WorldWideScience

Sample records for advanced control methods

  1. Comparison of advanced distillation control methods. First annual report

    Energy Technology Data Exchange (ETDEWEB)

    Riggs, J.B.

    1996-11-01

    A detailed dynamic simulator of a propylene/propane (C{sub 3}) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are dynamic matrix control (DMC), nonlinear process model based control, and artificial neutral networks. Each controller was tuned based upon setpoint changes in the overhead product composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

  2. Comparison of Advanced Distillation Control Methods, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  3. Research advances in control methods of wearable walking assist robots

    Directory of Open Access Journals (Sweden)

    Xia ZHANG

    2016-04-01

    Full Text Available As the proportion of the elderly in China increases, the need for robotic assist walking is growing. The assisted-as-needed (AAN property of a wearable walking assist robot matches a user’s biological need and improves the flexibility, appetency and friendliness of a mechanical system. To realize AAN walking and aiming at realizing master/slave flexible assist, a new hybrid control method consisting of hip joint control based on central pattern generators and knee joint impedance structured control is proposed. The adaptation of a robot's master/slave motion mode to a user's physical function, the continuous switching method for knee joint impedance structured control and its stability, and the AAN effect of the Hybrid control theory are studied, which provides a new thought for the development of wearable walking assist robots.

  4. Advanced methods of microscope control using μManager software

    Directory of Open Access Journals (Sweden)

    Arthur D Edelstein

    2014-07-01

    Full Text Available µManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, µManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced µManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging.

  5. Applications of advanced control methods in spacecrafts:progress, challenges, and future prospects

    Institute of Scientific and Technical Information of China (English)

    Yong-chun XIE; Huang HUANG; Yong HU; Guo-qi ZHANG

    2016-01-01

    We aim at examining the current status of advanced control methods in spacecrafts from an engineer’s perspective. Instead of reviewing all the fancy theoretical results in advanced control for aerospace vehicles, the focus is on the advanced control methods that have been practically applied to spacecrafts during flight tests, or have been tested in real time on ground facilities and general testbeds/simulators built with actual flight data. The aim is to provide engineers with all the possible control laws that are readily available rather than those that are tested only in the laboratory at the moment. It turns out that despite the blooming developments of modern control theories, most of them have various limitations, which stop them from being practically applied to spacecrafts. There are a limited number of spacecrafts that are controlled by advanced control methods, among which H2/H∞ robust control is the most popular method to deal with flexible structures, adaptive control is commonly used to deal with model/parameter uncertainty, and the linear quadratic regulator (LQR) is the most frequently used method in case of optimal control. It is hoped that this review paper will enlighten aerospace engineers who hold an open mind about advanced control methods, as well as scholars who are enthusiastic about engineering-oriented problems.

  6. Advanced Control and Protection system Design Methods for Modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL; Wilson Jr, Thomas L [ORNL; Wood, Richard Thomas [ORNL

    2012-06-01

    The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs

  7. Advanced Control Methods for Optimization of Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, J. S.

    Gas Metal Arc Welding (GMAW) is a proces used for joining pieces of metal. Probably, the GMAW process is the most successful and widely used welding method in the industry today. A key issue in welding is the quality of the welds produced. The quality of a weld is influenced by several factors...

  8. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Inseok; Jung, Wondea [KAERI, Daejeon (Korea, Republic of); Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation.

  9. System and method to control h2o2 level in advanced oxidation processes

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a bio-electrochemical system (BES) and a method of in-situ production and removal of H2O2 using such a bio-electrochemical system (BES). Further, the invention relates to a method for in-situ control of H2O2 content in an aqueous system of advanced oxidation...... processes (AOPs) involving in-situ generation of hydroxyl radical (OH) by using such a bio-electrochemical system (BES) and to a method for treatment of wastewater and water disinfection. The bio-electrochemical system (BES) according to the invention comprises: - an aqueous cathode compartment comprising...

  10. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  11. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    Science.gov (United States)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  12. Detecting method of subjects' 3D positions and experimental advanced camera control system

    Science.gov (United States)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  13. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  14. Advanced Control of Turbofan Engines

    CERN Document Server

    Richter, Hanz

    2012-01-01

    Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. This book also: Develops a thorough understanding of the challenges associated with engine operability from a control systems perspective, describing performance demands and operational constraints into the framework and language of modern control theory Presents solid theoretical support for classical and advanced engine co...

  15. Advance of Study on Design Methods of Hydraulic System of Radio Remote Control of Construction Machinery

    Institute of Scientific and Technical Information of China (English)

    FENG Kai-lin; YANG Wei-min; CHEN kang-ning

    2003-01-01

    The working principle of radio remote controlling of construction machinery should be that signals of the radio wave from the transmitter obtained in the receiver were controlled and then changed into electronic analog or digital signals which can be used to drive different actuators and mechanisms of the vehicle.The vehicle could be acted by following the controlling instructions sent by the operator.The best operation mode of construction machinery is suitable not only to manual operating but also to remote controlling in the same vehicle.The design methods of the hydraulic system used for the radio remote controlling of construction machinery are discussed.The design methods of hydraulic circuits for the actuators controlled by solenoid on-off type valves,hydro-electronic multi-way proportional valves,closed loop proportional servo driver or three-way proportional reducing valves are discussed in detail (with real example).The design methods of the power shift transmission of electro-hydraulic controlling,the devices of braking and the directional streering are discussed in this paper.

  16. NERI PROJECT 99-119. TASK 1. ADVANCED CONTROL TOOLS AND METHODS. FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    March-Leuba, J.A.

    2002-09-09

    Nuclear plants of the 21st century will employ higher levels of automation and fault tolerance to increase availability, reduce accident risk, and lower operating costs. Key developments in control algorithms, fault diagnostics, fault tolerance, and communication in a distributed system are needed to implement the fully automated plant. Equally challenging will be integrating developments in separate information and control fields into a cohesive system, which collectively achieves the overall goals of improved performance, safety, reliability, maintainability, and cost-effectiveness. Under the Nuclear Energy Research Initiative (NERI), the U. S. Department of Energy is sponsoring a project to address some of the technical issues involved in meeting the long-range goal of 21st century reactor control systems. This project, ''A New Paradigm for Automated Development Of Highly Reliable Control Architectures For Future Nuclear Plants,'' involves researchers from Oak Ridge National Laboratory, University of Tennessee, and North Carolina State University. This paper documents a research effort to develop methods for automated generation of control systems that can be traced directly to the design requirements. Our final goal is to allow the designer to specify only high-level requirements and stress factors that the control system must survive (e.g. a list of transients, or a requirement to withstand a single failure.) To this end, the ''control engine'' automatically selects and validates control algorithms and parameters that are optimized to the current state of the plant, and that have been tested under the prescribed stress factors. The control engine then automatically generates the control software from validated algorithms. Examples of stress factors that the control system must ''survive'' are: transient events (e.g., set-point changes, or expected occurrences such a load rejection,) and postulated

  17. Advanced differential quadrature methods

    CERN Document Server

    Zong, Zhi

    2009-01-01

    Modern Tools to Perform Numerical DifferentiationThe original direct differential quadrature (DQ) method has been known to fail for problems with strong nonlinearity and material discontinuity as well as for problems involving singularity, irregularity, and multiple scales. But now researchers in applied mathematics, computational mechanics, and engineering have developed a range of innovative DQ-based methods to overcome these shortcomings. Advanced Differential Quadrature Methods explores new DQ methods and uses these methods to solve problems beyond the capabilities of the direct DQ method.After a basic introduction to the direct DQ method, the book presents a number of DQ methods, including complex DQ, triangular DQ, multi-scale DQ, variable order DQ, multi-domain DQ, and localized DQ. It also provides a mathematical compendium that summarizes Gauss elimination, the Runge-Kutta method, complex analysis, and more. The final chapter contains three codes written in the FORTRAN language, enabling readers to q...

  18. Advanced Control Engineering

    DEFF Research Database (Denmark)

    Zhou, Jianjun

    1999-01-01

    This book is developed as a textbook for the course Advanced Control Engineering. The book is intended for students in mechanical engineering and its aim is to provide an understanding of modern control theory as well as methodologies and applications for state space modeling and design....... For this reason, the book puts emphasis on the state-space approach. The main contents of the book includes state-space representation of dynamic systems, analysis of linear control systems, feedback control and observer design. Both continuous-time and discrete-time systems have been addressed in this book....

  19. Advances in methods of commercial FBR core characteristics analyses. Investigations of a treatment of the double-heterogeneity and a method to calculate homogenized control rod cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Kazuteru [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Iwai, Takehiko

    1998-07-01

    A standard data base for FBR core nuclear design is under development in order to improve the accuracy of FBR design calculation. As a part of the development, we investigated an improved treatment of double-heterogeneity and a method to calculate homogenized control rod cross sections in a commercial reactor geometry, for the betterment of the analytical accuracy of commercial FBR core characteristics. As an improvement in the treatment of double-heterogeneity, we derived a new method (the direct method) and compared both this and conventional methods with continuous energy Monte-Carlo calculations. In addition, we investigated the applicability of the reaction rate ratio preservation method as a advanced method to calculate homogenized control rod cross sections. The present studies gave the following information: (1) An improved treatment of double-heterogeneity: for criticality the conventional method showed good agreement with Monte-Carlo result within one sigma standard deviation; the direct method was consistent with conventional one. Preliminary evaluation of effects in core characteristics other than criticality showed that the effect of sodium void reactivity (coolant reactivity) due to the double-heterogeneity was large. (2) An advanced method to calculate homogenize control rod cross sections: for control rod worths the reaction rate ratio preservation method agreed with those produced by the calculations with the control rod heterogeneity included in the core geometry; in Monju control rod worth analysis, the present method overestimated control rod worths by 1 to 2% compared with the conventional method, but these differences were caused by more accurate model in the present method and it is considered that this method is more reliable than the conventional one. These two methods investigated in this study can be directly applied to core characteristics other than criticality or control rod worth. Thus it is concluded that these methods will

  20. PREVENTING LITHOGRAPHY-INDUCED MAVERICK YIELD EVENTS WITH A DISPENSE SYSTEM ADVANCED EQUIPMENT CONTROL METHOD

    Institute of Scientific and Technical Information of China (English)

    Jennifer Broggin

    2012-01-01

    As semiconductor manufacturers march to thedrum beat of Moore's Law there is very little roomfor yield maverieks, especially those that can beprevented. Critical process errors are costly andphotolithography is one of the few processes insemiconductor manufacturing where there is anopportunity to correct errors. Small changes inphotoresist-dispensed volume may have severeimpact on film thickness uniformity and can ulti-mately affect patterning It is important to monitorphoto dispense conditions to detect real-timeevents that may have a direct negative impact onprocess yield and be able to react to these eventsas quickly as possible.This paper presents an evaluation of the IntelliGen Mini, a photoresist dispense system manufacturedby Entegris, Inc. This system utilizes advancedequipment control software, known as dispenseconfirmation, to detect variations in photo dis-pense. These variations, caused by bubbles inthe dispense line, valve errors and accidentally-changed chemistries can all create maverick yieldevents that can go undetected until metrology,defeet inspection or wafer final testThe ability of an advanced dispense system todetect events and create alerts is a very powerfultool, but it can be most effective when that infor-mation is collected and analyzed by an automatedsystem. In a modern fabricator this is most likely astatistical process control chart that is monitoringa track's progress and is ready to stop the trackwhen a maverick event occurs or alert personnelto trends they may not otherwise catch with otherinline ntetrology data. Dispense confirmation,when Combined with networking capabilities,can meet this need.After a brief description of the pump, data from sim-ulated yield-affecting events will be examined toevaluate the IntelliGen Mini's ability to detect them.This discussion will eonclude with a brief analysisof the ultilnate time and cost savings of utilizingdispense confirmation with networking capabilitiesto detect and eliminate poorly

  1. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  2. Design of Advanced Digital Flight Control Systems via Command Generator Tracker (CGT) Synthesis Methods. Volume I.

    Science.gov (United States)

    1981-12-01

    of the CGT controllers. For the aircraft longitudinal dynamics system, three different design models are used. All three design jmodels employ simple... longitudinal dynamics are given below. Reference 30 details * Ithe derivation of the linear perturbation model of aircraft longitudinal dynamics while the...decoupled pitch-pointing control for an aircraft system model representative of modern aircraft longitudinal dynamics. The CGT/PI/KF controller is found

  3. Advanced Wavefront Control Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  4. Advanced feedback control methods in EXTRAP T2R reversed field pinch

    Science.gov (United States)

    Yadikin, D.; Brunsell, P. R.; Paccagnella, R.

    2006-07-01

    Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.

  5. Advanced Error-Control Coding Methods Enhance Reliability of Transmission and Storage Data Systems

    Directory of Open Access Journals (Sweden)

    K. Vlcek

    2003-04-01

    Full Text Available Iterative coding systems are currently being proposed and acceptedfor many future systems as next generation wireless transmission andstorage systems. The text gives an overview of the state of the art initerative decoded FEC (Forward Error-Correction error-control systems.Such systems can typically achieve capacity to within a fraction of adB at unprecedented low complexities. Using a single code requires verylong code words, and consequently very complex coding system. One wayaround the problem of achieving very low error probabilities is turbocoding (TC application. A general model of concatenated coding systemis shown - an algorithm of turbo codes is given in this paper.

  6. Development of human performance evaluation methods and systems for human factors validation in an advanced control room

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jun Su

    2008-02-15

    Advanced control room (ACR) human-machine interface (HMI) design of advanced nuclear power plants (NPPs) such as APR (advanced power reactor)-1400 can be validated through performance-based tests to determine whether it acceptably supports safe operation of the plant. In this paper, plant performance, personnel task performance, situation awareness, workload, teamwork, and anthropometric/ physiological factor are considered as factors for the human performance evaluation. For development of measures in each of the factors, measures generally used in various industries and empirically proven to be useful are adopted as main measures with some modifications. In addition, helpful measures are developed as complementary measures in order to overcome some of the limitations associated with the main measures. The development of the measures is addressed based on the theoretical and empirical background and also based on the regulatory guidelines. A computerized system, which is called HUPESS (human performance evaluation support system), is developed based on the measures developed in this paper. The development of HUPESS is described with respect to the system configuration, the development process, and integrated measurement, evaluation, and analysis. HUPESS supports evaluators (or experimenters) to effectively measure, analyze, and evaluate the human performance for the HMI design validation in ACRs. Hence HUPESS is expected to be used as an effective tool for the human factors validation in the ACR of Shin Kori 3 and 4 NPPs (APR-1400 type) which are under construction in South-Korea. Also two measures of attentional-resource effectiveness based on cost-benefit analysis are developed. One of them is Fixation to Importance Ratio (FIR) which represents the attentional resources spent on an information source compared to the importance of the information source. The other measure is selective attention effectiveness (SAE) which incorporates the FIRs for all information

  7. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  8. Advances in energy harvesting methods

    CERN Document Server

    Elvin, Niell

    2012-01-01

    Advances in Energy Harvesting Methods presents a state-of-the-art understanding of diverse aspects of energy harvesting with a focus on: broadband energy conversion, new concepts in electronic circuits, and novel materials. This book covers recent advances in energy harvesting using different transduction mechanisms; these include methods of performance enhancement using nonlinear effects, non-harmonic forms of excitation and non-resonant energy harvesting, fluidic energy harvesting, and advances in both low-power electronics as well as  material science. The contributors include a brief liter

  9. Advanced Coordinating Control System for Power Plant

    Institute of Scientific and Technical Information of China (English)

    WU Peng; WEI Shuangying

    2006-01-01

    The coordinating control system is popular used in power plant. This paper describes the advanced coordinating control by control methods and optimal operation, introduces their principals and features by using the examples of power plant operation. It is wealthy for automation application in optimal power plant operation.

  10. Advances in robust fractional control

    CERN Document Server

    Padula, Fabrizio

    2015-01-01

    This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially-oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, becau...

  11. Editorial: biotech methods and advances.

    Science.gov (United States)

    Jungbauer, Alois

    2013-01-01

    This annual Methods and Advances Special Issue of Biotechnology Journal contains a selection of cutting-edge research and review articles with a particular emphasis on vertical process understanding – read more in this editorial by Prof. Alois Jungbauer, BTJ co-Editor-in-Chief.

  12. Birth Control Methods

    Science.gov (United States)

    ... Home A-Z Health Topics Birth control methods Birth control methods > A-Z Health Topics Birth control methods ... To receive Publications email updates Enter email Submit Birth control methods Birth control (contraception) is any method, medicine, ...

  13. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  14. Advanced Thermal Control Flight Experiment.

    Science.gov (United States)

    Kirkpatrick, J. P.; Brennan, P. J.

    1973-01-01

    The advanced Thermal Control Flight Experiment on the Applications Technology Satellite (ATS-F) will evaluate, for the first time in a space environment, the performance of a feedback-controlled variable conductance heat pipe and a heat pipe thermal diode. In addition, the temperature control aspects of a phase-change material (PCM) will be demonstrated. The methanol/stainless steel feedback-controlled heat pipe uses helium control gas that is stored in a wicked reservoir. This reservoir is electrically heated through a solid state controller that senses the temperature of the heat source directly. The ammonia/stainless steel diode heat pipe uses excess liquid to block heat transfer in the reverse direction. The PCM is octadecane. Design tradeoffs, fabrication problems, and performance during qualification and flight acceptance tests are discussed.

  15. Advances in chaos theory and intelligent control

    CERN Document Server

    Vaidyanathan, Sundarapandian

    2016-01-01

    The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate s...

  16. Advanced controls for light sources

    Science.gov (United States)

    Biedron, S. G.; Edelen, A. L.; Milton, S. V.

    2016-09-01

    We present a summary of our team's recent efforts in developing adaptive, artificial intelligence-inspired techniques specifically to address several control challenges that arise in machines/systems including those in particle accelerator systems. These techniques can readily be adapted to other systems such as lasers, beamline optics, etc… We are not at all suggesting that we create an autonomous system, but create a system with an intelligent control system, that can continually use operational data to improve itself and combines both traditional and advanced techniques. We believe that the system performance and reliability can be increased based on our findings. Another related point is that the controls sub-system of an overall system is usually not the heart of the system architecture or design process. More bluntly, often times all of the peripheral systems are considered as secondary to the main system components in the architecture design process because it is assumed that the controls system will be able to "fix" challenges found later with the sub-systems for overall system operation. We will show that this is not always the case and that it took an intelligent control application to overcome a sub-system's challenges. We will provide a recent example of such a "fix" with a standard controller and with an artificial intelligence-inspired controller. A final related point to be covered is that of system adaptation for requirements not original to a system's original design.

  17. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  18. Advanced methods of fatigue assessment

    CERN Document Server

    Radaj, Dieter

    2013-01-01

    The book in hand presents advanced methods of brittle fracture and fatigue assessment. The Neuber concept of fictitious notch rounding is enhanced with regard to theory and application. The stress intensity factor concept for cracks is extended to pointed and rounded corner notches as well as to locally elastic-plastic material behaviour. The averaged strain energy density within a circular sector volume around the notch tip is shown to be suitable for strength-assessments. Finally, the various implications of cyclic plasticity on fatigue crack growth are explained with emphasis being laid on the DJ-integral approach.   This book continues the expositions of the authors’ well known reference work in German language ‘Ermüdungsfestigkeit – Grundlagen für Ingenieure’ (Fatigue strength – fundamentals for engineers).

  19. Advanced Light Source control system

    Energy Technology Data Exchange (ETDEWEB)

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs.

  20. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  1. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  2. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    Energy Technology Data Exchange (ETDEWEB)

    BLanc, Katya Le [Idaho National Lab. (INL), Idaho Falls, ID (United States); Powers, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fitzgerald, Kirk [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  3. Recent Advances in Iterative Learning Control

    Institute of Scientific and Technical Information of China (English)

    Jian-Xin XU

    2005-01-01

    In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC), and 3) nonlinear ILC for general nonlinear processes. For linear processes, we focus on several basic configurations of linear ILC. For nonlinear processes with linear ILC, we concentrate on the design and transient analysis which were overlooked and missing for a long period. For general classes of nonlinear processes, we demonstrate nonlinear ILC methods based on Lyapunov theory, which is evolving into a new control paradigm.

  4. Advanced median method for timing jitter compensation

    Institute of Scientific and Technical Information of China (English)

    Wang Chen; Zhu Jiangmiao; Jan Verspecht; Liu Mingliang; Li Yang

    2008-01-01

    Timing jitter is one of the main factors that influence on the accuracy of time domain precision measurement. Timing jitter compensation is one of the problems people concern. Because of the flaws of median method, PDF deconvolution method and synthetic method, we put forward a new method for timing jitter compensation, which is called advanced median method. The theory of the advanced median method based on probability and statistics is analyzed, and the process of the advanced median method is summarized in this paper. Simulation and experiment show that compared with other methods, the new method could compensate timing jitter effectively.

  5. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  6. Advances in dynamical systems and control

    CERN Document Server

    Zgurovsky, Mikhail

    2016-01-01

    Focused on recent advances, this book covers theoretical foundations as well as various applications. It presents modern mathematical modeling approaches to the qualitative and numerical analysis of solutions for complex engineering problems in physics, mechanics, biochemistry, geophysics, biology and climatology. Contributions by an international team of respected authors bridge the gap between abstract mathematical approaches, such as applied methods of modern analysis, algebra, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. As such, the book will be of interest to mathematicians and engineers working at the interface of these fields. .

  7. Evaluation of robotically controlled advanced endoscopic instruments

    NARCIS (Netherlands)

    Reilink, Rob; Kappers, Astrid M.L.; Stramigioli, Stefano; Misra, Sarthak

    2013-01-01

    Background Advanced flexible endoscopes and instruments with multiple degrees of freedom enable physicians to perform challenging procedures such as the removal of large sections of mucosal tissue. However, these advanced endoscopes are difficult to control and require several physicians to cooperat

  8. Advanced Methods of Approximate Reasoning

    Science.gov (United States)

    1990-11-30

    Kyburg, Maria Teresa Lamata, Abe Mamdani, Serafin Moral, Henri Prade. Alessandro Saffiot ti. Glen Shafer, Prakash Shenoy, Philippe Smetb,3 Marcus...Dubois, Francesc Esteva, Oscar Firchein, Marty Fischler, Pascal Fua, Maria Angeles Gil, Luis Godo, Andy Hanson, Jerry Hobbs, David Israel, Joan Jacas, Yvan...Inf. Control, 38:154-169, 1978. [18] L.I. Godo, R. L6pez de Mintaras, C. Sierra , A. Verdaguer. Maiaging linguistically expressed uncertainty in MILORD

  9. Advanced reliability methods - A review

    Science.gov (United States)

    Forsyth, David S.

    2016-02-01

    There are a number of challenges to the current practices for Probability of Detection (POD) assessment. Some Nondestructive Testing (NDT) methods, especially those that are image-based, may not provide a simple relationship between a scalar NDT response and a damage size. Some damage types are not easily characterized by a single scalar metric. Other sensing paradigms, such as structural health monitoring, could theoretically replace NDT but require a POD estimate. And the cost of performing large empirical studies to estimate POD can be prohibitive. The response of the research community has been to develop new methods that can be used to generate the same information, POD, in a form that can be used by engineering designers. This paper will highlight approaches to image-based data and complex defects, Model Assisted POD estimation, and Bayesian methods for combining information. This paper will also review the relationship of the POD estimate, confidence bounds, tolerance bounds, and risk assessment.

  10. Advanced method for oligonucleotide deprotection

    Science.gov (United States)

    Surzhikov, Sergey A.; Timofeev, Edward N.; Chernov, Boris K.; Golova, Julia B.; Mirzabekov, Andrei D.

    2000-01-01

    A new procedure for rapid deprotection of synthetic oligodeoxynucleotides has been developed. While all known deprotection methods require purification to remove the residual protective groups (e.g. benzamide) and insoluble silicates, the new procedure based on the use of an ammonia-free reagent mixture allows one to avoid the additional purification steps. The method can be applied to deprotect the oligodeoxynucleotides synthesized by using the standard protected nucleoside phosphoramidites dGiBu, dCBz and dABz. PMID:10734206

  11. Advanced method for oligonucleotide deprotection.

    Energy Technology Data Exchange (ETDEWEB)

    Surzhikov, S. A.; Timofeev, E. N.; Chernov, B. K.; Golova, J. B.; Mirzabekov, A. D.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology

    2000-04-15

    A new procedure for rapid deprotection of synthetic oligodeoxynucleotides has been developed. While all known deprotection methods require purification to remove the residual protective groups (e.g. benzamide) and insoluble silicates, the new procedure based on the use of an ammonia-free reagent mixture allows one to avoid the additional purification steps. The method can be applied to deprotect the oligodeoxynucleotides synthesized by using the standard protected nucleoside phosphoramidites dG{sup iBu}, dC{sup Bz} and dA{sup Bz}.

  12. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    Science.gov (United States)

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot.

  13. Advanced motor-controller development

    Science.gov (United States)

    Lesster, L. E.; Zeitlin, D. B.; Hall, W. B.

    1983-06-01

    The purpose of this development program was to investigate a promising alternative technique for control of a squirrel cage induction motor for subsea propulsion or hydraulic power applications. The technique uses microprocessor based generation of the pulse width modulation waveforms, which in turn permits use of a true integral volt-second pulse width control for the generation of low harmonic content sine waves from a 3 phase Graetz transistor power bridge.

  14. Advanced thermal control for spacecraft applications

    Science.gov (United States)

    Hardesty, Robert; Parker, Kelsey

    2015-09-01

    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  15. Control system design method

    Science.gov (United States)

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  16. Advanced Emissions Control Development Program: Phase III

    Energy Technology Data Exchange (ETDEWEB)

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    high removals when the scrubber is operated downstream of an ESP. Phase III (Advanced Concepts and Comparison Coals) testing was directed at the development of enhanced air toxics emissions control strategies to further reduce the emissions of mercury. Phase III results further supported the findings of previous phases and demonstrated several methods of enhancing mercury control for both unscrubbed systems and systems equipped with WFGD. Results confirmed that the addition of sorbents can be used to significantly improve the capture of mercury in downstream particulate collection equipment. In addition, Phase III testing demonstrated three methods of minimizing the potential negative impact of an ESP on downstream control of mercury in WFGD systems. These methods included decreased oxidation air flow, the addition of H{sub 2}S into the flue gas at the scrubber inlet, and the addition of EDTA into the absorber reaction tank.

  17. Advanced computational electromagnetic methods and applications

    CERN Document Server

    Li, Wenxing; Elsherbeni, Atef; Rahmat-Samii, Yahya

    2015-01-01

    This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

  18. Advanced nonlinear engine speed control systems

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert

    1994-01-01

    Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one......: accurately tracking of a desired engine speed in the presence of model uncertainties and severe load disturbances. This is accomplished by using advanced nonlinear control techniques such as input/output-linearization and sliding mode control. These techniques take advantage of a nonlinear model...... of the engine dynamics, a mean value engine model....

  19. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    Science.gov (United States)

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  20. Advances in structure research by diffraction methods

    CERN Document Server

    Brill, R

    1970-01-01

    Advances in Structure Research by Diffraction Methods reviews advances in the use of diffraction methods in structure research. Topics covered include the dynamical theory of X-ray diffraction, with emphasis on Ewald waves in theory and experiment; dynamical theory of electron diffraction; small angle scattering; and molecular packing. This book is comprised of four chapters and begins with an overview of the dynamical theory of X-ray diffraction, especially in terms of how it explains all the absorption and propagation properties of X-rays at the Bragg setting in a perfect crystal. The next

  1. Advanced analysis methods in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  2. Advanced Analysis Methods in Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C. [Fermilab

    1900-01-01

    Each generation of high energy physics experiments is grander in scale than the previous – more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  3. Advances in structure research by diffraction methods

    CERN Document Server

    Hoppe, W

    1974-01-01

    Advances in Structure Research by Diffraction Methods: Volume 5 presents discussions on application of diffraction methods in structure research. The book provides the aspects of structure research using various diffraction methods. The text contains 2 chapters. Chapter 1 reviews the general theory and experimental methods used in the study of all types of amorphous solid, by both X-ray and neutron diffraction, and the detailed bibliography of work on inorganic glasses. The second chapter discusses electron diffraction, one of the major methods of determining the structures of molecules in the

  4. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  5. Mathematics for natural scientists II advanced methods

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book covers the advanced mathematical techniques useful for physics and engineering students, presented in a form accessible to physics students, avoiding precise mathematical jargon and laborious proofs. Instead, all proofs are given in a simplified form that is clear and convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each chapter. Mathematics for Natural Scientists II: Advanced Methods is the second of two volumes. It follows the first volume on Fundamentals and Basics.

  6. Advanced Control Techniques with Fuzzy Logic

    Science.gov (United States)

    2014-06-01

    AFRL-RQ-WP-TR-2014-0175 ADVANCED CONTROL TECHNIQUES WITH FUZZY LOGIC James E. Combs Structural Validation Branch Aerospace Vehicles...TECHNIQUES WITH FUZZY LOGIC 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62201F 6. AUTHOR(S) James E. Combs...unlimited. 13. SUPPLEMENTARY NOTES PA Case Number: 88ABW-2014-3281; Clearance Date: 09 Jul 2014. 14. ABSTRACT Research on the Fuzzy Logic control

  7. Advances in neuroprosthetic learning and control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    Full Text Available Significant progress has occurred in the field of brain-machine interfaces (BMI since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action.

  8. Advances of evolutionary computation methods and operators

    CERN Document Server

    Cuevas, Erik; Oliva Navarro, Diego Alberto

    2016-01-01

    The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be effective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.

  9. Advanced statistical methods in data science

    CERN Document Server

    Chen, Jiahua; Lu, Xuewen; Yi, Grace; Yu, Hao

    2016-01-01

    This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a fu...

  10. Advanced time-series analysis of MEG data as a method to explore olfactory function in healthy controls and Parikinson's disease patients

    NARCIS (Netherlands)

    Boesveldt, S.; Knol, D.L.; Verbunt, J.P.A.; Berendse, H.W.

    2009-01-01

    Objectives: To determine whether time-series analysis of magnetoencephalography (MEG) data is a suitable method to study brain activity related to olfactory information processing, and to detect differences in odor-induced brain activity between patients with Parkinson's disease (PD) and controls. M

  11. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  12. Industrial applications of advanced control techniques

    Institute of Scientific and Technical Information of China (English)

    刘国平

    2003-01-01

    This paper discusses two industrial control applications using advanced control techniques. They are theoptimal-tuning nonlinear PID control of hydraulic systems and the neural predictive control of combustor acoustic ofgas turbines. For hydraulic control systems, an optimal PID controller with inverse of dead zone is introduced toovercome the dead zone and is designed to satisfy desired time-domain performance requirements. Using the adaptivemodel, an optimal-tuning PID control scheme is proposed to provide optimal PID parameters even in the case wherethe system dynamics is time variant. For combustor acoustic control of gas turbines, a neural predictive controlstrategy is presented, which consists of three parts: an output model, output predictor and feedback controller. Theoutput model of the combustor acoustic is established using neural networks to predict the output and overcome thetime delay of the system, which is often very large, compared with the sampling period. The output-feedback con-troller is introduced which uses the output of the predictor to suppress instability in the combustion process. The a-bove control strategies are implemented in the SIMULINK/dSPACE controller development environment. Theirperformance is evaluated on the industrial hydraulic test rig and the industrial combustor test rig.

  13. Advanced and intelligent control in power electronics and drives

    CERN Document Server

    Blaabjerg, Frede; Rodríguez, José

    2014-01-01

    Power electronics and variable frequency drives are continuously developing multidisciplinary fields in electrical engineering, and it is practically not possible to write a book covering the entire area by one individual specialist. Especially by taking account the recent fast development in the neighboring fields like control theory, computational intelligence and signal processing, which all strongly influence new solutions in control of power electronics and drives. Therefore, this book is written by individual key specialist working on the area of modern advanced control methods which penetrates current implementation of power converters and drives. Although some of the presented methods are still not adopted by industry, they create new solutions with high further research and application potential. The material of the book is presented in the following three parts: Part I: Advanced Power Electronic Control in Renewable Energy Sources (Chapters 1-4), Part II: Predictive Control of Power Converters and D...

  14. Editorial: Latest methods and advances in biotechnology.

    Science.gov (United States)

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli.

  15. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  16. Advanced control of piezoelectric micro-nano-positioning systems

    CERN Document Server

    Xu, Qingsong

    2016-01-01

    This book explores emerging methods and algorithms that enable precise control of micro-/nano-positioning systems. The text describes three control strategies: hysteresis-model-based feedforward control and hysteresis-model-free feedback control based on and free from state observation. Each paradigm receives dedicated attention within a particular part of the text. Readers are shown how to design, validate and apply a variety of new control approaches in micromanipulation: hysteresis modelling, discrete-time sliding-mode control and model-reference adaptive control. Experimental results are provided throughout and build up to a detailed treatment of practical applications in the fourth part of the book. The applications focus on control of piezoelectric grippers. Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems will assist academic researchers and practising control and mechatronics engineers interested in suppressing sources of nonlinearity such as hysteresis and drift when combining positi...

  17. ADVANCED PROCESS CONTROL DEVELOPMENT IN RESIDUA CATALYTIC CRACKER CONTROL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Process calculations and rigorous dynamic model with detailed coke combustion kine-tics for two-stage regeneration FCC process were developed and integrated into the advanced process control(APC) context. The package was implemented in 6 SINOPEC commercial RFCCUs.Typical 0.5%~0.8% improvement of target product yields was achieved. Significant energy consumption was saved with tighter control over coke burning.

  18. About Advances in Tensor Data Denoising Methods

    Directory of Open Access Journals (Sweden)

    Salah Bourennane

    2008-10-01

    Full Text Available Tensor methods are of great interest since the development of multicomponent sensors. The acquired multicomponent data are represented by tensors, that is, multiway arrays. This paper presents advances on filtering methods to improve tensor data denoising. Channel-by-channel and multiway methods are presented. The first multiway method is based on the lower-rank (K1,…,KN truncation of the HOSVD. The second one consists of an extension of Wiener filtering to data tensors. When multiway tensor filtering is performed, the processed tensor is flattened along each mode successively, and singular value decomposition of the flattened matrix is performed. Data projection on the singular vectors associated with dominant singular values results in noise reduction. We propose a synthesis of crucial issues which were recently solved, that is, the estimation of the number of dominant singular vectors, the optimal choice of flattening directions, and the reduction of the computational load of multiway tensor filtering methods. The presented methods are compared through an application to a color image and a seismic signal, multiway Wiener filtering providing the best denoising results. We apply multiway Wiener filtering and its fast version to a hyperspectral image. The fast multiway filtering method is 29 times faster and yields very close denoising results.

  19. JPL Advanced Thermal Control Technology Roadmap - 2008

    Science.gov (United States)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  20. Advances in Packaging Methods, Processes and Systems

    Directory of Open Access Journals (Sweden)

    Nitaigour Premchand Mahalik

    2014-10-01

    Full Text Available The food processing and packaging industry is becoming a multi-trillion dollar global business. The reason is that the recent increase in incomes in traditionally less economically developed countries has led to a rise in standards of living that includes a significantly higher consumption of packaged foods. As a result, food safety guidelines have been more stringent than ever. At the same time, the number of research and educational institutions—that is, the number of potential researchers and stakeholders—has increased in the recent past. This paper reviews recent developments in food processing and packaging (FPP, keeping in view the aforementioned advancements and bearing in mind that FPP is an interdisciplinary area in that materials, safety, systems, regulation, and supply chains play vital roles. In particular, the review covers processing and packaging principles, standards, interfaces, techniques, methods, and state-of-the-art technologies that are currently in use or in development. Recent advances such as smart packaging, non-destructive inspection methods, printing techniques, application of robotics and machineries, automation architecture, software systems and interfaces are reviewed.

  1. Prototyping Advanced Control Systems on FPGA

    Directory of Open Access Journals (Sweden)

    Simard Stéphane

    2009-01-01

    Full Text Available In advanced digital control and mechatronics, FPGA-based systems on a chip (SoCs promise to supplant older technologies, such as microcontrollers and DSPs. However, the tackling of FPGA technology by control specialists is complicated by the need for skilled hardware/software partitioning and design in order to match the performance requirements of more and more complex algorithms while minimizing cost. Currently, without adequate software support to provide a straightforward design flow, the amount of time and efforts required is prohibitive. In this paper, we discuss our choice, adaptation, and use of a rapid prototyping platform and design flow suitable for the design of on-chip motion controllers and other SoCs with a need for analog interfacing. The platform consists of a customized FPGA design for the Amirix AP1000 PCI FPGA board coupled with a multichannel analog I/O daughter card. The design flow uses Xilinx System Generator in Matlab/Simulink for system design and test, and Xilinx Platform Studio for SoC integration. This approach has been applied to the analysis, design, and hardware implementation of a vector controller for 3-phase AC induction motors. It also has contributed to the development of CMC's MEMS prototyping platform, now used by several Canadian laboratories.

  2. Vertebral morphometry: current methods and recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmi, G. [University of Foggia, Department of Radiology, Foggia (Italy); Scientific Institute Hospital, Department of Radiology, San Giovanni Rotondo (Italy); Diacinti, D. [University La Sapienza, Department of Radiology, Roma (Italy); Kuijk, C. van [University of Amsterdam, Department of Radiology, Amsterdam (Netherlands); Aparisi, F. [Hospital Dr Peset, Department of Diagnostic Radiology, Valencia (Spain); Krestan, C. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Adams, J.E. [University, Imaging Science and Biomedical Engineering, Manchester (United Kingdom); Link, T.M. [University of California, Department of Radiology, San Francisco, CA (United States)

    2008-07-15

    Vertebral fractures are the hallmark of osteoporosis and are associated with increased morbility and mortality. Because a majority of vertebral fractures often occur in absence of specific trauma and are asymptomatic, their identification is radiographic. The two most widely used methods to determine the severity of vertebral fractures are the visual semiquantitative (SQ) assessment and the morphometric quantitative approach, involving the measurements of vertebral body heights. The measurements may be made on conventional spinal radiographs (MRX: morphometric X-ray radiography) or on images obtained from dual X-ray absorptiometry (DXA) scans (MXA: morphometric X-ray absorptiometry).The availability of a rapid, low-dose method for assessment of vertebral fractures, using advanced fan-beam DXA devices, provides a practical method for integrated assessment of BMD and vertebral fracture status. The visual or morphometric assessment of lateral DXA spine images may have a potential role for use as a prescreening tool, excluding normal subjects prior to performing conventional radiographs. (orig.)

  3. The Advanced Controls Program at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Knee, H.E.; White, J.D.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL), under sponsorship of the US Department of Energy (DOE), is conducting research that will lead to advanced, automated control of new liquid-metal-reactor (LMR) nuclear power plants. Although this program of research (entitled the Advanced Controls Program'') is focused on LMR technology, it will be capable of providing control design, test, and qualification capability for other advanced reactor designs (e.g., the advanced light water reactor (ALWR) and high temperature gas-cooled reactor (HTGR) designs), while also benefiting existing nuclear plants. The Program will also have applicability to complex, non-nuclear process control environments (e.g., petrochemical, aerospace, etc.). The Advanced Controls Program will support capabilities throughout the entire plant design life cycle, i.e., from the initial interactive first-principle dynamic model development for the process, systems, components, and instruments through advanced control room qualification. The current program involves five principal areas of research activities: (1) demonstrations of advanced control system designs, (2) development of an advanced controls design environment, (3) development of advanced control strategies, (4) research and development (R D) in human-system integration for advanced control system designs, and (5) testing and validation of advanced control system designs. Discussion of the research in these five areas forms the basis of this paper. Also included is a description of the research directions of the program. 8 refs.

  4. Numerical methods in control

    Science.gov (United States)

    Mehrmann, Volker; Xu, Hongguo

    2000-11-01

    We study classical control problems like pole assignment, stabilization, linear quadratic control and H[infinity] control from a numerical analysis point of view. We present several examples that show the difficulties with classical approaches and suggest reformulations of the problems in a more general framework. We also discuss some new algorithmic approaches.

  5. Methods in Logic Based Control

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1999-01-01

    Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC-design met......Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...

  6. ADVANCED CONTROL OF A COMPLEX CHEMICAL PROCESS

    Directory of Open Access Journals (Sweden)

    Roxana Both

    Full Text Available Abstract Three phase catalytic hydrogenation reactors are important reactors with complex behavior due to the interaction among gas, solid and liquid phases with the kinetic, mass and heat transfer mechanisms. A nonlinear distributed parameter model was developed based on mass and energy conservation principles. It consists of balance equations for the gas and liquid phases, so that a system of partial differential equations is generated. Because detailed nonlinear mathematical models are not suitable for use in controller design, a simple linear mathematical model of the process, which describes its most important properties, was determined. Both developed mathematical models were validated using plant data. The control strategies proposed in this paper are a multivariable Smith Predictor PID controller and multivariable Smith Predictor structure in which the primary controllers are derived based on Internal Model Control. Set-point tracking and disturbance rejection tests are presented for both methods based on scenarios implemented in Matlab/SIMULINK.

  7. Birth control - slow release methods

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007555.htm Birth control - slow release methods To use the sharing features on this page, please enable JavaScript. Certain birth control methods contain man-made forms of hormones. These ...

  8. Multistep method for controlling chaos

    Science.gov (United States)

    Starobinets, Igor M.; Pikovsky, Arkady S.

    1993-10-01

    We present a multistep control method where the trajectory on a chaotic attractor is directed by small perturbations towards a chosen fixed point. The method gives a significant reduction of the chaotic transient preceding the controlled motion as compared with the Ott-Grebogi-Yorke method. Transition from local to global control, when chaotic transients disappear, is discussed.

  9. Advanced continuous cultivation methods for systems microbiology.

    Science.gov (United States)

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  10. Ervaringen met Advanced Cruise Control (ACC) in een korte praktijkproef.

    NARCIS (Netherlands)

    Oei, H.-l.

    2003-01-01

    Experiences with Advanced Cruise Control in traffic; a limited experiment. Advanced Cruise Control (ACC) is an ordinary cruise control in which the desired speed is installed manually, but in which the headway time to the vehicle in front is also taken into account. If the headway time becomes less

  11. Advanced mobile networking, sensing, and controls.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  12. Advances and applications in sliding mode control systems

    CERN Document Server

    Zhu, Quanmin

    2015-01-01

    This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.    

  13. Integrated metrology: an enabler for advanced process control (APC)

    Science.gov (United States)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  14. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Combinatorial methods are proposed to develop advanced Aqueous Oxidation Catalysts (AOCs) with the capability to mineralize organic contaminants present in effluents...

  15. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  16. Recent Advances in the Control of Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Ziqiang Chi

    2014-11-01

    Full Text Available The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable efforts have been made to compensate for the nonlinearity of piezoelectric actuation through the mathematical modelling and control approaches. This paper provides a review of recent advances on the control of piezoelectric actuators. After a brief introduction of basic components of typical piezoelectric micro/nano positioning platforms, the working principle and modelling of piezoelectric actuators are outlined in this paper. This is followed with the major control method and recent progress is presented in detail. Finally, some open issues and future work on the control of piezoelectric actuators are extensively discussed.

  17. "Advanced Manufacturing Methods for Systems of Nanospacecrafts".

    OpenAIRE

    Rochus, Pierre

    2014-01-01

    Space instrumentation and Space Environmental testing activities at CSL Dreams, a priori expectations and space specificities Advanced Manufacturing Techniques considered in our studies First steps realizations 15 years ago More concrete and more recent examples Conclusions and future activities Peer reviewed

  18. Designing and Testing Contols to Mitigate Dynamic Loads in the Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.D.; Stol, K.A.

    2008-01-01

    The National Renewable Energy Laboratory is designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads of wind turbines. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. In this paper, we show the design and simulation testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control design methods.

  19. Advanced and controlled drug delivery systems in clinical disease management

    NARCIS (Netherlands)

    Brouwers, JRBJ

    1996-01-01

    Advanced and controlled drug delivery systems are important for clinical disease management. In this review the most important new systems which have reached clinical application are highlighted. Microbiologically controlled drug delivery is important for gastrointestinal diseases like ulcerative co

  20. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  1. Advanced control of a water supply system: a case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  2. Generic Model Predictive Control Framework for Advanced Driver Assistance Systems

    NARCIS (Netherlands)

    Wang, M.

    2014-01-01

    This thesis deals with a model predictive control framework for control design of Advanced Driver Assistance Systems, where car-following tasks are under control. The framework is applied to design several autonomous and cooperative controllers and to examine the controller properties at the microsc

  3. Computerized triaxial test control methods

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2016-01-01

    Liquefaction induced nonlinearities in soil make triaxial cyclic testing problematic. Some solutions are presented in this paper. Single diameter height, smooth boundary condition triaxial tests perform well at relatively high axial strains, even while liquefying for many loading cycles. Testing...... capabilities of the setup are extended by using a programmable hydraulic piston with real time feedback loops. The control methods provided by the controller mimic those applied in computer simulations. Force control, displacement control or a combination of both can be used. Single diameter height sample...... control methods provide access to testing both direct and inverse stiffness matrix response as well as to observe strain creep and stress relaxation directly....

  4. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  5. Advanced Control Law Tuning and Performance Assessment

    Science.gov (United States)

    2006-12-01

    range. The Fig. 21 shows the response of the NGMV controller and of two of the PID controllers obtained. The dynamic response of the NGMV controller...is very close to the original one, despite the significant increase in the time delay. It was not possible to obtain, for the PID controllers , both

  6. Advanced electromagnetic methods for aerospace vehicles

    Science.gov (United States)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  7. Recent advances in boundary element methods

    CERN Document Server

    Manolis, GD

    2009-01-01

    Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).

  8. Catalytic Methods in Asymmetric Synthesis Advanced Materials, Techniques, and Applications

    CERN Document Server

    Gruttadauria, Michelangelo

    2011-01-01

    This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milesto

  9. Advanced Stellar Compass, SAC-C, Interface Control Document

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Betto, Maurizio; Riis, Troels;

    Interface Control Document for the Advanced Stellar Compass for the SAC-C satellite. The SAC-C is Argentine, Danish and NASA satellite. On the SAC-C satellite there are a simplified version of the Ørsted instrumentation platform. The Advanced Stellar Compass is a improved version of the Ørsted Star...... Imager. This document descibes the interface between the Advanced Stellar Compass and OBDH, the size of the DPU and the Camera etc....

  10. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  11. MultiController: the PLC-SCADA object for advanced regulation

    CERN Document Server

    Ortola, J

    2007-01-01

    Nowadays, industrial solutions with PLCs (Programmable Logic Controllers) have basic control loop features. The SCADA (Supervisory Control And Data Acquisition) system is a key point of the process control system due to an efficient HMI (Human Machine Interfaces) that provides an open method of tuning and leading possibilities. As a consequence, advanced control algorithms have to be developed and implemented for those PLC-SCADA solutions in order to provide perspectives in solving complex and critical regulation problems. The MultiController is an object integrated for a large scale project at CERN (the European Organization for Nuclear Research) named LHC-GCS (Large Hadron Collider - Gas Control System). It is developed for a Framework called CERN-UNICOS based on PLC-SCADA facilities. The MultiController object offers various advanced control loop strategies. It gives to the user advanced control algorithms like PID, Smith Predictor, PFC, GPC and RST. It is implemented as a monolithic entity (in PLC and SCA...

  12. Advanced mathematical methods in science and engineering

    CERN Document Server

    Hayek, SI

    2010-01-01

    Ordinary Differential EquationsDEFINITIONS LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER LINEAR INDEPENDENCE AND THE WRONSKIAN LINEAR HOMOGENEOUS DIFFERENTIAL EQUATION OF ORDER N WITH CONSTANT COEFFICIENTS EULER'S EQUATION PARTICULAR SOLUTIONS BY METHOD OF UNDETERMINED COEFFICIENTS PARTICULAR SOLUTIONS BY THE METHOD OF VARIATIONS OF PARAMETERS ABEL'S FORMULA FOR THE WRONSKIAN INITIAL VALUE PROBLEMSSeries Solutions of Ordinary Differential EquationsINTRODUCTION POWER SERIES SOLUTIONS CLASSIFICATION

  13. Advances in iterative methods for nonlinear equations

    CERN Document Server

    Busquier, Sonia

    2016-01-01

    This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

  14. Advanced Combustion and Emission Control Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  15. Advanced overset methods for vortex dominated flows

    Science.gov (United States)

    Foster, Norman F.

    A newly implemented computational method of high-order accuracy is presented for the accurate calculation of unsteady vortical structures that may produce aeroacoustic sources, or affect downstream structural responses. The method involves prediction of the mean flow field by solving the Navier-Stokes equations (NSE) using a computational fluid dynamics (CFD) solver that employs high-order discretization on overlapping (overset) grid systems. The method dramatically reduces the artificial dissipation and dispersion of vortical flow features that would ordinarily be lost or degraded with the use of current methods. Complex domains are discretized using an overset grid strategy that allows for the use of multiple high quality structured meshes. The high-order method is developed and incorporated into a generalized overset grid assembly scheme, which allows high-order spatial accuracy of the NSE solutions to be maintained across overset grid boundaries. Comparisons are made to calculations that do not preserve high-order accuracy at overset boundaries, and insight is obtained into the effects and sensitivities of different treatments of overlapping boundaries. A nested block adaptive mesh refinement (AMR) method has also been developed, within the context of the overset paradigm. The method is shown to significantly improve accuracy for a given computational cell count by tracking dynamic vortical features using appropriate dynamic refinement and coarsening, and its implementation in the context of the high-order overset method is presented. The computational procedures presented herein are tested against analytic and canonical cases (slightly compressible, M ≤ 0.5, and incompressible mean flows) in order to characterize the accuracy of flow field calculations using high-order discretization and overset schemes across overlapping grid boundaries. The methods are also extended to far more complex systems including the transport of rotorcraft hub vorticity to

  16. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  17. Model-free adaptive control of advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  18. Advances in the control of mechatronic suspension systems

    Institute of Scientific and Technical Information of China (English)

    Wajdi SABOUD; Sallehuddin Mohamed HARIS; Yuzita YAACOB

    2014-01-01

    The suspension system is a key element in motor vehicles. Advancements in electronics and micropro-cessor technology have led to the realization of mechatronic suspensions. Since its introduction in some production motorcars in the 1980s, it has remained an area which sees active research and development, and this will likely continue for many years to come. With the aim of identifying current trends and future focus areas, this paper presents a review on the state-of-the-art of mechatronic suspensions. First, some commonly used classifications of mechatronic suspensions are presented. This is followed by a discussion on some of the actuating mechanisms used to provide control action. A survey is then reported on the many types of control approaches, including look-ahead preview, predictive, fuzzy logic, proportional-integral-derivative (PID), optimal, robust, adaptive, robust adaptive, and switching control. In conclusion, hydraulic actuators are most commonly used, but they impose high power requirements, limiting practical realizations of active suspensions. Electromagnetic actuators are seen to hold the promise of lower power requirements, and rigorous research and development should be conducted to make them commercially usable. Current focus on control methods that are robust to suspension parameter variations also seems to produce limited performance improvements, and future control approaches should be adaptive to the changeable driving conditions.

  19. Recent advances in coupled-cluster methods

    CERN Document Server

    Bartlett, Rodney J

    1997-01-01

    Today, coupled-cluster (CC) theory has emerged as the most accurate, widely applicable approach for the correlation problem in molecules. Furthermore, the correct scaling of the energy and wavefunction with size (i.e. extensivity) recommends it for studies of polymers and crystals as well as molecules. CC methods have also paid dividends for nuclei, and for certain strongly correlated systems of interest in field theory.In order for CC methods to have achieved this distinction, it has been necessary to formulate new, theoretical approaches for the treatment of a variety of essential quantities

  20. Safety Cases for Advanced Control Software: Safety Case Patterns

    Science.gov (United States)

    2007-10-15

    Classification Argument (from [14]) The classification of software failure modes can be useful for adaptive systems. Kurd in [15] shows how HAZOPS ...Safety Cases for Advanced Control Software : Safety Case Patterns Robert Alexander, Tim Kelly, Zeshan Kurd, John...5a. CONTRACT NUMBER FA8655-07-1-3025 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Safety Cases for Advanced Control Software 5c. PROGRAM ELEMENT

  1. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of combinatorial methods is proposed to rapidly screen catalyst formulations for the advanced development of aqueous phase oxidation catalysts with greater...

  2. Advanced Bayesian Methods for Lunar Surface Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation of this project is the application of advanced Bayesian methods to integrate real-time dense stereo vision and high-speed optical flow with an...

  3. Advanced Bayesian Methods for Lunar Surface Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation of this project will be the application of advanced Bayesian methods to integrate real-time dense stereo vision and high-speed optical flow with...

  4. Advanced methods in synthetic aperture radar imaging

    Science.gov (United States)

    Kragh, Thomas

    2012-02-01

    For over 50 years our world has been mapped and measured with synthetic aperture radar (SAR). A SAR system operates by transmitting a series of wideband radio-frequency pulses towards the ground and recording the resulting backscattered electromagnetic waves as the system travels along some one-dimensional trajectory. By coherently processing the recorded backscatter over this extended aperture, one can form a high-resolution 2D intensity map of the ground reflectivity, which we call a SAR image. The trajectory, or synthetic aperture, is achieved by mounting the radar on an aircraft, spacecraft, or even on the roof of a car traveling down the road, and allows for a diverse set of applications and measurement techniques for remote sensing applications. It is quite remarkable that the sub-centimeter positioning precision and sub-nanosecond timing precision required to make this work properly can in fact be achieved under such real-world, often turbulent, vibrationally intensive conditions. Although the basic principles behind SAR imaging and interferometry have been known for decades, in recent years an explosion of data exploitation techniques enabled by ever-faster computational horsepower have enabled some remarkable advances. Although SAR images are often viewed as simple intensity maps of ground reflectivity, SAR is also an exquisitely sensitive coherent imaging modality with a wealth of information buried within the phase information in the image. Some of the examples featured in this presentation will include: (1) Interferometric SAR, where by comparing the difference in phase between two SAR images one can measure subtle changes in ground topography at the wavelength scale. (2) Change detection, in which carefully geolocated images formed from two different passes are compared. (3) Multi-pass 3D SAR tomography, where multiple trajectories can be used to form 3D images. (4) Moving Target Indication (MTI), in which Doppler effects allow one to detect and

  5. Cooperative research for human factors review of advanced control rooms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Park, Jae Chang; Lee, Yong Hee; Oh, In Seok; Lee, Hyun Chul

    2000-12-01

    This project has been performed as cooperative research between KAERI and USNRC. Human factors issues related to soft controls, which is one of key features of advanced HSI, are identified in this project. The issues are analyzed for the evaluation approaches in either experimental or analytical ways. Also, issues requiring additional researches for the evaluation of advanced HSI are identified in the areas of advanced information systems design, computer-based procedure systems, soft controls, human systems interface and plant modernization process, and maintainability of digital systems. The issues are analyzed to discriminate the urgency of researches on it to high, medium, and low levels in consideration of advanced HSI development status in Korea, and some of the issues that can be handled by experimental researches are identified. Additionally, an experimental study is performed to compare operator's performance on human error detection in advanced control rooms vs. in conventional control rooms. It is found that advanced control rooms have several design characteristics hindering operator's error detection performance compared to conventional control rooms.

  6. Advanced methods of treatment of hypophysis adenoma

    Directory of Open Access Journals (Sweden)

    Kan Ya.A.

    2011-03-01

    Full Text Available Hypophysis adenomas are mostly spread in the chiasmatic cellular area. They account 18% of all new brain formations, the structure of pituitary adenomas includes prolactinomas in a large number of cases which are manifested by the syndrome of hyperprolactinemia and hormone inactive hypophysis tumours (35%. Somatotropins (13-15% are lower in frequency, the main clinical feature is acromegalia. One can rarely reveal corticotropins (8-10%, gonadotro-pins (7-9% and thyrotropins (1% and their mixed forms. Transsphenoidal surgical interventions are considered to be methods of choice treatment of hypophysis adenomas and other formations in the chiasmatic cellular area. Alternative methods of treatment are conservative. They can be as an addition to microsurgery (radiotherapy

  7. Automated Deployment of Advanced Controls and Analytics in Buildings

    Science.gov (United States)

    Pritoni, Marco

    Buildings use 40% of primary energy in the US. Recent studies show that developing energy analytics and enhancing control strategies can significantly improve their energy performance. However, the deployment of advanced control software applications has been mostly limited to academic studies. Larger-scale implementations are prevented by the significant engineering time and customization required, due to significant differences among buildings. This study demonstrates how physics-inspired data-driven models can be used to develop portable analytics and control applications for buildings. Specifically, I demonstrate application of these models in all phases of the deployment of advanced controls and analytics in buildings: in the first phase, "Site Preparation and Interface with Legacy Systems" I used models to discover or map relationships among building components, automatically gathering metadata (information about data points) necessary to run the applications. During the second phase: "Application Deployment and Commissioning", models automatically learn system parameters, used for advanced controls and analytics. In the third phase: "Continuous Monitoring and Verification" I utilized models to automatically measure the energy performance of a building that has implemented advanced control strategies. In the conclusions, I discuss future challenges and suggest potential strategies for these innovative control systems to be widely deployed in the market. This dissertation provides useful new tools in terms of procedures, algorithms, and models to facilitate the automation of deployment of advanced controls and analytics and accelerate their wide adoption in buildings.

  8. Transformation method and wave control

    Science.gov (United States)

    Chang, Zheng; Hu, Jin; Hu, Geng-Kai

    2010-12-01

    Transformation method provides an efficient way to control wave propagation by materials. The transformed relations for field and material during a transformation are essential to fulfill this method. We propose a systematic method to derive the transformed relations for a general physic process, the constraint conditions are obtained by considering geometrical and physical constraint during a mapping. The proposed method is applied to Navier's equation for elastodynamics, Helmholtz's equation for acoustic wave and Maxwell's equation for electromagnetic wave, the corresponding transformed relations are derived, which can be used in the framework of transformation method for wave control. We show that contrary to electromagnetic wave, the transformed relations are not uniquely determined for elastic wave and acoustic wave, so we have a freedom to choose them differently. Using the obtained transformed relations, we also provide some examples for device design, a concentrator for elastic wave, devices for illusion acoustic and illusion optics are conceived and validated by numerical simulations.

  9. A modified captive bubble method for determining advancing and receding contact angles

    Science.gov (United States)

    Xue, Jian; Shi, Pan; Zhu, Lin; Ding, Jianfu; Chen, Qingmin; Wang, Qingjun

    2014-03-01

    In this work, a modification to the captive bubble method was proposed to test the advancing and receding contact angle. This modification is done by adding a pressure chamber with a pressure control system to the original experimental system equipped with an optical angle mater equipped with a high speed CCD camera, a temperature control system and a computer. A series of samples with highly hydrophilic, hydrophilic, hydrophobic and superhydrophobic surfaces were prepared. The advancing and receding contact angles of these samples with highly hydrophilic, hydrophilic, and hydrophobic surfaces through the new methods was comparable to the result tested by the traditional sessile drop method. It is proved that this method overcomes the limitation of the traditional captive bubble method and the modified captive bubble method allows a smaller error from the test. However, due to the nature of the captive bubble technique, this method is also only suitable for testing the surface with advancing or receding contact angle below 130°.

  10. Control of Smart Building Using Advanced SCADA

    Science.gov (United States)

    Samuel, Vivin Thomas

    For complete control of the building, a proper SCADA implementation and the optimization strategy has to be build. For better communication and efficiency a proper channel between the Communication protocol and SCADA has to be designed. This paper concentrate mainly between the communication protocol, and the SCADA implementation, for a better optimization and energy savings is derived to large scale industrial buildings. The communication channel used in order to completely control the building remotely from a distant place. For an efficient result we consider the temperature values and the power ratings of the equipment so that while controlling the equipment, we are setting a threshold values for FDD technique implementation. Building management system became a vital source for any building to maintain it and for safety purpose. Smart buildings, refers to various distinct features, where the complete automation system, office building controls, data center controls. ELC's are used to communicate the load values of the building to the remote server from a far location with the help of an Ethernet communication channel. Based on the demand fluctuation and the peak voltage, the loads operate differently increasing the consumption rate thus results in the increase in the annual consumption bill. In modern days, saving energy and reducing the consumption bill is most essential for any building for a better and long operation. The equipment - monitored regularly and optimization strategy is implemented for cost reduction automation system. Thus results in the reduction of annual cost reduction and load lifetime increase.

  11. Human factors survey of advanced instrumentation and controls

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.J.

    1989-01-01

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I C. Fifteen potential human factors problems were identified. They include: the need for an advanced I C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I C; and operator acceptance and trust. 11 refs., 1 tab.

  12. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    Science.gov (United States)

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  13. AMBA Based Advanced DMA Controller for SoC

    Directory of Open Access Journals (Sweden)

    Abdullah Aljumah

    2016-03-01

    Full Text Available this paper describes the implementation of an AMBA Based Advanced DMA Controller for SoC. It uses AMBA Specifications, where two buses AHB and APB are defined and works for processor as system bus and peripheral bus respectively. The DMA controller functions between these two buses as a bridge and allow them to work concurrently. Depending on the speed of peripherals it uses buffering mechanism. Therefore an asynchronous FIFO is used for synchronizing the speed of peripherals. The proposed DMA controller can works in SoC along with processor and achieve fast data rate. The method introduced significant volume of data transfer with very low timing characteristics. Thus it is a better choice in respect of timing and volume of data. These two issues have been resolved under this research study. The results are compared with the AMD processors, like Geode GX 466, GX 500 and GX 533, and the presence and absence of DMA controller with processor is discussed and compared. The DMAC stands to be better alternative in SoC design.

  14. Advanced Methods and Applications in Computational Intelligence

    CERN Document Server

    Nikodem, Jan; Jacak, Witold; Chaczko, Zenon; ACASE 2012

    2014-01-01

    This book offers an excellent presentation of intelligent engineering and informatics foundations for researchers in this field as well as many examples with industrial application. It contains extended versions of selected papers presented at the inaugural ACASE 2012 Conference dedicated to the Applications of Systems Engineering. This conference was held from the 6th to the 8th of February 2012, at the University of Technology, Sydney, Australia, organized by the University of Technology, Sydney (Australia), Wroclaw University of Technology (Poland) and the University of Applied Sciences in Hagenberg (Austria). The  book is organized into three main parts. Part I contains papers devoted to the heuristic approaches that are applicable in situations where the problem cannot be solved by exact methods, due to various characteristics or  dimensionality problems. Part II covers essential issues of the network management, presents intelligent models of the next generation of networks and distributed systems ...

  15. Advanced Stellar Compass, CHAMP, Interface Control Document

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Betto, Maurizio;

    1999-01-01

    The German government research establishment "GeoForschungsZentrum" developed under a contract to the German government a microsatellite named "Champ". The Space Instrumentation Group has made a Interface Control Document for the CHAMP, witch describes the Star Imager, the electrical interface, t...

  16. Advanced Control Techniques for WEC Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Jasinski, M.;

    2007-01-01

    This paper presents the ongoing work on control of the Wave Dragon wave energy converter. Research is being conducted in and between several centers across Europe. This is building upon the knowledge gained in the prototype project, and will enable much better performance of the future deployment...

  17. Advanced Attitude Control af Pico Sized Satellites

    DEFF Research Database (Denmark)

    Larsen, Jesper A.; Amini, Rouzbeh; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    accuracy of better than 5 degrees. Cost, size, weight and power requirements, on the other hand, impose selecting relative simple sensors and actuators which leads to an attitude control requirement of less than 1 degree. This precision is obtained by a combination of magnetorquers and momentum wheels...

  18. A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control

    OpenAIRE

    2016-01-01

    Despite several decades of research, electrically powered hand and arm prostheses are still controlled with very simple algorithms that process the surface electromyogram (EMG) of remnant muscles to achieve control of one prosthetic function at a time. More advanced machine learning methods have shown promising results under laboratory conditions. However, limited robustness has largely prevented the transfer of these laboratory advances to clinical applications. In this paper, we introduce a...

  19. Advancing methods for global crop area estimation

    Science.gov (United States)

    King, M. L.; Hansen, M.; Adusei, B.; Stehman, S. V.; Becker-Reshef, I.; Ernst, C.; Noel, J.

    2012-12-01

    Cropland area estimation is a challenge, made difficult by the variety of cropping systems, including crop types, management practices, and field sizes. A MODIS derived indicator mapping product (1) developed from 16-day MODIS composites has been used to target crop type at national scales for the stratified sampling (2) of higher spatial resolution data for a standardized approach to estimate cultivated area. A global prototype is being developed using soybean, a global commodity crop with recent LCLUC dynamic and a relatively unambiguous spectral signature, for the United States, Argentina, Brazil, and China representing nearly ninety percent of soybean production. Supervised classification of soy cultivated area is performed for 40 km2 sample blocks using time-series, Landsat imagery. This method, given appropriate data for representative sampling with higher spatial resolution, represents an efficient and accurate approach for large area crop type estimation. Results for the United States sample blocks have exhibited strong agreement with the National Agricultural Statistics Service's (NASS's) Cropland Data Layer (CDL). A confusion matrix showed a 91.56% agreement and a kappa of .67 between the two products. Field measurements and RapidEye imagery have been collected for the USA, Brazil and Argentina in further assessing product accuracies. The results of this research will demonstrate the value of MODIS crop type indicator products and Landsat sample data in estimating soybean cultivated area at national scales, enabling an internally consistent global assessment of annual soybean production.

  20. Advances in Future Computer and Control Systems v.2

    CERN Document Server

    Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)

    2012-01-01

    FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.

  1. Advances in Future Computer and Control Systems v.1

    CERN Document Server

    Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)

    2012-01-01

    FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.

  2. Advances in Computer, Communication, Control and Automation

    CERN Document Server

    011 International Conference on Computer, Communication, Control and Automation

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011). 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011) has been held in Zhuhai, China, November 19-20, 2011. This volume  topics covered include signal and Image processing, speech and audio Processing, video processing and analysis, artificial intelligence, computing and intelligent systems, machine learning, sensor and neural networks, knowledge discovery and data mining, fuzzy mathematics and Applications, knowledge-based systems, hybrid systems modeling and design, risk analysis and management, system modeling and simulation. We hope that researchers, graduate students and other interested readers benefit scientifically from the proceedings and also find it stimulating in the process.

  3. Advanced Restricted Area Entry Control System (Araecs)

    Science.gov (United States)

    2014-06-01

    the standardized effect of each factor on the response. The red line in Figure 9 is the statistically significant threshold for an alpha value of 0.05...system. The red line indicates the secure area boundary. Figure 14. Overall Conceptual View of ARAECS (1) Prime Directive. Entry control and...template information is not readable from the smart card. With this technique, the smart card must be microcontroller (as opposed to just memory) based

  4. Advanced CIDI Emission Control System Development

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key

  5. Development of the NSTX-U Advanced Divertor Control

    Science.gov (United States)

    Vail, Patrick; Kolemen, Egemen

    2016-10-01

    Advanced magnetic divertor configurations such as the snowflake (SF) divertor are being investigated at NSTX-U for reducing the peak heat flux onto plasma-facing components. Initial efforts include development of plasma scenarios incorporating SF configurations using an upgraded set of divertor coils as well as implementation of a feedback control system for real-time detection and manipulation of two closely-spaced magnetic null points. Closed-loop plasma simulations are performed to demonstrate precise control of various SF configurations. The simulations are then used to demonstrate that the controller can be enhanced to regulate additional parameters such as strike point location and divertor flux expansion. The advanced divertor control will be used in the coming years to enable experiments investigating the physics of advanced divertors at NSTX-U. Supported by the US DOE under DE-AC02-09CH11466.

  6. Advanced Integrated Power and Attitude Control System (IPACS) study

    Science.gov (United States)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  7. Recent Advances in Analytical Methods in Mathematical Physics

    OpenAIRE

    Ozer, Teoman; Taranov, Vladimir B.; Smirnov, Roman G.; Klemas, Thomas J.; Thamburaja, Prakash; Wijesinghe, Sanith; Polat, Burak

    2012-01-01

    This special issue of the journal Advances in Mathematical Physics was planned to focus on the most recent advances in analytical techniques of particular use to researchers in the field of mathematical physics that covers a very wide area of topics and has a key role in interdisciplinary studies including mathematics, mechanics, and physics. In this special issue, we were particularly interested in receiving novel contributions detailing analytical methods together with approp...

  8. Advanced control room evaluation: General approach and rationale

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M. (Brookhaven National Lab., Upton, NY (USA)); Wachtel, J. (Nuclear Regulatory Commission, Washington, DC (USA))

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants (NPPs) are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale and general approach to the development of a human factors review guideline for ACRs. The factors influencing the guideline development are discussed, including the review environment, the types of advanced technologies being addressed, the human factors issues associated with advanced technology, and the current state-of-the-art of human factors guidelines for advanced human-system interfaces (HSIs). The proposed approach to ACR review would track the design and implementation process through the application of review guidelines reflecting four review modules: planning, design process analysis, human factors engineering review, and dynamic performance evaluation. 21 refs.

  9. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  10. A modified captive bubble method for determining advancing and receding contact angles

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Jian; Shi, Pan; Zhu, Lin [Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Eduction, Nanjing 210093 (China); Ding, Jianfu [Security and Disruptive Technologies, National Research Council Canada, 1200 Montreal Road, Ottawa, K1A 0R6, Ontario (Canada); Chen, Qingmin [Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Eduction, Nanjing 210093 (China); Wang, Qingjun, E-mail: njuwqj@nju.edu.cn [Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Eduction, Nanjing 210093 (China)

    2014-03-01

    Graphical abstract: - Highlights: • A modified captive bubble method for determining advancing and receding contact angle is proposed. • We have designed a pressure chamber with a pressure control system to the original experimental. • The modified method overcomes the deviation of the bubble in the traditional captive bubble method. • The modified captive bubble method allows a smaller error from the test. - Abstract: In this work, a modification to the captive bubble method was proposed to test the advancing and receding contact angle. This modification is done by adding a pressure chamber with a pressure control system to the original experimental system equipped with an optical angle mater equipped with a high speed CCD camera, a temperature control system and a computer. A series of samples with highly hydrophilic, hydrophilic, hydrophobic and superhydrophobic surfaces were prepared. The advancing and receding contact angles of these samples with highly hydrophilic, hydrophilic, and hydrophobic surfaces through the new methods was comparable to the result tested by the traditional sessile drop method. It is proved that this method overcomes the limitation of the traditional captive bubble method and the modified captive bubble method allows a smaller error from the test. However, due to the nature of the captive bubble technique, this method is also only suitable for testing the surface with advancing or receding contact angle below 130°.

  11. Strategy to Promote Active Learning of an Advanced Research Method

    Science.gov (United States)

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  12. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  13. Developments and advances in emission control technology. SP-1120

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Automotive emission control is an increasingly complex subject that continues to be of vital importance. Tighter emission standards as well as requirements for increased emission system performance and durability have resulted in ongoing development and continuing advances in emission control technology. A great deal of attention continues to be focused on technologies for emission control during cold-start. Detailed analyses are required to determine fundamental mechanisms which govern emission control under a wide variety of operating conditions. Effects of possible catalyst poisons as well as the mechanical durability of aftertreatment systems are being evaluated. Engine, vehicle, and aftertreatment sensors are being utilized to monitor and ensure emission control performance. Improved analytical techniques are being used to help understand emissions problems and to suggest avenues to solutions. Papers assembled in this volume touch on all of these areas. Catalyst durability papers address issues related to hot vibration testing and catalyst durability based on substrate surface area. A variety of papers related to the chemical composition of fuels address issues such as fuel hydrocarbon and NO conversion in three-way catalysts, fuel composition effects on emissions in urban traffic, and fuel sulfur effects on catalysts and on-board diagnostics (OBD-II) systems. Information useful for understanding the performance of cold-start technologies is described in papers on a numerical method for predicting warm-up characteristics of catalysts systems, axial characterization of warmup and underfloor catalytic converters, and EHC impact on extended soak times. Other approaches for reducing cold-start emissions are addressed in papers on in-cylinder catalysts and the use of intake air oxygen enrichment technology. All papers have been processed separately for inclusion on the database.

  14. Advances in Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-01

    Pollutants, such as nitrogen oxides (nitrogen dioxide (NO2) and nitric oxide (NO)), sulphur dioxide (SO2), sulphur trioxide (SO3), carbon dioxide (CO2), mercury (Hg) and particulate matter (PM), are formed when coal is combusted in a power plant boiler. With the concern over the environmental and health consequences of these pollutants, legislation and regulations have been implemented limiting the amounts that can be emitted to the atmosphere. Emission control systems on conventional coal-fired power plants typically employ technologies designed to remove one specific pollutant.These are then combined, in series, to remove several pollutants in order to meet the emission regulations. This report discusses multi-pollutant systems which remove two or more of the principal regulated pollutants (SO2, NOx, mercury, particulate matter and CO2) in a single reactor or a single system designed for the purpose. The emphasis is on commercial or near commercial processes, and those that are under active development. Ways to improve the co-benefit removal of oxidised mercury in conventional limestone wet scrubbers, spray dry scrubbers and circulating dry scrubbers are also included. Multi-pollutant systems can have lower capital and operating costs than a series of traditional systems to remove the s ame number of pollutants. Nevertheless, many of the multi-pollutant technologies rely on by-product sales to be economically competitive. Their footprint is often smaller than conventional single pollutant counterparts treating a similar volume of flue gas, making them easier to install in retrofit applications. Some of the systems use modular designs that ensures easy scalability for larger boilers.

  15. Method for controlling powertrain pumps

    Science.gov (United States)

    Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie

    2013-10-22

    A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.

  16. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  17. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  18. A formal structure for advanced automatic flight-control systems

    Science.gov (United States)

    Meyer, G.; Cicolani, L. S.

    1975-01-01

    Techniques were developed for the unified design of multimode, variable authority automatic flight-control systems for powered-lift STOL and VTOL aircraft. A structure for such systems is developed to deal with the strong nonlinearities inherent in this class of aircraft, to admit automatic coupling with advanced air traffic control, and to admit a variety of active control tasks. The aircraft being considered is the augmentor wing jet STOL research aircraft.

  19. Contributions of CCLM to advances in quality control.

    Science.gov (United States)

    Kazmierczak, Steven C

    2013-01-01

    Abstract The discipline of laboratory medicine is relatively young when considered in the context of the history of medicine itself. The history of quality control, within the context of laboratory medicine, also enjoys a relatively brief, but rich history. Laboratory quality control continues to evolve along with advances in automation, measurement techniques and information technology. Clinical Chemistry and Laboratory Medicine (CCLM) has played a key role in helping disseminate information about the proper use and utility of quality control. Publication of important advances in quality control techniques and dissemination of guidelines concerned with laboratory quality control has undoubtedly helped readers of this journal keep up to date on the most recent developments in this field.

  20. A survey on control schemes for distributed solar collector fields. Part II: Advanced control approaches

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, E.F.; Rubio, F.R. [Universidad de Sevilla, Escuela Superior de Ingenieros, Departamento de Ingenieria de Sistemas y Automatica, Camino de Los Descubrimientos s/n, E-41092 Sevilla (Spain); Berenguel, M. [Universidad de Almeria, Departamento de Lenguajes y Computacion, Area de Ingenieria de Sistemas y Automatica, Carretera Sacramento s/n, E-04120 La Canada, Almeria (Spain); Valenzuela, L. [Plataforma Solar de Almeria - CIEMAT, Carretera Senes s/n, P.O. Box 22, E-04200 Tabernas (Almeria) (Spain)

    2007-10-15

    This article presents a survey of the different advanced automatic control techniques that have been applied to control the outlet temperature of solar plants with distributed collectors during the last 25 years. A classification of the modeling and control approaches described in the first part of this survey is used to explain the main features of each strategy. The treated strategies range from classical advanced control strategies to those with few industrial applications. (author)

  1. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  2. Improving Advanced Inverter Control Convergence in Distribution Power Flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, Adarsh; Palmintier, Bryan; Ding, Fei; Mather, Barry; Baggu, Murali

    2016-11-21

    Simulation of modern distribution system powerflow increasingly requires capturing the impact of advanced PV inverter voltage regulation on powerflow. With Volt/var control, the inverter adjusts its reactive power flow as a function of the point of common coupling (PCC) voltage. Similarly, Volt/watt control curtails active power production as a function of PCC voltage. However, with larger systems and higher penetrations of PV, this active/reactive power flow itself can cause significant changes to the PCC voltage potentially introducing oscillations that slow the convergence of system simulations. Improper treatment of these advanced inverter functions could potentially lead to incorrect results. This paper explores a simple approach to speed such convergence by blending in the previous iteration's reactive power estimate to dampen these oscillations. Results with a single large (5MW) PV system and with multiple 500kW advanced inverters show dramatic improvements using this approach.

  3. Application of infinite model predictive control methodology to other advanced controllers.

    Science.gov (United States)

    Abu-Ayyad, M; Dubay, R; Hernandez, J M

    2009-01-01

    This paper presents an application of most recent developed predictive control algorithm an infinite model predictive control (IMPC) to other advanced control schemes. The IMPC strategy was derived for systems with different degrees of nonlinearity on the process gain and time constant. Also, it was shown that IMPC structure uses nonlinear open-loop modeling which is conducted while closed-loop control is executed every sampling instant. The main objective of this work is to demonstrate that the methodology of IMPC can be applied to other advanced control strategies making the methodology generic. The IMPC strategy was implemented on several advanced controllers such as PI controller using Smith-Predictor, Dahlin controller, simplified predictive control (SPC), dynamic matrix control (DMC), and shifted dynamic matrix (m-DMC). Experimental work using these approaches combined with IMPC was conducted on both single-input-single-output (SISO) and multi-input-multi-output (MIMO) systems and compared with the original forms of these advanced controllers. Computer simulations were performed on nonlinear plants demonstrating that the IMPC strategy can be readily implemented on other advanced control schemes providing improved control performance. Practical work included real-time control applications on a DC motor, plastic injection molding machine and a MIMO three zone thermal system.

  4. The advanced main control console for next japanese PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, A. [Hokkaido Electric Power Co., Inc., Sapporo (Japan); Ito, K. [Mitsubishi Heavy Industries, Ltd., Nuclear Energy Systems Engineering Center, Yokohama (Japan); Yokoyama, M. [Mitsubishi Electric Corporation, Energy and Industrial Systems Center, Kobe (Japan)

    2001-07-01

    The purpose of the improvement of main control room designing in a nuclear power plant is to reduce operators' workload and potential human errors by offering a better working environment where operators can maximize their abilities. In order to satisfy such requirements, the design of main control board applied to Japanese Pressurized Water Reactor (PWR) type nuclear power plant has been continuously modified and improved. the Japanese Pressurized Water Reactor (PWR) Utilities (Electric Power Companies) and Mitsubishi Group have developed an advanced main control board (console) reflecting on the study of human factors, as well as using a state of the art electronics technology. In this report, we would like to introduce the configuration and features of the Advanced Main Control Console for the practical application to the next generation PWR type nuclear power plants including TOMARI No.3 Unit of Hokkaido Electric Power Co., Inc. (author)

  5. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Charlene R. Crocker; Steven A. Benson; Stanley J. Miller

    2003-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  6. Advances in developing alternative treatments for postharvest pest control

    Science.gov (United States)

    USDA-ARS made two significant advances in the last 10 years in the development of alternative treatments for postharvest pest control: oxygenated phosphine fumigation and nitric oxide fumigation. Oxygenated phosphine is phosphine fumigation in an oxygen enriched atmosphere. It is significantly more...

  7. Methanol tailgas combustor control method

    Science.gov (United States)

    Hart-Predmore, David J.; Pettit, William H.

    2002-01-01

    A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

  8. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    Science.gov (United States)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick

    2014-01-01

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  9. COMPARATIVEANALYSIS OF ADVANCED CONTROLLERS IN A HEAT EXCHANGER

    OpenAIRE

    P. Sivakumar

    2013-01-01

    Temperature control of the shell and tube heat exchanger is characteristics of nonlinear, time varying and time lag. Since the temperature control with conventional PID controller cannot meet a wide range of precision temperature control requirement, we design temperature control system of the shell and tube heat exchanger by combining fuzzy and PID control methods in this paper. The simulation and experiments are carried out; making a comparison with conventional PID control showing that fuz...

  10. Controlling death: the false promise of advance directives.

    Science.gov (United States)

    Perkins, Henry S

    2007-07-03

    Advance directives promise patients a say in their future care but actually have had little effect. Many experts blame problems with completion and implementation, but the advance directive concept itself may be fundamentally flawed. Advance directives simply presuppose more control over future care than is realistic. Medical crises cannot be predicted in detail, making most prior instructions difficult to adapt, irrelevant, or even misleading. Furthermore, many proxies either do not know patients' wishes or do not pursue those wishes effectively. Thus, unexpected problems arise often to defeat advance directives, as the case in this paper illustrates. Because advance directives offer only limited benefit, advance care planning should emphasize not the completion of directives but the emotional preparation of patients and families for future crises. The existentialist Albert Camus might suggest that physicians should warn patients and families that momentous, unforeseeable decisions lie ahead. Then, when the crisis hits, physicians should provide guidance; should help make decisions despite the inevitable uncertainties; should share responsibility for those decisions; and, above all, should courageously see patients and families through the fearsome experience of dying.

  11. Supervisory Control System Architecture for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M [ORNL; Cole, Daniel L [University of Pittsburgh; Fugate, David L [ORNL; Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Muhlheim, Michael David [ORNL; Rao, Nageswara S [ORNL; Wood, Richard Thomas [ORNL

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  12. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  13. Higher geometry an introduction to advanced methods in analytic geometry

    CERN Document Server

    Woods, Frederick S

    2005-01-01

    For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study

  14. The DPC-2000 advanced control system for the Dynamitron accelerator

    Science.gov (United States)

    Kestler, Bernard A.; Lisanti, Thomas F.

    1993-07-01

    The DPC-2000 is an advanced control system utilizing the latest technology in computer control circuitry and components. Its overall design is modular and technologically advanced to keep up with customer and engineering demands. The full control system is presented as four units. They are the Remote I/O (Input / Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The central processing unit, the heart of the system, executes a high level language program that communicates to the different sub-assemblies through advanced serial and parallel communication lines. All operational parameters of the accelerator are monitored, controlled and corrected at close to 20 times per second. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not have to communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the machine. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. This allows the operator to set up the process parameters by selecting the product identification code from a menu presented on the display screen. All process parameters are printed to report at regular intervals during a process run for later analysis and record keeping.

  15. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  16. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

    1990-08-15

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  17. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Durkee, Jr., Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  18. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Argonne National Lab. (ANL), Argonne, IL (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  19. Recent advances in radial basis function collocation methods

    CERN Document Server

    Chen, Wen; Chen, C S

    2014-01-01

    This book surveys the latest advances in radial basis function (RBF) meshless collocation methods which emphasis on recent novel kernel RBFs and new numerical schemes for solving partial differential equations. The RBF collocation methods are inherently free of integration and mesh, and avoid tedious mesh generation involved in standard finite element and boundary element methods. This book focuses primarily on the numerical algorithms, engineering applications, and highlights a large class of novel boundary-type RBF meshless collocation methods. These methods have shown a clear edge over the traditional numerical techniques especially for problems involving infinite domain, moving boundary, thin-walled structures, and inverse problems. Due to the rapid development in RBF meshless collocation methods, there is a need to summarize all these new materials so that they are available to scientists, engineers, and graduate students who are interest to apply these newly developed methods for solving real world’s ...

  20. 3. IFAC workshop: advances in automotive control. Vol. 1. Preprints

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    As the subject indicates, the aim of this workshop will be to discuss the latest advances related to motor vehicles, but also, and more generally, to exchange ideas between academic partners, car-manufacturers and subcontractors. The programme shows that a special effort has been made in this respect. No doubt plenary lectures are of great importance and the thematic sessions in the different sectors are the essence of such workshops; however, the discussions between experts in the different fields, the meetings between people from industry, universities and public or private laboratories, as well as the resulting exchange of ideas, are at least as important. Research is often criticized for providing merely theoretical results and for the insufficient number of its applications. But the motor vehicle offers a wide field of applications in which we can validate all techniques, tools and methods. This allows us to be involved in all the areas of fundamental research, in all the different possible approaches from fundamental research to technology transfer, and to observe the actual effects of our results. The increase in road traffic was a major problem of the past XXth century. It is clear that one the challenges of the XXIst century will be improve driving safety and comfort. The different work sessions concerning more control, driveline modelling, vehicle dynamics, electronic architecture, intelligent components, engine control, engine modelling, the modelling of combustion and turbocharging, diagnostics and subsystems. The quality of the papers and the diversity of their origins clearly shows the interest that we all take in this key sector of our research and industry. (orig.)

  1. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  2. 基于换相与电流控制对无刷直流电机非理想反电势转矩脉动的控制%The suppression to Torque Ripple of Brushless DC Motor under Non-Ideal Back-EMF Circumstance by Combining the Advance Angle Opened Commutation Method with Current Control Method

    Institute of Scientific and Technical Information of China (English)

    李劲松; 杨晓武; 李干蓉; 饶有祥

    2012-01-01

      从无刷直流电机转矩脉动产生的原理出发,分析了转矩脉动在非理想反电势情况下产生的原因,并提出通过提前角开通换相法与电流控制相结合的控制策略以减少电磁转矩脉动。仿真结果证明该控制策略能有效地控制由非理想反电势引起的无刷直流电机换向产生的电磁转矩脉动。%  Based on the principle of torque ripple produced brushless DC motor,the article analyzes the reasons for torque ripple under non-ideal Back-EMF circumstance,and puts forward the control strategy that combines the advance angle opened commutation method with current controlling to reduce the electromagnetic torque ripple. The simulation results prove that the control strategy can work effectively to control the electromagnetic torque ripple which produced by brushless DC motor under non-ideal Back-EMF circumstance.

  3. NATO Advanced Study Institute on Methods in Computational Molecular Physics

    CERN Document Server

    Diercksen, Geerd

    1992-01-01

    This volume records the lectures given at a NATO Advanced Study Institute on Methods in Computational Molecular Physics held in Bad Windsheim, Germany, from 22nd July until 2nd. August, 1991. This NATO Advanced Study Institute sought to bridge the quite considerable gap which exist between the presentation of molecular electronic structure theory found in contemporary monographs such as, for example, McWeeny's Methods 0/ Molecular Quantum Mechanics (Academic Press, London, 1989) or Wilson's Electron correlation in moleeules (Clarendon Press, Oxford, 1984) and the realization of the sophisticated computational algorithms required for their practical application. It sought to underline the relation between the electronic structure problem and the study of nuc1ear motion. Software for performing molecular electronic structure calculations is now being applied in an increasingly wide range of fields in both the academic and the commercial sectors. Numerous applications are reported in areas as diverse as catalysi...

  4. Advanced symbolic analysis for VLSI systems methods and applications

    CERN Document Server

    Shi, Guoyong; Tlelo Cuautle, Esteban

    2014-01-01

    This book provides comprehensive coverage of the recent advances in symbolic analysis techniques for design automation of nanometer VLSI systems. The presentation is organized in parts of fundamentals, basic implementation methods and applications for VLSI design. Topics emphasized include  statistical timing and crosstalk analysis, statistical and parallel analysis, performance bound analysis and behavioral modeling for analog integrated circuits . Among the recent advances, the Binary Decision Diagram (BDD) based approaches are studied in depth. The BDD-based hierarchical symbolic analysis approaches, have essentially broken the analog circuit size barrier. In particular, this book   • Provides an overview of classical symbolic analysis methods and a comprehensive presentation on the modern  BDD-based symbolic analysis techniques; • Describes detailed implementation strategies for BDD-based algorithms, including the principles of zero-suppression, variable ordering and canonical reduction; • Int...

  5. Current advances in diagnostic methods of Acanthamoeba keratitis

    Institute of Scientific and Technical Information of China (English)

    Wang Yuehua; Feng Xianmin; Jiang Linzhe

    2014-01-01

    Objective The objective of this article was to review the current advances in diagnostic methods for Acanthamoeba keratitis (AK).Data sources Data used in this review were retrieved from PubMed (1970-2013).The terms "Acanthamoeba keratitis" and "diagnosis" were used for the literature search.Study selection Data from published articles regarding AK and diagnosis in clinical trials were identified and reviewed.Results The diagnostic methods for the eight species implicated in AK were reviewed.Among all diagnostic procedures,corneal scraping and smear examination was an essential diagnostic method.Polymerase chain reaction was the most sensitive and accurate detection method.Culturing of Acanthamoeba was a reliable method for final diagnosis of AK.Confocal microscopy to detect Acanthamoeba was also effective,without any invasive procedure,and was helpful in the early diagnosis of AK.Conclusion Clinically,conjunction of various diagnostic methods to diagnose AK was necessary.

  6. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  7. Microeconomics of advanced process window control for 50-nm gates

    Science.gov (United States)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  8. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2013-01-01

    Most advanced process control systems are based on Model Predictive Control (MPC). In this paper we discuss three critical issues for the practical implementation of linear MPC for process control applications. The rst issue is related to oset free control and disturbance models; the second issue...... is related to the use of soft output constraints in MPC; and the third issue is related to the computationally ecient solution of the quadratic program in the dynamic regulator of the MPC. We have implemented MPC in .Net using C# and the MPCMath library. The implemented MPC is based on the target...... models and integration of the innovation errors. If the disturbances increases, oset-free control cannot be achieved without violation of process constraints. A target calculation function is used to calculate the optimal achievable target for the process. The use of soft constraints for process output...

  9. Advanced boundary element methods in aeroacoustics and elastodynamics

    Science.gov (United States)

    Lee, Li

    In the first part of this dissertation, advanced boundary element methods (BEM) are developed for acoustic radiation in the presence of subsonic flows. A direct boundary integral formulation is first introduced for acoustic radiation in a uniform flow. This new formulation uses the Green's function derived from the adjoint operator of the governing differential equation. Therefore, it requires no coordinate transformation. This direct BEM formulation is then extended to acoustic radiation in a nonuniform-flow field. All the terms due to the nonuniform-flow effect are taken to the right-hand side and treated as source terms. The source terms result in a domain integral in the standard boundary integral formulation. The dual reciprocity method is then used to convert the domain integral into a number of boundary integrals. The second part of this dissertation is devoted to the development of advanced BEM algorithms to overcome the multi-frequency and nonuniqueness difficulties in steady-state elastodynamics. For the multi-frequency difficulty, two different interpolation schemes, borrowed from recent developments in acoustics, are first extended to elastodynamics to accelerate the process of matrix re-formation. Then, a hybrid scheme that retains only the merits of the two different interpolation schemes is suggested. To overcome the nonuniqueness difficulty, an enhanced CHIEF (Combined Helmholtz Integral Equation Formulation) method using a linear combination of the displacement and the traction boundary integral equations on the surface of a small interior volume is proposed. Numerical examples are given to demonstrate all the advanced BEM formulations.

  10. Control Systems with Saturating Inputs Analysis Tools and Advanced Design

    CERN Document Server

    Corradini, Maria Letizia; Giannoni, Fabio; Orlando, Giuseppe

    2012-01-01

    This series aims to report new developments in the fields of control and information sciences - quickly, informally and at a high level. The type of material considered for publication includes: 1. Preliminary drafts of monographs and advanced textbooks 2. Lectures on a new field, or presenting a new angle on a classical field 3. Research reports 4. Reports of meetings, provided they are a) of exceptional interest and b) devoted to a specific topic. The timeliness of subject material is very important.

  11. Recent advances in opinion modeling: control and social influence

    CERN Document Server

    Albi, Giacomo; Toscani, Giuseppe; Zanella, Mattia

    2016-01-01

    We survey some recent developments on the mathematical modeling of opinion dynamics. After an introduction on opinion modeling through interacting multi-agent systems described by partial differential equations of kinetic type, we focus our attention on two major advancements: optimal control of opinion formation and influence of additional social aspects, like conviction and number of connections in social networks, which modify the agents' role in the opinion exchange process.

  12. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  13. Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Ostergaard, Jacob;

    2012-01-01

    This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy...... the oscillations in the stator and rotor currents and the DC bus voltage. The effectiveness of the proposed control strategy has been demonstrated through various simulation cases. Compared with conventional crowbar protection, the proposed control method can not only improve the LVRT capability of the DFIG WT......, but also help maintaining continuous active and reactive power control of the DFIG during the grid faults....

  14. Application of advanced polymeric materials for controlled release pesticides

    Science.gov (United States)

    Rahim, M.; Hakim, M. R.; Haris, H. M.

    2016-08-01

    The objective of this work was to study the capability of advanced polymeric material constituted by chitosan and natural rubber matrices for controlled release of pesticides (1-hydroxynaphthalene and 2-hydroxynaphthalene) in aqueous solution. The released amount of pesticides was measured spectrophotometrically from the absorbance spectra applying a standardized curve. The release of the pesticides was studied into refreshing and non-refreshing neutral aqueous media. Interestingly, formulation successfully indicated a consistent, controlled and prolonged release of pesticides over a period of 35 days.

  15. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  16. Evaluation of information display at advanced main control room

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dae Hwan; Yu, Seon Jae; Choi, Eui Sun [Korea Univ., Seoul (Korea, Republic of)

    2000-03-15

    This year we plan to survey information in order to have basic understanding of digital information display and control at the advanced MCR. At first we collect different ways of presenting information at the advanced MCR. Secondly, we conduct literature survey on studies that have investigated information representation techniques and their effects. Then, we need compare differences between conventional NPPs and advanced NPPs. Thirdly, we need to check HMI styles and evaluation techniques that are used currently at foreign NPPs. Indeed, HMI at the advanced MCR is quite different from that at a conventional MCR. It is not desirable to apply the same evaluation technique that has veen used at the conventional MCR. We need to develop an evaluation technique that is valid in theory and applicable in practice. Finally, we identify the requirements for a support system for an HMI evaluator, since it is not easy to carry out an evaluation task even though one has firm background on cognitive engineering theories and practical experiences.

  17. The Advanced Photon Source Injector Test Stand Control System

    CERN Document Server

    MacLean, J F

    2001-01-01

    The Advanced Photon Source (APS) primary and backup injectors consist of two thermionic-cathode rf guns. These guns are being upgraded to provide improved performance, to improve ease of maintenance, and to reduce downtime required for repair or replacement of a failed injector. As part of the process, an injector test stand is being prepared. This stand is effectively independent of the APS linac and will allow for complete characterization and validation of an injector prior to its installation into the APS linac. A modular control system for the test stand has been developed using standard APS control solutions with EPICS to deliver a flexible and comprehensive control system. The modularity of the system will allow both the future expansion of test stand functionality and the evaluation of new control techniques and solutions.

  18. Advances in Intelligent Control Systems and Computer Science

    CERN Document Server

    2013-01-01

    The conception of real-time control networks taking into account, as an integrating approach, both the specific aspects of information and knowledge processing and the dynamic and energetic particularities of physical processes and of communication networks is representing one of the newest scientific and technological challenges. The new paradigm of Cyber-Physical Systems (CPS) reflects this tendency and will certainly change the evolution of the technology, with major social and economic impact. This book presents significant results in the field of process control and advanced information and knowledge processing, with applications in the fields of robotics, biotechnology, environment, energy, transportation, et al.. It introduces intelligent control concepts and strategies as well as real-time implementation aspects for complex control approaches. One of the sections is dedicated to the complex problem of designing software systems for distributed information processing networks. Problems as complexity an...

  19. NATO Advanced Research Workshop on Vectorization of Advanced Methods for Molecular Electronic Structure

    CERN Document Server

    1984-01-01

    That there have been remarkable advances in the field of molecular electronic structure during the last decade is clear not only to those working in the field but also to anyone else who has used quantum chemical results to guide their own investiga­ tions. The progress in calculating the electronic structures of molecules has occurred through the truly ingenious theoretical and methodological developments that have made computationally tractable the underlying physics of electron distributions around a collection of nuclei. At the same time there has been consider­ able benefit from the great advances in computer technology. The growing sophistication, declining costs and increasing accessibi­ lity of computers have let theorists apply their methods to prob­ lems in virtually all areas of molecular science. Consequently, each year witnesses calculations on larger molecules than in the year before and calculations with greater accuracy and more com­ plete information on molecular properties. We can surel...

  20. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.; Fleming, P.

    2010-12-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  1. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  2. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wali, W A; Hassan, K H; Cullen, J D; Al-Shamma' a, A I; Shaw, A; Wylie, S R, E-mail: w.wali@2009.ljmu.ac.uk [Built Environment and Sustainable Technologies Institute (BEST), School of the Built Environment, Faculty of Technology and Environment Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2011-08-17

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  3. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Science.gov (United States)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  4. DSP applications in advanced, intelligent motion control: the future

    Energy Technology Data Exchange (ETDEWEB)

    Beierke, S. [Texas Instruments Deutschland GmBh, Freising (Germany); Vas, P. [Univ. of Aberdeen, Dept. of Engineering (United Kingdom)

    2000-08-01

    Recently there has been a rapid increase in the number of DSPs for various motion control applications. However, in the future, further significant increase is expected due to wider applications in existing and new areas (e.g. household appliances, automotive auxiliaries, micro-electromechanical systems, military applications, etc.). The present paper discusses the state-of-art Texas Instruments fixed point and floating point DSPs used in motion control applications and will also focus on future activities. Currently new chip technologies are being developed which involve copper interconnects, silicon-on-insulator wafers, insulators with- low dielectric constants, etc. It is expected that future single-chip DSPs for advanced intelligent motion control will have higher performance, reduced costs, simpler designs, will incorporate various sensors, different modules for optimised PWM generation, efficiency control, vector and direct torque control (sensorless and quasisensorless solutions as well), condition monitoring, selfcommissioning, artificial-intelligence-based control, etc. A manufacturer's task of implementing sensorless and/or quasisensorless torque control schemes for induction, synchronous and switched reluctance motor drives will be significantly reduced by the application of the newly developed DSPs. The paper will discuss these issues and will also show some implementation results in various sensorless (classical DTC; DTC with torque-ripple reduction schemes; vector) and quasisensorless ac drives (e.g. a vector controlled induction motor drive). (orig.)

  5. Advanced discrete-time control designs and applications

    CERN Document Server

    Abidi, Khalid

    2015-01-01

    This book covers a wide spectrum of systems such as linear and nonlinear multivariable systems as well as control problems such as disturbance, uncertainty and time-delays. The purpose of this book is to provide researchers and practitioners a manual for the design and application of advanced discrete-time controllers.  The book presents six different control approaches depending on the type of system and control problem. The first and second approaches are based on Sliding Mode control (SMC) theory and are intended for linear systems with exogenous disturbances. The third and fourth approaches are based on adaptive control theory and are aimed at linear/nonlinear systems with periodically varying parametric uncertainty or systems with input delay. The fifth approach is based on Iterative learning control (ILC) theory and is aimed at uncertain linear/nonlinear systems with repeatable tasks and the final approach is based on fuzzy logic control (FLC) and is intended for highly uncertain systems with heuristi...

  6. Fine analysis on advanced detection of transient electromagnetic method

    Institute of Scientific and Technical Information of China (English)

    Wang Bo; Liu Shengdong; Yang Zhen; Wang Zhijun; Huang Lanying

    2012-01-01

    Fault fracture zones and water-bearing bodies in front of the driving head are the main disasters in mine laneways,thus it is important to perform their advanced detection and prediction in advance in order to provide reliable technical support for the excavation.Based on the electromagnetic induction theory,we analyzed the characteristics of primary and secondary fields with a positive and negative wave form of current,proposed the fine processing of the advanced detection with variation rate of apparent resistivity and introduced in detail the computational formulae and procedures.The result of physical simulation experiments illustrate that the tectonic interface of modules can be judged by first-order rate of apparent resistivity with a boundary error of 5%,and the position of water body determined by the fine analysis method agrees well with the result of borehole drilling.This shows that in terms of distinguishing structure and aqueous anomalies,the first-order rate of apparent resistivity is more sensitive than the secondorder rate of apparent resistivity.However,some remaining problems are suggested for future solutions.

  7. Advanced Fuzzy Logic Based Admission Control for UMTS System

    Directory of Open Access Journals (Sweden)

    P. Kejik

    2010-12-01

    Full Text Available The capacity of CDMA (Code Division Multiple Access systems is interference limited. Therefore radio resources management (RRM functions are used. They are responsible for supplying optimum coverage, ensuring efficient use of physical resources, and providing the maximum planned capacity. This paper deals with admission control techniques for UMTS (Universal Mobile Telecommunication System. A UMTS system model and four fuzzy logic based admission control algorithms are presented in this paper. Two new versions of fuzzy logic based admission control algorithms are presented there. All algorithms are mutually compared via simulations. Simulations show that the novel advanced fuzzy algorithm outperforms the other simulated algorithms (in terms of blocking probability, dropping probability and the number of active UEs in cell.

  8. Benchmarking of Advanced Control Strategies for a Simulated Hydroelectric System

    Science.gov (United States)

    Finotti, S.; Simani, S.; Alvisi, S.; Venturini, M.

    2017-01-01

    This paper analyses and develops the design of advanced control strategies for a typical hydroelectric plant during unsteady conditions, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solutions addressed in this work, the proposed methodologies rely on data-driven and model-based approaches applied to the system under monitoring. Extensive simulations and comparisons serve to determine the best solution for the development of the most effective, robust and reliable control tool when applied to the considered hydraulic system.

  9. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    Much more efforts have been made on the integration of renewable energies into the grid in order to meet the imperative demand of a clean and reliable electricity generation. In this case, the grid stability and robustness may be violated due to the intermittency and interaction of the solar...... and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...... power injection for both single-phase and three-phase systems. Other control strategies like constant power generation control for PV systems to further increase the penetration level, and the improvements of LVRT performance for a doubly fed induction generator based wind turbine system by means...

  10. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  11. Advances on methods for mapping QTL in plant

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Ming

    2006-01-01

    Advances on methods for mapping quantitative trait loci (QTL) are firstly summarized.Then, some new methods, including mapping multiple QTL, fine mapping of QTL, and mapping QTL for dynamic traits, are mainly described. Finally, some future prospects are proposed, including how to dig novel genes in the germplasm resource, map expression QTL (eQTL) by the use of all markers,phenotypes and micro-array data, identify QTL using genetic mating designs and detect viability loci. The purpose is to direct plant geneticists to choose a suitable method in the inheritance analysis of quantitative trait and in search of novel genes in germplasm resource so that more potential genetic information can be uncovered.

  12. Recent advances in electrical engineering and control applications

    CERN Document Server

    Bououden, Sofiane; Zelinka, Ivan

    2017-01-01

    This book of proceedings includes papers presenting the state of art in electrical engineering and control theory as well as their applications. The topics focus on classical as well as modern methods for modeling, control, identification and simulation of complex systems with applications in science and engineering. The papers were selected from the hottest topic areas, such as control and systems engineering, renewable energy, faults diagnosis—faults tolerant control, large-scale systems, fractional order systems, unconventional algorithms in control engineering, signals and communications. The control and design of complex systems dynamics, analysis and modeling of its behavior and structure is vitally important in engineering, economics and in science generally science today. Examples of such systems can be seen in the world around us and are a part of our everyday life. Application of modern methods for control, electronics, signal processing and more can be found in our mobile phones, car engines, hom...

  13. Advances in product family and product platform design methods & applications

    CERN Document Server

    Jiao, Jianxin; Siddique, Zahed; Hölttä-Otto, Katja

    2014-01-01

    Advances in Product Family and Product Platform Design: Methods & Applications highlights recent advances that have been made to support product family and product platform design and successful applications in industry. This book provides not only motivation for product family and product platform design—the “why” and “when” of platforming—but also methods and tools to support the design and development of families of products based on shared platforms—the “what”, “how”, and “where” of platforming. It begins with an overview of recent product family design research to introduce readers to the breadth of the topic and progresses to more detailed topics and design theory to help designers, engineers, and project managers plan, architect, and implement platform-based product development strategies in their companies. This book also: Presents state-of-the-art methods and tools for product family and product platform design Adopts an integrated, systems view on product family and pro...

  14. Advanced reactor physics methods for heterogeneous reactor cores

    Science.gov (United States)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  15. PREFACE: European Workshop on Advanced Control and Diagnosis

    Science.gov (United States)

    Schulte, Horst; Georg, Sören

    2014-12-01

    The European Workshop on Advanced Control and Diagnosis is an annual event that has been organised since 2003 by Control Engineering departments of several European universities in Germany, France, the UK, Poland, Italy, Hungary and Denmark. The overall planning of the workshops is conducted by the Intelligent Control and Diagnosis (ICD) steering committee. This year's ACD workshop took place at HTW Berlin (University of Applied Sciences) and was organised by the Control Engineering group of School of Engineering I of HTW Berlin. 38 papers were presented at ACD 2014, with contributions spanning a variety of fields in modern control science: Discrete control, nonlinear control, model predictive control, system identification, fault diagnosis and fault-tolerant control, control applications, applications of fuzzy logic, as well as modelling and simulation, the latter two forming a basis for all tasks in modern control. Three interesting and high-quality plenary lectures were delivered. The first plenary speaker was Wolfgang Weber from Pepperl+Fuchs, a German manufacturer of state-of-the-art industrial sensors and process interfaces. The second and third plenary speakers were two internationally high-ranked researchers in their respective fields, Prof. Didier Theilliol from Université de Lorraine and Prof. Carsten Scherer from Universität Stuttgart. Taken together, the three plenary lectures sought to contribute to closing the gap between theory and applications. On behalf of the whole ACD 2014 organising committee, we would like to thank all those who submitted papers and participated in the workshop. We hope it was a fruitful and memorable event for all. Together we are looking forward to the next ACD workshop in 2015 in Pilsen, Czech Republic. Horst Schulte (General Chair), Sören Georg (Programme Chair)

  16. Advanced Methods in Black-Hole Perturbation Theory

    CERN Document Server

    Pani, Paolo

    2013-01-01

    Black-hole perturbation theory is a useful tool to investigate issues in astrophysics, high-energy physics, and fundamental problems in gravity. It is often complementary to fully-fledged nonlinear evolutions and instrumental to interpret some results of numerical simulations. Several modern applications require advanced tools to investigate the linear dynamics of generic small perturbations around stationary black holes. Here, we present an overview of these applications and introduce extensions of the standard semianalytical methods to construct and solve the linearized field equations in curved spacetime. Current state-of-the-art techniques are pedagogically explained and exciting open problems are presented.

  17. Advanced Controls for the Multi-pod Centipod WEC device

    Energy Technology Data Exchange (ETDEWEB)

    McCall, Alan [Dehlsen Associates, LLC, Santa Barabara, CA (United States); Fleming, Alex [Dehlsen Associates, LLC, Santa Barabara, CA (United States)

    2016-02-15

    Dehlsen Associates, LLC (DA) has developed a Wave Energy Converter (WEC), Centipod, which is a multiple point absorber, extracting wave energy primarily in the heave direction through a plurality of point absorber floats sharing a common stable reference structure. The objective of this project was to develop advanced control algorithms that will be used to reduce Levelized Cost of Energy (LCOE). This project investigated the use of Model Predictive Control (MPC) to improve the power capture of the WEC. The MPC controller developed in this work is a state-space, “look ahead” controller approach using knowledge of past and current states to predict future states to take action with the PTO to maximize power capture while still respecting system constraints. In order to maximize power, which is the product of force and velocity, the controller must aim to create phase alignment between excitation force and velocity. This project showed a 161% improvement in the Annual Energy Production (AEP) for the Centipod WEC when utilizing MPC, compared to a baseline, fixed passive damping control strategy. This improvement in AEP was shown to provide a substantial benefit to the WEC’s overall Cost of Energy, reducing LCOE by 50% from baseline. The results of this work proved great potential for the adoption of Model Predictive Controls in Wave Energy Converters.

  18. Advanced Transport Operating System (ATOPS) control display unit software description

    Science.gov (United States)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  19. Advances in control of ectoparasites in large animals.

    Science.gov (United States)

    Hiepe, T

    1988-11-01

    In continuation of a publication on "Large-scale management systems and parasite populations: ectoparasites" in Vet. Parasitol. 11 (1982): 61-68, advances and present state of the control of ectoparasites in herds of cattle, sheep and camels are discussed. An intensified animal production necessitates permanent veterinary control of the status of ectoparasites. Strategically, control is basically directed towards achieving three aims: eradication, reduction of losses by means of dilution of ectoparasites regulations, and therapeutic measures. In the last few years, important progress has been made in effective ectoparasites control, mainly resulting from the discovery of new insecticides and acaricides, the improvement of the application techniques and the recent results in the biological control of arthropods; finally, an immunological approach will open new alternative ways of control. The control of mange and demodicosis in cattle; sarcoptic mange and sucking lice infestations in pigs; mange, biting lice infestations and nasal bots in sheep; ectoparasite infestations in camels and tick infestations are the main topics of the paper. The discovery of Ivermectin, a derivate of Streptomyces avermitilis which is now already fully integrated in to the spectrum of antiparasitic drugs, created a new generation of broad spectrum insecticides/acaricides. Current problems of the chemical control of arthropods, like the risk of residues in meat, milk and their products, the insecticide resistance and the possible environment pollution are critically outlined. But on the other hand, it can be predicted hypothetically that the amount of pest control measures in farm animals will increase in the near future to eliminate arthropods as causes of skin diseases and of damages to hides entailing negative effects on leather processing and as vectors of important infection agents. Finally, the proposal is submitted to elaborate international control programmes against ectoparasite

  20. Advances in Classification Methods for Military Munitions Response

    Science.gov (United States)

    2010-12-01

    removed Advances in Classification - Classification with EM61 Data Data Analysis Environment Oasis montaj • High performance database • Advanced data...TEMTADS MetalMapper 5Advances in Classification - Classification with Advanced Sensors Data Analysis Environment Oasis montaj • High performance

  1. Control and Optimization Methods for Electric Smart Grids

    CERN Document Server

    Ilić, Marija

    2012-01-01

    Control and Optimization Methods for Electric Smart Grids brings together leading experts in power, control and communication systems,and consolidates some of the most promising recent research in smart grid modeling,control and optimization in hopes of laying the foundation for future advances in this critical field of study. The contents comprise eighteen essays addressing wide varieties of control-theoretic problems for tomorrow’s power grid. Topics covered include: Control architectures for power system networks with large-scale penetration of renewable energy and plug-in vehicles Optimal demand response New modeling methods for electricity markets Control strategies for data centers Cyber-security Wide-area monitoring and control using synchronized phasor measurements. The authors present theoretical results supported by illustrative examples and practical case studies, making the material comprehensible to a wide audience. The results reflect the exponential transformation that today’s grid is going...

  2. Benchmarking Advanced Control Algorithms for a Laser Scanner System

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Ordys, A.W.; Smillie, I.

    1996-01-01

    The paper describes tests performed on the laser scanner system toassess feasibility of modern control techniques in achieving a requiredperformance in the trajectory following problem. The two methods tested areQTR H-infinity and Predictive Control. The results are ilustated ona simulation example....

  3. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  4. Methods and Systems for Advanced Spaceport Information Management

    Science.gov (United States)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  5. The application of advanced rotor (performance) methods for design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)

    1997-08-01

    The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.

  6. Second Generation Advanced Reburning for High Efficiency NOx Control

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Pete M. Maly; Vitali V. Lissianski

    2000-12-31

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+% NO{sub x} control in coal-fired boilers at a significantly lower cost than SCR. The thirteenth reporting period in Phase II (October 1-December 31, 2000) included SGAR tests in which coal was used as the reburning fuel. All test work was conducted at GE-EER's 1.0 MMBtu/hr Boiler Simulator Facility. Three test series were performed including AR-Lean, AR-Rich, and reburning + SNCR. Tests demonstrated that over 90% NO{sub x} reduction could be achieved with utilization of coal as a reburning fuel in SGAR. The most effective SGAR variant is reburning + SNCR followed by AR-Lean and AR-Rich.

  7. Dynamic Event Tree advancements and control logic improvements

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been done in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the

  8. Advances in microfluidics-based experimental methods for neuroscience research.

    Science.gov (United States)

    Park, Jae Woo; Kim, Hyung Joon; Kang, Myeong Woo; Jeon, Noo Li

    2013-02-21

    The application of microfluidics to neuroscience applications has always appealed to neuroscientists because of the capability to control the cellular microenvironment in both a spatial and temporal manner. Recently, there has been rapid development of biological micro-electro-mechanical systems (BioMEMS) for both fundamental and applied neuroscience research. In this review, we will discuss the applications of BioMEMS to various topics in the field of neuroscience. The purpose of this review is to summarise recent advances in the components and design of the BioMEMS devices, in vitro disease models, electrophysiology and neural stem cell research. We envision that microfluidics will play a key role in future neuroscience research, both fundamental and applied research.

  9. Advances in analysis and control of timedelayed dynamical systems

    CERN Document Server

    Sun, Jianqiao

    2013-01-01

    Analysis and control of timedelayed systems have been applied in a wide range of applications, ranging from mechanical, control, economic, to biological systems. Over the years, there has been a steady stream of interest in timedelayed dynamic systems, this book takes a snap shot of recent research from the world leading experts in analysis and control of dynamic systems with time delay to provide a bird's eye view of its development. The topics covered in this book include solution methods, stability analysis and control of periodic dynamic systems with time delay, bifurcations, stochastic dy

  10. New tuning method for PID controller.

    Science.gov (United States)

    Shen, Jing-Chung

    2002-10-01

    In this paper, a tuning method for proportional-integral-derivative (PID) controller and the performance assessment formulas for this method are proposed. This tuning method is based on a genetic algorithm based PID controller design method. For deriving the tuning formula, the genetic algorithm based design method is applied to design PID controllers for a variety of processes. The relationship between the controller parameters and the parameters that characterize the process dynamics are determined and the tuning formula is then derived. Using simulation studies, the rules for assessing the performance of a PID controller tuned by the proposed method are also given. This makes it possible to incorporate the capability to determine if the PID controller is well tuned or not into an autotuner. An autotuner based on this new tuning method and the corresponding performance assessment rules is also established. Simulations and real-time experimental results are given to demonstrate the effectiveness and usefulness of these formulas.

  11. Advances in rapid detection methods for foodborne pathogens.

    Science.gov (United States)

    Zhao, Xihong; Lin, Chii-Wann; Wang, Jun; Oh, Deog Hwan

    2014-03-28

    Food safety is increasingly becoming an important public health issue, as foodborne diseases present a widespread and growing public health problem in both developed and developing countries. The rapid and precise monitoring and detection of foodborne pathogens are some of the most effective ways to control and prevent human foodborne infections. Traditional microbiological detection and identification methods for foodborne pathogens are well known to be time consuming and laborious as they are increasingly being perceived as insufficient to meet the demands of rapid food testing. Recently, various kinds of rapid detection, identification, and monitoring methods have been developed for foodborne pathogens, including nucleic-acid-based methods, immunological methods, and biosensor-based methods, etc. This article reviews the principles, characteristics, and applications of recent rapid detection methods for foodborne pathogens.

  12. Low-Dispersion Fibre Bragg Gratings Written Using the Polarization Control Method

    DEFF Research Database (Denmark)

    Deyerl, Hans Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm;

    2002-01-01

    We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings.......We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings....

  13. Exploration of Advanced Probabilistic and Stochastic Design Methods

    Science.gov (United States)

    Mavris, Dimitri N.

    2003-01-01

    The primary objective of the three year research effort was to explore advanced, non-deterministic aerospace system design methods that may have relevance to designers and analysts. The research pursued emerging areas in design methodology and leverage current fundamental research in the area of design decision-making, probabilistic modeling, and optimization. The specific focus of the three year investigation was oriented toward methods to identify and analyze emerging aircraft technologies in a consistent and complete manner, and to explore means to make optimal decisions based on this knowledge in a probabilistic environment. The research efforts were classified into two main areas. First, Task A of the grant has had the objective of conducting research into the relative merits of possible approaches that account for both multiple criteria and uncertainty in design decision-making. In particular, in the final year of research, the focus was on the comparison and contrasting between three methods researched. Specifically, these three are the Joint Probabilistic Decision-Making (JPDM) technique, Physical Programming, and Dempster-Shafer (D-S) theory. The next element of the research, as contained in Task B, was focused upon exploration of the Technology Identification, Evaluation, and Selection (TIES) methodology developed at ASDL, especially with regards to identification of research needs in the baseline method through implementation exercises. The end result of Task B was the documentation of the evolution of the method with time and a technology transfer to the sponsor regarding the method, such that an initial capability for execution could be obtained by the sponsor. Specifically, the results of year 3 efforts were the creation of a detailed tutorial for implementing the TIES method. Within the tutorial package, templates and detailed examples were created for learning and understanding the details of each step. For both research tasks, sample files and

  14. Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems

    Science.gov (United States)

    Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray

    2012-01-01

    Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and identification of microbial contamination in microgravity environments. Research for evaluating technologies for capability enhancement on-orbit is currently focused on the use of adenosine triphosphate (ATP) analysis for detection purposes and polymerase chain reaction (peR) for microbial identification. Additional research is being conducted on how to control for microbial contamination on a continual basis. Existing microbial control methods in spacecraft utilize iodine or ionic silver biocides, physical disinfection, and point-of-use sterilization filters. Although these methods are effective, they require re-dosing due to loss of efficacy, have low human toxicity thresholds, produce poor taste, and consume valuable mass and crew time. Thus, alternative methods for microbial control are needed. This project also explores ultraviolet light-emitting diodes (UV-LEDs), surface passivation methods for maintaining residual biocide levels, and several antimicrobial materials aimed at improving current microbial control techniques, as well as addressing other materials presently under analysis and future directions to be pursued.

  15. Fault-Tolerant Process Control Methods and Applications

    CERN Document Server

    Mhaskar, Prashant; Christofides, Panagiotis D

    2013-01-01

    Fault-Tolerant Process Control focuses on the development of general, yet practical, methods for the design of advanced fault-tolerant control systems; these ensure an efficient fault detection and a timely response to enhance fault recovery, prevent faults from propagating or developing into total failures, and reduce the risk of safety hazards. To this end, methods are presented for the design of advanced fault-tolerant control systems for chemical processes which explicitly deal with actuator/controller failures and sensor faults and data losses. Specifically, the book puts forward: ·         a framework for  detection, isolation and diagnosis of actuator and sensor faults for nonlinear systems; ·         controller reconfiguration and safe-parking-based fault-handling methodologies; ·         integrated-data- and model-based fault-detection and isolation and fault-tolerant control methods; ·         methods for handling sensor faults and data losses; and ·      ...

  16. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  17. Development of advanced NO sub x control concepts for coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Newhall, J.; England, G.; Seeker, W.R.

    1991-12-23

    Energy and Environmental Research Corporation (EER) is currently conducting a test program to develop an advanced NO{sub x} control method utilizing reburning, promoted selective noncatalytic agent injection. The study will consist of fundamental and process testing over a large enough range of operating parameters to significantly reduce the risk of a full scale demonstration project. The test plan for the fundamental testing phase of the program is presented here.

  18. HFE safety reviews of advanced nuclear power plant control rooms

    Science.gov (United States)

    Ohara, John

    1994-01-01

    Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.

  19. Advances in Time Estimation Methods for Molecular Data.

    Science.gov (United States)

    Kumar, Sudhir; Hedges, S Blair

    2016-04-01

    Molecular dating has become central to placing a temporal dimension on the tree of life. Methods for estimating divergence times have been developed for over 50 years, beginning with the proposal of molecular clock in 1962. We categorize the chronological development of these methods into four generations based on the timing of their origin. In the first generation approaches (1960s-1980s), a strict molecular clock was assumed to date divergences. In the second generation approaches (1990s), the equality of evolutionary rates between species was first tested and then a strict molecular clock applied to estimate divergence times. The third generation approaches (since ∼2000) account for differences in evolutionary rates across the tree by using a statistical model, obviating the need to assume a clock or to test the equality of evolutionary rates among species. Bayesian methods in the third generation require a specific or uniform prior on the speciation-process and enable the inclusion of uncertainty in clock calibrations. The fourth generation approaches (since 2012) allow rates to vary from branch to branch, but do not need prior selection of a statistical model to describe the rate variation or the specification of speciation model. With high accuracy, comparable to Bayesian approaches, and speeds that are orders of magnitude faster, fourth generation methods are able to produce reliable timetrees of thousands of species using genome scale data. We found that early time estimates from second generation studies are similar to those of third and fourth generation studies, indicating that methodological advances have not fundamentally altered the timetree of life, but rather have facilitated time estimation by enabling the inclusion of more species. Nonetheless, we feel an urgent need for testing the accuracy and precision of third and fourth generation methods, including their robustness to misspecification of priors in the analysis of large phylogenies and data

  20. International conference on Advances in Intelligent Control and Innovative Computing

    CERN Document Server

    Castillo, Oscar; Huang, Xu; Intelligent Control and Innovative Computing

    2012-01-01

    In the lightning-fast world of intelligent control and cutting-edge computing, it is vitally important to stay abreast of developments that seem to follow each other without pause. This publication features the very latest and some of the very best current research in the field, with 32 revised and extended research articles written by prominent researchers in the field. Culled from contributions to the key 2011 conference Advances in Intelligent Control and Innovative Computing, held in Hong Kong, the articles deal with a wealth of relevant topics, from the most recent work in artificial intelligence and decision-supporting systems, to automated planning, modelling and simulation, signal processing, and industrial applications. Not only does this work communicate the current state of the art in intelligent control and innovative computing, it is also an illuminating guide to up-to-date topics for researchers and graduate students in the field. The quality of the contents is absolutely assured by the high pro...

  1. GPS based Advanced Vehicle Tracking and Vehicle Control System

    Directory of Open Access Journals (Sweden)

    Mashood Mukhtar

    2015-02-01

    Full Text Available Security systems and navigators have always been a necessity of human‟s life. The developments of advanced electronics have brought revolutionary changes in these fields. In this paper, we will present a vehicle tracking system that employs a GPS module and a GSM modem to find the location of a vehicle and offers a range of control features. To complete the design successfully, a GPS unit, two relays, a GSM Modem and two MCU units are used. There are five features introduced in the project. The aim of this project is to remotely track a vehicle‟s location, remotely switch ON and OFF the vehicle‟s ignition system and remotely lock and unlock the doors of the vehicle. An SMS message is sent to the tracking system and the system responds to the users request by performing appropriate actions. Short text messages are assigned to each of these features. A webpage is specifically designed to view the vehicle‟s location on Google maps. By using relay based control concept introduced in this paper, number of control features such as turning heater on/off, radio on/off etc. can be implemented in the same fashion.

  2. A simple method of chaos control

    CERN Document Server

    Shahverdiev, E M

    1998-01-01

    A simple method to perform chaos control without the need of complex numerical and analytical calculations is proposed. The method works for dynamical systems with bounded solutions and in the trivial case of constant Jacobians.

  3. Evaluation of Design Methods for Geometric Control

    DEFF Research Database (Denmark)

    Kymmel, Mogens; Beran, M.; Foldager, L.;

    1985-01-01

    Geometric control can produce desirable control by decoupling the input disturbances from the selected output variables. The basic principle for this method was originally introduced by Wonham. The mathematical complexity involved, however, makes the method very hard to get accepted by the chemical...... community. The paper evaluates Wonham's original method together with three other methods, i.e. eigenvalue/eigenvector methods by Shah et al, the graph theory by Schizas and Evans and the simplified method by Kümmel et al. The evaluation considers the basic potential of the methods, the prerequisite...... of the designer, transparency, computer demand, and potential for pole shift....

  4. TO THE QUESTION OF MATHEMATICAL METHODS DEVELOPMENT OF CONTROLLING

    Directory of Open Access Journals (Sweden)

    Orlov A. I.

    2016-06-01

    Full Text Available On the basis of the objective analysis it must be noted that in the arsenal of managers, especially foreign ones, there is practically no fundamentally new methods and tools of controlling. So says the executive director of Russian Association of Controllers prof. S. G. Falco. However, promising mathematical and instrumental methods of controlling actively developed in our country. It is necessary to implement them. For example, managers should be used techniques which discussed in the book by Orlov AI, Lutsenko EV, Loikaw VI "Advanced mathematical and instrumental methods of controlling" (2015. These methods are based on the modern development of mathematics as a whole - on the system interval fuzzy math (see the same named book by Orlov AI and Lutsenko EV, 2014. Considered methods are developed in accordance with the new paradigm of mathematical methods of research. It includes new paradigms of applied statistics, mathematical statistics, mathematical methods of economics, methods of analysis of statistical and expert data in management and control. In the XXI century there were more than 10 books issued, developed in accordance with the new paradigm of mathematical methods of research. The systems approach to solving specific applications often requires going beyond the economy. Very important are the procedures for the introduction of innovative methods and tools. In this article we consider the above research results in their interconnection

  5. Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator

    Science.gov (United States)

    Hwang, Ji-Hwan; Kang, Young-Chang

    2017-01-01

    In this paper, advanced interval type-2 fuzzy sliding mode control (AIT2FSMC) for robot manipulator is proposed. The proposed AIT2FSMC is a combination of interval type-2 fuzzy system and sliding mode control. For resembling a feedback linearization (FL) control law, interval type-2 fuzzy system is designed. For compensating the approximation error between the FL control law and interval type-2 fuzzy system, sliding mode controller is designed, respectively. The tuning algorithms are derived in the sense of Lyapunov stability theorem. Two-link rigid robot manipulator with nonlinearity is used to test and the simulation results are presented to show the effectiveness of the proposed method that can control unknown system well.

  6. Control allocation and management of redundant control effectors based on bases sequenced optimal method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    For an advanced aircraft, the amount of its effectors is much more than that for a traditional one, the functions of effectors are more complex and the coupling between each other is more severe. Based on the current control allocation research, this paper puts forward the concept and framework of the control allocation and management system for aircrafts with redundancy con-trol effectors. A new optimal control allocation method, bases sequenced optimal (BSO) method, is then presented. By analyz-ing the physical meaning of the allocation process of BSO method, four types of management strategies are adopted by the system, which act on the control allocation process under different flight conditions, mission requirements and effectors work-ing conditions. Simulation results show that functions of the control allocation system are extended and the system adaptability to flight status, mission requirements and effector failure conditions is improved.

  7. Advanced ECU Software Development Method for Fuel Cell Systems

    Institute of Scientific and Technical Information of China (English)

    TIAN Shuo; LIU Yuan; XIA Wenchuan; LI Jianqiu; YANG Minggao

    2005-01-01

    The electronic control unit (ECU) in electrical powered hybrid and fuel cell vehicles is exceedingly complex. Rapid prototyping control is used to reduce development time and eliminate errors during software development. This paper describes a high-efficiency development method and a flexible tool chain suitable for various applications in automotive engineering. The control algorithm can be deployed directly from a Matlab/Simulink/Stateflow environment into the ECU hardware together with an OSEK real-time operating system (RTOS). The system has been successfully used to develop a 20-kW fuel cell system ECU based on a Motorola PowerPC 555 (MPC555) microcontroller. The total software development time is greatly reduced and the code quality and reliability are greatly enhanced.

  8. Second Generation Advanced Reburning for High Efficiency NOx Control

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski; Mark S. Sheldon; David Moyeda; Roy Payne

    2001-06-30

    This project develops a family of novel Second Generation Advanced Reburning (SGAR) NO{sub x} control technologies, which can achieve 95% NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction (SCR). The conventional Advanced Reburning (AR) process integrates basic reburning and N-agent injection. The SGAR systems include six AR variants: (1) AR-Lean--injection of the N-agent and promoter along with overfire air; (2) AR-Rich--injection of N-agent and promoter into the reburning zone; (3) Multiple Injection Advanced Reburning (MIAR)--injection of N-agents and promoters both into the reburning zone and with overfire air; (4) AR-Lean + Promoted SNCR--injection of N-agents and promoters with overfire air and into the temperature zone at which Selective Non-Catalytic Reduction (SNCR) is effective; (5) AR-Rich + Promoted SNCR--injection of N-agents and promoters into the reburning zone and into the SNCR zone; and (6) Promoted Reburning + Promoted SNCR--basic or promoted reburning followed by basic or promoted SNCR process. The project was conducted in two phases over a five-year period. The work included a combination of analytical and experimental studies to confirm the process mechanisms, identify optimum process configurations, and develop a design methodology for full-scale applications. Phase I was conducted from October, 1995 to September, 1997 and included both analytical studies and tests in bench and pilot-scale test rigs. Phase I moved AR technology to Maturity Level III-Major Subsystems. Phase II is conducted over a 45 month period (October, 1997-June, 2001). Phase II included evaluation of alternative promoters, development of alternative reburning fuel and N-Agent jet mixing systems, and scale up. The goal of Phase II was to move the technology to Maturity Level I-Subscale Integrated System. Tests in combustion facility ranging in firing rate from 0.1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr demonstrated the

  9. Adaptive Method Using Controlled Grid Deformation

    Directory of Open Access Journals (Sweden)

    Florin FRUNZULICA

    2011-09-01

    Full Text Available The paper presents an adaptive method using the controlled grid deformation over an elastic, isotropic and continuous domain. The adaptive process is controlled with the principal strains and principal strain directions and uses the finite elements method. Numerical results are presented for several test cases.

  10. Radiation Mitigation Methods for Advanced Readout Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in the development of advanced instruments and instrument components for planetary science missions. Specifically, an area of importance in...

  11. Advanced illumination control algorithm for medical endoscopy applications

    Science.gov (United States)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.

    2015-05-01

    CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.

  12. Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Steven Michael [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.

  13. Nonlinear system compound inverse control method

    Institute of Scientific and Technical Information of China (English)

    Yan ZHANG; Zengqiang CHEN; Peng YANG; Zhuzhi YUAN

    2005-01-01

    A compound neural network is utilized to identify the dynamic nonlinear system.This network is composed of two parts: one is a linear neural network,and the other is a recurrent neural network.Based on the inverse theory a compound inverse control method is proposed.The controller has also two parts:a linear controller and a nonlinear neural network controller.The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated based on the Lyapunov theory.Simulation studies have shown that this scheme is simple and has good control accuracy and robustness.

  14. Operational Strategy of CBPs for load balancing of Operators in Advanced Main Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seunghwan; Kim, Yochan; Jung, Wondea [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    With the using of a computer-based control room in an APR1400 (Advanced Pressurized Reactor-1400), the operators' behaviors in the main control room had changed. However, though the working environment of operators has been changed a great deal, digitalized interfaces can also change the cognitive tasks or activities of operators. First, a shift supervisor (SS) can confirm/check the conduction of the procedures and the execution of actions of board operators (BOs) while confirming directly the operation variables without relying on the BOs. Second, all operators added to their work the use of a new CBP and Soft Controls, increasing their procedural workload. New operational control strategies of CBPs are necessary for load balancing of operator's task load in APR1400. In this paper, we compared the workloads of operators in an APR1400 who work with two different usages of the CBP. They are SS oriented usage and SS-BO collaborative usage. In this research, we evaluated the workloads of operators in an advanced main control room by the COCOA method. Two types of CBP usages were defined and the effects of these usages on the workloads were investigated. The obtained results showed that the workloads between operators in a control room can be balanced according to the CBP usages by assigning control authority to the operators.

  15. Regenerative medicine: advances in new methods and technologies.

    Science.gov (United States)

    Park, Dong-Hyuk; Eve, David J

    2009-11-01

    The articles published in the journal Cell Transplantation - The Regenerative Medicine Journal over the last two years reveal the recent and future cutting-edge research in the fields of regenerative and transplantation medicine. 437 articles were published from 2007 to 2008, a 17% increase compared to the 373 articles in 2006-2007. Neuroscience was still the most common section in both the number of articles and the percentage of all manuscripts published. The increasing interest and rapid advance in bioengineering technology is highlighted by tissue engineering and bioartificial organs being ranked second again. For a similar reason, the methods and new technologies section increased significantly compared to the last period. Articles focusing on the transplantation of stem cell lineages encompassed almost 20% of all articles published. By contrast, the non-stem cell transplantation group which is made up primarily of islet cells, followed by biomaterials and fetal neural tissue, etc. comprised less than 15%. Transplantation of cells pre-treated with medicine or gene transfection to prolong graft survival or promote differentiation into the needed phenotype, was prevalent in the transplantation articles regardless of the kind of cells used. Meanwhile, the majority of non-transplantation-based articles were related to new devices for various purposes, characterization of unknown cells, medicines, cell preparation and/or optimization for transplantation (e.g. isolation and culture), and disease pathology.

  16. Advances in the analysis of iminocyclitols: Methods, sources and bioavailability.

    Science.gov (United States)

    Amézqueta, Susana; Torres, Josep Lluís

    2016-05-01

    Iminocyclitols are chemically and metabolically stable, naturally occurring sugar mimetics. Their biological activities make them interesting and extremely promising as both drug leads and functional food ingredients. The first iminocyclitols were discovered using preparative isolation and purification methods followed by chemical characterization using nuclear magnetic resonance spectroscopy. In addition to this classical approach, gas and liquid chromatography coupled to mass spectrometry are increasingly used; they are highly sensitive techniques capable of detecting minute amounts of analytes in a broad spectrum of sources after only minimal sample preparation. These techniques have been applied to identify new iminocyclitols in plants, microorganisms and synthetic mixtures. The separation of iminocyclitol mixtures by chromatography is particularly difficult however, as the most commonly used matrices have very low selectivity for these highly hydrophilic structurally similar molecules. This review critically summarizes recent advances in the analysis of iminocyclitols from plant sources and findings regarding their quantification in dietary supplements and foodstuffs, as well as in biological fluids and organs, from bioavailability studies.

  17. Underwater photosynthesis of submerged plants – recent advances and methods

    Directory of Open Access Journals (Sweden)

    Ole ePedersen

    2013-05-01

    Full Text Available We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilisation under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence.

  18. Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    KAUST Repository

    Burger, Jessica L.

    2015-07-16

    © This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.

  19. Optimization and control methods in industrial engineering and construction

    CERN Document Server

    Wang, Xiangyu

    2014-01-01

    This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering, and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P, and target contracts optimization.   The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and c...

  20. Advanced response surface method for mechanical reliability analysis

    Institute of Scientific and Technical Information of China (English)

    L(U) Zhen-zhou; ZHAO Jie; YUE Zhu-feng

    2007-01-01

    Based on the classical response surface method (RSM), a novel RSM using improved experimental points (EPs) is presented for reliability analysis. Two novel points are included in the presented method. One is the use of linear interpolation, from which the total EPs for determining the RS are selected to be closer to the actual failure surface;the other is the application of sequential linear interpolation to control the distance between the surrounding EPs and the center EP, by which the presented method can ensure that the RS fits the actual failure surface in the region of maximum likelihood as the center EPs converge to the actual most probable point (MPP). Since the fitting precision of the RS to the actual failure surface in the vicinity of the MPP, which has significant contribution to the probability of the failure surface being exceeded, is increased by the presented method, the precision of the failure probability calculated by RS is increased as well. Numerical examples illustrate the accuracy and efficiency of the presented method.

  1. Research advance in safety analysis methods for high concrete dam

    Institute of Scientific and Technical Information of China (English)

    REN; QingWen; XU; LanYu; WAN; YunHui

    2007-01-01

    High tensile stresses occurred in high concrete dams and in their foundation lead to the growing importance of their safety with the increase of concrete dam height.Without any exiting specification or successful experiences of concrete dams up to 300 m at home and abroad for reference,experts feel obliged to figure out how to perform safety analysis on high concrete dam.This paper involves the main contents and mechanical features of the safety analysis on high concrete dam and shows the current state and progress of the analysis methods.For the insufficiency and problems existing in normative methods,study on modern numerical method such as finite element method must be strengthened to find out the stress control criterion which is in accordance with the methods.Two aspects of the safety analysis of high dam--local damage from material level and integral destruction from structure level--should be considered.For the local damage,we should consider the non-homogeneity of material and strengthen the research of meso-damage mechanics.While for integral destruction of the system of high dam and its foundation,a study on non-strength theory should receive enough concerns.Further,attention should be paid to the research on the failure modes and criterions of high concrete dam failure analysis and safety evaluation,and the effect of uncertainty and classification of safety should be considered too.

  2. Advances in soft computing, intelligent robotics and control

    CERN Document Server

    Fullér, Robert

    2014-01-01

    Soft computing, intelligent robotics and control are in the core interest of contemporary engineering. Essential characteristics of soft computing methods are the ability to handle vague information, to apply human-like reasoning, their learning capability, and ease of application. Soft computing techniques are widely applied in the control of dynamic systems, including mobile robots. The present volume is a collection of 20 chapters written by respectable experts of the fields, addressing various theoretical and practical aspects in soft computing, intelligent robotics and control. The first part of the book concerns with issues of intelligent robotics, including robust xed point transformation design, experimental verification of the input-output feedback linearization of differentially driven mobile robot and applying kinematic synthesis to micro electro-mechanical systems design. The second part of the book is devoted to fundamental aspects of soft computing. This includes practical aspects of fuzzy rule ...

  3. System design and control integration for advanced manufacturing

    CERN Document Server

    Li, Han-Xiong

    2014-01-01

    Most existing robust design books address design for static systems, or achieve robust design from experimental data via the Taguchi method. Little work considers model information for robust design particularly for the dynamic system. This book covers robust design for both static and dynamic systems using the nominal model information or the hybrid model/data information, and also integrates design with control under a large operating region. This design can handle strong nonlinearity and more uncertainties from model and parameters.

  4. Advanced h∞ control towards nonsmooth theory and applications

    CERN Document Server

    Orlov, Yury V

    2014-01-01

    This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H∞ approach in the nonsmooth setting. Similar to the standard nonlinear H∞ approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements.    Advanced H∞ Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton–Jacobi–Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is exten...

  5. Advances in Experimental Neuropathology: New Methods and Insights.

    Science.gov (United States)

    Roth, Kevin A

    2016-03-01

    This Editorial introduces this month's special Neuropathology Theme Issue, a series of Reviews on advances in our understanding of rare human hereditary neuropathies, peripheral nervous system tumors, and common degenerative diseases.

  6. Advanced Methods for Treatment of Organic Compounds Contamined Water

    Directory of Open Access Journals (Sweden)

    PREDESCU Andra

    2009-08-01

    Full Text Available The progress recorded in the field of science and advanced engineering at nanometric scale supplies largeopportunities for more efficient (from the point of view of the costs and more ecological approach of the processes ofwater purifying. This paper delivers a short description of the possibilities of using advanced materials in purifying thecontamined water with toxic metallic ions, organic and anorganic compounds. The opportunities and challenges werealso emphasized when nanomaterials were used for the surface, underground and industrial used waters treatment.

  7. Advanced methods of continuum mechanics for materials and structures

    CERN Document Server

    Aßmus, Marcus

    2016-01-01

    This volume presents a collection of contributions on advanced approaches of continuum mechanics, which were written to celebrate the 60th birthday of Prof. Holm Altenbach. The contributions are on topics related to the theoretical foundations for the analysis of rods, shells and three-dimensional solids, formulation of constitutive models for advanced materials, as well as development of new approaches to the modeling of damage and fractures.

  8. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  9. Barrier methods of birth control - slideshow

    Science.gov (United States)

    ... gov/ency/presentations/100107.htm Barrier methods of birth control - series—Female normal anatomy To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Birth Control A.D.A.M., Inc. is accredited by ...

  10. Advanced Stellar Compass - Adeos II - Interface Control Document

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren;

    This document describes the Advanced Stellar Compass (ASC) and defines the interfaces between the instrument and the ADEOS II satellite. The ASC is a highly advanced and autonomous Stellar Reference Unit designed, developed and produced by the Space Instrumentation Group of the Department...

  11. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    Science.gov (United States)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  12. Power Control Technique for Efficient Call Admission Control in Advanced Wirless Networks

    Directory of Open Access Journals (Sweden)

    Ch. Sreenivasa Rao

    2012-06-01

    Full Text Available In 4G networks, call admission control techniques have been proposed to provide Quality of Service (QoS in a network by restricting the access to network resources. Power control is essential in call admission control in order to provide fair access to all users, improve battery lifetime and system performance. But the existing call admission control algorithms rarely consider the power controlling techniques in the handoff process for different traffic classes. In this paper, we propose to develop a power controlled call admission control scheme for handoff in the advanced wireless networks. The incoming call measures the initial interference on it and then the base station starts transmitting the packets to the new call. The new call is rejected when the interference reaches a threshold value.Whenever an existing call meets the power constraint, the transmit power is decremented based on thetraffic class and incoming call obtains this information by monitoring the interference received on it. Theconvergence of the power control algorithm is checked and the power levels of all incoming calls areadjusted. From our simulation results we prove that this power control technique provides efficienthandoff in the 4G networks by increasing the throughput and reducing the delay of the existing users.

  13. A MODEL AND CONTROLLER REDUCTION METHOD FOR ROBUST CONTROL DESIGN.

    Energy Technology Data Exchange (ETDEWEB)

    YUE,M.; SCHLUETER,R.

    2003-10-20

    A bifurcation subsystem based model and controller reduction approach is presented. Using this approach a robust {micro}-synthesis SVC control is designed for interarea oscillation and voltage control based on a small reduced order bifurcation subsystem model of the full system. The control synthesis problem is posed by structured uncertainty modeling and control configuration formulation using the bifurcation subsystem knowledge of the nature of the interarea oscillation caused by a specific uncertainty parameter. Bifurcation subsystem method plays a key role in this paper because it provides (1) a bifurcation parameter for uncertainty modeling; (2) a criterion to reduce the order of the resulting MSVC control; and (3) a low order model for a bifurcation subsystem based SVC (BMSVC) design. The use of the model of the bifurcation subsystem to produce a low order controller simplifies the control design and reduces the computation efforts so significantly that the robust {micro}-synthesis control can be applied to large system where the computation makes robust control design impractical. The RGA analysis and time simulation show that the reduced BMSVC control design captures the center manifold dynamics and uncertainty structure of the full system model and is capable of stabilizing the full system and achieving satisfactory control performance.

  14. Processing of alnico permanent magnets by advanced directional solidification methods

    Science.gov (United States)

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-12-01

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti composition

  15. LED lamp color control system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  16. Power Control Method for Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baang, Dane; Suh, Yongsuk; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Considering safety-oriented design concept and other control environment, we developed a simple controller that provides limiting function of power change- rate as well as fine tracking performance. The design result has been well-proven via simulation and actual application to a TRIGA-II type research reactor. The proposed controller is designed to track the PDM(Power Demand) from operator input as long as maintaining the power change rate lower than a certain value for stable reactor operation. A power control method for a TRIGA-II type research reactor has been designed, simulated, and applied to actual reactor. The control performance during commissioning test shows that the proposed controller provides fine control performance for various changes in reference values (PDM), even though there is large measurement noise from neutron detectors. The overshoot at low power level is acceptable in a sense of reactor operation.

  17. Evaluation of information display at advanced main control room

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dai Hwan; Jo, Heon Jin; Jeon, Byung Ho [Korea Univ., Seoul (Korea, Republic of)

    2001-03-15

    The purpose of this research is first to establish an evaluation method for CBPs(Computer-Based Procedures) at the advanced MCR as a part of regulation technology for the safety of KNGR. The second purpose is to design a prototype of a support system for the evaluation. We have selected the guideline method for the evaluation, since currently there is not any better alternative. Several guidelines have been published for the design of CBPs. The guidelines include both guidance for CBP design process review and guidance for CBP design product review. Although CBPs have many advantages over PBPs(Pater-Based Procedures), they have some drawbacks since CBPs show the information on display screens instead of papers, and generate some new issues that have not been raised with PBPs. For the new issues, we need to be cautious because it is hard to generalize the effects of CBPs and there is no conclusive answer yet. A support system is necessary for the evaluation of CBPs, since it is not easy to carry out an evaluation task even though an evaluator has firm background on cognitive engineering theories and practical experiences. The support system is going to have web-style interface and databases of evaluation items, guidelines for each evaluation item, and technical bases from which a guideline is derived. Evaluation items include those for desirable feature of CBPs and those for a subjective evaluation by the operating crew. The support system will facilitate the task of evaluators by linking evaluation items with technical basis and by providing features for recording and tracing the evaluation result and efforts for resolving the issues identified.

  18. Self Tuning Techniques on PLC Background and Control Systems With Self Tuning Methods Design

    Directory of Open Access Journals (Sweden)

    Jiri Koziorek

    2010-01-01

    Full Text Available Advanced Process Control techniques have become standard functions of distributed control systems. Self tuning methods belong to Advanced Process Control (APC techniques. APC techniques contain software packages for advanced control based on mathematical methods. APC tools are designed to increase the process capacity, yield and quality of products. Most of nowadays digital industry regulators and PLCs are provided with some kind of the self tuning constant algorithm. Practical part of the paper deals with design of the control systems which contain self tuning regulator. A control system with PID Self Tuner by Siemens and with visualization in WinCC is designed. There is a description of an implementation of the PID regulator as a function block which can be also used for extension control functions. Control systems for relay and moment self tuner with visualizations in WinCC are also designed.

  19. A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control.

    Science.gov (United States)

    Hahne, Janne M; Farina, Dario; Jiang, Ning; Liebetanz, David

    2016-01-01

    Despite several decades of research, electrically powered hand and arm prostheses are still controlled with very simple algorithms that process the surface electromyogram (EMG) of remnant muscles to achieve control of one prosthetic function at a time. More advanced machine learning methods have shown promising results under laboratory conditions. However, limited robustness has largely prevented the transfer of these laboratory advances to clinical applications. In this paper, we introduce a novel percutaneous EMG electrode to be implanted chronically with the aim of improving the reliability of EMG detection in myoelectric control. The proposed electrode requires a minimally invasive procedure for its implantation, similar to a cosmetic micro-dermal implant. Moreover, being percutaneous, it does not require power and data telemetry modules. Four of these electrodes were chronically implanted in the forearm of an able-bodied human volunteer for testing their characteristics. The implants showed significantly lower impedance and greater robustness against mechanical interference than traditional surface EMG electrodes used for myoelectric control. Moreover, the EMG signals detected by the proposed systems allowed more stable control performance across sessions in different days than that achieved with classic EMG electrodes. In conclusion, the proposed implants may be a promising interface for clinically available prostheses.

  20. A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control

    Directory of Open Access Journals (Sweden)

    Janne M. Hahne

    2016-03-01

    Full Text Available Despite several decades of research, electrically powered hand and arm prostheses are still controlled with very simple algorithms that process the surface electromyogram (EMG of remnant muscles to achieve control of one prosthetic function at a time. More advanced machine learning methods have shown promising results under laboratory conditions. However, limited robustness has largely prevented the transfer of these laboratory advances to clinical applications. In this paper, we introduce a novel percutaneous EMG electrode to be implanted chronically with the aim of improving the reliability of EMG detection in myoelectric control. The proposed electrode requires a minimally invasive procedure for its implantation, similar to a cosmetic micro-dermal implant. Moreover, being percutaneous, it does not require power and data telemetry modules. Four of these electrodes were chronically implanted in the forearm of an able-bodied human volunteer for testing their characteristics. The implants showed significantly lower impedance and greater robustness against mechanical interference than traditional surface EMG electrodes used for myoelectric control. Moreover, the EMG signals detected by the proposed systems allowed more stable control performance across sessions in different days than that achieved with classic EMG electrodes. In conclusion, the proposed implants may be a promising interface for clinically available prostheses.

  1. Advanced Multifunctional Properties of Aligned Carbon Nanotube-Epoxy Composites from Carbon Nanotube Aerogel Method

    Science.gov (United States)

    Tran, Thang; Liu, Peng; Fan, Zeng; Ngern, Nigel; Duong, Hai

    2015-03-01

    Unlike previous methods of making carbon nanotube (CNT) thin films, aligned CNT thin films in this work are synthesized directly from CNT aerogels in a CVD process. CH4/H2/He gases and ferrocene/thiophene catalysts are mixed and reacted in the reactor at 1200 °C to form CNT aerogel socks. By pulling out the socks with a metal rod, CNT thin films with 15-nm diameter MWNTs are aligned and produced continuously at a speed of a few meters per minute. The number of the aligned CNT thin film layers/ thickness can also be controlled well. The as-synthesized aligned CNT films are further condensed by acetone spray and post-treated by UV light. The aligned CNT films without any above post-treatment have a high electrical conductivity of 400S/cm. We also develop aligned CNT-epoxy composites by infiltrating epoxy into the above aligned CNT thin films using Vacuum Assisted Resin Transfer Molding (VARTM) method. Our cost-effective fabrication method of the aligned CNT films is more advanced for developing the composites having CNT orientation control. The mechanical, electrical and optical properties of the aligned CNT epoxy composites are measured. About 2% of the aligned CNTs can enhance significantly the electrical conductivity and hardness of aligned CNT-epoxy composite films. Effects of morphologies, volume fraction, and alignment of the CNTs on the advanced multifunctional properties of the aligned CNT-epoxy composites are also quantified.

  2. Combination of retrograde superselective intra-arterial chemotherapy and Seldinger method in locally advanced oral cancer

    Directory of Open Access Journals (Sweden)

    Masataka Uehara

    2015-01-01

    Full Text Available The nonsurgical strategies for locally advanced oral cancer are desirable. Superselective intra-arterial infusion with radiotherapy was utilized for this purpose, and there are two types of superselective intra-arterial infusion methods: The Seldinger method and the retrograde superselective intra-arterial chemotherapy (HFT method. In one case, the HFT method was applied to locally advanced tongue cancer, and the Seldinger method was used for additional administration of cisplatin (CDDP to compensate for a lack of drug flow in the HFT method. In another case, the HFT method was applied to locally advanced lower gingival cancer. The Seldinger method was applied to metastatic lymph nodes. In both cases, additional administration of CDDP using the Seldinger method resulted in a complete response. The combination of the HFT and Seldinger methods was useful to eradicate locally advanced oral cancer because each method compensated for the defects of the other.

  3. Combination of retrograde superselective intra-arterial chemotherapy and Seldinger method in locally advanced oral cancer.

    Science.gov (United States)

    Uehara, Masataka; Ohya, Ryouichi; Kodama, Masaaki; Shiraishi, Takeshi; Asahina, Izumi; Tominaga, Kazuhiro

    2015-01-01

    The nonsurgical strategies for locally advanced oral cancer are desirable. Superselective intra-arterial infusion with radiotherapy was utilized for this purpose, and there are two types of superselective intra-arterial infusion methods: The Seldinger method and the retrograde superselective intra-arterial chemotherapy (HFT method). In one case, the HFT method was applied to locally advanced tongue cancer, and the Seldinger method was used for additional administration of cisplatin (CDDP) to compensate for a lack of drug flow in the HFT method. In another case, the HFT method was applied to locally advanced lower gingival cancer. The Seldinger method was applied to metastatic lymph nodes. In both cases, additional administration of CDDP using the Seldinger method resulted in a complete response. The combination of the HFT and Seldinger methods was useful to eradicate locally advanced oral cancer because each method compensated for the defects of the other.

  4. CFD evaluation of an advanced thrust vector control concept

    Science.gov (United States)

    Tiarn, Weihnurng; Cavalleri, Robert

    1990-01-01

    A potential concept that can offer an alternate method for thrust vector control of the Space Shuttle Solid Rocket Booster is the use of a cylindrical probe that is inserted (on demand) through the wall of the rocket nozzle. This Probe Thrust Vector Control (PTVC) concept is an alternate to that of a gimbaled nozzle or a Liquid Injection Thrust Vector (LITVC) system. The viability of the PTVC concept can be assessed either experimentally and/or with the use of CFD. A purely experimental assessment can be time consuming and expensive, whereas a CFD assessment can be very time- and cost-effective. Two key requirements of the proposed concept are PTVC vectoring performance and the active cooling requirements for the probe to maintain its thermal and structural integrity. An active thermal cooling method is the injection of coolant around the pheriphery of the probe. How much coolant is required and how this coolant distributes itself in the flow field is of major concern. The objective of the work reported here is the use of CFD to answer these question and in the design of test hardware to substantiate the results of the CFD predictions.

  5. Advancing multilevel thinking and methods in HRM research

    NARCIS (Netherlands)

    Renkema, Maarten; Meijerink, Jeroen; Bondarouk, Tanya

    2016-01-01

    Purpose Despite the growing belief that multilevel research is necessary to advance HRM understanding, there remains a lack of multilevel thinking – the application of principles for multilevel theory building. The purpose of this paper is to propose a systematic approach for multilevel HRM research

  6. A Method for Increasing Elders' Use of Advance Directives.

    Science.gov (United States)

    Luptak, Marilyn K.; Boult, Chad

    1994-01-01

    Studied effectiveness of intervention to help frail elders to record advance directives (ADs). In collaboration with physicians and lay volunteer, social worker provided information/counseling to elderly subjects, families, and proxies in series of visits to geriatric evaluation and management clinic. Seventy-one percent of subjects recorded ADs.…

  7. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haves, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDonald, S. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Torcellini, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hansen, D. [U.S. Dept. of Energy, Washington, D.C. (United States); Holmberg, D. R. [National Institute of Science and Technology, Gaithersburg, MD (United States); Roth, K. W. [TIAX, LLC, Cambridge, MA (United States)

    2005-04-01

    This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies.

  8. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  9. RECENT ADVANCES IN THE PREPARATION OF MOLECULARLY IMPRINTED POLYMERS VIA CONTROLLED RADICAL POLYMERIZATION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Molecular imprinting technique is a simple and efficient method for the preparation of polymer materials (i.e., molecularly imprinted polymers, MIPs) with tailor-made recognition sites for certain target molecules. The resulting MIPs have proven to be versatile synthetic receptors due to their high specific recognition ability, favorable mechanical, thermal and chemical stability, and ease of preparation. Recent years have witnessed significant progress in the synthesis and applications of MIPs. This review focus on the recent developments and advances in the preparation of MIPs via various controlled radical polymerization techniques.

  10. RECENT ADVANCES IN THE PREPARATION OF MOLECULARLY IMPRINTED POLYMERS VIA CONTROLLED RADICAL POLYMERIZATION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; ZHANG Huiqi

    2008-01-01

    Molecular imprinting technique is a simple and efficient method for the preparation of polymer materials (i.e., molecularly imprinted polymers, MIPs) with tailor-made recognition sites for certain target molecules.The resulting MIPs have proven to be versatile synthetic receptors due to their high specific recognition ability, favorable mechanical, thermal and chemical stability, and ease of preparation.Recent years have witnessed signifwant progress in the synthesis and applications of MIPs.This review focus on the recent developments and advances in the preparation of MIPs via various controlled radical polymerization techniques.

  11. Improved Disturbance Observer (DOB) Based Advanced Feedback Control for Optimal Operation of a Mineral Grinding Process%Improved Disturbance Observer (DOB) Based Advanced Feedback Control for Optimal Operation of a Mineral Grinding Process

    Institute of Scientific and Technical Information of China (English)

    周平; 向波; 柴天佑

    2012-01-01

    Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.

  12. A survey of quantum Lyapunov control methods.

    Science.gov (United States)

    Cong, Shuang; Meng, Fangfang

    2013-01-01

    The condition of a quantum Lyapunov-based control which can be well used in a closed quantum system is that the method can make the system convergent but not just stable. In the convergence study of the quantum Lyapunov control, two situations are classified: nondegenerate cases and degenerate cases. For these two situations, respectively, in this paper the target state is divided into four categories: the eigenstate, the mixed state which commutes with the internal Hamiltonian, the superposition state, and the mixed state which does not commute with the internal Hamiltonian. For these four categories, the quantum Lyapunov control methods for the closed quantum systems are summarized and analyzed. Particularly, the convergence of the control system to the different target states is reviewed, and how to make the convergence conditions be satisfied is summarized and analyzed.

  13. A closed-loop photon beam control study for the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared -- a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.

  14. NASA's advanced control law program for the F-8 digital fly-by-wire aircraft

    Science.gov (United States)

    Elliott, J. R.

    1977-01-01

    This paper briefly describes the NASA F-8 Digital Fly-By-Wire (DFBW) and Langley Research Center's role in investigating and promoting advanced control laws for possible flight experimentation and also provides a brief description of the Phase II DFBW F-8 aircraft and its control system. Some of the advanced control law study objectives and guidelines are discussed, and some mathematical models which are useful in the control analysis problem are provided.

  15. Continuous Control Artificial Potential Function Methods and Optimal Control

    Science.gov (United States)

    2014-03-27

    Method, namely r̈VDSVAPF = −K̇SKR∇φ−KSK̇R∇φ−KSKRH(φ)ṙ −KD (KSKR∇φ+ ṙ) . The above dynamics are very nonlinear due to the trigonometric functions (inside...constraints (on KS and θ) and the deletion of trigonometric functions . The suspected reasons for the larger computa- tional expense are twofold. First, this...Continuous Control Artificial Potential Function Methods and Optimal Control THESIS R. Andrew Fields, Civ, USAF AFIT-ENY-14-M-20 DEPARTMENT OF THE

  16. Advances in Occurrence and Integrated Control Methods of Potato Virus Y Disease for Tobacco%烟草马铃薯Y病毒病的发生及综合防治研究进展

    Institute of Scientific and Technical Information of China (English)

    赵辉; 杨健

    2014-01-01

    综述了烟草马铃薯Y病毒病发生的原因来源于气候变化、种植结构变化、品种和田间管理不当。主要采取通过建立预测预报体系、选育品种、栽培措施、规范使用化学药剂、利用生物天敌对烟草马铃薯Y病毒病进行预防。并对防治烟草马铃薯Y病毒病的前景进行了展望。%The causes of tobacco potato virus Y (PVY) disease were analyzed, including climate changes, planting structure changes, and unsuitable variety and ifeld management. To prevent and control tobacco PVY, it should establish a forecasting system, breed good variety, choose the right cultivation measures, standardly use chemical agents, and use natural enemy. In the end, the prospects of controlling tobacco PVY were described.

  17. Palliative care in advanced dementia; A mixed methods approach for the development of a complex intervention

    Directory of Open Access Journals (Sweden)

    Tookman Adrian

    2008-07-01

    Full Text Available Abstract Background There is increasing interest in improving the quality of care that patients with advanced dementia receive when they are dying. Our understanding of the palliative care needs of these patients and the natural history of advanced disease is limited. Many people with advanced dementia have unplanned emergency admissions to the acute hospital; this is a critical event: half will die within 6 months. These patients have complex needs but often lack capacity to express their wishes. Often carers are expected to make decisions. Advance care planning discussions are rarely performed, despite potential benefits such more consistent supportive healthcare, a reduction in emergency admissions to the acute hospital and better resolution of carer bereavement. Design/Methods We have used the MRC complex interventions framework, a "bottom-up" methodology, to develop an intervention for patients with advanced dementia and their carers aiming to 1 define end of life care needs for both patients and carers, 2 pilot a palliative care intervention and 3 produce a framework for advance care planning for patients. The results of qualitative phase 1 work, which involved interviews with carers, hospital and primary care staff from a range of disciplines, have been used to identify key barriers and challenges. For the exploratory trial, 40 patients will be recruited to each of the control and intervention groups. The intervention will be delivered by a nurse specialist. We shall investigate and develop methodology for a phase 3 randomised controlled trial. For example we shall explore the feasibility of randomisation, how best to optimise recruitment, decide on appropriate outcomes and obtain data for power calculations. We will evaluate whether the intervention is pragmatic, feasible and deliverable on acute hospital wards and test model fidelity and its acceptability to carers, patients and staff. Discussion Results of qualitative phase 1 work

  18. Improvement of environmental aspects of thermal power plant operation by advanced control concepts

    Directory of Open Access Journals (Sweden)

    Mikulandrić Robert

    2012-01-01

    Full Text Available The necessity of the reduction of greenhouse gas emissions, as formulated in the Kyoto Protocol, imposes the need for improving environmental aspects of existing thermal power plants operation. Improvements can be reached either by efficiency increment or by implementation of emission reduction measures. Investments in refurbishment of existing plant components or in plant upgrading by flue gas desulphurization, by primary and secondary measures of nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by modernisation of thermal power plant instrumentation and control system including sensors, equipment diagnostics and advanced controls. Impact of advanced control solutions implementation depends on technical characteristics and status of existing instrumentation and control systems as well as on design characteristics and actual conditions of installed plant components. Evaluation of adequacy of implementation of advanced control concepts is especially important in Western Balkan region where thermal power plants portfolio is rather diversified in terms of size, type and commissioning year and where generally poor maintenance and lack of investments in power generation sector resulted in high greenhouse gases emissions and low efficiency of plants in operation. This paper is intended to present possibilities of implementation of advanced control concepts, and particularly those based on artificial intelligence, in selected thermal power plants in order to increase plant efficiency and to lower pollutants emissions and to comply with environmental quality standards prescribed in large combustion plant directive. [Acknowledgements. This paper has been created within WBalkICT - Supporting Common RTD actions in WBCs for developing Low Cost and Low Risk ICT based solutions for TPPs Energy Efficiency increasing, SEE-ERA.NET plus project in cooperation among partners from IPA SA - Romania, University of Zagreb - Croatia and Vinca

  19. Conceptual frameworks and methods for advancing invasion ecology.

    Science.gov (United States)

    Heger, Tina; Pahl, Anna T; Botta-Dukát, Zoltan; Gherardi, Francesca; Hoppe, Christina; Hoste, Ivan; Jax, Kurt; Lindström, Leena; Boets, Pieter; Haider, Sylvia; Kollmann, Johannes; Wittmann, Meike J; Jeschke, Jonathan M

    2013-09-01

    Invasion ecology has much advanced since its early beginnings. Nevertheless, explanation, prediction, and management of biological invasions remain difficult. We argue that progress in invasion research can be accelerated by, first, pointing out difficulties this field is currently facing and, second, looking for measures to overcome them. We see basic and applied research in invasion ecology confronted with difficulties arising from (A) societal issues, e.g., disparate perceptions of invasive species; (B) the peculiarity of the invasion process, e.g., its complexity and context dependency; and (C) the scientific methodology, e.g., imprecise hypotheses. To overcome these difficulties, we propose three key measures: (1) a checklist for definitions to encourage explicit definitions; (2) implementation of a hierarchy of hypotheses (HoH), where general hypotheses branch into specific and precisely testable hypotheses; and (3) platforms for improved communication. These measures may significantly increase conceptual clarity and enhance communication, thus advancing invasion ecology.

  20. Advanced induction motor drive control with single current sensor

    Directory of Open Access Journals (Sweden)

    Adžić Evgenije M.

    2016-01-01

    Full Text Available This paper proposes induction motor drive control method which uses minimal number of sensors, providing only DC-link current as a feedback signal. Improved DC-link current sampling scheme and modified asymmetrical switching pattern cancels characteristic waveform errors which exist in all three reconstructed motor line-currents. Motor linecurrent harmonic content is reduced to an acceptable level, eliminating torque and speed oscillations which were inherent for conventional single sensor drives. Consequently, use of single current sensor and line-current reconstruction technique is no longer acceptable only for low and medium performance drives, but also for drives where priority is obtaining a highly accurate, stable and fast response. Proposed control algorithm is validated using induction motor drive hardware prototype based on TMS320F2812 digital signal processor. [Projekat Ministarstva nauke Republike Srbije, br. III 042004 and by the Provincial Secretariat for Science and Technological Development of AP Vojvodina under contract No. 114-451-3508/2013-04

  1. Experiences from introduction of peer-to-peer teaching methods in Advanced Biochemistry E2010

    DEFF Research Database (Denmark)

    Brodersen, Ditlev; Etzerodt, Michael; Rasmussen, Jan Trige

    2012-01-01

    During the autumn semester 2010, we experimented with a range of active teaching methods on the course, Advanced Biochemistry, at the Department of Molecular Biology and Genetics.......During the autumn semester 2010, we experimented with a range of active teaching methods on the course, Advanced Biochemistry, at the Department of Molecular Biology and Genetics....

  2. Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions

    Science.gov (United States)

    Syed, Mahbubur Rahman, Ed.

    2009-01-01

    The emerging field of advanced distance education delivers academic courses across time and distance, allowing educators and students to participate in a convenient learning method. "Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions" demonstrates communication technologies, intelligent…

  3. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  4. Design and advanced control of switched reluctance motor; Design og avanceret styring af switched reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Blaabjerg, F.; Jensen, F.; Kierkegaard, P.; Pedersen, J.K.; Rasmussen, P.O.; Simonsen, L.

    1999-03-01

    The aim of the project is to design, construct and optimise the control of Switched Reluctance Motors with and without permanent magnets. The expectation was an increased efficiency and a decreased material consumption. The project included originally three types of SR-motors, two with a nominal number of revolutions of 3.000 rpm and one motor with a nominal number of revolutions of 50.000 rpm. The project was changed to focus on one motor with a nominal number of revolutions of 6.000 rpm, one with a nominal number of revolutions of 50.000 rpm and one two-phased low-voltage motor with a nominal number of revolutions of 2.000 rpm. The motors had different outputs of 2,7 kW, 0,9 kW and 3 kW, respectively. For this purpose an advanced simulation programme for Switched Reluctance Motors is developed. The programme differs from other programmes by being able to simulate multi-disciplinary such as vibrations and acoustic noise. It is even possible to play the sound. In this connection completely new models are developed. It is also possible to simulate different grid connected converters. Input to the simulation programme is finite element calculations, geometry of the motor and calculations or data from an advanced characterisation system for Switched Reluctance Motors. New methods to control the current in Switched Reluctance Motors are developed, which particularly make quick dynamics possible in a digitally controlled current without use of special noise filters. The method will soon have industrial use. Other new methods have emerged, which secure that the system all the time works with the maximum efficiency irrespective of load. In some cases an efficiency improvement of 10 % is obtained compared to a classic control of the Switched Reluctance Motor. (EHS) EFP-94; EFP-95; EFP-98. 16 refs.

  5. Nonlinear dynamics of rotating shallow water methods and advances

    CERN Document Server

    Zeitlin, Vladimir

    2007-01-01

    The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa

  6. Advanced 3D inverse method for designing turbomachine blades

    Energy Technology Data Exchange (ETDEWEB)

    Dang, T. [Syracuse Univ., NY (United States)

    1995-10-01

    To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.

  7. Advanced 3D inverse method for designing turbomachine blades

    Energy Technology Data Exchange (ETDEWEB)

    Dang, T. [Syracuse Univ., NY (United States). Dept. of Mechanical/Aerospace/Manufacturing Engineering

    1995-12-31

    To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.

  8. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    Science.gov (United States)

    Powell, Jade; Torres-Forné, Alejandro; Lynch, Ryan; Trifirò, Daniele; Cuoco, Elena; Cavaglià, Marco; Heng, Ik Siong; Font, José A.

    2017-02-01

    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the improvements made to increase the performance and lower the latency of the algorithms on real data. This work provides an important test for understanding the performance of these methods on real, non stationary data in preparation for the second advanced gravitational-wave detector observation run, planned for later this year. We show that all methods can classify transients in non stationary data with a high level of accuracy and show the benefits of using multiple classifiers.

  9. Multicontroller: an object programming approach to introduce advanced control algorithms for the GCS large scale project

    CERN Document Server

    Cabaret, S; Coppier, H; Rachid, A; Barillère, R; CERN. Geneva. IT Department

    2007-01-01

    The GCS (Gas Control System) project team at CERN uses a Model Driven Approach with a Framework - UNICOS (UNified Industrial COntrol System) - based on PLC (Programming Language Controller) and SCADA (Supervisory Control And Data Acquisition) technologies. The first' UNICOS versions were able to provide a PID (Proportional Integrative Derivative) controller whereas the Gas Systems required more advanced control strategies. The MultiController is a new UNICOS object which provides the following advanced control algorithms: Smith Predictor, PFC (Predictive Function Control), RST* and GPC (Global Predictive Control). Its design is based on a monolithic entity with a global structure definition which is able to capture the desired set of parameters of any specific control algorithm supported by the object. The SCADA system -- PVSS - supervises the MultiController operation. The PVSS interface provides users with supervision faceplate, in particular it links any MultiController with recipes: the GCS experts are ab...

  10. Human factors design review guidelines for advanced nuclear control room technologies

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.; Brown, W. (Brookhaven National Lab., Upton, NY (United States)); Granda, T.; Baker, C. (Carlow Associates, Inc., Fairfax, VA (United States))

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig.

  11. Control and estimation methods over communication networks

    CERN Document Server

    Mahmoud, Magdi S

    2014-01-01

    This book provides a rigorous framework in which to study problems in the analysis, stability and design of networked control systems. Four dominant sources of difficulty are considered: packet dropouts, communication bandwidth constraints, parametric uncertainty, and time delays. Past methods and results are reviewed from a contemporary perspective, present trends are examined, and future possibilities proposed. Emphasis is placed on robust and reliable design methods. New control strategies for improving the efficiency of sensor data processing and reducing associated time delay are presented. The coverage provided features: ·        an overall assessment of recent and current fault-tolerant control algorithms; ·        treatment of several issues arising at the junction of control and communications; ·        key concepts followed by their proofs and efficient computational methods for their implementation; and ·        simulation examples (including TrueTime simulations) to...

  12. Methods of algebraic geometry in control theory

    CERN Document Server

    Falb, Peter

    1999-01-01

    "Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...

  13. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    and a linearised CSTR. Advantages and disadvantages of these controllers will be discussed. All three controller types shows a set of common undesirable characteristics, which must be accounted for. At the end of the evaluation horizon the "optimal" solution has an unstable characteristics, which can be suppressed...... be selecting dierent control and evaluation horizon. Depending of the degrees of freedom, oset-free control of a number of the controlled variables can be achieved by integration of the innovation errors and introduction of noise models. If the measured or unmeasured disturbances increases, oset-free control...

  14. Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement (ADVANCE) Technology Development for Resilient Flight Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop and test a framework referred to as the ADVANCE (Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement), within which...

  15. Control methods for localization of nonlinear waves

    Science.gov (United States)

    Porubov, Alexey; Andrievsky, Boris

    2017-03-01

    A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.

  16. Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems

    Science.gov (United States)

    Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.

    1979-01-01

    The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.

  17. Synthesis Methods for Robust Passification and Control

    Science.gov (United States)

    Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)

    2000-01-01

    The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.

  18. Modeling and Advanced Control for Sustainable Process Systems

    Science.gov (United States)

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  19. Advances in microbial insect control in horticultural ecosystems

    Science.gov (United States)

    The use of microbial organisms as biological control agents has progressed significantly since Metschnikoff launched the first attempt at microbial insect control with Metarhizium anisopliae in 1879. Following the lead of Metschnikoff, entomopathogenic nematodes, fungi, bacteria and viruses have b...

  20. Recent Advances in Bidirectional Modeling and Structural Control

    Directory of Open Access Journals (Sweden)

    Satyam Paul

    2016-01-01

    estimation of velocity and position from acceleration signals, and optimal placement of the sensors and control devices. The importance of control devices and its applications to minimize bidirectional vibrations has been illustrated. Finally, the applications of structural control systems in real buildings and their performance have been reviewed.

  1. Advanced gate CDU control in sub-28nm node using poly slot process by scatterometry metrology

    Science.gov (United States)

    Tzai, Wei-Jhe; Chen, Howard; Lin, Jun-Jin; Huang, Yu-Hao; Yu, Chun-Chi; Lin, Ching-Hung Bert; Yoo, Sungchul; Huang, Chien-Jen Eros; Mihardja, Lanny

    2013-04-01

    Scatterometry-based metrology is a well proven method to measure and monitor the critical dimensions of interest in advanced sub-28nm process development and high volume manufacturing [1][3][4][6][7]. In this paper, a proposed solution to control and achieve the optimal gate critical dimension uniformity (CDU) was explored. The proposed solution is named a novel scatterometry slot gate CDU control flow. High performance measurement and control during the slot gate step is critical as it directly controls the poly line cut profile to the active area which then directly impacts the final device performance. The proposed flow incorporates scatterometry-based CD (SCD) measurement feedback and feed forward to the Automation Process Control (APC) system, further process recipe fine tuning utilizing the data feedback and forward, and two dimensional (2D) and three dimensional (3D) scatterometry-based CD (SCD) measurement of gate after developer inspection (ADI) and after etch inspection (AEI) [1]. The methodologies and experiment results presented in this study started from the process development through the SCD model optimization of the DOE wafers, to the final implementation of the process control flow and measurement loop into the production line to evaluate its capability for long term in-line monitoring in high volume manufacturing environment. The result showed significant improvement in the gate CD uniformity that met the sub-28nm process manufacturing requirement.

  2. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    in topological optimization: Interactive control and continuous visualization; embedding flexible voids within the design space; consideration of distinct tension / compression properties; and optimization of dual material systems. In extension, optimization procedures for skeletal structures such as trusses...

  3. Standards and the design of the Advanced Photon Source control system

    Science.gov (United States)

    McDowell, W. P.; Knott, M. J.; Lenkszus, F. R.; Kraimer, M. R.; Daly, R. T.; Arnold, N. D.; Anderson, M. D.; Anderson, J. B.; Zieman, R. C.; Cha, Ben-Chin K.

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. In the conceptual stage the control system design group faced the challenges that face all control system designers: to force the machine designers to quantify and codify the system requirements, to protect the investment in hardware and software from rapid obsolescence, and to find methods of quickly incorporating new generations of equipment and replace of obsolete equipment without disrupting the exiting system. To solve these and related problems, the APS control system group made an early resolution to use standards in the design of the system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. It will explain the APS control system and illustrate how the use of standards has allowed APS to design a control system whose implementation addresses these issues. The system will use high performance graphic workstations using an X-Windows Graphical User Interface at the operator interface level. It connects to VME-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  4. Advances in the control of markov jump linear systems with no mode observation

    CERN Document Server

    Vargas, Alessandro N; do Val, João B R

    2016-01-01

    This brief broadens readers’ understanding of stochastic control by highlighting recent advances in the design of optimal control for Markov jump linear systems (MJLS). It also presents an algorithm that attempts to solve this open stochastic control problem, and provides a real-time application for controlling the speed of direct current motors, illustrating the practical usefulness of MJLS. Particularly, it offers novel insights into the control of systems when the controller does not have access to the Markovian mode.

  5. Advanced RF-KO slow-extraction method for the reduction of spill ripple

    CERN Document Server

    Noda, K; Shibuya, S; Uesugi, T; Muramatsu, M; Kanazawa, M; Takada, E; Yamada, S

    2002-01-01

    Two advanced RF-knockout (RF-KO) slow-extraction methods have been developed at HIMAC in order to reduce the spill ripple for accurate heavy-ion cancer therapy: the dual frequency modulation (FM) method and the separated function method. As a result of simulations and experiments, it was verified that the spill ripple could be considerably reduced using these advanced methods, compared with the ordinary RF-KO method. The dual FM method and the separated function method bring about a low spill ripple within standard deviations of around 25% and of 15% during beam extraction within around 2 s, respectively, which are in good agreement with the simulation results.

  6. 77 FR 53199 - California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request...

    Science.gov (United States)

    2012-08-31

    ... AGENCY California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request... California Air Resources Board (CARB) has notified EPA that it has developed an Advanced Clean Car program... into a single coordinated package of requirements for passenger cars, light-duty trucks and...

  7. Advances in surface wave methods: Cascaded MASW-SASW

    NARCIS (Netherlands)

    Westerhoff, R.S.; Brouwer, J.H.; Meekes, J.A.C.

    2005-01-01

    The application of the MASW method in areas that show strong lateral variations in subsurface properties is limited. Traditional SASW may yield a better lateral resolution but the dispersion curves (and thus the subsurface models) obtained with the method may be poor. The joint application of MASW a

  8. Prospects for advancing tuberculosis control efforts through novel therapies.

    Directory of Open Access Journals (Sweden)

    Joshua A Salomon

    2006-08-01

    Full Text Available BACKGROUND: Development of new, effective, and affordable tuberculosis (TB therapies has been identified as a critical priority for global TB control. As new candidates emerge from the global TB drug pipeline, the potential impacts of novel, shorter regimens on TB incidence and mortality have not yet been examined. METHODS AND FINDINGS: We used a mathematical model of TB to evaluate the expected benefits of shortening the duration of effective chemotherapy for active pulmonary TB. First, we considered general relationships between treatment duration and TB dynamics. Next, as a specific example, we calibrated the model to reflect the current situation in the South-East Asia region. We found that even with continued and rapid progress in scaling up the World Health Organization's DOTS strategy of directly observed, short-course chemotherapy, the benefits of reducing treatment duration would be substantial. Compared to a baseline of continuing DOTS coverage at current levels, and with currently available tools, a 2-mo regimen introduced by 2012 could prevent around 20% (range 13%-28% of new cases and 25% (range 19%-29% of TB deaths in South-East Asia between 2012 and 2030. If effective treatment with existing drugs expands rapidly, overall incremental benefits of shorter regimens would be lower, but would remain considerable (13% [range 8%-19%] and 19% [range 15%-23%] reductions in incidence and mortality, respectively, between 2012 and 2030. A ten-year delay in the introduction of new drugs would erase nearly three-fourths of the total expected benefits in this region through 2030. CONCLUSIONS: The introduction of new, shorter treatment regimens could dramatically accelerate the reductions in TB incidence and mortality that are expected under current regimens-with up to 2- or 3-fold increases in rates of decline if shorter regimens are accompanied by enhanced case detection. Continued progress in reducing the global TB burden will require a

  9. Methods to Determine Recommended Feeder-Wide Advanced Inverter Settings for Improving Distribution System Performance

    Energy Technology Data Exchange (ETDEWEB)

    Rylander, Matthew; Reno, Matthew J.; Quiroz, Jimmy E.; Ding, Fei; Li, Huijuan; Broderick, Robert J.; Mather, Barry; Smith, Jeff

    2016-11-21

    This paper describes methods that a distribution engineer could use to determine advanced inverter settings to improve distribution system performance. These settings are for fixed power factor, volt-var, and volt-watt functionality. Depending on the level of detail that is desired, different methods are proposed to determine single settings applicable for all advanced inverters on a feeder or unique settings for each individual inverter. Seven distinctly different utility distribution feeders are analyzed to simulate the potential benefit in terms of hosting capacity, system losses, and reactive power attained with each method to determine the advanced inverter settings.

  10. Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [London Centre for Nanotechnology and Department of Chemistry, University College London, London (United Kingdom); Martinez, Todd J. [Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Alavi, Ali [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Kresse, Georg [Faculty of Physics and Center for Computational Materials Science, Department of Physics, University of Vienna, Sensengasse 8/12, A-1090 Vienna (Austria); Manby, Frederick R. [Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom)

    2015-09-14

    This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.

  11. Features of methods of advancement of information product in network the Interne

    Directory of Open Access Journals (Sweden)

    Oksentyuk, Roman Andriyovych

    2011-05-01

    Full Text Available In the article the features of construction of world network are considered the Internet as one of types of modern innovative technologies in marketing. His role is exposed in the modern world of entrepreneurial activity, most widespread methods of advancement of product by internet marketing. Pointed suggestion from advancement of informative product in a network the Internet.

  12. Review: Advances in delta-subsidence research using satellite methods

    Science.gov (United States)

    Higgins, Stephanie A.

    2016-05-01

    Most of the world's major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power.

  13. TWO-STEP CONTROL GRADING METHOD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The incorrectness of function grading in value engineering has been an essential problem for de- cades. This paper proposes a new method, where the functions under consideration are ranked in queue ac- cording to their importance and then graded quantitatively. By using this method, the reviewers are more aware of the degrees of importance, and therefore will have an easier time grasping the standard and reducing the erroneous grading. In the first step, the sign test is used to discard incorrect data, to count the grading re- sult and to arrange in queue according to the degrees of functional importance. In the second step the queued up functions undergo quantitative grading, where the “average value of fluctuation coefficient” is proposed to determine the control levels and to delete unreasonable data outside the controlled region so as to get more sati- sfactory grading value. The proposed method solves the problem of the incorrectness of function grading in val- ue engineering. It has been proved that the correctness has been raised from the original 70% to over 95% . This new method is not only contributive to the discipline of value engineering but also suitable in the evalu- ation of technical economy.

  14. Implementation of advanced feedback control algorithms for controlled resonant magnetic perturbation physics studies on EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.

    2011-06-01

    The EXTRAP T2R feedback system (active coils, sensor coils and controller) is used to study and develop new tools for advanced control of the MHD instabilities in fusion plasmas. New feedback algorithms developed in EXTRAP T2R reversed-field pinch allow flexible and independent control of each magnetic harmonic. Methods developed in control theory and applied to EXTRAP T2R allow a closed-loop identification of the machine plant and of the resistive wall modes growth rates. The plant identification is the starting point for the development of output-tracking algorithms which enable the generation of external magnetic perturbations. These algorithms will then be used to study the effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics. It will be shown that the stationary RMP can induce oscillations in the amplitude and jumps in the phase of the rotating TM. It will be shown that the RMP strongly affects the magnetic island position.

  15. Comparative study of various PKINIT methods used in Advanced Kerberos

    Directory of Open Access Journals (Sweden)

    Shital S. Thorat,

    2010-10-01

    Full Text Available Traditional authentication method is password, but it cannot resist dictionary and playback attack. Thus, applications, which send an unencrypted password over the network, are extremely vulnerable. Kerberos can be used as a solution to these network security problems. The Kerberos protocol with public key cryptography may help client to prove its identity to a server (and vice-versa across an insecurenetwork connection. This paper shows comparative study of various PKINIT methods used in Kerberos with their results.

  16. Advanced Polymer Composite Molding Through Intelligent Process Analysis and Control

    Science.gov (United States)

    2004-11-30

    In this project. process analysis of Resin Transfer Molding (RTM) was carried out and adaptive process control models were developed. In addition, a...aforementioned work in three separate sections: (1) process analysis and adaptive control modeling, (2) manufacturing of non-invasive sensor, end (3) list of publications resulting from this project.

  17. Guest Editorial Advanced Distributed Control of Energy Conversion Devices and Systems

    DEFF Research Database (Denmark)

    Davoudi, Ali; Guerrero, Josep M.; Lewis, Frank;

    2014-01-01

    The papers in this special issue on advanced distributed control of energy conversion devices and systems are loosely grouped into three categories: 1) ac energy conversion systems; 2) dc energy conversion systems; and 3) optimization and standards....

  18. Application of CyboCon Advanced Adjustment and Control Software Package in Delayed Coking Unit

    Institute of Scientific and Technical Information of China (English)

    Guo Hua

    2002-01-01

    This article refers to application of the CyboCon software package based upon the model-free adaptive control (MFA) in the 800-kt/a delayed coking unit to realize an advanced adjustment and control strategy for the temperature control of the heater. Operation tests have revealed the convenience in operating system and simplicity in maintenance, leading to good economic benefits.

  19. A weak Hamiltonian finite element method for optimal guidance of an advanced launch vehicle

    Science.gov (United States)

    Hodges, Dewey H.; Calise, Anthony J.; Bless, Robert R.; Leung, Martin

    1989-01-01

    A temporal finite-element method based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables, which are expanded in terms of nodal values and simple shape functions. Time derivatives of the states and costates do not appear in the governing variational equation; the only quantities whose time derivatives appear therein are virtual states and virtual costates. Numerical results are presented for an elementary trajectory optimization problem; they show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The feasibility of this approach for real-time guidance applications is evaluated. A simplified model for an advanced launch vehicle application that is suitable for finite-element solution is presented.

  20. The advance of non-invasive detection methods in osteoarthritis

    Science.gov (United States)

    Dai, Jiao; Chen, Yanping

    2011-06-01

    Osteoarthritis (OA) is one of the most prevalent chronic diseases which badly affected the patients' living quality and economy. Detection and evaluation technology can provide basic information for early treatment. A variety of imaging methods in OA were reviewed, such as conventional X-ray, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI) and near-infrared spectroscopy (NIRS). Among the existing imaging modalities, the spatial resolution of X-ray is extremely high; CT is a three-dimensional method, which has high density resolution; US as an evaluation method of knee OA discriminates lesions sensitively between normal cartilage and degenerative one; as a sensitive and nonionizing method, MRI is suitable for the detection of early OA, but the cost is too expensive for routine use; NIRS is a safe, low cost modality, and is also good at detecting early stage OA. In a word, each method has its own advantages, but NIRS is provided with broader application prospect, and it is likely to be used in clinical daily routine and become the golden standard for diagnostic detection.

  1. Neural networks for advanced control of robot manipulators.

    Science.gov (United States)

    Patino, H D; Carelli, R; Kuchen, B R

    2002-01-01

    Presents an approach and a systematic design methodology to adaptive motion control based on neural networks (NNs) for high-performance robot manipulators, for which stability conditions and performance evaluation are given. The neurocontroller includes a linear combination of a set of off-line trained NNs, and an update law of the linear combination coefficients to adjust robot dynamics and payload uncertain parameters. A procedure is presented to select the learning conditions for each NN in the bank. The proposed scheme, based on fixed NNs, is computationally more efficient than the case of using the learning capabilities of the neural network to be adapted, as that used in feedback architectures that need to propagate back control errors through the model to adjust the neurocontroller. A practical stability result for the neurocontrol system is given. That is, we prove that the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the NN bank and the design parameters of the controller. In addition, a robust adaptive controller to NN learning errors is proposed, using a sign or saturation switching function in the control law, which leads to global asymptotic stability and zero convergence of control errors. Simulation results showing the practical feasibility and performance of the proposed approach to robotics are given.

  2. Microgrid Controller and Advanced Distribution Management System Survey Report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Starke, Michael R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Herron, Andrew N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    A microgrid controller, which serves as the heart of a microgrid, is responsible for optimally managing the distributed energy resources, energy storage systems, and responsive demand and for ensuring the microgrid is being operated in an efficient, reliable, and resilient way. As the market for microgrids has blossomed in recently years, many vendors have released their own microgrid controllers to meet the various needs of different microgrid clients. However, due to the absence of a recognized standard for such controllers, vendor-supported microgrid controllers have a range of functionalities that are significantly different from each other in many respects. As a result the current state of the industry has been difficult to assess. To remedy this situation the authors conducted a survey of the functions of microgrid controllers developed by vendors and national laboratories. This report presents a clear indication of the state of the microgrid-controller industry based on analysis of the survey results. The results demonstrate that US Department of Energy funded research in microgrid controllers is unique and not competing with that of industry.

  3. Advances in automation and control research in China

    Institute of Scientific and Technical Information of China (English)

    CHENG DaiZhan

    2009-01-01

    Automation is the utilization of control techniques together with other Information technology to control industrial processes,reducing the need for human intervention.It plays a highly important role in social and economy as well as In daily life.Control theory is the theory of automation,and is an interdisciplinary branch of engineering and mathematics,examining the behavior of dynamical systems.China has a long history of manufacturing automatic devices.In recent years,some rapid progresses in control theory have been made in China.Many new theories and new methodologies have been developed to meet the increasing demands in industry,agriculture,defense,and other social sectors.Contemporary sciences such as complexity,systems biology,quantum technologies,have also found their close links to control theories and technologies.On the other hand,control theory itself has many unsolved fundamental problems requiring further studies and investigation.This paper is to review the development and progress that have been made in all these aspects in China.Some remarks on the future development of control theory are also presented.

  4. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

    Science.gov (United States)

    Soltis, James V.

    1998-01-01

    The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

  5. Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment

    Science.gov (United States)

    Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.

    1979-01-01

    The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.

  6. Advanced WEC Dynamics & Controls FY16 Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Ryan Geoffrey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bacelli, Giorgio [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Patterson, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A model-scale wave tank test was conducted in the interest of improving control systems design of wave energy converters (WECs). The success of most control strategies is based directly upon the availability of a reduced-order model with the ability to capture the dynamics of the system with sufficient accuracy. For this reason, the test described in this report, which is the first in a series of planned tests on WEC controls, focused on system identification (system ID) and model validation.

  7. Advances in control system technology for aerospace applications

    CERN Document Server

    2016-01-01

    This book is devoted to Control System Technology applied to aerospace and covers the four disciplines Cognitive Engineering, Computer Science, Operations Research, and Servo-Mechanisms. This edited book follows a workshop held at the Georgia Institute of Technology in June 2012, where the today's most important aerospace challenges, including aerospace autonomy, safety-critical embedded software engineering, and modern air transportation were discussed over the course of two days of intense interactions among leading aerospace engineers and scientists. Its content provide a snapshot of today's aerospace control research and its future, including Autonomy in space applications, Control in space applications, Autonomy in aeronautical applications, Air transportation, and Safety-critical software engineering.

  8. Advanced methods for image registration applied to JET videos

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, Teddy, E-mail: teddy.craciunescu@jet.uk [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Murari, Andrea [Consorzio RFX, Associazione EURATOM-ENEA per la Fusione, Padova (Italy); Gelfusa, Michela [Associazione EURATOM-ENEA – University of Rome “Tor Vergata”, Roma (Italy); Tiseanu, Ion; Zoita, Vasile [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Arnoux, Gilles [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)

    2015-10-15

    Graphical abstract: - Highlights: • Development of an image registration method for JET IR and fast visible cameras. • Method based on SIFT descriptors and coherent point drift points set registration technique. • Method able to deal with extremely noisy images and very low luminosity images. • Computation time compatible with the inter-shot analysis. - Abstract: The last years have witnessed a significant increase in the use of digital cameras on JET. They are routinely applied for imaging in the IR and visible spectral regions. One of the main technical difficulties in interpreting the data of camera based diagnostics is the presence of movements of the field of view. Small movements occur due to machine shaking during normal pulses while large ones may arise during disruptions. Some cameras show a correlation of image movement with change of magnetic field strength. For deriving unaltered information from the videos and for allowing correct interpretation an image registration method, based on highly distinctive scale invariant feature transform (SIFT) descriptors and on the coherent point drift (CPD) points set registration technique, has been developed. The algorithm incorporates a complex procedure for rejecting outliers. The method has been applied for vibrations correction to videos collected by the JET wide angle infrared camera and for the correction of spurious rotations in the case of the JET fast visible camera (which is equipped with an image intensifier). The method has proved to be able to deal with the images provided by this camera frequently characterized by low contrast and a high level of blurring and noise.

  9. A Novel Advanced Heap Corruption and Security Method

    Directory of Open Access Journals (Sweden)

    Arundhati Walia

    2012-05-01

    Full Text Available Heap security has been a major concern since the past two decades. Recently many methods have been proposed to secure heap i.e. to avoid heap overrun and attacks. The paper describes a method suggested to secure heap at the operating system level. Major emphasis is given to Solaris operating systems dynamic memory manager. When memory is required dynamically during runtime, the SysVmalloc acts as a memory allocator.Vmalloc allocates the chunks of memory in the form of splay tree structure. A self adjusting binary tree structure is reviewed in the paper, moreover major security issue to secure heap area is also suggested in the paper.

  10. Advanced FDTD methods parallelization, acceleration, and engineering applications

    CERN Document Server

    Yu, Wenhua

    2011-01-01

    The finite-difference time-domain (FDTD) method has revolutionized antenna design and electromagnetics engineering. Here's a cutting-edge book that focuses on the performance optimization and engineering applications of FDTD simulation systems. Covering the latest developments in this area, this unique resource offer you expert advice on the FDTD method, hardware platforms, and network systems. Moreover the book offers guidance in distinguishing between the many different electromagnetics software packages on the market today. You also find a complete chapter dedicated to large multi-scale pro

  11. Advanced methods for the study of PWR cores; Les methodes d'etudes avancees pour les coeurs de REP

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, M.; Salvatores, St.; Ferrier, A. [Electricite de France (EDF), Service Etudes et Projets Thermiques et Nucleaires, 92 - Courbevoie (France); Pelet, J.; Nicaise, N.; Pouliquen, J.Y.; Foret, F. [FRAMATOME ANP, 92 - Paris La Defence (France); Chauliac, C. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France); Johner, J. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Cohen, Ch

    2003-07-01

    This document gathers the transparencies presented at the 6. technical session of the French nuclear energy society (SFEN) in October 2003. The transparencies of the annual meeting are presented in the introductive part: 1 - status of the French nuclear park: nuclear energy results, management of an exceptional climatic situation: the heat wave of summer 2003 and the power generation (J.C. Barral); 2 - status of the research on controlled thermonuclear fusion (J. Johner). Then follows the technical session about the advanced methods for the study of PWR reactor cores: 1 - the evolution approach of study methodologies (M. Lambert, J. Pelet); 2 - the point of view of the nuclear safety authority (D. Brenot); 3 - the improved decoupled methodology for the steam pipe rupture (S. Salvatores, J.Y. Pouliquen); 4 - the MIR method for the pellet-clad interaction (renovated IPG methodology) (E. Baud, C. Royere); 5 - the improved fuel management (IFM) studies for Koeberg (C. Cohen); 6 - principle of the methods of accident study implemented for the European pressurized reactor (EPR) (F. Foret, A. Ferrier); 7 - accident studies with the EPR, steam pipe rupture (N. Nicaise, S. Salvatores); 8 - the co-development platform, a new generation of software tools for the new methodologies (C. Chauliac). (J.S.)

  12. Advanced Control System Design for Hypersonic Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Guidance and control system design for hypersonic vehicles is more challenging than their subsonic and supersonic counterparts. Some of these challenges are (i)...

  13. Advanced nonlinear control of three phase series active power filter

    Directory of Open Access Journals (Sweden)

    Abouelmahjoub Y.

    2014-01-01

    Full Text Available The problem of controlling three-phase series active power filter (TPSAPF is addressed in this paper in presence of the perturbations in the voltages of the electrical supply network. The control objective of the TPSAPF is twofold: (i compensation of all voltage perturbations (voltage harmonics, voltage unbalance and voltage sags, (ii regulation of the DC bus voltage of the inverter. A controller formed by two nonlinear regulators is designed, using the Backstepping technique, to provide the above compensation. The regulation of the DC bus voltage of the inverter is ensured by the use of a diode bridge rectifier which its output is in parallel with the DC bus capacitor. The Analysis of controller performances is illustrated by numerical simulation in Matlab/Simulink environment.

  14. Advanced Stellar Compass, Electrical Interface Control Document for Grace

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, Finn E; Jørgensen, John Leif;

    1999-01-01

    The Space Instrumentation Group has made an Electrical Interface Control Document for the GRACE (Gravity Recovery and Climate Experiment Mission) satellite, witch describes the electrical interface between the Star Imager and the Computer (IPU) on the GRACE Satellite....

  15. Morphing Flight Control Surface for Advanced Flight Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, a new Morphing Flight Control Surface (MFCS) will be developed. The distinction of the research effort is that the SenAnTech team will employ...

  16. Advances in sliding mode control concept, theory and implementation

    CERN Document Server

    Janardhanan, S; Spurgeon, Sarah

    2013-01-01

    The sliding mode control paradigm has become a mature technique for the design of robust controllers for a wide class of systems including nonlinear, uncertain and time-delayed systems. This book is a collection of plenary and invited talks delivered at the 12th IEEE International Workshop on Variable Structure System held at the Indian Institute of Technology, Mumbai, India in January 2012. After the workshop, these researchers were invited to develop book chapters for this edited collection in order to reflect the latest results and open research questions in the area. The contributed chapters have been organized by the editors to reflect the various themes of sliding mode control which are the current areas of theoretical research and applications focus; namely articulation of the fundamental underpinning theory of the sliding mode design paradigm, sliding modes for decentralized system representations, control of time-delay systems, the higher order sliding mode concept, results applicable to nonlinear an...

  17. Advances in methods for colour marking of mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Loonen, J.A.C.M.; Takken, W.

    2013-01-01

    Background: Different techniques are available for colour marking insects and each technique may be suitable for different insect species. Mosquitoes can be marked to determine population size, distribution and flight distance or distinguish closely related species. In this study, two methods of col

  18. A CTSA agenda to advance methods for comparative effectiveness research.

    Science.gov (United States)

    Helfand, Mark; Tunis, Sean; Whitlock, Evelyn P; Pauker, Stephen G; Basu, Anirban; Chilingerian, Jon; Harrell, Frank E; Meltzer, David O; Montori, Victor M; Shepard, Donald S; Kent, David M

    2011-06-01

    Clinical research needs to be more useful to patients, clinicians, and other decision makers. To meet this need, more research should focus on patient-centered outcomes, compare viable alternatives, and be responsive to individual patients' preferences, needs, pathobiology, settings, and values. These features, which make comparative effectiveness research (CER) fundamentally patient-centered, challenge researchers to adopt or develop methods that improve the timeliness, relevance, and practical application of clinical studies. In this paper, we describe 10 priority areas that address 3 critical needs for research on patient-centered outcomes (PCOR): (1) developing and testing trustworthy methods to identify and prioritize important questions for research; (2) improving the design, conduct, and analysis of clinical research studies; and (3) linking the process and outcomes of actual practice to priorities for research on patient-centered outcomes. We argue that the National Institutes of Health, through its clinical and translational research program, should accelerate the development and refinement of methods for CER by linking a program of methods research to the broader portfolio of large, prospective clinical and health system studies it supports. Insights generated by this work should be of enormous value to PCORI and to the broad range of organizations that will be funding and implementing CER.

  19. Advanced Methods for the Solution of Differential Equations.

    Science.gov (United States)

    Goldstein, Marvin E.; Braun, Willis H.

    This is a textbook, originally developed for scientists and engineers, which stresses the actual solutions of practical problems. Theorems are precisely stated, but the proofs are generally omitted. Sample contents include first-order equations, equations in the complex plane, irregular singular points, and numerical methods. A more recent idea,…

  20. Origins, Methods and Advances in Qualitative Meta-Synthesis

    Science.gov (United States)

    Nye, Elizabeth; Melendez-Torres, G. J.; Bonell, Chris

    2016-01-01

    Qualitative research is a broad term encompassing many methods. Critiques of the field of qualitative research argue that while individual studies provide rich descriptions and insights, the absence of connections drawn between studies limits their usefulness. In response, qualitative meta-synthesis serves as a design to interpret and synthesise…

  1. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  2. Advanced dc motor controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  3. Statistical methods of discrimination and classification advances in theory and applications

    CERN Document Server

    Choi, Sung C

    1986-01-01

    Statistical Methods of Discrimination and Classification: Advances in Theory and Applications is a collection of papers that tackles the multivariate problems of discriminating and classifying subjects into exclusive population. The book presents 13 papers that cover that advancement in the statistical procedure of discriminating and classifying. The studies in the text primarily focus on various methods of discriminating and classifying variables, such as multiple discriminant analysis in the presence of mixed continuous and categorical data; choice of the smoothing parameter and efficiency o

  4. Advanced Finite Element Method for Nano-Resonators

    CERN Document Server

    Zschiedrich, L; Kettner, B; Schmidt, F

    2006-01-01

    Miniaturized optical resonators with spatial dimensions of the order of the wavelength of the trapped light offer prospects for a variety of new applications like quantum processing or construction of meta-materials. Light propagation in these structures is modelled by Maxwell's equations. For a deeper numerical analysis one may compute the scattered field when the structure is illuminated or one may compute the resonances of the structure. We therefore address in this paper the electromagnetic scattering problem as well as the computation of resonances in an open system. For the simulation efficient and reliable numerical methods are required which cope with the infinite domain. We use transparent boundary conditions based on the Perfectly Matched Layer Method (PML) combined with a novel adaptive strategy to determine optimal discretization parameters like the thickness of the sponge layer or the mesh width. Further a novel iterative solver for time-harmonic Maxwell's equations is presented.

  5. Advance of Therapeutic Methods for Malignant Pleural Effusion

    Institute of Scientific and Technical Information of China (English)

    XU Tao-tao

    2016-01-01

    Malignant pleural effusion (MPE) is a condition caused by primary malignant tumors in the pleura or other malignant tumors metastasis to the pleura. It is also one of common serious complications of middle-late malignant tumor, which has severe impact on the quality of life, even threatening the life of the patients. The selection of treatments for MPE depends on many factors, including the symptoms, performance status, primary tumor types, response to systemic therapy, and degree of lung recruitment maneuvers (LRM) after drainage of pleural effusion. Generally, the treatment methods include thoracentesis, indwelling pleural catheter, pleurodesis, intrapleural injection of drugs, chemotherapy, radiotherapy, anti-angiogenesis therapy, surgery, and thermotherapy. With the in-depth study on pathogenesis of MPE, the treatments of MPE have continuous improvements. This study mainly reviewed the treatment methods for MPE so as to provide the basis for clinical practice in the future.

  6. Numerical modeling of spray combustion with an advanced VOF method

    Science.gov (United States)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  7. Advance of Therapeutic Methods for Malignant Pleural Effusion

    Directory of Open Access Journals (Sweden)

    Tao-tao XU

    2016-06-01

    Full Text Available Malignant pleural effusion (MPE is a condition caused by primary malignant tumors in the pleura or other malignant tumors metastasis to the pleura. It is also one of common serious complications of middle-late malignant tumor, which has severe impact on the quality of life, even threatening the life of the patients. The selection of treatments for MPE depends on many factors, including the symptoms, performance status, primary tumor types, response to systemic therapy, and degree of lung recruitment maneuvers (LRM after drainage of pleural effusion. Generally, the treatment methods include thoracentesis, indwelling pleural catheter, pleurodesis, intrapleural injection of drugs, chemotherapy, radiotherapy, anti-angiogenesis therapy, surgery, and thermotherapy. With the in-depth study on pathogenesis of MPE, the treatments of MPE have continuous improvements. This study mainly reviewed the treatment methods for MPE so as to provide the basis for clinical practice in the future.

  8. Interval Methods for Model Qualification: Methodology and Advanced Application

    OpenAIRE

    Alexandre dit Sandretto, Julien; Trombettoni, Gilles; Daney, David

    2012-01-01

    It is often too complex to use, and sometimes impossible to obtain, an actual model in simulation or command field . To handle a system in practice, a simplification of the real model is then necessary. This simplification goes through some hypotheses made on the system or the modeling approach. In this paper, we deal with all models that can be expressed by real-valued variables involved in analytical relations and depending on parameters. We propose a method that qualifies the simplificatio...

  9. Evaluation of Pediatric Manual Wheelchair Mobility Using Advanced Biomechanical Methods

    OpenAIRE

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with sp...

  10. Advanced methods for scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Peraro, Tiziano

    2014-09-24

    We present new techniques for the evaluation of multi-loop scattering amplitudes and their application to gauge theories, with relevance to the Standard Model phenomenology. We define a mathematical framework for the multi-loop integrand reduction of arbitrary diagrams, and elaborate algebraic approaches, such as the Laurent expansion method, implemented in the software Ninja, and the multivariate polynomial division technique by means of Groebner bases.

  11. Advanced and In Situ Analytical Methods for Solar Fuel Materials.

    Science.gov (United States)

    Chan, Candace K; Tüysüz, Harun; Braun, Artur; Ranjan, Chinmoy; La Mantia, Fabio; Miller, Benjamin K; Zhang, Liuxian; Crozier, Peter A; Haber, Joel A; Gregoire, John M; Park, Hyun S; Batchellor, Adam S; Trotochaud, Lena; Boettcher, Shannon W

    2016-01-01

    In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.

  12. Advanced numerical methods and software approaches for semiconductor device simulation

    Energy Technology Data Exchange (ETDEWEB)

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  13. Recent advances in sample preparation techniques for effective bioanalytical methods.

    Science.gov (United States)

    Kole, Prashant Laxman; Venkatesh, Gantala; Kotecha, Jignesh; Sheshala, Ravi

    2011-01-01

    This paper reviews the recent developments in bioanalysis sample preparation techniques and gives an update on basic principles, theory, applications and possibilities for automation, and a comparative discussion on the advantages and limitation of each technique. Conventional liquid-liquid extraction (LLE), protein precipitation (PP) and solid-phase extraction (SPE) techniques are now been considered as methods of the past. The last decade has witnessed a rapid development of novel sample preparation techniques in bioanalysis. Developments in SPE techniques such as selective sorbents and in the overall approach to SPE, such as hybrid SPE and molecularly imprinted polymer SPE, have been addressed. Considerable literature has been published in the area of solid-phase micro-extraction and its different versions, e.g. stir bar sorptive extraction, and their application in the development of selective and sensitive bioanalytical methods. Techniques such as dispersive solid-phase extraction, disposable pipette extraction and micro-extraction by packed sorbent offer a variety of extraction phases and provide unique advantages to bioanalytical methods. On-line SPE utilizing column-switching techniques is rapidly gaining acceptance in bioanalytical applications. PP sample preparation techniques such as PP filter plates/tubes offer many advantages like removal of phospholipids and proteins in plasma/serum. Newer approaches to conventional LLE techniques (salting-out LLE) are also covered in this review article.

  14. Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods.

    Science.gov (United States)

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Graf, Adam; Krzak, Joseph J; Reiners, Kathryn; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training.

  15. Evaluation of Pediatric Manual Wheelchair Mobility Using Advanced Biomechanical Methods

    Directory of Open Access Journals (Sweden)

    Brooke A. Slavens

    2015-01-01

    Full Text Available There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI. Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training.

  16. Development of an implantable myoelectric sensor for advanced prosthesis control.

    Science.gov (United States)

    Merrill, Daniel R; Lockhart, Joseph; Troyk, Phil R; Weir, Richard F; Hankin, David L

    2011-03-01

    Modern hand and wrist prostheses afford a high level of mechanical sophistication, but the ability to control them in an intuitive and repeatable manner lags. Commercially available systems using surface electromyographic (EMG) or myoelectric control can supply at best two degrees of freedom (DOF), most often sequentially controlled. This limitation is partially due to the nature of surface-recorded EMG, for which the signal contains components from multiple muscle sources. We report here on the development of an implantable myoelectric sensor using EMG sensors that can be chronically implanted into an amputee's residual muscles. Because sensing occurs at the source of muscle contraction, a single principal component of EMG is detected by each sensor, corresponding to intent to move a particular effector. This system can potentially provide independent signal sources for control of individual effectors within a limb prosthesis. The use of implanted devices supports inter-day signal repeatability. We report on efforts in preparation for human clinical trials, including animal testing, and a first-in-human proof of principle demonstration where the subject was able to intuitively and simultaneously control two DOF in a hand and wrist prosthesis.

  17. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  18. Advanced hydrogen/method utilization technology demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, F.; Fulton, J. [Hydrogen Consultants, Inc., Littleton, CO (United States)

    1994-04-01

    The overall objective of the work was to seek homogeneous blend ratios of hydrogen:methane that provide ``leverage`` with respect to exhaust emissions or engine performance. The leverage sought was a reduction in exhaust emissions or improved efficiency in proportions greater than the percentage of hydrogen energy in the blended fuel gas mixture. The scope of the study included the range of air/fuel mixtures from the lean limit to slightly richer than stoichiometric. This encompasses two important modes of engine operation for emissions control; lean burn pre-catalyst (some natural gas engines have no catalyst) and post-catalyst; and stoichiometric with three-way catalyst. The report includes a brief discussion of each of these modes.

  19. Advanced Control Architectures for Intelligent Microgrids—Part II

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Chiang Loh, Poh; Lee, Tzung-Lin;

    2013-01-01

    This paper summarizes the main problems and solutions of power quality in microgrids, distributed-energy-storage systems, and ac/dc hybrid microgrids. First, the power quality enhancement of grid-interactive microgrids is presented. Then, the cooperative control for enhance voltage harmonics...... and unbalances in microgrids is reviewed. Afterward, the use of static synchronous compensator (STATCOM) in grid-connected microgrids is introduced in order to improve voltage sags/swells and unbalances. Finally, the coordinated control of distributed storage systems and ac/dc hybrid microgrids is explained....

  20. Advanced and intelligent computations in diagnosis and control

    CERN Document Server

    2016-01-01

    This book is devoted to the demands of research and industrial centers for diagnostics, monitoring and decision making systems that result from the increasing complexity of automation and systems, the need to ensure the highest level of reliability and safety, and continuing research and the development of innovative approaches to fault diagnosis. The contributions combine domains of engineering knowledge for diagnosis, including detection, isolation, localization, identification, reconfiguration and fault-tolerant control. The book is divided into six parts:  (I) Fault Detection and Isolation; (II) Estimation and Identification; (III) Robust and Fault Tolerant Control; (IV) Industrial and Medical Diagnostics; (V) Artificial Intelligence; (VI) Expert and Computer Systems.

  1. Advances in Inertial Measurement Technology for Marine Motion Control

    Directory of Open Access Journals (Sweden)

    Mathias Håndlykken

    1996-01-01

    Full Text Available This paper describes the function of an inertial "strap down" attitude sensor based on solid state Coriolis force rate gyros, accelerometers and magnetic sensor. Performance is analyzed taking into account the typical excitations in attitude and linear motion seen in marine applications. The use is for control of fast crafts, ROV and AUV heading, roll, pitch and heave control. The influence on performance given by utilization of external information from velocity log and more accurate heading devices is also analyzed. Typical performance of this low cost type of technology is shown.

  2. Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials.

    Science.gov (United States)

    Yamauchi, Yusuke; Suzuki, Norihiro; Radhakrishnan, Logudurai; Wang, Liang

    2009-01-01

    Currently, ordered mesoporous materials prepared through the self-assembly of surfactants have attracted growing interests owing to their special properties, including uniform mesopores and a high specific surface area. Here we focus on fine controls of compositions, morphologies, mesochannel orientations which are important factors for design of mesoporous materials with new functionalities. This Review describes our recent progress toward advanced mesoporous materials. Mesoporous materials now include a variety of inorganic-based materials, for example, transition-metal oxides, carbons, inorganic-organic hybrid materials, polymers, and even metals. Mesoporous metals with metallic frameworks can be produced by using surfactant-based synthesis with electrochemical methods. Owing to their metallic frameworks, mesoporous metals with high electroconductivity and high surface areas hold promise for a wide range of potential applications, such as electronic devices, magnetic recording media, and metal catalysts. Fabrication of mesoporous materials with controllable morphologies is also one of the main subjects in this rapidly developing research field. Mesoporous materials in the form of films, spheres, fibers, and tubes have been obtained by various synthetic processes such as evaporation-mediated direct templating (EDIT), spray-dried techniques, and collaboration with hard-templates such as porous anodic alumina and polymer membranes. Furthermore, we have developed several approaches for orientation controls of 1D mesochannels. The macroscopic-scale controls of mesochannels are important for innovative applications such as molecular-scale devices and electrodes with enhanced diffusions of guest species.

  3. General broken lines as advanced track fitting method

    Energy Technology Data Exchange (ETDEWEB)

    Kleinwort, Claus

    2012-01-15

    In HEP experiments the description of the trajectory of a charged particle is obtained from a fit to measurements in tracking detectors. The parametrization of the trajectory has to account for bending in the magnetic field, energy loss and multiple scattering in the detector material. General broken lines implement a track model with proper description of multiple scattering leading to linear equations with a special structure of the corresponding matrix allowing for a fast solution with the computing time depending linearly on the number of measurements. The calculation of the full covariance matrix along the trajectory enables the application to track based alignment and calibration of large detectors with global methods. (orig.)

  4. Prospects for advancing tuberculosis control efforts through novel therapies

    NARCIS (Netherlands)

    J.A. Salomon; J.O. Lloyd-Smith; W.M. Getz; S. Resch; M.S. Sanchez; T.C. Porco; M.W. Borgdorff

    2006-01-01

    Background Development of new, effective, and affordable tuberculosis ( TB) therapies has been identified as a critical priority for global TB control. As new candidates emerge from the global TB drug pipeline, the potential impacts of novel, shorter regimens on TB incidence and mortality have not y

  5. Advancing Telephone Focus Groups Method Through the Use of Webinar

    Directory of Open Access Journals (Sweden)

    Eunice Chong

    2015-10-01

    Full Text Available Telephone focus groups have been increasingly popular in public health research and evaluation. One of the main concerns of telephone focus groups is the lack of nonverbal cues among participants, which could limit group interactions and dynamics during the focus group discussion. To overcome this limitation, we supplemented telephone focus groups with webinar technology in a recent evaluation of a provincial public health program in Ontario, Canada. In this article, we share the methods used and our experiences in conducting telephone focus groups supplemented with webinar technology, including advantages and challenges. Our experience will inform other researchers who may consider using telephone focus groups with webinars in future research and evaluation.

  6. Method of Suppressing Sublimation in Advanced Thermoelectric Devices

    Science.gov (United States)

    Sakamoto, Jeffrey S. (Inventor); Caillat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Snyder, G. Jeffrey (Inventor)

    2009-01-01

    A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.

  7. Advances in Isolation Methods for Spermatogonial Stem Cells.

    Science.gov (United States)

    Zhang, Rui; Sun, Jin; Zou, Kang

    2016-02-01

    Stem cell research has led to many remarkable achievements in recent years, but progress in the study of spermatogonial stem cells (SSCs) has been relatively slow, partly due to the slow development of techniques for spermatogonial stem cell isolation. The major accomplishments of SSC sorting and identification occurred approximately 10 years ago, and since that time, these techniques have been widely used without major improvements. In this article, we briefly introduce the biological properties of SSCs before reviewing the development of sorting techniques for SSCs in the past decades. We then summarize recent achievements in SSC sorting and finally discuss the advantages and disadvantages of SSC isolation methods, to provide new insight into techniques and research related to spermatogonial stem cells and promote the development of reproductive biology.

  8. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  9. Advanced hydraulic fracturing methods to create in situ reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, L. [FRx Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States); Siegrist, B. [Oak Ridge National Lab., TN (United States); Vesper, S. [Univ. of Cincinnati, OH (United States)] [and others

    1997-12-31

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

  10. Advanced sensing and control techniques to facilitate semi-autonomous decommissioning. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schalkoff, R.J.; Geist, R.M.; Dawson, D.M.

    1998-06-01

    'This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology. This report summarizes work after approximately 1.5 years of a 3-year project. The autonomous, non-contact creation of a virtual environment from an existing, real environment (virtualization) is an integral part of the workcell functionality. This requires that the virtual world be geometrically correct. To this end, the authors have encountered severe sensitivity in quadric estimation. As a result, alternative procedures for geometric rendering, iterative correction approaches, new calibration methods and associated hardware, and calibration quality examination software have been developed. Following geometric rendering, the authors have focused on improving the color and texture recognition components of the system. In particular, the authors have moved beyond first-order illumination modeling to include higher order diffuse effects. This allows us to combine the surface geometric information, obtained from the laser projection and surface recognition components of the system, with a stereo camera image. Low-level controllers for Puma 560 robotic arms were designed and implemented using QNX. The resulting QNX/PC based low-level robot control system is called QRobot. A high-level trajectory generator and application programming interface (API) as well as a new, flexible robot control API was required. Force/torque sensors and interface hardware have been identified and ordered. A simple 3-D OpenGL-based graphical Puma 560 robot simulator was developed and interfaced with ARCL and RCCL to assist in the development of robot motion programs.'

  11. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  12. An evolutionary method for synthesizing technological planning and architectural advance

    Science.gov (United States)

    Cole, Bjorn Forstrom

    In the development of systems with ever-increasing performance and/or decreasing drawbacks, there inevitably comes a point where more progress is available by shifting to a new set of principles of use. This shift marks a change in architecture, such as between the piston-driven propeller and the jet engine. The shift also often involves an abandonment of previous competencies that have been developed with great effort, and so a foreknowledge of these shifts can be advantageous. A further motivation for this work is the consideration of the Micro Autonomous Systems and Technology (MAST) project, which aims to develop very small (final graph-based genetic algorithm. This algorithm is then implemented in a design code called Sindri, which leverages a commercial design tool named Pacelab. The first chapters of this thesis provide context and a philosophical background to the studies and research that was conducted. In particular, the idea that technology progresses in a fundamentally gradual way is developed and supported with previous historical research. The import of this is that the future can to some degree be predicted by the past, provided that the appropriate technological antecedents are accounted for in developing the projection. The third chapter of the thesis compiles a series of observations and philosophical considerations into a series of research questions. Some research questions are then answered with further thought, observation, and reading, leading to conjectures on the problem. The remainder require some form of experimentation, and so are used to formulate hypotheses. Falsifiability conditions are then generated from those hypotheses, and used to get the development of experiments to be performed, in this case on a computer upon various conditions of use of a genetic algorithm. The fourth chapter of the thesis walks through the formulation of a method to attack the problem of strategically choosing an architecture. This method is designed to

  13. Application of CFD methods for advanced site assessment and micrositing

    Energy Technology Data Exchange (ETDEWEB)

    Strack, M; Riedel, V.; Dutilleux, P. [DEWI German Wind Energy Inst., Wilhelmshaven (Germany)

    2006-07-01

    The DEWI Institute in Germany is in the process of testing a computational fluid dynamic (CFD) method for the site assessment of wind farms. This presentation provided details of flow model testing conducted at the institute and at 2 wind farms in Austria and Spain. Wind profile verification processes are tested at the institute through the use of 130 metre mast, which was selected to verify flow models as it has several years of data which has been extensively evaluated and checked. The verification procedures tested on the mast were then evaluated at a wind farm in Austria with a complex site comprised of steep slopes, large height differences and important terrain structures. Mast measurements at the farm ranged between 50 and 65 m, and sonic detection and ranging (SODAR) measurements were available at 4 different locations. Wind direction at the meteorological masts was determined to be 326.7 degrees and 331.0 degrees. A comparison with SODAR measurements showed considerable variation of energy yield. Flow simulation studies showed a mean deviation of 2.3 per cent, while calculations by the Wind Atlas Analysis and Application Program (WAsP) showed a deviation of 9.1 per cent. The investigation revealed that there were very complex flow patterns at the site, which the flow simulation was able to reproduce. Results of the investigation indicated that very high wind direction resolutions were required to achieve an accurate flow simulation. WaSP was not applicable for the extrapolation of measurement on hub height to the wind turbines. CFD simulation results at a wind farm in Spain with complex terrain showed a percentage error between 0.4 per cent and 6 per cent, and a mean absolute error of between 2.3 per cent and 2.5 per cent. A verification of turbulence intensity results showed an absolute percentage error of between 0 and 7 per cent, and a mean absolute error of between 1.8 and 2.2 per cent. The method allowed wind and turbulence fields to be simulated over

  14. Advancement in modern approaches to mineral production quality control

    Science.gov (United States)

    Freidina, EV; Botvinnik, AA; Dvornikova, AN

    2017-02-01

    The natural resource potential of mineral deposits is represented by three categories: upside, attainable and investment. A modern methodology is proposed in this paper for production quality control, and its tools aimed at ensuring agreement between the product quality and the market requirements are described. The definitions of the costs of the product quality compliance and incompliance with the consumer requirements are introduced; the latter is suggested to use in evaluating resource potential of mineral deposits at a certain degree of probability.

  15. Strategy for Advanced Sensing and Control of Combustion.

    Science.gov (United States)

    1986-02-06

    leads to a stable closed-loop system A satisfactory stability criterion might be the off-axis circle criterion [Hedrick and Paynter. 1980]. This...shown in Figure 2 to the system shown in Figure 3. Figure 3 represents a system with simple proportional control. The off-axis circle criterion requires...Application of the off-axis circle criterion to the Nyquist curves in Figure 4 suggests that the gain, k , that can be tolerated by the system of Figure

  16. Recent advances in sliding modes from control to intelligent mechatronics

    CERN Document Server

    Efe, Mehmet

    2015-01-01

    This volume is dedicated to Professor Okyay Kaynak to commemorate his life time impactful research and scholarly achievements and outstanding services to profession. The 21 invited chapters have been written by leading researchers who, in the past, have had association with Professor Kaynak as either his students and associates or colleagues and collaborators. The focal theme of the volume is the Sliding Modes covering a broad scope of topics from theoretical investigations to their significant applications from Control to Intelligent Mechatronics.  

  17. ADVANCES IN ESTIMATION AND CONTROL FOR FLOTATION COLUMNS

    OpenAIRE

    2010-01-01

    Flotation is multivariable process exhibiting uncertain and nonlinear dynamics as well as being perturbed by unmeasured disturbances. Optimization of this process is therefore a complex undertaking. Although real-time optimization (RTO) techniques for maximizing an objective function are aailable, steady-state assumptions in processes being frequently acted upon by unmeasured distrubances, strongly limit the optimization frequency, hierachical control systems allow to efficiently dealing with...

  18. An Advanced Control System for Fine Coal Floatation

    Energy Technology Data Exchange (ETDEWEB)

    Luttrell, G H; Adel, G T

    1998-06-01

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as collector dosage, frother dosage, and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the eighth quarter of this project, the analysis of data collected during Task 2 (Sampling and Data Analysis) was completed, and significant progress was made on Task 3 (Model Building and Computer Simulation). Previously, a plant sampling campaign had been conducted at Pittston's Moss No. 3 preparation plant to provide data for the development of a mathematical process model and a model-based control system. During this campaign, a one-half factorial design experiment, blocked into low and high feed rates, was conducted to investigate the effects of collector, frother, and pulp level on model parameters. In addition, samples were collected during the transient period following each change in the manipulated variables to provide data for confirmation of the dynamic process simulator. A residence time distribution (RTD) test was also conducted to estimate the mean residence time. This is a critical piece of information since no feed flowrate measurement is available, and the mean residence time can be used to estimate the feed flowrate. Feed samples were taken at timed intervals and floated in a laboratory flotation cell to investigate the magnitude of feed property disturbances and their duration.

  19. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  20. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-31

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  1. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    OpenAIRE

    Timbus, Adrian Vasile

    2007-01-01

    The movement towards a clean technology for energy production and the constraints in reducing the CO2 emissions are some factors facilitating the growth of distributed power generation systems based on renewable energy resources. Consequently, large penetration of distributed generators has been reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power...

  2. Advanced Controls for Residential Whole-House Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  3. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    Science.gov (United States)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  4. Recent advancements in mechanical reduction methods: particulate systems.

    Science.gov (United States)

    Leleux, Jardin; Williams, Robert O

    2014-03-01

    The screening of new active pharmaceutical ingredients (APIs) has become more streamlined and as a result the number of new drugs in the pipeline is steadily increasing. However, a major limiting factor of new API approval and market introduction is the low solubility associated with a large percentage of these new drugs. While many modification strategies have been studied to improve solubility such as salt formation and addition of cosolvents, most provide only marginal success and have severe disadvantages. One of the most successful methods to date is the mechanical reduction of drug particle size, inherently increasing the surface area of the particles and, as described by the Noyes-Whitney equation, the dissolution rate. Drug micronization has been the gold standard to achieve these improvements; however, the extremely low solubility of some new chemical entities is not significantly affected by size reduction in this range. A reduction in size to the nanometric scale is necessary. Bottom-up and top-down techniques are utilized to produce drug crystals in this size range; however, as discussed in this review, top-down approaches have provided greater enhancements in drug usability on the industrial scale. The six FDA approved products that all exploit top-down approaches confirm this. In this review, the advantages and disadvantages of both approaches will be discussed in addition to specific top-down techniques and the improvements they contribute to the pharmaceutical field.

  5. Recent advances for the production and recovery methods of lysozyme.

    Science.gov (United States)

    Ercan, Duygu; Demirci, Ali

    2016-12-01

    Lysozyme is an antimicrobial peptide with a high enzymatic activity and positive charges. Therefore, it has applications in food and pharmaceutical industries as an antimicrobial agent. Lysozyme is ubiquitous in both animal and plant kingdoms. Currently, egg-white lysozyme is the most commercially available form of lysozyme. The main concerns of egg-white lysozyme are high recovery cost, low activity and most importantly the immunological problems to some people. Therefore, human lysozyme production has gained importance in recent years. Scientists have developed transgenic plants, animals and microorganisms that can produce human lysozyme. Out of these, microbial production has advantages for commercial productions, because high production levels are achievable in a relatively short time. It has been reported that fermentation parameters, such as pH, temperature, aeration, are key factors to increase the effectiveness of the human lysozyme production. Moreover, purification of the lysozyme from the fermentation broth needs to be optimized for the economical production. In conclusion, this review paper covers the mechanism of lysozyme, its sources, production methods and recovery of lysozyme.

  6. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    CERN Document Server

    Powell, Jade; Lynch, Ryan; Trifirò, Daniele; Cuoco, Elena; Cavaglià, Marco; Heng, Ik Siong; Font, José A

    2016-01-01

    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the im...

  7. Advances in quality control for dioxins monitoring and evaluation of measurement uncertainty from quality control data.

    Science.gov (United States)

    Eppe, Gauthier; De Pauw, Edwin

    2009-08-01

    This paper describes an application of multivariate and multilevel quality control charts with the aim of improving the internal quality control (IQC) procedures for the monitoring of dioxins and dioxin-like PCBs analysis in food. Dioxin analysts have to use the toxic equivalent concept (TEQ) to assess the toxicity potential of a mixture of dioxin-like compounds. The TEQ approach requires quantifying individually 29 dioxin-like compounds. Monitoring the congeners separately on univariate QC charts is misleading owing to the increase of false alarm rate. We propose to subdivide the TEQ value into 3 sub-groups and to control simultaneously the 3 variables in a T(2) chart. When a T(2) exceeds the upper control limit, it acts as a warning to trigger additional investigations on individual congeners. We discuss the minimum number of runs required to reliably estimate the QC chart parameters and we suggest using data from multilevel QC charts to properly characterize the standard deviations and the correlation coefficients. Moreover, the univariate QC chart can be sensitised to detect systematic errors by using exponentially weighted moving average (EWMA) technique. The EWMA chart provides an additional guidance on setting appropriate criteria to control the method bias and to support trend analysis. Finally, we present an estimate of measurement uncertainty by computing the accuracy profile in a retrospective way with the QC data generated and we discuss assessment of compliance with regulatory maximum levels.

  8. A deeper look into magnetic nanostructures using advanced scattering methods

    Indian Academy of Sciences (India)

    T H Brückel; E Kentzinger; S Mattauch; A Paul; U Rücker; J Voigt

    2008-11-01

    Magnetic thin film systems and laterally patterned magnetic media are the basis of spintronic devices for information technology. In this contribution, we will show that neutron scattering under grazing incidence with polarization analysis is able to provide unique depth resolved information on magnetization, magnetic correlations and magne-tization dynamics relevant for basic and applied research on nanostructured magnetic materials. It is well established that specular neutron reflectivity with polarization analysis from thin film systems and multilayers provides layer-resolved information on interface rough-ness and on the laterally averaged magnetization. Off-specular diffuse scattering with polarization analysis gives access to lateral correlations, i.e. the detailed interface morphology, the magnetic order of nanoscale objects (stripes or islands), the magnetic fluctuations or domain structure. Depending on the scattering geometry – reflectometry or grazing incidence small angle neutron scattering (GISANS) – correlations on lateral length scales from the nanometer up to the 100 micrometer range become accessible. Close to total reflection, kinematical scattering theory breaks down and dynamical effects have to be taken into account. Simulations in the distorted wave Born approximation (DWBA) allow one to extract quantitative parameters for a statistical model description. On several examples we will demonstrate the power of the method – from the magnetic fluctuations in remanent sputtered films via the magnetic structure of rare earth multilayers with competing interactions to the remagnetization process of exchange bias systems or the domain structures of laterally patterned giant magnetoresistance multilayers. Finally we will give an outlook on what will be possible on next generation instruments such as the magnetism reflectometer MARIA of the Juelich Centre for Neutron Science (JCNS) at FRM-II.

  9. Overview of Modelling and Advanced Control Strategies for Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Silvio Simani

    2015-11-01

    Full Text Available The motivation for this paper comes from a real need to have an overview of the challenges of modelling and control for very demanding systems, such as wind turbine systems, which require reliability, availability, maintainability, and safety over power conversion efficiency. These issues have begun to stimulate research and development in the wide control community particularly for these installations that need a high degree of “sustainability”. Note that this represents a key point for offshore wind turbines, since they are characterised by expensive and/or safety critical maintenance work. In this case, a clear conflict exists between ensuring a high degree of availability and reducing maintenance times, which affect the final energy cost. On the other hand, wind turbines have highly nonlinear dynamics, with a stochastic and uncontrollable driving force as input in the form of wind speed, thus representing an interesting challenge also from the modelling point of view. Suitable control methods can provide a sustainable optimisation of the energy conversion efficiency over wider than normally expected working conditions. Moreover, a proper mathematical description of the wind turbine system should be able to capture the complete behaviour of the process under monitoring, thus providing an important impact on the control design itself. In this way, the control scheme could guarantee prescribed performance, whilst also giving a degree of “tolerance” to possible deviation of characteristic properties or system parameters from standard conditions, if properly included in the wind turbine model itself. The most important developments in advanced controllers for wind turbines are also briefly referenced, and open problems in the areas of modelling of wind turbines are finally outlined.

  10. Control and dynamic systems v.42 advances in theory and applications

    CERN Document Server

    Leonides, CT

    1991-01-01

    Control and Dynamic Systems: Advances in Theory and Applications, Volume 42: Analysis and Control System Techniques for Electric Power Systems, Part 2 of 4 covers the research studies on the significant advances in areas including economic operation of power systems and voltage and power control techniques.This book is composed of eight chapters and begins with a survey of the application of parallel processing to power system analysis as motivated by the requirement for faster computation. The next chapters deal with the issues of power system protection from a system point of view, t

  11. METHODS OF CONTROL DIPHTHERIA VACCINE SAFETY

    Directory of Open Access Journals (Sweden)

    Isayenko Ye. Yu

    2016-12-01

    of toxin it's examined the WHO's proposal to use an intradermal method on guinea pigs and tests on cell cultures. Attention is drawn to the fact that the determination of specific toxicity in cell culture can be carried out at presence of the approval of this method of a national control authority and sensitivity rates no less than in experiments on guinea pigs. The determining of specific toxicity of ready vaccine by subcutaneous method is described. The publication gave a test for elevated toxicity of the final product by intraperitoneal infection of mice and guinea pigs. It’s cited the WHO recommendations aimed at removing the possibility of recovery of the refined toxin toxicity. Checking vaccines toxicity, pyrogenicity, sterility, allergenicity, teratogenicity, mutagenicity and immunogenicity mainly performed on laboratory animals. The review examined the unreliability of animal experiments and the need to find alternative methods for determining the toxicity without their use particularly in light of the “3R”concept. Methods for determining diphtherial toxin using cell cultures is considered, namely, colony overlay test (COT, tests using a monolayer of HeLa cell culture, a culture of Vero cells (kidney cells of african green monkeys , a culture of CHO cells (cells of Chinese hamster ovary, which are based on the toxin cytopathic effect on sensitive cell culture. Their advantages and disadvantages are listed. An alternative method for the quantitative detection of C. diphtheriae toxin using the polystyrene plate coated with monoclonal antibody to the part of the diphtheria toxin which defines its binding to the cell, is described. It’s regarded the cytotoxic effect of diphtheria toxin on cells of the immune system of mice and guinea pigs: splenocytes, adhesive phagocytes i B- lymphocytes.

  12. Advanced Extraction Methods for Actinide/Lanthanide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  13. International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines

    CERN Document Server

    Belyaev, Alexander; Krommer, Michael

    2017-01-01

    The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

  14. Advanced Communication and Control Solutions of Distributed Energy Resources (DER)

    Energy Technology Data Exchange (ETDEWEB)

    Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron; de Bruet, Andre, G.; Broadwater, Robert; Dilek, Murat

    2007-01-10

    This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security was accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility

  15. Advanced Catalytic Converter in Gasoline Enginer Emission Control: A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2017-01-01

    Full Text Available Exhaust emission from automobile source has become a major contributor to the air pollution and environmental problem. Catalytic converter is found to be one of the most effective tools to reduce the overwhelming exhaust pollutants in our environment. The development of sustainable catalytic converter still remains a critical issue due to the stringent exhaust emission regulations. Another issue such as price and availability of the precious metal were also forced the automotive industry to investigate the alternatives for producing a better replacement for the material used in catalytic converter. This paper aims at reviewing the present development and improvement on the catalytic converter used on the reduction of exhaust emission in order to meet the regulations and market demand. The use of new catalyst such as to replace the noble metal material of Platinum (Pt, Palladium (Pd and Rhodium (Rh has been reviewed. Material such as zeolite, nickel oxide and metal oxide has been found to effectively reduce the emission than the commercial converter. The preparation method of the catalyst has also evolved through the years as it is to ensure a good characteristic of a good monolith catalyst. Ultrasonic treatment with combination of electroplating technique, citrate method and Plasma Electrolytic Oxidation (PEO has been found as the latest novel preparation method on producing an effective catalyst in reducing the exhaust emission.

  16. Advanced Control of Active Bearings - Modelling, Design and Experiments

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane

    In all rotating machines relative movements between the stationary parts and the rotating parts imply energy loss and, in many critical cases, vibration problems. This energy loss leads to higher overall energy consumption of the system. Research activities towards the reduction of friction......, the enhancement of damping, the extension of operating range and the minimisation of critical vibrations in machine elements are of fundamental importance. The main component to tackle the energy-loss-related problems is the bearing. The area of design of active bearings, while very promising, is still in its...... the critical speeds. The feedback control law is preferably designed from a simple model, which captures the dominant dynamics of the machine in the frequency range of interest. This thesis offers two main original contributions in the field of active bearings. First, an experimental technique is proposed...

  17. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  18. ADVANCING THE STUDY OF VIOLENCE AGAINST WOMEN USING MIXED METHODS: INTEGRATING QUALITATIVE METHODS INTO A QUANTITATIVE RESEARCH PROGRAM

    OpenAIRE

    Testa, Maria; Livingston, Jennifer A.; VanZile-Tamsen, Carol

    2011-01-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women’s sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative res...

  19. Advancing the study of violence against women using mixed methods: integrating qualitative methods into a quantitative research program.

    Science.gov (United States)

    Testa, Maria; Livingston, Jennifer A; VanZile-Tamsen, Carol

    2011-02-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women's sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided.

  20. Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing

    KAUST Repository

    Gao, Xin

    2013-01-11

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  1. Theory, Methods, and Applications of Nonlinear Control

    Science.gov (United States)

    2012-08-29

    IEEE Transactions on Automatic Control , Volume...tracking control using input-to-state stability,” IEEE Transactions on Automatic Control , Volume 57, Number 5, May 2012, pp. 1320-1326. [MZ12a... Transactions on Automatic Control , Volume 55, Number 4, April 2010, pp. 841-854. 4 [MM10b] Mazenc, F., and M. Malisoff, “Stabilization of

  2. Guest Editorial Special Issue on Recent Advances and New Directions in Switched Control Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ As guest editors, it is our great honor to bring this special issue of the Journal of Control Theory and Applications devoted to Recent Advances and New Directions in Switched Control Systems. Recently, switched control systems have attracted much attention in the control systems community. Problems in this area are not only academically challenging for the inherent mathematical complexity, but also are derived or motivated from advanced applications in natural sciences, engineering, and social sciences. For survival, natural biological systems switch their survival strategies in accordance with environmental changes. For improved performance, switching has been extensively utilized/exploited in engineering systems such as automotive drive train control, electronic devices, control of power systems, etc.

  3. Advanced topics in control and estimation of state-multiplicative noisy systems

    CERN Document Server

    Gershon, Eli

    2013-01-01

    Advanced Topics in Control and Estimation of State-Multiplicative Noisy Systems begins with an introduction and extensive literature survey. The text proceeds to cover solutions of measurement-feedback control and state problems and the formulation of the Bounded Real Lemma for both continuous- and discrete-time systems. The continuous-time reduced-order and stochastic-tracking control problems for delayed systems are then treated. Ideas of nonlinear stability are introduced for infinite-horizon systems, again, in both the continuous- and discrete-time cases. The reader is introduced to six practical examples of noisy state-multiplicative control and filtering associated with various fields of control engineering. The book is rounded out by a three-part appendix containing stochastic tools necessary for a proper appreciation of the text: a basic introduction to nonlinear stochastic differential equations and aspects of switched systems and peak to peak  optimal control and filtering. Advanced Topics in Contr...

  4. Design and Advanced Control of Switched Reluctance Motors

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand

    -Finite Element Analysis (FEA), measurements from the developed static characterization system and with special developed SRDaS calculation module. This module is based on simple FEA routines together with some classical analytical functions/routines. The different methods to acquire parameters are all compared......The introduction of mainly power electronics and cheap micro computers have made the Switched Reluctance Machine (SRM), which is in focus in this thesis, a feasible alternative to traditional electrical machines like the induction- and DC-motor which have been the dominating electrical machines...... in a century. Even so that the classical SRM is a very simple construction, characterized with that both the stator and rotor have salient poles and that only the stator has conducting material, the engineering physics required to analyze, design, improve and operate the SRM is untraditional and very...

  5. Advances in understanding and utilising ELM control in JET

    Science.gov (United States)

    Chapman, I. T.; de la Luna, E.; Lang, P. T.; Liang, Y.; Alper, B.; Denner, P.; Frigione, D.; Garzotti, L.; Ham, C. J.; Huijsmans, G. T. A.; Jachmich, S.; Kocsis, G.; Lennholm, M.; Lupelli, I.; Rimini, F. G.; Sips, A. C. C.; Contributors, JET

    2016-01-01

    Edge localised mode (ELM) control may be essential to develop ITER scenarios with a reasonable lifetime of divertor components, whilst ELM pacing may be essential to develop stationary ITER scenarios with a tungsten divertor. Resonant magnetic perturbations (RMPs) have mitigated ELMs in high collisionality plasmas in JET. The efficacy of RMPs in mitigating the ELMs is found to depend on plasma shaping, with the change in magnetic boundary achieved when non-axisymmetric fields are applied facilitating access to small ELM regimes. The understanding of ELM pacing by vertical kicks or pellets has also been improved in a range of pedestal conditions in JET ({{T}\\text{ped}}=0.7 -1.3 keV) encompassing the ITER-expected domain ({β\\text{N}}=1.4 -2.4, H 98(y, 2)  =  0.8-1.2, {{f}\\text{GW}}˜ 0.7 ). ELM triggering is reliable provided the perturbation is above a threshold which depends on pedestal parameters. ELM triggering is achieved even in the first 10% of the natural ELM cycle suggesting no inherent maximum frequency. At high normalised pressure, the peeling-ballooning modes are stabilised as predicted by ELITE, necessitating a larger perturbation from either kicks or pellets in order to trigger ELMs. Both kicks and pellets have been used to pace ELMs for tungsten flushing. This has allowed stationary plasma conditions with low gas injection in plasmas where the natural ELM frequency is such that it would normally preclude stationary conditions.

  6. Contribution to the study and design of advanced controllers : application to smelting furnaces

    OpenAIRE

    Ojeda Sarmiento, Juan Manuel

    2013-01-01

    In this doctoral thesis, contributions to the study and design of advanced controllers and their application to metallurgical smelting furnaces are discussed. For this purpose, this kind of plants has been described in detail. The case of study is an Isasmelt plant in south Peru, which yearly processes 1.200.000 tons of copper concentrate. The current control system is implemented on a distributed control system. The main structure includes a cascade strategy to regulate the molten bath tempe...

  7. Advanced Control Scenario of High-Performance Steady-State Operation for JT-60 Superconducting Tokamak

    Institute of Scientific and Technical Information of China (English)

    H. Tamai; Y. Kamada; A. Sakasai; S. Ishida; G. Kurita; M. Matsukawa; K. Urata; S. Sakurai; K. Tsuchiya; A. Morioka; Y. M. Miura; K. Kizu

    2004-01-01

    Plasma control on high-βN steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-βN exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected.

  8. Recent advance in nonlinear aeroelastic analysis and control of the aircraft

    Directory of Open Access Journals (Sweden)

    Xiang Jinwu

    2014-02-01

    Full Text Available A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Various structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are discussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE and fight aircrafts are studied separately. Finally, conclusions and the challenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.

  9. Recent advance in nonlinear aeroelastic analysis and control of the aircraft

    Institute of Scientific and Technical Information of China (English)

    Xiang Jinwu; Yan Yongju; Li Daochun

    2014-01-01

    A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different non-linearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Var-ious structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are dis-cussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE) and fight aircrafts are studied separately. Finally, conclusions and the chal-lenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.

  10. Modified stabilization method for the tibial tuberosity advancement technique: a biomechanical study

    Directory of Open Access Journals (Sweden)

    Bruno Testoni Lins

    Full Text Available The present study aimed to determine biomechanical alterations resultant from a modification in the fixation method of the tibial tuberosity advancement technique (TTA, originally described for stabilization of the cranial cruciate-deficient stifle. Ten adult mongrel dogs weighing 25-30kg were used. After euthanasia, performed for reasons unrelated to this study, the hind limbs were distributed into two groups: G1 operated (n=10 and G2 control (n=10, represented by the contralateral limb. The operated hind limbs were orthopedically, goniometrically and radiographically evaluated, sequentially at four moments: moment 1, in intact joints; moment 2, after cranial cruciate desmotomy; moment 3, after surgical stabilization of the stifle joint using modified TTA; and moment 4, after caudal cruciate ligament desmotomy. The tibial tuberosity was stabilized by one shaft screw craniocaudally and a titanium cage inserted at the osteotomy site. The position of the patellar tendon at 90° in relation to the tibial plateau allowed cranial tibial thrust force neutralization, despite cranial drawer motion maintenance in all dogs. The biomechanical tests confirm the viability of the tibial tuberosity fixation method and support future clinical trials to validate the technique.

  11. Theoretical and algorithmic advances in multi-parametric programming and control

    KAUST Repository

    Pistikopoulos, Efstratios N.

    2012-04-21

    This paper presents an overview of recent theoretical and algorithmic advances, and applications in the areas of multi-parametric programming and explicit/multi-parametric model predictive control (mp-MPC). In multi-parametric programming, advances include areas such as nonlinear multi-parametric programming (mp-NLP), bi-level programming, dynamic programming and global optimization for multi-parametric mixed-integer linear programming problems (mp-MILPs). In multi-parametric/explicit MPC (mp-MPC), advances include areas such as robust multi-parametric control, multi-parametric nonlinear MPC (mp-NMPC) and model reduction in mp-MPC. A comprehensive framework for multi-parametric programming and control is also presented. Recent applications include a hydrogen storage device, a fuel cell power generation system, an unmanned autonomous vehicle (UAV) and a hybrid pressure swing adsorption (PSA) system. © 2012 Springer-Verlag.

  12. Robust control methods for nonlinear systems with uncertain dynamics and unknown control direction

    Science.gov (United States)

    Ton, Chau T.

    Robust nonlinear control design strategies using sliding mode control (SMC) and integral SMC (ISMC) are developed, which are capable of achieving reliable and accurate tracking control for systems containing dynamic uncertainty, unmodeled disturbances, and actuator anomalies that result in an unknown and time-varying control direction. In order to ease readability of this dissertation, detailed explanations of the relevant mathematical tools is provided, including stability denitions, Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other basic nonlinear control tools. The contributions of the dissertation are three novel control algorithms for three different classes of nonlinear systems: single-input multipleoutput (SIMO) systems, systems with model uncertainty and bounded disturbances, and systems with unknown control direction. Control design for SIMO systems is challenging due to the fact that such systems have fewer actuators than degrees of freedom to control (i.e., they are underactuated systems). While traditional nonlinear control methods can be utilized to design controllers for certain classes of cascaded underactuated systems, more advanced methods are required to develop controllers for parallel systems, which are not in a cascade structure. A novel control technique is proposed in this dissertation, which is shown to achieve asymptotic tracking for dual parallel systems, where a single scalar control input directly aects two subsystems. The result is achieved through an innovative sequential control design algorithm, whereby one of the subsystems is indirectly stabilized via the desired state trajectory that is commanded to the other subsystem. The SIMO system under consideration does not contain uncertainty or disturbances. In dealing with systems containing uncertainty in the dynamic model, a particularly challenging situation occurs when uncertainty exists in the input-multiplicative gain matrix. Moreover, special

  13. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    Science.gov (United States)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  14. SPEED CONTROL OF PMBLDC DRIVE WITH GATE CONTROL METHOD USING CONVENTIONAL AND FUZZY CONTROLLER

    Directory of Open Access Journals (Sweden)

    T.V.NARMADHA,

    2010-11-01

    Full Text Available The paper presents simulation results of fuzzy logic and conventional proportional integral controller for the sensorless speed control of permanent magnet brushless dc (PMBLDC motor using Gate control method. Although conventional PI controllers are widely used in the industry due to its simple control structure and ease of implementation, these controllers pose difficulties under the conditions of nonlinearity, load disturbances and parametric variations. Moreover PI controllers require precise linear mathematical models. In the paper, the performance of the permanent magnet brushless dc motor drive is examined with the aid of the fuzzy logic controller. The fuzzy logic controller shows improved performance compared to the conventional PI speed controller. The module of the Three Phase inverter system controlled Permanent magnet Brushless DC motor is simulated using PI and Fuzzy Logic Controller and implemented in closed loop model. . By simulation, the characteristics of the PMBLDCM system are investigated. THD analysis for the methods is presented. The simulation results indicate FLC has improved performance.

  15. The Robust Control Mixer Module Method for Control Reconfiguration

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, M.

    1999-01-01

    into a LTI dynamical system, and furthermore multiple dynamical control mixer modules can be employed in our consideration. The H_{\\infty} control theory is used for the analysis and design of the robust control mixer modules. Finally, one practical robot arm system as benchmark is used to test the proposed...

  16. The development and features of the Spanish prehospital advanced triage method (META) for mass casualty incidents.

    Science.gov (United States)

    Arcos González, Pedro; Castro Delgado, Rafael; Cuartas Alvarez, Tatiana; Garijo Gonzalo, Gracia; Martinez Monzon, Carlos; Pelaez Corres, Nieves; Rodriguez Soler, Alberto; Turegano Fuentes, Fernando

    2016-04-29

    This text describes the process of development of the new Spanish Prehospital Advanced Triage Method (META) and explain its main features and contribution to prehospital triage systems in mass casualty incidents. The triage META is based in the Advanced Trauma Life Support (ATLS) protocols, patient's anatomical injuries and mechanism of injury. It is a triage method with four stages including early identification of patients with severe trauma that would benefit from a rapid evacuation to a surgical facility and introduces a new patient flow by-passing the advanced medical post to improve evacuation. The stages of triage META are: I) Stabilization triage that classifies patients according to severity to set priorities for initial emergency treatment; II) Identifying patients requiring urgent surgical treatment, this is done at the same time than stage I and creates a new flow of patients with high priority for evacuation; III) Implementation of Advanced Trauma Life Support protocols to patients previously classified according to stablished priority; and IV) Evacuation triage, stablishing evacuation priorities in case of lacks of appropriate transport resources. The triage META is to be applied only by prehospital providers with advanced knowledge and training in advanced trauma life support care and has been designed to be implemented as prehospital procedure in mass casualty incidents (MCI).

  17. Interior noise control ground test studies for advanced turboprop aircraft applications

    Science.gov (United States)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  18. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    Science.gov (United States)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  19. Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines

    Science.gov (United States)

    Radil, Kevin C.

    1997-01-01

    Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.

  20. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  1. Operation safety of control systems. Principles and methods; Surete de fonctionnement des systemes de commande. Principes et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, J.F. [Institut National Polytechnique, 54 - Nancy (France); Chatelet, E. [Universite de Technologie de Troyes, 10 (France)

    2008-09-15

    This article presents the main operation safety methods that can be implemented to design safe control systems taking into account the behaviour of the different components with each other (binary 'operation/failure' behaviours, non-consistent behaviours and 'hidden' failures, dynamical behaviours and temporal aspects etc). To take into account these different behaviours, advanced qualitative and quantitative methods have to be used which are described in this article: 1 - qualitative methods of analysis: functional analysis, preliminary risk analysis, failure mode and failure effects analyses; 2 - quantitative study of systems operation safety: binary representation models, state space-based methods, event space-based methods; 3 - application to the design of control systems: safe specifications of a control system, qualitative analysis of operation safety, quantitative analysis, example of application; 4 - conclusion. (J.S.)

  2. Advanced international training course on state systems of accounting for and control of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

  3. Production of potato minitubers using advanced environmental control technologies developed for growing plants in space

    Science.gov (United States)

    Britt, Robert G.

    1998-01-01

    Development of plant growth systems for use in outer space have been modified for use on earth as the backbone of a new system for rapid growth of potato minitubers. The automation of this new biotechnology provides for a fully controllable method of producing pathogen-free nuclear stock potato minitubers from tissue cultured clones of varieties of potato in a biomanufacturing facility. These minitubers are the beginning stage of seed potato production. Because the new system provides for pathogen-free minitubers by the tens-of-millions, rather than by the thousands which are currently produced in advanced seed potato systems, a new-dimension in seed potato development, breeding and multiplication has been achieved. The net advantage to earth-borne agricultural farming systems will be the elimination of several years of seed multiplication from the current system, higher quality potato production, and access to new potato varieties resistant to diseases and insects which will eliminate the need for chemical controls.

  4. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods.

    Science.gov (United States)

    Santos, Sílvia; Ungureanu, Gabriela; Boaventura, Rui; Botelho, Cidália

    2015-07-15

    Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested.

  5. Progress of nuclear safety for symbiosis and sustainability advanced digital instrumentation, control and information systems for nuclear power plants

    CERN Document Server

    Yoshikawa, Hidekazu

    2014-01-01

    This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human?machine interface technologies (ii) Risk? monitoring methods for large and? complex? plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and val

  6. PREFACE: 12th European Workshop on Advanced Control and Diagnosis (ACD 2015)

    Science.gov (United States)

    Straka, Ondřej; Punčochář, Ivo; Duník, Jindřich

    2015-11-01

    The 12th European Workshop on Advanced Control and Diagnosis (ACD 2015) took place at the Research Centre NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic, on November 19 - 20, 2015. The annual European Workshop on Advanced Control and Diagnosis has been organized since 2003 by Control Engineering departments of several European universities in Germany, France, the UK, Poland, Italy, Hungary, and Denmark to bring together senior and junior academics and engineers from diverse fields of automatic control, fault detection, and signal processing. The workshop provides an opportunity for researchers and developers to present their recent theoretical developments, practical applications, or even open problems. It also offers a great opportunity for industrial partners to express their needs and priorities and to review the current activities in the fields. A total of 74 papers have been submitted for ACD 2015. Based on the peer reviews 48 papers were accepted for the oral presentation and 10 papers for the poster presentation. The accepted papers covered areas of control theory and applications, identification, estimation, signal processing, and fault detection. In addition, four excellent plenary lectures were delivered by Prof. Fredrik Gustafsson (Automotive Sensor Mining for Tire Pressure Monitoring), Prof. Vladimír Havlena (Advanced Process Control for Energy Efficiency), Prof. Silvio Simani (Advanced Issues on Wind Turbine Modelling and Control), and Prof. Robert Babuška (Learning Control in Robotics). The ACD 2015 was for the first time in the workshop history co-sponsored by the International Federation of Automatic Control (IFAC). On behalf of the ACD 2015 organising committee, we would like to thank all those who prepared and submitted papers, participated in the peer review process, supported, and attended the workshop.

  7. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  8. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min Suk

    2016-07-21

    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  9. System and method for controlling microgrid

    Science.gov (United States)

    Bose, Sumit; Achilles, Alfredo Sebastian; Liu, Yan; Ahmed, Emad Ezzat; Garces, Luis Jose

    2011-07-19

    A system for controlling a microgrid includes microgrid assets and a tieline for coupling the microgrid to a bulk grid; and a tieline controller coupled to the tieline. At least one of the microgrid assets comprises a different type of asset than another one of the microgrid assets. The tieline controller is configured for providing tieline control signals to adjust active and reactive power in respective microgrid assets in response to commands from the bulk grid operating entity, microgrid system conditions, bulk grid conditions, or combinations thereof.

  10. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    Science.gov (United States)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  11. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  12. Advanced three-dimensional scan methods in the nanopositioning and nanomeasuring machine

    Science.gov (United States)

    Hausotte, T.; Percle, B.; Jäger, G.

    2009-08-01

    The nanopositioning and nanomeasuring machine developed at the Ilmenau University of Technology was originally designed for surface measurements within a measuring volume of 25 mm × 25 mm × 5 mm. The interferometric length measuring and drive systems make it possible to move the stage with a resolution of 0.1 nm and a positioning uncertainty of less than 10 nm in all three axes. Various measuring tasks are possible depending on the installed probe system. Most of the sensors utilized are one-dimensional surface probes; however, some tasks require measuring sidewalls and other three-dimensional features. A new control system, based on the I++ DME specification, was implemented in the device. The I++ DME scan functions were improved and special scan functions added to allow advanced three-dimensional scan methods, further fulfilling the demands of scanning force microscopy and micro-coordinate measurements. This work gives an overview of these new functions and the application of them for several different measurements.

  13. Application of Advanced Process Control techniques to a pusher type reheating furnace

    Science.gov (United States)

    Zanoli, S. M.; Pepe, C.; Barboni, L.

    2015-11-01

    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.

  14. CONTROL SYSTEM IDENTIFICATION THROUGH MODEL MODULATION METHODS

    Science.gov (United States)

    identification has been achieved by using model modulation techniques to drive dynamic models into correspondence with operating control systems. The system ... identification then proceeded from examination of the model and the adaptive loop. The model modulation techniques applied to adaptive control

  15. Dynamic decoupling nonlinear control method for aircraft gust alleviation

    Science.gov (United States)

    Lv, Yang; Wan, Xiaopeng; Li, Aijun

    2008-10-01

    A dynamic decoupling nonlinear control method for MIMO system is presented in this paper. The dynamic inversion method is used to decouple the multivariable system. The nonlinear control method is used to overcome the poor decoupling effect when the system model is inaccurate. The nonlinear control method has correcting function and is expressed in analytic form, it is easy to adjust the parameters of the controller and optimize the design of the control system. The method is used to design vertical transition mode of active control aircraft for gust alleviation. Simulation results show that the designed vertical transition mode improves the gust alleviation effect about 34% comparing with the normal aircraft.

  16. Innovations in building regulation and control for advancing sustainability in buildings (I)

    NARCIS (Netherlands)

    Meacham, B.; Visscher, H.J.; Meijer, F.M.; Chan, C.; Chan, E.; Laubscher, J.; Neng Kwei Sung, J.; Dodds, B.; Serra, J.; Tenorio, J.A.; Echeverria, J.B.; Sanches-Ostiz, A.

    2014-01-01

    This session brings together policy-makers, government officials, researchers and others to present perspectives on how innovation in building regulation and control, such as performancebased approaches, are currently being used to advance sustainability concepts in buildings, and where and how we m

  17. Fieldcrest Cannon, Inc. Advanced Technical Preparation. Statistical Process Control (SPC). PRE-SPC I. Instructor Book.

    Science.gov (United States)

    Averitt, Sallie D.

    This instructor guide, which was developed for use in a manufacturing firm's advanced technical preparation program, contains the materials required to present a learning module that is designed to prepare trainees for the program's statistical process control module by improving their basic math skills and instructing them in basic calculator…

  18. On the Controllability of a Differential Equation with Delayed and Advanced Arguments

    Directory of Open Access Journals (Sweden)

    Raúl Manzanilla

    2010-01-01

    Full Text Available A semigroup theory for a differential equation with delayed and advanced arguments is developed, with a detailed description of the infinitesimal generator. This in turn allows to study the exact controllability of the equation, by rewriting it as a classical Cauchy problem.

  19. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    Science.gov (United States)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  20. Flexible System Integration and Advanced Hierarchical Control Architectures in the Microgrid Research Laboratory of Aalborg University

    DEFF Research Database (Denmark)

    Meng, Lexuan; Hernández, Adriana Carolina Luna; Diaz, Enrique Rodriguez

    2016-01-01

    This paper presents the system integration and hierarchical control implementation in an inverter-based microgrid research laboratory (MGRL) in Aalborg University, Denmark. MGRL aims to provide a flexible experimental platform for comprehensive studies of microgrids. The structure of the laboratory...... system supervision, advanced secondary and tertiary management are realized in a microgrid central controller. The software and hardware schemes are described. Several example case studies are introduced and performed in order to achieve power quality regulation, energy management and flywheel energy...

  1. Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties

    Science.gov (United States)

    Ivanov, D. S.; Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Doronin, D. M.; Ovchinnikov, A. V.

    2017-03-01

    Attitude motion of a satellite equipped with magnetic control system is considered. System comprises of three magnetorquers and one three-axis magnetometer. Satellite is stabilized in orbital reference frame using PD controller and extended Kalman filter. Three-axis attitude is analyzed numerically with advanced assumptions: inertia tensor uncertainty, disturbances of unknown nature, magnetometer errors are taken into account. Stabilization and determination accuracy dependence on orbit inclination is studied.

  2. Corrosion Control Test Method for Avionic Components

    Science.gov (United States)

    1981-09-25

    Oelionstration and Corrosion Tests Documnentation Task 1 Task 2k3 3 Tent Methods 3 Test Methods 2 Test Methods FIgure 1program Plan 2 NADC 81174-60 04 L...per 10 cubic foot of uhamber velume every 24 hours. The solution is atomized by compressed air humidified by bubbling through 115*F distilled water

  3. Advanced airflow distribution methods for reduction of personal exposure to indoor pollutants

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kosonen, Risto; Melikov, Arsen;

    2016-01-01

    The main objective of this study is to recognize possible airflow distribution methods to protect the occupants from exposure to various indoor pollutants. The fact of the increasing exposure of occupants to various indoor pollutants shows that there is an urgent need to develop advanced airflow ...

  4. Investigating the Limitations of Advanced Design Methods through Real World Application

    Science.gov (United States)

    2016-03-31

    simplified demonstration problems; The difficulty lies in that these prior applications are often done under strict non- disclosure agreements, therefore 1he...done under strict non- disclosure agreements, therefore the findings cannot be published and shared. This highlights the need to apply ASDL methods...conceptual design for Mars exploration architecture. Opportunities associated with advanced manufacturing, materials , in-situ resource utilization

  5. System identification methods for aircraft flight control development and validation

    Science.gov (United States)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  6. Advancing Control for Shield Tunneling Machine by Backstepping Design with LuGre Friction Model

    Directory of Open Access Journals (Sweden)

    Haibo Xie

    2014-01-01

    Full Text Available Shield tunneling machine is widely applied for underground tunnel construction. The shield machine is a complex machine with large momentum and ultralow advancing speed. The working condition underground is rather complicated and unpredictable, and brings big trouble in controlling the advancing speed. This paper focused on the advancing motion control on desired tunnel axis. A three-state dynamic model was established with considering unknown front face earth pressure force and unknown friction force. LuGre friction model was introduced to describe the friction force. Backstepping design was then proposed to make tracking error converge to zero. To have a comparison study, controller without LuGre model was designed. Tracking simulations of speed regulations and simulations when front face earth pressure changed were carried out to show the transient performances of the proposed controller. The results indicated that the controller had good tracking performance even under changing geological conditions. Experiments of speed regulations were carried out to have validations of the controllers.

  7. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    Science.gov (United States)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  8. Set-theoretic methods in control

    CERN Document Server

    Blanchini, Franco

    2015-01-01

    The second edition of this monograph describes the set-theoretic approach for the control and analysis of dynamic systems, both from a theoretical and practical standpoint.  This approach is linked to fundamental control problems, such as Lyapunov stability analysis and stabilization, optimal control, control under constraints, persistent disturbance rejection, and uncertain systems analysis and synthesis.  Completely self-contained, this book provides a solid foundation of mathematical techniques and applications, extensive references to the relevant literature, and numerous avenues for further theoretical study. All the material from the first edition has been updated to reflect the most recent developments in the field, and a new chapter on switching systems has been added.  Each chapter contains examples, case studies, and exercises to allow for a better understanding of theoretical concepts by practical application. The mathematical language is kept to the minimum level necessary for the adequate for...

  9. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    Science.gov (United States)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  10. Advances in neutron radiographic techniques and applications: a method for nondestructive testing.

    Science.gov (United States)

    Berger, Harold

    2004-10-01

    A brief history of neutron radiography is presented to set the stage for a discussion of significant neutron radiographic developments and an assessment of future directions for neutron radiography. Specific advances are seen in the use of modern, high dynamic range imaging methods (image plates and flat panels) and for high contrast techniques such as phase contrast, and phase-sensitive imaging. Competition for neutron radiographic inspection may develop as these techniques offer application prospects for X-ray methods.

  11. Recent Advances in the Edge-Function Method 1979-1980

    Science.gov (United States)

    1980-07-30

    Accordingly,each solution zr_.-4_des a Mathematical Model for the given physical problem- R.M.S. values provide a practical criterion for the enai--er to...I €I FINAL SCIENT.I.FIC. REPORT "RECENT ADVANCES IN THE EDGE-FUNCTION "METHOD 1979-80" by Patrick M. Quinlan Professor Maths. Physics University...ACCESSION No. 3 RECIpIENT’S CATALOG NUMBER A.k-C (and S.. ___ __ __ __ ___ __ __ _ Recent Advances in The 𔃻 Fnal Fun+i4 7o- Metho Recent0 Ede-until

  12. Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback

    DEFF Research Database (Denmark)

    Fossen, T.I.; Blanke, M.

    1999-01-01

    More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback controller...... minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...

  13. PERFORMANCE STUDIES OF INTEGRATED FUZZY LOGIC CONTROLLER FOR BRUSHLESS DC MOTOR DRIVES USING ADVANCED SIMULATION MODEL

    Directory of Open Access Journals (Sweden)

    C. Subba Rami Reddy

    2011-07-01

    Full Text Available This paper introduces an Integrated fuzzy logic controller (IFLC for brushless dc (BLDC motor drives using advanced simulation model and presents a comparative study of performances of PID controller and IFLC. The dynamic characteristics of speed and torque are effectively monitored and analyzed using the proposed model. The aim of IFLC is to obtain improved performance in terms of disturbance rejection or parameter variation than obtained using PID controller. The IFLC is constructed by using Fuzzy logic controller (FLC and PID controller. A performance comparison of the controllers is also given based on the integral of the absolute value of the error (IAE, the integral of the squared error (ISE, the integral of the time-weighted absolute error (ITAE and the integral of the time-weighted squared error (ITSE. The results show the effectiveness of the proposed controller.

  14. The effects of speech controls on performance in advanced helicopters in a double stimulation paradigm

    Science.gov (United States)

    Bortolussi, Michael R.; Vidulich, Michael A.

    1991-01-01

    The potential benefit of speech as a control modality has been investigated with mixed results. Earlier studies suggests that speech controls can reduce the potential of manual control overloads and improve time-sharing performance. However, these benefits were not without costs. Pilots reported higher workload levels associated with the use of speech controls. To further investigate these previous findings, an experiment was conducted in a simulation of an advanced single-pilot, scout/attack helicopter at NASA-Ames' ICAB (interchangeable cab) facility. Objective performance data suggested that speech control modality was effective in reducing interference of discrete, time-shared responses during continuous flight control activity. Subjective ratings, however, indicated that the speech control modality increased workload. Post-flight debriefing indicated that these results were mainly due to the increased effort to speak precisely to a less than perfect voice recognition system.

  15. Quality Control Review of BDO USA, LLP FY 2013 Single Audit of Advanced Technology International

    Science.gov (United States)

    2014-11-03

    foundation for uniform audit requirements of non-Federal entities administering Federal awards. Entities that expend $500,000 or more in a year are subject...Report No. DODIG-2015-027 N o v e m b e r 3 , 2 0 1 4 Quality Control Review of BDO USA, LLP FY 2013 Single Audit of Advanced Technology...Single Audit of Advanced Technology International 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e

  16. Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)

    Science.gov (United States)

    Cruse, T. A.

    1996-01-01

    The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.

  17. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    Science.gov (United States)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  18. Development of tomographic reconstruction methods in materials science with focus on advanced scanning methods

    DEFF Research Database (Denmark)

    Lyckegaard, Allan

    Techniques for obtaining 3 dimensional information of individual crystals, socalled grains, in polycrystalline materials are important within the field of materials science for understanding and modeling the behavior of materials.In the last decade, a number of nondestructive X-ray diffraction...... techniques. Combining this with a novel 6-dimensional indexing routine it is possible to determine grain centers, radii and orientations of hundreds of individual grains in a sample. The grain centers are found with a precision which is better than the stepping size, and thus provides a road towards future......-stable beta titanium alloy comprising 1265 grains has been produced as part of a collaboration on spatial resolved strain measurements with Cornell University, USA, and the Advanced Photon Source, USA....

  19. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  20. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  1. Advanced Adaptive Particle Swarm Optimization based SVC Controller for Power System Stability

    Directory of Open Access Journals (Sweden)

    Poonam Singhal

    2014-12-01

    Full Text Available The interconnected systems is continually increasing in size and extending over whole geographical regions, it is becoming increasingly more difficult to maintain synchronism between various parts of the power system. This paper work presents an advanced adaptive Particle swarm optimization technique to optimize the SVC controller parameters for enhancement of the steady state stability & overcoming the premature convergence & stagnation problems as in basic PSO algorithm & Particle swarm optimization with shrinkage factor & inertia weight approach (PSO-SFIWA. In this paper SMIB system along with PID damped SVC controller is considered for study. The generator speed deviation is used as an auxiliary signal to SVC, to generate the desired damping. This controller improves the dynamic performance of power system by reducing the steady-state error. The controller parameters are optimized using basic PSO, PSO-SFIWA & Advanced Adaptive PSO. Computational results show that Advanced Adaptive based SVC controller is able to find better quality solution as compare to conventional PSO & PSO-SFIWA Techniques.

  2. Multimodel methods for optimal control of aeroacoustics.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guoquan (Rice University, Houston, TX); Collis, Samuel Scott

    2005-01-01

    A new multidomain/multiphysics computational framework for optimal control of aeroacoustic noise has been developed based on a near-field compressible Navier-Stokes solver coupled with a far-field linearized Euler solver both based on a discontinuous Galerkin formulation. In this approach, the coupling of near- and far-field domains is achieved by weakly enforcing continuity of normal fluxes across a coupling surface that encloses all nonlinearities and noise sources. For optimal control, gradient information is obtained by the solution of an appropriate adjoint problem that involves the propagation of adjoint information from the far-field to the near-field. This computational framework has been successfully applied to study optimal boundary-control of blade-vortex interaction, which is a significant noise source for helicopters on approach to landing. In the model-problem presented here, the noise propagated toward the ground is reduced by 12dB.

  3. Evaluation of Controller Tuning Methods Applied to Distillation Column Control

    DEFF Research Database (Denmark)

    Nielsen, Kim; W. Andersen, Henrik; Kümmel, Professor Mogens

    1998-01-01

    A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope of this is to ex...

  4. From the new Austrian tunneling method to the geoengineering condition evaluation and dynamic controlling method

    Institute of Scientific and Technical Information of China (English)

    Yanjun Shang; Kun Li; Wantong He; Chunbo Sheng

    2014-01-01

    The new Austrian tunneling method (NATM) is widely applied in design and construction of under-ground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of en-gineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre-hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those pre-dicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.

  5. From the new Austrian tunneling method to the geoengineering condition evaluation and dynamic controlling method

    Directory of Open Access Journals (Sweden)

    Yanjun Shang

    2014-08-01

    Full Text Available The new Austrian tunneling method (NATM is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones. With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Comprehensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.

  6. Gas-phase advanced oxidation for effective, efficient in situ control of pollution

    DEFF Research Database (Denmark)

    Johnson, Matthew Stanley; Nilsson, Elna Johanna Kristina; Svensson, Erik Anders;

    2014-01-01

    for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH * concentration derived from propane reaction of (2.5 ± 0.3) × 1010 cm-3 at a specific energy input of 3 kJ/m3, and the portable device generated (4.6 ± 0.4) × 109 cm-3 at 10 kJ/m3. Based......In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution......, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process...

  7. Adaptive Current Control Method for Hybrid Active Power Filter

    Science.gov (United States)

    Chau, Minh Thuyen

    2016-09-01

    This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.

  8. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    Science.gov (United States)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper

  9. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yongliang; Wang, Yifeng

    2016-04-19

    A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.

  10. A Method of Controlling Synchronization in Different Systems

    Institute of Scientific and Technical Information of China (English)

    陈骏; 刘曾荣

    2003-01-01

    A new control method to synchronize between two different systems is proposed and the mathematical proof of this method is provided. Moreover, numerical simulation validates the efficiency of the proposed method.

  11. Idempotent Methods for Control and Games

    Science.gov (United States)

    2013-09-10

    property and the fact that certain solution forms are retained through application of the semigroup operator (i.e., the dynamic programming principle...evolution operator (or semigroup ) of an associated control problem. Here, the fundamental solu- tion developed is for a specific class of infinite-dimensional

  12. Pro Telerik ASPNET and Silverlight Controls Master Telerik Controls for Advanced ASPNET and Silverlight Projects

    CERN Document Server

    Paz, J Guay

    2010-01-01

    This book provides a complete guide to implementing Telerik's range of ASP.NET and Silverlight controls. Telerik controls are invaluable for ASP.NET and Silverlight developers because they provide a vast array of rich controls targeted for the presentation layer of web applications. Telerik offers you solutions for the reports, grids, charts, and text-editing controls that you need but don't want to build from scratch yourself - the options are endless for increasing the functionality of any of your web solutions. What you'll learn * Understand how to integrate the standard Telerik controls in

  13. Advanced electric drives analysis, control, and modeling using MATLAB/Simulink

    CERN Document Server

    Mohan, Ned

    2014-01-01

    Advanced Electric Drives utilizes a physics-based approach to explain the fundamental concepts of modern electric drive control and its operation under dynamic conditions. Gives readers a "physical" picture of electric machines and drives without resorting to mathematical transformations for easy visualization Confirms the physics-based analysis of electric drives mathematically Provides readers with an analysis of electric machines in a way that can be easily interfaced to common power electronic converters and controlled using any control scheme Makes the MATLAB/Simulink files used in exampl

  14. Advanced Control of Wind Electric Pumping System for Isolated Areas Application

    Directory of Open Access Journals (Sweden)

    Mohamed Barara

    2014-12-01

    Full Text Available The supply water in remote areas of windy region is one of most attractive application of wind energy conversion .This paper proposes an advanced controller suitable for wind-electric pump in isolated applications in order to have a desired debit from variation of reference speed of the pump also the control scheme of DC voltage of SIEG for feed the pump are presented under step change in wind speed. The simulation results showed a good performance of the global proposed control system.

  15. Experiments in advanced control concepts for space robotics - An overview of the Stanford Aerospace Robotics Laboratory

    Science.gov (United States)

    Hollars, M. G.; Cannon, R. H., Jr.; Alexander, H. L.; Morse, D. F.

    1987-01-01

    The Stanford University Aerospace Robotics Laboratory is actively developing and experimentally testing advanced robot control strategies for space robotic applications. Early experiments focused on control of very lightweight one-link manipulators and other flexible structures. The results are being extended to position and force control of mini-manipulators attached to flexible manipulators and multilink manipulators with flexible drive trains. Experimental results show that end-point sensing and careful dynamic modeling or adaptive control are key to the success of these control strategies. Free-flying space robot simulators that operate on an air cushion table have been built to test control strategies in which the dynamics of the base of the robot and the payload are important.

  16. Status of the advanced photon source and its accelerator control system

    Science.gov (United States)

    McDowell, W.; Knott, M.; Kraimer, M.

    1994-12-01

    This paper presents the current status of the Advanced Photon Source (APS), its control system and the Experimental Physics and Industrial Control System (EPICS) tools being used to implement this control system. The status of the physical plant and each of the accelerators as well as detailed descriptions of the software tools used to build the accelerator control system are presented. The control system uses high-performance graphic workstations and the X-Windows graphical user interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level, using TCP/IP protocols over high-performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  17. An FDES-Based Shared Control Method for Asynchronous Brain-Actuated Robot.

    Science.gov (United States)

    Liu, Rong; Wang, Yong-Xuan; Zhang, Lin

    2016-06-01

    The asynchronous brain-computer interface (BCI) offers more natural human-machine interaction. However, it is still considered insufficient to control rapid and complex sequences of movements for a robot without any advanced control method. This paper proposes a new shared controller based on the supervisory theory of fuzzy discrete event system (FDES) for brain-actuated robot control. The developed supervisory theory allows the more reliable control mode to play a dominant role in the robot control which is beneficial to reduce misoperation and improve the robustness of the system. The experimental procedures consist of real-time direct manual control and BCI control tests from ten volunteers. Both tests have shown that the proposed method significantly improves the performance and robustness of the robotic control. In an online BCI experiment, eight of the participants successfully controlled the robot to circumnavigate obstacles and reached the target with a three mental states asynchronous BCI while the other two participants failed in all the BCI control sessions. Furthermore, the FDES-based shared control method also helps to reduce the workload. It can be stated that the asynchronous BCI, in combination with FDES-based shared controller, is feasible for the real-time and robust control of robotics.

  18. Robust Control Mixer Method for Reconfigurable Control Design Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Blanke, Mogens; Verhagen, Michel

    2007-01-01

    A novel control mixer method for recon¯gurable control designs is developed. The proposed method extends the matrix-form of the conventional control mixer concept into a LTI dynamic system-form. The H_inf control technique is employed for these dynamic module designs after an augmented control sy...

  19. Control Method for Variable Speed Wind Turbines to Support Temporary Primary Frequency Control

    DEFF Research Database (Denmark)

    Wang, Haijiao; Chen, Zhe; Jiang, Quanyuan

    2014-01-01

    This paper develops a control method for variable speed wind turbines (VSWTs) to support temporary primary frequency control of power system. The control method contains two parts: (1) up-regulate support control when a frequency drop event occurs; (2) down-regulate support control when a frequen...

  20. Method for designing and controlling compliant gripper

    Science.gov (United States)

    Spanu, A. R.; Besnea, D.; Avram, M.; Ciobanu, R.

    2016-08-01

    The compliant grippers are useful for high accuracy grasping of small objects with adaptive control of contact points along the active surfaces of the fingers. The spatial trajectories of the elements become a must, due to the development of MEMS. The paper presents the solution for the compliant gripper designed by the authors, so the planar and spatial movements are discussed. At the beginning of the process, the gripper could work as passive one just for the moment when it has to reach out the object surface. The forces provided by the elements have to avoid the damage. As part of the system, the camera is taken picture of the object, in order to facilitate the positioning of the system. When the contact is established, the mechanism is acting as an active gripper by using an electrical stepper motor, which has controlled movement.