, designing, manufacturing or backfitting power plant control room systems. It will also be useful to those responsible for performing reviews or evaluations of the design and facilities associated with existing power plant control room systems. The ultimate worth of the publication, however, will depend upon how well it can support its users. Readers are invited to provide comments and observations to the IAEA, Division of Nuclear Power. If appropriate, the report will subsequently be re-issued, taking such feedback into account. Refs, figs and tabs

  7. A new remote control room for tokamak operations

    International Nuclear Information System (INIS)

    This paper presents a summary of a new remote tokamak control room constructed near the offices of DIII-D's scientific staff. This integrated system combines hardware, software, data, and control of the room (R-232) into a unified package that has been designed and constructed in a generic fashion so that it can be used with any tokamak operating worldwide. The room is approximately 300 ft2 and can accommodate up to 12 seated participants. Mounted on the wall facing each scientist are five 52″ LCD televisions and mounted to the wall on their right are six 24″ LCD monitors. Each seat has associated with it a 24″ monitor, network connection, and power and the scientist is either provided with a computer or they can use their own. The room has been used for operation of DIII-D, EAST, and KSTAR. Due to the long distances, data from EAST and KSTAR was brought back to local DIII-D computers in one large parallel network transfer and subsequently served to scientists in the remote control room to other US collaborators. This parallel data transfer allowed the data to be available to US participants between pulses making remote experimental participation highly effective.

  8. Advanced Torque Control

    OpenAIRE

    Fritzsche, C; Deunow, H.-P.

    2008-01-01

    In the chapter we discussed a control approach for torque control of gasoline engines. Because of several actuating variables and control requirements the process to be controlled is multivariable. The actuating variables are usually bounded and the effects on the engine torque are nonlinear. Hence direct use of the actuator variables for torque control generally produces plenty of problems. The two layer approach described in the chapter allows the application of standard control methods. Th...

  9. A Control Room Design Support system using virtual reality

    International Nuclear Information System (INIS)

    To enhance the efficiency of design and evaluation of the control and monitoring system in the main control room of nuclear power plants, we have been developing a COntrol Room Design Support system (CORDS) using virtual reality technology. Using CORDS, vendor designers and customers can visually check and review human interface design of the proposed control and monitoring systems. The geometry of panels and consoles of the control and monitoring system represented as 3-dimensional static CG (computer graphics) models. Dynamic components, such as control switches, CRT displays and so on, are modeled as dynamic objects in the geometric CG model environment. CORDS is linked with real-time plant simulator. The dynamic objects respond to the corresponding process variables in the simulator, which enables visual evaluation of the response of the control and monitoring system for the various normal and abnormal plant status. The behavior of plant operators can be simulated in 3-dimensional CG control room environment. The operators can be displayed as CG figures and their motions are modeled and controlled based on plant operation manuals. A prototype of CORDS has constructed on a graphics workstation and two engineering workstations. (author)

  10. Ergonomic requirements to control room design - evaluation method

    International Nuclear Information System (INIS)

    The method of evaluation introduced is the result of work carried out by the sub-committee 'Control Room Design' of the Engineering Standards Committee in DIN Standards, Ergonomy. This committee compiles standards for the design of control rooms (instrumentation and control) for the monitoring and operation of process engineering cycles. With the agreement of the committee - whom we wish to take the opportunity of thanking at this point for their constructive collaboration - a planned partial standard will be introduced thematically in the following, in order that knowledge gained from the discussion can be included in further work on the subject. The matter in question is a procedure for the qualitative evaluation of the duties to be performed under the control of operators in order that an assessment can be made of existing control concepts or such concepts as are to be found in the draft phase. (orig./GL)

  11. Active low frequency sound field control in a listening room using CABS (Controlled Acoustic Bass System) will also reduce the sound transmitted to neighbour rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    is possible at modal frequencies. For that reason the modal frequencies in the source room will also have big impact on the transmission to neighbour rooms. These low frequency resonance frequencies are very audible in the source room but also in neighbour rooms as a booming bass. CABS (Controlled...... Acoustic Bass System) is a time based room correction system for reproduced sound using loudspeakers. The system can remove room modes at low frequencies, by active cancelling the reflection from at the rear wall to a normal stereo setup. Measurements in a source room using CABS and in two neighbour rooms...

  12. Response Times of Operators in a Control Room

    DEFF Research Database (Denmark)

    Platz, O.; Rasmussen, J.; Skanborg, Preben Zacho

    A statistical analysis was made of operator response times recorded in the control room of a research reactor during the years 1972-1974. A homogeneity test revealed that the data consist of a mixture of populations. A small but statistically significant difference is found between day and night...

  13. Inside the LEP control room at start-up

    CERN Multimedia

    1989-01-01

    Physicists grouped around a screen in the LEP control room at the strat-up of LEP on 14 July 1989. The emotion of the moment is clear. Carlo Rubbia, Director-General of CERN at the time, is in the centre and on his left, Herwig Schopper, former Director-General of the Organization.

  14. An electronic logbook for the HEP control room

    International Nuclear Information System (INIS)

    The Control Room Logbook (CRL) is designed to improve and replace the paper logbooks traditionally used in the HEP accelerator control room. Its features benefit the on-line coordinator, the shift operators, and the remote observers. The author explains some of the most attractive features for each of these roles. The features include the ability to configure the logbook for the specific needs of a collaboration, a large variety of entry types an operator can add by simply clicking and dragging, and a flexible web interface for the remote observer to keep up with control room activities. The entries and saved as UTF-8 based XML files, which allowed us to give the data structure and meaning such that it can easily be parsed in the present and far into the future. The XML tag data is also indexed in a relational database, making queries on dates, keywords, entry type and other criteria feasible and fast. The CRL is used in the D0 control room. This presentation also discusses our experience with deployment, platform independence and other interesting issues that arose with the installation and use of logbook

  15. An Electronic Logbook for the HEP Control Room

    International Nuclear Information System (INIS)

    The Control Room Logbook (CRL) is designed to improve and replace the paper logbooks traditionally used in the HEP accelerator control room. Its features benefit the on-line coordinator, the shift operators, and the remote observers. This paper explains some of the most attractive features for each of these roles. The features include the ability to configure the logbook for the specific needs of a collaboration, a large variety of entry types an operator can add by simply clicking and dragging, and a flexible web interface for the remote observer to keep up with control room activities. The entries are saved as UTF-8 based XML files, which allowed us to give the data structure and meaning such that it can easily be parsed in the present and far into the future. The XML tag data is also indexed in a relational database, making queries on dates, keywords, entry type and other criteria feasible and fast. The CRL is used in the D0 control room. This presentation also discusses our experience with deployment, platform independence and other interesting issues that arose with the installation and use of the logbook

  16. An Electronic Logbook for the HEP Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Gary Roediger et al.

    2001-11-26

    The Control Room Logbook (CRL) is designed to improve and replace the paper logbooks traditionally used in the HEP accelerator control room. Its features benefit the on-line coordinator, the shift operators, and the remote observers. This paper explains some of the most attractive features for each of these roles. The features include the ability to configure the logbook for the specific needs of a collaboration, a large variety of entry types an operator can add by simply clicking and dragging, and a flexible web interface for the remote observer to keep up with control room activities. The entries are saved as UTF-8 based XML files, which allowed us to give the data structure and meaning such that it can easily be parsed in the present and far into the future. The XML tag data is also indexed in a relational database, making queries on dates, keywords, entry type and other criteria feasible and fast. The CRL is used in the D0 control room. This presentation also discusses our experience with deployment, platform independence and other interesting issues that arose with the installation and use of the logbook.

  17. Information Foraging in Nuclear Power Plant Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  18. Control room envelope unfiltered air inleakage test protocols

    Energy Technology Data Exchange (ETDEWEB)

    Lagus, P.L. [Lagus Applied Technology, San Diego, CA (United States); Grot, R.A. [Lagus Applied Technology, Olney, MD (United States)

    1997-08-01

    In 1983, the Advisory Committee on Reactor Safeguards (ACRS) recommended that the US NRC develop a control room HVAC performance testing protocol. To date no such protocol has been forthcoming. Beginning in mid-1994, an effort was funded by NRC under a Small Business Innovation Research (SBIR) grant to develop several simplified test protocols based on the principles of tracer gas testing in order to measure the total unfiltered inleakage entering a CRE during emergency mode operation of the control room ventilation system. These would allow accurate assessment of unfiltered air inleakage as required in SRP 6.4. The continuing lack of a standard protocol is unfortunate since one of the significant parameters required to calculate operator dose is the amount of unfiltered air inleakage into the control room. Often it is assumed that, if the Control Room Envelope (CRE) is maintained at +1/8 in. w.g. differential pressure relative to the surroundings, no significant unfiltered inleakage can occur it is further assumed that inleakage due to door openings is the only source of unfiltered air. 23 refs., 13 figs., 2 tabs.

  19. Game-based training environment for nuclear plant control room

    International Nuclear Information System (INIS)

    Nuclear power plant's safety is very important problem. In this very conscientious environment if operator has a little mistake, they may threaten with many people influence their safety. Therefore, operating training of control room is very important. However, the operator training is in limited space and time. Each operator must go to simulative control room do some training. If we can let each trainee having more time to do training and does not go to simulative control room. It may have some advantages for trainee. Moreover, in the traditional training ways, each operator may through the video, teaching manual or through the experienced instructor to learn the knowledge. This training way may let operator feel bored and stressful. So, in this paper aims, we hope utilizing virtual reality technology developing a game-based virtual training environment of control room. Finally, we will use presence questionnaire evaluating realism and feasibility of our virtual training environment. Expecting this initial concept of game-based virtual training environment can attract trainees having more learning motivation to do training in off-hour. (author)

  20. Computer codes for evaluation of control room habitability (HABIT)

    International Nuclear Information System (INIS)

    This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs

  1. Computer codes for evaluation of control room habitability (HABIT)

    Energy Technology Data Exchange (ETDEWEB)

    Stage, S.A. [Pacific Northwest Lab., Richland, WA (United States)

    1996-06-01

    This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs.

  2. Advanced Control of Turbofan Engines

    CERN Document Server

    Richter, Hanz

    2012-01-01

    Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. This book also: Develops a thorough understanding of the challenges associated with engine operability from a control systems perspective, describing performance demands and operational constraints into the framework and language of modern control theory Presents solid theoretical support for classical and advanced engine co...

  3. Look into the PS Main Control Room (partial view)

    CERN Document Server

    1974-01-01

    Jean-Pierre Potier at work. The 26 GeV Synchrotron and later also its related machines (Linacs 1,2,3; PS-Booster, LEP-Injector Linacs and Electron-Positron Accumulator; Antiproton Accumulator, Antiproton Collector, Low Energy Antiproton Ring and more recently Antiproton Decelerator) were all controlled from the PS control room situated at the Meyrin site. The SPS and LEP were controlled from a separat control centre on the Prevessin site. In 2005 all controls were transferred to the Prevessin centre.

  4. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  5. Remote control of magnetostriction-based nanocontacts at room temperature

    OpenAIRE

    S. Narayana Jammalamadaka; Sebastian Kuntz; Oliver Berg; Wolfram Kittler; U. Mohanan Kannan; Arout Chelvane, J.; Christoph Sürgers

    2015-01-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb 0.3 Dy 0.7 Fe 1.95 as an active element in a mechanically controlled break-junction...

  6. Control of Computer Room Air Conditioning using IT Equipment Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  7. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  8. A computerized main control room for NPP: Development and investigation

    International Nuclear Information System (INIS)

    An ergonomics assessment of the control room at Leningrad Nuclear Power Plant has been undertaken as part of an international project funded by the EU TACIS program. The project was focused on the upgrading of the existing control facilities and the installation of a validation facility to evaluate candidate refurbishment proposals before their implementation at the plant. The ergonomics methodology applied in the investigation was wide ranging and included an analysis of reported events, extensive task analysis (including novel techniques) and validation studies using experienced operators. The paper addresses the potential difficulties for the human operator associated with fully computerized interfaces and shows how the validation facility and the outcomes from ergonomics assessment will be used to minimise any adverse impact on performance that may be caused by proposed control room changes. (authors)

  9. Controlling allergens in animal rooms by using curtains

    DEFF Research Database (Denmark)

    Krohn, Thomas Cæcius; Itter, Gabi; Fosse, Richard;

    2006-01-01

    The reduction and control of allergens in the animal facility is important for staff working with laboratory animals. This study was designed to evaluate the efficiency of perforated Makrolon curtains in front of racks as a method to reduce the amount of allergen in the animal room. The experimen...... the curtains and prevents its spread from the cages into the aisle. The present study shows that the use of curtains in front of the cage racks is an efficient way to prevent spread of allergens from rodent cages to the entire animal room.......The reduction and control of allergens in the animal facility is important for staff working with laboratory animals. This study was designed to evaluate the efficiency of perforated Makrolon curtains in front of racks as a method to reduce the amount of allergen in the animal room. The...... experimental situation we studied provides some information regarding allergen disposition in animal rooms but is clearly artificial and does not reflect a typical, ‘real-world’ environment in terms of preventing exposure of workers to allergens. Plastic curtains with holes were placed in front of racks, and a...

  10. Evolution of the CANDU ICS-90+ control room design

    International Nuclear Information System (INIS)

    The design of the CANDU Control Room and the associated design process has evolved considerably over several generations of plants, from the first commercial scale demonstration CANDU at Douglas Point through to the large scale CANDUs at Darlington, and beyond, for the next generation of CANDU plant, ICS-90+, represented by new designs like CANDU 3. In the early plants, the control room configuration was based on designers' projections of control interface requirements. With succeeding generations, of designs, there has been an evolution towards: increasing attention to formal requirements definition, incorporation into the Human Machine Interface (HMI) of a larger base of operational experience, more systematic consideration of Human Factors (HF) aspects of the design and the application of a more powerful computer based HMI. For the newest plant, the CANDU 3, a Human Factors Engineering Program Plan (HFEPP) defines the overall HF engineering process, the associated requirements and HF engineering standards to be followed in each stage, and for all HMI aspects of the control room and plant design. The CANDU 3 control room also incorporates several new design innovations that will facilitate operating crew performance improvements. These are based on past experience with operating CANDU plants, incorporated with the use of formal design and validation methods plus results from Canadian research program to support control centre design and operation. For example, there are design improvements to facilitate: operator tracking of plant state, problem solving, alarm filtering, annunciation system interrogation, special safety system testing features, etc. The present paper will expand and elaborate on each of the above topics. (author). 7 refs, 2 figs, 1 tab

  11. The advanced controls program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory (ORNL), under sponsorship of the US Department of Energy (DOE), is conducting research that will lead to advanced, automated control of new liquid-metal-reactor (LMR) nuclear power plants. Although this program of research (entitled the ''Advanced Controls Program'') is focused on LMR technology, it will be capable of providing control design, test, and qualification capability for other advanced reactor designs (e.g., the advanced light water reactor [ALWR] and high temperature gas-cooled reactor [HTGR] designs), while also benefiting existing nuclear plants. The Program will also have applicability to complex, non-nuclear process control environments (e.g., petrochemical, aerospace, etc.). The Advanced Controls Program will support capabilities throughout the entire plant design life cycle, i.e., from the initial interactive first-principle dynamic model development for the process, systems, components, and instruments through advanced control room qualification. The current program involves five principal areas of research activities: (1) demonstrations of advanced control system designs, (2) development of an advanced controls design environment, (3) development of advanced control strategies, (4) research and development (R ampersand D) in human-system integration for advanced control system designs, and (5) testing and validation of advanced control system designs. Discussion of the research in these five areas forms the basis of this paper. Also included is a description of the research directions of the program. 8 refs

  12. Halden Project activities relating to hybrid control room automation systems

    International Nuclear Information System (INIS)

    This paper is a high-level presentation of OECD Halden Reactor projects activities that relate to hybrid control room design, implementation and V and V. The Halden Project has a long tradition working on the human factors related aspects influencing the usability of any (hybrid) control room. Yet, the paper start out with a review of experiences on a much broader scale that takes into account many other contributing factors involved in a control room upgrade projects, e.g. change management principles, work procedures and methods, communication and crew interaction as well as crew training. The reported review was implemented back in 2001 but it is deemed of current value to many planned and ongoing control room upgrade projects. The reported project distributed a questionnaire to obtain input from as many industry contracts and members of the HPG as possible. The review is thus a synthesis of experiences and opinions of the persons and organizations participating. Next, the paper presents a selection of human factors issues that should be taken into account when doing control room design and upgrades. Moreover, some methods to implement V and V related to these issues are presented - some of which are based on experiments in a simulator environment. These V and V methods are exemplified by a few real plant upgrades in which HRP staff acted as consultants. The paper ends with a description of an ongoing project that uses virtual reality (VR) technology to enable the study of human factors issues at a very early stage during the design process. Applying VR for this purpose has obvious potential advantages as it can be used to identify costly errors within the design. It has already been proven that VR can be used to improve the communication within the design team, establishing a common reference model that can be understood by all members of the team. It is hoped that functional- and job analysis directly supported by the visualization of planned control room

  13. CERN opens up its control rooms to youngsters

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    CERN is inviting 13 to 18 year-olds to come and spend a couple of hours in the control rooms of the LHC and its experiments. Registration is now open.   Is your neighbour's kid eager to come and see what's going on in the CERN control rooms for himself? Is your niece from Germany fascinated by the famous accelerator near Geneva that she's heard about and asking to know more? Then Researchers Night is for them! From 6.00 p.m. on Friday 23 September until 1.00 a.m. the following morning, the LHC and its experiments will open their doors to 13 to 18 year-olds. They are invited to come and spend a couple of hours in the control rooms watching the physicists and taking part in various activities. ALICE, ATLAS, CMS, LHCb, TOTEM, and the CERN Control Centre (CCC) will all be welcoming visitors. For this second year of CERN's involvement in European Researchers Night, the CERN exhibitions will be open late and special activities will be organised in Microcosm....

  14. Control room habitability Analysis and Testing for Wolsong Unit 1

    International Nuclear Information System (INIS)

    In response to this recommendation, KHNP has established CRH program and performed tracer gas in leakage tests. These activities are described herein including the emergency ventilation system analysis, acceptance criteria calculation for the test and Control Room Envelope (CRE) discrimination, and the results of the tracer gas tests are presented. CRH analysis including unfiltered in leakage tests according to the methodology in ASTM E741 was performed for Wolsong Unit 1. The results show that the integrity of the control room of Wolsong Unit 1 is in good condition to maintain the reactor in a safe condition under accident conditions, which complies with the US NRC regulatory guides 1.78, 1.196 and 1.197

  15. Control room annunciation - problem assessment and selection of improvement priorities

    International Nuclear Information System (INIS)

    In 1997, Pickering B undertook a project to examine current annunciation practice and identify improvement opportunities and priorities. The objectives and scope of the study were to: document the deficiencies with control room annunciation and the subsequent operational and financial impacts to station operations, develop an operations-based definition of the requirements for annunciation to adequately support control room staff, propose annunciation improvements based on a comparison of the annunciation deficiencies identified and the operational needs to be met, assess the relative operational impact, and financial benefits and costs of the improvement initiatives proposed, and recommend annunciation improvement priorities that offer a mix of operational and financial return for improvement investment. This paper discusses the rationale for the project, outlines the approaches applied in achieving the assessment objectives, reviews the key assessment findings and describes the improvement initiatives recommended. (author)

  16. A vision for a collaborative control room for ITER

    International Nuclear Information System (INIS)

    A vision for an onsite control room for ITER that will support worldwide experimental collaboration and operation is presented. Fusion experiments place a particular premium on near real time interactions with data and among members of the team. Enabling effective international collaboration on this scale is technically demanding, requiring powerful interactive tools and provision of a working environment for offsite personnel engaged in experimental operation that is every bit as productive as what is onsite. Expanding the view of the control room to include worldwide real time resources, both computational, data, and human, allows for a collaborative design that will significantly benefit ITER's scientific productivity. While the worldwide fusion program has a significant track record for developing and exploiting remote collaborations, the community should recognize that the collaborative needs of other communities share some similarity and therefore joint or shared research into collaborative technologies will increase the benefit to all concerned

  17. The Prevessin Control Room during LEP's start up in 1989.

    CERN Multimedia

    1989-01-01

    The Prévessin Control Room saw its first momentous event when the 400 GeV beam for the SPS was commissioned in the presence of Project Leader John Adams. It was also here that the first proton-antiproton collisions were observed, in 1981. Eight years later, in 1989, operators and directors alike jumped for joy at the announcement of the first electron-positron collisions at the start up of LEP, the biggest accelerator in the world.

  18. Modeling control room crews in accident sequence analysis

    International Nuclear Information System (INIS)

    Studies of small groups in business, political, and civil aviation environments have found that communication and other group interactions can be critical factors in evaluating group performance. This paper presents a simulation-based model for a nuclear power plant control room crew that treats these interactions as well as operator cognitive behavior. It also provides a rationale for emphasizing the treatment of group interaction, and discusses the current status of the model. (author)

  19. Ergonomic configuration of control rooms in nuclear power stations

    International Nuclear Information System (INIS)

    Human possibilities and limits of performance can be taken into account by work configuration measures, in order to make the optimum contribution to the total output of the human being/machine system. The results of and considerations for the level ergonomic configuration of the control room, for the elements of the information carrier, for the structuring of the work field and for communication centres are introduced. (DG)

  20. Improvement on main control room for Japanese PWR plants

    International Nuclear Information System (INIS)

    The main control room which is the information center of nuclear power plant has been continuously improved utilizing the state of the art ergonomics, a high performance computer, computer graphic technologies, etc. For the latest Japanese Pressurized Water Reactor (PWR) plant, the CRT monitoring system is applied as the major information source for facilitating operators' plant monitoring tasks. For an operating plant, enhancement of monitoring and logging functions has been made adopting a high performance computer

  1. Advanced access control system

    International Nuclear Information System (INIS)

    A prototype voice verification system has been installed which provides the required positive identification at the main site access control point. This system compares an individual's file voice print with a sample voice print obtained from the individual when an attempt is made to enter the site. The voice system transmits the individual's identify to a central processor. The system installed at the Barnwell Nuclear Fuel Plant is described

  2. Concept and design of a fully computerized control room for future nuclear power plant

    International Nuclear Information System (INIS)

    The development of digital process control equipment and of safety engineering equipment together with the CRT - based information visualization systems is advanced to a state allowing process control of nuclear power plant to be done by these equipments. The systems have been tested in the control room of the fossil-fuel Staudinger reactor station, unit 5, and the computer-assisted PRISCA process information system has been tested in the Konvoi-type nuclear reactor series. These tests serve as a basis for further process control system development by Siemens KWU, to be used in their future nuclear power plants. The advantages of digital process control and CRT-based information display are intended to be used for further optimization of the man-machine interface in nuclear power plant. One important aspect is to give the control room personnel complete insight into the operational processes of the entire plant, and to establish for detail recognition for process monitoring a very close mental link between operators and the system processes. In addition, the control room operator has to be given appropriate means and tools for process monitoring and control, fulfilling the requirements of guaranteeing the plant's availability and safety. These requirements put very high demands on the process monitoring and control equipment. (orig.)

  3. Remote control of magnetostriction-based nanocontacts at room temperature

    Science.gov (United States)

    Jammalamadaka, S. Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U. Mohanan; Chelvane, J. Arout; Sürgers, Christoph

    2015-09-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between “open” (zero conductance) and “closed” (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature.

  4. Changes in control room at Swedish nuclear power plants

    International Nuclear Information System (INIS)

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  5. Advances in automotive control 2001

    Energy Technology Data Exchange (ETDEWEB)

    Kiencke, U.; Gissinger, G.L. (eds.)

    2001-07-01

    The aim of the 3rd IFAC Workshop 'Advances in Automotive Control', held in Karlsruhe, Germany on 28-30 March 2001, was to discuss the latest advances in relation to motor vehicles. The increase in road traffic in the 20th century was a major problem, and one of the challenges of the 21st century will be to improve driving safety and comfort. The proceedings covers: driveline control; driveline modelling; vehicle dynamics; electronic architecture; intelligent components; engine control; diagnostics; subsystems; engine modelling; and modelling of combustion and turbo-charging. 28 of the papers are abstracted here.

  6. Advanced access control system

    International Nuclear Information System (INIS)

    A prototype voice verification system has been installed which provides the required positive identification at the main site access control point. This system compares an individual's file voice print with a sample voice print obtained from the individual when an attempt is made to enter the site. The voice system transmits the individual's identity to a central processor. The central processor associates that individual's authorization file with a card-key obtained at the access point. The system generates a record of personnel movement, provides a personnel inventory on a real-time basis, and it can retrieve a record of all prior events. The system installed at the Barnwell Nuclear Fuel Plant is described

  7. Verification and Validation of Digitally Upgraded Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lau, Nathan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    As nuclear power plants undertake main control room modernization, a challenge is the lack of a clearly defined human factors process to follow. Verification and validation (V&V) as applied in the nuclear power community has tended to involve efforts such as integrated system validation, which comes at the tail end of the design stage. To fill in guidance gaps and create a step-by-step process for control room modernization, we have developed the Guideline for Operational Nuclear Usability and Knowledge Elicitation (GONUKE). This approach builds on best practices in the software industry, which prescribe an iterative user-centered approach featuring multiple cycles of design and evaluation. Nuclear regulatory guidance for control room design emphasizes summative evaluation—which occurs after the design is complete. In the GONUKE approach, evaluation is also performed at the formative stage of design—early in the design cycle using mockups and prototypes for evaluation. The evaluation may involve expert review (e.g., software heuristic evaluation at the formative stage and design verification against human factors standards like NUREG-0700 at the summative stage). The evaluation may also involve user testing (e.g., usability testing at the formative stage and integrated system validation at the summative stage). An additional, often overlooked component of evaluation is knowledge elicitation, which captures operator insights into the system. In this report we outline these evaluation types across design phases that support the overall modernization process. The objective is to provide industry-suitable guidance for steps to be taken in support of the design and evaluation of a new human-machine interface (HMI) in the control room. We suggest the value of early-stage V&V and highlight how this early-stage V&V can help improve the design process for control room modernization. We argue that there is a need to overcome two shortcomings of V&V in current practice

  8. Ergonomic principles of control rooms in nuclear power plants. Vol. 1 and 2

    International Nuclear Information System (INIS)

    This report describes the findings of a study on the present status and possible improvements in the design of nuclear power plant control rooms according to ergonomic principles and criteria. The findings have been acquired by observing the performance of control room operators, by interviewing operators and management personnel, and by analyzing major characteristics of the man-machine interface. The methods currently used for developing and designing control rooms have also been examined, and the pertinent scientific and technical literature has been reviewed. The results of the study indicate that there is a growing awareness and consideration of physical factors affecting operator performance and reliability whereas less attention is paid to the essential cognitive characteristics of work in the control room. The tasks of operators thus may contain avoidable hindrances and error possibilities that may adversely affect their contribution to reliable plant operation. Major areas of possible ergonomic advancements are set out in the study, and most of them are discussed in depth. Ergonomic requirements are identified for further improving the situation, and approaches, ways and means for solving of mitigating individual problems are indicated wherever possible. A more deliberate consideration of factors affecting operator performance and reliability is suggested, based on a systems ergonomics approach. Design objectives and criteria as well as specific design recommendations for individual areas are given separately. In conclusion, gaps in our existing knowledge are identified which require further research. (orig.)

  9. Simon van der Meer in the AA Control Room

    CERN Multimedia

    1984-01-01

    Simon van der Meer, spiritus rector of the Antiproton Accumulator, in the AA Control Room. Inventor of stochastic cooling, on which the AA was based, and of the magnetic horn, with which the antiprotons were focused, he also wrote most of the software with which the AA was controlled, and spent uncountable numbers of hours in this chair to tickle the AA to top performance. 8 months after this picture was taken, he received, in October 1984, the Nobel prize, together with Carlo Rubbia, the moving force behind the whole Proton-Antiproton Collider project that led to the discovery, in 1983, of the W and Z intermediate bosons.

  10. Electric-field control of magnetic order above room temperature

    OpenAIRE

    Cherifi, R. O.; Ivanovskaya, V.; Phillips, L. C.; Zobelli, A.; Infante, I.C.; Jacquet, E.; Garcia, V.; Fusil, S.; Briddon, P R; Guiblin, N.; Mougin, A; Unal, A.A.; Kronast, F.; S. Valencia; Dkhil, B.

    2014-01-01

    International audience Controlling magnetism by means of electric fields is a key issue for the future development of low-power spintronics1. Progress has been made in the electrical control of magnetic anisotropy2, domain structure3,4, spin polarization5,6 or critical temperatures7,8. However, the ability to turn on and o robust ferromagnetism at room temperature and above has remained elusive. Here we use ferroelectricity in BaTiO3 crystals to tune the sharp metamagnetic transition tempe...

  11. Design of control rooms and ergonomics in power plants

    International Nuclear Information System (INIS)

    Modern power plant control rooms are characterized by automation of protection and control functions, subdivision according to functions, computer-aided information processing, and ergonomic design. Automation relieves the personnel of stress. Subdivision according to functions permits optimized procedures. Computer-aided information processing results in variable information output tailored to the actual needs. Ergonomic design assures qualified man-machine interaction. Of course, these characteristics will vary between power plants in dependence of unit power, mode of operation, and safety and availability requirements. (orig.)

  12. Elements of Clean-room Technology and Contamination Control

    Directory of Open Access Journals (Sweden)

    J.C. Kapoor

    2003-07-01

    Full Text Available The heart of the clean room is the high efticiency particualte air (HEPA/ultra-low penetration air (ULPA filter, which provides the highest level of air cleaning ever achieved by a singleprocess step. Filter technology has seen tremendous growth in terms of ultimate performance and air handling capacity. Mere installation of ULPA filters of 99.99995 per cent efficiency for 0.2 um aerosol is not sufficient for achieving the desired performance of a clean room. Other design aspects like flow fields, face velocity, number of air changes, make-up air fractions and precise control of other environmental parameters (temperature, humidity, airflow, noise, vibrations, electrostatic discharge, etc. are equally important.

  13. Nuclear power plant control room operators' performance research

    International Nuclear Information System (INIS)

    A research program is being conducted to provide information on the performance of nuclear power plant control room operators when responding to abnormal/emergency events in the plants and in full-scope training simulators. The initial impetus for this program was the need for data to assess proposed design criteria for the choice of manual versus automatic action for accomplishing safety-related functions during design basis accidents. The program also included studies of training simulator capabilities, of procedures and data for specifying and verifying simulator performance, and of methods and applications of task analysis

  14. Qualified operator training in the simulated control room environment

    International Nuclear Information System (INIS)

    Full text: Mainly designed for the training of the Cernavoda NPP Unit 2 operators, the virtual simulated environment allows the training of the already qualified operators for Cernavoda NPP Unit 1, adding to the already trained knowledge, the differences which has occurred in the Unit 2 design. Using state-of-the-art computers and displays and qualified software, the virtual simulated panels could offer a viable alternative to classic hardware-based training. This approach allows quick training of the new procedures required by the new configuration of the re-designed operator panels in the main control room of Cernavoda NPP Unit 2. (authors)

  15. Communications involving the control room of a nuclear power plant

    International Nuclear Information System (INIS)

    This study investigated communications within the operations component of a nuclear power plant, with a primary emphasis on control room communications. A structured interview technique was developed following preliminary interviews at the plant, and pretested at AECB headquarters. Patterns were identified from questions asked on communications links, work relationships, miscommunications, procedures, instrumentation and responses to problems. The study was an exploratory one, conducted under a limited budget, to provide background information and to identify areas for further investigation. The report offers recommendations about areas for further research

  16. Capturing Control Room Simulator Data with the HERA Database

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Boring; April Whaley; Bruce Hallbert; Karin Laumann; Per Oivind Braarud; Andreas Bye; Erasmia Lois; Yung Hsien James Chang

    2007-08-01

    The Human Event Repository and Analysis (HERA) system has been developed as a tool for classifying and recording human performance data extracted from primary data sources. This paper reviews the process of extracting data from simulator studies for use in HERA. Simulator studies pose unique data collection challenges, both in types and quality of data measures, but such studies are ideally suited to gather operator performance data, including the full spectrum of performance shaping factors used in a HERA analysis. This paper provides suggestions for obtaining relevant human performance data for a HERA analysis from a control room simulator study and for inputting those data in a format suitable for HERA.

  17. Numerical simulation of manual operation at MID stand control room

    International Nuclear Information System (INIS)

    Since 2000 at INR Pitesti a package of software products devoted to numerical simulation of manual operations at fueling machine control room was developed. So far, specified, designed, worked out and implemented was the PUPITRU code. The following issues were solved: graphical aspects of specific computer - human operator interface; functional and graphical simulation of the whole associated equipment of the control desk components; implementation of the main notation as used in the automated schemes of the control desk in view of the fast identification of the switches, lamps, instrumentation, etc.; implementation within PUPITRU code of the entire data base used in the frame of MID tests; implementation of a number of about 1000 numerical simulation equations describing specific operational MID testing situations

  18. CERN's Technical Control Room (TCR) A Central Service for Everyone

    CERN Multimedia

    Mario Batz

    2001-01-01

    The Technical Control Room (TCR) monitors and operates the entire technical infrastructure of CERN 24 hours a day, 365 days a year. It registers and dispatches troubleshooting requests to the appropriate equipment services. In addition, the TCR executes first-line interventions on the entire CERN site. Troubleshooting requests are transmitted to the TCR either via a computerised control system or via the phone number '72201'. More than 10'000 such requests are dispatched and dealt with every year. The TCR's diverse field of activity concerns the following systems: electrical and fluid distribution networks, heating, cooling, ventilation, air-conditioning and gas equipment, safety and communication installations, electromechanical systems (e.g. lifts, cranes, machine tools, motorised doors), sanitary systems (leaks, sewage), control and monitoring infrastructure equipment, buildings. These systems can either be part of the administrative infrastructure, such as offices or restaurants, or part of the t...

  19. CERN'S TECHNICAL CONTROL ROOM (TCR) A CENTRAL SERVICE FOR EVERYONE

    CERN Multimedia

    Mario Batz / TCR Responsible

    2000-01-01

    The Technical Control Room (TCR) monitors and operates the entire technical infrastructure of CERN 24 hours a day, 365 days a year. It registers and dispatches troubleshooting requests to the appropriate equipment services. In addition, the TCR executes first-line interventions on the entire CERN site. Troubleshooting requests are transmitted to the TCR either via a computerised control system or via the phone number 72201. More than 10'000 such requests are dispatched and dealt with every year. The TCR's diverse field of activity concerns the following systems: electrical and fluid distribution networks, heating, cooling, ventilation, air-conditioning and gas equipment, safety and communication installations, electromechanical systems (e.g. lifts, cranes, machine tools, motorised doors), sanitary systems (leaks, sewage), control and monitoring infrastructure equipment, buildings. These systems can either be part of the administrative infrastructure, such as offices or restaurants, or part of the tec...

  20. CERN'S TECHNICAL CONTROL ROOM (TCR) A CENTRAL SERVICE FOR EVERYONE

    CERN Multimedia

    Mario Batz

    2002-01-01

    The Technical Control Room (TCR) monitors and operates the entire technical infrastructure of CERN 24 hours a day, 365 days a year. It registers and dispatches troubleshooting requests to the appropriate CERN equipment services or contractors. In addition, the TCR executes first-line interventions on the entire CERN site. Troubleshooting requests are transmitted to the TCR either via a computerised control system or via the phone number '72201'. More than 10'000 such requests are dispatched and dealt with every year. The TCR's diverse field of activity covers the following systems: electrical and fluid distribution networks, heating, cooling, ventilation, air-conditioning and gas equipment, safety and communication installations, electromechanical systems (e.g. lifts, cranes, machine tools, motorised doors), sanitary systems (leaks, sewage), control and monitoring infrastructure equipment, and buildings. These systems can either be part of the administrative infrastructure, such as offices or restaur...

  1. CERN'S TECHNICAL CONTROL ROOM (TCR) A CENTRAL SERVICE FOR EVERYONE

    CERN Multimedia

    Mario Batz (TCR Responsible)

    2001-01-01

    The Technical Control Room (TCR) monitors and operates the entire technical infrastructure of CERN 24 hours a day, 365 days a year. It registers and dispatches troubleshooting requests to the appropriate equipment services. In addition, the TCR executes first-line interventions on the entire CERN site. Troubleshooting requests are transmitted to the TCR either via a computerised control system or via the phone number '72201'. More than 10'000 such requests are dispatched and dealt with every year. The TCR's diverse field of activity concerns the following systems: electrical and fluid distribution networks, heating, cooling, ventilation, air-conditioning and gas equipment, safety and communication installations, electromechanical systems (e.g. lifts, cranes, machine tools, motorised doors), sanitary systems (leaks, sewage), control and monitoring infrastructure equipment, buildings. These systems can either be part of the administrative infrastructure, such as offices or restaurants, or part of the t...

  2. CERN'S TECHNICAL CONTROL ROOM (TCR) A CENTRAL SERVICE FOR EVERYONE

    CERN Multimedia

    Mario Batz (TCR Responsible)

    2001-01-01

    The Technical Control Room (TCR) monitors and operates the entire technical infrastructure of CERN 24 hours a day, 365 days a year. It registers and dispatches troubleshooting requests to the appropriate equipment services. In addition, the TCR executes first-line interventions on the entire CERN site. Troubleshooting requests are transmitted to the TCR either via a computerised control system or via the phone number 72201. More than 10'000 such requests are dispatched and dealt with every year. The TCR's diverse field of activity concerns the following systems: electrical and fluid distribution networks, heating, cooling, ventilation, air-conditioning and gas equipment, safety and communication installations, electromechanical systems (e.g. lifts, cranes, machine tools, motorised doors), sanitary systems (leaks, sewage), control and monitoring infrastructure equipment, buildings. These systems can either be part of the administrative infrastructure, such as offices or restaurants, or part of the tec...

  3. CERN'S TECHNICAL CONTROL ROOM (TCR) A CENTRAL SERVICE FOR EVERYONE

    CERN Multimedia

    Mario Batz

    2002-01-01

    The Technical Control Room (TCR) monitors and operates the entire technical infrastructure of CERN 24 hours a day, 365 days a year. It registers and dispatches troubleshooting requests to the appropriate equipment services. In addition, the TCR executes first-line interventions on the entire CERN site. Troubleshooting requests are transmitted to the TCR either via a computerised control system or via the phone number '72201'. More than 10'000 such requests are dispatched and dealt with every year. The TCR's diverse field of activity concerns the following systems: electrical and fluid distribution networks, heating, cooling, ventilation, air-conditioning and gas equipment, safety and communication installations, electromechanical systems (e.g. lifts, cranes, machine tools, motorised doors), sanitary systems (leaks, sewage), control and monitoring infrastructure equipment, buildings. These systems can either be part of the administrative infrastructure, such as offices or restaurants, or part of the t...

  4. CERN'S TECHNICAL CONTROL ROOM (TCR) A CENTRALSERVICE FOR EVERYONE

    CERN Multimedia

    Mario Batz / TCR Responsible

    2001-01-01

    The Technical Control Room (TCR) monitors and operates the entire technical infrastructure of CERN 24 hours a day, 365 days a year. It registers and dispatches troubleshooting requests to the appropriate equipment services. In addition, the TCR executes first-line interventions on the entire CERN site. Troubleshooting requests are transmitted to the TCR either via a computerised control system or via the phone number '72201'. More than 10'000 such requests are dispatched and dealt with every year. The TCR's diverse field of activity concerns the following systems: electrical and fluid distribution networks, heating, cooling, ventilation, air-conditioning and gas equipment, safety and communication installations, electromechanical systems (e.g. lifts, cranes, machine tools, motorised doors), sanitary systems (leaks, sewage), control and monitoring infrastructure equipment, buildings. These systems can either be part of the administrative infrastructure, such as offices or restaurants, or part of the t...

  5. Electric-field control of magnetic order above room temperature

    Science.gov (United States)

    Cherifi, R. O.; Ivanovskaya, V.; Phillips, L. C.; Zobelli, A.; Infante, I. C.; Jacquet, E.; Garcia, V.; Fusil, S.; Briddon, P. R.; Guiblin, N.; Mougin, A.; Ünal, A. A.; Kronast, F.; Valencia, S.; Dkhil, B.; Barthélémy, A.; Bibes, M.

    2014-04-01

    Controlling magnetism by means of electric fields is a key issue for the future development of low-power spintronics. Progress has been made in the electrical control of magnetic anisotropy, domain structure, spin polarization or critical temperatures. However, the ability to turn on and off robust ferromagnetism at room temperature and above has remained elusive. Here we use ferroelectricity in BaTiO3 crystals to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature. The detailed analysis of the data in the light of first-principles calculations indicate that the phenomenon is mediated by both strain and field effects from the BaTiO3. Our results correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude and open new perspectives for the use of ferroelectrics in magnetic storage and spintronics.

  6. Room temperature coherent control of coupled single spins in solid

    CERN Document Server

    Gaebel, T; Popa, I; Wittmann, C; Neumann, P; Jelezko, F; Rabeau, J R; Stavrias, N; Greentree, A D; Prawer, S; Meijer, J; Twamley, J; Hemmer, P R; Wrachtrup, J

    2006-01-01

    Coherent coupling between single quantum objects is at the heart of modern quantum physics. When coupling is strong enough to prevail over decoherence, it can be used for the engineering of correlated quantum states. Especially for solid-state systems, control of quantum correlations has attracted widespread attention because of applications in quantum computing. Such coherent coupling has been demonstrated in a variety of systems at low temperature1, 2. Of all quantum systems, spins are potentially the most important, because they offer very long phase memories, sometimes even at room temperature. Although precise control of spins is well established in conventional magnetic resonance3, 4, existing techniques usually do not allow the readout of single spins because of limited sensitivity. In this paper, we explore dipolar magnetic coupling between two single defects in diamond (nitrogen-vacancy and nitrogen) using optical readout of the single nitrogen-vacancy spin states. Long phase memory combined with a d...

  7. User oriented control room automation of the new plants

    International Nuclear Information System (INIS)

    The control rooms of conventional power plants and other process industries have totally changed during past ten years. Single analog and binary instruments have been replaced by digital systems and displays. Due to the high safety requirements the nuclear industry has been slow to follow this development. The changeover has started from the process monitoring, where the process computer displays already have a significant role eg. in both Finnish plants. In the new plants also the automation systems will be digital and the operator controls will be done through their displays. At the same time new computerized operator support systems will be taken in use. Full utilization of the potentials of the computer and display technologies can significantly reduce the risk of human errors of the operating staff. (orig.)

  8. Development of DMC controllers for temperature control of a room deploying the displacement ventilation HVAC system

    Directory of Open Access Journals (Sweden)

    Zhicheng Li, Ramesh K. Agarwal, Huijun Gao

    2013-01-01

    Full Text Available In this paper, by developing a new Dynamic Matrix Control (DMC method, we develop a controller for temperature control of a room cooled by a displacement ventilation HVAC system. The fluid flow and heat transfer inside the room are calculated by solving the Reynolds-Averaged Navier-Stokes (RANS equations including the effects of buoyancy in conjunction with a two-equation realizable k - epsilon turbulence model. Thus the physical environment is represented by a nonlinear system of partial differential equations. The system also has a large time delay because of the slowness of the heat exchange. The goal of the paper is to develop a controller that will maintain the temperature at three points near three different walls in a room within the specified upper and lower bounds. In order to solve this temperature control problem at three different points in the room, we develop a special DMC method. The results show that the newly developed DMC controller is an effective controller to maintain temperature within desired bounds at multiple points in the room and also saves energy when compared to other controllers. This DMC method can also be employed to develop controllers for other HVAC systems such as the overhead VAV (Variable Air Volume system and the radiant cooling hydronic system.

  9. Low frequency sound field control in rectangular listening rooms using CABS (Controlled Acoustic Bass System) will also reduce sound transmission to neighbor rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2011-01-01

    Sound reproduction is often taking place in small and medium sized rectangular rooms. As rectangular rooms have 3 pairs of parallel walls the reflections at especially low frequencies will cause up to 30 dB spatial variations of the sound pressure level in the room. This will take place not only at...... resonance frequencies, but more or less at all frequencies. A time based room correction system named CABS (Controlled Acoustic Bass System) has been developed and is able to create a homogeneous sound field in the whole room at low frequencies by proper placement of multiple loudspeakers. A normal setup...

  10. Development and validation process of the advanced main control board for next Japanese PWR plants

    International Nuclear Information System (INIS)

    The purpose of main control room improvement is to reduce operator workload and potential human errors by offering a better working environment where operators can maximize their abilities. Japanese pressurized water reactor (PWR) utilities and Mitsubishi group have developed a touch -screen-based main control console (i.e. advanced main control room) the next generation PWRs to further improve the plant operability using a state of the art electronics technology. The advanced main control room consists of an operator console, a supervisor console and large display panels. The functional specifications were evaluated by utility operators using a prototype main control console connected to a plant simulator. (author)

  11. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  12. Virtual Visit to the ATLAS Control Room by leading universities of Russian Federation

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    Science Festival in Russian Federation is a programme of events which take place at the leading scientific centres and museums in Russia. At the Science Festival scientists, engineers and students show to visitors the advances of modern science and technology in all scopes of life. Today the leading universities of Russia will feature a multipoint video conference with the LHC control room at CERN. This will give visitors of the Science Festival the opportunity to ask questions to the physicists involved about the Large Hadron Collider experiments, Higgs particles and antimatter. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Russia-2012.html

  13. Further improvement of human-machine interface for ABWR main control room

    International Nuclear Information System (INIS)

    Tokyo Electric Power Company (TEPCO) has developed main control room panels based on progress in C and I technology. ABWR type main control room panels (ABWR MCR PNLs) are categorized as third generation type domestic BWR MCR, that is, they are were developed step by step based on operating experience with the first and the second generation BWR. ABWR type main control room panels were applied to Kashiwazaki-Kariwa Nuclear Power Station Units Number 6 and 7 (K-6/7) for the first time. K-6/7 are the first advanced BWR (ABWR), which started commercial operation in November 1996 and July 1997, respectively. The concept of ABWR MCR design was verified through wooden mock-up panels, start-up tests and commercial operation. Though the K-6/7 design has borne fruit, we are planning to refine and standardize the design based on the following concepts: to maintain the plant operation and monitoring style of ABWR MCR PNLs; to introduce brand-new HMI technology and devices; to incorporate operators' advice in the design. This paper outlines the features and improvements of the K6/7 MCR PNLs design. (author)

  14. Tritium Removal System for Airtight Room in High-flux Advanced Neutron Application Reactor (HANARO) - 12110

    International Nuclear Information System (INIS)

    An Airtight room was installed to prevent the diffusion of tritium from the instrument room to other areas in HANARO. It was isolated by a robust structure and the inside was closed tightly. A Tritium removal system located outside the instrument room was connected to the airtight room to lower the tritium concentration when the workers enter the room for maintenance of the instruments. The tritium concentration and the dew point in the airtight room were continuously measured during the operation of the tritium removal system. The data were analyzed by using a model. There was a difference between the measured tritium concentration and the one obtained by the model. It is believed that the difference is due to the change of the generation rate of tritium which would increase as the dew point becomes lower. Based on this assumption, the previous equation was revised to better express the performance of the tritium removal system. It was re-estimated that the change of tritium concentration in an airtight room could be predicted well by using a model and equation proposed in the previous study. It was confirmed that there was a definite difference between the measured tritium concentration and the one obtained by equation from the model. It is believed that the difference is due to the change of the generation rate of tritium which would increase as the dew point becomes lower. Based on this assumption, the generation rate of tritium was controlled to have higher value and the change of tritium concentration in airtight room could be more correctly predicted. By using the revised equation, the tritium removal system would be operated more effectively. (authors)

  15. Revised accident source terms and control room habitability

    International Nuclear Information System (INIS)

    In April 1992, the NRC staff presented to the Commissioners the draft NUREG open-quotes Revised Accident Source Terms for Light-Water Nuclear Power Plants.close quotes This document is the culmination of more than ten years of NRC-sponsored research and represents the first change in the NRC's position on source terms since TID-14844 was issued in 1962. The purpose of this paper is to investigate the impact of the revised source terms on the current approach to analyzing control room habitability as required by 10 CFR 50. Sample calculations are presented that identify aspects of the model requiring clarification before the implementation of the revised source terms. 6 refs., 4 tabs

  16. Human engineering guide for enhancing nuclear control rooms

    International Nuclear Information System (INIS)

    The primary objective of this project was to develop near-term human engineering approaches, that is, those which can be implemented while the plant is operating or during a planned shutdown, for enhancing existing nuclear control rooms. Primary data for the Guide was collected during site visits to four pressurized water reactor (PWR) plants representing a mix of Nuclear Steam Supply System (NSSS) vendors and architects/engineers. Structured interviews, checklists, walkthroughs/talkthroughs, surveys, and task analyses were used. Data on boiling water reactors (BWRs) were collected in a meeting with representatives of the BWR Owners Group. All enhancement approaches were reviewed extensively with cognizant industry representatives for feasibility and acceptability before being including in the Guide

  17. 3D visualization based customer experiences of nuclear plant control room

    International Nuclear Information System (INIS)

    This paper employs virtual reality (VR) technology to develop an interactive virtual nuclear plant control room in which the general public could easily walk into the 'red zone' and play with the control buttons. The VR-based approach allows deeper and richer customer experiences that the real nuclear plant control room could not offer. When people know more about the serious process control procedures enforced in the nuclear plant control room, they will appropriate more about the safety efforts imposed by the nuclear plant and become more comfortable about the nuclear plant. The virtual nuclear plant control room is built using a 3D game development tool called Unity3D. The 3D scene is connected to a nuclear plant simulation system through Windows API programs. To evaluate the usability of the virtual control room, an experiment will be conducted to see how much 'immersion' the users could feel when they played with the virtual control room. (author)

  18. Advanced Emissions Control Development Program: Mercury Control

    International Nuclear Information System (INIS)

    McDermott Technology, Inc. (a subsidiary of Babcock ampersand Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA's) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation's abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock ampersand Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of

  19. Human factors survey of advanced instrumentation and controls

    International Nuclear Information System (INIS)

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I ampersand C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I ampersand C. Fifteen potential human factors problems were identified. They include: the need for an advanced I ampersand C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I ampersand C; and operator acceptance and trust. 11 refs., 1 tab

  20. Human factors survey of advanced instrumentation and controls

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.J.

    1989-01-01

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I C. Fifteen potential human factors problems were identified. They include: the need for an advanced I C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I C; and operator acceptance and trust. 11 refs., 1 tab.

  1. Nuclear power plants. Main control room. Verification and validation of design

    International Nuclear Information System (INIS)

    The International Standard has the statute of a Czech Technical Standard. The standard covers the working room and its instrumentation and control systems, control means, and other equipment with respect to engineering psychology, taking into account both the system requirements and the operator's skills. The design should also be reviewed so as to identify, assess and modify inappropriate design items. The standard is designed to serve when designing new control rooms or modifying existing control rooms. (P.A.)

  2. Plant information systems architecture for integration into control rooms

    International Nuclear Information System (INIS)

    Over the years, the need for additional monitoring in the Main Control Room (MCR) has been identified. In addition to the requirement for replacement of the obsolete Digital Control Computer (DCC) Computers, there is a corresponding need to decide on the best way to deal with the Human Machine Interface (HMI) replacement and/or extension. This paper proposes an approach to satisfy additional monitoring requirements while replacing the HMI. The primary HMI for CANDU stations are Ramtek based display systems used for: - Historical data storage/retrieval; - Annunciation; - Display (including schematics, trending and bar charts); - Keyboard entry (including setting of control set points); - Logging/report requests. The approaches available for extending the HMI monitoring functionality include the following: 1. Add the functions to the DCCs; 2. Connect common process signals in parallel to the DCC and a supplementary computer; 3. Extract DCC data into a supplementary computer; 4. Add a standalone computer to supplement the DCCs if common process signals are not needed. In general, approach 1 (adding the functions to the DCC) has not been used due to software qualification costs, limitations of the DCC development environment, DCC in capacity and overall complexity risk. Approach 2 has typically been avoided due to the cost of wiring and ensuring appropriate isolation. Where common process signals are involved, extracting the data from the DCC into the supplementary computer, (approach 3) has generally been the most cost-effective approach. All the CANDU stations have installed DCC gateway computers to extract the DCC data and export it to supplementary computer systems. Where common process signals are not required, approach 4 is the simplest and most cost effective approach. Discussion in this paper focuses on approach 3 along with illustrative examples of new display functions and capabilities. With a well-designed architectural framework, this approach has the added

  3. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  4. Ergonomics in the licensing and evaluation of nuclear reactors control room

    International Nuclear Information System (INIS)

    A nuclear control room is a complex system that controls a thermodynamic process used to produce electrical energy. The operators interact with the control room through interfaces that have significant implications to nuclear plant safety and influence the operator activity. The TMI (Three Mile Island) accident demonstrated that only the anthropometric aspects were not enough for an adequate nuclear control room design. The studies showed that the accident was aggravated because the designers had not considered adequately human factor aspects. After TMI accident, the designers introduce in the nuclear control room development only human factors standards and human factors guidelines. The ergonomics approaches was not considered. Our objective is introduce in nuclear control room design and nuclear control room evaluation, a methodology that. includes human factors standards, human factors guidelines and ergonomic approaches, the operator activity analysis. (author)

  5. Virtual reality applied in the ergonomic evaluation of nuclear power plant control room

    International Nuclear Information System (INIS)

    A nuclear power plant control room is a complex system that controls a nuclear and thermodynamic process used to produce electrical energy. The operators interact with the control room through interfaces that have significant implications to nuclear power plant safety and influence the operator activity. The operator activity presents complexity features and shows a series of mechanisms absents from the human factors guidelines, important to the evaluation and update of control rooms. The ergonomics approach considers the operation strategies, the interaction between the operators, the operator-system interaction, and interaction between operators and support groups. The main objective of this paper is propose the modeling of a nuclear control room, with the support of a game engine core. This tool will be used in the ergonomic evaluation of nuclear control room, generating information and data that will make possible the adequacy of control rooms features to the legal requirements of the regulating agency, assisting the nuclear licensing. (author)

  6. Low frequency sound reproduction in irregular rooms using CABS (Control Acoustic Bass System)

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2011-01-01

    Early investigations on low frequency sound reproduction in rectangular rooms using CABS (Controlled Acoustic Bass System) have shown good results on simulations and measurements in real rooms. CABS takes the advantage of having a rectangular room with parallel walls. By using two low frequency l...

  7. Design And Implementation Of Smart Living Room Wireless Control For Safety Purpose

    OpenAIRE

    Aeindra Myint Lwin; Zaw Min Min Htun; Hla Myo Tun

    2015-01-01

    Abstract This research presents the microcontroller controlled smart living room system using Bluetooth wireless technology from mobile phone.An android apk is created in mobile for controlling the living room system. A 16F877A microcontroller is interfaced serially to a bluetooth module transceiver. It is used for controlling fan speed control dim light control lighting ONOFF and window angle control. An arduino controller is used for keypad control door security. It is connected to DC motor...

  8. The development of a model of control room operator cognition

    International Nuclear Information System (INIS)

    The nuclear generation station CRO is one of the main contributors to plant performance and safety. In the past, studies of operator behaviour have been made under emergency or abnormal situations, with little consideration being given to the more routine aspects of plant operation. One of the tasks of the operator is to detect the early signs of a problem, and to take steps to prevent a transition to an abnormal plant state. In order to do this CRO must determine that plant indications are no longer in the normal range, and take action to prevent a further move away from normal. This task is made more difficult by the extreme complexity of the control room, and by the may hindrances that the operator must face. It would therefore be of great benefit to understand CRO cognitive performance, especially under normal operating conditions. Through research carried out at several Canadian nuclear facilities we were able to develop a deeper understanding of CRO monitoring of highly automated systems during normal operations, and specifically to investigate the contributions of cognitive skills to monitoring performance. The consultants were asked to develop a deeper understanding of CRO monitoring during normal operations, and specifically to investigate the contributions of cognitive skills to monitoring performance. The overall objective of this research was to develop and validate a model of CRO monitoring. The findings of this research have practical implications for systems integration, training, and interface design. The result of this work was a model of operator monitoring activities. (author)

  9. MIDA - Optimizing control room performance through multi-modal design

    International Nuclear Information System (INIS)

    Multi-modal interfaces can support the integration of humans with information processing systems and computational devices to maximize the unique qualities that comprise a complex system. In a dynamic environment, such as a nuclear power plant control room, multi-modal interfaces, if designed correctly, can provide complementary interaction between the human operator and the system which can improve overall performance while reducing human error. Developing such interfaces can be difficult for a designer without explicit knowledge of Human Factors Engineering principles. The Multi-modal Interface Design Advisor (MIDA) was developed as a support tool for system designers and developers. It provides design recommendations based upon a combination of Human Factors principles, a knowledge base of historical research, and current interface technologies. MIDA's primary objective is to optimize available multi-modal technologies within a human computer interface in order to balance operator workload with efficient operator performance. The purpose of this paper is to demonstrate MIDA and illustrate its value as a design evaluation tool within the nuclear power industry. (authors)

  10. Exploring Bridge-Engine Control Room Collaborative Team Communication

    Directory of Open Access Journals (Sweden)

    Aditi Kataria

    2015-06-01

    Full Text Available The EC funded CyClaDes research project is designed to promote the increased impact of the human element in shipping across the design and operational lifecycle. It addresses the design and operation of ships and ship systems. One of the CyClaDes’ tasks is to create a crew-centered design case-study examination of the information that is shared between the Bridge and Engine Control Room that helps the crew co-ordinate to ensure understanding and complete interconnected tasks. This information can be provided in various ways, including communication devices or obtained from a common database, display, or even the ship environment (e.g., the roll of the ship. A series of semi-structured interviews were conducted with seafarers of diverse ranks to get a better idea of what communication does, or should, take place and any problems or challenges existing in current operations, as seen from both the bridge and ECR operators’ perspectives. Included in the interview were both the standard communications and information shared during planning and executing a voyage, as well as special situations such as safety/casualty tasks or heavy weather. The results were analyzed in terms of the goals of the communication, the primary situations of interest for communication and collaboration, the communication media used, the information that is shared, and the problems experienced. The results of seafarer interviews are presented in the paper to explore on-board inter-departmental communication.

  11. Emergency control room design of a nuclear reactor used to produce radioisotope

    International Nuclear Information System (INIS)

    A control room is defined as a functional entity with an associated physical structure, where the operators carry out the centralized control, monitoring and administrative responsibilities. Emergency control room acts as an alternative control room for the purpose of shutting down or maintaining the facility in a safe shutdown state when the main control room is uninhabitable. The mission of emergency control room is to provide the resources to bring the plant to a safe shutdown condition after an evacuation of the main control room. An evacuation of the main control room is assumed when there is no possibility to accomplish tasks involved in the shutdown except reactor trip. The purpose of this paper is to present a specific approach for the design of the emergency control room of a nuclear reactor used to produce radioisotope. The approach is based on human factors standards and the participation of a multidisciplinary team in the development phase of the design. Using the information gathered from standards and from the multidisciplinary team a 3D Sketch and a 3D printing of the emergency control room were created. (author)

  12. Emergency control room design of a nuclear reactor used to produce radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L. dos; Farias, Larissa P. de; Ponte, Luana T.L.; Goncalves, Gabriel L.; Castro, Heraclito M.; Farias, Marcos S.; Carvalho, Paulo V.R. de; Vianna Filho, Alfredo M.V., E-mail: luquetti@ien.gov.br [Instituto Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Departamento Engenharia Nuclear

    2015-07-01

    A control room is defined as a functional entity with an associated physical structure, where the operators carry out the centralized control, monitoring and administrative responsibilities. Emergency control room acts as an alternative control room for the purpose of shutting down or maintaining the facility in a safe shutdown state when the main control room is uninhabitable. The mission of emergency control room is to provide the resources to bring the plant to a safe shutdown condition after an evacuation of the main control room. An evacuation of the main control room is assumed when there is no possibility to accomplish tasks involved in the shutdown except reactor trip. The purpose of this paper is to present a specific approach for the design of the emergency control room of a nuclear reactor used to produce radioisotope. The approach is based on human factors standards and the participation of a multidisciplinary team in the development phase of the design. Using the information gathered from standards and from the multidisciplinary team a 3D Sketch and a 3D printing of the emergency control room were created. (author)

  13. Digital control application for the advanced boiling water reactor

    International Nuclear Information System (INIS)

    The Advanced Boiling Water Reactor (ABWR) is a 1300 MWe class Nuclear Power Plant whose design studies and demonstration tests are being performed by the three manufacturers, General Electric, Toshiba and Hitachi, under requirement specifications from the Tokyo Electric Power Company. The goals are to apply new technology to the BWR in order to achieve enhanced operational efficiencies, improved safety measures and cost reductions. In the plant instrumentation and control areas, traditional analog control equipment and wire cables will be replaced by distributed digital microprocessor based control units communicating with each other and the control room over fiber optic multiplexed data buses

  14. Basic guidelines and equipment specific for computer-aided control rooms

    International Nuclear Information System (INIS)

    Starting from problems of control room engineering and from existing solutions, a general and systematic concept is introduced, how to arrange and design control rooms. Referring thereto, attention will be pointed to human factors considerations and guidelines. Furthermore, the organization of information and its display on CRT-units is discussed. Two hardware realizations are presented and described. Finally, as an example, the control room of a power plant is specified. (orig.)

  15. Guidelines for the review of advanced controls and displays

    International Nuclear Information System (INIS)

    Advanced control room (ACR) concepts are being developed and refined in the commercial nuclear industry as part of future reactor designs. These ACRs will utilize advanced human-system interface (HSI) technologies which may have significant implications for plant safety in that they may affect: (1) the operators' overall role (function) in the system; (2) the methods by which operators receive information about system status; (3) the ways in which the operators interact with the system; and (4) the requirements on operators to understand and supervise an increasingly complex system. The Nuclear Regulatory Commission (NRC) reviews control room designs to ensure that they incorporate good human factors engineering principles so as to support operator performance and reliability necessary to protect public health and safety. The principal guidance available to the NRC (NUREG-0700) was developed more than ten years ago and does not address new technologies. Accordingly, the guidance must be updated. This paper discusses the development of an NRC Advanced Control Room Design Review Guideline

  16. Main Control Room Upgrade for Kori Unit 1 in Korea

    International Nuclear Information System (INIS)

    Kori Unit 1 is a 30 years old nuclear power plant and its MCR and MCB was upgraded based on the latest Human Factors Engineering (HFE) principles. The objectives of applying the Human Factors Engineering (HFE) principles are to minimize the human errors and to enhance the safe operation of the plant. In order to systematically incorporate the HFE design principles into the Human System Interface (HSI) design, HFE Program Plan (HFEPP) for Kori Unit 1 was developed and the plan provided an overview of the HSI design process along with detailed methods and results. The upgrade includes addition of Bypassed and Inoperable Status Indication System (BISI) and the replacement of the conventional MMI devices such as hardwired hand switches, recorders and indicators with new advanced control and display devices using VDUs (Video Display Units). The VDUs significantly improve the effectiveness and efficiency of the monitoring function. Plant Monitoring System (PMS) and Plant Annunciator System (PAS) were upgraded also by replacing the outdated systems with advanced digital systems with future expansion capability. In addition, the MCR related equipment and/or facilities were replaced or improved. Some of these include the enhancement of MCR interior designs for better working environment, dimmable ceiling lighting, aesthetically pleasing decor of ceiling, wall and floor as well as ergonomically improved operator consoles

  17. Deployment of a Full-Scope Commercial Nuclear Power Plant Control Room Simulator at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Boring; Julius Persensky; Kenneth Thomas

    2011-09-01

    The INL operates the HSSL to conduct research in the design and evaluation of advanced reactor control rooms, integration of intelligent support systems to assist operators, development and assessment of advanced human performance models, and visualizations to assess advanced operational concepts across various infrastructures. This advanced facility consists of a reconfigurable simulator and a virtual reality capability (known as the Computer-Aided Virtual Environment (CAVE)) (Figure 2). It supports human factors research, including human-in-the-loop performance, HSI, and analog and digital hybrid control displays. It can be applied to the development and evaluation of control systems and displays for complex systems such as existing and advanced NPP control rooms, command and control systems, and advance emergency operations centers. The HSSL incorporates a reconfigurable control room simulator, which is currently housed in the Center for Advanced Energy Studies (CAES), a joint venture of the DOE and the Idaho University System. The simulator is a platform- and plant-neutral environment intended for full-scope and part-task testing of operator performance in various control room configurations. The simulator is not limited to a particular plant or even simulator architecture. It can support engineering simulator platforms from multiple vendors using digital interfaces. Due to its ability to be reconfigured, it is possible to switch the HSI - not just to digital panels but also to different control modalities such as those using greater plant automation or intelligent alarm filtering. The simulator currently includes three operator workstations, each capable of driving up to eight 30-inch monitors. The size and number of monitors varies depending on the particular front-end simulator deployed for a simulator study. These operator workstations would typically be used for the shift supervisor or senior reactor operator, reactor operator, and assistant reactor

  18. Deployment of a Full-Scope Commercial Nuclear Power Plant Control Room Simulator at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    The INL operates the HSSL to conduct research in the design and evaluation of advanced reactor control rooms, integration of intelligent support systems to assist operators, development and assessment of advanced human performance models, and visualizations to assess advanced operational concepts across various infrastructures. This advanced facility consists of a reconfigurable simulator and a virtual reality capability (known as the Computer-Aided Virtual Environment (CAVE)) (Figure 2). It supports human factors research, including human-in-the-loop performance, HSI, and analog and digital hybrid control displays. It can be applied to the development and evaluation of control systems and displays for complex systems such as existing and advanced NPP control rooms, command and control systems, and advance emergency operations centers. The HSSL incorporates a reconfigurable control room simulator, which is currently housed in the Center for Advanced Energy Studies (CAES), a joint venture of the DOE and the Idaho University System. The simulator is a platform- and plant-neutral environment intended for full-scope and part-task testing of operator performance in various control room configurations. The simulator is not limited to a particular plant or even simulator architecture. It can support engineering simulator platforms from multiple vendors using digital interfaces. Due to its ability to be reconfigured, it is possible to switch the HSI - not just to digital panels but also to different control modalities such as those using greater plant automation or intelligent alarm filtering. The simulator currently includes three operator workstations, each capable of driving up to eight 30-inch monitors. The size and number of monitors varies depending on the particular front-end simulator deployed for a simulator study. These operator workstations would typically be used for the shift supervisor or senior reactor operator, reactor operator, and assistant reactor

  19. Elements of Clean-room Technology and Contamination Control

    OpenAIRE

    J. C. Kapoor; Meenakshi Gupta

    2003-01-01

    The heart of the clean room is the high efticiency particualte air (HEPA)/ultra-low penetration air (ULPA) filter, which provides the highest level of air cleaning ever achieved by a singleprocess step. Filter technology has seen tremendous growth in terms of ultimate performance and air handling capacity. Mere installation of ULPA filters of 99.99995 per cent efficiency for 0.2 um aerosol is not sufficient for achieving the desired performance of a clean room. Other design aspects like flow ...

  20. Advantages and Disadvantages of Physiological Assessment For Next Generation Control Room Design

    Energy Technology Data Exchange (ETDEWEB)

    Tuan Q. Tran; Ronald L. Boring; Donald D. Dudenhoeffer; Bruce P Hallbert; M. David Keller; Tessa M. Anderson

    2007-08-01

    Abstract - We propose using non-obtrusive physiological assessment (e.g., eye tracking,) to assess human information processing errors (e.g., loss of vigilance) and limitations (e.g., workload) for advanced energy systems early in the design process. This physiological approach for assessing risk will circumvent many limitations of current risk methodologies such as subjective rating (e.g., rater’s biases) and performance modeling (e.g., risk assessment is scripted and is based upon the individual modeler’s judgment). Key uses will be to evaluate (early in the design process) novel control room equipment and configurations as well as newly developed automated systems that will inevitably place a high information load on operators. The physiological risk assessment tool will allow better precision in pinpointing problematic design issues and will provide a “real-time” assessment of risk. Furthermore, this physiological approach would extend the state-of-the-art of human reliability methods from a “static” measure to more “dynamic.” This paper will discuss a broad range of the current popular online performance gauges as well as its advantages and disadvantages for use in next generation control room.

  1. Design concepts for an integrated control room used as a site-wide operations facility

    International Nuclear Information System (INIS)

    The concept of an Integrated Main Control Room (IMCR) evolved from surveys conducted by Tokyo Electric Power Company (TEPCO) with plant managers and workers as their existing GE-type boiling water reactors (BWRs) on the need for improved operating conditions in a new generation of reactors being developed for the next century (around 2010). These reactors will be a further enhancement of the advanced boiling water reactors (ABWRs) now being constructed at the Kashiwazaki-Kariwa site in Japan (no.6 and no.7). TEPCO also saw a need for new thinking on control room design because of projected social conditions in Japan for the 21st century. These projections forecast a smaller number of skilled engineering graduates and those graduates less willing to work in nuclear power because such work is seen as unappealing, conducted in remote geographical locations, and requiring extensive night duty. As one solution to reducing operator burden and decreasing the night shift staff, while making nuclear plant operation more interesting for the operators and reducing labor and construction costs, the IMCR was conceived. (author)

  2. 75 FR 69912 - Pipeline Safety: Control Room Management/Human Factors

    Science.gov (United States)

    2010-11-16

    ... Safety: Control Room Management/Human Factors AGENCY: Pipeline and Hazardous Materials Safety..., 2010, PHMSA published a Control Room Management/Human Factors notice of proposed rulemaking (NPRM....gov . SUPPLEMENTARY INFORMATION: On September 17, 2010 (75 FR 56972), PHMSA published a NPRM...

  3. 75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction

    Science.gov (United States)

    2010-02-03

    ... Safety: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... Regulations to address human factors and other aspects of control room management for pipelines where... . SUPPLEMENTARY INFORMATION: On December 3, 2009, PHMSA published a final rule in the Federal Register (74...

  4. Guidelines for Control Room Modernization as Part of Instrument and Control Modernization Programs

    International Nuclear Information System (INIS)

    modernization programs using digital equipment to address obsolescence issues and to improve plant performance while maintaining high levels of safety. As an integral part of the I and C modernization program, the control room and other human-system interfaces (HSIs) will also be modernized. To support safe and effective operation, it is critical to design, implement, operate, maintain, and train for the control room and HSI changes to take advantage of human cognitive processing abilities. A project, jointly funded by the Electric Power Research Institute (EPRI) and United States Department of Energy (DOE), is developing guidance, and the technical bases for this guidance, for specifying and designing digital components and systems, and their incorporation into hybrid (analog/digital) control rooms, remote shut-down panels, etc. Three types of guidance will be developed. The first is strategic planning guidance to help a utility develop its plant-specific control room operating concepts, endpoint vision for the control room, migration path to achieve that endpoint vision, and regulatory, licensing, and human performance program plans. The second is guidance for general HSI principles, for analysis, design, and verification and validation processes, and for training, simulation, and performance monitoring. The third type of guidance is for the detailed design of specific types of HSIs. Although the guidance is intended for immediate application to digital I and C replacements, it also applies to design and implementation of new plant systems and interfaces. The guidance is being developed for application by utilities and by designers and suppliers of digital I and C replacements for power plants and will facilitate the specification, design, implementation, operations, maintenance, training, and procedure development activities. This guidance will be used to reduce the likelihood of human errors, reduce licensing risk, and increase human and overall plant

  5. Integration of analog and digital instrumentation and control systems in hybrid control rooms

    International Nuclear Information System (INIS)

    he IAEA's activities in the area of nuclear power plant operating performance and life cycle management are aimed at increasing Member State capabilities in utilizing good engineering and management practices as developed and transferred by the IAEA. In particular, the IAEA supports the improvement of nuclear power plant performance, plant life management, training, power uprating, operational license renewal, and the modernization of instrumentation and control (I and C) systems of plants. The issue of the integration of analog and digital I and C systems in hybrid control rooms was suggested by the IAEA Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-NPPCI) at its meetings in 2003 and 2005. The subject was then approved by the IAEA and included in its work programmes for 2006-2009. The purpose of this report is to help nuclear utilities in planning control room and other human system interface (HSI) changes, making appropriate use of modern technologies. These technologies would aid in managing ageing and obsolescence, and facilitate improvements in plant performance and safety. This report covers a broad spectrum of potential changes to the control room ranging from the replacement of a few obsolete components with newer digital devices to a fully computerized control room. New digital technologies offer significant opportunities to improve access to and presentation of information to the user, e.g. operators, maintenance staff and management. However, this technology should be used prudently. In some cases, modernization is undertaken to resolve ageing and obsolescence or to meet regulatory requirements for license renewal. The integration of new technologies during main control room (MCR) modernizations should be performed cautiously and all affected aspects of plant maintenance, and operation should be carefully considered, paying particular attention to the human factors elements of these aspects. This report describes a

  6. Verbal Communication Quality Analysis of Human Operators in Main Control Room

    International Nuclear Information System (INIS)

    Verbal communication problems have been one of the major human factors causing serious problems in many industries. The results of existing researches have revealed that keeping good communication quality is essential to ensure the safety of a large-sized and highly advanced industrial process system. Communication Quality is ensured only when both parties involved in a communication process understand and comprehend each other correctly, and it can be decided based on the correctness of the messages communicated between them. In this paper, we suggested a method to measure the quality of communication during off-normal situation in main control room of nuclear power plants. It evaluates the cosine similarity that is a measure of sentence similarity between two operators by finding the cosine of the angle between them

  7. A Framework to Measure Operator's Workload in Main Control Room of APR1400

    International Nuclear Information System (INIS)

    Though the work of operators has been changed a great deal, due to a lack of appropriate guidelines on the role allocation or communication method of operators, the problem of a lopsided workload for each operator has been raised. Thus, it is necessary to enhance the operation capability by developing the guidelines on the role definition and communication of operators in the advanced MCR of NPPs. To resolve this problem, however, a method of measuring the workload according to work execution of operators is necessary, but the applicable method is not available at this time. The objective of this research is to develop an analytical framework to evaluate the workload according to the work execution of power plant operators. A framework to measure the workload of crews in an advanced main control room has been suggested. In this research, we proposed a framework to measure and evaluate the workload of operators in an advanced MCR and the workload was measured through the simulator training experiment of the MCR of an APR1400. On the basis of these observations, it is necessary to reestablish the role and communication method of MCR operators suitable to the new operational environment and changed work and develops the appropriate operating guidelines

  8. Reactivity management in control room operations: 'reactivity management for hockey players'

    International Nuclear Information System (INIS)

    The paper will cover the review of WANO SOER 2007-1 from a Control Room Operations point of view. It will answer the question: what recommendations are possible to implement at the Authorized Nuclear Operator(ANO) and Control Room Shift Supervisor(CRSS) level? History has indicated that reactivity management events continue to happen in NPP's all over the world. This paper will discuss how the ANO/CRSS as the final barrier can improve this trend. The paper will be written as a descriptive piece. The paper will metaphorically examine the role of the Control Room Operations staff in reactivity management control and safety. (author)

  9. Solidification process control for advanced superalloys

    Science.gov (United States)

    Gray, H. R.; Dreshfield, R. L.

    1982-01-01

    The importance of understanding and controlling the basic solidification process in high temperature alloy technology as applied to gas turbine engine production is discussed. Resultant tailoring of the superalloy macro- and microstructure offers significant potential for continued advances in superalloy use temperatures in turbine engines. Atomized superalloy powders, rapidly solidified superalloys, microstructural control, and advanced superalloys are discussed.

  10. A methodology for evaluation and licensing of nuclear power plant control rooms

    International Nuclear Information System (INIS)

    In the safe operation of nuclear power plants the performance of the control room crews plays an important role. In this respect, a well-designed control room and human-system interfaces (HSI) are crucial for safe and efficient operation of the plant. It is therefore essential that the design, development and evaluation of nuclear control rooms are conducted in a well-structured way, applying human factors principles, ergonomics requirements and guidelines in all phases. The aim of this paper is to propose a new methodology to evaluate nuclear power plant control rooms that includes the ergonomic approach, based on the operator activity analysis, together with human factors standards and guidelines already used. We describe a case study in which this methodology has been applied in a nuclear power plant control room. We show that the operator activity analysis uncovers a series of important safety related features in control room operation that are not detected by using the traditional methodology, based only on the human factors standards and human factors guidelines. The information gathered through this methodology make possible the generation of a series of recommendations for the adequacy of the control room to the legal requirements of the regulating agency, assisting the licensing process. (author)

  11. Use of the Human Centered Design concept when designing ergonomic NPP control rooms

    International Nuclear Information System (INIS)

    Human-Centered Design is a concept aimed at reconciling human needs on the one hand and limitations posed by the design disposition of the room being designed on the other hand. This paper describes the main aspects of application of the Human-Centered Design concept to the design of nuclear power plant control rooms. (orig.)

  12. Use of interview and inquiry procedures in design process for NPP control room upgrade

    International Nuclear Information System (INIS)

    Major part of design activities for upgrade of NPP control rooms is using NPP personnel operating experience and participation of NPP personnel in detecting and solving the human factor problems. The ways of such participation include application of various human factors engineering and psychological techniques, for example interviews, inquiries (filling in questionnaire), operator activity observations. The present paper deals with activation of NPP personnel role in the design of control room upgrade, in particular, in creation of operator support systems. NPP personnel selection for incorporation in NPP upgrade group and initial training design skills are considered. NPP personnel responsibilities during particular stages of control room designing are specified. (author). 1 ref

  13. Ergonomic aspects of design of operators' workplaces in unit control room

    International Nuclear Information System (INIS)

    A project was designed of reconstruction of the power unit control room with the objective of optimizing the relation man-position-working conditions and of improving the operator's reliability. The project was based on an analysis of the operators' jobs and an analysis of the current control room equipment. The results of the analyses point to high psychological demands put on the operators' job, unsuitable location of workplaces in the control room, subjective feelings of fatigue of the operators, unsuitable illumination, etc. (J.B.)

  14. Control room design of a nuclear reactor used to produce radioisotope

    International Nuclear Information System (INIS)

    A control room is defined as a functional entity with an associated physical structure, where the operators carry out the centralized control, monitoring and administrative responsibilities. Inadequate integration between control room and operators reduces safety, increases the operation complexity, complicates operator training and increases the likelihood of human errors occurrence. The purpose of this paper is to present a specific approach for the design of the main control room of a nuclear reactor used to produce radioisotope. The approach is based on human factors standards and the participation of a multidisciplinary team in the conceptual and basic phases of the design. Using the information gathered from standards and from the multidisciplinary an initial sketch 3D of the main control room is being developed. (author)

  15. Magnetic control of large room-temperature polarization

    International Nuclear Information System (INIS)

    Numerous authors have referred to room-temperature magnetic switching of large electric polarizations as 'the Holy Grail' of magnetoelectricity. We report this long-sought effect, obtained using a new physical process of coupling between magnetic and ferroelectric nanoregions. Solid state solutions of PFW [Pb(Fe2/3W1/3)O3] and PZT [Pb(Zr0.53Ti0.47)O3] exhibit some bi-relaxor qualities, with both ferroelectric relaxor characteristics and magnetic relaxor phenomena. Near 20% PFW the ferroelectric relaxor state is nearly unstable at room temperature against long-range ferroelectricity. Here we report magnetic switching between the normal ferroelectric state and a magnetically quenched ferroelectric state that resembles relaxors. This gives both a new room-temperature, single-phase, multiferroic magnetoelectric, (PbFe0.67W0.33O3)0.2(PbZr0.53Ti0.47O3)0.8 ('0.2PFW/0.8PZT'), with polarization, loss (8-109 Ω cm) equal to or superior to those of BiFeO3, and also a new and very large magnetoelectric effect: switching not from +Pr to -Pr with applied H, but from Pr to zero with applied H of less than a tesla. This switching of the polarization occurs not because of a conventional magnetically induced phase transition, but because of dynamic effects: increasing H lengthens the relaxation time by 500 x from100 μs, and it strongly couples the polarization relaxation and spin relaxations. The diverging polarization relaxation time accurately fits a modified Vogel-Fulcher equation in which the freezing temperature Tf is replaced by a critical freezing field Hf that is 0.92 ± 0.07 T. This field dependence and the critical field Hc are derived analytically from the spherical random bond random field model with no adjustable parameters and an E2H2 coupling. This device permits three-state logic (+Pr,0,-Pr) and a condenser with >5000% magnetic field change in its capacitance; for H = 0 the coercive voltage is 1.4 V across 300 nm for +Pr to -Pr switching, and the coercive magnetic

  16. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  17. The Control Room Upgrade in Oskarshamn 2 Modernization Project Lesson Learned from Ongoing Human Factor design

    International Nuclear Information System (INIS)

    Due to recent changes in Swedish commercial nuclear safety system requirements, OKG decided to make the changes required by the new safety requirements, apply for a 30-year license extension, and to concurrently make changes for a major power uprate; this project is called the Plant Life Extension project (PLEX). It was decided, in addition to several plant modifications, to re build the old control room to a new modern screen-based control room located in the same space as the old one, and with the same number of operators. This paper explains the approach taken when modernizing the control room as a part of the Oskarshamn 2 Modernization project PLEX, the results, and the lessons learned from this ongoing work. The combination of changes results in a modernization project that is expected to increase output power by approximately 50 MWe through increased efficiency and to result in an increase in thermal power from 1800 MWt to 2300 MWt (28%) and electrical power from 620 MWe to 840 MWe due to the power uprate. The license to operate OKG2 expires in 2012 The PLEX project is one of the most ambitious nuclear power plant modernization projects ever implemented, world-wide. The application of human factors engineering (HFE) and control room and HSI design is a complex challenge. The original main control room from 1975 in Oskarshamn 2, was quite compact and provided a fairly good overview of the process. New requirements for enhanced safety and other design changes in the process systems and instrumentation led to a step-wise installation of new information and control equipment in the control room. Since the control room was quite limited in space, the control room grew larger, and the new equipment was installed farther away from the operator workplaces into an adjacent control room. This was even the case for the new safety systems. These systems were functioning well separately as such, but in some cases their interfaces were inconsistent, leading to increased

  18. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  19. What's getting in the way of teamwork in our nuclear control rooms?

    International Nuclear Information System (INIS)

    Nuclear control room crews, like teams of any kind, develop their own unique personalities, or ways of getting things done. These personalities contain both good news and bad news when it comes to teamwork, and evolve from the beliefs and attitudes of the individual supervisors and operators. These beliefs and attitudes translate into behaviors that contribute to, or become barriers to, the teamwork so vital in today's modem nuclear control room. The writer, a consultant who has worked with control room crews at twelve US nuclear plants over the past five years in developing teamwork skills, describes his experiences, observations, and successes with the use of videotape to help operators change or modify their behavior to make them more effective as members of a control room team

  20. Nuclear power plant control room task analysis. Pilot study for pressurized water reactors

    International Nuclear Information System (INIS)

    The purposes of this nuclear plant task analysis pilot study: to demonstrate the use of task analysis techniques on selected abnormal or emergency operation events in a nuclear power plant; to evaluate the use of simulator data obtained from an automated Performance Measurement System to supplement and validate data obtained by traditional task analysis methods; and to demonstrate sample applications of task analysis data to address questions pertinent to nuclear power plant operational safety: control room layout, staffing and training requirements, operating procedures, interpersonal communications, and job performance aids. Five data sources were investigated to provide information for a task analysis. These sources were (1) written operating procedures (event-based); (2) interviews with subject matter experts (the control room operators); (3) videotapes of the control room operators (senior reactor operators and reactor operators) while responding to each event in a simulator; (4) walk-/talk-throughs conducted by control room operators for each event; and (5) simulator data from the PMS

  1. Human-factors engineering-control-room design review: Shoreham Nuclear Power Station. Draft audit report

    International Nuclear Information System (INIS)

    A human factors engineering preliminary design review of the Shoreham control room was performed at the site on March 30 through April 3, 1981. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. This report was prepared on the basis of the HFEB's review of the applicant's Preliminary Design Assessment and the human factors engineering design review/audit performed at the site. The presented sections are numbered to conform to the guidelines of the draft version of NUREG-0700. They summarize the teams's observations of the control room design and layout, and of the control room operators' interface with the control room environment

  2. Near-term improvements for nuclear power plant control room annunciator systems. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, W.L.; Duvernoy, E.G.; Ames, K.R.; Morgenstern, M.H.; Eckenrode, R.J.

    1983-04-01

    This report sets forth a basic design philosophy with its associated functional criteria and design principles for present-day, hard-wired annunciator systems in the control rooms of nuclear power plants. It also presents a variety of annunciator design features that are either necessary for or useful to the implementation of the design philosophy. The information contained in this report is synthesized from an extensive literature review, from inspection and analysis of control room annunciator systems in the nuclear industry and in related industries, and from discussions with a variety of individuals who are knowledgeable about annunciator systems, nuclear plant control rooms, or both. This information should help licensees and license applicants in improving their hard-wired, control room annunciator systems as outlined by NUREG-0700.

  3. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    International Nuclear Information System (INIS)

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  4. Near-term improvements for nuclear power plant control room annunciator systems

    International Nuclear Information System (INIS)

    This report sets forth a basic design philosophy with its associated functional criteria and design principles for present-day, hard-wired annunciator systems in the control rooms of nuclear power plants. It also presents a variety of annunciator design features that are either necessary for or useful to the implementation of the design philosophy. The information contained in this report is synthesized from an extensive literature review, from inspection and analysis of control room annunciator systems in the nuclear industry and in related industries, and from discussions with a variety of individuals who are knowledgeable about annunciator systems, nuclear plant control rooms, or both. This information should help licensees and license applicants in improving their hard-wired, control room annunciator systems as outlined by NUREG-0700

  5. User interface solutions for supporting operators' automation awareness in nuclear power plant control rooms

    OpenAIRE

    Laitio, Paula

    2013-01-01

    This thesis discusses the effects of nuclear power plant control room digitalization and of increasing control room automation on the operator work. The concept of automation awareness is introduced and automation awareness is defined as a part of situation awareness. The development and maintenance of automation awareness is considered to be a continuous process that comprises of perceiving the current status of automation, comprehending the status and its meaning to the system behaviour as ...

  6. Enhanced communication support between control room and field operation : Human communication and interaction

    OpenAIRE

    Berg, Håkon Nergaard

    2007-01-01

    Communication between the field operator and the control room operator is vital for successful operation in the process industry. By reviewing models for human cognition and interpersonal communication and collaboration together with appropriate ~technology, concepts for enhancing the field operator/control room operator communication are developed. These concepts constitutes the basis for design and implementation of a working prototype. The prototype is utilizing a mobile device with wirele...

  7. Study on comprehensive evaluation model for nuclear power plant control room layout

    International Nuclear Information System (INIS)

    A comprehensive evaluation model for layout of the main control room of nuclear power plants was proposed. Firstly the design scope and principle for the layout of the main control room were defined based on the standards, and then the index system for the comprehensive evaluation was established. Finally, comprehensive evaluation was carried out for the layout design by applying the fuzzy comprehensive evaluation method in the index system. (authors)

  8. Control room dose analysis for Maanshan PWR plant during design basis loss of coolant accident

    International Nuclear Information System (INIS)

    To address the issue identified in USNRC's Generic Letter 2003-1 that the unfiltered air in-leakage rate through plant's control room during design basis accident may exceed that assumed in the licensing analysis and thus threat the control room habitability, the control room radiation dose analysis of Maanshan PWR plant has to be re-performed to determine the allowable unfiltered air in-leakage rate. The allowable unfiltered air in-leakage rate is to be determined in such a way that the calculated whole body dose in the control room during the most limiting design basis accident must meet the criteria set forth in 10 CFR 50 Appendix A General Design Criteria (GDC) 19. The determined allowable air in-leakage rate is then employed as an acceptable limit to be met by the control room in-leakage test. In this study, the Maanshan plant control room dose analysis model during loss of coolant accident (LOCA) has been established based on USNRC's RADTRAD computer code. Different release and transport paths have been incorporated in this model, including containment leakage, engineered safety feature (ESF) leakage, and control room filtered and un-filtered air in-leakage. The RADTRAD calculation results are compared with Final Safety Analysis Report (FSAR) results to assure that overall consistency is reached. Finally, considering the uncertainties and margin to be maintained between RADTRAD calculation results and GDC-19 dose limits, an allowable unfiltered air in-leakage rate for control room habitability application during LOCA has been well defined. (author)

  9. Addressing the human factors issues associated with control room modifications

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.; Stubler, W. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Kramer, J. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

    1998-03-01

    Advanced human-system interface (HSI) technology is being integrated into existing nuclear plants as part of plant modifications and upgrades. The result of this trend is that hybrid HSIs are created, i.e., HSIs containing a mixture of conventional (analog) and advanced (digital) technology. The purpose of the present research is to define the potential effects of hybrid HSIs on personnel performance and plant safety and to develop human factors guidance for safety reviews of them where necessary. In support of this objective, human factors issues associated with hybrid HSIs were identified. The issues were evaluated for their potential significance to plant safety, i.e., their human performance concerns have the potential to compromise plant safety. The issues were then prioritized and a subset was selected for design review guidance development.

  10. Research study on the effects of illumination on performance of control room tasks

    International Nuclear Information System (INIS)

    The illumination in the control rooms of many operating nuclear plants falls below the levels specified in the NUREG-0700 guidelines. However, these guidelines are based on human perception and performance data which were acquired under laboratory conditions and with tasks very different from those typically found in control rooms. The objective of the present studies was to gather empirical data regarding the levels of illumination sufficient for performing tasks analogous to those performed in control rooms. Several tasks were designed to engage the perceptual and cognitive processes that are representative of actual control room performance. In a computerized laboratory test-bed, subjects scanned edgewise meters, examined hard-copy X-Y plots to discern the value of the displayed function at specific coordinates, and proofread hard-copy plant procedures. In a power plant control room simulator, data were likewise collected in a meter reading task and similar tasks representing elements of specific job-performance measures. For each task, response time and accuracy were measured under a range of illumination levels. Subjective comfort ratings were also obtained for each illumination level. The results from both settings indicated that with decreasing illumination, increased errors and/or longer response times occurred only for levels below ten footcandles, if at all. These data suggest that adequate performance in control room tasks can be achieved at illumination levels below those recommended in NUREG-0700

  11. Advanced Coordinating Control System for Power Plant

    Institute of Scientific and Technical Information of China (English)

    WU Peng; WEI Shuangying

    2006-01-01

    The coordinating control system is popular used in power plant. This paper describes the advanced coordinating control by control methods and optimal operation, introduces their principals and features by using the examples of power plant operation. It is wealthy for automation application in optimal power plant operation.

  12. Design of a Control Room for Jordan Research and Training Reactor (JRTR)

    International Nuclear Information System (INIS)

    Since the main role of JRTR(Jordan Research and Training Reactor) operating personnel is safe and reliable operation of the reactor, MCR(Main Control Room) and SCR(Supplementary Control Room) must provide them with sufficient information and controls needed to optimize their performance. Before the TMI accident, control room were generally designed just with intuitive common sense, without using any proper HFE(human factors engineering) practices. Many results derived from the analysis of TMI accident showed that a more comprehensive and systematic approaches to develop MCR design requirements were needed. Moreover changes of operators' role as a decision maker from a physical controller in rapid improvement of control system which resulted in higher automation clearly needed more featured regulatory requirements and guidelines. So many regulatory and industrial guidance for control room design have been developed by relevant institution and regulatory bodies. In this paper, a conceptual design of the JRTR control room in the effort of satisfying current regulatory requirements and guidelines are presented. And some information display design is also presented

  13. Human factors survey of advanced instrumentation and controls

    International Nuclear Information System (INIS)

    The nuclear power industry has used analog instrumentation and controls (I and C) in their control rooms and technical support centers since the first nuclear power plant went on-line in the late 1950's. Even today the industry, as a whole, has been slow to implement advanced/digital I and C. The utilization of digital I and C appears, however, to be the wave of the future because most of the analog components and systems are becoming obsolete and no longer available. These advanced systems will also probably be utilized in the life extension of nuclear plants. It has been demonstrated in other industries that digital I and C provides almost error-free performance that is three-to-four orders of magnitude better than analog components performing the same function. With the increase in sophistication in the operation of modern nuclear power plants that is needed to handle the multiple (and sometimes conflicting) goals of efficiency, reliability, economic operation, and safety, the nuclear industry will be driven to the use of advanced I and C. Oak Ridge National Laboratory (ORNL) is currently performing a research project for the Nuclear Regulatory Commission's (NRC) Office of Nuclear Regulatory Research. The purpose of the project is to provide the technical basis for the development of regulatory criteria to evaluate the safety implications of human factors associated with advanced I and C in nuclear power plants. During the first part of this project a survey of the US and Canadian utilities and vendors was conducted. The survey was oriented towards determining the human factors issues related to the current, planned, and potential future uses of digital systems in control rooms and technical support centers. The human factors issues were prioritized in regards to their importance by representatives from both ORNL and NRC

  14. Swedish State Power Board activities related to man-machine analyses and optimization of the control room function

    International Nuclear Information System (INIS)

    As a result of new government requirements, the accident management of the Swedish State Power Board (SSPB) nuclear power plants is being strengthened as regards safety. This will influence control room environment, emergency operation procedure, training and organization. The paper mainly deals with current activities related to the control room environment. To meet the new requirements SSPB has (1) introduced a new general function/state oriented emergency operating procedure (EOP) for the shift engineer; (2) introduced an advanced safety parameter display system (SPDS); (3) enhanced simulator training of shift management; (4) reinforced the process image for the critical safety functions in the conventional control panels by grouping primary instrumentation. Some examples of retrofitting under way in the conventional control panels are: (a) the new BWRs are being retrofitted with process overview panels to assist operator actions during early stages of a transient; (b) the control panel for reactor vessel instrumentation (critical safety function: core cooling) has been changed in the old BWR to optimize actions when core cooling is jeopardized; (c) development of core cooling instrumentation for PWRs has been studied in simulators and retrofitting and modification are planned. The new EOP, SPDS, control room retrofits have been validated in simulators (and in the real world). Experience from simulator validation has shown that: (1) It is important for the reactor/turbine operator to follow the process response during an accident. It is therefore important that the EOP be simple to follow and the process system image be easy to understand. (2) The advanced SPDS has been valuable in giving the shift supervisor an overview and an independent verification of EOP actions. (3) Reactor pressure vessel instrumentation in PWRs has a positive impact on operator actions (especially those of the shift supervisor) during severe transients if it always reflects the actual

  15. Advanced Control of Wheeled Inverted Pendulum Systems

    CERN Document Server

    Li, Zhijun; Fan, Liping

    2013-01-01

    Advanced Control of Wheeled Inverted Pendulum Systems is an orderly presentation of recent ideas for overcoming the complications inherent in the control of wheeled inverted pendulum (WIP) systems, in the presence of uncertain dynamics, nonholonomic kinematic constraints as well as underactuated configurations. The text leads the reader in a theoretical exploration of problems in kinematics,dynamics modeling, advanced control design techniques,and trajectory generation for WIPs. An important concern is how to deal with various uncertainties associated with the nominal model, WIPs being characterized by unstable balance and unmodelled dynamics and being subject to time-varying external disturbances for which accurate models are hard to come by.   The book is self-contained, supplying the reader with everything from mathematical preliminaries and the basic Lagrange-Euler-based derivation of dynamics equations to various advanced motion control and force control approaches as well as trajectory generation met...

  16. Research study on operability in large-scale centralized control room. Regarding nuclear technology

    International Nuclear Information System (INIS)

    This study was performed to establish man-machine technology for panel-less instrumentation applicable to large-scale centralized control rooms of nuclear power plants. Work-load analysis of the operator in a large-scale centralized control room was performed and the basic constitution of an operator control station examined. Operability of panel-less instrumentation on based on a CRT touch-screen was examined with a mock-up operator control station manufactured according to the result of work-load analysis. The results of this study culminated in a design guideline for panel-less instrumentation. (author)

  17. Room temperature coherent control of defect spin qubits in silicon carbide.

    Science.gov (United States)

    Koehl, William F; Buckley, Bob B; Heremans, F Joseph; Calusine, Greg; Awschalom, David D

    2011-11-01

    Electronic spins in semiconductors have been used extensively to explore the limits of external control over quantum mechanical phenomena. A long-standing goal of this research has been to identify or develop robust quantum systems that can be easily manipulated, for future use in advanced information and communication technologies. Recently, a point defect in diamond known as the nitrogen-vacancy centre has attracted a great deal of interest because it possesses an atomic-scale electronic spin state that can be used as an individually addressable, solid-state quantum bit (qubit), even at room temperature. These exceptional quantum properties have motivated efforts to identify similar defects in other semiconductors, as they may offer an expanded range of functionality not available to the diamond nitrogen-vacancy centre. Notably, several defects in silicon carbide (SiC) have been suggested as good candidates for exploration, owing to a combination of computational predictions and magnetic resonance data. Here we demonstrate that several defect spin states in the 4H polytype of SiC (4H-SiC) can be optically addressed and coherently controlled in the time domain at temperatures ranging from 20 to 300 kelvin. Using optical and microwave techniques similar to those used with diamond nitrogen-vacancy qubits, we study the spin-1 ground state of each of four inequivalent forms of the neutral carbon-silicon divacancy, as well as a pair of defect spin states of unidentified origin. These defects are optically active near telecommunication wavelengths, and are found in a host material for which there already exist industrial-scale crystal growth and advanced microfabrication techniques. In addition, they possess desirable spin coherence properties that are comparable to those of the diamond nitrogen-vacancy centre. This makes them promising candidates for various photonic, spintronic and quantum information applications that merge quantum degrees of freedom with classical

  18. Task analysis of nuclear power plant control room crews. Volume 3. Task data forms

    International Nuclear Information System (INIS)

    A task analysis of nuclear power plant control room crews was performed by General Physics Corporation and BioTechnology, Inc., for the Office of Nuclear Regulatory Research. The task analysis methodology used in the project is discussed and compared to traditional task analysis and job analysis methods. The objective of the project was to conduct a crew task analysis that would provide data for evaluating six areas: (1) human engineering design of control rooms and retrofitting of current control rooms; (2) the numbers and types of control room operators needed with requisite skills and knowledge; (3) operator qualification and training requirements; (4) normal, off-normal, and emergency operating procedures; (5) job performance aids; and (6) communications. The data collection approach focused on a generic structural framework for assembling the multitude of task data that were observed. Control room crew task data were observed and recorded within the context of an operating sequence. The data collection was conducted at eight power plant sites (in simulators and/or in control rooms) by teams comprising human factors and operations personnel. Plants were sampled according to NSSS vendor, vintage, simulator availability, architect-engineer, and control room configuration. The results of the data collection effort were compiled in a computerized task database. Six demonstrations for suitability analysis were subsequently conducted in each of the above areas and are described in this report. Volume 1 details the Project Approach and Methodology. Volume 2 provides the Data Results including a description of the computerized task analysis data format. Volumes 3 and 4 present the Task Data Forms that resulted from the project and are available on a computerized data-base management system

  19. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  20. Diffusion and Evaporation-Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus

    of the model proposed was applied to investigate the influence of source diffusion coefficient and air velocity on the concentration distribution. The findings show that the mass transfer coefficient increases in proportion to the velocity when the emission is controlled by evaporation from the...

  1. Effect of room modelling and sensor position on performance assessment of variable air volume control systems

    Energy Technology Data Exchange (ETDEWEB)

    Riederer, P. [Centre Scientifique et Technique du Batiment (CSTB), Champs sur Marne (France); Dexter, A.L. [Oxford Univ., Dept. of Engineering Science, Oxford (United Kingdom)

    2003-07-01

    Variable air volume (VAV) systems are commonly used for air conditioning in buildings. The testing of different control strategies and controllers for this application has been a main concern in several simulation studies. In these simulations much attention has been paid to the accuracy of the models of the VAV system while very simple models are often used at the room level. These room models assume that the air in the room is perfectly mixed, even when the prevailing conditions are not at all homogeneous. Another important issue when testing controllers is the method used to assess the control performance. Since it makes no sense to use very detailed room models, if the method of performance assessment is insensitive to the way in which the room is modelled, both issues must be treated simultaneously. The paper considers the problem of assessing the performance of VAV systems that use ceiling diffusers. The study includes the development of a convection model for a room. Its complexity is reduced to a minimum to allow detailed dynamic simulation of a whole building, complete with its VAV system and other building services (e.g., sun-blinds, lighting, etc.). Since airflow in a room depends strongly on the type of diffuser that is used, the study is carried out for both round and slot diffusers. Results are presented that show that the room model and the position of the sensor affect the performance in different ways depending on the diffuser type and the operating mode. It is concluded that there are only small differences in terms of thermal comfort but significant differences in terms of overall energy consumption. (Author)

  2. JPL Advanced Thermal Control Technology Roadmap - 2012

    Science.gov (United States)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  3. Method of introducing atmospheric air in a central control room upon accidents

    International Nuclear Information System (INIS)

    Purpose: To decrease the danger of radiation exposure to operators in a central control room by introducing external airs through an air intake port where the radioactivity level is the lowest depending on the information from radiation monitors and CO2 densitometers in the central control room. Method: After the occurrence of accident, the control system judges whether it is necessary or not to introduce external airs to the central control room depending on the signals from CO2 densitometers and, if it is not, air valves are kept closed. While on the other hand, if CO2 density is high thus requiring introduction of external airs, air intake ports at the lowest radioactivity level is selected based on the signals from radiation monitors and external airs are introduced to the central control room by sending ''open'' signal to the air valve disposed to a duct in communication with the air intake port, as well as by sending operation signals to a fan. This enables to introduce external airs at sufficiently low radioactivity level by a required amount to the central control room upon accident thereby decreasing the exposure danger to the operators caused by the introduction of the external airs. (Kawakami, Y.)

  4. Task analysis methods applicable to control room design review (CDR)

    International Nuclear Information System (INIS)

    This report presents the results of a research study conducted in support of the human factors engineering program of the Atomic Energy Control Board in Canada. It contains five products which may be used by the Atomic Enegy Control Board in relation to Task Analysis of jobs in CANDU nuclear power plants: 1. a detailed method for preparing for a task analysis; 2. a Task Data Form for recording task analysis data; 3. a detailed method for carrying out task analyses; 4. a guide to assessing alternative methods for performing task analyses, if such are proposed by utilities or consultants; and 5. an annotated bibliography on task analysis. In addition, a short explanation of the origins, nature and uses of task analysis is provided, with some examples of its cost effectiveness. 35 refs

  5. Room temperature coherent control of coupled single spins in solid

    OpenAIRE

    Gaebel, T.; Domhan, M.; Popa, I.; Wittmann, C; Neumann, P; Jelezko, F.; Rabeau, J. R.; Stavrias, N.; Greentree, A. D.; Prawer, S.; Meijer, J; Twamley, J.; Hemmer, P. R.; Wrachtrup, J.

    2006-01-01

    Coherent coupling between single quantum objects is at the heart of modern quantum physics. When coupling is strong enough to prevail over decoherence, it can be used for the engineering of correlated quantum states. Especially for solid-state systems, control of quantum correlations has attracted widespread attention because of applications in quantum computing. Such coherent coupling has been demonstrated in a variety of systems at low temperature1, 2. Of all quantum systems, spins are pote...

  6. Advanced nonlinear engine speed control systems

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert

    1994-01-01

    Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one......: accurately tracking of a desired engine speed in the presence of model uncertainties and severe load disturbances. This is accomplished by using advanced nonlinear control techniques such as input/output-linearization and sliding mode control. These techniques take advantage of a nonlinear model of the...

  7. Advances in chaos theory and intelligent control

    CERN Document Server

    Vaidyanathan, Sundarapandian

    2016-01-01

    The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate s...

  8. DTP2 control room operator and remote handing operation designer responsibilities and information available to them

    International Nuclear Information System (INIS)

    The purpose of the Divertor Test Platform 2 (DTP2) is to demonstrate the proof-of-concept level operations of ITER divertor maintenance devices, by remotely handling them from a dedicated control room. In order to verify safe and reliable remote handling (RH) maintenance operations, it is vital to repeat them equally every time. The operations shall be validated and restored beforehand by RH operation designers. During the actual operation the control room operators are following predefined operation sequences. After time passes, even the validated operation details will change and the sequences improve, but these changes should not be done during the actual operation. It is fundamental from safety perspective that the control room operator will not be able to make unintentional actions. Hence, during the operation the irrelevant information shall not be available to him. Also the software functionality available for other purposes than executing the operation shall be made invisible. Therefore, making careful user interface design is certainly relevant when designing control room sub-systems. In this paper, we introduce the current control room sub-systems used at the DTP2.We suggest utilizing user groups and user-centered design in the software development and implementation done in user group fashion is described.

  9. Noble gas control room accident filtration system for severe accident conditions (N-CRAFT)

    International Nuclear Information System (INIS)

    Severe accidents might cause the release of airborne radioactive substances to the environment of the NPP either due to containment leakages or due to intentional filtered containment venting. In the latter case aerosols and iodine are retained, however noble gases are not retainable by the FCVS or by conventional air filtration systems like HEPA filters and iodine absorbers. Radioactive noble gases nevertheless dominate the activity release depending on the venting procedure and the weather conditions. To prevent unacceptable contamination of the control room atmosphere by noble gases, AREVA GmbH has developed a noble gas control room accident filtration system (CRAFT) which can supply purified fresh air to the control room without time limitation. The retention process is based on dynamic adsorption of noble gases on activated carbon. The system consists of delay lines (carbon columns) which are operated by a continuous and simultaneous adsorption and desorption process. CRAFT allows minimization of the dose rate inside the control room and ensures low radiation exposure to the staff by maintaining the control room environment suitable for prolonged occupancy throughout the duration of the accident. CRAFT consists of a proven modular design either transportable or permanently installed. (author)

  10. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to

  11. An Advanced Fuzzy Logic Based Traffic Controller

    OpenAIRE

    Bilal Ahmed Khan; Nai Shyan Lai

    2014-01-01

    Traffic light plays an important role in the urban traffic management. Therefore, it is necessary to improve the traffic controller for effective traffic management and better traffic flow leading to greener environment. In this paper, an advanced and intelligent traffic light controller is proposed, utilising the fuzzy logic technology and image processing technique. A fuzzy logic control has been implemented to provide the attribute of intelligence to the system. For real-time image acquisi...

  12. Spacelab Payload Operations Control Center (POCC) Control Room During STS-35 Mission

    Science.gov (United States)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo is an overview of the MSFC Payload Control Room (PCR).

  13. NKA/KRU project on operator training, control room designing and human reliability. Summary report

    International Nuclear Information System (INIS)

    A Nordic integrated project on human reliability in the conditions of new advanced technology seeks to establish: - The actual repertoire of activities and tasks performed by the operating staff of a nuclear power plant and its dependence on the present and future levels of automation. - The knowledge required for these activities and appropriate means for training plant operators and for competence evaluation and retraining in coping with the rare events. - Models of human operator performance; how do operators read information and make decisions under normal and abnormal plant conditions and how does their performance depend upon control room design. - The typical limits of human capabilities and mechanisms of human errors as they are represented in existing records of incidents and accidents in industrial plants. - The use of process computers for improved design of data presentation and operator support systems, especially for disturbance analysis and diagnosis during infrequent plant disturbance. - Development of experimental techniques to validate research results and proposals for improved man/machine interfaces and other computer-based support systems. (EG)

  14. Learning curves in control rooms: skill? rule? knowledge?

    International Nuclear Information System (INIS)

    Reactor safety and risk are dominated by the potential and major contribution for human error in the design, operation, control, management, regulation and maintenance of the plant, and hence to all accidents. We need to determine the outcome (error) probability, or the chance of failure. Time and again we are faced with the same situation and question: how to predict the risk or chance of a mistake by an operating crew or team. Conventional reliability engineering is associated with the failure rate of components, or systems, or mechanisms, not of human beings in and interacting with a technological system. The probability of failure requires a prior knowledge of the total number of outcomes, which for any predictive purposes we do not know or have. Analysis of failure rates due to human error based on the Learning Hypothesis allows a new determination of the dynamic human error rate in technological systems, consistent with and derived from the available world data. The basis for the analysis is that humans learn from experience, both prior to and during a transient or event, and consequently the accumulated experience defines the failure rate. Our 'best' equation for the probability of human error, outcome or failure rate, which has been validated against the full spectrum of the world's outcome data, allows for calculation and prediction of the probability of human error. In nuclear probabilistic risk assessment, the modeling of nuclear plant operator actions and transient control behavior is extremely important, and is a requirement according to industry standards. The human error probability (HEP) often classified according to Skill, Rule and Knowledge based behavior. We examine the data and results observed in transients in both plants and simulators, available from France and the USA. We demonstrate that the human error probability (HEP) is dynamic, and that it may be predicted using the Learning Hypothesis and the minimum failure rate, and can be utilized

  15. Evaluation of computer based information systems in NPP control rooms

    International Nuclear Information System (INIS)

    Starting with a brief description of the way computer based information systems assist the operational staff of NPPs in keeping the plant within operational condition limits and in guaranteeing the plant's continuous safe state, the paper classifies these systems according to a four staged qualification model for instrumentation and control (I and C) equipment. Safety class is thereby determined by evaluating the control philosophy of the entire plant, the kind of information the I and C equipment presents and whether it is a backup or stand alone information source for the particular process system. The last aspect is one of the most important points in evaluating computer based information systems. It determines to a vast extent the requirements applied to that system concerning system design and quality assurance (QA). To standardize QA measures and design requirements, the Technischer Ueberwachungs-Verein Bayern (TUV Bayern) developed the Guideline for Evaluating Measuring and I and C Equipment in Nuclear Plants. Within this surveillance-guideline requirement, categories are defined for every safety class containing a large variety of measures derived from current rules and regulations as well as from state of the art industry practice. These measures make up an image of the complex process of evaluating computers in NPPs and how this challenge is met by TUV Bayern. After the theoretical background is presented, the second part of the paper outlines some major steps of evaluating a computer based information system, by giving an example based on practice to show how different tests are necessary to achieve an acceptable evaluation. The paper ends with a brief summary of those maintenance aspects necessary to keep an evaluated system at a high reliability and performance level. (author). 20 refs

  16. Human error recovery failure probability when using soft controls in computerized control rooms

    International Nuclear Information System (INIS)

    selection and delayed operation were mutually dependent. The ranges of other recovery failure probabilities were 0.227 to 0.546 in terms of using soft controls. Since there is no recovery failure probability database regarding soft controls in advanced MCRs and recovery failure probabilities in other HRA method were obtained by expert judgment, the results in this study would be helpful for HRA experts to decide recovery failure probabilities under advanced MCR environment

  17. Operational efficiency subpanel advanced mission control

    Science.gov (United States)

    Friedland, Peter

    1990-01-01

    Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.

  18. EARLY-STAGE DESIGN AND EVALUATION FOR NUCLEAR POWER PLANT CONTROL ROOM UPGRADES

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Jeffrey C. Joe; Thomas A. Ulrich; Roger T. Lew

    2015-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate operator performance with these systems as part of a verification and validation process. While there is regulatory and industry guidance for some modernization activities, there are no well defined standard processes or predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages. This paper proposes a framework defining the design process and metrics for evaluating human system interfaces as part of control room modernization. The process and metrics are generalizable to other applications and serve as a guiding template for utilities undertaking their own control room modernization activities.

  19. Control rooms and man-machine interface in nuclear power plants

    International Nuclear Information System (INIS)

    The importance of man-machine interface for ensuring safe and reliable operation of nuclear power plants has always been recognized. Since the early 1970's, the concepts of operator support and human factors have been increasingly used to better define the role of control rooms. In the late 1970's, the lessons learned from experience considerably accelerated the development of recommendations and regulatory requirements governing the resources and data available to operators in nuclear power plant control rooms, and specified the expertise required to assist them in case of need. This document summarizes the steps which have been taken and are being planned around the world to improve the man-machine interface for safe and economic power generation. It intends to present to the reader useful examples on some selected control room design and man-machine interface practices for operation and surveillance of nuclear power plants. 53 refs, 94 figs, 27 tabs

  20. New SPring-8 control room: towards unified operation with SACLA and SPring-8 II era

    International Nuclear Information System (INIS)

    We have renovated the SPring-8 control room. This is its first major renovation since its inauguration in 1997. In 2011, the construction of the SACLA (SPring-8 Angstrom Compact Laser) was completed. Plans are to control it from the new control room for it to work in close cooperation with the SPring-8 storage ring. It was expected that the upcoming SPring-8 II project would require more workstations than the current control room could accommodate. We have therefore extended the control room area for these anticipated requirements. In this renovation, we employed new technologies that did not exist 14 years ago, such as a large LCD and silent, liquid-cooling workstations for a comfortable operation environment. We have incorporated many ideas which were obtained during the 14 years experience of the operation. The fish-shaped desk islands met the scalability requirement for the SACLA and SPring-8 II. The interlock panel placed at the center of the consoles and the interlock signal at the back area enabled close coordination between the safety systems and the accelerators operations, and the division between the control area and the back area helped to create an environment specific to the control area

  1. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald L.; Joe, Jeffrey C.

    2015-02-01

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative—intended to catalog final products—rather than formative—intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.

  2. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    International Nuclear Information System (INIS)

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative–intended to catalog final products–rather than formative–intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.

  3. Control Room Tasks During Refueling in Ringhals 1 Nuclear Power Plant - Operator performance during refuelling outages

    International Nuclear Information System (INIS)

    This paper discusses the performance and tasks of the operators in the control room during refuelling outages. Analyses of such events have, during the last years, shown that the risk for nuclear accidents is not negligible compared with the risk at higher reactor power levels. Some experts have the opinion that, due to mistakes during an outage, the risk for such accidents during the outage and other accidents later on during power operation is higher than in other plant situations. The high risk level is mainly a result of errors at maintenance actions and supervision of lining up of safety systems. Most of the control rooms in existing NPPs were designed more than 10 years ago. At that time the activities and the tasks for the operators were not very well understood. Procedures for refuelling and other activities during the outages were not described very well. Often the utility organisation for refuelling outages was not established at the start of the control room design. Experience from operation during many years has shown that the performance of operators can be improved in existing plant, and thus risks be reduced, by upgrading the control room. These issues have been studied as a part of the modernisation project for Ringhals 1, an ABB Atom BWR owned by Vattenfall AB in Sweden. The paper will describe the working model for upgrading the control room and important issues to take care of with respect to refuelling outages. The identified issues will be used as the input for improving control room philosophy and the individual technical systems. (authors)

  4. Training of control room crews in plant disturbance diagnosis. A methodological framework

    International Nuclear Information System (INIS)

    The purpose of this paper is to outline and describe the background considerations when developing training in diagnostic search for nuclear power station control room crews. The four main factors in these considerations are discussed: human information processing, diagnostic search, crew coordination during the diagnostic search, and finally training and teaching methods. Together, they constitute the cornerstones for the theoretical foundation of the diagnostic search training. The methodological framework in this paper was tested in practical circumstances during October and November 1986, involving control room crews at a Swedish PWR nuclear power station. A report of the findings during this test will be issued later this year

  5. The e-HFMP MCR Navigator Development for Main Control Room Improvement and an Evaluation

    International Nuclear Information System (INIS)

    HFMP(Human Factor Management Program) is under development in order to apply the principal human engineering easily. And e-HFM is simultaneously developed together with HFMP. The e- HFMP is web-based and equivalent system for HFMP. It is including the functions of the issue tracking management, the design document management, MCR navigator, and human engineering guideline management. Especially the MCR Navigator function shows overview and each instrument of main control room without visiting plant MCR directly. Therefore it helps performing efficiently the various evaluations relating to the control room, operator's training, and design change

  6. Design and modernization of the control room with of the new digital I and C systems

    International Nuclear Information System (INIS)

    The use of the new digital I and c systems in the design of the new nuclear power plants, as well as the modernization of the existing ones, implies relevant changes in the control room design. New I and C systems provide new features that affect the control room operating concept, therefore a detailed analysis is required to take into consideration all the operating and human factor aspects. based on Tecnatom's experience, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (Author)

  7. Performance evaluation of control room HVAC and air cleaning systems under accident conditions

    International Nuclear Information System (INIS)

    In light water reactors, control rooms and technical support centers must be designed to provide habitable environments in accordance with the requirements specified in General Design Criterion 19 of Appendix A, 10 CFR Part 50. Therefore, the effectiveness of HVAC and air cleaning system designs with respect to plant operator protection has to be evaluated by the system designer. Guidance for performing the analysis has been previously given in ANSI/ASME N509-1980 as well as in presentations at past Air Cleaning Conferences. The previous work is extended and the methodology used in a generic, interactive computer program that performs Main Control Room and Technical Support Center (TSC) habitability analyses for LWR nuclear power plants is presented. For given accident concentrations of radionuclides or hazardous gases in the outdoor air intakes and plant spaces surrounding the Main Control Room (or TSC), the program models the performance of the HVAC and air cleaning system designs, and determines control room (or TSC) contaminant concentrations and plant operator protection factors. Calculated or actual duct leakage, air cleaning efficiency, and airborne contamination are taken into account. Flexibility of the model allows for the representation of most control rooms (or TSC) and associated HVAC and air cleaning system conceptual designs that have been used by the US architect/engineers. The program replaced tedious calculations to determine the effects of HVAC ductwork and equipment leakage and permits (1) parametric analyses of various HVAC system design options early in the conceptual phase of a project, and (2) analysis of the effects of leakage test results on contaminant room concentrations, and therefore operator doses

  8. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  9. Low frequency sound field control for loudspeakers in rectangular rooms using CABS (Controlled Acoustical Bass System)

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2010-01-01

    Rectangular rooms are the most common shape for sound reproduction, but at low frequencies the reflections from the boundaries of the room cause large spatial variations in the sound pressure level.  Variations up to 30 dB are normal, not only at the room modes, but basically at all frequencies. As...... distribution in the room at low frequencies by using multiple loudspeakers together with an optimal placement of the loudspeakers.  At low frequencies CABS will create a plane wave from the front wall loudspeakers which will be absorbed by additional loudspeakers at the rear wall giving an almost homogeneous...

  10. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  11. Evaluation for the habitability of the main control room and the performance of the smoke control system at NPP

    International Nuclear Information System (INIS)

    In addition to the indoor air conditioning, the habitability of the main control room for the operators at Nuclear Power Plants (NPP) has to be ensured with a strict design requirements to protect the workers from the radiation exposure, hazardous chemicals, and the smoke with toxic combustion products. With this context, the internal pressure of the control room envelope shall be sustained at slightly higher pressure than the atmospheric pressure. At this paper, the internal pressure of the control room envelope was analyzed by use of the evaluation program, CONTANW that was developed by the NIST. On the basis of design values, the performance status of the smoke control system was also checked by the program, CFAST that was released by the NIST to confirm the dynamic smoke behaviors

  12. Simulating The Air-Condition Controlling In Operating Room And Improvement

    Directory of Open Access Journals (Sweden)

    Fereshteh Mohammadi

    2012-06-01

    Full Text Available In this study we have tried necessary condition and suitable for air balance and temperature in the operating room, using a fuzzy expert controller system and thermal cameras are designed. Condition for implementation and simulation of this system has been studied to see if it can be true or not performed in hospitals. This is a completely new method, all the operating room by a fuzzy controller with thermal picture environment has been properly balanced to ventilation system work properly. Therefore, the operating room is simulated using MATLAB software so fuzzy control system is supposed to be shown the benefits of this control system. Input parameters of the system are important factors in determining the balance temperature and ambient temperature. The publication of these parameters is considered as an output parameter. By the expert system, an account statement with the membership functions for input parameters were defined. After classification of ventilation systems and related information, using a concept designed interface that with MATLAB software has been simulated, transferred to the computer and also whole system operation in the operating room during hundred minutes is shown. The results revealed by this controller showed that in terms of economic and reliability and other has more advantages than the previous single-phase system.

  13. Simulating The Air-Condition Controlling In Operating Room And Improvement

    Directory of Open Access Journals (Sweden)

    Fereshteh Mohammadi

    2012-06-01

    Full Text Available In this study we have tried necessary condition and suitable for air balance and temperature inthe operating room, using a fuzzy expert controller system and thermal cameras are designed.Condition for implementation and simulation of this system has been studied to see if it can betrue or not performed in hospitals. This is a completely new method, all the operating room by afuzzy controller with thermal picture environment has been properly balanced to ventilationsystem work properly. Therefore, the operating room is simulated using MATLAB software sofuzzy control system is supposed to be shown the benefits of this control system. Inputparameters of the system are important factors in determining the balance temperature andambient temperature. The publication of these parameters is considered as an output parameter.By the expert system, an account statement with the membership functions for input parameterswere defined. After classification of ventilation systems and related information, using a conceptdesigned interface that with MATLAB software has been simulated, transferred to the computerand also whole system operation in the operating room during hundred minutes is shown. Theresults revealed by this controller showed that in terms of economic and reliability and other hasmore advantages than the previous single-phase system.

  14. GUIDANCE FOR NUCLEAR POWER PLANT CONTROL ROOM AND HUMAN-SYSTEM INTERFACE MODERNIZATION

    International Nuclear Information System (INIS)

    Several nuclear power plants in the United States are starting instrumentation and control (I and C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance while maintaining high levels of safety. As an integral part of the I and C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) are also being modernized. To support safe and effective operation, it is critical to plan, design, implement, train for, operate, and maintain the control room and HSI changes to take advantage of human cognitive processing abilities. A project, jointly funded by the Electric Power Research Institute (EPRI) and the United States Department of Energy (DOE) under the Nuclear Energy Plant Optimization (NEPO) Program, is developing guidance for specifying and designing control rooms, remote shut-down panels, HSIs etc. The guidance is intended for application by utilities and suppliers of control room and HSI modernization. The guidance will facilitate specification, design, implementation, operations, maintenance, training, and licensing activities. This guidance will be used to reduce the likelihood of human errors and licensing risk, to gain maximum benefit of implemented technology, and to increase performance. The guidance is of five types. The first is planning guidance to help a utility develop its plant-specific control room operating concepts, its plant-specific endpoint vision for the control room, its migration path to achieve that endpoint vision, and its regulatory, licensing, and human factors program plans. The second is process guidance for general HSI design and integration, human factors engineering analyses, verification and validation, in-service monitoring processes, etc. The third is detailed human factors engineering guidance for control room and HSI technical areas. The fourth is guidance for licensing. The fifth is guidance for special topics

  15. Control-room mock-up for the Philippsburg nuclear power plant, Unit 2

    International Nuclear Information System (INIS)

    The paper describes the major aspects of the construction of a full-scale control-room mock-up for Unit 2 (1300 MW PWR) of the Philippsburg nuclear power plant. The multitude of monitoring and control systems, co-operative control-room modelling by the planning staff as well as the operating staff, including the feedback of experience gained during operation, and the practice-oriented application of human factors engineering, especially the optimization of the man/machine interface, are emphasized. The control-room complex is subdivided into three functional areas: the entrance area, the central shift supervisor desk and, as a focal point, the process instrumentation and control area which includes the master control console (operator main control console and associated information board) and the system control consoles. The most important improvements in the application of human factors engineering in process instrumentation and control are listed. The consequent structuring of mimic diagrams and instruments both by colour and shape is a fundamental step. A computerized operator support system has been installed with the aim of improving the man/machine interface. (author)

  16. Designating Smoking Room to Control Environmental Tobacco Smoke in Nursing Homes

    Directory of Open Access Journals (Sweden)

    Farhang Akbar-Khanzadeh

    2011-01-01

    Full Text Available This study was initiated to assess the effectiveness of designating smoking rooms to control environmental tobacco smoke in nursing homes. Of the 39 nursing homes located in Toledo (a city in Ohio, USA included in the preliminary survey, 33 facilities (85% allowed smoking, 14 facilities (36% allowed indoor smoking, and 13 facilities (33% provided a designated smoking area. Three of these 13 nursing homes with similar levels of care agreed to participate in study that was more comprehensive. The levels of carbon monoxide, carbon dioxide (CO2, respirable suspended particulate matter, nicotine, and solanesol were monitored at three locations within three nursing homes: a designated smoking room with an independent ventilation system, the adjacent hallway and outside the building. The concentrations of air contaminants, except CO2, inside the designated smoking rooms were significantly higher than those in the hallways or outside. The concentration of CO2 was similar in the smoking rooms and the hallways but significantly higher than the concentration outside. The levels of ambient air temperature or relative humidity within the three locations were not generally different. The results indicated that the designation of a smoking room with an independent ventilation system was effective in controlling the environmental tobacco smoke in these nursing homes.

  17. Control room, emergency control system and local control panels in nuclear power plants

    International Nuclear Information System (INIS)

    The requirements on planning and construction of control boards including ergonomic-technical designing are specified in this rule. The specifications put the requirements on the design of place, process and environment of work, which are mentioned in the sections 90 and 91 of the labor-management relations act, into more concrete terms for the safety-relevant control panels as work places in a nuclear power station. The work places at control panels are not considered as video workstations in the sense of the 'Safety Rules for Video Workstations in the Office Sector' published by the General Association of the Industrial Trade Associations. The requirements are based on the operation and information technology realized at present in control panels of stationary nuclear power plants. (orig./HP)

  18. 76 FR 35130 - Pipeline Safety: Control Room Management/Human Factors

    Science.gov (United States)

    2011-06-16

    ... on December 3, 2009, in 49 CFR 192.631 and 195.446 (74 FR 63310), as corrected February 3, 2010 (75 FR 5536). By this amendment to the Control Room Management/Human Factors (CRM) rule, an operator must... benefit of this rulemaking action is an expedited implementation deadline of the CRM rule that...

  19. Gargamelle in the West Area - control room for the external electronic detectors

    CERN Multimedia

    1977-01-01

    Four electronic detectors complementing Gargamelle were installed in 1977, among them the external muon identifier (EMI), consisting of two arrays of multiwire proportional chambers separated by an iron wall (see Annual Report 1977 p. 84). The photo shows the control room close to the West Gargamelle Hall (Bld. 185).

  20. CMS Control Room during early morning collisions at 2.36 TeV.

    CERN Multimedia

    Richard Breedon (CMS)

    2009-01-01

    CMS recorded around 15000 collisions at 2.36 TeV with the whole detector operational, including the inner silicon systems (strips and pixels). A relatively quiet control room was still witness to excitement during the first online event displays of the collisions.

  1. Psychological factors of professional success of nuclear power plant main control room operators

    Directory of Open Access Journals (Sweden)

    Kosenkov A.A.

    2014-12-01

    Full Text Available Aim: to conduct a comparative analysis of the psychological characteristics of the most and least successful main control room operators. Material and Methods. Two NPP staff groups: the most and least successful main control room operators, who worked in routine operating conditions, were surveyed. Expert evaluation method has been applied to identify the groups. The subjects were administered the Minnesota Multiphasic Personality Inventory (MMPI, Cattell's Sixteen Personality Factor Questionnaire (16PF form A and Raven's Progressive Matrices test. Results. Numerous significant psychological differences between the groups of most and least successful control room operators were obtained: the best operators were significantly more introverted and correctly solved more logical tasks with smaller percentage of mistakes under time pressure than worst ones. Conclusions: 1. The psychodiagnostic methods used in the study were adequate to meet research objective 2. Tendency to introversion, as well as developed the ability to solve logic problems undertime pressure, apparently, are important professional qualities for control room operators. These indicators should be considered in the process of psychological selection and professional guidance of nuclear power plant operators.

  2. Task analysis of nuclear-power-plant control-room crews: project approach methodology

    International Nuclear Information System (INIS)

    A task analysis of nuclear-power-plant control-room crews was performed by General Physics Corporation and BioTechnology, Inc., for the Office of Nuclear Regulatory Research. The task-analysis methodology used in the project is discussed and compared to traditional task-analysis and job-analysis methods. The objective of the project was to conduct a crew task analysis that would provide data for evaluating six areas: (1) human-engineering design of control rooms and retrofitting of current control rooms; (2) the numbers and types of control-room operators needed with requisite skills and knowledge; (3) operator qualification and training requirements; (4) normal, off-normal, and emergency operating procedures; (5) job-performance aids; and (6) communications. The data-collection approach focused on a generic structural framework for assembling the multitude of task data that were observed. The results of the data-collection effort were compiled in a coputerized task database. Six demonstrations for suitability analysis were subsequently conducted in each of the above areas and are described in this report

  3. 75 FR 56972 - Pipeline Safety: Control Room Management/Human Factors

    Science.gov (United States)

    2010-09-17

    ... Safety: Control Room Management/Human Factors AGENCY: Pipeline and Hazardous Materials Safety... Management/Human Factors final rule in the Federal Register on December 3, 2009, which became effective on... December 3, 2009, a final rule in the Federal Register (74 FR 63310) titled: ``Pipeline Safety:...

  4. Design of nuclear power plant control rooms: some findings and possible improvements

    International Nuclear Information System (INIS)

    Major findings are described of a study on the present status and possible improvements in the design of nuclear power plant control rooms according to ergonomic principles and criteria. The findings have been acquired by observing the performance of control room operators, by interviewing operators and management personnel, and by analysing major characteristics of the man-machine interface. The methods currently used for developing and designing control rooms have also been examined. The results of the study indicate that there is a growing awareness and consideration of physical factors affecting performance. More attention should be paid to the essential cognitive characteristics of work in the control room with the aim of avoiding unnecessary hindrances and possible errors. Examples are given of some of these problems, and approaches, ways and means for solving or mitigating them are indicated. A more deliberate consideration of factors affecting operator performance and reliability is suggested, based on a systems ergonomics approach. Analyses of critical tasks would be a major feature of this approach. Its main objective is to ensure that operators are able to carry out their tasks reliably. (author)

  5. Use of control room simulators for training of nuclear power plant personnel

    International Nuclear Information System (INIS)

    Safety analysis and operational experience consistently indicate that human error is the greatest contributor to the risk of a severe accident in a nuclear power plant. Subsequent to the Three Mile Island accident, major changes were made internationally in reducing the potential for human error through improved procedures, information presentation, and training of operators. The use of full scope simulators in the training of operators is an essential element of these efforts to reduce human error. The operators today spend a large fraction of their time training and retraining on the simulator. As indicated in the IAEA Safety Guide on Recruitment, Qualification and Training of Personnel for Nuclear Power Plants, NS-G-2.8, 2002, representative simulator facilities should be used for training of control room operators and shift supervisors. Simulator training should incorporate normal, abnormal and accident conditions. The ability of the simulator to closely represent the actual conditions and environment that would be experienced in a real situation is critical to the value of the training received. The objective of this report is to provide nuclear power plant (NPP) managers, training centre managers and personnel involved with control room simulator training with practical information they can use to improve the performance of their personnel. While the emphasis in this publication is on simulator training of control room personnel using full scope simulators, information is also provided on how organizations have effectively used control room simulators for training of other NPP personnel, including simulators other than full-scope simulators

  6. Human factors challenges for advanced process control

    International Nuclear Information System (INIS)

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls

  7. Nuplex 80+ - advanced instrumentation and control

    International Nuclear Information System (INIS)

    Nuplex 80+ is an advanced control complex designed by ABB Combustion Engineering (ABB C-E) to meet the demanding human factors, reliability, and licensing requirements of nuclear power generating stations. It is characterized by distributed digital processing, fiber-optic data communications, and touch-sensitive video displays. This advanced design was originally developed for System 80+ [ABB C-E's evolutionary advanced light water reactor (ALWR)], but its utilization of sound human factors principles and modern digital technology has also resulted in the selection of Nuplex 80+ for use in the US Department of Energy's New Production Reactor Program. This paper offers an overview of Nuplex 80+ and some insight into the Design Certification licensing process and key issues of the US Nuclear Regulatory Commission (NRC) review

  8. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  9. Virtual Visit to the ATLAS Control Room by various towns in Uruguay

    CERN Multimedia

    2013-01-01

    Anilla Cultural Latinoamérica – Europa in Uruguay is a venture between ANEP, CES and UDELAR. In its line of action of scientific and technological culture they contact CERN for an open dialogue to divulge science, led to its teachers and students. The virtual "visit" of Uruguay at CERN is done from multiple video conferencing rooms in the country through the Uruguayan Academic Network. On 28th May six towns in Uruguay will be connected to the ATLAS Control Room: Montevideo, Maldonado, Rocha, Tacuarembó, Salto and Rivera.

  10. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    International Nuclear Information System (INIS)

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance

  11. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  12. Human factors assessment of digital monitoring systems for nuclear power plants control room

    International Nuclear Information System (INIS)

    Most nuclear power plant control room systems are controlled by human operators. These operators are one of the several factors that can either degrade or improve power plant operations. The operator is an active element of an overall plant control system. A major safety and operational concern is that of monitoring a wrong display, either through misidentification, incorrect display type or by accident. The success that the operator will have, naturally depends on the availability of well presented information. To provide an effective control room man-machine interface, this paper presents a human factors analysis on digital display systems for nuclear safety and non-safety-related systems. The new instrumentation would replace existing conventional analog monitoring systems

  13. A work process and information flow description of control room operations

    International Nuclear Information System (INIS)

    The control room workplace is the location from which all plant operations are supervised and controlled on a shift-to-shift basis. The activities comprising plant operations are structured into a number of work processes, and information is the common currency that is used to convey work requirements, communicate business and operating decisions, specify work practice, and describe the ongoing plant and work status. This paper describes the motivation for and early experience with developing a work process and information flow model of CANDU control room operations, and discusses some of the insights developed from model examination that suggest ways in which changes in control centre work specification, organization of resources, or asset layout could be undertaken to achieve operational improvements. (author)

  14. MULTI - TRACER CONTROL ROOM AIR INLEAKAGE PROTOCOL AND SIMULATED PRIMARY AND EXTENDED MULTI - ZONE RESULTS

    International Nuclear Information System (INIS)

    The perfluorocarbon tracer (PFT) technology can be applied simultaneously to the wide range in zonal flowrates (from tens of cfms in some Control Rooms to almost 1,000,000 cfm in Turbine Buildings), to achieve the necessary uniform tagging for subsequent determination of the desired air inleakage and outleakage from all zones surrounding a plant's Control Room (CR). New types of PFT sources (Mega sources) were devised and tested to handle the unusually large flowrates in a number of HVAC zones in power stations. A review of the plans of a particular nuclear power plant and subsequent simulations of the tagging and sampling results confirm that the technology can provide the necessary concentration measurement data to allow the important ventilation pathways involving the Control Room and its air flow communications with all adjacent zones to be quantitatively determined with minimal uncertainty. Depending on need, a simple single or 3-zone scheme (involving the Control Room alone or along with the Aux. Bldg. and Turbine Bldg.) or a more complex test involving up to 7 zones simultaneously can be accommodated with the current revisions to the technology; to test all the possible flow pathways, several different combinations of up to 7 zones would need to be run. The potential exists that for an appropriate investment, in about 2 years, it would be possible to completely evaluate an entire power plant in a single extended multizone test with up to 12 to 13 separate HVAC zones. With multiple samplers in the Control Room near each of the contiguous zones, not only will the prevalent inleakage or outleakage zones be documented, but the particular location of the pathway's room of ingress can be identified. The suggested protocol is to perform a 3-zone test involving the Control Room, Aux. Bldg., and Turbine Bldg. to (1) verify CR total inleakage and (2) proportion that inleakage to distinguish that from the other 2 major buildings and any remaining untagged locations

  15. Technical and regulatory challenges for digital instrumentation and control and control room systems in nuclear plants

    International Nuclear Information System (INIS)

    There are several unsettled technical and licensing issues in the areas of instrumentation and control (I and C), human factors, and updated control room designs that need coordinated, proactive industry attention. Some of these issues are already causing protracted regulatory reviews for existing plants, and left untreated, may cause substantial delays and increased costs for new plant combined construction and operating license approvals. Both industry and the NRC will have roles in resolving the key issues and addressing them in future design efforts and regulatory reviews. Where action is needed, the industry will want to minimize costs and risks by defining industry consensus solutions with corresponding technical bases. NEI has formed a working group to coordinate industry efforts and communications with NRC staff. The working group will also help determine priorities and coordinate both new and existing plant resources. EPRI will provide technical input and guidance for the working group. In order to be able to conduct reviews in a timely fashion, the NRC will likely need to enhance and expand staff resources as existing plants are upgraded and new plant reviews become more active. The industry initiative began with a workshop sponsored by EPRI and NEI on March 28-29, 2006, which led to the creation of the NEI working group. The working group has now identified and prioritized important generic issues, established resolution paths and schedules, and identified the roles of various stakeholders including utility companies, EPRI, NEI, vendors and the NRC. Through the course of this initiative I and C issues for both existing and new plants are being addressed. This paper describes the key I and C related technical and regulatory issues and their implications for new and operating plants, and provides a status report on the efforts to resolve them. (authors)

  16. Recent Advances in Iterative Learning Control

    Institute of Scientific and Technical Information of China (English)

    Jian-Xin XU

    2005-01-01

    In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC), and 3) nonlinear ILC for general nonlinear processes. For linear processes, we focus on several basic configurations of linear ILC. For nonlinear processes with linear ILC, we concentrate on the design and transient analysis which were overlooked and missing for a long period. For general classes of nonlinear processes, we demonstrate nonlinear ILC methods based on Lyapunov theory, which is evolving into a new control paradigm.

  17. Space Testing of the Advanced Instrument Controller

    OpenAIRE

    Goforth, Todd; Cannon, Scott; Lyke, James

    1999-01-01

    An extremely compact, low-power instrument controller and data processor system has been developed for space-based applications. Known as the Advanced Instrument Controller (AIC), this hybrid device contains both digital and analog components in a package less than 5 grams in weight and 2 x 3 em in size. Based on the Intel 8031151 microprocessor and implementing a superset of the 8051 instruction set, the AIC supports l28k of SRAM, 128k of EEPROM, four 8-bit parallel ports, six serial communi...

  18. Analysis results for the stereotypes regarding colors applied to the nuclear power plant control room

    International Nuclear Information System (INIS)

    The general public not engaged in the nuclear power plant industry have no idea of the color usage in the nuclear control room. So we converted the specific color usage situation into similar but general situations. In questionnaire, we gave subjects the general situation where color coding is applied and alternative colors which were applied to the HF010 guidelines. And we asked the subjects to choose the colors proper to the situation and to rank the colors according to the degree of suitability. Two hundred fifty college students participated in the experiment. The results suggest that we can use any color coding system in the conventional control room and the CRT in the control deck because most people have no special previous color-meaning association but red-emergency relation

  19. Virtual Visit to the ATLAS Control Room by the Frankfurt Book Fair

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    The Frankfurt book fair is the largest of its kind in Germany, attracting about 300,000 visitors during five days. CERN will be present with a large stand, incorporating a virtual LHC control centre, a table featuring books on CERN for the general public, an interactive LHC tunnel and a presentation stage. Every 2 hours, a CERN physicist will give a short presentation on CERN and LHC physics, which includes a live link to the control rooms of ATLAS or CMS, or the CERN control room. This will give visitors of the book fair the opportunity to ask questions about the LHC, the LHC experiments, Higgs particles or anything else they would like to know. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Frankfurt-2012.html

  20. Control definition study for advanced vehicles

    Science.gov (United States)

    Lapins, M.; Martorella, R. P.; Klein, R. W.; Meyer, R. C.; Sturm, M. J.

    1983-01-01

    The low speed, high angle of attack flight mechanics of an advanced, canard-configured, supersonic tactical aircraft designed with moderate longitudinal relaxed static stability (Static Margin, SM = 16% C sub W at M = 0.4) was investigated. Control laws were developed for the longitudinal axis (""G'' or maneuver and angle of attack command systems) and for the lateral/directional axes. The performance of these control laws was examined in engineering simulation. A canard deflection/rate requirement study was performed as part of the ""G'' command law evaluation at low angles of attack. Simulated coupled maneuvers revealed the need for command limiters in all three aircraft axes to prevent departure from controlled flight. When modified with command/maneuver limiters, the control laws were shown to be adequate to prevent aircraft departure during aggressive air combat maneuvering.

  1. Design And Implementation Of Smart Living Room Wireless Control For Safety Purpose

    Directory of Open Access Journals (Sweden)

    Aeindra Myint Lwin

    2015-07-01

    Full Text Available Abstract This research presents the microcontroller controlled smart living room system using Bluetooth wireless technology from mobile phone.An android apk is created in mobile for controlling the living room system. A 16F877A microcontroller is interfaced serially to a bluetooth module transceiver. It is used for controlling fan speed control dim light control lighting ONOFF and window angle control. An arduino controller is used for keypad control door security. It is connected to DC motor control circuit and switching circuit for opening and closing of the door keypad for entering password and serial LCD for displaying the update status of the door.User can control the home appliances by using bluetooth connection from mobile phone in its range. User can adjust the dim light fan speed window angle and light bulbs from android apk. An internal EEPROM is built in 16F877A microcontroller and it stores the last requested data of the appliances. If userwants to recover the former conditions of the appliances he can recall them from android apk.

  2. Control room design and human factors using a virtual reality based tool for design, test and training

    International Nuclear Information System (INIS)

    This report describes a user-centred approach to control room design adopted by IFE for the nuclear industry. The novelty of this approach is the development of a Control Room Philosophy, and the use of Virtual Reality (VR) technology as a tool in the design process, integrated with a specially developed Design Documentation System (DDS) and a process display prototyping tool PICASSO-3. The control room philosophy identifies all functional aspects of a control centre, to define the baseline principles and guidelines for the design. The use of VR technology enables end-users of the control room design (e.g. control room operators) to specify their preferred design of the new control room, and to replace the need for a physical mock-up to test and evaluate the proposed design. The DDS, integrated with the VR design tool, guides the control room operators, through a structured approach, to document the proposed design in a complete design specification. The VR tool, specially developed by IFE, is called the VR based Design, Test and Training tool (VR DTandT). It is not only intended to visualise the design, but also to test and evaluate the design. When the design is implemented, the same model is re-used as a VR based training simulator for operators. A special feature in the VR DTandT tool is that the verification and validation (VandV) tests, concerning human factors, are according to the regulative standards for nuclear control rooms

  3. Anthropometric Considerations in the Modernized Main Control Room: Application to a Virtual Nuclear Power Plant Control Panel

    International Nuclear Information System (INIS)

    This study investigates the anthropometric considerations in the main control room (MCR) application to a virtual nuclear power plant (NPP) control panel. Influences of working postures and physical demands on the operational performance are also discussed. Finally, the present research provides a case example to illustrate the influences of anthropometric considerations on the control panel design for MCR operators by applying virtual reality (VR) technology. The MCR design primarily evolved in different countries. The datasets available is usually insufficient or inconsistent for the end users. To solve the upper mentioned problem, this study put emphasis on applying VR technology to anthropometric considerations support control panel design in the modernized MCR. Although the concept of applying VR technology on anthropometric considerations in this paper is related to the MCR in NPPs, it could be easily applied for the purposes of any type of control room in a similar manner

  4. Human factors inspection of current control room panel in Jose Cabrera NPP

    International Nuclear Information System (INIS)

    Within the process of renewal of Exploitation Permit of Jose Cabrera Nuclear Power Plant, UNION FENOSA GENERACIO, S. A. (UFG) has carried out an analysis and evaluation project regarding human factors implications of current control room panel arrangement. The project has been developed in two phases. In the first phase, leaded by EPRI and carried out by experts from SAIC, an independent review from a double viewpoint of human reliability and human factors was developed. In the second phase, a multidisciplinary team (composed by human factors, risk analysis, operation, engineering, training and instrumentation and controls experts) has developed a study on human factors implications of current panel arrangement, following the methodology pointed out in NUREG-0711. The project has been developed under the direction of Brookhaven National Laboratory (BNL), organisation that has authored the aforementioned methodology, with the participation of UFG and SOLUZIONA Ingenieria. For the development of the second study the following steps were taken: Firstly, the potential effects of panel arrangement on crew performance were identified its real evidence was analysed and the goals for the improvement of control room operation were established; following NUREG-0711. After this, several design alternatives that addressed these goals were identified and were analysed along three dimensions: human factors, risk analysis and economic costs. Finally the results of these evaluations were combined using a multi-attribute decision method to arrive at a recommended alternative as he best proposal to incorporate human factors criteria and good practices in the design of control room panels. (Author)

  5. Task analysis of nuclear-power-plant control-room crews

    International Nuclear Information System (INIS)

    A task analysis of nuclear-power-plant control-room crews was performed by General Physics Corporation and BioTechnology, Inc., for the Office of Nuclear Regulatory Research. The task analysis methodology used in the project is discussed and compared to traditional task-analysis and job-analysis methods. The objective of the project was to conduct a crew task analysis that would provide data for evaluating six areas: (1) human engineering design of control rooms and retrofitting of current control roooms, (2) the numbers and types of control room operators needed with requisite skills and knowledge, (3) operator qualification and training requirements, (4) normal, off-normal, and emergency operating procedures, (5) job performance aids, and (6) communications. The data collection approach focused on a generic structural framework for assembling the multitude of task data that were observed. The results of the data-collection effort were compiled in a computerized task database. Results including a description of the computerized task analysis data format

  6. Guidelines for the modernization of nuclear power plant control room and human-system interfaces

    International Nuclear Information System (INIS)

    Several nuclear power plants are implementing instrumentation and control (I and C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance, while maintaining high levels of safety. As an integral part of the I and C modernization program, the control room and other human-system interfaces (HSIs) are also being modernized. Utilities identified the need for guidance for control rooms and HSIs to support and improve personnel performance, reduce the likelihood of human errors, increase the productivity of the plant, and take effective advantage of the benefits that can be achieved with the new technology being implemented. A project, initially jointly funded by the Electric Power Research Inst. (EPRI) and the U.S. Dept. of Energy (US DOE) and later by EPRI alone, has developed guidance that will facilitate planning, specification, design, implementation, operations, maintenance, training, and licensing activities for control rooms and HSIs. Although this guidance was developed for modernization of operating plants, most of the guidelines apply to new plants as well. (authors)

  7. Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature

    International Nuclear Information System (INIS)

    The control of magnetic properties by means of an electric field is an important aspect in magnetism and magnetoelectronics. We here utilize magnetoelastic coupling in ferromagnetic/piezoelectric hybrids to realize a voltage control of magnetization orientation at room temperature. The samples consist of polycrystalline nickel thin films evaporated onto piezoelectric actuators. The magnetic properties of these multifunctional hybrids are investigated at room temperature as a function of the voltage controlled stress exerted by the actuator on the Ni film. Ferromagnetic resonance spectroscopy shows that the magnetic easy axis in the Ni film plane is rotated by 90 deg. upon changing the polarity of the voltage Vp applied to the actuator. In other words, the in-plane uniaxial magnetic anisotropy of the Ni film can be inverted via the application of an appropriate voltage Vp. Using superconducting quantum interference device (SQUID) magnetometry, the evolution of the magnetization vector is recorded as a function of Vp and of the external magnetic field. Changing Vp allows to reversibly adjust the magnetization orientation in the Ni film plane within a range of approximately 70 deg. All magnetometry data can be quantitatively understood in terms of the magnetic free energy determined from the ferromagnetic resonance experiments. These results demonstrate that magnetoelastic coupling in hybrid structures is indeed a viable option to control magnetization orientation in technologically relevant ferromagnetic thin films at room temperature.

  8. Low frequency sound field control in rectangular listening rooms using CABS (Controlled Acoustic Bass System) will also reduce sound transmission to neighbor rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2011-01-01

    Sound reproduction is often taking place in small and medium sized rectangular rooms. As rectangular rooms have 3 pairs of parallel walls the reflections at especially low frequencies will cause up to 30 dB spatial variations of the sound pressure level in the room. This will take place not only ...

  9. Ergonomics in the licensing and evaluation of nuclear reactors control room; A ergonomia no licenciamento e na avaliacao de salas de controle de reatores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac Jose Antonio Luquetti dos [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Vidal, Mario Cesar Rodriguez [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia de Producao

    2002-07-01

    A nuclear control room is a complex system that controls a thermodynamic process used to produce electrical energy. The operators interact with the control room through interfaces that have significant implications to nuclear plant safety and influence the operator activity. The TMI (Three Mile Island) accident demonstrated that only the anthropometric aspects were not enough for an adequate nuclear control room design. The studies showed that the accident was aggravated because the designers had not considered adequately human factor aspects. After TMI accident, the designers introduce in the nuclear control room development only human factors standards and human factors guidelines. The ergonomics approaches was not considered. Our objective is introduce in nuclear control room design and nuclear control room evaluation, a methodology that. includes human factors standards, human factors guidelines and ergonomic approaches, the operator activity analysis. (author)

  10. EXTRAN: A computer code for estimating concentrations of toxic substances at control room air intakes

    International Nuclear Information System (INIS)

    This report presents the NRC staff with a tool for assessing the potential effects of accidental releases of radioactive materials and toxic substances on habitability of nuclear facility control rooms. The tool is a computer code that estimates concentrations at nuclear facility control room air intakes given information about the release and the environmental conditions. The name of the computer code is EXTRAN. EXTRAN combines procedures for estimating the amount of airborne material, a Gaussian puff dispersion model, and the most recent algorithms for estimating diffusion coefficients in building wakes. It is a modular computer code, written in FORTRAN-77, that runs on personal computers. It uses a math coprocessor, if present, but does not require one. Code output may be directed to a printer or disk files. 25 refs., 8 figs., 4 tabs

  11. The design process and the use of computerized tools in control room design

    International Nuclear Information System (INIS)

    Control room design has proven an important component when the safety and availability of a complex industrial process plant are considered. Many control room deficiencies can be traced back to oversights and other errors during the design process. The introduction of powerful computers and software for computer-aided design (CAD) offers one possibility when tools for improving the quality of design are being selected. The report gives a broad assessment of problems of design and the benefits of using computer-aided design. One proposal for a structure of a computer-aided design system is considered in more detail. In this system special emphasis has been laid on dealing with requirements during design process. A demonstration system has been built and sample system user dialogues are described. The report is the final report of the LIT3.1 project of the Nordic cooperation on human reliability in the energy production field. (author)

  12. Team interaction skills evaluation criteria for nuclear power plant control room operators

    International Nuclear Information System (INIS)

    This paper reports on previous research which has shown the value of good team interaction skills to group performance, yet little progress has been made in measuring such skills. Dimensions of team interaction skills developed in an earlier study were extensively revised and cast into a Behaviorally anchored Rating scales (BARS) and a Behavioral Frequency scale format. Rating data were collected using training instructors at a nuclear plant, who rated videotape scenarios of control room performance and later rated control room crews during requalification training. High levels of interrater agreement on both rating scales was, although the hypothesized factor structure did not emerge. Analysis of ratings of the videotapes using Cronbach's components of accuracy indicted that BARS ratings generally exhibited less error than did the Behavioral Frequency ratings. This paper discusses results in terms of both field and research implications

  13. Virtual reality verification of workplace design guidelines for the process plant control room

    International Nuclear Information System (INIS)

    Early identification of potential human factors guideline-violations and corrective input into the design process is desired for efficient and cost-effective control room design. Virtual reality (VR) technology makes it possible to perform evaluation of the design of the control room at an early stage of the design process, but can we trust the results from such evaluations? This paper describes an experimental validation of a VR model against the real world in five different guideline verification tasks. Results indicate that guideline verification in the VR model can be done with satisfactory accuracy for a number of evaluations. However, some guideline categories require further development of measurement tools and use of a model with higher resolution than the model used in this study. (Author). 30 refs., 4 figs., 1 tab

  14. Virtual Visit to the ATLAS Control Room by the University of Bern

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    Fresher's day for potential future bachelor students Infotage für Studieninteressierte Bachelor Once a year the University of Bern organizes two information days for young potential future bachelor students. Young aspiring candidates interested in a career in physics will be shown the forefront of physics research, where a trip around the university physics laboratories, and a direct video link to the ATLAS Control room at CERN's Large Hadron Collider is part of the program. A physicist from Bern will present directly from the ATLAS control room for a direct and personal view into the physics at the LHC, the Higgs particle, the generation of mass, antimatter, the origin of the universe and the involvement of the Bern high-energy physics team in the ATLAS experiment. This also allows for fruitful discussions about their own perspectives of perhaps becoming a CERN physicist one day. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Bern-2012.html

  15. Advanced control design for hybrid turboelectric vehicle

    Science.gov (United States)

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.

    1995-08-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  16. Using Shared Priorities to Support Training of Nuclear Power Plant Control Room Crews

    OpenAIRE

    Ekström, Ellen

    2015-01-01

    Swedish nuclear power plant control room crews have training sessions in full scope simulators every year. These sessions are designed to prepare operators to cope with incidents and accidents. The aim is to develop operators’ knowledge, skills and abilities necessary to operate the nuclear power plant in a safe manner. Training sessions is an opportunity to practice and develop the crews’ teamwork, decision processes and working strategies. The purpose of this study was to explore if and how...

  17. Designating Smoking Room to Control Environmental Tobacco Smoke in Nursing Homes

    OpenAIRE

    Farhang Akbar-Khanzadeh; Samuel H. Windom; Farideh Golbabaei

    2011-01-01

    This study was initiated to assess the effectiveness of designating smoking rooms to control environmental tobacco smoke in nursing homes. Of the 39 nursing homes located in Toledo (a city in Ohio, USA) included in the preliminary survey, 33 facilities (85%) allowed smoking, 14 facilities (36%) allowed indoor smoking, and 13 facilities (33%) provided a designated smoking area. Three of these 13 nursing homes with similar levels of care agreed to participate in study that was more comprehensiv...

  18. AIR CONDITIONING IN OPERATING ROOMS AND INFECTION CONTROL – A REVIEW

    OpenAIRE

    May Socorro Martinez Afonso; Adenicia Custodia Silva e Souza; Anaclara Ferreira Veiga Tipple; Eliene Aparecida Machado; Eliane Alves Lucas

    2006-01-01

    ABSTRACT: This bibliographic survey in data banks such as MEDLINE, LILACS, SCIELO, Ministry of Health, among others aims at identifying what makes air conditioners a source of environmental contamination. The air is contaminated by particles which transport microorganisms. The sources of particles include patients and surgical staff. The control of the temperature, relative humidity, pressure, number of changes of air accomplished per hour, clothes, traffic, number of people in the rooms, mai...

  19. Ground control ramifications and economic impact of retreat mining on room and pillar coal mines

    OpenAIRE

    Kumar, Arun

    1986-01-01

    As the coal reserves at shallow depths become exhausted companies have to develop deeper deposits and increase percentage extraction to maintain production levels. Total extraction for room and pillar mines can only be achieved by pillar extraction. The unsupported roof increases during pillar extraction and hence the cost of ground control also increases. Nevertheless, pillar extraction where possible has many potential advantages such as decreased operating cost, inc...

  20. JPL Advanced Thermal Control Technology Roadmap - 2008

    Science.gov (United States)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  1. Discussions related to the modernization process of control rooms, reactor operator performance and three training programmes

    International Nuclear Information System (INIS)

    In the past, nuclear plants had commonly looked at 'like-for-like' replacements when they start defining modernisation of old systems. That is, plants just implement the same functionality and capability of the old system with new technology. At the most, some simple interface or other minor changes may be made. In this paper we discuss the most important aspects related to the modernization of control rooms, comparing their technologies, human factors and errors. In that sense, to support safe and effective operation, it is critical to specify, design, implement, operate, and maintain, as well as train and retrain operators for, the control room and HIS changes to take advantage of human cognitive processing abilities and reduce the likelihood of human errors. Therefore, it is important to look at and take advantage of the improvements that modern, digital technology can bring now and in the foreseeable future. Finally, we also discuss some aspects related to the turnover of operation skilled people from Angra-1, Westinghouse design, to Angra-2, Siemens/KWU design and the crew perspective for Angra-3, Siemens/KWU digital control room design. (author)

  2. Infrared thermography evaluation from the back region of healthy horses in controlled temperature room

    Directory of Open Access Journals (Sweden)

    Mariana Pavelski

    2015-07-01

    Full Text Available The infrared thermography is a diagnostic imaging tool, which measures the surface temperature of an object through its heat emission. It is a non-invasive method, painless, with no involvement of radiation. Horses have elevated incidence of back injuries which causes decrease in their performance. A rapid and accurate diagnostic is essential to start the treatment. The aim of this paper was to establish the ideal time to the animal stay e inside a controlled room to balance their temperature and in the second time verify the thermographic temperature of specific back regions. It was studied fifteen healthy horses, being performed thermography of thoracic, lumbar and pelvic regions in four different times. There was a significant difference between the thermography performed outside and inside of the controlled temperature room. It was concluded that the ideal time to the horse stay into the controlled temperature room was thirty minutes and the mean thermographic temperatures of back regions, were obtained and can be used as parameters to identify injuries in other horses.

  3. Advances in dynamical systems and control

    CERN Document Server

    Zgurovsky, Mikhail

    2016-01-01

    Focused on recent advances, this book covers theoretical foundations as well as various applications. It presents modern mathematical modeling approaches to the qualitative and numerical analysis of solutions for complex engineering problems in physics, mechanics, biochemistry, geophysics, biology and climatology. Contributions by an international team of respected authors bridge the gap between abstract mathematical approaches, such as applied methods of modern analysis, algebra, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. As such, the book will be of interest to mathematicians and engineers working at the interface of these fields. .

  4. Changes in control room at Swedish nuclear power plants; Kontrollrumsfoeraendringar vid svenska kaernkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Kecklund, Lena [MTO Psykologi, Huddinge (Sweden)

    2005-09-15

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  5. Human factor engineering based design and modernization of control rooms with new I and C systems

    International Nuclear Information System (INIS)

    Instrumentation and Control (I and C) systems of the latest nuclear power plants are based on the use of digital technology, distributed control systems and the integration of information in data networks (Distributed Control and Instrumentation Systems). This has a repercussion on Control Rooms (CRs), where the operations and monitoring interfaces correspond to these systems. These technologies are also used in modernizing I and C systems in currently operative nuclear power plants. The new interfaces provide additional capabilities for operation and supervision, as well as a high degree of flexibility, versatility and reliability. An example of this is the implementation of solutions such as compact stations, high level supervision screens, overview displays, computerized procedures, new operational support systems or intelligent alarms processing systems in the modernized Man-Machine Interface (MMI). These changes in the MMI are accompanied by newly added Software (SW) controls and new solutions in automation. Tecnatom has been leading various projects in this area for several years, both in Asian countries and in the United States, using in all cases international standards from which Tecnatom own methodologies have been developed and optimized. The experience acquired in applying this methodology to the design of new control rooms is to a large extent applicable also to the modernization of current control rooms. An adequate design of the interface between the operator and the systems will facilitate safe operation, contribute to the prompt identification of problems and help in the distribution of tasks and communications between the different members of the operating shift. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (authors)

  6. Advances in room-temperature solid-state gamma-ray spectrometry

    International Nuclear Information System (INIS)

    This article presents a review and analysis of different concepts of gamma-ray spectrometry using room-temperature solid-state detectors. The classical approach involving the use of a charge-sensitive preamplifier and attempting to collect all the ionization charge produced by the gamma ray is analyzed and discussed in terms of the charge transport parameters of the most promising compound semiconductor materials. It is concluded that compound semiconductor detector materials having a large disparity between the μ tau products for electrons and holes (such as HgI2 and CdTe) will have rather poor energy resolution if the classical method of spectrometry requiring full charge collection is employed. 30 references

  7. Comparison of the inspection practices in relation to the control room operator and shift supervisor licenses

    International Nuclear Information System (INIS)

    The CNRA believes that safety inspections are a major element in the regulatory authority's efforts to ensure the safe operation of nuclear facilities. Considering the importance of these issues, the Committee has established a special Working Group on Inspection Practices (WGIP). The purpose of WGIP, is to facilitate the exchange of information and experience related to regulatory safety inspections between CNRA Member countries In 1996, members of WGIP discussed various ways in which regulatory inspectors look at and evaluate how licenses are given to control room operators and shift supervisors in the Member countries. As a result of these discussions it was proposed to put together a short comparison report on this issue. The CNRA approved work on this at its annual meeting that year. This CNRA/WGIP study concentrates on the regulatory inspection of control room operator competence and authorisation. As noted in the text, fourteen Member countries supplied input by responding to the questionnaire. This report presents a comparison of inspection practices in participating OECD countries relating to control room operator and shift supervisor licenses. The report has been derived from answers to a questionnaire on the basis of guidance given in Appendix 1.1 with the detailed answers being given in Appendix 1. Key questions for this comparison were 'What are the regulatory or licensee requirements for holding and up-keeping a license or authorisation' and 'How does the regulatory body inspect the training and competence of shift teams and individual operators'. The main conclusion from the comparison is that the general practice within the participating countries for ensuring the competence of operators is broadly similar although regulatory practices differ markedly. For example, the regulatory bodies in some countries are actively involved in the examination and licensing process of individual operators whereas other regulatory bodies

  8. Cognitive requirements in the redesign of a TRIGA RC-1 control room: The role of the operators' evaluations

    International Nuclear Information System (INIS)

    When a control room undergoes to a redesign process it is of crucial importance to analyze how operators critically review it and which improvements they suggest. This is even more critical when presumably the same people will operate in the new 'redesigned' control room: Consistency in the mental models possessed by the operators of the plant functions and of their control should be emphasized. Consistency in the mental models can be assumed when redesign follows well-established guidelines drawn from experiences and studies carried out in very similar situations. However, this condition is not fulfilled when a nuclear research control room has to be redesigned, since available guidelines (e.g.; NUREG-0700) are based on studies conducted on nuclear power plant control rooms. These two types of facilities are of much difference as for activities performed in the control room, goals to be aimed at, costs and risks. As a consequence, the available guidelines cannot be safely applied to such a situation as the redesign of a TRIGA RC-1 control room. So, data have to be collected in order to allow the operators to efficiently and easily adapt to the new control room by consistently 'updating' their mental models. In the present study, these data have been collected through structured interviews, which consisted of a modified version of EPRI. The results can be summarized as follows: 1) The operators critically reviewed the present control room and underlined the lack of 'transparency' of the control system as for the plant's conditions and for the feedbacks about their own activities. 2) The operators' work analysis showed that they spend much of their time out of the control room. This means that, if the operators have to stay in the control room, they should be allowed to perform more and higher-level activities than those presently required, to prevent understimulation. So, the redesign should or allow and support the central control and maintenance, and other

  9. Advanced Wavefront Sensing and Control Testbed (AWCT)

    Science.gov (United States)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  10. Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Qin-Tao; LI Zhi-Gang; XIE Qiao-Ling; GONG Jin-Long; ZHU De-Zhang

    2009-01-01

    Controlled evolution of silicon nanocone arrays induced by Ar+ sputtering at room temperature, using the coating carbon as a mask, is demonstrated. The investigation of scanning electron microscopy indicates that the morphology of silicon nanostructures can be controlled by adjusting the thickness of the coating carbon film.Increasing the thickness of the coating carbon film from 50-6Onm, 250-300nm and 750-800nm to 150Onm, the morphologies of silicon nanostructures are transformed from smooth surface ripple, coarse surface ripple and surface ripple with densely distributed nanocones to nanocone arrays with a high density of about 1 × 109-2 × 109 cm-2.

  11. Work Analysis of the nuclear power plant control room operators (II): The classes of situation

    International Nuclear Information System (INIS)

    This report presents a work analysis of nuclear power plant control room operators focused on the classes of situation they can meet during their job. Each class of situation is first described in terms of the process variables states. We then describe the goals of the operators and the variables they process in each class of situation. We report some of the most representative difficulties encountered by the operators in each class of situation. Finally, we conclude on different topics: the nature of the mental representations, the temporal dimension, the monitoring activity, and the role of the context in the work of controlling a nuclear power plant

  12. An EdF technical and ergonomic evaluation of control rooms for the new French PWRs

    International Nuclear Information System (INIS)

    Operational feedback and studies carried on by Electricite de France to improve safety and to identify main causes of unavailability demonstrated the important influence of human factors. For the new N4 pressurized water reactor series, it was decided in 1980 to start a study to review control room design and the architecture of the control-monitoring system in order to reduce human error probability and allow evolutions. The first N4 unit will be put into commercial operation in 1991. In this paper the the authors describe two periods: design principles' definition and related organization, and design validation and related methodology

  13. Limitation for performance of jobs in power unit control room of nuclear power plant

    International Nuclear Information System (INIS)

    The procedure is described for an analysis of the somatic and mental health condition of operating personnel in the unit control room of a nuclear power plant. It was divided into three stages, viz.: (1) determination of adverse and favorable effects of work; (2) the recording of social, psychological, physiological and biochemical changes in the personnel; (3) determination of possibilities of controlling the limit for performance of a job. The analysis showed that the problem is complex and should permanently remain in the centre of attention. (J.B.). 3 refs

  14. Development of the Advanced CANDU Reactor control centre

    International Nuclear Information System (INIS)

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  15. Development of the advanced CANDU reactor control centre

    International Nuclear Information System (INIS)

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  16. Pre-hospital advanced airway management by anaesthesiologists: Is there still room for improvement?

    Directory of Open Access Journals (Sweden)

    Søreide Eldar

    2008-07-01

    Full Text Available Abstract Background Endotracheal intubation is an important part of pre-hospital advanced life support that requires training and experience, and should only be performed by specially trained personnel. In Norway, anaesthesiologists serve as Helicopter Emergency Medical Service HEMS physicians. However, little is known about how they themselves evaluate the quality and safety of pre-hospital advanced airway management. Method Using a semi-structured questionnaire, we interviewed anaesthesiologists working in the three HEMS programs covering Western Norway. We compared answers from specialists and non-specialists as well as full- and part-time HEMS physicians. Results Of the 17 available respondents, most (88% felt that their continuous exposure to intubations was not sufficient. Additional training was mainly acquired through other clinical practice and mannequin- or cadaver-based skills training. Of the respondents, 77% and 35% reported having experienced difficult and failed intubations, respectively. Further, 59% reported knowledge of airway management-related deaths in their HEMS program. Significantly more full- than part-time HEMS physicians had experienced these problems. All respondents had airway back-up equipment in their service, but 29% were not familiar with all the equipment. Conclusion The majority of anaesthesiologists working as HEMS physicians view pre-hospital advanced airway management as a high-risk procedure. Relevant airway management competencies for HEMS physicians in Norway seem to be insufficiently trained and maintained. A better-defined level of competence with better training methods and systems seems warranted.

  17. Dislocation glide-controlled room-temperature plasticity in 6H-SiC single crystals

    International Nuclear Information System (INIS)

    In situ transmission electron microscopy observations of uniaxial compression of sub-300 nm diameter, cylindrical, single-crystalline 6H-SiC pillars oriented along 〈0001〉 and at 45° with respect to 〈0001〉 reveal that plastic slip occurs at room-temperature on the basal {0 0 0 1} planes at stresses above 7.8 GPa. Using a combination of aberration-corrected electron microscopy, molecular dynamics simulations and density functional theory calculations, we attribute the observed phenomenon to basal slip on the shuffle set along 〈11¯00〉. By comparing the experimentally measured yield stresses with the calculated values required for dislocation nucleation, we suggest that room-temperature plastic deformation in 6H-SiC crystals is controlled by glide rather than nucleation of dislocations

  18. Control console of the gamma calibration room; Consola de control de la Sala de Calibracion Gamma

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis P, A.E.; Romero G, M. [Instituto Nacional de Investigaciones Nucleares, Ingenieria Electronica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The Nuclear Centre of Mexico has a Ionizing Radiation Metrology Center (CMRI). This is in charge of the calibration in Mexico and Latin America of equipment dedicated to radiation measurement as industrial, medical as other fields. The importance to ensure that the equipment stay justly calibrated, it is imposed the necessity of automating the different rooms which the CMRI has. in this case it will be exposed the Calibration room for gamma radiation type. The operation of this application was carried out with the LabVIEW development platform and also in C language. The hardware associated is: personal computer with two cards using the 8255 device, 16 channels with optical isolation to manage input/output TTL type, 16 channels with optical isolation to management of charges to 127 V a.c., and 2 channels for 90V d.c. motors. (Author)

  19. Design of the control room of the N4-type PWR: main features and feedback operating experience

    International Nuclear Information System (INIS)

    This article presents the design, specificities and innovating features of the control room of the N4-type PWR. A brief description of control rooms of previous 900 MW and 1300 MW -type PWR allows us to assess the change. The design of the first control room dates back to 1972, at that time 2 considerations were taken into account: first the design has to be similar to that of control rooms for thermal plants because plant operators were satisfied with it and secondly the normal operating situation has to be privileged to the prejudice of accidental situations just as it was in a thermal plant. The turning point was the TMI accident that showed the weight of human factor in accidental situations in terms of pilot team, training, procedures and the ergonomics of the work station. The impact of TMI can be seen in the design of 1300 MW-type PWR. In the beginning of the eighties EDF decided to launch a study for a complete overhaul of the control room concept, the aim was to continue reducing the human factor risk and to provide a better quality of piloting the plant in any situation. The result is the control room of the N4-type PWR. Today the cumulated feedback experience of N4 control rooms represents more than 20 years over a wide range of situations from normal to incidental, a survey shows that the N4 design has fulfilled its aims. (A.C.)

  20. Prototyping Advanced Control Systems on FPGA

    Directory of Open Access Journals (Sweden)

    Simard Stéphane

    2009-01-01

    Full Text Available In advanced digital control and mechatronics, FPGA-based systems on a chip (SoCs promise to supplant older technologies, such as microcontrollers and DSPs. However, the tackling of FPGA technology by control specialists is complicated by the need for skilled hardware/software partitioning and design in order to match the performance requirements of more and more complex algorithms while minimizing cost. Currently, without adequate software support to provide a straightforward design flow, the amount of time and efforts required is prohibitive. In this paper, we discuss our choice, adaptation, and use of a rapid prototyping platform and design flow suitable for the design of on-chip motion controllers and other SoCs with a need for analog interfacing. The platform consists of a customized FPGA design for the Amirix AP1000 PCI FPGA board coupled with a multichannel analog I/O daughter card. The design flow uses Xilinx System Generator in Matlab/Simulink for system design and test, and Xilinx Platform Studio for SoC integration. This approach has been applied to the analysis, design, and hardware implementation of a vector controller for 3-phase AC induction motors. It also has contributed to the development of CMC's MEMS prototyping platform, now used by several Canadian laboratories.

  1. Controlled Acoustic Bass System (CABS) A Method to Achieve Uniform Sound Field Distribution at Low Frequencies in Rectangular Rooms

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2008-01-01

    The sound field produced by loudspeakers at low frequencies in small- and medium-size rectangular listening rooms is highly nonuniform due to the multiple reflections and diffractions of sound on the walls and different objects in the room. A new method, called controlled acoustic bass system (CABS...

  2. Control Technologies for Room Air-conditioner and Packaged Air-conditioner

    Science.gov (United States)

    Ito, Nobuhisa

    Trends of control technologies about air-conditioning machineries, especially room or packaged air conditioners, are presented in this paper. Multiple air conditioning systems for office buildings are mainly described as one application of the refrigeration cycle control technologies including sensors for thermal comfort and heating/ cooling loads are also described as one of the system control technologies. Inverter systems and related technologies for driving variable speed compressors are described in both case of including induction motors and brushless DC motors. Technologies for more accurate control to meet various kind of regulations such as ozone layer destruction, energy saving and global warming, and for eliminating harmonic distortion of power source current, as a typical EMC problem, will be urgently desired.

  3. New thinking for the boiler room.

    Science.gov (United States)

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction. PMID:18822819

  4. Advanced Emissions Control Development Program: Phase III

    Energy Technology Data Exchange (ETDEWEB)

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses - BH), and wet flue gas desulfurization systems (WFGD). Development work concentrated on the capture of trace metals, fine particulate, hydrogen chloride and hydrogen fluoride, with an emphasis on the control of mercury. The AECDP project is jointly funded by the US Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (OCDO), and Babcock and Wilcox, a McDermott company (B and W). This report discusses results of all three phases of the AECDP project with an emphasis on Phase III activities. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on characterization of the emissions of mercury and other air toxics and the control of these emissions for typical operating conditions of conventional flue gas clean-up equipment. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP's and baghouses do a good job of removing non-volatile trace metals, (2) particulate control devices (ESPs and baghouses) effectively remove the particulate-phase mercury, but the particulate-phase mercury was only a small fraction of the total for the coals tested, (3) wet scrubbing can effectively remove hydrogen chloride and hydrogen fluoride, and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however, for certain applications, system enhancements can be required to achieve

  5. Operator tracking system using particle filter for skill evaluation in nuclear power plant control room

    International Nuclear Information System (INIS)

    This article proposes an automated operator tracking system by the use of particle filter and image processing technology to help operator skill evaluation in nuclear power plant operator training facilities. In each of the control room of the training facilities, a full-scope plant simulator with mock-up control panels are used for real-time operator training. At this point, the operators' behaviors and plant's events are recorded as video-log and event-log, by a multi-media recording system to evaluate operators' skills at training review meetings in which the instructors and trainees discuss each of their action during the training process. Multiple cameras that are placed on the control room ceiling are used in the recording system. However, the views from these cameras are limited and therefore it is not possible to thoroughly check how each of the operator approaches the target panel within an appropriate timing that corresponds to the plant's event. For example, the instructors have to estimate operators' real-world position from the views; and in some cases other operators might conceal the target operators from the cameras. The purpose of the proposed system is to help checking whether the position and timing of each operator is appropriate during each event or alarm occurrence, by tracking the operators from the recorded video. To achieve this objective, the real-time image processing technology is newly introduced in this study, where particle filter is one of convenient algorithms for operator tracking. In this algorithm, the main issue is how to recognize multiple operators from the background and to get their positions within the coordinates of the control room. For this purpose, one 3-D particle filter is used for each operator wearing colored vests and the similarity calculation algorithm is based on color histogram. The particles are directly placed inside the control room. By converting the particle coordinates into camera coordinates and taking

  6. How to lose money with advanced controls

    International Nuclear Information System (INIS)

    This paper reports that advanced control is a well established technology in the oil and petrochemical industries, and it is tempting to believe that a large portion of its users have captured the greatest share of the available benefits. However, despite massive investments in hardware, few companies have fully exploited the opportunities made available by this investment. In the Western world probably about 85% of the total investment justified on existing plants has already been committed. The benefits captured, however, are probably less than 50% of those readily available. Assuming this investment was justified on a three year payback, the incremental cost to finish the job should pay back in about six months. So why isn't everyone doing it? The following gives guidance on how to maintain, or even worsen the status quo. Known as the Whitehouse Rules, violation of most of them could cause a significant improvement in process profitability

  7. Evaluation of the revised training program for senior control room staff: science fundamentals and equipment principles

    International Nuclear Information System (INIS)

    Canadian nuclear utilities have formed an Inter-Utility Working Group to revise their program for training nuclear generating station senior control room staff, namely Control Room Operators and Shift Supervisors, in Science Fundamentals and Equipment Principles. This report documents the findings of an external review of this revision process, addressing, amongst other topics, the process of revision undertaken by the Working Group, their outline of topics to be included, and, the pertinence and comprehensiveness of the detailed training objectives identified for two of the courses. The approach to revising the program being followed by the Working Group appears to be reasonable insomuch that some training needs have been identified and used to construct detailed sets of training objectives. However, as assessed by the consultants without full documentation being available, some important steps appear to have been missed. Specifically, much of the basis of the revision process has not been documented, neither has the approach selected for the revision process, nor has any justification for not performing a CANDU specific job and task analysis been offered. Furthermore, the Working Group has not yet proposed any criteria for evaluation of the program or provided any test items. As a result, the consultants have had to develop criteria for evaluation of the overall program and of individual courses. These criteria were applied in a more detailed review of the training objectives for two particular courses: Plant Chemistry, and Nuclear Physics and Reactor Theory. Many of the training objectives for these courses were found to be too qualitative or ones that require trainees to memorize blocks of information rather than develop in them an ability to arrive at conclusions about scientific phenomena using principles and reasoning. This assessment indicates that the training objectives are designed to achieve too low a level of cognition, inconsistent with developing an

  8. Low frequency sound reproduction in irregular rooms using CABS (Control Acoustic Bass System)

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    irregular room model using the FDTD (Finite Difference Time Domain) method has been presented. CABS has been simulated in the irregular room model. Measurements of CABS in a real irregular room have been performed. The performance of CABS was affected by the irregular shape of the room due to the corner...

  9. Virtual Visit to the ATLAS Control Room by High schools of Argos prefecture

    CERN Multimedia

    2014-01-01

    Continuing the subatomic journey that started last year in Argos, Greece, 45 students from 14 high schools of the prefecture will take part in a dedicated ATLAS Masterclass organized by the University of Athens in the framework of the Go-Lab and Inspiring Science Education European projects. Students will learn how to analyse real events from the ATLAS experiment with the use of HYPATIA online applet. They will also have the opportunity to visit the ATLAS control room to learn what it takes for scientists to keep on pushing the boundaries of our understanding of the origins of the universe.

  10. Virtual Visit to the ATLAS Control Room by Al-Quds University

    CERN Multimedia

    2014-01-01

    ATLAS virtual visit features Al-Quds University, a Palestinian university with campuses in Abu Dis and Beit Hanina-Jerusalem. As part of the "Physics Without Frontiers" project, funded by ICTP, Al-Quds is hosting a one day particle physics masterclass. During the day the students are given an introduction to particle physics, the LHC and the ATLAS Experiment, before having the chance to analyse real LHC data. This virtual visit comprises of a live tour around the ATLAS control room and the opportunity to ask questions to the ATLAS physicists.

  11. Virtual Visit to the ATLAS Control Room by 3rd Gymnasium in Volos

    CERN Multimedia

    2013-01-01

    The city of Volos, situated at the centre of the Greek mainland, will be hosting the 7th International Olympiad on Astronomy and Astrophysics this summer. In this context, and with support of PATHWAY and Discover the COSMOS projects, Volos` science education community is organising several pre-events aimed at bringing the world`s biggest experiments in science closer to students - the scientists of tomorrow. Junior high school students from the 3rd Gymnasium in Volos will have the unique opportunity to visit the ATLAS control room on 29th of March.

  12. Virtual Visit to the ATLAS Control Room by 5th Lyceum in Volos

    CERN Multimedia

    2013-01-01

    The city of Volos, situated at the centre of the Greek mainland, will be hosting the 7th International Olympiad on Astronomy and Astrophysics this summer. In this context, and with support of PATHWAY and Discover the COSMOS projects, Volos` science education community is organising several pre-events aimed at bringing the world`s biggest experiments in science closer to students - the scientists of tomorrow. Senior high school students from the 5th Lyceum will have the unique opportunity to visit the ATLAS control room on the 28th March, about three months before their educational trip to CERN.

  13. Interaction approach to development of control rooms (IDEC). Development of indicators for integrated system validation

    International Nuclear Information System (INIS)

    Integrated evaluation of complex artefacts such as NPP control rooms are claimed to require improved validation approaches. A notion of system usability is introduced. It denotes connecting decisions concerning the appropriateness of artefacts to criteria that indicate the system's ability to fulfil the objectives of the activity system and to promote their appreciation in users' situated actions. System usability is evaluated via an operation-oriented evaluation concept. It includes evaluation of user performance and experienced appropriateness of the system. New types of performance evaluation criteria are introduced. The new indicators and criteria may be derived with the aid of a Core-Task Analysis modeling process. (orig.)

  14. Virtual Visit to the ATLAS Control Room during the "Nuit des deux infinis", Grenoble

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    October 9, 2012 will be held the first "Night of two infinities", organized by the Laboratories of Excellence P2IO and ENIGMASS on two sites: Massy and Grenoble. This general public event will be held each year in a similar way to other "Nights" that became famous as the "Night of Museums, the "White Night "and the "Night of the Stars." During this event a short virtual visit of the ATLAS Control Room will be organized. The ACR will be briefly presented to the audience (~2000 people). A few questions will be taken from Massy and Grenoble.

  15. Coherent control in room-temperature quantum dot semiconductor optical amplifiers using shaped pulses

    CERN Document Server

    Karni, Ouri; Eisenstein, Gadi; Ivanov, Vitalii; Reithmaier, Johann Peter

    2016-01-01

    We demonstrate the ability to control quantum coherent Rabi-oscillations in a room-temperature quantum dot semiconductor optical amplifier (SOA) by shaping the light pulses that trigger them. The experiments described here show that when the excitation is resonant with the short wavelength slope of the SOA gain spectrum, a linear frequency chirp affects its ability to trigger Rabi-oscillations within the SOA: A negative chirp inhibits Rabi-oscillations whereas a positive chirp can enhance them, relative to the interaction of a transform limited pulse. The experiments are confirmed by a numerical calculation that models the propagation of the experimentally shaped pulses through the SOA.

  16. The importance of emergency instructions in control room work of a nuclear power plant

    International Nuclear Information System (INIS)

    The Three Mile Island accident started different investigations, especially in the control rooms in the United States and also everywhere else. The most important part of suplivisory work at a nuclear power plant is the use of normal instructions and more critical emergency instructions. The development of emergy rules in the USA and France is shortly reviewed. The functional base of the instructions and the exact facts to be considered while writing the instructions are discussed. The verification of the instruction is quite essential to be done before the instructions are taken into use

  17. Development of contextual task analysis for NPP control room operators' work

    International Nuclear Information System (INIS)

    The paper introduces a contextual approach to task analysis concerning control room operators' tasks and task conditions in nuclear power plants. The approach is based on the ecological concept of the situational appropriateness of activity. The task demands are dependent on the ultimate task of the operators which is to maintain the critical safety functions of the process. The context also sets boundary conditions to the fulfilment of these demands. The conceptualisation of the context affords possibilities to comprehend and make visible the core demands of the operators' work. Characteristic to the approach is that the conceptualisation is made both from the point of the operators who are making interpretations of the situation and from the point of the process to be controlled. The context is described as a world of operators' possibilities and constraints and, at the same time, in relation to the demands set by the nature of the process. The method is under development and has been applied in simulator training, in the evaluation of the control room information and in the integrated development of reliability analysis. The method emphasizes the role of explicit conceptualisation of the task situations. Explicity enhances its role as a conceptual tool and, therefore, promotes common awareness in these domains. (orig.)

  18. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification. Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    International Nuclear Information System (INIS)

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces

  19. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    R. Fink, D. Hill, J. O' Hara

    2004-11-30

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.

  20. Human factors dimensions in the evolution of increasingly automated control rooms for near-earth satellites

    Science.gov (United States)

    Mitchell, C. M.

    1982-01-01

    The NASA-Goddard Space Flight Center is responsible for the control and ground support for all of NASA's unmanned near-earth satellites. Traditionally, each satellite had its own dedicated mission operations room. In the mid-seventies, an integration of some of these dedicated facilities was begun with the primary objective to reduce costs. In this connection, the Multi-Satellite Operations Control Center (MSOCC) was designed. MSOCC represents currently a labor intensive operation. Recently, Goddard has become increasingly aware of human factors and human-machine interface issues. A summary is provided of some of the attempts to apply human factors considerations in the design of command and control environments. Current and future activities with respect to human factors and systems design are discussed, giving attention to the allocation of tasks between human and computer, and the interface for the human-computer dialogue.

  1. Views of the Mission Operations Control room (MOCR) during STS-5

    Science.gov (United States)

    1983-01-01

    Hans Mark, NASA Deputy Administrator, and Daniel M. Germany, Assistant Manager, Orbiter Project Office, monitor activity from STS-5 in the mission operations control room (MOCR) of JSC's mission control center. Arnold D. Aldrich, Manager of the Orbiter Project Office, can be seen at left background (27153); Gerald D. Griffin, JSC Director, stands near the flight director console in the MOCR. Astronaut Robert L. Stewart, STS-5 spacecraft communicator, mans the CAPCOM console at left. Others in the background include M.P. Frank, Chief of the Flight Operations Integration Office (back row); Eugene F. Kranz, Deputy Director of Flight Operations; Tommy W. Holloway, flight director (right of Griffin) (27154); Flight directors during STS-5 posed at the flight directors console are from left to right: Lawrence S. Bourgeois, Brock R. Stone, Jay H. Greene, Tommy W. Holloway, John T. Cox and Gary E. Coen. Other flight controllers are pictured in the background of the MOCR (27155).

  2. The design of the computerized main control room of Lingao Phase II NPP

    International Nuclear Information System (INIS)

    For most of the newly built NPPs, the computerized main control rooms (MCR) are adopted. LingAo Phase II NPP is under construction. In terms of reactor type, it is the duplication of LingAo NPP (Phase I). One of the main difference is the I andC system and the MCR. LingAo Phase II NPP adopts digital control system and computerized MCR while the LingAo Phase I has a conventional MCR. This paper will present the main features of this MCR and its design process, and will address the main difficulties in the following aspects: 1) to implant the functions of conventional I and C into computerized human machine interfaces (HMI), 2) to develop a reduced conventional I and C as the back-up control means which can accommodate accident situations, 3) to introduce computerized State-oriented accidental operating procedures (SOP), 4) to build a platform to validate the HMI. (author)

  3. Commentary on nuclear power plant control room habitability - including a review of related LERs (1981-1983)

    International Nuclear Information System (INIS)

    A review of Licensee Event Reports filed by the operator of commercial nuclear power plants from 1981 through 1983 has revealed that approximately 3% pertain to systems that maintain or monitor control room habitability. Dominant contributors were deficiencies in normal and emergency trains of heating, ventilation, air conditioning and air cleaning systems (45%), deficiencies in atmospheric monitors for toxic and radioactive substances (27%) and deficiencies in fire protection systems (13%). To correct the situation revealed by these analyses and by information provided from other sources, it is recommended that the NRC incorporate into its program plan the development of information that anticipates the conditions within a control room during emergencies, and that criteria for habitability within the control room be better defined. In addition, it is suggested than an improved protocol for testing control room air-related systems be developed, that the required thickness and number of layers of charcoal adsorption beds for control room air cleaning systems be re-evaluated, and that steps be taken to improve the quality of heating, ventilating, air conditioning and air cleaning components. It is also recommended that greater emphasis be placed on maintaining nuclear power plant control rooms in a habitable condition during emergencies so that the operators can remain there and safely shut down the plant, in contrast to placing reliance on the use of remote shutdown panels or auxiliary control facilities

  4. Automation inflicted differences on operator performance in nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Today it is possible to automate almost any function in a human-machine system. Therefore it is important to find a balance between automation level and the prerequisites for the operator to maintain safe operation. Different human factors evaluation methods can be used to find differences between automatic and manual operations that have an effect on operator performance; e.g. Predictive Human Error Analysis (PHEA), NASA Task Load Index (NASA-TLX), Halden Questionnaire, and Human Error Assessment and Reduction Technique (HEART). Results from an empirical study concerning automation levels, made at Ringhals power plant, showed that factors as time pressure and criticality of the work situation influenced the operator's performance and mental workload more than differences in level of automation. The results indicate that the operator's attention strategies differ between the manual and automatic sequences. Independently of level of automation, it is essential that the operator retains control and situational understanding. When performing a manual task, the operator is 'closer' to the process and in control with sufficient situational understanding. When the level of automation increases, the demands on information presentation increase to ensure safe plant operation. The need for control can be met by introducing 'control gates' where the operator has to accept that the automatic procedures are continuing as expected. Situational understanding can be established by clear information about process status and by continuous feedback. A conclusion of the study was that a collaborative control room environment is important. Rather than allocating functions to either the operator or the system, a complementary strategy should be used. Key parameters to consider when planning the work in the control room are time constraints and task criticality and how they affect the performance of the joint cognitive system.However, the examined working situations were too different

  5. Instituting a filtration/pressurization system to reduce dust concentrations in a control room at a mineral processing plant

    OpenAIRE

    Noll, J; Cecala, A.; Hummer, J.

    2015-01-01

    The National Institute for Occupational Safety and Health has observed that many control rooms and operator compartments in the U.S. mining industry do not have filtration systems capable of maintaining low dust concentrations in these areas. In this study at a mineral processing plant, to reduce respirable dust concentrations in a control room that had no cleaning system for intake air, a filtration and pressurization system originally designed for enclosed cabs was modified and installed. T...

  6. ATLAS Virtual Visits: Bringing the World into the ATLAS Control Room

    International Nuclear Information System (INIS)

    The newfound ability of Social Media to transform public communication back to a conversational nature provides HEP with a powerful tool for Outreach and Communication. By far, the most effective component of nearly any visit or public event is that fact that the students, teachers, media, and members of the public have a chance to meet and converse with real scientists. While more than 30,000 visitors passed through the ATLAS Visitor Centre in 2011, nearly 7 billion did not have a chance to make the trip. Clearly this is not for lack of interest. Rather, the costs of travel, in terms of time and money, and limited parking, put that number somewhat out of reach. On the other hand, during the LHC “First Physics” event of 2010, more than 2 million visitors joined the experiment control rooms via webcast for the celebration. This document presents a project developed for the ATLAS Experiment's Outreach and Education program that complements the webcast infrastructure with video conferencing and wireless sound systems, allowing the public to interact with hosts in the control room with minimal disturbance to the shifters. These “Virtual Visits” have included high school classes, LHC Masterclasses, conferences, expositions and other events in Europe, USA, Japan and Australia, to name a few. We discuss the technology used, potential pitfalls (and ways to avoid them), and our plans for the future.

  7. ATLAS Virtual Visits: Bringing the World into the ATLAS Control Room

    Science.gov (United States)

    Goldfarb, S.

    2012-12-01

    The newfound ability of Social Media to transform public communication back to a conversational nature provides HEP with a powerful tool for Outreach and Communication. By far, the most effective component of nearly any visit or public event is that fact that the students, teachers, media, and members of the public have a chance to meet and converse with real scientists. While more than 30,000 visitors passed through the ATLAS Visitor Centre in 2011, nearly 7 billion did not have a chance to make the trip. Clearly this is not for lack of interest. Rather, the costs of travel, in terms of time and money, and limited parking, put that number somewhat out of reach. On the other hand, during the LHC “First Physics” event of 2010, more than 2 million visitors joined the experiment control rooms via webcast for the celebration. This document presents a project developed for the ATLAS Experiment's Outreach and Education program that complements the webcast infrastructure with video conferencing and wireless sound systems, allowing the public to interact with hosts in the control room with minimal disturbance to the shifters. These “Virtual Visits” have included high school classes, LHC Masterclasses, conferences, expositions and other events in Europe, USA, Japan and Australia, to name a few. We discuss the technology used, potential pitfalls (and ways to avoid them), and our plans for the future.

  8. Control-room operator alertness and performance in nuclear power plants

    International Nuclear Information System (INIS)

    All industries requiring round-the-clock operation must deal with the potential problem of impaired alertness, especially among those who work night shifts. In the nuclear power industry, maintaining optimal alertness and performance of control room operators at all times of day is critical. Many of the toot causes of reduced alertness are straightforward and can be easily remedied with tangible solutions; this manual both discusses the reasons for the problem and suggests solutions. The manual surveys factors that influence operator alertness and performance, including shift schedules, caffeine and alcohol use, diet and family lifestyle factors, the control room enviornment, staffing and overtime practices, and work task design. Specific recommendations are made in each of these areas. The project team, consisting of experts on managing round-the-clock operations and scientists who study human alertness and performance, prepared this manual using the latest scientific research and direct input from shift supervisors and operators via interviews, on-site observation, and questionnaires distributed to every nuclear power station. The material contained within is relevant to shiftwork managers, shift supervisors, and operators, each of whom plays a vital role in maintaining optimal alertness and performance on the job. 90 refs., 35 figs

  9. Electric field control of room temperature ferromagnetism in III-N dilute magnetic semiconductor films

    Science.gov (United States)

    Nepal, N.; Luen, M. Oliver; Zavada, J. M.; Bedair, S. M.; Frajtag, P.; El-Masry, N. A.

    2009-03-01

    We report on the electrical field control of ferromagnetism (FM) at room temperature in III-N dilute magnetic semiconductor (DMS) films. A GaMnN layer was grown on top of an n-GaN substrate and found to be almost always paramagnetic. However, when grown on a p-type GaN layer, a strong saturation magnetization (Ms) was observed. This FM in GaMnN can be controlled by depletion of the holes in the GaMnN/p-GaN/n-GaN multilayer structures. We have demonstrated the dependence of the FM on the thickness of the p-GaN in this heterostructure and on the applied bias to the GaN p-n junction. The Ms was measured by an alternating gradient magnetometer (AGM) and a strong correlation between the hole concentration near the GaMnN/p-GaN interface and the magnetic properties of the DMS was observed. At room temperature an anomalous Hall effect was measured for zero bias and an ordinary Hall effect for reverse bias in a fully depleted p-GaN layer. This is in close agreement with the AGM measurement results.

  10. Human Factors methods concerning integrated validation of nuclear power plant control rooms

    International Nuclear Information System (INIS)

    The frame of reference for this work was existing recommendations and instructions from the NPP area, experiences from the review of the Turbic Validation and experiences from system validations performed at the Swedish Armed Forces, e.g. concerning military control rooms and fighter pilots. These enterprises are characterized by complex systems in extreme environments, often with high risks, where human error can lead to serious consequences. A focus group has been performed with representatives responsible for Human Factors issues from all Swedish NPP:s. The questions that were discussed were, among other things, for whom an integrated validation (IV) is performed and its purpose, what should be included in an IV, the comparison with baseline measures, the design process, the role of SSM, which methods of measurement should be used, and how the methods are affected of changes in the control room. The report brings different questions to discussion concerning the validation process. Supplementary methods of measurement for integrated validation are discussed, e.g. dynamic, psychophysiological, and qualitative methods for identification of problems. Supplementary methods for statistical analysis are presented. The study points out a number of deficiencies in the validation process, e.g. the need of common guidelines for validation and design, criteria for different types of measurements, clarification of the role of SSM, and recommendations for the responsibility of external participants in the validation process. The authors propose 12 measures for taking care of the identified problems

  11. Team interaction skills evaluation criteria for nuclear power plant control room operators

    International Nuclear Information System (INIS)

    Team interaction skills are an essential aspect of safe nuclear power plant control room operations. Previous research has shown that, when a group works together, rather than as individuals, more effective operations are possible. However, little research has addressed how such team interaction skills can be measured. In this study rating scales were developed specifically for such a measurement purpose. Dimensions of team skill performance were identified from previous research and experience in the area, incorporating the input of Pacific Northwest Laboratory (PNL) contract operator licensing examiners. Rating scales were developed on the basis of these dimensions, incorporating a modified Behaviorally Anchored Rating Scale (BARS) as well as Behavioral Frequency formats. After a pilot-testing/revision process, rating data were collected using 11 control room crews responding to simulator scenarios at a boiling water and a pressurized water reactor. Statistical analyses of the resulting data revealed moderate inter-rater reliability using the Behavioral Frequency scales, relatively low inter-rater reliability using the BARS, and moderate support for convergent and discriminant validity of the scales. It was concluded that the scales show promise psychometrically and in terms of user acceptability, but that additional scale revision is needed before field implementation. Recommendations for scale revision and directions for future research were presented

  12. Nanofabrication of heteromolecular organic nanostructures on epitaxial graphene via room temperature feedback-controlled lithography.

    Science.gov (United States)

    Wang, Qing Hua; Hersam, Mark C

    2011-02-01

    Nanoscale control of surface chemistry holds promise for tailoring the electronic, optical, and chemical properties of graphene. Toward this end, the nanofabrication of sub-5-nm heteromolecular organic nanostructures is demonstrated on epitaxial graphene using room temperature ultrahigh vacuum scanning tunneling microscopy. In particular, monolayers of the organic semiconductor 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) are nanopatterned on epitaxial graphene using feedback-controlled lithography (FCL) and then used as chemical resists to template the deposition of N,N'-dioctyl-3,4,9,10-perylene-tetracarboxylic diimide (PTCDI-C8). The generality of this FCL-based nanofabrication procedure suggests its applicability to a wide range of fundamental studies and prototype device fabrication on chemically functionalized graphene. PMID:21166423

  13. Virtual Visit to the ATLAS Control Room by Institute of Nuclear Physics, Cracow, Poland

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    The 12 Festival of Science "Theory-knowledge-experience...". Fest will be located on the traditional Main Square, which is visited by thousands of citizens and tourists. Institute of Nuclear Physics as usual participates in this annual event. Our visitors will learn the secrets of the CERN experiments on the Large Hadron Collider - ATLAS, LHCb, ALICE, CMS, find out more about the Higgs particles, antimatter quark-gluon plasma (beeing guided by our scientists and PhD students). One of the attractions will be ATLAS Control Room Virtual Visit. Visiting people will have an opportunity to see how ATLAS is controlled and operated to collect its exciting data and ask questions to scientists and engineers involved in LHC program at CERN. Institute of Nuclear Physics has prepared also several interactive demonstrations of Atomic Force Microscopy, Magnetic Resonance, Hadron Therapy and Crystal Physics. The Institute of Nuclear Physics of the Polish Academy of Sciences carries out basic and applied research in physics, ...

  14. Renewal of monitoring boards in control room at the hot laboratory

    International Nuclear Information System (INIS)

    It has been irradiated in the concrete cell, the microscope lead cell, the lead cell for materials examinations and the iron cell and, in the JMTR hot laboratory facilities, examines it after the irradiation such as fuel and nuclear reactor structure materials. I install a monitoring board for a concrete cell, a microscope lead cell, a lead cell for materials examinations and iron cells in the control room I watch concentration such as the minus number pressure in these each cell, the air absorption dose rate in the cell, the cover door opening and shutting indication and to control it. As for these monitoring boards, about 30 through 40 or more passed after an in-service start, and high aging decided to update it in consideration of the driving of approximately 20 years after JMTR re-operation because trouble by becoming it and outbreak of the malfunction were concerned about. (author)

  15. Cognitive models and computer aids for nuclear plant control room operators

    International Nuclear Information System (INIS)

    This paper reviews what is usually meant by a cognitive model of a control room operator in a nuclear power plant. It emphasizes the idea of internal (that is, mental) representation of external events and the use of such representation for the cognitive steps of attending, recognizing or learning, assessing and deciding. As computers play an increasingly important role in nuclear power plants, especially as cognitive aids to human supervisors of highly automated control systems, it is important that the software and computer interface characteristics be compatible with the operator's internal model. Specific examples discussed in this paper are in the monitoring and prediction of the plant state and in the detection and diagnosis of failures. Current trends in SPDS (safety parameter display system) and failure detection/location systems will be discussed in this regard

  16. Advanced Applications of Subsea Control Systems

    International Nuclear Information System (INIS)

    Technology transfer is one of the main arguments Norwegian companies have for getting involved in difficult markets like Angola. There is great need for sub sea technology in Angola, and Kvaerner Oilfield Products is one of the companies that have successfully fought for contracts in this lucrative market. Field operator TotalFinaElf Exploration and Production Angola has awarded Kvaerner Oilfield Products a USD 3.1 million contract for pre-engineering and qualification testing of the sub sea production systems for the Dalia field offshore Angola. Kvaerner Oilfield Products has already started pre-engineering and testing activity. The sub sea production system includes 42 Xmas trees for controlling the well stream, nine manifolds as well as related control equipment. As sub sea technology improves and advances, equipment that is more complex is being placed on the seabed and downhole environments. Factors such as the cost of the umbilical, increased noise immunity and speed requirements will almost certainly result in optical communications being widely adopted for future system designs. However; in the immediate future operators are likely to insist on backup electrical communications due to the immaturity of certain aspects such as Wetmate optical connectors, fibre handling and fibre degradation. Perhaps the single greatest advantage of open standard sub sea networking is derived from the exploitation of the growing range of third party intelligent instrumentation available on the market. This instrumentation when properly integrated into a sensor to boardroom data management system allows unparalleled control to be delivered to the user at a total cost of installation which can be radically less than conventional technology. It can provide a compelling case for adoption of true open standards. In order to deliver power over any significant distance it is necessary to consider the losses in the transmission medium. The major constraint in the sub sea industry is

  17. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    International Nuclear Information System (INIS)

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation

  18. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Inseok; Jung, Wondea [KAERI, Daejeon (Korea, Republic of); Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation.

  19. To stay or to go? Balancing the risk of reprocessing plant control room evacuation following a criticality alarm

    International Nuclear Information System (INIS)

    Following a criticality alarm within the Magnox Separation Plant at Sellafield, there is a conflict of interest between the risks associated with complete evacuation versus continued manning of the control room. The historic emergency response policy would be to completely evacuate the control room upon a criticality alarm. If, however, the alarm was found to be false, the inevitable loss in control over the plant could have environmental, operational and radiological release consequences. Maintaining control room manning following a genuine alarm might, however, result in an avoidable high dose to an operator. Based upon the estimated dose equivalent to a control room operator for a range of criticality incident morphologies a risk analysis was undertaken. The results indicate that the differential risk between an operator who evacuates immediately and an operator who remains for a short time to complete diagnostic checks is very small. As a consequence a new emergency policy was therefore developed on plant which results in a relatively low risk to control room operators, but still allows control over the plant to be retained following a false criticality alarm. (author)

  20. Automation inflicted differences on operator performance in nuclear power plant control rooms

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jonas; Osvalder, A.L. [Chalmers Univ. of Technology, Dept. of Product and Producton Development (Sweden)

    2007-03-15

    Today it is possible to automate almost any function in a human-machine system. Therefore it is important to find a balance between automation level and the prerequisites for the operator to maintain safe operation. Different human factors evaluation methods can be used to find differences between automatic and manual operations that have an effect on operator performance; e.g. Predictive Human Error Analysis (PHEA), NASA Task Load Index (NASA-TLX), Halden Questionnaire, and Human Error Assessment and Reduction Technique (HEART). Results from an empirical study concerning automation levels, made at Ringhals power plant, showed that factors as time pressure and criticality of the work situation influenced the operator's performance and mental workload more than differences in level of automation. The results indicate that the operator's attention strategies differ between the manual and automatic sequences. Independently of level of automation, it is essential that the operator retains control and situational understanding. When performing a manual task, the operator is 'closer' to the process and in control with sufficient situational understanding. When the level of automation increases, the demands on information presentation increase to ensure safe plant operation. The need for control can be met by introducing 'control gates' where the operator has to accept that the automatic procedures are continuing as expected. Situational understanding can be established by clear information about process status and by continuous feedback. A conclusion of the study was that a collaborative control room environment is important. Rather than allocating functions to either the operator or the system, a complementary strategy should be used. Key parameters to consider when planning the work in the control room are time constraints and task criticality and how they affect the performance of the joint cognitive system.However, the examined working

  1. System analysis of verbal communication between NPP main control room operators during abnormal situations

    International Nuclear Information System (INIS)

    Communication plays an important role in the joint mental activity of the staff of NPP main control room. The communication has been analyzed in the paper that took place when an emergency scenario on the full-scale simulator for NPP of WWER-1000. The operators were interviewed and a series of four experiments were conducted. As a result of analysis of the information received six types of communication were identified and described, and their proportions and quantitative characteristics were estimated. The factors influencing the communication were revealed and assessed. The most important of these were the noise caused by acoustic alarm signals and intensive talking, and the lack of time inducing the operators to cut out the wording of their verbal messages. The ways used by the operators in order to improve communication were revealed as well as additional recommendations for enhancing its efficiency were formulated

  2. Verification and validation of human factors issues in control room design and upgrades

    International Nuclear Information System (INIS)

    Systems, facilities and equipment are periodically updated during a power plant's lifetime. This has human factors implications, especially if the central control room is involved. Human factors work may therefore be required. There is an extensive literature on human factors itself, but not so much on how it is verified and validated. Therefore, HRP and the Swedish Nuclear Power Inspectorate commissioned a study. The objective was to review the literature and establish a knowledge base on verification and validation (V and V) of human factors issues. The report first discusses verification and validation as applied to human factors work. It describes a design process and the typical human factors topics involved. It then presents a generic method for V and V of human factors. This is built on a review of standards, guidelines and other references given in an annotated bibliography. The method is illustrated by application to some human factors topics

  3. Virtual Visit to the ATLAS Control Room by High Schools from Greece & Cyprus

    CERN Multimedia

    2014-01-01

    The subatomic journey to Nobel Prize experiments at CERN continues - this time in Greece and Cyprus. More than 600 high-schoolers from 12 schools in seven different locations across the two countries will have the unique opportunity to visit the control room of the ATLAS experiment to interact live with a Greek scientist involved in the search for the Higgs Boson and learn what it takes for CERN scientists to keep pushing the boundaries of our understanding of the origins of the Universe at the world`s largest particle physics laboratory. This international-level virtual visit has been supported by the Open Discovery Space and Inspiring Science Education EU projects that aim to help science teachers find innovative ways to make their teaching of physics and science more inspirational, attractive and relevant to students` lives.

  4. Virtual Visit to the ATLAS Control Room by Europe Day Symposium

    CERN Multimedia

    2013-01-01

    EUROPE DAY 2013: A Symposium Examining Canada/European Scientific Collaboration On May 9 2013. Canadians in Vancouver, British Columbia, will be gathering to enrich their understanding of scientific collaboration between Canada and Europe using CERN and its recent discovery of the Higgs boson as a framework for a symposium celebrating Europe Day. Canadians have been involved in nearly every aspect of the Large Hadron Collider accelerator and the ATLAS particle-physics detector. ATLAS-Canada spokesperson Rob McPherson will be addressing the symposium participants and talking about the multi-national effort that led to the Higgs breakthrough; his presentation will include a live virtual visit to the ATLAS control room at CERN. The event is hosted by TRIUMF, Canada`s national laboratory for particle and nuclear physics. http://www.europeanfestival.ca/europe-day

  5. Virtual Visit to the ATLAS Control Room by Natural History Museum, London

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    Nature Live is a programme of daily events which take place at the Natural History Museum, London. Nature Live brings together scientists and visitors to explore, discover and discuss the natural world and our place within it. In each event visitors get the chance to meet our scientists, see the specimens they study and ask lots of questions. Today Nature Live will feature a live link to the LHC control room at CERN. This will give visitors the amazing opportunity to ask questions to the physicists involved about the Large Hadron Collider experiments, Higgs particles and antimatter. As well as to discover how scientists at the Museum and at CERN are all looking back through deep time to answer those big questions on the origins of life, the universe and everything. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/London_NatureLive-2012.html

  6. Virtual Visit to the ATLAS Control Room by Greek Physical Society Annual Student Meeting

    CERN Multimedia

    2013-01-01

    In a continuation of last years` efforts, The Hellenic Union of Physicists organises for the 5th consecutive year its annual meeting for high-performing students across Greece. In this creative thinking meeting, students will have an excellent opportunity to acquire an in-depth understanding in contemporary physics issues and topics as well as in modern scientific knowledge and thinking in general. Moreover, they will be introduced to modern scientific methods and will practice critical thinking via live interaction with distinctive physicists. During this meeting, students will also connect live to the ATLAS control room to talk to a Greek physicist and learn about latest developments from the world`s largest physics laboratory.

  7. Towards a common monitoring system for the accelerator and technical control rooms at CERN

    CERN Document Server

    Arduini, Gianluigi; Bätz, M; Carron de la Morinais, J M; Manglunki, Django; Priestnall, K; Robin, G; Ruette, M; Sollander, P

    2000-01-01

    The communication and coordination between the CERN accelerator and technical control rooms will be a critical issue for an efficient operation of the LHC and its injectors, which are expected to provide also beams for fixed target experiments, for detector component tests and for other activities including machine development. Early detection of faults in the accelerator and technical infrastructure (electricity, cooling, etc.) and their possible consequences on operation are useful not only to prevent major breakdowns but also to recover from them and to reschedule efficiently machine operation to satisfy the overall beam time requests from the different and concurrent users. To meet these requirements a method to define and provide common monitoring tools for all the actors involved in machine operation has been established. This method has been applied to the SPS accelerator and is being implemented in the PS complex and in the SPS experimental areas.

  8. Virtual Visit to the ATLAS Control Room by 1st and 3rd Lyceums in Chios

    CERN Multimedia

    2013-01-01

    High school students from the 1st and 3rd Lyceums of Chios, Greece, will be visiting the control room of ATLAS to discuss the latest results on the Higgs search, LHC’s first long shutdown and what the future holds for the ATLAS experiment. This visit takes place in the context of a Masterclass where students will learn how to analyse real events from the LHC with the use of the HYPATIA online applet based on educational scenarios from the Discover the COSMOS portal. This full-day activity is organized by the University of Athens, the University of the Aegean, Ellinogermaniki Agogi and the Chios Physical Society in the framework of the Open Discovery Space EU project.

  9. Approach to team skills training of nuclear power plant control room crews

    International Nuclear Information System (INIS)

    An investigation of current team skills training practices and research was conducted by General Physics Corporation for the Office of Nuclear Reactor Regulation. The methodology used included a review of relevant team skills training literature and a workshop to collect inputs from team training practitioners and researchers from the public and private sectors. The workshop was attended by representatives from nuclear utility training organizations, the commercial airline industry, federal agencies, and defense training and research commands. The literature reviews and workshop results provided the input for a suggested approach to team skills training that can be integrated into existing training programs for control room operating crews. The approach includes five phases: (1) team skills objectives development, (2) basic team skills training, (3) team task training, (4) team skills evaluation, and (5) team training program evaluation. Supporting background information and a user-oriented description of the approach to team skills training are provided. 47 refs

  10. Risk Assessment of the Main Control Room Fire Using Fire Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    KAERI is performing a fire PSA for a reference plant, Ulchin Unit 3, as part of developing the Korean site risk profile (KSRP). Fire simulations of the MCR fire were conducted using the CFAST (Consolidated Fire Growth and Smoke Transport) model and FDS (fire dynamic simulator) to improve the uncertainty in the MCR fire risk analysis. Using the fire simulation results, the MCR abandonment risk was evaluated. Level 1 PSA (probabilistic safety assessment) results of Ulchin Unit 3 using the EPRI PRA (probabilistic risk assessment) implementation guide showed that the MCR (main control room) fire was the main contributor to the core damage frequency. Recently, U. S. NRC and EPRI developed NUREG/CR-6850 to provide state-of-the-art methods, tools, and data for the conduct of a fire PSA for a commercial NPP.

  11. Using micro saint to predict performance in a nuclear power plant control room

    International Nuclear Information System (INIS)

    The United States Nuclear Regulatory Commission (NRC) requires a technical basis for regulatory actions. In the area of human factors, one possible technical basis is human performance modeling technology including task network modeling. This study assessed the feasibility and validity of task network modeling to predict the performance of control room crews. Task network models were built that matched the experimental conditions of a study on computerized procedures that was conducted at North Carolina State University. The data from the open-quotes paper proceduresclose quotes conditions were used to calibrate the task network models. Then, the models were manipulated to reflect expected changes when computerized procedures were used. These models' predictions were then compared to the experimental data from the open-quotes computerized conditionsclose quotes of the North Carolina State University study. Analyses indicated that the models predicted some subsets of the data well, but not all. Implications for the use of task network modeling are discussed

  12. Evaluate Influence to Space Lighting Intensity in Main Control Room of RSG-GAS

    International Nuclear Information System (INIS)

    Have been done by an activity evaluate factor depreciation influence to light source in Main Control Room (RKU). This Factor Depreciation is resulted from by defilement of effect of dirt, duration of light source utilized, way of installation, and others. Method used by perceives directly at light source, determining measurement dot in space RKU, measurement by using meter lux equipment and group storey; level depreciation of light source become light depreciation, and heavy. Than measurement result that lighting intensity in space RKU experience of decrease of equal to 1.5 %. After by stage; steps overcome the factor depreciation, result of measurement repeat obtained by decrease of equal to 0.87 %. Thereby the lighting intensity in space RKU becomes better. (author)

  13. Virtual Visit to the ATLAS Control Room by QuarkNet program in Portland

    CERN Multimedia

    2013-01-01

    The LHC fellows of the U.S. QuarkNet program will hold a workshop "Real LHC Data for the Classroom" for teachers using elements of the ATLAS masterclass on July 13, 2013. The workshop is part of the Summer 2013 Meeting of the American Association of Physics Teachers. In the workshop, teachers are introduced to particle physics, the ATLAS experiment, and ways to use actual data from the Large Hadron Collider at CERN to help their students understand fundamental physics. One of the highlights of this one-day workshop is an ATLAS Virtual Visit, in which the teachers connect by videoconference with the ATLAS control room. In the videoconferecne, the participants will be able to to ask questions of and have discussions with an ATLAS physicist.

  14. Verification and validation of human factors issues in control room design and upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.; Collier, S. [Inst. for Energiteknikk, Halden (Norway). OECD Halden Reactor Project

    1999-12-01

    Systems, facilities and equipment are periodically updated during a power plant's lifetime. This has human factors implications, especially if the central control room is involved. Human factors work may therefore be required. There is an extensive literature on human factors itself, but not so much on how it is verified and validated. Therefore, HRP and the Swedish Nuclear Power Inspectorate commissioned a study. The objective was to review the literature and establish a knowledge base on verification and validation (V and V) of human factors issues. The report first discusses verification and validation as applied to human factors work. It describes a design process and the typical human factors topics involved. It then presents a generic method for V and V of human factors. This is built on a review of standards, guidelines and other references given in an annotated bibliography. The method is illustrated by application to some human factors topics.

  15. Virtual Visit to the ATLAS Control Room by the Genova University

    CERN Multimedia

    2013-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/Genova-2013_2.html

  16. Virtual Visit to the ATLAS Control Room by the Genova University

    CERN Multimedia

    2013-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/Genova-2013_1.html

  17. Virtual Visit to the ATLAS Control Room by the University of Genova

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Genova-2012.html

  18. Application of friction pendulum system to the main control room of a nuclear power plant

    International Nuclear Information System (INIS)

    An experimental and analytical study was performed to determine if the friction pendulum system (FPS) could be applied to the main control room (MCR) of a nuclear power plant as a seismic isolation device. A friction pendulum bearing was fabricated, and the dynamic performance of that bearing was evaluated. A partial model of the MCR with FPS was tested on a shaking table. The model consisted of a cabinet, an access floor, and four friction pendulum bearings. An artificial time history based on the MCR floor response spectrum was used as an earthquake input signal for the test. Analytical and experimental results were compared to verify their correlation and to enable the experimental study to cover a range of parameters not previously studied in other similar experiments. Through these comparisons, it was affirmed that the proposed FPS seismic isolation system can be applied, with high reliability, to the MCR of a nuclear power plant. (author)

  19. Team interaction skills evaluation criteria for nuclear power plant control room operators

    International Nuclear Information System (INIS)

    Previous research has shown the value of good team interaction skills to group performance, yet little progress has been made on in terms of how such skills can be measured. In this study rating scales developed previously (Montgomery, et al., 1990) were extensively revised and cast into a Behaviorally Anchored Rating Scale (BARS) and a Behavioral Frequency format. Rating data were collected using 13 training instructors at the Diablo Canyon Nuclear Plant, who rated three videotapes of simulator scenario performance during a day-long training session and later evaluated control room crews during requalification training. High levels of interrater agreement on both rating scales were found. However, the factor structure of the ratings was generally inconsistent with that hypothesized. Analysis of training ratings using Cronbach's components of accuracy (Cronbach, 1955) indicated that BARS ratings generally exhibited less error than did the Behavioral Frequency ratings. The results are discussed in terms of both field and research implications

  20. Risk Assessment of the Main Control Room Fire Using Fire Simulations

    International Nuclear Information System (INIS)

    KAERI is performing a fire PSA for a reference plant, Ulchin Unit 3, as part of developing the Korean site risk profile (KSRP). Fire simulations of the MCR fire were conducted using the CFAST (Consolidated Fire Growth and Smoke Transport) model and FDS (fire dynamic simulator) to improve the uncertainty in the MCR fire risk analysis. Using the fire simulation results, the MCR abandonment risk was evaluated. Level 1 PSA (probabilistic safety assessment) results of Ulchin Unit 3 using the EPRI PRA (probabilistic risk assessment) implementation guide showed that the MCR (main control room) fire was the main contributor to the core damage frequency. Recently, U. S. NRC and EPRI developed NUREG/CR-6850 to provide state-of-the-art methods, tools, and data for the conduct of a fire PSA for a commercial NPP

  1. An object-oriented-database-system to assist control room staff

    International Nuclear Information System (INIS)

    In order to assist control room staff of failure of any electrical or mechanical component a new objects-oriented-database-system (OODBS) has been developed and installed. Monitoring and diagnostics may be supported by this OODBS within a well-defined response time. The operator gets a report on different levels: For example, at a first level data about the vendor of a device (like reactor vessel internals, pumps, valves, etc.), data of installation, history of failures since installation, at a second level e.g. technical data of the device, at a next level e.g. a scanned photo of the device with its identification number within a certain compartment, and at another level using a CAD-system presenting technical drawings and corresponding part lists in order to assist necessary communication between operator and maintenance technician. (author). 3 refs, 10 figs

  2. Controlled damaging and repair of self-organized nanostructures by atom manipulation at room temperature

    International Nuclear Information System (INIS)

    The possibility of controlled local demolition and repair of the recently discovered self-organized Pt nanowires on Ge(001) surfaces has been explored. These nanowires are composed of Pt dimers, which are found to be rather weakly bound to the underlying substrate. Using this property, we demonstrate the possibility of carrying the constituting dimers of the Pt nanowires from point to point with atomic precision at room temperature. Pt dimers can be picked-up in two configurations: (i) a horizontal configuration at the tip apex, resulting in double tip images and (ii) a configuration where the Pt dimer is attached to the side of the tip apex, resulting in well-defined atomically resolved images

  3. Control room - ergonomic factors and their influence on the quality of exploitation process conduction in the coal fueled power plants

    International Nuclear Information System (INIS)

    In the Control Room in which control and regulation is performed upon the overall process of electric energy production, the operator plays essential role as an ultimate decision factor, particularly in the states of emergency. From the Control Room the operator performs a real-time supervision and management of the production process thus introducing exquisite quality into the operating fitness maintenance, creating optimal conditions for uninterrupted and safe production. The engagements of the operator in the Control Room require mutual accordance of the anthropology-technical and bio mechanical characteristics with the psychophysiological attributes of the operator. Any command and signaling equipment mishandling may cause numerous unwanted consequences, leading to a production control system breakdown for the power plant. In order to achieve a balanced optimization in the system operation, such as appropriate working conveniences, protection, certain economic effects, etc. an ergonomic organization and arrangement of the Control Room working environment is required. Re existing working environment solutions of the kind in our milieu show outstanding deviations towards the anthropology-physiological and psychophysiological capabilities of the operator on duties of the kind, as well as towards the collocation of signaling and command facilities and other equipment units at the Control Room site - the reason being a lack of appropriate investigation before setup of the systems. Solution to this kind of problems is aimed to provide maximum functional capability, efficiency and safety to the Control Room operator's domain of activities, which will essentially improve the reliability of the entire energy production control system of a thermoelectric power plant. (Author)

  4. Advanced Control Architectures for Intelligent MicroGrids, Part I

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Chandorkar, Mukul; Lee, Tzung-Lin; Loh, Poh Chiang

    2013-01-01

    This paper presents a review of advanced control techniques for microgrids. The paper covers decentralized, distributed, and hierarchical control of grid connected and islanded microgrids. At first, decentralized control techniques for microgrids are reviewed. Then, the recent developments in the...... stability analysis of decentralized controlled microgrids are discussed. Finally, hierarchical control for microgrids that mimic the behavior of the mains grid is reviewed....

  5. Light Water Reactor Sustainability Program Operator Performance Metrics for Control Room Modernization: A Practical Guide for Early Design Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Boring; Roger Lew; Thomas Ulrich; Jeffrey Joe

    2014-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate the operator performance using these systems as part of a verification and validation process. There are no standard, predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages of a new system. This report identifies the process and metrics for evaluating human system interfaces as part of control room modernization. The report includes background information on design and evaluation, a thorough discussion of human performance measures, and a practical example of how the process and metrics have been used as part of a turbine control system upgrade during the formative stages of design. The process and metrics are geared toward generalizability to other applications and serve as a template for utilities undertaking their own control room modernization activities.

  6. Modification and updating of documentation in equipment of panels of control room in nuclear power plant operation

    International Nuclear Information System (INIS)

    The present paper describes a case very unique specific design of interactive 2D-CAD application, that has been developed by Empresarios Agrupados as engineering support to the nuclear power plants, aware of the problem that exists with the documentation of the instruments and devices that are on the panels of Control room, and that only have the documentation generated in its day by the manufacturers of these panels. To this end, an application (application DOPAB) has been developed to help solve the problem of management, design and modification of wiring and wiring devices existing in the Control room control panels.

  7. The influence and evaluation of different virtual reality presentations for the main control room of nuclear power plant

    International Nuclear Information System (INIS)

    Certainly, a nuclear power plant (NPP) is a complex system and requires high reliability. Engineering technology plays an important role in NPP that requires complex technical equipment and interfaces in order to achieve public security and working safety. Through training, operators can understand the nuclear power system and further establish the fit between human operators and the system, in order to reduce human errors and to ensure the working safety of the control room of NPP. However, the operator trainings for the control room of NPP are difficult and time-consuming. Virtual control room is thus developed using the virtual reality (VR) technology to help the training process. Presently several researches have developed virtual system for NPP for the purpose of training. However, whether the virtual training system for the control room of NPP can give users realistic immersive context as in the real environment is unknown. Whether these virtual systems are helpful in training performance are yet to be confirmed. For this reason, the control room of Lung-Men NPP of Taiwan was constructed with VR technology in this study in order to compare the performances of two VR representation methods (Desktop VR and Project VR). A searching task was planned in which the operators have to find out the objects appointed by the experimenter in the virtual interface of the main control room. The time to complete the task was collected as dependent variables in this experiment. The subjects have to complete the questionnaire that was developed for evaluating the usability of the virtual interface of MRC after finishing the experiment. The result showed that the performance of the virtual interface of NPP presented by the VR projector was better than the desktop. (author)

  8. I and C and control room challenges and opportunities for maintaining and modernizing nuclear power plants

    International Nuclear Information System (INIS)

    Instrumentation and Control (I and C) systems and capabilities affect all areas of plant operation and can profoundly impact plant reliability, efficiency, and operating costs. Nuclear power plants are having problems with aging and obsolete equipment. These problems will get worse as plants age. The longer life resulting from license extension just increases the problems. Work is being done in the industry to optimize or extend the useful life and reliability of existing equipment and systems. However; long-term maintenance of aging and obsolete equipment is often not a viable option and modernization must also be considered. The Electric Power Research Inst. I and C Program has been working with its member utilities and other stakeholders in the nuclear power industry to: 1) enable nuclear power plants to support existing components and systems, 2) make improvements via component upgrades, 3) make system level improvements, and 4) plan for and initiate large scale upgrades to I and C systems and control rooms. Considerable progress has been made in both technical and regulatory areas to enable more cost-effective operation and maintenance and to take advantage of improvements possible with digital technology. However, there are still several challenges that must be addressed and several beneficial opportunities that are possible. Some are these areas are currently being addressed in the EPRI I and C Program. For many of the areas, the issues and solutions apply to new plants as well. (authors)

  9. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature.

    Science.gov (United States)

    Phillips, L C; Cherifi, R O; Ivanovskaya, V; Zobelli, A; Infante, I C; Jacquet, E; Guiblin, N; Ünal, A A; Kronast, F; Dkhil, B; Barthélémy, A; Bibes, M; Valencia, S

    2015-01-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics. PMID:25969926

  10. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature

    Science.gov (United States)

    Phillips, L. C.; Cherifi, R. O.; Ivanovskaya, V.; Zobelli, A.; Infante, I. C.; Jacquet, E.; Guiblin, N.; Ünal, A. A.; Kronast, F.; Dkhil, B.; Barthélémy, A.; Bibes, M.; Valencia, S.

    2015-05-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics.

  11. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10−1 to 104 Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 1019 to 1013 cm−3 and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm2/V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 1019 to 1013 cm−3. • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied

  12. Using virtual reality to support multi-participant human-centered design processes for control room design

    Energy Technology Data Exchange (ETDEWEB)

    Louka, M. N.; Gustavsen, M. A.; Edvardsen, S. T. [OECD Halden Reactor Project, Inst. for Energy Technology, PO Box 173, NO-1751 Halden (Norway)

    2006-07-01

    We present an overview of a method of applying interactive 3D visualization techniques to support control room design activities, and summarize studies that supports it. In particular, we describe the software tools that we have developed and how these support a human-centered design (HCD) work-flow. We present some lessons learnt from using our tools in control room design projects, and outline our plans for extending the scope of our approach to support concurrent design and later phases of a plant's life-cycle. (authors)

  13. Using virtual reality to support multi-participant human-centered design processes for control room design

    International Nuclear Information System (INIS)

    We present an overview of a method of applying interactive 3D visualization techniques to support control room design activities, and summarize studies that supports it. In particular, we describe the software tools that we have developed and how these support a human-centered design (HCD) work-flow. We present some lessons learnt from using our tools in control room design projects, and outline our plans for extending the scope of our approach to support concurrent design and later phases of a plant's life-cycle. (authors)

  14. Design and modernization of control rooms according to new I and C systems based on HFE principles

    International Nuclear Information System (INIS)

    The use of new digital I and C systems in the design of new nuclear power plants, as well as the modernization of existing facilities, implies relevant changes in the control room design. New I and C systems provide new features that affect the control room operating concept. Therefore, a detailed analysis is required to take into consideration all the operating and human factors aspects. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (author)

  15. Training experience to improve and reinforce associated aspects to the control room operators' behaviour in the simulator setting

    International Nuclear Information System (INIS)

    The experience, explained below, is based on the latest works carried out in TECNATOM, to improve the behaviour of the control room personnel, by an effective involvement of the operators in their own improvement, in which they create their own expectations and the instructors are only guides and advisors in a working place very close to the reality, that is, the simulator. The experience mainly deals with aspects such as: Teamwork, effective communications, use of procedures, self-checking, decision making, diagnose, motivation and other aspects that are present in the control room. (author)

  16. Design and modernization of control rooms according to new I and C systems based on HFE principles

    Energy Technology Data Exchange (ETDEWEB)

    Rejas, Luis; Larraz, Javier, E-mail: lrejas@tecnatom.e, E-mail: jlarraz@tecnatom.e [Tecnatom S.A., San Sebastian de los Reyes, Madrid (Spain). New Control Room Design Dept.; Ortega, Fernando, E-mail: fortega@tecnatom.e [Tecnatom S.A., San Sebastian de los Reyes, Madrid (Spain). Control Room and Simulation Dept.

    2011-07-01

    The use of new digital I and C systems in the design of new nuclear power plants, as well as the modernization of existing facilities, implies relevant changes in the control room design. New I and C systems provide new features that affect the control room operating concept. Therefore, a detailed analysis is required to take into consideration all the operating and human factors aspects. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (author)

  17. The preliminary evaluation of information presentation techniques for optimizing information navigation task of SMART control room operator

    International Nuclear Information System (INIS)

    This study surveyed techniques needed to implement the information display for SMART control room operator and selected three design alternatives among them. They are Fisheye Algorithm as a two dimensional information visualization technique, Elastic Window as a information display organization and manipulation, and the way of speech command with Speech Recognition technique for the information navigation task of SMART control room operator. A simple task performance model was developed to predict and interpret those design alternatives on the aspects of human performance. The preliminary evaluation using the simple task performance model was performed. A empirical way to select more concrete design alternative is presented

  18. Ervaringen met Advanced Cruise Control (ACC) in een korte praktijkproef.

    OpenAIRE

    Oei, H.-l.

    2003-01-01

    Experiences with Advanced Cruise Control in traffic; a limited experiment. Advanced Cruise Control (ACC) is an ordinary cruise control in which the desired speed is installed manually, but in which the headway time to the vehicle in front is also taken into account. If the headway time becomes less than the installed critical threshold value, the system brakes the vehicle gradually. If the vehicle in front is no longer there, or the headway time is greater than the threshold value, the instal...

  19. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  20. Noble gas control room accident filtration system for severe accident conditions N-CRAFT. System design

    International Nuclear Information System (INIS)

    Severe accidents might cause the release of airborne radioactive substances to the environment of the NPP. This can either be due to leakages of the containment or due to a filtered containment venting in order to ensure the overall integrity of the containment. During the containment venting process aerosols and iodine can be retained by the FCVS which prevents long term ground contamination. Noble gases are not retainable by the FCVS. From this it follows that a large amount of radioactive noble gases (e.g. xenon, krypton) might be present in the nearby environment of the plant dominating the activity release, depending on the venting procedure and the weather conditions. Accident management measures are necessary in case of severe accidents and the prolonged stay of staff inside the main control room (MCR) or emergency response center (ERC) is essential. Therefore, the in leakage and contamination of the MRC and ERC with airborne activity has to be prevented. The radiation exposure of the crises team needs to be minimized. The entrance of noble gases cannot be sufficiently prevented by the conventional air filtration systems such as HEPA filters and iodine absorbers. With the objective to prevent an unacceptable contamination of the MCR/ERC atmosphere by noble gases AREVA GmbH has developed a noble gas retention system. The noble gas control room accident filtration system CRAFT is designed for this case and provides supply of fresh air to the MCR/ERC without time limitation. The retention process of the system is based on the dynamic adsorption of noble gases on activated carbon. The system consists of delay lines (carbon columns) which are operated by a continuous and simultaneous adsorption and desorption process. These cycles ensure a periodic load and flushing of the delay lines retaining the noble gases from entering the MCR. CRAFT allows a minimization of the dose rate inside MCR/ERC and ensures a low radiation exposure to the staff on shift maintaining

  1. Control room modernisation from an evolutionary point of view - Experiences gained at the Loviisa NPP

    International Nuclear Information System (INIS)

    The automation system, control rooms and human-system interfaces will be modernised at the Loviisa nuclear power plant in the near future. The renewal of automation systems and human system interfaces from the 80's to the present has been an evolutionary process at the Loviisa plant. This means that there have been some leading principles that are used as a basis of the design over the decades and that have provided guidance in the design of human-system interfaces. A primary prerequisite for the success of the evolutionary approach is that some important decisions, such as the decision to present all essential process information by the process computer system, were made at the very early stage of the planning of the Loviisa plant. In addition, there has been a fixed group of designers who have a possibility during years between nuclear power plant renewals to gather useful practical experiences, for example, through participation in the design of control rooms and human-system interfaces for conventional power plants. Our aim here is to provide an overview description of the modernisation process and provide a preliminary evaluation of the progress of the modernisation project to date. We also compared the design process to the general design practice of interactive computer systems. Here a special emphasis is put on the assessment of end-users' role in the modernisation process. We will also consider the co-ordination of different design activities. Since there are typically several other projects going on, which are linked to the modernisation of HSIs, one of the central concerns is how all these separate projects are managed and how they could contribute to each other in a fruitful and constructive manner. Both written and interview-based material has been used in the evaluation. The written material includes, for example, the technical specification and the conceptual design plan for the renewal. Fortum designers have been interviewed on several occasions (in

  2. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  3. Physical environment design criteria for the new control room in the ENEA TRIGA-RC1 plant

    International Nuclear Information System (INIS)

    Parallelly to the plant modifications, many changes of the instrumentation in the Control Room (CR) were necessary in order to deal with the various aged components and the completion and integration needs turning out from the experience in reactor running. In the room, besides the control activity of the RC1 plant, continuous training and updating activities are currently performed which are intended for the operators working in the control rooms of nuclear power plants. The design of the physical environment of the new CR - carried out in a more general research project between ENEA and Politecnico di Milano - was based on the following fundamental criteria: - to ensure conditions fit for the performance of the suspervision, diagnosis and control tasks the operators are entrusted with; - to set up a model of control room for the more complex power plants. First of all a detailed analysis of the environmental conditions relating to microclimate, lighting and noise was accomplished. Afterwards, the goals to be attained were defined as well as the technical means necessary for providing the operators with comfortable working conditions

  4. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    Science.gov (United States)

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  5. Model-free adaptive control of advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  6. Advanced Combustion and Emission Control Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  7. Effects of Shift Work on Cognitive Performance, Sleep Quality, and Sleepiness among Petrochemical Control Room Operators.

    Science.gov (United States)

    Kazemi, Reza; Haidarimoghadam, Rashid; Motamedzadeh, Majid; Golmohamadi, Rostam; Soltanian, Alireza; Zoghipaydar, Mohamad Reza

    2016-01-01

    Shift work is associated with both sleepiness and reduced performance. The aim of this study was to examine cognitive performance, sleepiness, and sleep quality among petrochemical control room shift workers. Sixty shift workers participated in this study. Cognitive performance was evaluated using a number of objective tests, including continuous performance test, n-back test, and simple reaction time test; sleepiness was measured using the subjective Karolinska Sleepiness Scale (KSS); and sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) questionnaire. ANCOVA, t-test, and repeated-measures ANOVA were applied for statistical analyses, and the significance level was set at p cognitive performance, except for omission error, significantly decreased at the end of both day and night shifts (p cycle of sleep, induced cognitive performance decline at the end of both day and night shifts, and increased sleepiness in night shift. It, thus, seems necessary to take ergonomic measures such as planning for more appropriate shift work and reducing working hours. PMID:27103934

  8. Gold nanoparticle assemblies of controllable size obtained by hydroxylamine reduction at room temperature

    International Nuclear Information System (INIS)

    Colloidal nanoparticle assemblies (NPAs) were obtained in a one-step procedure, by reduction of HAuCl4 by hydroxylamine hydrochloride, at room temperature, without the use of any additional nucleating agent. By changing the order of the reactants, NPAs with mean size of ∼20 and ∼120 nm were obtained. Because of their size and irregular popcorn like shape, the larger size NPAs show absorption in the NIR spectral region. The building blocks of the resulted nanoassemblies are spherical nanoparticles with diameters of 4–8 and 10–30 nm, respectively. Moreover, by stabilizing the colloid with bovine serum albumin at different time moments after synthesis, NPAs of controlled size between 20 and 120 nm, could be obtained. The NPAs were characterized using UV–Vis spectroscopy, TEM and SEM electron microscopies. In addition, the possibility of using the here proposed NPAs as surface-enhanced Raman scattering (SERS) substrate was assessed and found to provide a higher enhancement compared to conventional citrate-reduced nanoparticles

  9. A virtual control room with an embedded, interactive nuclear reactor simulator

    International Nuclear Information System (INIS)

    The use of virtual nuclear control room can be an effective and powerful tool for training personnel working in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations, without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively in training personnel. In this paper we first describe a possible solution for embedding the output of a computer application in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual reality environment. We then propose a simple model for providing interaction between the user in the VR system and the running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or tablet-pc added to the virtual environment. (authors)

  10. Virtual Visit to the ATLAS Control Room during Researchers Night by Natural History Museum, London

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    This event is part of EU Researchers Night, when institutions in more than 200 cities across Europe reveal the exciting science research taking place behind their doors and how science research is exciting, fun and vital to our daily lives. Following the success of Science Uncovered in 2010 and 2011, the Natural History Museum, London throws open its doors once again this September. There will be hundreds of inspiring scientific activities happening throughout the Museum's iconic galleries and behind the scenes. One big part of the night is a series of Nature Live events, where visitors get the chance to meet our scientists, see the specimens they study and join in the discussion. Throughout the night these events will feature live links to other scientific institutions across the world, including to the LHC control room at CERN. This will give visitors the amazing opportunity to ask questions to the physicists involved about the Large Hadron Collider experiments, Higgs particles and antimatter. As well as to...

  11. Research in automation, risk analysis, control rooms and organisational factors; applications to plant life management

    International Nuclear Information System (INIS)

    Nuclear power is qualitatively different as compared with many other technologies. The differences are connected to factors such as very long time spans, the need for broad and deep knowledge, a large accident potential and political controversies. Before a country can enter a nuclear power programme it is important that these issues are understood and acted upon. The paper describes the nuclear power programme in Finland from the view of a technical support organisation with a special emphasis on automation, risk analysis, control rooms and organisational factors. It is argued that research and development are important components in maintaining nuclear knowledge in a country. Research at VTT within the four areas mentioned is described in more detail to illustrate some important issues that have to be resolved on a medium term to ensure a continuing success of nuclear power. A conclusion of the paper is that major stakeholders in nuclear power in a country have to co-operate on a neutral platform. Research can serve as an ideal platform for such co-operation. (author)

  12. Gold nanoparticle assemblies of controllable size obtained by hydroxylamine reduction at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tódor, István Sz.; Szabó, László; Marişca, Oana T.; Chiş, Vasile; Leopold, Nicolae, E-mail: nicolae.leopold@phys.ubbcluj.ro [Babeş-Bolyai University, Faculty of Physics (Romania)

    2014-12-15

    Colloidal nanoparticle assemblies (NPAs) were obtained in a one-step procedure, by reduction of HAuCl{sub 4} by hydroxylamine hydrochloride, at room temperature, without the use of any additional nucleating agent. By changing the order of the reactants, NPAs with mean size of ∼20 and ∼120 nm were obtained. Because of their size and irregular popcorn like shape, the larger size NPAs show absorption in the NIR spectral region. The building blocks of the resulted nanoassemblies are spherical nanoparticles with diameters of 4–8 and 10–30 nm, respectively. Moreover, by stabilizing the colloid with bovine serum albumin at different time moments after synthesis, NPAs of controlled size between 20 and 120 nm, could be obtained. The NPAs were characterized using UV–Vis spectroscopy, TEM and SEM electron microscopies. In addition, the possibility of using the here proposed NPAs as surface-enhanced Raman scattering (SERS) substrate was assessed and found to provide a higher enhancement compared to conventional citrate-reduced nanoparticles.

  13. Improvements and standardization of communication means for control room personnel in nuclear power plants

    International Nuclear Information System (INIS)

    This report describes the findings of an investigation into selected communication means for control room personnel in nuclear power stations. The study can be seen as a contribution to the systematic analysis of major problem areas which were identified in the general study 'Human factors in the nuclear power plant'. The subjects under investigation were the 'Shift book', 'Simulation book', and 'Technical and organisational changes and their records'. It was intended to analyse both the communication, processes and the associated written documentation in order to determine areas for potential improvement and possibilities for standardization. Information was obtained by interviewing shift members and their supervisors, by general observation, and by compilation and evaluation of the extensive dokumentation. Assessment criteria were developed on a scientific basis and in the course of the investigation, in particular from ergonomic findings, as well as from standards and regulations and comparison between the plants. General practical suggestions were developed for the improvement of the communication forms and the formal design of the documents and their contents. The transfer of the recommendations to practical use in the plants presupposes the consideration of plant-specific frames of reference. The report includes a compilation and listing of suggestions for improvement in topical subdivisions. (orig.)

  14. Virtual Visit to the ATLAS Control Room by The Higgs in Tour, Forlì, Italy

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    "HIGGS IN TOUR: A discovery in the making" - Three science shows touring Emilia Romagna (Italy), organized by INFN, the Istituto Nazionale di Fisica Nucleare in Bologna and by the University of Bologna. Three legs are scheduled in the cities of: - Forlì : 13 Oct. - Reggio Emilia : 10 Nov. - Bologna : 17 Nov. The announcement of the discovery of a new particle compatible with the Higgs boson at CERN last July hit the headlines worldwide. The general public and students in these cities are ready and greedy to know more and meet the scientists behind the discovery. Within the 2 hour programmes, particle physicists from Bologna will take the floor at the venues in Italy and from the LHC experiments' control rooms at CERN through videoconferencing. Videos and animations will make the LHC experiments and the physics discoveries tangible for the audience, who will be able to interact with the scientists in town and at CERN. The event will be moderated by local host Patrizio Roversi (a tv star in Italy) and remote h...

  15. Virtual Visit to the ATLAS Control Room by The Higgs in Tour, Bologna

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    "HIGGS IN TOUR: A discovery in the making" - Three science shows touring Emilia Romagna (Italy), organized by INFN, the Istituto Nazionale di Fisica Nucleare in Bologna and by the University of Bologna. Three legs are scheduled in the cities of: - Forlì : 13 Oct. - Reggio Emilia : 10 Nov. - Bologna : 17 Nov. The announcement of the discovery of a new particle compatible with the Higgs boson at CERN last July hit the headlines worldwide. The general public and students in these cities are ready and greedy to know more and meet the scientists behind the discovery. Within the 2 hour programmes, particle physicists from Bologna will take the floor at the venues in Italy and from the LHC experiments' control rooms at CERN through videoconferencing. Videos and animations will make the LHC experiments and the physics discoveries tangible for the audience, who will be able to interact with the scientists in town and at CERN. The event will be moderated by local host Patrizio Roversi (a tv star in Italy) and remote h...

  16. Improve and reinforced aspects associated with the behaviour of control-room operators of NNPPS

    International Nuclear Information System (INIS)

    This article is devoted to explain the training experience carried out in Tecnatom, in order to improve and reinforce aspects associated with the behavior of Control-Room (CR) Operators of Nuclear Power Stations (Reactor Operators/Supervisors) in the training Simulator-setting, centered mainly in aspects of: Team Work, Effective Communications, Use of Procedures, Self checking, Decisions Making, Diagnosis, Leadership, Motivation and other attitudes to promote during the shift. The experience has been positive for everybody and the results welcomed by the participants, who have fed back the process positively. The experienced training cycle is new and it basically consists in developing, in the Simulator setting and, with a specific programme, behaviors in such a way that the participants reflect and, consider as theirs, the expectations and criteria developed on the previously points, where the role of the instructor Assistant, is only to guide, help, observe, challenge, encourage, create possibilities, motivate, suggest and reflect in such a way that the participant may be able to learn by himself. (Author)

  17. Virtual Visit to the ATLAS Control Room by the Vancouver Community Science Celebration

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    October 13th and 14th, 2012. This is the first event of its kind at TELUS World of Science, and we want you to be there. Let's celebrate the science all around us at the Vancouver Community Science Celebration at TELUS World of Science! October 14, 13:30 local (22:30 CET) Sunday's program will feature a live link to the ATLAS control room at CERN's Large Hadron Collider. This will give visitors the amazing opportunity to ask questions to the physicists involved about the LHC experiments, Higgs particles and antimatter. As well as to discover how scientists in Canada and at CERN are all looking back through deep time to answer those big questions on the origins of life, the universe and everything. Doors to the Science Theatre will open at 1:15 pm and space is limited to the first 200 through the door.. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Vancouver-2012.html

  18. Data collection on the unit control room simulator as a method of operator reliability analysis

    International Nuclear Information System (INIS)

    The report consists of the following chapters: (1) Probabilistic assessment of nuclear power plant operation safety and human factor reliability analysis; (2) Simulators and simulations as human reliability analysis tools; (3) DOE project for using the collection and analysis of data from the unit control room simulator in human factor reliability analysis at the Paks nuclear power plant; (4) General requirements for the organization of the simulator data collection project; (5) Full-scale simulator at the Nuclear Power Plants Research Institute in Trnava, Slovakia, used as a training means for operators of the Dukovany NPP; (6) Assessment of the feasibility of quantification of important human actions modelled within a PSA study by employing simulator data analysis; (7) Assessment of the feasibility of using the various exercise topics for the quantification of the PSA model; (8) Assessment of the feasibility of employing the simulator in the analysis of the individual factors affecting the operator's activity; and (9) Examples of application of statistical methods in the analysis of the human reliability factor. (P.A.)

  19. Regulatory assessment of the competence of shift supervisor and control room operator candidates

    International Nuclear Information System (INIS)

    For the last few years, initiatives have been underway to obtain assurance of CANDU stations operating staff competence by evaluating the training programs in place at each station, in addition to the well established approach of direct examination of Shift Supervisor and Control Room Operator candidates. The implementation of these initiatives has benefited from a process of organized consultation with senior representatives of the three nuclear utilities. AECB staff meet regularly with these people as members of a group named the Standing Inter-Utility/Regulatory Working Group, which was itself formed through a regulatory initiative in 1990. The examinations conducted by the AECB have also undergone significant changes to improve their effectiveness, taking into account the shortcomings of the past written examination approach to assessment, the introduction of the training program evaluation activities and the developments in the utilities training programs in the last decade. The main change so far has been the introduction of regular simulator-based examinations in 1993. However, the number and overall duration of regulatory examinations have been reduced. Further changes are planned for the near future, particularly in relation to the examination of Shift Supervisor candidates. This paper provides detailed information on the regulatory initiatives that have been taken so far and those which are still planned. Particular attention will be given to the process of examination using full-scope simulators and the experience which has been acquired since its introduction. (author)

  20. Virtual Visit to the ATLAS Control Room by the Southdown Primary School in Huntington

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    This ATLAS Virtual Visit is being conducted with Mrs. Triessl's 4th grade class at the Southdown Primary School in Huntington, NY. The students of Mrs. Triessl's class have been studying together in an innovative Dual-Language (Spanish/English) program since kindergarten. In spite of the extra academic effort this program requires, the curriculum has maintained a strong and increasing focus on science education. The students have begun this year learning about matter and energy and look forward to meeting a real scientist addressing these topics in a laboratory far across the ocean! The school and the district are thrilled to have this opportunity, which they hope will inspire their students toward future participation in their growing K-12 scientific programs (see http://www.hufsd.edu/academics/science/science_index.html). http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Huntington-2012.html Steven Goldfarb and Kate Shaw in the ATLAS Control Room and students of the 4th grade class a...