Advanced computational electromagnetic methods and applications
Li, Wenxing; Elsherbeni, Atef; Rahmat-Samii, Yahya
2015-01-01
This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.
Advances of evolutionary computation methods and operators
Cuevas, Erik; Oliva Navarro, Diego Alberto
2016-01-01
The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be eﬀective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.
Advanced Computational Methods for Monte Carlo Calculations
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-12
This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.
Advanced Computational Methods in Bio-Mechanics.
Al Qahtani, Waleed M S; El-Anwar, Mohamed I
2018-04-15
A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons' ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering. Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems. Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era.
New or improved computational methods and advanced reactor design
International Nuclear Information System (INIS)
Nakagawa, Masayuki; Takeda, Toshikazu; Ushio, Tadashi
1997-01-01
Nuclear computational method has been studied continuously up to date, as a fundamental technology supporting the nuclear development. At present, research on computational method according to new theory and the calculating method thought to be difficult to practise are also continued actively to find new development due to splendid improvement of features of computer. In Japan, many light water type reactors are now in operations, new computational methods are induced for nuclear design, and a lot of efforts are concentrated for intending to more improvement of economics and safety. In this paper, some new research results on the nuclear computational methods and their application to nuclear design of the reactor were described for introducing recent trend of the nuclear design of the reactor. 1) Advancement of the computational method, 2) Reactor core design and management of the light water reactor, and 3) Nuclear design of the fast reactor. (G.K.)
NATO Advanced Study Institute on Methods in Computational Molecular Physics
Diercksen, Geerd
1992-01-01
This volume records the lectures given at a NATO Advanced Study Institute on Methods in Computational Molecular Physics held in Bad Windsheim, Germany, from 22nd July until 2nd. August, 1991. This NATO Advanced Study Institute sought to bridge the quite considerable gap which exist between the presentation of molecular electronic structure theory found in contemporary monographs such as, for example, McWeeny's Methods 0/ Molecular Quantum Mechanics (Academic Press, London, 1989) or Wilson's Electron correlation in moleeules (Clarendon Press, Oxford, 1984) and the realization of the sophisticated computational algorithms required for their practical application. It sought to underline the relation between the electronic structure problem and the study of nuc1ear motion. Software for performing molecular electronic structure calculations is now being applied in an increasingly wide range of fields in both the academic and the commercial sectors. Numerous applications are reported in areas as diverse as catalysi...
Advanced soft computing diagnosis method for tumour grading.
Papageorgiou, E I; Spyridonos, P P; Stylios, C D; Ravazoula, P; Groumpos, P P; Nikiforidis, G N
2006-01-01
To develop an advanced diagnostic method for urinary bladder tumour grading. A novel soft computing modelling methodology based on the augmentation of fuzzy cognitive maps (FCMs) with the unsupervised active Hebbian learning (AHL) algorithm is applied. One hundred and twenty-eight cases of urinary bladder cancer were retrieved from the archives of the Department of Histopathology, University Hospital of Patras, Greece. All tumours had been characterized according to the classical World Health Organization (WHO) grading system. To design the FCM model for tumour grading, three experts histopathologists defined the main histopathological features (concepts) and their impact on grade characterization. The resulted FCM model consisted of nine concepts. Eight concepts represented the main histopathological features for tumour grading. The ninth concept represented the tumour grade. To increase the classification ability of the FCM model, the AHL algorithm was applied to adjust the weights of the FCM. The proposed FCM grading model achieved a classification accuracy of 72.5%, 74.42% and 95.55% for tumours of grades I, II and III, respectively. An advanced computerized method to support tumour grade diagnosis decision was proposed and developed. The novelty of the method is based on employing the soft computing method of FCMs to represent specialized knowledge on histopathology and on augmenting FCMs ability using an unsupervised learning algorithm, the AHL. The proposed method performs with reasonably high accuracy compared to other existing methods and at the same time meets the physicians' requirements for transparency and explicability.
Recent advances in computational structural reliability analysis methods
Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.
1993-10-01
The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.
Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing
Gao, Xin
2013-01-01
research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing
International Nuclear Information System (INIS)
Oka, Yoshiaki; Okuda, Hiroshi
2006-01-01
Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the first issue showing their overview and introduction of continuum simulation methods. Finite element method as their applications is also reviewed. (T. Tanaka)
Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing
Gao, Xin
2013-01-11
Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.
International Nuclear Information System (INIS)
Sekimura, Naoto; Okita, Taira
2006-01-01
Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the fourth issue showing the overview of scientific computational methods with the introduction of continuum simulation methods and their applications. Simulation methods on physical radiation effects on materials are reviewed based on the process such as binary collision approximation, molecular dynamics, kinematic Monte Carlo method, reaction rate method and dislocation dynamics. (T. Tanaka)
International Nuclear Information System (INIS)
Satake, Shin-ichi; Kunugi, Tomoaki
2006-01-01
Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the third issue showing the introduction of continuum simulation methods and their applications. Spectral methods and multi-interface calculation methods in fluid dynamics are reviewed. (T. Tanaka)
Advanced Computational Methods for Thermal Radiative Heat Transfer
Energy Technology Data Exchange (ETDEWEB)
Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,
2016-10-01
Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.
Advances in computational methods for Quantum Field Theory calculations
Ruijl, B.J.G.
2017-01-01
In this work we describe three methods to improve the performance of Quantum Field Theory calculations. First, we simplify large expressions to speed up numerical integrations. Second, we design Forcer, a program for the reduction of four-loop massless propagator integrals. Third, we extend the R*
Advanced computational tools and methods for nuclear analyses of fusion technology systems
International Nuclear Information System (INIS)
Fischer, U.; Chen, Y.; Pereslavtsev, P.; Simakov, S.P.; Tsige-Tamirat, H.; Loughlin, M.; Perel, R.L.; Petrizzi, L.; Tautges, T.J.; Wilson, P.P.H.
2005-01-01
An overview is presented of advanced computational tools and methods developed recently for nuclear analyses of Fusion Technology systems such as the experimental device ITER ('International Thermonuclear Experimental Reactor') and the intense neutron source IFMIF ('International Fusion Material Irradiation Facility'). These include Monte Carlo based computational schemes for the calculation of three-dimensional shut-down dose rate distributions, methods, codes and interfaces for the use of CAD geometry models in Monte Carlo transport calculations, algorithms for Monte Carlo based sensitivity/uncertainty calculations, as well as computational techniques and data for IFMIF neutronics and activation calculations. (author)
Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company
Lores, M. E.
1978-01-01
Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.
Recent advances in computational methods and clinical applications for spine imaging
Glocker, Ben; Klinder, Tobias; Li, Shuo
2015-01-01
This book contains the full papers presented at the MICCAI 2014 workshop on Computational Methods and Clinical Applications for Spine Imaging. The workshop brought together scientists and clinicians in the field of computational spine imaging. The chapters included in this book present and discuss the new advances and challenges in these fields, using several methods and techniques in order to address more efficiently different and timely applications involving signal and image acquisition, image processing and analysis, image segmentation, image registration and fusion, computer simulation, image based modeling, simulation and surgical planning, image guided robot assisted surgical and image based diagnosis. The book also includes papers and reports from the first challenge on vertebra segmentation held at the workshop.
International Nuclear Information System (INIS)
Dragt, A.J.; Gluckstern, R.L.
1992-11-01
The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides
Mastorakis, Nikos E
2009-01-01
Features contributions that are focused on significant aspects of current numerical methods and computational mathematics. This book carries chapters that advanced methods and various variations on known techniques that can solve difficult scientific problems efficiently.
International Nuclear Information System (INIS)
Petenyi, V.; Strmensky, C.; Jagrik, J.; Minarcin, M.; Sarvaic, I.
2005-01-01
The dynamic control assemblies worth measurement technique is a quick method for validation of predicted control assemblies worth. The dynamic control assemblies worth measurement utilize space-time corrections for the measured out of core ionization chamber readings calculated by DYN 3D computer code. The space-time correction arising from the prompt neutron density redistribution in the measured ionization chamber reading can be directly applied in the advanced reactivity computer. The second correction concerning the difference of spatial distribution of delayed neutrons can be calculated by simulation the measurement procedure by dynamic version of the DYN 3D code. In the paper some results of dynamic control assemblies worth measurement applied for NPP Mochovce are presented (Authors)
Advanced display object selection methods for enhancing user-computer productivity
Osga, Glenn A.
1993-01-01
The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.
Advances in Computer Entertainment.
Nijholt, Antinus; Romão, T.; Reidsma, Dennis; Unknown, [Unknown
2012-01-01
These are the proceedings of the 9th International Conference on Advances in Computer Entertainment ACE 2012). ACE has become the leading scientific forum for dissemination of cutting-edge research results in the area of entertainment computing. Interactive entertainment is one of the most vibrant
International Nuclear Information System (INIS)
Katsaounis, T D
2005-01-01
The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall
Katsaounis, T. D.
2005-02-01
The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using
Advances in Computer Entertainment.
Nijholt, Antinus; Romão, T.; Reidsma, Dennis; Unknown, [Unknown
2012-01-01
These are the proceedings of the 9th International Conference on Advances in Computer Entertainment ACE 2012). ACE has become the leading scientific forum for dissemination of cutting-edge research results in the area of entertainment computing. Interactive entertainment is one of the most vibrant areas of interest in modern society and is amongst the fastest growing industries in the world. ACE 2012 will bring together leading researchers and practitioners from academia and industry to prese...
Advanced computers and simulation
International Nuclear Information System (INIS)
Ryne, R.D.
1993-01-01
Accelerator physicists today have access to computers that are far more powerful than those available just 10 years ago. In the early 1980's, desktop workstations performed less one million floating point operations per second (Mflops), and the realized performance of vector supercomputers was at best a few hundred Mflops. Today vector processing is available on the desktop, providing researchers with performance approaching 100 Mflops at a price that is measured in thousands of dollars. Furthermore, advances in Massively Parallel Processors (MPP) have made performance of over 10 gigaflops a reality, and around mid-decade MPPs are expected to be capable of teraflops performance. Along with advances in MPP hardware, researchers have also made significant progress in developing algorithms and software for MPPS. These changes have had, and will continue to have, a significant impact on the work of computational accelerator physicists. Now, instead of running particle simulations with just a few thousand particles, we can perform desktop simulations with tens of thousands of simulation particles, and calculations with well over 1 million particles are being performed on MPPs. In the area of computational electromagnetics, simulations that used to be performed only on vector supercomputers now run in several hours on desktop workstations, and researchers are hoping to perform simulations with over one billion mesh points on future MPPs. In this paper we will discuss the latest advances, and what can be expected in the near future, in hardware, software and applications codes for advanced simulation of particle accelerators
Advanced differential quadrature methods
Zong, Zhi
2009-01-01
Modern Tools to Perform Numerical DifferentiationThe original direct differential quadrature (DQ) method has been known to fail for problems with strong nonlinearity and material discontinuity as well as for problems involving singularity, irregularity, and multiple scales. But now researchers in applied mathematics, computational mechanics, and engineering have developed a range of innovative DQ-based methods to overcome these shortcomings. Advanced Differential Quadrature Methods explores new DQ methods and uses these methods to solve problems beyond the capabilities of the direct DQ method.After a basic introduction to the direct DQ method, the book presents a number of DQ methods, including complex DQ, triangular DQ, multi-scale DQ, variable order DQ, multi-domain DQ, and localized DQ. It also provides a mathematical compendium that summarizes Gauss elimination, the Runge-Kutta method, complex analysis, and more. The final chapter contains three codes written in the FORTRAN language, enabling readers to q...
Recent advances in computational optimization
2013-01-01
Optimization is part of our everyday life. We try to organize our work in a better way and optimization occurs in minimizing time and cost or the maximization of the profit, quality and efficiency. Also many real world problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks. This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization. This book presents recent advances in computational optimization. The volume includes important real world problems like parameter settings for con- trolling processes in bioreactor, robot skin wiring, strip packing, project scheduling, tuning of PID controller and so on. Some of them can be solved by applying traditional numerical methods, but others need a huge amount of computational resources. For them it is shown that is appropriate to develop algorithms based on metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming etc...
IMPROVED COMPUTATIONAL NEUTRONICS METHODS AND VALIDATION PROTOCOLS FOR THE ADVANCED TEST REACTOR
Energy Technology Data Exchange (ETDEWEB)
David W. Nigg; Joseph W. Nielsen; Benjamin M. Chase; Ronnie K. Murray; Kevin A. Steuhm
2012-04-01
The Idaho National Laboratory (INL) is in the process of modernizing the various reactor physics modeling and simulation tools used to support operation and safety assurance of the Advanced Test Reactor (ATR). Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009 was successfully completed during 2011. This demonstration supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR fuel cycle management process beginning in 2012. On the experimental side of the project, new hardware was fabricated, measurement protocols were finalized, and the first four of six planned physics code validation experiments based on neutron activation spectrometry were conducted at the ATRC facility. Data analysis for the first three experiments, focused on characterization of the neutron spectrum in one of the ATR flux traps, has been completed. The six experiments will ultimately form the basis for a flexible, easily-repeatable ATR physics code validation protocol that is consistent with applicable ASTM standards.
Advanced computations in plasma physics
International Nuclear Information System (INIS)
Tang, W.M.
2002-01-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to
Pisano, Aurora; Weichert, Dieter
2015-01-01
Articles in this book examine various materials and how to determine directly the limit state of a structure, in the sense of limit analysis and shakedown analysis. Apart from classical applications in mechanical and civil engineering contexts, the book reports on the emerging field of material design beyond the elastic limit, which has further industrial design and technological applications. Readers will discover that “Direct Methods” and the techniques presented here can in fact be used to numerically estimate the strength of structured materials such as composites or nano-materials, which represent fruitful fields of future applications. Leading researchers outline the latest computational tools and optimization techniques and explore the possibility of obtaining information on the limit state of a structure whose post-elastic loading path and constitutive behavior are not well defined or well known. Readers will discover how Direct Methods allow rapid and direct access to requested information in...
Center for Advanced Computational Technology
Noor, Ahmed K.
2000-01-01
The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.
Advances in unconventional computing
2017-01-01
The unconventional computing is a niche for interdisciplinary science, cross-bred of computer science, physics, mathematics, chemistry, electronic engineering, biology, material science and nanotechnology. The aims of this book are to uncover and exploit principles and mechanisms of information processing in and functional properties of physical, chemical and living systems to develop efficient algorithms, design optimal architectures and manufacture working prototypes of future and emergent computing devices. This first volume presents theoretical foundations of the future and emergent computing paradigms and architectures. The topics covered are computability, (non-)universality and complexity of computation; physics of computation, analog and quantum computing; reversible and asynchronous devices; cellular automata and other mathematical machines; P-systems and cellular computing; infinity and spatial computation; chemical and reservoir computing. The book is the encyclopedia, the first ever complete autho...
Advances in physiological computing
Fairclough, Stephen H
2014-01-01
This edited collection will provide an overview of the field of physiological computing, i.e. the use of physiological signals as input for computer control. It will cover a breadth of current research, from brain-computer interfaces to telemedicine.
Pasini, Paolo; Žumer, Slobodan; Computer Simulations of Liquid Crystals and Polymers
2005-01-01
Liquid crystals, polymers and polymer liquid crystals are soft condensed matter systems of major technological and scientific interest. An understanding of the macroscopic properties of these complex systems and of their many and interesting peculiarities at the molecular level can nowadays only be attained using computer simulations and statistical mechanical theories. Both in the Liquid Crystal and Polymer fields a considerable amount of simulation work has been done in the last few years with various classes of models at different special resolutions, ranging from atomistic to molecular and coarse-grained lattice models. Each of the two fields has developed its own set of tools and specialized procedures and the book aims to provide a state of the art review of the computer simulation studies of polymers and liquid crystals. This is of great importance in view of a potential cross-fertilization between these connected areas which is particularly apparent for a number of experimental systems like, e.g. poly...
Advances in medical image computing.
Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P
2009-01-01
Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.
Energy Technology Data Exchange (ETDEWEB)
Elbert, Stephen T.; Kalsi, Karanjit; Vlachopoulou, Maria; Rice, Mark J.; Glaesemann, Kurt R.; Zhou, Ning
2012-07-26
Financial Transmission Rights (FTRs) help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, a novel non-linear dynamical system (NDS) approach is proposed to solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX™ and tested on large-scale systems using data from the Western Electricity Coordinating Council (WECC). The NDS is demonstrated to outperform the widely used CPLEX algorithms while exhibiting superior scalability. Furthermore, the NDS based solver can be easily parallelized which results in significant computational improvement.
International Nuclear Information System (INIS)
Beauwens, B.; Arkuszewski, J.; Boryszewicz, M.
1981-01-01
Results obtained in the field of linear iterative methods within the Coordinated Research Program on Transport Theory and Advanced Reactor Calculations are summarized. The general convergence theory of linear iterative methods is essentially based on the properties of nonnegative operators on ordered normed spaces. The following aspects of this theory have been improved: new comparison theorems for regular splittings, generalization of the notions of M- and H-matrices, new interpretations of classical convergence theorems for positive-definite operators. The estimation of asymptotic convergence rates was developed with two purposes: the analysis of model problems and the optimization of relaxation parameters. In the framework of factorization iterative methods, model problem analysis is needed to investigate whether the increased computational complexity of higher-order methods does not offset their increased asymptotic convergence rates, as well as to appreciate the effect of standard relaxation techniques (polynomial relaxation). On the other hand, the optimal use of factorization iterative methods requires the development of adequate relaxation techniques and their optimization. The relative performances of a few possibilities have been explored for model problems. Presently, the best results have been obtained with optimal diagonal-Chebyshev relaxation
Longoni, Gianluca
In the nuclear science and engineering field, radiation transport calculations play a key-role in the design and optimization of nuclear devices. The linear Boltzmann equation describes the angular, energy and spatial variations of the particle or radiation distribution. The discrete ordinates method (S N) is the most widely used technique for solving the linear Boltzmann equation. However, for realistic problems, the memory and computing time require the use of supercomputers. This research is devoted to the development of new formulations for the SN method, especially for highly angular dependent problems, in parallel environments. The present research work addresses two main issues affecting the accuracy and performance of SN transport theory methods: quadrature sets and acceleration techniques. New advanced quadrature techniques which allow for large numbers of angles with a capability for local angular refinement have been developed. These techniques have been integrated into the 3-D SN PENTRAN (Parallel Environment Neutral-particle TRANsport) code and applied to highly angular dependent problems, such as CT-Scan devices, that are widely used to obtain detailed 3-D images for industrial/medical applications. In addition, the accurate simulation of core physics and shielding problems with strong heterogeneities and transport effects requires the numerical solution of the transport equation. In general, the convergence rate of the solution methods for the transport equation is reduced for large problems with optically thick regions and scattering ratios approaching unity. To remedy this situation, new acceleration algorithms based on the Even-Parity Simplified SN (EP-SSN) method have been developed. A new stand-alone code system, PENSSn (Parallel Environment Neutral-particle Simplified SN), has been developed based on the EP-SSN method. The code is designed for parallel computing environments with spatial, angular and hybrid (spatial/angular) domain
1981-12-01
side it necessary and IdentOf, bp block number) Cartography Typography C uter Graphics 20.VSsT RACT (Continueaon reverse aide It necessary -d Identif...material with graphic arts quality. There are several systems’ ’a which operate through the computer. The CTI system was designed especially for...cartography and typography is the HERA system. It was designed especially for the printing of difficult material such as chemical structures, electronic
Marotta, G. S.
2017-12-01
Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astrogeodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove Compute Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and Global Geopotential Model (GGM), respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and adjust these models to one local vertical datum. This research presents the advances on the package called GRAVTool to compute geoid models path by the RCR, following Helmert's condensation method, and its application in a study area. The studied area comprehends the federal district of Brazil, with 6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show a geoid model computed by the GRAVTool package, after analysis of the density, DTM and GGM values, more adequate to the reference values used on the study area. The accuracy of the computed model (σ = ± 0.058 m, RMS = 0.067 m, maximum = 0.124 m and minimum = -0.155 m), using density value of 2.702 g/cm³ ±0.024 g/cm³, DTM SRTM Void Filled 3 arc-second and GGM EIGEN-6C4 up to degree and order 250, matches the uncertainty (σ =± 0.073) of 26 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.076 m, RMS = 0.098 m, maximum = 0.320 m and minimum = -0.061 m).
Directory of Open Access Journals (Sweden)
Philip Stegmaier
Full Text Available The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification.
Moukalled, F; Darwish, M
2016-01-01
This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programm...
Energy Technology Data Exchange (ETDEWEB)
Pautz, A.; Perin, Y.; Pasichnyk, I.; Velkov, K.; Zwermann, W.; Seubert, A.; Klein, M.; Gallner, L.; Krzycacz-Hausmann, B.
2012-05-15
The document at hand serves as the final report for the reactor safety research project RS1183 ''Advanced Computational Methods for the Assessment of Reactor Core Behavior During Reactivity-Initiated Accidents''. The work performed in the framework of this project was dedicated to the development, validation and application of advanced computational methods for the simulation of transients and accidents of nuclear installations. These simulation tools describe in particular the behavior of the reactor core (with respect to neutronics, thermal-hydraulics and thermal mechanics) at a very high level of detail. The overall goal of this project was the deployment of a modern nuclear computational chain which provides, besides advanced 3D tools for coupled neutronics/ thermal-hydraulics full core calculations, also appropriate tools for the generation of multi-group cross sections and Monte Carlo models for the verification of the individual calculational steps. This computational chain shall primarily be deployed for light water reactors (LWR), but should beyond that also be applicable for innovative reactor concepts. Thus, validation on computational benchmarks and critical experiments was of paramount importance. Finally, appropriate methods for uncertainty and sensitivity analysis were to be integrated into the computational framework, in order to assess and quantify the uncertainties due to insufficient knowledge of data, as well as due to methodological aspects.
International Conference on Advanced Computing
Patnaik, Srikanta
2014-01-01
This book is composed of the Proceedings of the International Conference on Advanced Computing, Networking, and Informatics (ICACNI 2013), held at Central Institute of Technology, Raipur, Chhattisgarh, India during June 14–16, 2013. The book records current research articles in the domain of computing, networking, and informatics. The book presents original research articles, case-studies, as well as review articles in the said field of study with emphasis on their implementation and practical application. Researchers, academicians, practitioners, and industry policy makers around the globe have contributed towards formation of this book with their valuable research submissions.
Advances and challenges in computational plasma science
International Nuclear Information System (INIS)
Tang, W M; Chan, V S
2005-01-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This
Essential numerical computer methods
Johnson, Michael L
2010-01-01
The use of computers and computational methods has become ubiquitous in biological and biomedical research. During the last 2 decades most basic algorithms have not changed, but what has is the huge increase in computer speed and ease of use, along with the corresponding orders of magnitude decrease in cost. A general perception exists that the only applications of computers and computer methods in biological and biomedical research are either basic statistical analysis or the searching of DNA sequence data bases. While these are important applications they only scratch the surface of the current and potential applications of computers and computer methods in biomedical research. The various chapters within this volume include a wide variety of applications that extend far beyond this limited perception. As part of the Reliable Lab Solutions series, Essential Numerical Computer Methods brings together chapters from volumes 210, 240, 321, 383, 384, 454, and 467 of Methods in Enzymology. These chapters provide ...
Advances in embedded computer vision
Kisacanin, Branislav
2014-01-01
This illuminating collection offers a fresh look at the very latest advances in the field of embedded computer vision. Emerging areas covered by this comprehensive text/reference include the embedded realization of 3D vision technologies for a variety of applications, such as stereo cameras on mobile devices. Recent trends towards the development of small unmanned aerial vehicles (UAVs) with embedded image and video processing algorithms are also examined. The authoritative insights range from historical perspectives to future developments, reviewing embedded implementation, tools, technolog
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay; Law, Kody; Suciu, Carina
2017-01-01
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay
2017-04-24
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
McCray, Wilmon Wil L., Jr.
The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization
Computer networks and advanced communications
International Nuclear Information System (INIS)
Koederitz, W.L.; Macon, B.S.
1992-01-01
One of the major methods for getting the most productivity and benefits from computer usage is networking. However, for those who are contemplating a change from stand-alone computers to a network system, the investigation of actual networks in use presents a paradox: network systems can be highly productive and beneficial; at the same time, these networks can create many complex, frustrating problems. The issue becomes a question of whether the benefits of networking are worth the extra effort and cost. In response to this issue, the authors review in this paper the implementation and management of an actual network in the LSU Petroleum Engineering Department. The network, which has been in operation for four years, is large and diverse (50 computers, 2 sites, PC's, UNIX RISC workstations, etc.). The benefits, costs, and method of operation of this network will be described, and an effort will be made to objectively weigh these elements from the point of view of the average computer user
Soft computing in advanced robotics
Kobayashi, Ichiro; Kim, Euntai
2014-01-01
Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. Th...
Numerical methods in matrix computations
Björck, Åke
2015-01-01
Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work. Åke Björck is a professor emeritus at the Department of Mathematics, Linköping University. He is a Fellow of the Society of Industrial and Applied Mathematics.
International Nuclear Information System (INIS)
Dragt, A.J.; Gluckstern, R.L.
1994-08-01
The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: the computation of charged particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates. Substantial progress in research has been made during the past year. These achievements are summarized in the following report
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between
Computational Design of Advanced Nuclear Fuels
International Nuclear Information System (INIS)
Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan
2014-01-01
The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.
Advances in Computer Science and Engineering
Second International Conference on Advances in Computer Science and Engineering (CES 2012)
2012-01-01
This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.
Computational methods in drug discovery
Directory of Open Access Journals (Sweden)
Sumudu P. Leelananda
2016-12-01
Full Text Available The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed.
Advanced computer-based training
Energy Technology Data Exchange (ETDEWEB)
Fischer, H D; Martin, H D
1987-05-01
The paper presents new techniques of computer-based training for personnel of nuclear power plants. Training on full-scope simulators is further increased by use of dedicated computer-based equipment. An interactive communication system runs on a personal computer linked to a video disc; a part-task simulator runs on 32 bit process computers and shows two versions: as functional trainer or as on-line predictor with an interactive learning system (OPAL), which may be well-tailored to a specific nuclear power plant. The common goal of both develoments is the optimization of the cost-benefit ratio for training and equipment.
Advanced computer-based training
International Nuclear Information System (INIS)
Fischer, H.D.; Martin, H.D.
1987-01-01
The paper presents new techniques of computer-based training for personnel of nuclear power plants. Training on full-scope simulators is further increased by use of dedicated computer-based equipment. An interactive communication system runs on a personal computer linked to a video disc; a part-task simulator runs on 32 bit process computers and shows two versions: as functional trainer or as on-line predictor with an interactive learning system (OPAL), which may be well-tailored to a specific nuclear power plant. The common goal of both develoments is the optimization of the cost-benefit ratio for training and equipment. (orig.) [de
Advances in photonic reservoir computing
Directory of Open Access Journals (Sweden)
Van der Sande Guy
2017-05-01
Full Text Available We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.
Advances in photonic reservoir computing
Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.
2017-05-01
We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.
Advances in computational complexity theory
Cai, Jin-Yi
1993-01-01
This collection of recent papers on computational complexity theory grew out of activities during a special year at DIMACS. With contributions by some of the leading experts in the field, this book is of lasting value in this fast-moving field, providing expositions not found elsewhere. Although aimed primarily at researchers in complexity theory and graduate students in mathematics or computer science, the book is accessible to anyone with an undergraduate education in mathematics or computer science. By touching on some of the major topics in complexity theory, this book sheds light on this burgeoning area of research.
Advances in Biosensing Methods
Directory of Open Access Journals (Sweden)
Reema Taneja
2007-02-01
Full Text Available A fractal analysis is presented for the binding and dissociation (if applicable kinetics of analyte-receptor reactions occurring on biosensor surfaces. The applications of the biosensors have appeared in the recent literature. The examples provided together provide the reader with a perspective of the advances in biosensors that are being used to detect analytes of interest. This should also stimulate interest in applying biosensors to other areas of application. The fractal analysis limits the evaluation of the rate constants for binding and dissociation (if applicable for the analyte-receptor reactions occurring in biosensor surfaces. The fractal dimension provides a quantitative measure of the degree of heterogeneity on the biosensor surface. Predictive relations are presented that relate the binding co-efficient with the degree of heterogeneity or the fractal dimension on the biosensor surface
Advanced in Computer Science and its Applications
Yen, Neil; Park, James; CSA 2013
2014-01-01
The theme of CSA is focused on the various aspects of computer science and its applications for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of computer science and its applications. Therefore this book will be include the various theories and practical applications in computer science and its applications.
Quantum chromodynamics with advanced computing
International Nuclear Information System (INIS)
Kronfeld, A S
2008-01-01
We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists
International Conference on Advanced Computing for Innovation
Angelova, Galia; Agre, Gennady
2016-01-01
This volume is a selected collection of papers presented and discussed at the International Conference “Advanced Computing for Innovation (AComIn 2015)”. The Conference was held at 10th -11th of November, 2015 in Sofia, Bulgaria and was aimed at providing a forum for international scientific exchange between Central/Eastern Europe and the rest of the world on several fundamental topics of computational intelligence. The papers report innovative approaches and solutions in hot topics of computational intelligence – advanced computing, language and semantic technologies, signal and image processing, as well as optimization and intelligent control.
Bringing Advanced Computational Techniques to Energy Research
Energy Technology Data Exchange (ETDEWEB)
Mitchell, Julie C
2012-11-17
Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.
Computational advances in transition phase analysis
International Nuclear Information System (INIS)
Morita, K.; Kondo, S.; Tobita, Y.; Shirakawa, N.; Brear, D.J.; Fischer, E.A.
1994-01-01
In this paper, historical perspective and recent advances are reviewed on computational technologies to evaluate a transition phase of core disruptive accidents in liquid-metal fast reactors. An analysis of the transition phase requires treatment of multi-phase multi-component thermohydraulics coupled with space- and energy-dependent neutron kinetics. Such a comprehensive modeling effort was initiated when the program of SIMMER-series computer code development was initiated in the late 1970s in the USA. Successful application of the latest SIMMER-II in USA, western Europe and Japan have proved its effectiveness, but, at the same time, several areas that require further research have been identified. Based on the experience and lessons learned during the SIMMER-II application through 1980s, a new project of SIMMER-III development is underway at the Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan. The models and methods of SIMMER-III are briefly described with emphasis on recent advances in multi-phase multi-component fluid dynamics technologies and their expected implication on a future reliable transition phase analysis. (author)
Mencik , Jean-Mathieu
2014-01-01
International audience; The wave finite element (WFE) method is investigated to describe the harmonic forced response of onedimensional periodic structures like those composed of complex substructures and encountered in engineering applications. The dynamic behavior of these periodic structures is analyzed over wide frequency bands where complex spatial dynamics, inside the substructures, are likely to occur.Within theWFE framework, the dynamic behavior of periodic structures is described in ...
Advances in Integrated Computational Materials Engineering "ICME"
Hirsch, Jürgen
The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.
Preface (to: Advances in Computer Entertainment)
Romão, Teresa; Nijholt, Antinus; Romão, Teresa; Reidsma, Dennis
2012-01-01
These are the proceedings of the 9th International Conference on Advances in Computer Entertainment ACE 2012). ACE has become the leading scientific forum for dissemination of cutting-edge research results in the area of entertainment computing. Interactive entertainment is one of the most vibrant
Advance Trends in Soft Computing
Kreinovich, Vladik; Kacprzyk, Janusz; WCSC 2013
2014-01-01
This book is the proceedings of the 3rd World Conference on Soft Computing (WCSC), which was held in San Antonio, TX, USA, on December 16-18, 2013. It presents start-of-the-art theory and applications of soft computing together with an in-depth discussion of current and future challenges in the field, providing readers with a 360 degree view on soft computing. Topics range from fuzzy sets, to fuzzy logic, fuzzy mathematics, neuro-fuzzy systems, fuzzy control, decision making in fuzzy environments, image processing and many more. The book is dedicated to Lotfi A. Zadeh, a renowned specialist in signal analysis and control systems research who proposed the idea of fuzzy sets, in which an element may have a partial membership, in the early 1960s, followed by the idea of fuzzy logic, in which a statement can be true only to a certain degree, with degrees described by numbers in the interval [0,1]. The performance of fuzzy systems can often be improved with the help of optimization techniques, e.g. evolutionary co...
Computational methods for fluid dynamics
Ferziger, Joel H
2002-01-01
In its 3rd revised and extended edition the book offers an overview of the techniques used to solve problems in fluid mechanics on computers and describes in detail those most often used in practice. Included are advanced methods in computational fluid dynamics, like direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, free surface flows. The 3rd edition contains a new section dealing with grid quality and an extended description of discretization methods. The book shows common roots and basic principles for many different methods. The book also contains a great deal of practical advice for code developers and users, it is designed to be equally useful to beginners and experts. The issues of numerical accuracy, estimation and reduction of numerical errors are dealt with in detail, with many examples. A full-feature user-friendly demo-version of a commercial CFD software has been added, which ca...
Advances in randomized parallel computing
Rajasekaran, Sanguthevar
1999-01-01
The technique of randomization has been employed to solve numerous prob lems of computing both sequentially and in parallel. Examples of randomized algorithms that are asymptotically better than their deterministic counterparts in solving various fundamental problems abound. Randomized algorithms have the advantages of simplicity and better performance both in theory and often in practice. This book is a collection of articles written by renowned experts in the area of randomized parallel computing. A brief introduction to randomized algorithms In the aflalysis of algorithms, at least three different measures of performance can be used: the best case, the worst case, and the average case. Often, the average case run time of an algorithm is much smaller than the worst case. 2 For instance, the worst case run time of Hoare's quicksort is O(n ), whereas its average case run time is only O( n log n). The average case analysis is conducted with an assumption on the input space. The assumption made to arrive at t...
Advanced topics in computer vision
Farinella, Giovanni Maria; Cipolla, Roberto
2013-01-01
This book presents a broad selection of cutting-edge research, covering both theoretical and practical aspects of reconstruction, registration, and recognition. The text provides an overview of challenging areas and descriptions of novel algorithms. Features: investigates visual features, trajectory features, and stereo matching; reviews the main challenges of semi-supervised object recognition, and a novel method for human action categorization; presents a framework for the visual localization of MAVs, and for the use of moment constraints in convex shape optimization; examines solutions to t
Computation of Asteroid Proper Elements: Recent Advances
Knežević, Z.
2017-12-01
The recent advances in computation of asteroid proper elements are briefly reviewed. Although not representing real breakthroughs in computation and stability assessment of proper elements, these advances can still be considered as important improvements offering solutions to some practical problems encountered in the past. The problem of getting unrealistic values of perihelion frequency for very low eccentricity orbits is solved by computing frequencies using the frequency-modified Fourier transform. The synthetic resonant proper elements adjusted to a given secular resonance helped to prove the existence of Astraea asteroid family. The preliminary assessment of stability with time of proper elements computed by means of the analytical theory provides a good indication of their poorer performance with respect to their synthetic counterparts, and advocates in favor of ceasing their regular maintenance; the final decision should, however, be taken on the basis of more comprehensive and reliable direct estimate of their individual and sample average deviations from constancy.
Computational electromagnetics recent advances and engineering applications
2014-01-01
Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.
Advances and Challenges in Computational Plasma Science
International Nuclear Information System (INIS)
Tang, W.M.; Chan, V.S.
2005-01-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behavior. Recent advances in simulations of magnetically-confined plasmas are reviewed in this paper with illustrative examples chosen from associated research areas such as microturbulence, magnetohydrodynamics, and other topics. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology
Preface (to: Advances in Computer Entertainment)
Romão, Teresa; Nijholt, Antinus; Romão, Teresa; Reidsma, Dennis
2012-01-01
These are the proceedings of the 9th International Conference on Advances in Computer Entertainment ACE 2012). ACE has become the leading scientific forum for dissemination of cutting-edge research results in the area of entertainment computing. Interactive entertainment is one of the most vibrant areas of interest in modern society and is amongst the fastest growing industries in the world. ACE 2012 will bring together leading researchers and practitioners from academia and industry to prese...
Advances in Reactor Physics, Mathematics and Computation. Volume 1
Energy Technology Data Exchange (ETDEWEB)
1987-01-01
These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume one, are divided into 6 sessions bearing on: - session 1: Advances in computational methods including utilization of parallel processing and vectorization (7 conferences) - session 2: Fast, epithermal, reactor physics, calculation, versus measurements (9 conferences) - session 3: New fast and thermal reactor designs (9 conferences) - session 4: Thermal radiation and charged particles transport (7 conferences) - session 5: Super computers (7 conferences) - session 6: Thermal reactor design, validation and operating experience (8 conferences).
Computational Intelligence Paradigms in Advanced Pattern Classification
Jain, Lakhmi
2012-01-01
This monograph presents selected areas of application of pattern recognition and classification approaches including handwriting recognition, medical image analysis and interpretation, development of cognitive systems for image computer understanding, moving object detection, advanced image filtration and intelligent multi-object labelling and classification. It is directed to the scientists, application engineers, professors, professors and students will find this book useful.
Advances in Reactor physics, mathematics and computation. Volume 3
Energy Technology Data Exchange (ETDEWEB)
1987-01-01
These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume 3, are divided into sessions bearing on: - poster sessions on benchmark and codes: 35 conferences - review of status of assembly spectrum codes: 9 conferences - Numerical methods in fluid mechanics and thermal hydraulics: 16 conferences - stochastic transport and methods: 7 conferences.
Advanced methods in diagnosis and therapy
International Nuclear Information System (INIS)
1987-01-01
This important meeting covers the following topics: use and optimization of monoclonal antibobies in oncology: - Tumor markers: Clinical follow-up of patients through tumor marker serum determinations. - Cancer and medical imaging: The use of monoclonal antibodies in immunoscintigraphy. - Immunoradiotherapy: Monoclonal antibodies as therapeutic vectors. Advanced methods in diagnosis: - Contribution of monoclonal antibodies in modern immunochemistry (RIA, EIA). - Interest of monoclonal antibody in immunohistochemical pathology diagnosis. - In vitro diagnosis future prospects: with receptors and oncogenes. - Immunofluoroassay: a new sensitive immunoanalytical procedure with broad applications. Recent advances in brachitherapy: - Interest of computer processing. Blood products irradiation: - Interest in transfusion and bone marrow transplantations [fr
Advances in computational actinide chemistry in China
Energy Technology Data Exchange (ETDEWEB)
Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering
2014-04-01
The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)
Computing Nash equilibria through computational intelligence methods
Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.
2005-03-01
Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.
Advances in computers improving the web
Zelkowitz, Marvin
2010-01-01
This is volume 78 of Advances in Computers. This series, which began publication in 1960, is the oldest continuously published anthology that chronicles the ever- changing information technology field. In these volumes we publish from 5 to 7 chapters, three times per year, that cover the latest changes to the design, development, use and implications of computer technology on society today.Covers the full breadth of innovations in hardware, software, theory, design, and applications.Many of the in-depth reviews have become standard references that continue to be of significant, lasting value i
Frazier, John M.; Mattie, D. R.; Hussain, Saber; Pachter, Ruth; Boatz, Jerry; Hawkins, T. W.
2000-01-01
The development of quantitative structure-activity relationship (QSAR) is essential for reducing the chemical hazards of new weapon systems. The current collaboration between HEST (toxicology research and testing), MLPJ (computational chemistry) and PRS (computational chemistry, new propellant synthesis) is focusing R&D efforts on basic research goals that will rapidly transition to useful products for propellant development. Computational methods are being investigated that will assist in forecasting cellular toxicological end-points. Models developed from these chemical structure-toxicity relationships are useful for the prediction of the toxicological endpoints of new related compounds. Research is focusing on the evaluation tools to be used for the discovery of such relationships and the development of models of the mechanisms of action. Combinations of computational chemistry techniques, in vitro toxicity methods, and statistical correlations, will be employed to develop and explore potential predictive relationships; results for series of molecular systems that demonstrate the viability of this approach are reported. A number of hydrazine salts have been synthesized for evaluation. Computational chemistry methods are being used to elucidate the mechanism of action of these salts. Toxicity endpoints such as viability (LDH) and changes in enzyme activity (glutahoione peroxidase and catalase) are being experimentally measured as indicators of cellular damage. Extrapolation from computational/in vitro studies to human toxicity, is the ultimate goal. The product of this program will be a predictive tool to assist in the development of new, less toxic propellants.
Advanced computational approaches to biomedical engineering
Saha, Punam K; Basu, Subhadip
2014-01-01
There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig
Research Institute for Advanced Computer Science
Gross, Anthony R. (Technical Monitor); Leiner, Barry M.
2000-01-01
The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a
Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.
Handels, H; Ehrhardt, J
2009-01-01
Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or
Computational techniques of the simplex method
Maros, István
2003-01-01
Computational Techniques of the Simplex Method is a systematic treatment focused on the computational issues of the simplex method. It provides a comprehensive coverage of the most important and successful algorithmic and implementation techniques of the simplex method. It is a unique source of essential, never discussed details of algorithmic elements and their implementation. On the basis of the book the reader will be able to create a highly advanced implementation of the simplex method which, in turn, can be used directly or as a building block in other solution algorithms.
Scientific Discovery through Advanced Computing in Plasma Science
Tang, William
2005-03-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations
Method for computed tomography
International Nuclear Information System (INIS)
Wagner, W.
1980-01-01
In transversal computer tomography apparatus, in which the positioning zone in which the patient can be positioned is larger than the scanning zone in which a body slice can be scanned, reconstruction errors are liable to occur. These errors are caused by incomplete irradiation of the body during examination. They become manifest not only as an incorrect image of the area not irradiated, but also have an adverse effect on the image of the other, completely irradiated areas. The invention enables reduction of these errors
Computational methods working group
International Nuclear Information System (INIS)
Gabriel, T.A.
1997-09-01
During the Cold Moderator Workshop several working groups were established including one to discuss calculational methods. The charge for this working group was to identify problems in theory, data, program execution, etc., and to suggest solutions considering both deterministic and stochastic methods including acceleration procedures.
Advanced Topology Optimization Methods for Conceptual Architectural Design
DEFF Research Database (Denmark)
Aage, Niels; Amir, Oded; Clausen, Anders
2015-01-01
This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...
Advanced Topology Optimization Methods for Conceptual Architectural Design
DEFF Research Database (Denmark)
Aage, Niels; Amir, Oded; Clausen, Anders
2014-01-01
This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...
Soft computing in design and manufacturing of advanced materials
Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex
1993-01-01
The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.
ATCA for Machines-- Advanced Telecommunications Computing Architecture
Energy Technology Data Exchange (ETDEWEB)
Larsen, R.S.; /SLAC
2008-04-22
The Advanced Telecommunications Computing Architecture is a new industry open standard for electronics instrument modules and shelves being evaluated for the International Linear Collider (ILC). It is the first industrial standard designed for High Availability (HA). ILC availability simulations have shown clearly that the capabilities of ATCA are needed in order to achieve acceptable integrated luminosity. The ATCA architecture looks attractive for beam instruments and detector applications as well. This paper provides an overview of ongoing R&D including application of HA principles to power electronics systems.
ATCA for Machines-- Advanced Telecommunications Computing Architecture
International Nuclear Information System (INIS)
Larsen, R
2008-01-01
The Advanced Telecommunications Computing Architecture is a new industry open standard for electronics instrument modules and shelves being evaluated for the International Linear Collider (ILC). It is the first industrial standard designed for High Availability (HA). ILC availability simulations have shown clearly that the capabilities of ATCA are needed in order to achieve acceptable integrated luminosity. The ATCA architecture looks attractive for beam instruments and detector applications as well. This paper provides an overview of ongoing R and D including application of HA principles to power electronics systems
Fang, Wai-Chi; Alkalai, Leon
1996-01-01
Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.
International Conference on Computers and Advanced Technology in Education
Advanced Information Technology in Education
2012-01-01
The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computers and Advanced Technology in Education. With the development of computers and advanced technology, the human social activities are changing basically. Education, especially the education reforms in different countries, has been experiencing the great help from the computers and advanced technology. Generally speaking, education is a field which needs more information, while the computers, advanced technology and internet are a good information provider. Also, with the aid of the computer and advanced technology, persons can make the education an effective combination. Therefore, computers and advanced technology should be regarded as an important media in the modern education. Volume Advanced Information Technology in Education is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of computers and advanced technology in education to d...
Advances in Reactor Physics, Mathematics and Computation. Volume 2
Energy Technology Data Exchange (ETDEWEB)
1987-01-01
These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, Volume 2, are divided into 7 sessions bearing on: - session 7: Deterministic transport methods 1 (7 conferences), - session 8: Interpretation and analysis of reactor instrumentation (6 conferences), - session 9: High speed computing applied to reactor operations (5 conferences), - session 10: Diffusion theory and kinetics (7 conferences), - session 11: Fast reactor design, validation and operating experience (8 conferences), - session 12: Deterministic transport methods 2 (7 conferences), - session 13: Application of expert systems to physical aspects of reactor design and operation.
Advanced methods of fatigue assessment
Radaj, Dieter
2013-01-01
The book in hand presents advanced methods of brittle fracture and fatigue assessment. The Neuber concept of fictitious notch rounding is enhanced with regard to theory and application. The stress intensity factor concept for cracks is extended to pointed and rounded corner notches as well as to locally elastic-plastic material behaviour. The averaged strain energy density within a circular sector volume around the notch tip is shown to be suitable for strength-assessments. Finally, the various implications of cyclic plasticity on fatigue crack growth are explained with emphasis being laid on the DJ-integral approach. This book continues the expositions of the authors’ well known reference work in German language ‘Ermüdungsfestigkeit – Grundlagen für Ingenieure’ (Fatigue strength – fundamentals for engineers).
Advanced construction methods in ACR
International Nuclear Information System (INIS)
Elgohary, M.; Choy, E.; Yu, S.K.W.
2002-01-01
The ACR - Advanced CANDU Reactor, developed by Atomic Energy of Canada Limited (AECL), is designed with constructability considerations as a major requirement during all project phases from the concept design stage to the detail design stage. This necessitated a much more comprehensive approach in including constructability considerations in the design to ensure that the construction duration is met. For the ACR-700, a project schedule of 48 months has been developed for the nth replicated unit with a 36 month construction period duration from First Concrete to Fuel Load. An overall construction strategy that builds on the success of the construction methods that are proven in the construction of the Qinshan CANDU 6 project has been developed for the ACR. The overall construction strategy comprises the 'Open Top' construction technique using a Very Heavy Lift crane, parallel construction activities, with extensive modularization and prefabrication. In addition, significant applications of up to date construction technology will be implemented, e.g. large volume concrete pours, prefabricated rebar, use of climbing forms, composite structures, prefabricated permanent formwork, automatic welding, and utilization of the latest electronic technology tools such as 3D CADDs modelling yields a very high quality, clash free product to allow construction to be completed 'right the first time' and eliminates rework. Integration of 3D CADDs models and scheduling tools such as Primavera has allowed development of actual construction sequences and an iterative approach to schedule verification and improvement. Modularization and prefabrication are major features of the ACR design in order to achieve the project schedule. For the reactor building approximately 80% of the volume will be installed as modules or prefabricated assembles. This ensures critical path activities are achieved. This paper examines the advanced construction methods implemented in the design in order to
Computational Methods in Medicine
Directory of Open Access Journals (Sweden)
Angel Garrido
2010-01-01
Full Text Available Artificial Intelligence requires Logic. But its Classical version shows too many insufficiencies. So, it is absolutely necessary to introduce more sophisticated tools, such as Fuzzy Logic, Modal Logic, Non-Monotonic Logic, and so on [2]. Among the things that AI needs to represent are Categories, Objects, Properties, Relations between objects, Situations, States, Time, Events, Causes and effects, Knowledge about knowledge, and so on. The problems in AI can be classified in two general types
[3, 4], Search Problems and Representation Problem. There exist different ways to reach this objective. So, we have [3] Logics, Rules, Frames, Associative Nets, Scripts and so on, that are often interconnected. Also, it will be very useful, in dealing with problems of uncertainty and causality, to introduce Bayesian Networks and particularly, a principal tool as the Essential Graph. We attempt here to show the scope of application of such versatile methods, currently fundamental in Medicine.
Numerical computer methods part D
Johnson, Michael L
2004-01-01
The aim of this volume is to brief researchers of the importance of data analysis in enzymology, and of the modern methods that have developed concomitantly with computer hardware. It is also to validate researchers' computer programs with real and synthetic data to ascertain that the results produced are what they expected. Selected Contents: Prediction of protein structure; modeling and studying proteins with molecular dynamics; statistical error in isothermal titration calorimetry; analysis of circular dichroism data; model comparison methods.
Computational Methods in Plasma Physics
Jardin, Stephen
2010-01-01
Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,
Bernardo, M.; Vink, de E.P.; Di Pierro, A.; Wiklicky, H.
2013-01-01
Preface. This volume presents a set of papers accompanying the lectures of the 13th International School on Formal Methods for the Design of Computer, Communication, and Software Systems (SFM). This series of schools addresses the use of formal methods in computer science as a prominent approach to
Transport modeling and advanced computer techniques
International Nuclear Information System (INIS)
Wiley, J.C.; Ross, D.W.; Miner, W.H. Jr.
1988-11-01
A workshop was held at the University of Texas in June 1988 to consider the current state of transport codes and whether improved user interfaces would make the codes more usable and accessible to the fusion community. Also considered was the possibility that a software standard could be devised to ease the exchange of routines between groups. It was noted that two of the major obstacles to exchanging routines now are the variety of geometrical representation and choices of units. While the workshop formulated no standards, it was generally agreed that good software engineering would aid in the exchange of routines, and that a continued exchange of ideas between groups would be worthwhile. It seems that before we begin to discuss software standards we should review the current state of computer technology --- both hardware and software to see what influence recent advances might have on our software goals. This is done in this paper
Advanced proton imaging in computed tomography
Mattiazzo, S; Giubilato, P; Pantano, D; Pozzobon, N; Snoeys, W; Wyss, J
2015-01-01
In recent years the use of hadrons for cancer radiation treatment has grown in importance, and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise body imaging for accurate beam delivery is decisive. Proton computed tomography (pCT) scanners, currently in their R&D phase, provide the ultimate 3D imaging for hadrons treatment guidance. A key component of a pCT scanner is the detector used to track the protons, which has great impact on the scanner performances and ultimately limits its maximum speed. In this article, a novel proton-tracking detector was presented that would have higher scanning speed, better spatial resolution and lower material budget with respect to present state-of-the-art detectors, leading to enhanced performances. This advancement in performances is achieved by employing the very latest development in monolithic active pixel detectors (to build high granularity, low material budget, ...
International Nuclear Information System (INIS)
1978-05-01
The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos Scientific Laboratory (LASL) to provide an advanced ''best estimate'' predictive capability for the analysis of postulated accidents in light water reactors (LWRs). TRAC-Pl provides this analysis capability for pressurized water reactors (PWRs) and for a wide variety of thermal-hydraulic experimental facilities. It features a three-dimensional treatment of the pressure vessel and associated internals; two-phase nonequilibrium hydrodynamics models; flow-regime-dependent constitutive equation treatment; reflood tracking capability for both bottom flood and falling film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The TRAC-Pl User's Manual is composed of two separate volumes. Volume I gives a description of the thermal-hydraulic models and numerical solution methods used in the code. Detailed programming and user information is also provided. Volume II presents the results of the developmental verification calculations
OPENING REMARKS: Scientific Discovery through Advanced Computing
Strayer, Michael
2006-01-01
Good morning. Welcome to SciDAC 2006 and Denver. I share greetings from the new Undersecretary for Energy, Ray Orbach. Five years ago SciDAC was launched as an experiment in computational science. The goal was to form partnerships among science applications, computer scientists, and applied mathematicians to take advantage of the potential of emerging terascale computers. This experiment has been a resounding success. SciDAC has emerged as a powerful concept for addressing some of the biggest challenges facing our world. As significant as these successes were, I believe there is also significance in the teams that achieved them. In addition to their scientific aims these teams have advanced the overall field of computational science and set the stage for even larger accomplishments as we look ahead to SciDAC-2. I am sure that many of you are expecting to hear about the results of our current solicitation for SciDAC-2. I’m afraid we are not quite ready to make that announcement. Decisions are still being made and we will announce the results later this summer. Nearly 250 unique proposals were received and evaluated, involving literally thousands of researchers, postdocs, and students. These collectively requested more than five times our expected budget. This response is a testament to the success of SciDAC in the community. In SciDAC-2 our budget has been increased to about 70 million for FY 2007 and our partnerships have expanded to include the Environment and National Security missions of the Department. The National Science Foundation has also joined as a partner. These new partnerships are expected to expand the application space of SciDAC, and broaden the impact and visibility of the program. We have, with our recent solicitation, expanded to turbulence, computational biology, and groundwater reactive modeling and simulation. We are currently talking with the Department’s applied energy programs about risk assessment, optimization of complex systems - such
Computational methods in earthquake engineering
Plevris, Vagelis; Lagaros, Nikos
2017-01-01
This is the third book in a series on Computational Methods in Earthquake Engineering. The purpose of this volume is to bring together the scientific communities of Computational Mechanics and Structural Dynamics, offering a wide coverage of timely issues on contemporary Earthquake Engineering. This volume will facilitate the exchange of ideas in topics of mutual interest and can serve as a platform for establishing links between research groups with complementary activities. The computational aspects are emphasized in order to address difficult engineering problems of great social and economic importance. .
Novel methods in computational finance
Günther, Michael; Maten, E
2017-01-01
This book discusses the state-of-the-art and open problems in computational finance. It presents a collection of research outcomes and reviews of the work from the STRIKE project, an FP7 Marie Curie Initial Training Network (ITN) project in which academic partners trained early-stage researchers in close cooperation with a broader range of associated partners, including from the private sector. The aim of the project was to arrive at a deeper understanding of complex (mostly nonlinear) financial models and to develop effective and robust numerical schemes for solving linear and nonlinear problems arising from the mathematical theory of pricing financial derivatives and related financial products. This was accomplished by means of financial modelling, mathematical analysis and numerical simulations, optimal control techniques and validation of models. In recent years the computational complexity of mathematical models employed in financial mathematics has witnessed tremendous growth. Advanced numerical techni...
Computational and instrumental methods in EPR
Bender, Christopher J
2006-01-01
Computational and Instrumental Methods in EPR Prof. Bender, Fordham University Prof. Lawrence J. Berliner, University of Denver Electron magnetic resonance has been greatly facilitated by the introduction of advances in instrumentation and better computational tools, such as the increasingly widespread use of the density matrix formalism. This volume is devoted to both instrumentation and computation aspects of EPR, while addressing applications such as spin relaxation time measurements, the measurement of hyperfine interaction parameters, and the recovery of Mn(II) spin Hamiltonian parameters via spectral simulation. Key features: Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T1) and Spin-Spin (T2) Relaxation Times Improvement in the Measurement of Spin-Lattice Relaxation Time in Electron Paramagnetic Resonance Quantitative Measurement of Magnetic Hyperfine Parameters and the Physical Organic Chemistry of Supramolecular Systems New Methods of Simulation of Mn(II) EPR Spectra: Single Cryst...
Computational botany methods for automated species identification
Remagnino, Paolo; Wilkin, Paul; Cope, James; Kirkup, Don
2017-01-01
This book discusses innovative methods for mining information from images of plants, especially leaves, and highlights the diagnostic features that can be implemented in fully automatic systems for identifying plant species. Adopting a multidisciplinary approach, it explores the problem of plant species identification, covering both the concepts of taxonomy and morphology. It then provides an overview of morphometrics, including the historical background and the main steps in the morphometric analysis of leaves together with a number of applications. The core of the book focuses on novel diagnostic methods for plant species identification developed from a computer scientist’s perspective. It then concludes with a chapter on the characterization of botanists' visions, which highlights important cognitive aspects that can be implemented in a computer system to more accurately replicate the human expert’s fixation process. The book not only represents an authoritative guide to advanced computational tools fo...
Methods for computing color anaglyphs
McAllister, David F.; Zhou, Ya; Sullivan, Sophia
2010-02-01
A new computation technique is presented for calculating pixel colors in anaglyph images. The method depends upon knowing the RGB spectral distributions of the display device and the transmission functions of the filters in the viewing glasses. It requires the solution of a nonlinear least-squares program for each pixel in a stereo pair and is based on minimizing color distances in the CIEL*a*b* uniform color space. The method is compared with several techniques for computing anaglyphs including approximation in CIE space using the Euclidean and Uniform metrics, the Photoshop method and its variants, and a method proposed by Peter Wimmer. We also discuss the methods of desaturation and gamma correction for reducing retinal rivalry.
Activities of the Research Institute for Advanced Computer Science
Oliger, Joseph
1994-01-01
The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.
Application of advanced electronics to a future spacecraft computer design
Carney, P. C.
1980-01-01
Advancements in hardware and software technology are summarized with specific emphasis on spacecraft computer capabilities. Available state of the art technology is reviewed and candidate architectures are defined.
Zonal methods and computational fluid dynamics
International Nuclear Information System (INIS)
Atta, E.H.
1985-01-01
Recent advances in developing numerical algorithms for solving fluid flow problems, and the continuing improvement in the speed and storage of large scale computers have made it feasible to compute the flow field about complex and realistic configurations. Current solution methods involve the use of a hierarchy of mathematical models ranging from the linearized potential equation to the Navier Stokes equations. Because of the increasing complexity of both the geometries and flowfields encountered in practical fluid flow simulation, there is a growing emphasis in computational fluid dynamics on the use of zonal methods. A zonal method is one that subdivides the total flow region into interconnected smaller regions or zones. The flow solutions in these zones are then patched together to establish the global flow field solution. Zonal methods are primarily used either to limit the complexity of the governing flow equations to a localized region or to alleviate the grid generation problems about geometrically complex and multicomponent configurations. This paper surveys the application of zonal methods for solving the flow field about two and three-dimensional configurations. Various factors affecting their accuracy and ease of implementation are also discussed. From the presented review it is concluded that zonal methods promise to be very effective for computing complex flowfields and configurations. Currently there are increasing efforts to improve their efficiency, versatility, and accuracy
First Responders Guide to Computer Forensics: Advanced Topics
National Research Council Canada - National Science Library
Nolan, Richard; Baker, Marie; Branson, Jake; Hammerstein, Josh; Rush, Kris; Waits, Cal; Schweinsberg, Elizabeth
2005-01-01
First Responders Guide to Computer Forensics: Advanced Topics expands on the technical material presented in SEI handbook CMU/SEI-2005-HB-001, First Responders Guide to Computer Forensics [Nolan 05...
Combinatorial methods with computer applications
Gross, Jonathan L
2007-01-01
Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinatorial methods course or in a combined graph theory and combinatorics course.After an introduction to combinatorics, the book explores six systematic approaches within a comprehensive framework: sequences, solving recurrences, evaluating summation exp
Condition Monitoring Through Advanced Sensor and Computational Technology
International Nuclear Information System (INIS)
Kim, Jung Taek; Park, Won Man; Kim, Jung Soo; Seong, Soeng Hwan; Hur, Sub; Cho, Jae Hwan; Jung, Hyung Gue
2005-05-01
The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties
Computational Methods in Stochastic Dynamics Volume 2
Stefanou, George; Papadopoulos, Vissarion
2013-01-01
The considerable influence of inherent uncertainties on structural behavior has led the engineering community to recognize the importance of a stochastic approach to structural problems. Issues related to uncertainty quantification and its influence on the reliability of the computational models are continuously gaining in significance. In particular, the problems of dynamic response analysis and reliability assessment of structures with uncertain system and excitation parameters have been the subject of continuous research over the last two decades as a result of the increasing availability of powerful computing resources and technology. This book is a follow up of a previous book with the same subject (ISBN 978-90-481-9986-0) and focuses on advanced computational methods and software tools which can highly assist in tackling complex problems in stochastic dynamic/seismic analysis and design of structures. The selected chapters are authored by some of the most active scholars in their respective areas and...
Advanced data analysis in neuroscience integrating statistical and computational models
Durstewitz, Daniel
2017-01-01
This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanat ory frameworks, but become powerfu...
Advanced topics in security computer system design
International Nuclear Information System (INIS)
Stachniak, D.E.; Lamb, W.R.
1989-01-01
The capability, performance, and speed of contemporary computer processors, plus the associated performance capability of the operating systems accommodating the processors, have enormously expanded the scope of possibilities for designers of nuclear power plant security computer systems. This paper addresses the choices that could be made by a designer of security computer systems working with contemporary computers and describes the improvement in functionality of contemporary security computer systems based on an optimally chosen design. Primary initial considerations concern the selection of (a) the computer hardware and (b) the operating system. Considerations for hardware selection concern processor and memory word length, memory capacity, and numerous processor features
Numerical computer methods part E
Johnson, Michael L
2004-01-01
The contributions in this volume emphasize analysis of experimental data and analytical biochemistry, with examples taken from biochemistry. They serve to inform biomedical researchers of the modern data analysis methods that have developed concomitantly with computer hardware. Selected Contents: A practical approach to interpretation of SVD results; modeling of oscillations in endocrine networks with feedback; quantifying asynchronous breathing; sample entropy; wavelet modeling and processing of nasal airflow traces.
Advanced accelerator methods: The cyclotrino
International Nuclear Information System (INIS)
Welch, J.J.; Bertsche, K.J.; Friedman, P.G.; Morris, D.E.; Muller, R.A.
1987-04-01
Several new and unusual, advanced techniques in the small cyclotron are described. The cyclotron is run at low energy, using negative ions and at high harmonics. Electrostatic focusing is used exclusively. The ion source and injection system is in the center, which unfortunately does not provide enough current, but the new system design should solve this problem. An electrostatic extractor that runs at low voltage, under 5 kV, and a microchannel plate detector which is able to discriminate low energy ions from the 14 C are used. The resolution is sufficient for 14 C dating and a higher intensity source should allow dating of a milligram size sample of 30,000 year old material with less than 10% uncertainty
Advances in Computational Stability Analysis of Composite Aerospace Structures
International Nuclear Information System (INIS)
Degenhardt, R.; Araujo, F. C. de
2010-01-01
European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.
Advanced computational modelling for drying processes – A review
International Nuclear Information System (INIS)
Defraeye, Thijs
2014-01-01
Highlights: • Understanding the product dehydration process is a key aspect in drying technology. • Advanced modelling thereof plays an increasingly important role for developing next-generation drying technology. • Dehydration modelling should be more energy-oriented. • An integrated “nexus” modelling approach is needed to produce more energy-smart products. • Multi-objective process optimisation requires development of more complete multiphysics models. - Abstract: Drying is one of the most complex and energy-consuming chemical unit operations. R and D efforts in drying technology have skyrocketed in the past decades, as new drivers emerged in this industry next to procuring prime product quality and high throughput, namely reduction of energy consumption and carbon footprint as well as improving food safety and security. Solutions are sought in optimising existing technologies or developing new ones which increase energy and resource efficiency, use renewable energy, recuperate waste heat and reduce product loss, thus also the embodied energy therein. Novel tools are required to push such technological innovations and their subsequent implementation. Particularly computer-aided drying process engineering has a large potential to develop next-generation drying technology, including more energy-smart and environmentally-friendly products and dryers systems. This review paper deals with rapidly emerging advanced computational methods for modelling dehydration of porous materials, particularly for foods. Drying is approached as a combined multiphysics, multiscale and multiphase problem. These advanced methods include computational fluid dynamics, several multiphysics modelling methods (e.g. conjugate modelling), multiscale modelling and modelling of material properties and the associated propagation of material property variability. Apart from the current challenges for each of these, future perspectives should be directed towards material property
Computational neuroscience for advancing artificial intelligence
Directory of Open Access Journals (Sweden)
Fernando P. Ponce
2011-07-01
Full Text Available resumen del libro de Alonso, E. y Mondragón, E. (2011. Hershey, NY: Medical Information Science Reference. La neurociencia como disciplinapersigue el entendimiento del cerebro y su relación con el funcionamiento de la mente a través del análisis de la comprensión de la interacción de diversos procesos físicos, químicos y biológicos (Bassett & Gazzaniga, 2011. Por otra parte, numerosas disciplinasprogresivamente han realizado significativas contribuciones en esta empresa tales como la matemática, la psicología o la filosofía, entre otras. Producto de este esfuerzo, es que junto con la neurociencia tradicional han aparecido disciplinas complementarias como la neurociencia cognitiva, la neuropsicología o la neurocienciacomputacional (Bengio, 2007; Dayan & Abbott, 2005. En el contexto de la neurociencia computacional como disciplina complementaria a laneurociencia tradicional. Alonso y Mondragón (2011 editan el libroComputacional Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications.
Computational methods for stellerator configurations
International Nuclear Information System (INIS)
Betancourt, O.
1992-01-01
This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings
Computational methods for molecular imaging
Shi, Kuangyu; Li, Shuo
2015-01-01
This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...
Computational intelligence for big data analysis frontier advances and applications
Dehuri, Satchidananda; Sanyal, Sugata
2015-01-01
The work presented in this book is a combination of theoretical advancements of big data analysis, cloud computing, and their potential applications in scientific computing. The theoretical advancements are supported with illustrative examples and its applications in handling real life problems. The applications are mostly undertaken from real life situations. The book discusses major issues pertaining to big data analysis using computational intelligence techniques and some issues of cloud computing. An elaborate bibliography is provided at the end of each chapter. The material in this book includes concepts, figures, graphs, and tables to guide researchers in the area of big data analysis and cloud computing.
Advanced Technologies, Embedded and Multimedia for Human-Centric Computing
Chao, Han-Chieh; Deng, Der-Jiunn; Park, James; HumanCom and EMC 2013
2014-01-01
The theme of HumanCom and EMC are focused on the various aspects of human-centric computing for advances in computer science and its applications, embedded and multimedia computing and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of human-centric computing. And the theme of EMC (Advanced in Embedded and Multimedia Computing) is focused on the various aspects of embedded system, smart grid, cloud and multimedia computing, and it provides an opportunity for academic, industry professionals to discuss the latest issues and progress in the area of embedded and multimedia computing. Therefore this book will be include the various theories and practical applications in human-centric computing and embedded and multimedia computing.
Computational methods for industrial radiation measurement applications
International Nuclear Information System (INIS)
Gardner, R.P.; Guo, P.; Ao, Q.
1996-01-01
Computational methods have been used with considerable success to complement radiation measurements in solving a wide range of industrial problems. The almost exponential growth of computer capability and applications in the last few years leads to a open-quotes black boxclose quotes mentality for radiation measurement applications. If a black box is defined as any radiation measurement device that is capable of measuring the parameters of interest when a wide range of operating and sample conditions may occur, then the development of computational methods for industrial radiation measurement applications should now be focused on the black box approach and the deduction of properties of interest from the response with acceptable accuracy and reasonable efficiency. Nowadays, increasingly better understanding of radiation physical processes, more accurate and complete fundamental physical data, and more advanced modeling and software/hardware techniques have made it possible to make giant strides in that direction with new ideas implemented with computer software. The Center for Engineering Applications of Radioisotopes (CEAR) at North Carolina State University has been working on a variety of projects in the area of radiation analyzers and gauges for accomplishing this for quite some time, and they are discussed here with emphasis on current accomplishments
Advanced Fine Particulate Characterization Methods
Energy Technology Data Exchange (ETDEWEB)
Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman
2007-01-31
The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and
Computer methods in general relativity: algebraic computing
Araujo, M E; Skea, J E F; Koutras, A; Krasinski, A; Hobill, D; McLenaghan, R G; Christensen, S M
1993-01-01
Karlhede & MacCallum [1] gave a procedure for determining the Lie algebra of the isometry group of an arbitrary pseudo-Riemannian manifold, which they intended to im- plement using the symbolic manipulation package SHEEP but never did. We have recently ﬁnished making this procedure explicit by giving an algorithm suitable for implemen- tation on a computer [2]. Specifically, we have written an algorithm for determining the isometry group of a spacetime (in four dimensions), and partially implemented this algorithm using the symbolic manipulation package CLASSI, which is an extension of SHEEP.
Method and Tools for Development of Advanced Instructional Systems
Arend, J. van der; Riemersma, J.B.J.
1994-01-01
The application of advanced instructional systems (AISs), like computer-based training systems, intelligent tutoring systems and training simulators, is widely spread within the Royal Netherlands Army. As a consequence there is a growing interest in methods and tools to develop effective and
Second International Conference on Advanced Computing, Networking and Informatics
Mohapatra, Durga; Konar, Amit; Chakraborty, Aruna
2014-01-01
Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two-volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 148 scholarly papers, which have been accepted for presentation from over 640 submissions in the second International Conference on Advanced Computing, Networking and Informatics, 2014, held in Kolkata, India during June 24-26, 2014. The first volume includes innovative computing techniques and relevant research results in informatics with selective applications in pattern recognition, signal/image process...
Advances in Future Computer and Control Systems v.1
Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)
2012-01-01
FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.
Advances in Future Computer and Control Systems v.2
Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)
2012-01-01
FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.
Power-efficient computer architectures recent advances
Själander, Magnus; Kaxiras, Stefanos
2014-01-01
As Moore's Law and Dennard scaling trends have slowed, the challenges of building high-performance computer architectures while maintaining acceptable power efficiency levels have heightened. Over the past ten years, architecture techniques for power efficiency have shifted from primarily focusing on module-level efficiencies, toward more holistic design styles based on parallelism and heterogeneity. This work highlights and synthesizes recent techniques and trends in power-efficient computer architecture.Table of Contents: Introduction / Voltage and Frequency Management / Heterogeneity and Sp
Fast computation of the characteristics method on vector computers
International Nuclear Information System (INIS)
Kugo, Teruhiko
2001-11-01
Fast computation of the characteristics method to solve the neutron transport equation in a heterogeneous geometry has been studied. Two vector computation algorithms; an odd-even sweep (OES) method and an independent sequential sweep (ISS) method have been developed and their efficiency to a typical fuel assembly calculation has been investigated. For both methods, a vector computation is 15 times faster than a scalar computation. From a viewpoint of comparison between the OES and ISS methods, the followings are found: 1) there is a small difference in a computation speed, 2) the ISS method shows a faster convergence and 3) the ISS method saves about 80% of computer memory size compared with the OES method. It is, therefore, concluded that the ISS method is superior to the OES method as a vectorization method. In the vector computation, a table-look-up method to reduce computation time of an exponential function saves only 20% of a whole computation time. Both the coarse mesh rebalance method and the Aitken acceleration method are effective as acceleration methods for the characteristics method, a combination of them saves 70-80% of outer iterations compared with a free iteration. (author)
Advances in Computer, Communication, Control and Automation
011 International Conference on Computer, Communication, Control and Automation
2012-01-01
The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011). 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011) has been held in Zhuhai, China, November 19-20, 2011. This volume topics covered include signal and Image processing, speech and audio Processing, video processing and analysis, artificial intelligence, computing and intelligent systems, machine learning, sensor and neural networks, knowledge discovery and data mining, fuzzy mathematics and Applications, knowledge-based systems, hybrid systems modeling and design, risk analysis and management, system modeling and simulation. We hope that researchers, graduate students and other interested readers benefit scientifically from the proceedings and also find it stimulating in the process.
CISM-IUTAM School on Advanced Turbulent Flow Computations
Krause, Egon
2000-01-01
This book collects the lecture notes concerning the IUTAM School on Advanced Turbulent Flow Computations held at CISM in Udine September 7–11, 1998. The course was intended for scientists, engineers and post-graduate students interested in the application of advanced numerical techniques for simulating turbulent flows. The topic comprises two closely connected main subjects: modelling and computation, mesh pionts necessary to simulate complex turbulent flow.
3rd International Conference on Advanced Computing, Networking and Informatics
Mohapatra, Durga; Chaki, Nabendu
2016-01-01
Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 132 scholarly articles, which have been accepted for presentation from over 550 submissions in the Third International Conference on Advanced Computing, Networking and Informatics, 2015, held in Bhubaneswar, India during June 23–25, 2015.
Development of advanced MCR task analysis methods
International Nuclear Information System (INIS)
Na, J. C.; Park, J. H.; Lee, S. K.; Kim, J. K.; Kim, E. S.; Cho, S. B.; Kang, J. S.
2008-07-01
This report describes task analysis methodology for advanced HSI designs. Task analyses was performed by using procedure-based hierarchical task analysis and task decomposition methods. The results from the task analysis were recorded in a database. Using the TA results, we developed static prototype of advanced HSI and human factors engineering verification and validation methods for an evaluation of the prototype. In addition to the procedure-based task analysis methods, workload estimation based on the analysis of task performance time and analyses for the design of information structure and interaction structures will be necessary
Advanced finite element method in structural engineering
Long, Yu-Qiu; Long, Zhi-Fei
2009-01-01
This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.
Recent advances in boundary element methods
Manolis, GD
2009-01-01
Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).
Advances in Computer Science and Education
Huang, Xiong
2012-01-01
CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful
Defense Science Board Report on Advanced Computing
2009-03-01
computers will require extensive research and development to have a chance of reaching the exascale level. Even if exascale level machines can...generations of petascale and then exascale level computing capability. This includes both the hardware and the complex software that may be...required for the architectures needed for exacscale capability. The challenges are extremely daunting, especially at the exascale
ASDA - Advanced Suit Design Analyzer computer program
Bue, Grant C.; Conger, Bruce C.; Iovine, John V.; Chang, Chi-Min
1992-01-01
An ASDA model developed to evaluate the heat and mass transfer characteristics of advanced pressurized suit design concepts for low pressure or vacuum planetary applications is presented. The model is based on a generalized 3-layer suit that uses the Systems Integrated Numerical Differencing Analyzer '85 in conjunction with a 41-node FORTRAN routine. The latter simulates the transient heat transfer and respiratory processes of a human body in a suited environment. The user options for the suit encompass a liquid cooled garment, a removable jacket, a CO2/H2O permeable layer, and a phase change layer.
Guest editorial preface : Special Issue on Advances in Computer Entertainment
Nijholt, Anton; Romão, Teresa; Cheok, Adrian D.
2013-01-01
This special issue of the International Journal of Creative Interfaces and Computer Graphics contains a selection of papers from ACE 2012, the 9th International Conference on Advances in Computer Entertainment (Nijholt et al., 2012). ACE is the leading scientific forum for dissemination of
Advanced Computing Tools and Models for Accelerator Physics
International Nuclear Information System (INIS)
Ryne, Robert; Ryne, Robert D.
2008-01-01
This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics
Ciebiera, Michał; Słabuszewska-Jóźwiak, Aneta; Zaręba, Kornelia; Jakiel, Grzegorz
2017-01-01
Uterine artery pseudoaneurysms (UAP) are rare but potentially life-threatening lesions. They may occur after traumatic deliveries, cesarean sections, and other interventions. We present a case of a 39-year-old woman with a UAP. The patient was accurately diagnosed using ultrasound imaging, with subsequent diagnostic hysteroscopy and laparoscopic excision of the UAP. In the present case, a ligation of the artery branch was performed to provide accurate hemostasis during UAP dissection. The vascular lesion was partially enucleated and removed, followed by recreation of the previous uterine shape. Power Doppler with HD flow and 3D ultrasound are accurate methods in the diagnosis of UAP. We are of the opinion that laparoscopic surgery can be on a par with transarterial embolization. During laparoscopy, the surgeon can either close the feeding vessel or remove the pathological tissue. In our opinion, this method solves the problem permanently and, after a successful case series with long-term follow-up, might be applied in other centers as well.
Nagamalai, Dhinaharan; Chaki, Nabendu
2013-01-01
The international conference on Advances in Computing and Information technology (ACITY 2012) provides an excellent international forum for both academics and professionals for sharing knowledge and results in theory, methodology and applications of Computer Science and Information Technology. The Second International Conference on Advances in Computing and Information technology (ACITY 2012), held in Chennai, India, during July 13-15, 2012, covered a number of topics in all major fields of Computer Science and Information Technology including: networking and communications, network security and applications, web and internet computing, ubiquitous computing, algorithms, bioinformatics, digital image processing and pattern recognition, artificial intelligence, soft computing and applications. Upon a strength review process, a number of high-quality, presenting not only innovative ideas but also a founded evaluation and a strong argumentation of the same, were selected and collected in the present proceedings, ...
Extending the horizons advances in computing, optimization, and decision technologies
Joseph, Anito; Mehrotra, Anuj; Trick, Michael
2007-01-01
Computer Science and Operations Research continue to have a synergistic relationship and this book represents the results of cross-fertilization between OR/MS and CS/AI. It is this interface of OR/CS that makes possible advances that could not have been achieved in isolation. Taken collectively, these articles are indicative of the state-of-the-art in the interface between OR/MS and CS/AI and of the high caliber of research being conducted by members of the INFORMS Computing Society. EXTENDING THE HORIZONS: Advances in Computing, Optimization, and Decision Technologies is a volume that presents the latest, leading research in the design and analysis of algorithms, computational optimization, heuristic search and learning, modeling languages, parallel and distributed computing, simulation, computational logic and visualization. This volume also emphasizes a variety of novel applications in the interface of CS, AI, and OR/MS.
Recent Advances in Computational Mechanics of the Human Knee Joint
Kazemi, M.; Dabiri, Y.; Li, L. P.
2013-01-01
Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling. PMID:23509602
Special issue on advances in computer entertainment: editorial
Romão, T.; Romão, Teresa; Nijholt, Antinus; Cheok, J.D.; Cheok, Adrian David
2015-01-01
This special issue of the International Journal of Arts and Technology comprises a selection of papers from ACE 2012, the 9th International Conference on Advances in Computer Entertainment (Nijholt et al., 2012). ACE is the leading scientific forum for dissemination of cutting-edge research results in the area of entertainment computing. The main goal of ACE is to stimulate discussion in the development of new and compelling entertainment computing and interactive art concepts and application...
Computational Methods and Function Theory
Saff, Edward; Salinas, Luis; Varga, Richard
1990-01-01
The volume is devoted to the interaction of modern scientific computation and classical function theory. Many problems in pure and more applied function theory can be tackled using modern computing facilities: numerically as well as in the sense of computer algebra. On the other hand, computer algorithms are often based on complex function theory, and dedicated research on their theoretical foundations can lead to great enhancements in performance. The contributions - original research articles, a survey and a collection of problems - cover a broad range of such problems.
Advanced analysis methods in particle physics
Energy Technology Data Exchange (ETDEWEB)
Bhat, Pushpalatha C.; /Fermilab
2010-10-01
Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.
1984-01-01
That there have been remarkable advances in the field of molecular electronic structure during the last decade is clear not only to those working in the field but also to anyone else who has used quantum chemical results to guide their own investiga tions. The progress in calculating the electronic structures of molecules has occurred through the truly ingenious theoretical and methodological developments that have made computationally tractable the underlying physics of electron distributions around a collection of nuclei. At the same time there has been consider able benefit from the great advances in computer technology. The growing sophistication, declining costs and increasing accessibi lity of computers have let theorists apply their methods to prob lems in virtually all areas of molecular science. Consequently, each year witnesses calculations on larger molecules than in the year before and calculations with greater accuracy and more com plete information on molecular properties. We can surel...
Mathematics for natural scientists II advanced methods
Kantorovich, Lev
2016-01-01
This book covers the advanced mathematical techniques useful for physics and engineering students, presented in a form accessible to physics students, avoiding precise mathematical jargon and laborious proofs. Instead, all proofs are given in a simplified form that is clear and convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each chapter. Mathematics for Natural Scientists II: Advanced Methods is the second of two volumes. It follows the first volume on Fundamentals and Basics.
Advances in FDTD computational electrodynamics photonics and nanotechnology
Oskooi, Ardavan; Johnson, Steven G
2013-01-01
Advances in photonics and nanotechnology have the potential to revolutionize humanity s ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell s equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell s equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech books in this area are among the top ten most-cited in the history of engineering. You discover the most important advances in all areas of FDTD and PSTD computational modeling of electromagnetic wave interactions. This cutting-edge resource helps you understand the latest develo...
Advanced methods in teaching reactor physics
International Nuclear Information System (INIS)
Snoj, Luka; Kromar, Marjan; Zerovnik, Gasper; Ravnik, Matjaz
2011-01-01
Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.
Advanced methods in teaching reactor physics
Energy Technology Data Exchange (ETDEWEB)
Snoj, Luka, E-mail: luka.snoj@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Kromar, Marjan, E-mail: marjan.kromar@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Zerovnik, Gasper, E-mail: gasper.zerovnik@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Ravnik, Matjaz [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)
2011-04-15
Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.
Computational methods for reversed-field equilibrium
International Nuclear Information System (INIS)
Boyd, J.K.; Auerbach, S.P.; Willmann, P.A.; Berk, H.L.; McNamara, B.
1980-01-01
Investigating the temporal evolution of reversed-field equilibrium caused by transport processes requires the solution of the Grad-Shafranov equation and computation of field-line-averaged quantities. The technique for field-line averaging and the computation of the Grad-Shafranov equation are presented. Application of Green's function to specify the Grad-Shafranov equation boundary condition is discussed. Hill's vortex formulas used to verify certain computations are detailed. Use of computer software to implement computational methods is described
9th International Conference on Advanced Computing & Communication Technologies
Mandal, Jyotsna; Auluck, Nitin; Nagarajaram, H
2016-01-01
This book highlights a collection of high-quality peer-reviewed research papers presented at the Ninth International Conference on Advanced Computing & Communication Technologies (ICACCT-2015) held at Asia Pacific Institute of Information Technology, Panipat, India during 27–29 November 2015. The book discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques. Researchers from academia and industry present their original work and exchange ideas, information, techniques and applications in the field of Advanced Computing and Communication Technology.
Advances in equine computed tomography and use of contrast media.
Puchalski, Sarah M
2012-12-01
Advances in equine computed tomography have been made as a result of improvements in software and hardware and an increasing body of knowledge. Contrast media can be administered intravascularly or intrathecally. Contrast media is useful to differentiate between tissues of similar density. Equine computed tomography can be used for many different clinical conditions, including lameness diagnosis, fracture identification and characterization, preoperative planning, and characterization of skull diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
Advanced statistical methods in data science
Chen, Jiahua; Lu, Xuewen; Yi, Grace; Yu, Hao
2016-01-01
This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a fu...
Editorial: Latest methods and advances in biotechnology.
Lee, Sang Yup; Jungbauer, Alois
2014-01-01
The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science
Wilson, C. R.; Spiegelman, M.; van Keken, P.
2012-12-01
Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are
An advanced probabilistic structural analysis method for implicit performance functions
Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.
1989-01-01
In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.
Innovations and Advances in Computer, Information, Systems Sciences, and Engineering
Sobh, Tarek
2013-01-01
Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.
Advances in computers dependable and secure systems engineering
Hurson, Ali
2012-01-01
Since its first volume in 1960, Advances in Computers has presented detailed coverage of innovations in computer hardware, software, theory, design, and applications. It has also provided contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references that continue to be of sugnificant, lasting value in this rapidly expanding field. In-depth surveys and tutorials on new computer technologyWell-known authors and researchers in the fieldExtensive bibliographies with m
Editorial : Special Issue on Advances in Computer Entertainment
Romão, Teresa; Nijholt, Anton; Cheok, Adrian David
2015-01-01
This special issue of the International Journal of Arts and Technology comprises a selection of papers from ACE 2012, the 9th International Conference on Advances in Computer Entertainment (Nijholt et al., 2012). ACE is the leading scientific forum for the dissemination of cutting-edge research
Advances in Computer Entertainment. 10th International Conference, ACE 2013
Reidsma, Dennis; Katayose, H.; Nijholt, Antinus; Unknown, [Unknown
2013-01-01
These are the proceedings of the 10th International Conference on Advances in Computer Entertainment (ACE 2013), hosted by the Human Media Interaction research group of the Centre for Telematics and Information Technology at the University of Twente, The Netherlands. The ACE series of conferences,
Attitudes toward Advanced and Multivariate Statistics When Using Computers.
Kennedy, Robert L.; McCallister, Corliss Jean
This study investigated the attitudes toward statistics of graduate students who studied advanced statistics in a course in which the focus of instruction was the use of a computer program in class. The use of the program made it possible to provide an individualized, self-paced, student-centered, and activity-based course. The three sections…
Computer-Assisted Foreign Language Teaching and Learning: Technological Advances
Zou, Bin; Xing, Minjie; Wang, Yuping; Sun, Mingyu; Xiang, Catherine H.
2013-01-01
Computer-Assisted Foreign Language Teaching and Learning: Technological Advances highlights new research and an original framework that brings together foreign language teaching, experiments and testing practices that utilize the most recent and widely used e-learning resources. This comprehensive collection of research will offer linguistic…
COMPUTER METHODS OF GENETIC ANALYSIS.
Directory of Open Access Journals (Sweden)
A. L. Osipov
2017-02-01
Full Text Available The basic statistical methods used in conducting the genetic analysis of human traits. We studied by segregation analysis, linkage analysis and allelic associations. Developed software for the implementation of these methods support.
Computational methods in drug discovery
Sumudu P. Leelananda; Steffen Lindert
2016-01-01
The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery project...
[Activities of Research Institute for Advanced Computer Science
Gross, Anthony R. (Technical Monitor); Leiner, Barry M.
2001-01-01
The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.
Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing
Meng, Xiang
The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In
2014 National Workshop on Advances in Communication and Computing
Prasanna, S; Sarma, Kandarpa; Saikia, Navajit
2015-01-01
The present volume is a compilation of research work in computation, communication, vision sciences, device design, fabrication, upcoming materials and related process design, etc. It is derived out of selected manuscripts submitted to the 2014 National Workshop on Advances in Communication and Computing (WACC 2014), Assam Engineering College, Guwahati, Assam, India which is emerging out to be a premier platform for discussion and dissemination of knowhow in this part of the world. The papers included in the volume are indicative of the recent thrust in computation, communications and emerging technologies. Certain recent advances in ZnO nanostructures for alternate energy generation provide emerging insights into an area that has promises for the energy sector including conservation and green technology. Similarly, scholarly contributions have focused on malware detection and related issues. Several contributions have focused on biomedical aspects including contributions related to cancer detection using act...
Computed tomography shielding methods: a literature review.
Curtis, Jessica Ryann
2010-01-01
To investigate available shielding methods in an effort to further awareness and understanding of existing preventive measures related to patient exposure in computed tomography (CT) scanning. Searches were conducted to locate literature discussing the effectiveness of commercially available shields. Literature containing information regarding breast, gonad, eye and thyroid shielding was identified. Because of rapidly advancing technology, the selection of articles was limited to those published within the past 5 years. The selected studies were examined using the following topics as guidelines: the effectiveness of the shield (percentage of dose reduction), the shield's effect on image quality, arguments for or against its use (including practicality) and overall recommendation for its use in clinical practice. Only a limited number of studies have been performed on the use of shields for the eyes, thyroid and gonads, but the evidence shows an overall benefit to their use. Breast shielding has been the most studied shielding method, with consistent agreement throughout the literature on its effectiveness at reducing radiation dose. The effect of shielding on image quality was not remarkable in a majority of studies. Although it is noted that more studies need to be conducted regarding the impact on image quality, the currently published literature stresses the importance of shielding in reducing dose. Commercially available shields for the breast, thyroid, eyes and gonads should be implemented in clinical practice. Further research is needed to ascertain the prevalence of shielding in the clinical setting.
Hybrid Monte Carlo methods in computational finance
Leitao Rodriguez, A.
2017-01-01
Monte Carlo methods are highly appreciated and intensively employed in computational finance in the context of financial derivatives valuation or risk management. The method offers valuable advantages like flexibility, easy interpretation and straightforward implementation. Furthermore, the
Advances in iterative methods for nonlinear equations
Busquier, Sonia
2016-01-01
This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...
Computational Methods for Biomolecular Electrostatics
Dong, Feng; Olsen, Brett; Baker, Nathan A.
2008-01-01
An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951
Computational methods for protein identification from mass spectrometry data.
Directory of Open Access Journals (Sweden)
Leo McHugh
2008-02-01
Full Text Available Protein identification using mass spectrometry is an indispensable computational tool in the life sciences. A dramatic increase in the use of proteomic strategies to understand the biology of living systems generates an ongoing need for more effective, efficient, and accurate computational methods for protein identification. A wide range of computational methods, each with various implementations, are available to complement different proteomic approaches. A solid knowledge of the range of algorithms available and, more critically, the accuracy and effectiveness of these techniques is essential to ensure as many of the proteins as possible, within any particular experiment, are correctly identified. Here, we undertake a systematic review of the currently available methods and algorithms for interpreting, managing, and analyzing biological data associated with protein identification. We summarize the advances in computational solutions as they have responded to corresponding advances in mass spectrometry hardware. The evolution of scoring algorithms and metrics for automated protein identification are also discussed with a focus on the relative performance of different techniques. We also consider the relative advantages and limitations of different techniques in particular biological contexts. Finally, we present our perspective on future developments in the area of computational protein identification by considering the most recent literature on new and promising approaches to the problem as well as identifying areas yet to be explored and the potential application of methods from other areas of computational biology.
Advanced Analysis Methods in High Energy Physics
Energy Technology Data Exchange (ETDEWEB)
Pushpalatha C. Bhat
2001-10-03
During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.
Computer code qualification program for the Advanced CANDU Reactor
International Nuclear Information System (INIS)
Popov, N.K.; Wren, D.J.; Snell, V.G.; White, A.J.; Boczar, P.G.
2003-01-01
Atomic Energy of Canada Ltd (AECL) has developed and implemented a Software Quality Assurance program (SQA) to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. This paper provides an overview of the computer programs used in Advanced CANDU Reactor (ACR) safety analysis, and assessment of their applicability in the safety analyses of the ACR design. An outline of the incremental validation program, and an overview of the experimental program in support of the code validation are also presented. An outline of the SQA program used to qualify these computer codes is also briefly presented. To provide context to the differences in the SQA with respect to current CANDUs, the paper also provides an overview of the ACR design features that have an impact on the computer code qualification. (author)
Advanced computer graphics techniques as applied to the nuclear industry
International Nuclear Information System (INIS)
Thomas, J.J.; Koontz, A.S.
1985-08-01
Computer graphics is a rapidly advancing technological area in computer science. This is being motivated by increased hardware capability coupled with reduced hardware costs. This paper will cover six topics in computer graphics, with examples forecasting how each of these capabilities could be used in the nuclear industry. These topics are: (1) Image Realism with Surfaces and Transparency; (2) Computer Graphics Motion; (3) Graphics Resolution Issues and Examples; (4) Iconic Interaction; (5) Graphic Workstations; and (6) Data Fusion - illustrating data coming from numerous sources, for display through high dimensional, greater than 3-D, graphics. All topics will be discussed using extensive examples with slides, video tapes, and movies. Illustrations have been omitted from the paper due to the complexity of color reproduction. 11 refs., 2 figs., 3 tabs
Advanced Simulation and Computing FY17 Implementation Plan, Version 0
Energy Technology Data Exchange (ETDEWEB)
McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendrickson, Bruce [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wade, Doug [National Nuclear Security Administration (NNSA), Washington, DC (United States). Office of Advanced Simulation and Computing and Institutional Research and Development; Hoang, Thuc [National Nuclear Security Administration (NNSA), Washington, DC (United States). Computational Systems and Software Environment
2016-08-29
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.
Performance evaluation of scientific programs on advanced architecture computers
International Nuclear Information System (INIS)
Walker, D.W.; Messina, P.; Baille, C.F.
1988-01-01
Recently a number of advanced architecture machines have become commercially available. These new machines promise better cost-performance then traditional computers, and some of them have the potential of competing with current supercomputers, such as the Cray X/MP, in terms of maximum performance. This paper describes an on-going project to evaluate a broad range of advanced architecture computers using a number of complete scientific application programs. The computers to be evaluated include distributed- memory machines such as the NCUBE, INTEL and Caltech/JPL hypercubes, and the MEIKO computing surface, shared-memory, bus architecture machines such as the Sequent Balance and the Alliant, very long instruction word machines such as the Multiflow Trace 7/200 computer, traditional supercomputers such as the Cray X.MP and Cray-2, and SIMD machines such as the Connection Machine. Currently 11 application codes from a number of scientific disciplines have been selected, although it is not intended to run all codes on all machines. Results are presented for two of the codes (QCD and missile tracking), and future work is proposed
Advances in Computational Fluid-Structure Interaction and Flow Simulation Conference
Takizawa, Kenji
2016-01-01
This contributed volume celebrates the work of Tayfun E. Tezduyar on the occasion of his 60th birthday. The articles it contains were born out of the Advances in Computational Fluid-Structure Interaction and Flow Simulation (AFSI 2014) conference, also dedicated to Prof. Tezduyar and held at Waseda University in Tokyo, Japan on March 19-21, 2014. The contributing authors represent a group of international experts in the field who discuss recent trends and new directions in computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI. Researchers, practitioners, and advanced graduate students working on CFD, FSI, and related topics will find this collection to be a defi...
Computational methods in power system analysis
Idema, Reijer
2014-01-01
This book treats state-of-the-art computational methods for power flow studies and contingency analysis. In the first part the authors present the relevant computational methods and mathematical concepts. In the second part, power flow and contingency analysis are treated. Furthermore, traditional methods to solve such problems are compared to modern solvers, developed using the knowledge of the first part of the book. Finally, these solvers are analyzed both theoretically and experimentally, clearly showing the benefits of the modern approach.
Computational methods for data evaluation and assimilation
Cacuci, Dan Gabriel
2013-01-01
Data evaluation and data combination require the use of a wide range of probability theory concepts and tools, from deductive statistics mainly concerning frequencies and sample tallies to inductive inference for assimilating non-frequency data and a priori knowledge. Computational Methods for Data Evaluation and Assimilation presents interdisciplinary methods for integrating experimental and computational information. This self-contained book shows how the methods can be applied in many scientific and engineering areas. After presenting the fundamentals underlying the evaluation of experiment
Advances in Packaging Methods, Processes and Systems
Directory of Open Access Journals (Sweden)
Nitaigour Premchand Mahalik
2014-10-01
Full Text Available The food processing and packaging industry is becoming a multi-trillion dollar global business. The reason is that the recent increase in incomes in traditionally less economically developed countries has led to a rise in standards of living that includes a significantly higher consumption of packaged foods. As a result, food safety guidelines have been more stringent than ever. At the same time, the number of research and educational institutions—that is, the number of potential researchers and stakeholders—has increased in the recent past. This paper reviews recent developments in food processing and packaging (FPP, keeping in view the aforementioned advancements and bearing in mind that FPP is an interdisciplinary area in that materials, safety, systems, regulation, and supply chains play vital roles. In particular, the review covers processing and packaging principles, standards, interfaces, techniques, methods, and state-of-the-art technologies that are currently in use or in development. Recent advances such as smart packaging, non-destructive inspection methods, printing techniques, application of robotics and machineries, automation architecture, software systems and interfaces are reviewed.
Advances in Cross-Cutting Ideas for Computational Climate Science
Energy Technology Data Exchange (ETDEWEB)
Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caldwell, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Charles [Univ. of Texas, Austin, TX (United States); Kerstin, Van Dam [Brookhaven National Lab. (BNL), Upton, NY (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ostrouchov, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuminaro, Raymond [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Paul [Univ. of California, Davis, CA (United States); Wild, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-01-01
This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for
Advances in Cross-Cutting Ideas for Computational Climate Science
Energy Technology Data Exchange (ETDEWEB)
Ng, E.; Evans, K.; Caldwell, P.; Hoffman, F.; Jackson, C.; Van Dam, K.; Leung, R.; Martin, D.; Ostrouchov, G.; Tuminaro, R.; Ullrich, P.; Wild, S.; Williams, S.
2017-01-01
This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling
Calculation methods for advanced concept light water reactor lattices
International Nuclear Information System (INIS)
Carmona, S.
1986-01-01
In the last few years s several advanced concepts for fuel rod lattices have been studied. Improved fuel utilization is one of the major aims in the development of new fuel rod designs and lattice modifications. By these changes s better performance in fuel economics s fuel burnup and material endurance can be achieved in the frame of the well-known basic Light Water Reactor technology. Among the new concepts involved in these studies that have attracted serious attention are lattices consisting of arrays of annular rods duplex pellet rods or tight multicells. These new designs of fuel rods and lattices present several computational problems. The treatment of resonance shielded cross sections is a crucial point in the analyses of these advanced concepts . The purpose of this study was to assess adequate approximation methods for calculating as accurately as possible, resonance shielding for these new lattices. Although detailed and exact computational methods for the evaluation of the resonance shielding in these lattices are possible, they are quite inefficient when used in lattice codes. The computer time and memory required for this kind of computations are too large to be used in an acceptable routine manner. In order to over- come these limitations and to make the analyses possible with reasonable use of computer resources s approximation methods are necessary. Usual approximation methods, for the resonance energy regions used in routine lattice computer codes, can not adequately handle the evaluation of these new fuel rod lattices. The main contribution of the present work to advanced lattice concepts is the development of an equivalence principle for the calculation of resonance shielding in the annular fuel pellet zone of duplex pellets; the duplex pellet in this treatment consists of two fuel zones with the same absorber isotope in both regions. In the transition from a single duplex rod to an infinite array of this kind of fuel rods, the similarity of the
Advanced Computing for 21st Century Accelerator Science and Technology
International Nuclear Information System (INIS)
Dragt, Alex J.
2004-01-01
Dr. Dragt of the University of Maryland is one of the Institutional Principal Investigators for the SciDAC Accelerator Modeling Project Advanced Computing for 21st Century Accelerator Science and Technology whose principal investigators are Dr. Kwok Ko (Stanford Linear Accelerator Center) and Dr. Robert Ryne (Lawrence Berkeley National Laboratory). This report covers the activities of Dr. Dragt while at Berkeley during spring 2002 and at Maryland during fall 2003
Identification of Enhancers In Human: Advances In Computational Studies
Kleftogiannis, Dimitrios A.
2016-01-01
Finally, we take a step further by developing a novel feature selection method suitable for defining a computational framework capable of analyzing the genomic content of enhancers and reporting cell-line specific predictive signatures.
Why advanced computing? The key to space-based operations
Phister, Paul W., Jr.; Plonisch, Igor; Mineo, Jack
2000-11-01
The 'what is the requirement?' aspect of advanced computing and how it relates to and supports Air Force space-based operations is a key issue. In support of the Air Force Space Command's five major mission areas (space control, force enhancement, force applications, space support and mission support), two-fifths of the requirements have associated stringent computing/size implications. The Air Force Research Laboratory's 'migration to space' concept will eventually shift Science and Technology (S&T) dollars from predominantly airborne systems to airborne-and-space related S&T areas. One challenging 'space' area is in the development of sophisticated on-board computing processes for the next generation smaller, cheaper satellite systems. These new space systems (called microsats or nanosats) could be as small as a softball, yet perform functions that are currently being done by large, vulnerable ground-based assets. The Joint Battlespace Infosphere (JBI) concept will be used to manage the overall process of space applications coupled with advancements in computing. The JBI can be defined as a globally interoperable information 'space' which aggregates, integrates, fuses, and intelligently disseminates all relevant battlespace knowledge to support effective decision-making at all echelons of a Joint Task Force (JTF). This paper explores a single theme -- on-board processing is the best avenue to take advantage of advancements in high-performance computing, high-density memories, communications, and re-programmable architecture technologies. The goal is to break away from 'no changes after launch' design to a more flexible design environment that can take advantage of changing space requirements and needs while the space vehicle is 'on orbit.'
The advanced computational testing and simulation toolkit (ACTS)
International Nuclear Information System (INIS)
Drummond, L.A.; Marques, O.
2002-01-01
During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts
The advanced computational testing and simulation toolkit (ACTS)
Energy Technology Data Exchange (ETDEWEB)
Drummond, L.A.; Marques, O.
2002-05-21
During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts
Electromagnetic field computation by network methods
Felsen, Leopold B; Russer, Peter
2009-01-01
This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.
Computational experiment approach to advanced secondary mathematics curriculum
Abramovich, Sergei
2014-01-01
This book promotes the experimental mathematics approach in the context of secondary mathematics curriculum by exploring mathematical models depending on parameters that were typically considered advanced in the pre-digital education era. This approach, by drawing on the power of computers to perform numerical computations and graphical constructions, stimulates formal learning of mathematics through making sense of a computational experiment. It allows one (in the spirit of Freudenthal) to bridge serious mathematical content and contemporary teaching practice. In other words, the notion of teaching experiment can be extended to include a true mathematical experiment. When used appropriately, the approach creates conditions for collateral learning (in the spirit of Dewey) to occur including the development of skills important for engineering applications of mathematics. In the context of a mathematics teacher education program, this book addresses a call for the preparation of teachers capable of utilizing mo...
Methods in computed angiotomography of the brain
International Nuclear Information System (INIS)
Yamamoto, Yuji; Asari, Shoji; Sadamoto, Kazuhiko.
1985-01-01
Authors introduce the methods in computed angiotomography of the brain. Setting of the scan planes and levels and the minimum dose bolus (MinDB) injection of contrast medium are described in detail. These methods are easily and safely employed with the use of already propagated CT scanners. Computed angiotomography is expected for clinical applications in many institutions because of its diagnostic value in screening of cerebrovascular lesions and in demonstrating the relationship between pathological lesions and cerebral vessels. (author)
Computational methods for structural load and resistance modeling
Thacker, B. H.; Millwater, H. R.; Harren, S. V.
1991-01-01
An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.
Methods and experimental techniques in computer engineering
Schiaffonati, Viola
2014-01-01
Computing and science reveal a synergic relationship. On the one hand, it is widely evident that computing plays an important role in the scientific endeavor. On the other hand, the role of scientific method in computing is getting increasingly important, especially in providing ways to experimentally evaluate the properties of complex computing systems. This book critically presents these issues from a unitary conceptual and methodological perspective by addressing specific case studies at the intersection between computing and science. The book originates from, and collects the experience of, a course for PhD students in Information Engineering held at the Politecnico di Milano. Following the structure of the course, the book features contributions from some researchers who are working at the intersection between computing and science.
Computational and mathematical methods in brain atlasing.
Nowinski, Wieslaw L
2017-12-01
Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.
Design and installation of advanced computer safety related instrumentation
International Nuclear Information System (INIS)
Koch, S.; Andolina, K.; Ruether, J.
1993-01-01
The rapidly developing area of computer systems creates new opportunities for commercial utilities operating nuclear reactors to improve plant operation and efficiency. Two of the main obstacles to utilizing the new technology in safety-related applications is the current policy of the licensing agencies and the fear of decision making managers to introduce new technologies. Once these obstacles are overcome, advanced diagnostic systems, CRT-based displays, and advanced communication channels can improve plant operation considerably. The article discusses outstanding issues in the area of designing, qualifying, and licensing of computer-based instrumentation and control systems. The authors describe the experience gained in designing three safety-related systems, that include a Programmable Logic Controller (PLC) based Safeguard Load Sequencer for NSP Prairie Island, a digital Containment Isolation monitoring system for TVA Browns Ferry, and a study that was conducted for EPRI/NSP regarding a PLC-based Reactor Protection system. This article presents the benefits to be gained in replacing existing, outdated equipment with new advanced instrumentation
Image analysis and modeling in medical image computing. Recent developments and advances.
Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T
2012-01-01
Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body
Sakamoto, Shinichi; Otsuru, Toru
2014-01-01
This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.
Advances in soft computing, intelligent robotics and control
Fullér, Robert
2014-01-01
Soft computing, intelligent robotics and control are in the core interest of contemporary engineering. Essential characteristics of soft computing methods are the ability to handle vague information, to apply human-like reasoning, their learning capability, and ease of application. Soft computing techniques are widely applied in the control of dynamic systems, including mobile robots. The present volume is a collection of 20 chapters written by respectable experts of the fields, addressing various theoretical and practical aspects in soft computing, intelligent robotics and control. The first part of the book concerns with issues of intelligent robotics, including robust xed point transformation design, experimental verification of the input-output feedback linearization of differentially driven mobile robot and applying kinematic synthesis to micro electro-mechanical systems design. The second part of the book is devoted to fundamental aspects of soft computing. This includes practical aspects of fuzzy rule ...
Computing and physical methods to calculate Pu
International Nuclear Information System (INIS)
Mohamed, Ashraf Elsayed Mohamed
2013-01-01
Main limitations due to the enhancement of the plutonium content are related to the coolant void effect as the spectrum becomes faster, the neutron flux in the thermal region tends towards zero and is concentrated in the region from 10 Ke to 1 MeV. Thus, all captures by 240 Pu and 242 Pu in the thermal and epithermal resonance disappear and the 240 Pu and 242 Pu contributions to the void effect became positive. The higher the Pu content and the poorer the Pu quality, the larger the void effect. The core control in nominal or transient conditions Pu enrichment leads to a decrease in (B eff.), the efficiency of soluble boron and control rods. Also, the Doppler effect tends to decrease when Pu replaces U, so, that in case of transients the core could diverge again if the control is not effective enough. As for the voiding effect, the plutonium degradation and the 240 Pu and 242 Pu accumulation after multiple recycling lead to spectrum hardening and to a decrease in control. One solution would be to use enriched boron in soluble boron and shutdown rods. In this paper, I discuss and show the advanced computing and physical methods to calculate Pu inside the nuclear reactors and glovebox and the different solutions to be used to overcome the difficulties that effect, on safety parameters and on reactor performance, and analysis the consequences of plutonium management on the whole fuel cycle like Raw materials savings, fraction of nuclear electric power involved in the Pu management. All through two types of scenario, one involving a low fraction of the nuclear park dedicated to plutonium management, the other involving a dilution of the plutonium in all the nuclear park. (author)
The history of cosmic baryons: discoveries using advanced computing
International Nuclear Information System (INIS)
Norman, Michael L
2005-01-01
We live in the era of the cosmological concordance model. This refers to the precise set of cosmological parameters which describe the average composition, geometry, and expansion rate of the universe we inhabit. Due to recent observational, theoretical, and computational advances, these parameters are now known to approximately 10% accuracy, and new efforts are underway to increase precision tenfold. It is found that we live in a spatially flat, dark matter-dominated universe whose rate of expansion is accelerating due to an unseen, unknown dark energy field. Baryons-the stuff of stars, galaxies, and us-account for only 4% of the total mass-energy inventory. And yet, it is through the astronomical study of baryons that we infer the rest. In this talk I will highlight the important role advanced scientific computing has played in getting us to the concordance model, and also the computational discoveries that have been made about the history of cosmic baryons using hydrodynamical cosmological simulations. I will conclude by discussing the central role that very large scale simulations of cosmological structure formation will play in deciphering the results of upcoming dark energy surveys
Numerical Methods for Stochastic Computations A Spectral Method Approach
Xiu, Dongbin
2010-01-01
The first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC meth
Empirical evaluation methods in computer vision
Christensen, Henrik I
2002-01-01
This book provides comprehensive coverage of methods for the empirical evaluation of computer vision techniques. The practical use of computer vision requires empirical evaluation to ensure that the overall system has a guaranteed performance. The book contains articles that cover the design of experiments for evaluation, range image segmentation, the evaluation of face recognition and diffusion methods, image matching using correlation methods, and the performance of medical image processing algorithms. Sample Chapter(s). Foreword (228 KB). Chapter 1: Introduction (505 KB). Contents: Automate
A computational method for sharp interface advection
DEFF Research Database (Denmark)
Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje
2016-01-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volu...
Computing discharge using the index velocity method
Levesque, Victor A.; Oberg, Kevin A.
2012-01-01
Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression
3D data processing with advanced computer graphics tools
Zhang, Song; Ekstrand, Laura; Grieve, Taylor; Eisenmann, David J.; Chumbley, L. Scott
2012-09-01
Often, the 3-D raw data coming from an optical profilometer contains spiky noises and irregular grid, which make it difficult to analyze and difficult to store because of the enormously large size. This paper is to address these two issues for an optical profilometer by substantially reducing the spiky noise of the 3-D raw data from an optical profilometer, and by rapidly re-sampling the raw data into regular grids at any pixel size and any orientation with advanced computer graphics tools. Experimental results will be presented to demonstrate the effectiveness of the proposed approach.
Software for the ACP [Advanced Computer Program] multiprocessor system
International Nuclear Information System (INIS)
Biel, J.; Areti, H.; Atac, R.
1987-01-01
Software has been developed for use with the Fermilab Advanced Computer Program (ACP) multiprocessor system. The software was designed to make a system of a hundred independent node processors as easy to use as a single, powerful CPU. Subroutines have been developed by which a user's host program can send data to and get results from the program running in each of his ACP node processors. Utility programs make it easy to compile and link host and node programs, to debug a node program on an ACP development system, and to submit a debugged program to an ACP production system
Computational efficiency for the surface renewal method
Kelley, Jason; Higgins, Chad
2018-04-01
Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.
Computational methods in molecular imaging technologies
Gunjan, Vinit Kumar; Venkatesh, C; Amarnath, M
2017-01-01
This book highlights the experimental investigations that have been carried out on magnetic resonance imaging and computed tomography (MRI & CT) images using state-of-the-art Computational Image processing techniques, and tabulates the statistical values wherever necessary. In a very simple and straightforward way, it explains how image processing methods are used to improve the quality of medical images and facilitate analysis. It offers a valuable resource for researchers, engineers, medical doctors and bioinformatics experts alike.
Fermilab advanced computer program multi-microprocessor project
International Nuclear Information System (INIS)
Nash, T.; Areti, H.; Biel, J.
1985-06-01
Fermilab's Advanced Computer Program is constructing a powerful 128 node multi-microprocessor system for data analysis in high-energy physics. The system will use commercial 32-bit microprocessors programmed in Fortran-77. Extensive software supports easy migration of user applications from a uniprocessor environment to the multiprocessor and provides sophisticated program development, debugging, and error handling and recovery tools. This system is designed to be readily copied, providing computing cost effectiveness of below $2200 per VAX 11/780 equivalent. The low cost, commercial availability, compatibility with off-line analysis programs, and high data bandwidths (up to 160 MByte/sec) make the system an ideal choice for applications to on-line triggers as well as an offline data processor
Review of research on advanced computational science in FY2016
International Nuclear Information System (INIS)
2017-12-01
Research on advanced computational science for nuclear applications, based on “Plan to Achieve Medium- to Long-term Objectives of the Japan Atomic Energy Agency (Medium- to Long-term Plan)”, has been performed at Center for Computational Science and e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established the committee consisting of outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the followings. (1) Results of the R and D performed at CCSE in FY 2016 (April 1st, 2016 - March 31st, 2017), (2) Results of the evaluation on the R and D by the committee in FY 2016. (author)
Advanced intelligent computational technologies and decision support systems
Kountchev, Roumen
2014-01-01
This book offers a state of the art collection covering themes related to Advanced Intelligent Computational Technologies and Decision Support Systems which can be applied to fields like healthcare assisting the humans in solving problems. The book brings forward a wealth of ideas, algorithms and case studies in themes like: intelligent predictive diagnosis; intelligent analyzing of medical images; new format for coding of single and sequences of medical images; Medical Decision Support Systems; diagnosis of Down’s syndrome; computational perspectives for electronic fetal monitoring; efficient compression of CT Images; adaptive interpolation and halftoning for medical images; applications of artificial neural networks for real-life problems solving; present and perspectives for Electronic Healthcare Record Systems; adaptive approaches for noise reduction in sequences of CT images etc.
Review of research on advanced computational science in FY2015
International Nuclear Information System (INIS)
2017-01-01
Research on advanced computational science for nuclear applications, based on 'Plan to Achieve Medium- to Long-term Objectives of the Japan Atomic Energy Agency (Medium- to Long-term Plan)', has been performed at Center for Computational Science and e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established the committee consisting of outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the followings. (1) Results of the R and D performed at CCSE in FY 2015 (April 1st, 2015 - March 31st, 2016), (2) Results of the evaluation on the R and D by the committee in FY 2015 (April 1st, 2015 - March 31st, 2016). (author)
An advanced method of heterogeneous reactor theory
International Nuclear Information System (INIS)
Kochurov, B.P.
1994-08-01
Recent approaches to heterogeneous reactor theory for numerical applications were presented in the course of 8 lectures given in JAERI. The limitations of initial theory known after the First Conference on Peacefull Uses of Atomic Energy held in Geneva in 1955 as Galanine-Feinberg heterogeneous theory:-matrix from of equations, -lack of consistent theory for heterogeneous parameters for reactor cell, -were overcome by a transformation of heterogeneous reactor equations to a difference form and by a development of a consistent theory for the characteristics of a reactor cell based on detailed space-energy calculations. General few group (G-number of groups) heterogeneous reactor equations in dipole approximation are formulated with the extension of two-dimensional problem to three-dimensions by finite Furie expansion of axial dependence of neutron fluxes. A transformation of initial matrix reactor equations to a difference form is presented. The methods for calculation of heterogeneous reactor cell characteristics giving the relation between vector-flux and vector-current on a cell boundary are based on a set of detailed space-energy neutron flux distribution calculations with zero current across cell boundary and G calculations with linearly independent currents across the cell boundary. The equations for reaction rate matrices are formulated. Specific methods were developed for description of neutron migration in axial and radial directions. The methods for resonance level's approach for numerous high-energy resonances. On the basis of these approaches the theory, methods and computer codes were developed for 3D space-time react or problems including simulation of slow processes with fuel burn-up, control rod movements, Xe poisoning and fast transients depending on prompt and delayed neutrons. As a result reactors with several thousands of channels having non-uniform axial structure can be feasibly treated. (author)
Advances on geometric flux optical design method
García-Botella, Ángel; Fernández-Balbuena, Antonio Álvarez; Vázquez, Daniel
2017-09-01
Nonimaging optics is focused on the study of methods to design concentrators or illuminators systems. It can be included in the area of photometry and radiometry and it is governed by the laws of geometrical optics. The field vector method, which starts with the definition of the irradiance vector E, is one of the techniques used in nonimaging optics. Called "Geometrical flux vector" it has provide ideal designs. The main property of this model is, its ability to estimate how radiant energy is transferred by the optical system, from the concepts of field line, flux tube and pseudopotential surface, overcoming traditional raytrace methods. Nevertheless this model has been developed only at an academic level, where characteristic optical parameters are ideal not real and the studied geometries are simple. The main objective of the present paper is the application of the vector field method to the analysis and design of real concentration and illumination systems. We propose the development of a calculation tool for optical simulations by vector field, using algorithms based on Fermat`s principle, as an alternative to traditional tools for optical simulations by raytrace, based on reflection and refraction law. This new tool provides, first, traditional simulations results: efficiency, illuminance/irradiance calculations, angular distribution of light- with lower computation time, photometrical information needs about a few tens of field lines, in comparison with million rays needed nowadays. On the other hand the tool will provides new information as vector field maps produced by the system, composed by field lines and quasipotential surfaces. We show our first results with the vector field simulation tool.
The ACP (Advanced Computer Program) multiprocessor system at Fermilab
Energy Technology Data Exchange (ETDEWEB)
Nash, T.; Areti, H.; Atac, R.; Biel, J.; Case, G.; Cook, A.; Fischler, M.; Gaines, I.; Hance, R.; Husby, D.
1986-09-01
The Advanced Computer Program at Fermilab has developed a multiprocessor system which is easy to use and uniquely cost effective for many high energy physics problems. The system is based on single board computers which cost under $2000 each to build including 2 Mbytes of on board memory. These standard VME modules each run experiment reconstruction code in Fortran at speeds approaching that of a VAX 11/780. Two versions have been developed: one uses Motorola's 68020 32 bit microprocessor, the other runs with AT and T's 32100. both include the corresponding floating point coprocessor chip. The first system, when fully configured, uses 70 each of the two types of processors. A 53 processor system has been operated for several months with essentially no down time by computer operators in the Fermilab Computer Center, performing at nearly the capacity of 6 CDC Cyber 175 mainframe computers. The VME crates in which the processing ''nodes'' sit are connected via a high speed ''Branch Bus'' to one or more MicroVAX computers which act as hosts handling system resource management and all I/O in offline applications. An interface from Fastbus to the Branch Bus has been developed for online use which has been tested error free at 20 Mbytes/sec for 48 hours. ACP hardware modules are now available commercially. A major package of software, including a simulator that runs on any VAX, has been developed. It allows easy migration of existing programs to this multiprocessor environment. This paper describes the ACP Multiprocessor System and early experience with it at Fermilab and elsewhere.
The ACP [Advanced Computer Program] multiprocessor system at Fermilab
International Nuclear Information System (INIS)
Nash, T.; Areti, H.; Atac, R.
1986-09-01
The Advanced Computer Program at Fermilab has developed a multiprocessor system which is easy to use and uniquely cost effective for many high energy physics problems. The system is based on single board computers which cost under $2000 each to build including 2 Mbytes of on board memory. These standard VME modules each run experiment reconstruction code in Fortran at speeds approaching that of a VAX 11/780. Two versions have been developed: one uses Motorola's 68020 32 bit microprocessor, the other runs with AT and T's 32100. both include the corresponding floating point coprocessor chip. The first system, when fully configured, uses 70 each of the two types of processors. A 53 processor system has been operated for several months with essentially no down time by computer operators in the Fermilab Computer Center, performing at nearly the capacity of 6 CDC Cyber 175 mainframe computers. The VME crates in which the processing ''nodes'' sit are connected via a high speed ''Branch Bus'' to one or more MicroVAX computers which act as hosts handling system resource management and all I/O in offline applications. An interface from Fastbus to the Branch Bus has been developed for online use which has been tested error free at 20 Mbytes/sec for 48 hours. ACP hardware modules are now available commercially. A major package of software, including a simulator that runs on any VAX, has been developed. It allows easy migration of existing programs to this multiprocessor environment. This paper describes the ACP Multiprocessor System and early experience with it at Fermilab and elsewhere
Digital image processing mathematical and computational methods
Blackledge, J M
2005-01-01
This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research
Advanced continuous cultivation methods for systems microbiology.
Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo
2015-09-01
Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.
The application of advanced rotor (performance) methods for design calculations
Energy Technology Data Exchange (ETDEWEB)
Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)
1997-08-01
The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.
Domain decomposition methods and parallel computing
International Nuclear Information System (INIS)
Meurant, G.
1991-01-01
In this paper, we show how to efficiently solve large linear systems on parallel computers. These linear systems arise from discretization of scientific computing problems described by systems of partial differential equations. We show how to get a discrete finite dimensional system from the continuous problem and the chosen conjugate gradient iterative algorithm is briefly described. Then, the different kinds of parallel architectures are reviewed and their advantages and deficiencies are emphasized. We sketch the problems found in programming the conjugate gradient method on parallel computers. For this algorithm to be efficient on parallel machines, domain decomposition techniques are introduced. We give results of numerical experiments showing that these techniques allow a good rate of convergence for the conjugate gradient algorithm as well as computational speeds in excess of a billion of floating point operations per second. (author). 5 refs., 11 figs., 2 tabs., 1 inset
Proceedings of computational methods in materials science
International Nuclear Information System (INIS)
Mark, J.E. Glicksman, M.E.; Marsh, S.P.
1992-01-01
The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering
Advancing UAS methods for monitoring coastal environments
Ridge, J.; Seymour, A.; Rodriguez, A. B.; Dale, J.; Newton, E.; Johnston, D. W.
2017-12-01
Utilizing fixed-wing Unmanned Aircraft Systems (UAS), we are working to improve coastal monitoring by increasing the accuracy, precision, temporal resolution, and spatial coverage of habitat distribution maps. Generally, multirotor aircraft are preferred for precision imaging, but recent advances in fixed-wing technology have greatly increased their capabilities and application for fine-scale (decimeter-centimeter) measurements. Present mapping methods employed by North Carolina coastal managers involve expensive, time consuming and localized observation of coastal environments, which often lack the necessary frequency to make timely management decisions. For example, it has taken several decades to fully map oyster reefs along the NC coast, making it nearly impossible to track trends in oyster reef populations responding to harvesting pressure and water quality degradation. It is difficult for the state to employ manned flights for collecting aerial imagery to monitor intertidal oyster reefs, because flights are usually conducted after seasonal increases in turbidity. In addition, post-storm monitoring of coastal erosion from manned platforms is often conducted days after the event and collects oblique aerial photographs which are difficult to use for accurately measuring change. Here, we describe how fixed wing UAS and standard RGB sensors can be used to rapidly quantify and assess critical coastal habitats (e.g., barrier islands, oyster reefs, etc.), providing for increased temporal frequency to isolate long-term and event-driven (storms, harvesting) impacts. Furthermore, drone-based approaches can accurately image intertidal habitats as well as resolve information such as vegetation density and bathymetry from shallow submerged areas. We obtain UAS imagery of a barrier island and oyster reefs under ideal conditions (low tide, turbidity, and sun angle) to create high resolution (cm scale) maps and digital elevation models to assess habitat condition
Energy Technology Data Exchange (ETDEWEB)
Reed, Daniel [University of Iowa; Berzins, Martin [University of Utah; Pennington, Robert; Sarkar, Vivek [Rice University; Taylor, Valerie [Texas A& M University
2015-08-01
On November 19, 2014, the Advanced Scientific Computing Advisory Committee (ASCAC) was charged with reviewing the Department of Energy’s conceptual design for the Exascale Computing Initiative (ECI). In particular, this included assessing whether there are significant gaps in the ECI plan or areas that need to be given priority or extra management attention. Given the breadth and depth of previous reviews of the technical challenges inherent in exascale system design and deployment, the subcommittee focused its assessment on organizational and management issues, considering technical issues only as they informed organizational or management priorities and structures. This report presents the observations and recommendations of the subcommittee.
International conference on Advances in Intelligent Control and Innovative Computing
Castillo, Oscar; Huang, Xu; Intelligent Control and Innovative Computing
2012-01-01
In the lightning-fast world of intelligent control and cutting-edge computing, it is vitally important to stay abreast of developments that seem to follow each other without pause. This publication features the very latest and some of the very best current research in the field, with 32 revised and extended research articles written by prominent researchers in the field. Culled from contributions to the key 2011 conference Advances in Intelligent Control and Innovative Computing, held in Hong Kong, the articles deal with a wealth of relevant topics, from the most recent work in artificial intelligence and decision-supporting systems, to automated planning, modelling and simulation, signal processing, and industrial applications. Not only does this work communicate the current state of the art in intelligent control and innovative computing, it is also an illuminating guide to up-to-date topics for researchers and graduate students in the field. The quality of the contents is absolutely assured by the high pro...
Computational brain models: Advances from system biology and future challenges
Directory of Open Access Journals (Sweden)
George E. Barreto
2015-02-01
Full Text Available Computational brain models focused on the interactions between neurons and astrocytes, modeled via metabolic reconstructions, are reviewed. The large source of experimental data provided by the -omics techniques and the advance/application of computational and data-management tools are being fundamental. For instance, in the understanding of the crosstalk between these cells, the key neuroprotective mechanisms mediated by astrocytes in specific metabolic scenarios (1 and the identification of biomarkers for neurodegenerative diseases (2,3. However, the modeling of these interactions demands a clear view of the metabolic and signaling pathways implicated, but most of them are controversial and are still under evaluation (4. Hence, to gain insight into the complexity of these interactions a current view of the main pathways implicated in the neuron-astrocyte communication processes have been made from recent experimental reports and reviews. Furthermore, target problems, limitations and main conclusions have been identified from metabolic models of the brain reported from 2010. Finally, key aspects to take into account into the development of a computational model of the brain and topics that could be approached from a systems biology perspective in future research are highlighted.
Computer-Aided Modelling Methods and Tools
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
2011-01-01
The development of models for a range of applications requires methods and tools. In many cases a reference model is required that allows the generation of application specific models that are fit for purpose. There are a range of computer aided modelling tools available that help to define the m...
Applying Human Computation Methods to Information Science
Harris, Christopher Glenn
2013-01-01
Human Computation methods such as crowdsourcing and games with a purpose (GWAP) have each recently drawn considerable attention for their ability to synergize the strengths of people and technology to accomplish tasks that are challenging for either to do well alone. Despite this increased attention, much of this transformation has been focused on…
The asymptotic expansion method via symbolic computation
Navarro, Juan F.
2012-01-01
This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.
The Asymptotic Expansion Method via Symbolic Computation
Directory of Open Access Journals (Sweden)
Juan F. Navarro
2012-01-01
Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.
Computationally efficient methods for digital control
Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.; Kataria, N.; Brewer, F.
2008-01-01
The problem of designing a digital controller is considered with the novelty of explicitly taking into account the computation cost of the controller implementation. A class of controller emulation methods inspired by numerical analysis is proposed. Through various examples it is shown that these
[Advancements of computer chemistry in separation of Chinese medicine].
Li, Lingjuan; Hong, Hong; Xu, Xuesong; Guo, Liwei
2011-12-01
Separating technique of Chinese medicine is not only a key technique in the field of Chinese medicine' s research and development, but also a significant step in the modernization of Chinese medicinal preparation. Computer chemistry can build model and look for the regulations from Chinese medicine system which is full of complicated data. This paper analyzed the applicability, key technology, basic mode and common algorithm of computer chemistry applied in the separation of Chinese medicine, introduced the mathematic mode and the setting methods of Extraction kinetics, investigated several problems which based on traditional Chinese medicine membrane procession, and forecasted the application prospect.
Computational electrodynamics the finite-difference time-domain method
Taflove, Allen
2005-01-01
This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.
Damped time advance methods for particles and EM fields
International Nuclear Information System (INIS)
Friedman, A.; Ambrosiano, J.J.; Boyd, J.K.; Brandon, S.T.; Nielsen, D.E. Jr.; Rambo, P.W.
1990-01-01
Recent developments in the application of damped time advance methods to plasma simulations include the synthesis of implicit and explicit ''adjustably damped'' second order accurate methods for particle motion and electromagnetic field propagation. This paper discusses this method
Advanced information processing system: Inter-computer communication services
Burkhardt, Laura; Masotto, Tom; Sims, J. Terry; Whittredge, Roy; Alger, Linda S.
1991-01-01
The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented.
SciDAC advances and applications in computational beam dynamics
International Nuclear Information System (INIS)
Ryne, R; Abell, D; Adelmann, A; Amundson, J; Bohn, C; Cary, J; Colella, P; Dechow, D; Decyk, V; Dragt, A; Gerber, R; Habib, S; Higdon, D; Katsouleas, T; Ma, K-L; McCorquodale, P; Mihalcea, D; Mitchell, C; Mori, W; Mottershead, C T; Neri, F; Pogorelov, I; Qiang, J; Samulyak, R; Serafini, D; Shalf, J; Siegerist, C; Spentzouris, P; Stoltz, P; Terzic, B; Venturini, M; Walstrom, P
2005-01-01
SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators-which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook-are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this paper we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications
SciDAC Advances and Applications in Computational Beam Dynamics
International Nuclear Information System (INIS)
Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.
2005-01-01
SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications
Computational modeling, optimization and manufacturing simulation of advanced engineering materials
2016-01-01
This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials. Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.
International Nuclear Information System (INIS)
Nash, T.; Areti, H.; Atac, R.
1988-08-01
Fermilab's Advanced Computer Program (ACP) has been developing highly cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 MFlops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction. 10 refs., 7 figs
Reliability of an interactive computer program for advance care planning.
Schubart, Jane R; Levi, Benjamin H; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J
2012-06-01
Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83-0.95, and 0.86-0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time.
Reliability of an Interactive Computer Program for Advance Care Planning
Levi, Benjamin H.; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J
2012-01-01
Abstract Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83–0.95, and 0.86–0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830
Advanced Aqueous Phase Catalyst Development using Combinatorial Methods, Phase II
National Aeronautics and Space Administration — Combinatorial methods are proposed to develop advanced Aqueous Oxidation Catalysts (AOCs) with the capability to mineralize organic contaminants present in effluents...
Advances in neural networks computational intelligence for ICT
Esposito, Anna; Morabito, Francesco; Pasero, Eros
2016-01-01
This carefully edited book is putting emphasis on computational and artificial intelligent methods for learning and their relative applications in robotics, embedded systems, and ICT interfaces for psychological and neurological diseases. The book is a follow-up of the scientific workshop on Neural Networks (WIRN 2015) held in Vietri sul Mare, Italy, from the 20th to the 22nd of May 2015. The workshop, at its 27th edition became a traditional scientific event that brought together scientists from many countries, and several scientific disciplines. Each chapter is an extended version of the original contribution presented at the workshop, and together with the reviewers’ peer revisions it also benefits from the live discussion during the presentation. The content of book is organized in the following sections. 1. Introduction, 2. Machine Learning, 3. Artificial Neural Networks: Algorithms and models, 4. Intelligent Cyberphysical and Embedded System, 5. Computational Intelligence Methods for Biomedical ICT in...
Advanced Source Deconvolution Methods for Compton Telescopes
Zoglauer, Andreas
The next generation of space telescopes utilizing Compton scattering for astrophysical observations is destined to one day unravel the mysteries behind Galactic nucleosynthesis, to determine the origin of the positron annihilation excess near the Galactic center, and to uncover the hidden emission mechanisms behind gamma-ray bursts. Besides astrophysics, Compton telescopes are establishing themselves in heliophysics, planetary sciences, medical imaging, accelerator physics, and environmental monitoring. Since the COMPTEL days, great advances in the achievable energy and position resolution were possible, creating an extremely vast, but also extremely sparsely sampled data space. Unfortunately, the optimum way to analyze the data from the next generation of Compton telescopes has not yet been found, which can retrieve all source parameters (location, spectrum, polarization, flux) and achieves the best possible resolution and sensitivity at the same time. This is especially important for all sciences objectives looking at the inner Galaxy: the large amount of expected sources, the high background (internal and Galactic diffuse emission), and the limited angular resolution, make it the most taxing case for data analysis. In general, two key challenges exist: First, what are the best data space representations to answer the specific science questions? Second, what is the best way to deconvolve the data to fully retrieve the source parameters? For modern Compton telescopes, the existing data space representations can either correctly reconstruct the absolute flux (binned mode) or achieve the best possible resolution (list-mode), both together were not possible up to now. Here we propose to develop a two-stage hybrid reconstruction method which combines the best aspects of both. Using a proof-of-concept implementation we can for the first time show that it is possible to alternate during each deconvolution step between a binned-mode approach to get the flux right and a
Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models
Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.
2017-12-01
Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream
Advanced digital computers, controls, and automation technologies for power plants: Proceedings
International Nuclear Information System (INIS)
Bhatt, S.C.
1992-08-01
This document is a compilation of the papers that were presented at an EPRI workshop on Advances in Computers, Controls, and Automation Technologies for Power Plants. The workshop, sponsored by EPRI's Nuclear Power Division, took place February 1992. It was attended by 157 representatives from electric utilities, equipment manufacturers, engineering consulting organizations, universities, national laboratories, government agencies and international utilities. More than 40% of the attendees were from utilities representing the majority group. There were 30% attendees from equipment manufacturers and the engineering consulting organizations. The participants from government agencies, universities, and national laboratories were about 10% each. The workshop included a keynote address, 35 technical papers, and vendor's equipment demonstrations. The technical papers described the state-of-the-art in the areas of recent utility digital upgrades such as digital feedwater controllers, steam generator level controllers, integrated plant computer systems, computer aided diagnostics, automated testing and surveillance and other applications. A group of technical papers presented the ongoing B ampersand W PWR integrated plant control system prototype developments with the triple redundant advanced digital control system. Several international papers from France, Japan and U.K. presented their programs on advance power plant design and applications. Significant advances in the control and automation technologies such as adaptive controls, self-tuning methods, neural networks and expert systems were presented by developers, universities, and national laboratories. Individual papers are indexed separately
BLUES function method in computational physics
Indekeu, Joseph O.; Müller-Nedebock, Kristian K.
2018-04-01
We introduce a computational method in physics that goes ‘beyond linear use of equation superposition’ (BLUES). A BLUES function is defined as a solution of a nonlinear differential equation (DE) with a delta source that is at the same time a Green’s function for a related linear DE. For an arbitrary source, the BLUES function can be used to construct an exact solution to the nonlinear DE with a different, but related source. Alternatively, the BLUES function can be used to construct an approximate piecewise analytical solution to the nonlinear DE with an arbitrary source. For this alternative use the related linear DE need not be known. The method is illustrated in a few examples using analytical calculations and numerical computations. Areas for further applications are suggested.
Spatial analysis statistics, visualization, and computational methods
Oyana, Tonny J
2015-01-01
An introductory text for the next generation of geospatial analysts and data scientists, Spatial Analysis: Statistics, Visualization, and Computational Methods focuses on the fundamentals of spatial analysis using traditional, contemporary, and computational methods. Outlining both non-spatial and spatial statistical concepts, the authors present practical applications of geospatial data tools, techniques, and strategies in geographic studies. They offer a problem-based learning (PBL) approach to spatial analysis-containing hands-on problem-sets that can be worked out in MS Excel or ArcGIS-as well as detailed illustrations and numerous case studies. The book enables readers to: Identify types and characterize non-spatial and spatial data Demonstrate their competence to explore, visualize, summarize, analyze, optimize, and clearly present statistical data and results Construct testable hypotheses that require inferential statistical analysis Process spatial data, extract explanatory variables, conduct statisti...
Computer Animation Based on Particle Methods
Directory of Open Access Journals (Sweden)
Rafal Wcislo
1999-01-01
Full Text Available The paper presents the main issues of a computer animation of a set of elastic macroscopic objects based on the particle method. The main assumption of the generated animations is to achieve very realistic movements in a scene observed on the computer display. The objects (solid bodies interact mechanically with each other, The movements and deformations of solids are calculated using the particle method. Phenomena connected with the behaviour of solids in the gravitational field, their defomtations caused by collisions and interactions with the optional liquid medium are simulated. The simulation ofthe liquid is performed using the cellular automata method. The paper presents both simulation schemes (particle method and cellular automata rules an the method of combining them in the single animation program. ln order to speed up the execution of the program the parallel version based on the network of workstation was developed. The paper describes the methods of the parallelization and it considers problems of load-balancing, collision detection, process synchronization and distributed control of the animation.
Computational methods of electron/photon transport
International Nuclear Information System (INIS)
Mack, J.M.
1983-01-01
A review of computational methods simulating the non-plasma transport of electrons and their attendant cascades is presented. Remarks are mainly restricted to linearized formalisms at electron energies above 1 keV. The effectiveness of various metods is discussed including moments, point-kernel, invariant imbedding, discrete-ordinates, and Monte Carlo. Future research directions and the potential impact on various aspects of science and engineering are indicated
Overview of Computer Simulation Modeling Approaches and Methods
Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett
2005-01-01
The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...
Mathematical optics classical, quantum, and computational methods
Lakshminarayanan, Vasudevan
2012-01-01
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical wave
Advances in mobile cloud computing and big data in the 5G era
Mastorakis, George; Dobre, Ciprian
2017-01-01
This book reports on the latest advances on the theories, practices, standards and strategies that are related to the modern technology paradigms, the Mobile Cloud computing (MCC) and Big Data, as the pillars and their association with the emerging 5G mobile networks. The book includes 15 rigorously refereed chapters written by leading international researchers, providing the readers with technical and scientific information about various aspects of Big Data and Mobile Cloud Computing, from basic concepts to advanced findings, reporting the state-of-the-art on Big Data management. It demonstrates and discusses methods and practices to improve multi-source Big Data manipulation techniques, as well as the integration of resources availability through the 3As (Anywhere, Anything, Anytime) paradigm, using the 5G access technologies.
Advanced Methods of Biomedical Signal Processing
Cerutti, Sergio
2011-01-01
This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult
Advanced Method of the Elastomagnetic Sensors Calibration
Directory of Open Access Journals (Sweden)
Mikulas Prascak
2004-01-01
Full Text Available Elastomagnetic method (EM method is a highly sensitive non-contact evaluation method for measuring tensile and compressive stress in steel. The latest development of measuring devices and EM sensors has shown that the thermomagnetic phenomenon has a stron influence on th accuracy during the EM sensor calibration. To eliminate the influence of this effect a two dimensional regression method is presented.
Delamination detection using methods of computational intelligence
Ihesiulor, Obinna K.; Shankar, Krishna; Zhang, Zhifang; Ray, Tapabrata
2012-11-01
Abstract Reliable delamination prediction scheme is indispensable in order to prevent potential risks of catastrophic failures in composite structures. The existence of delaminations changes the vibration characteristics of composite laminates and hence such indicators can be used to quantify the health characteristics of laminates. An approach for online health monitoring of in-service composite laminates is presented in this paper that relies on methods based on computational intelligence. Typical changes in the observed vibration characteristics (i.e. change in natural frequencies) are considered as inputs to identify the existence, location and magnitude of delaminations. The performance of the proposed approach is demonstrated using numerical models of composite laminates. Since this identification problem essentially involves the solution of an optimization problem, the use of finite element (FE) methods as the underlying tool for analysis turns out to be computationally expensive. A surrogate assisted optimization approach is hence introduced to contain the computational time within affordable limits. An artificial neural network (ANN) model with Bayesian regularization is used as the underlying approximation scheme while an improved rate of convergence is achieved using a memetic algorithm. However, building of ANN surrogate models usually requires large training datasets. K-means clustering is effectively employed to reduce the size of datasets. ANN is also used via inverse modeling to determine the position, size and location of delaminations using changes in measured natural frequencies. The results clearly highlight the efficiency and the robustness of the approach.
Identification of Enhancers In Human: Advances In Computational Studies
Kleftogiannis, Dimitrios A.
2016-03-24
Roughly ~50% of the human genome, contains noncoding sequences serving as regulatory elements responsible for the diverse gene expression of the cells in the body. One very well studied category of regulatory elements is the category of enhancers. Enhancers increase the transcriptional output in cells through chromatin remodeling or recruitment of complexes of binding proteins. Identification of enhancer using computational techniques is an interesting area of research and up to now several approaches have been proposed. However, the current state-of-the-art methods face limitations since the function of enhancers is clarified, but their mechanism of function is not well understood. This PhD thesis presents a bioinformatics/computer science study that focuses on the problem of identifying enhancers in different human cells using computational techniques. The dissertation is decomposed into four main tasks that we present in different chapters. First, since many of the enhancer’s functions are not well understood, we study the basic biological models by which enhancers trigger transcriptional functions and we survey comprehensively over 30 bioinformatics approaches for identifying enhancers. Next, we elaborate more on the availability of enhancer data as produced by different enhancer identification methods and experimental procedures. In particular, we analyze advantages and disadvantages of existing solutions and we report obstacles that require further consideration. To mitigate these problems we developed the Database of Integrated Human Enhancers (DENdb), a centralized online repository that archives enhancer data from 16 ENCODE cell-lines. The integrated enhancer data are also combined with many other experimental data that can be used to interpret the enhancers content and generate a novel enhancer annotation that complements the existing integrative annotation proposed by the ENCODE consortium. Next, we propose the first deep-learning computational
An advanced course in computational nuclear physics bridging the scales from quarks to neutron stars
Lombardo, Maria; Kolck, Ubirajara
2017-01-01
This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the c...
Method of generating a computer readable model
DEFF Research Database (Denmark)
2008-01-01
A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element. The met......A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element....... The method comprises encoding a first and a second one of the construction elements as corresponding data structures, each representing the connection elements of the corresponding construction element, and each of the connection elements having associated with it a predetermined connection type. The method...... further comprises determining a first connection element of the first construction element and a second connection element of the second construction element located in a predetermined proximity of each other; and retrieving connectivity information of the corresponding connection types of the first...
Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing
Energy Technology Data Exchange (ETDEWEB)
Fletcher, James H. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J [University of North Florida; Campbell, Joseph L [University of North Florida
2013-09-03
ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel
Efficient computation method of Jacobian matrix
International Nuclear Information System (INIS)
Sasaki, Shinobu
1995-05-01
As well known, the elements of the Jacobian matrix are complex trigonometric functions of the joint angles, resulting in a matrix of staggering complexity when we write it all out in one place. This article addresses that difficulties to this subject are overcome by using velocity representation. The main point is that its recursive algorithm and computer algebra technologies allow us to derive analytical formulation with no human intervention. Particularly, it is to be noted that as compared to previous results the elements are extremely simplified throughout the effective use of frame transformations. Furthermore, in case of a spherical wrist, it is shown that the present approach is computationally most efficient. Due to such advantages, the proposed method is useful in studying kinematically peculiar properties such as singularity problems. (author)
Computational method for free surface hydrodynamics
International Nuclear Information System (INIS)
Hirt, C.W.; Nichols, B.D.
1980-01-01
There are numerous flow phenomena in pressure vessel and piping systems that involve the dynamics of free fluid surfaces. For example, fluid interfaces must be considered during the draining or filling of tanks, in the formation and collapse of vapor bubbles, and in seismically shaken vessels that are partially filled. To aid in the analysis of these types of flow phenomena, a new technique has been developed for the computation of complicated free-surface motions. This technique is based on the concept of a local average volume of fluid (VOF) and is embodied in a computer program for two-dimensional, transient fluid flow called SOLA-VOF. The basic approach used in the VOF technique is briefly described, and compared to other free-surface methods. Specific capabilities of the SOLA-VOF program are illustrated by generic examples of bubble growth and collapse, flows of immiscible fluid mixtures, and the confinement of spilled liquids
Soft Computing Methods for Disulfide Connectivity Prediction.
Márquez-Chamorro, Alfonso E; Aguilar-Ruiz, Jesús S
2015-01-01
The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods.
Fiala, L.; Lokajicek, M.; Tumova, N.
2015-05-01
This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program
Computational Methods for Physicists Compendium for Students
Sirca, Simon
2012-01-01
This book helps advanced undergraduate, graduate and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues as well as to the ways to optimize program execution speeds. Many examples are given throughout the chapters, and each chapter is followed by at least a handful of more comprehensive problems which may be dealt with, for example, on a weekly basis in a one- or two-semester course. In these end-of-chapter problems the physics background is pronounced, and the main text preceding them is intended as an introduction or as a later reference. Less stress is given to the explanation of individual algorithms. It is tried to induce in the reader an own independent thinking and a certain amount of scepticism and scrutiny instead of blindly following readily available commercial tools.
Computational methods for nuclear criticality safety analysis
International Nuclear Information System (INIS)
Maragni, M.G.
1992-01-01
Nuclear criticality safety analyses require the utilization of methods which have been tested and verified against benchmarks results. In this work, criticality calculations based on the KENO-IV and MCNP codes are studied aiming the qualification of these methods at the IPEN-CNEN/SP and COPESP. The utilization of variance reduction techniques is important to reduce the computer execution time, and several of them are analysed. As practical example of the above methods, a criticality safety analysis for the storage tubes for irradiated fuel elements from the IEA-R1 research has been carried out. This analysis showed that the MCNP code is more adequate for problems with complex geometries, and the KENO-IV code shows conservative results when it is not used the generalized geometry option. (author)
Evolutionary Computing Methods for Spectral Retrieval
Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna
2009-01-01
A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.
Energy Technology Data Exchange (ETDEWEB)
Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.
2005-05-01
The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.
Advanced repair methods for enhanced reactor safety
International Nuclear Information System (INIS)
Kornfeldt, H.
1993-01-01
A few innovative concepts are described of the ABB Atom Service Division for repair and mitigation techniques for primary systems in nuclear power plants. The concepts are based on Shape Memory Alloy (SMA) technology. A basic feature of all methods is that welding and component replacement is being avoided and the radiation dose imposed on maintenance personnel reduced. The SMA-based repair methods give plant operators new ways to meet increased safety standards and rising maintenance costs. (Z.S.) 4 figs
Computational intelligence in wireless sensor networks recent advances and future challenges
Falcon, Rafael; Koeppen, Mario
2017-01-01
This book emphasizes the increasingly important role that Computational Intelligence (CI) methods are playing in solving a myriad of entangled Wireless Sensor Networks (WSN) related problems. The book serves as a guide for surveying several state-of-the-art WSN scenarios in which CI approaches have been employed. The reader finds in this book how CI has contributed to solve a wide range of challenging problems, ranging from balancing the cost and accuracy of heterogeneous sensor deployments to recovering from real-time sensor failures to detecting attacks launched by malicious sensor nodes and enacting CI-based security schemes. Network managers, industry experts, academicians and practitioners alike (mostly in computer engineering, computer science or applied mathematics) benefit from the spectrum of successful applications reported in this book. Senior undergraduate or graduate students may discover in this book some problems well suited for their own research endeavors. USP: Presents recent advances and fu...
Advanced verification methods for OVI security ink
Coombs, Paul G.; McCaffery, Shaun F.; Markantes, Tom
2006-02-01
OVI security ink +, incorporating OVP security pigment* microflakes, enjoys a history of effective document protection. This security feature provides not only first-line recognition by the person on the street, but also facilitates machine-readability. This paper explores the evolution of OVI reader technology from proof-of-concept to miniaturization. Three different instruments have been built to advance the technology of OVI machine verification. A bench-top unit has been constructed which allows users to automatically verify a multitude of different banknotes and OVI images. In addition, high speed modules were fabricated and tested in a state of the art banknote sorting machine. Both units demonstrate the ability of modern optical components to illuminate and collect light reflected from the interference platelets within OVI ink. Electronic hardware and software convert and process the optical information in milliseconds to accurately determine the authenticity of the security feature. Most recently, OVI ink verification hardware has been miniaturized and simplified providing yet another platform for counterfeit protection. These latest devices provide a tool for store clerks and bank tellers to unambiguously determine the validity of banknotes in the time period it takes the cash drawer to be opened.
Core design methods for advanced LMFBRs
International Nuclear Information System (INIS)
Chandler, J.C.; Marr, D.R.; McCurry, D.C.; Cantley, D.A.
1977-05-01
The multidiscipline approach to advanced LMFBR core design requires an iterative design procedure to obtain a closely-coupled design. HEDL's philosophy requires that the designs should be coupled to the extent that the design limiting fuel pin, the design limiting duct and the core reactivity lifetime should all be equal and should equal the fuel residence time. The design procedure consists of an iterative loop involving three stages of the design sequence. Stage 1 consists of general mechanical design and reactor physics scoping calculations to arrive at an initial core layout. Stage 2 consists of detailed reactor physics calculations for the core configuration arrived at in Stage 1. Based upon the detailed reactor physics results, a decision is made either to alter the design (Stage 1) or go to Stage 3. Stage 3 consists of core orificing and detailed component mechanical design calculations. At this point, an assessment is made regarding design adequacy. If the design is inadequate the entire procedure is repeated until the design is acceptable
Ratschek, H
2003-01-01
This undergraduate and postgraduate text will familiarise readers with interval arithmetic and related tools to gain reliable and validated results and logically correct decisions for a variety of geometric computations plus the means for alleviating the effects of the errors. It also considers computations on geometric point-sets, which are neither robust nor reliable in processing with standard methods. The authors provide two effective tools for obtaining correct results: (a) interval arithmetic, and (b) ESSA the new powerful algorithm which improves many geometric computations and makes th
Recent advances in coupled-cluster methods
Bartlett, Rodney J
1997-01-01
Today, coupled-cluster (CC) theory has emerged as the most accurate, widely applicable approach for the correlation problem in molecules. Furthermore, the correct scaling of the energy and wavefunction with size (i.e. extensivity) recommends it for studies of polymers and crystals as well as molecules. CC methods have also paid dividends for nuclei, and for certain strongly correlated systems of interest in field theory.In order for CC methods to have achieved this distinction, it has been necessary to formulate new, theoretical approaches for the treatment of a variety of essential quantities
Advanced method for making vitreous waste forms
International Nuclear Information System (INIS)
Pope, J.M.; Harrison, D.E.
1980-01-01
A process is described for making waste glass that circumvents the problems of dissolving nuclear waste in molten glass at high temperatures. Because the reactive mixing process is independent of the inherent viscosity of the melt, any glass composition can be prepared with equal facility. Separation of the mixing and melting operations permits novel glass fabrication methods to be employed
Advanced Testing Method for Ground Thermal Conductivity
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)
2017-04-01
A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.
Development of a HRA method based on Human Factor Issues for advanced NPP
International Nuclear Information System (INIS)
Lee, Seung Woo; Seong, Poong Hyun; Ha, Jun Su; Park, Jae Hyuk; Kim, Ja Kyung
2010-01-01
A design of instrumentation and control (I and C) systems for various plant systems including nuclear power plants (NPPs) is rapidly moving toward fully digital I and C and modern computer techniques have been gradually introduced into the design of advanced main control room (MCR). In advanced MCR, computer based Human-System Interfaces (HSIs) such as CRT based displays, large display panels (LDP), advanced information system, soft control and computerized procedure system (CPS) are applied in advanced MCR. Human operators in an advanced MCR still play an important role. However, various research and experiences from NPPs with an advanced MCR show that characteristics of human operators' task would be changed due to the use of inexperienced HSIs. This gives implications to the PSFs (Performance Shaping Factors) in HRA (Human Reliability Analysis). PSF in HRA is an aspect of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance resulting in increasing or decreasing the likelihood of human error. These PSFs have been suggested in various ways depending on the HRA methods used. In most HRA methods, however, there is a lack of inconsistency for the derivation of the PSFs and a lack of considerations of how the changes implemented in advanced MCR give impact on the operators' task. In this study, a framework for the derivation of and evaluation in the PSFs to be used in HRA for advanced NPPs is suggested
Advanced computational modeling for in vitro nanomaterial dosimetry.
DeLoid, Glen M; Cohen, Joel M; Pyrgiotakis, Georgios; Pirela, Sandra V; Pal, Anoop; Liu, Jiying; Srebric, Jelena; Demokritou, Philip
2015-10-24
Accurate and meaningful dose metrics are a basic requirement for in vitro screening to assess potential health risks of engineered nanomaterials (ENMs). Correctly and consistently quantifying what cells "see," during an in vitro exposure requires standardized preparation of stable ENM suspensions, accurate characterizatoin of agglomerate sizes and effective densities, and predictive modeling of mass transport. Earlier transport models provided a marked improvement over administered concentration or total mass, but included assumptions that could produce sizable inaccuracies, most notably that all particles at the bottom of the well are adsorbed or taken up by cells, which would drive transport downward, resulting in overestimation of deposition. Here we present development, validation and results of two robust computational transport models. Both three-dimensional computational fluid dynamics (CFD) and a newly-developed one-dimensional Distorted Grid (DG) model were used to estimate delivered dose metrics for industry-relevant metal oxide ENMs suspended in culture media. Both models allow simultaneous modeling of full size distributions for polydisperse ENM suspensions, and provide deposition metrics as well as concentration metrics over the extent of the well. The DG model also emulates the biokinetics at the particle-cell interface using a Langmuir isotherm, governed by a user-defined dissociation constant, K(D), and allows modeling of ENM dissolution over time. Dose metrics predicted by the two models were in remarkably close agreement. The DG model was also validated by quantitative analysis of flash-frozen, cryosectioned columns of ENM suspensions. Results of simulations based on agglomerate size distributions differed substantially from those obtained using mean sizes. The effect of cellular adsorption on delivered dose was negligible for K(D) values consistent with non-specific binding (> 1 nM), whereas smaller values (≤ 1 nM) typical of specific high
Advance of core design method for ATR
International Nuclear Information System (INIS)
Maeda, Seiichirou; Ihara, Toshiteru; Iijima, Takashi; Seino, Hideaki; Kobayashi, Tetsurou; Takeuchi, Michio; Sugawara, Satoru; Matsumoto, Mitsuo.
1995-01-01
Core characteristics of ATR demonstration plant has been revised such as increasing the fuel burnup and the channel power, which is achieved by changing the number of fuel rod per fuel assembly from 28 to 36. The research and development concerning the core design method for ATR have been continued. The calculational errors of core analysis code have been evaluated using the operational data of FUGEN and the full scale simulated test results in DCA (Deuterium Critical Assembly) and HTL (Heat Transfer Loop) at O-arai engineering center. It is confirmed that the calculational error of power distribution is smaller than the design value of ATR demonstration plant. Critical heat flux correlation curve for 36 fuel rod cluster has been developed and the probability evaluation method based on its curve, which is more rational to evaluate the fuel dryout, has been adopted. (author)
A computational method for sharp interface advection
Bredmose, Henrik; Jasak, Hrvoje
2016-01-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619
A computational method for sharp interface advection.
Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje
2016-11-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face-interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM ® extension and is published as open source.
International Nuclear Information System (INIS)
2016-01-01
Preface The 2016 version of the International Workshop on Advanced Computing and Analysis Techniques in Physics Research took place on January 18-22, 2016, at the Universidad Técnica Federico Santa Maria -UTFSM- in Valparaiso, Chile. The present volume of IOP Conference Series is devoted to the selected scientific contributions presented at the workshop. In order to guarantee the scientific quality of the Proceedings all papers were thoroughly peer-reviewed by an ad-hoc Editorial Committee with the help of many careful reviewers. The ACAT Workshop series has a long tradition starting in 1990 (Lyon, France), and takes place in intervals of a year and a half. Formerly these workshops were known under the name AIHENP (Artificial Intelligence for High Energy and Nuclear Physics). Each edition brings together experimental and theoretical physicists and computer scientists/experts, from particle and nuclear physics, astronomy and astrophysics in order to exchange knowledge and experience in computing and data analysis in physics. Three tracks cover the main topics: Computing technology: languages and system architectures. Data analysis: algorithms and tools. Theoretical Physics: techniques and methods. Although most contributions and discussions are related to particle physics and computing, other fields like condensed matter physics, earth physics, biophysics are often addressed in the hope to share our approaches and visions. It created a forum for exchanging ideas among fields, exploring and promoting cutting-edge computing technologies and debating hot topics. (paper)
Advances in x-ray computed microtomography at the NSLS
International Nuclear Information System (INIS)
Dowd, B.A.; Andrews, A.B.; Marr, R.B.; Siddons, D.P.; Jones, K.W.; Peskin, A.M.
1998-08-01
The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the gridding algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel 2 slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method
Computational electromagnetic methods for transcranial magnetic stimulation
Gomez, Luis J.
Transcranial magnetic stimulation (TMS) is a noninvasive technique used both as a research tool for cognitive neuroscience and as a FDA approved treatment for depression. During TMS, coils positioned near the scalp generate electric fields and activate targeted brain regions. In this thesis, several computational electromagnetics methods that improve the analysis, design, and uncertainty quantification of TMS systems were developed. Analysis: A new fast direct technique for solving the large and sparse linear system of equations (LSEs) arising from the finite difference (FD) discretization of Maxwell's quasi-static equations was developed. Following a factorization step, the solver permits computation of TMS fields inside realistic brain models in seconds, allowing for patient-specific real-time usage during TMS. The solver is an alternative to iterative methods for solving FD LSEs, often requiring run-times of minutes. A new integral equation (IE) method for analyzing TMS fields was developed. The human head is highly-heterogeneous and characterized by high-relative permittivities (107). IE techniques for analyzing electromagnetic interactions with such media suffer from high-contrast and low-frequency breakdowns. The novel high-permittivity and low-frequency stable internally combined volume-surface IE method developed. The method not only applies to the analysis of high-permittivity objects, but it is also the first IE tool that is stable when analyzing highly-inhomogeneous negative permittivity plasmas. Design: TMS applications call for electric fields to be sharply focused on regions that lie deep inside the brain. Unfortunately, fields generated by present-day Figure-8 coils stimulate relatively large regions near the brain surface. An optimization method for designing single feed TMS coil-arrays capable of producing more localized and deeper stimulation was developed. Results show that the coil-arrays stimulate 2.4 cm into the head while stimulating 3
Computational predictive methods for fracture and fatigue
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-09-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Modules and methods for all photonic computing
Schultz, David R.; Ma, Chao Hung
2001-01-01
A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.
Optical design teaching by computing graphic methods
Vazquez-Molini, D.; Muñoz-Luna, J.; Fernandez-Balbuena, A. A.; Garcia-Botella, A.; Belloni, P.; Alda, J.
2012-10-01
One of the key challenges in the teaching of Optics is that students need to know not only the math of the optical design, but also, and more important, to grasp and understand the optics in a three-dimensional space. Having a clear image of the problem to solve is the first step in order to begin to solve that problem. Therefore to achieve that the students not only must know the equation of refraction law but they have also to understand how the main parameters of this law are interacting among them. This should be a major goal in the teaching course. Optical graphic methods are a valuable tool in this way since they have the advantage of visual information and the accuracy of a computer calculation.
Workflow Support for Advanced Grid-Enabled Computing
Xu, Fenglian; Eres, M.H.; Tao, Feng; Cox, Simon J.
2004-01-01
The Geodise project brings computer scientists and engineer's skills together to build up a service-oriented computing environmnet for engineers to perform complicated computations in a distributed system. The workflow tool is a front GUI to provide a full life cycle of workflow functions for Grid-enabled computing. The full life cycle of workflow functions have been enhanced based our initial research and development. The life cycle starts with a composition of a workflow, followed by an ins...
Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.
Parkland Coll., Champaign, IL.
A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…
Polarization control method for UV writing of advanced bragg gratings
DEFF Research Database (Denmark)
Deyerl, Hans-Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm
2002-01-01
We report the application of the polarization control method for the UV writing of advanced fiber Bragg gratings (FBG). We demonstrate the strength of the new method for different apodization profiles, including the Sinc-profile and two designs for dispersion-free square filters. The method has...
Experimental and computing strategies in advanced material characterization problems
Energy Technology Data Exchange (ETDEWEB)
Bolzon, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy gabriella.bolzon@polimi.it (Italy)
2015-10-28
The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities.
Experimental and computing strategies in advanced material characterization problems
International Nuclear Information System (INIS)
Bolzon, G.
2015-01-01
The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities
First 3 years of operation of RIACS (Research Institute for Advanced Computer Science) (1983-1985)
Denning, P. J.
1986-01-01
The focus of the Research Institute for Advanced Computer Science (RIACS) is to explore matches between advanced computing architectures and the processes of scientific research. An architecture evaluation of the MIT static dataflow machine, specification of a graphical language for expressing distributed computations, and specification of an expert system for aiding in grid generation for two-dimensional flow problems was initiated. Research projects for 1984 and 1985 are summarized.
Soize, Christian
2017-01-01
This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. < This book is intended to be a graduate-level textbook for stu...
Burger, Jessica L.
2015-07-16
© This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.
Parallel computing in genomic research: advances and applications
Directory of Open Access Journals (Sweden)
Ocaña K
2015-11-01
Full Text Available Kary Ocaña,1 Daniel de Oliveira2 1National Laboratory of Scientific Computing, Petrópolis, Rio de Janeiro, 2Institute of Computing, Fluminense Federal University, Niterói, Brazil Abstract: Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. Keywords: high-performance computing, genomic research, cloud computing, grid computing, cluster computing, parallel computing
Computational methods in calculating superconducting current problems
Brown, David John, II
Various computational problems in treating superconducting currents are examined. First, field inversion in spatial Fourier transform space is reviewed to obtain both one-dimensional transport currents flowing down a long thin tape, and a localized two-dimensional current. The problems associated with spatial high-frequency noise, created by finite resolution and experimental equipment, are presented, and resolved with a smooth Gaussian cutoff in spatial frequency space. Convergence of the Green's functions for the one-dimensional transport current densities is discussed, and particular attention is devoted to the negative effects of performing discrete Fourier transforms alone on fields asymptotically dropping like 1/r. Results of imaging simulated current densities are favorably compared to the original distributions after the resulting magnetic fields undergo the imaging procedure. The behavior of high-frequency spatial noise, and the behavior of the fields with a 1/r asymptote in the imaging procedure in our simulations is analyzed, and compared to the treatment of these phenomena in the published literature. Next, we examine calculation of Mathieu and spheroidal wave functions, solutions to the wave equation in elliptical cylindrical and oblate and prolate spheroidal coordinates, respectively. These functions are also solutions to Schrodinger's equations with certain potential wells, and are useful in solving time-varying superconducting problems. The Mathieu functions are Fourier expanded, and the spheroidal functions expanded in associated Legendre polynomials to convert the defining differential equations to recursion relations. The infinite number of linear recursion equations is converted to an infinite matrix, multiplied by a vector of expansion coefficients, thus becoming an eigenvalue problem. The eigenvalue problem is solved with root solvers, and the eigenvector problem is solved using a Jacobi-type iteration method, after preconditioning the
A Novel Automated Method for Analyzing Cylindrical Computed Tomography Data
Roth, D. J.; Burke, E. R.; Rauser, R. W.; Martin, R. E.
2011-01-01
A novel software method is presented that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography. This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2-D sheets in the vertical direction in addition to volume rendering and normal plane views provided by traditional CT software. The method is based on interior and exterior surface edge detection and under proper conditions, is FULLY AUTOMATED and requires no input from the user except the correct voxel dimension from the CT scan. The software is available from NASA in 32- and 64-bit versions that can be applied to gigabyte-sized data sets, processing data either in random access memory or primarily on the computer hard drive. Please inquire with the presenting author if further interested. This software differentiates itself in total from other possible re-slicing software solutions due to complete automation and advanced processing and analysis capabilities.
Advances in computer applications in radioactive tracer studies of the circulation
International Nuclear Information System (INIS)
Wagner, H.N. Jr.; Klingensmith, W.C. III; Knowles, L.G.; Lotter, M.G.; Natarajan, T.K.
1977-01-01
Advances in computer technology since the last IAEA symposium on medical radionuclide imaging have now made possible a new approach to the study of physiological processes that promise to improve greatly our perception of body functions and structures. We have developed procedures, called ''compressed time imaging'' (CTI), that display serial images obtained over periods of minutes and hours at framing rates of approximately 16 to 60 per minute. At other times, ''real'' or ''expanded time imaging'' is used, depending on the process under study. Designed initially to study the beating heart, such multidimensional time studies are now being extended to the cerebral and other regional circulations, as well as to other organ systems. The improved imaging methods provide a new approach to space and time in the study of physiology and are supplemented by quantitative analysis of data displayed on the television screen of the computer. (author)
Advanced technique for computing fuel combustion properties in pulverized-fuel fired boilers
Energy Technology Data Exchange (ETDEWEB)
Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (Russian Federation))
1992-03-01
Reviews foreign technical reports on advanced techniques for computing fuel combustion properties in pulverized-fuel fired boilers and analyzes a technique developed by Combustion Engineering, Inc. (USA). Characteristics of 25 fuel types, including 19 grades of coal, are listed along with a diagram of an installation with a drop tube furnace. Characteristics include burn-out intensity curves obtained using thermogravimetric analysis for high-volatile bituminous, semi-bituminous and coking coal. The patented LFP-SKM mathematical model is used to model combustion of a particular fuel under given conditions. The model allows for fuel particle size, air surplus, load, flame height, and portion of air supplied as tertiary blast. Good agreement between computational and experimental data was observed. The method is employed in designing new boilers as well as converting operating boilers to alternative types of fuel. 3 refs.
Computational Studies of Protein Hydration Methods
Morozenko, Aleksandr
It is widely appreciated that water plays a vital role in proteins' functions. The long-range proton transfer inside proteins is usually carried out by the Grotthuss mechanism and requires a chain of hydrogen bonds that is composed of internal water molecules and amino acid residues of the protein. In other cases, water molecules can facilitate the enzymes catalytic reactions by becoming a temporary proton donor/acceptor. Yet a reliable way of predicting water protein interior is still not available to the biophysics community. This thesis presents computational studies that have been performed to gain insights into the problems of fast and accurate prediction of potential water sites inside internal cavities of protein. Specifically, we focus on the task of attainment of correspondence between results obtained from computational experiments and experimental data available from X-ray structures. An overview of existing methods of predicting water molecules in the interior of a protein along with a discussion of the trustworthiness of these predictions is a second major subject of this thesis. A description of differences of water molecules in various media, particularly, gas, liquid and protein interior, and theoretical aspects of designing an adequate model of water for the protein environment are widely discussed in chapters 3 and 4. In chapter 5, we discuss recently developed methods of placement of water molecules into internal cavities of a protein. We propose a new methodology based on the principle of docking water molecules to a protein body which allows to achieve a higher degree of matching experimental data reported in protein crystal structures than other techniques available in the world of biophysical software. The new methodology is tested on a set of high-resolution crystal structures of oligopeptide-binding protein (OppA) containing a large number of resolved internal water molecules and applied to bovine heart cytochrome c oxidase in the fully
First Responders Guide to Computer Forensics: Advanced Topics
National Research Council Canada - National Science Library
Nolan, Richard; Baker, Marie; Branson, Jake; Hammerstein, Josh; Rush, Kris; Waits, Cal; Schweinsberg, Elizabeth
2005-01-01
... on more advanced technical operations like process characterization and spoofed email. It is designed for experienced security and network professionals who already have a fundamental understanding of forensic methodology...
International Nuclear Information System (INIS)
Kwak, Kyung Won; Park, Byung Kwan; Kim, Chan Kyo; Lee, Hyun Moo; Choi, Han Y ong
2008-01-01
Background: Urothelial carcinoma is the most common malignant tumor arising from the pelvocalyceal system. Helical computed tomography (CT) is probably the best preoperative-stage modality for the determination of treatment plan and prognosis. Purpose: To obtain helical CT imaging features suggesting advanced pelvocalyceal urothelial carcinoma. Material and Methods: Preoperative CT images in 44 patients with pelvocalyceal urothelial carcinoma were retrospectively reviewed and correlated with the pathological examination to determine imaging features suggesting stage III or IV of the disease. Results: Pathological stages revealed stage I in 16, stage II in three, stage III in 17, and stage IV in eight patients. Seven patients had metastatic lymph nodes. CT imaging showed that renal parenchymal invasion, sinus fat invasion, and lymph node metastasis were highly suggestive of advanced urothelial cell carcinoma (P<0.05). Helical CT sensitivity, specificity, and accuracy for advanced pelvocalyceal urothelial carcinoma were 76% (19/25), 84% (16/19), and 80% (35/44), respectively. Conclusion: Preoperative helical CT may suggest imaging features of advanced urothelial carcinoma, influencing treatment plan and patient prognosis, even though its accuracy is not so high
Advanced methods of solid oxide fuel cell modeling
Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi
2011-01-01
Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods
The Advance of Computing from the Ground to the Cloud
Breeding, Marshall
2009-01-01
A trend toward the abstraction of computing platforms that has been developing in the broader IT arena over the last few years is just beginning to make inroads into the library technology scene. Cloud computing offers for libraries many interesting possibilities that may help reduce technology costs and increase capacity, reliability, and…
Advanced entry guidance algorithm with landing footprint computation
Leavitt, James Aaron
-determined angle of attack profile. The method is also capable of producing orbital footprints using an automatically-generated set of angle of attack profiles of varying range, with the lowest profile designed for near-maximum range in the absence of an active heat load constraint. The accuracy of the footprint method is demonstrated by direct comparison with footprints computed independently by an optimization program.
Strategy to Promote Active Learning of an Advanced Research Method
McDermott, Hilary J.; Dovey, Terence M.
2013-01-01
Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…
International Nuclear Information System (INIS)
Loewdin, Per-Olov; Oehrn, N.Y.; Sabin, J.R.; Zerner, M.C.
1993-01-01
After an introduction and a personal (World War II and postwar) retrospective by C.C.J. Roothaan, 69 papers are presented in fields of quantum biology, quantum chemistry, and condensed matter physics; topics covered include advanced scientific computing, interaction of photons and matter, quantum molecular dynamics, electronic structure methods, polymeric systems, and quantum chemical methods for extended systems. An author index is included
ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS
International Nuclear Information System (INIS)
Ahmadi, Goodarz
2004-01-01
In this project, an Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column was developed. The approach used an Eulerian analysis of liquid flows in the bubble column, and made use of the Lagrangian trajectory analysis for the bubbles and particle motions. The bubble-bubble and particle-particle collisions are included the model. The model predictions are compared with the experimental data and good agreement was found An experimental setup for studying two-dimensional bubble columns was developed. The multiphase flow conditions in the bubble column were measured using optical image processing and Particle Image Velocimetry techniques (PIV). A simple shear flow device for bubble motion in a constant shear flow field was also developed. The flow conditions in simple shear flow device were studied using PIV method. Concentration and velocity of particles of different sizes near a wall in a duct flow was also measured. The technique of Phase-Doppler anemometry was used in these studies. An Eulerian volume of fluid (VOF) computational model for the flow condition in the two-dimensional bubble column was also developed. The liquid and bubble motions were analyzed and the results were compared with observed flow patterns in the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were also analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures were also studied. The simulation results were compared with the experimental data and discussed A thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion was developed. The balance laws were obtained and the constitutive laws established
A modified captive bubble method for determining advancing and receding contact angles
International Nuclear Information System (INIS)
Xue, Jian; Shi, Pan; Zhu, Lin; Ding, Jianfu; Chen, Qingmin; Wang, Qingjun
2014-01-01
Graphical abstract: - Highlights: • A modified captive bubble method for determining advancing and receding contact angle is proposed. • We have designed a pressure chamber with a pressure control system to the original experimental. • The modified method overcomes the deviation of the bubble in the traditional captive bubble method. • The modified captive bubble method allows a smaller error from the test. - Abstract: In this work, a modification to the captive bubble method was proposed to test the advancing and receding contact angle. This modification is done by adding a pressure chamber with a pressure control system to the original experimental system equipped with an optical angle mater equipped with a high speed CCD camera, a temperature control system and a computer. A series of samples with highly hydrophilic, hydrophilic, hydrophobic and superhydrophobic surfaces were prepared. The advancing and receding contact angles of these samples with highly hydrophilic, hydrophilic, and hydrophobic surfaces through the new methods was comparable to the result tested by the traditional sessile drop method. It is proved that this method overcomes the limitation of the traditional captive bubble method and the modified captive bubble method allows a smaller error from the test. However, due to the nature of the captive bubble technique, this method is also only suitable for testing the surface with advancing or receding contact angle below 130°
A modified captive bubble method for determining advancing and receding contact angles
Energy Technology Data Exchange (ETDEWEB)
Xue, Jian; Shi, Pan; Zhu, Lin [Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Eduction, Nanjing 210093 (China); Ding, Jianfu [Security and Disruptive Technologies, National Research Council Canada, 1200 Montreal Road, Ottawa, K1A 0R6, Ontario (Canada); Chen, Qingmin [Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Eduction, Nanjing 210093 (China); Wang, Qingjun, E-mail: njuwqj@nju.edu.cn [Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Eduction, Nanjing 210093 (China)
2014-03-01
Graphical abstract: - Highlights: • A modified captive bubble method for determining advancing and receding contact angle is proposed. • We have designed a pressure chamber with a pressure control system to the original experimental. • The modified method overcomes the deviation of the bubble in the traditional captive bubble method. • The modified captive bubble method allows a smaller error from the test. - Abstract: In this work, a modification to the captive bubble method was proposed to test the advancing and receding contact angle. This modification is done by adding a pressure chamber with a pressure control system to the original experimental system equipped with an optical angle mater equipped with a high speed CCD camera, a temperature control system and a computer. A series of samples with highly hydrophilic, hydrophilic, hydrophobic and superhydrophobic surfaces were prepared. The advancing and receding contact angles of these samples with highly hydrophilic, hydrophilic, and hydrophobic surfaces through the new methods was comparable to the result tested by the traditional sessile drop method. It is proved that this method overcomes the limitation of the traditional captive bubble method and the modified captive bubble method allows a smaller error from the test. However, due to the nature of the captive bubble technique, this method is also only suitable for testing the surface with advancing or receding contact angle below 130°.
Advance in research on aerosol deposition simulation methods
International Nuclear Information System (INIS)
Liu Keyang; Li Jingsong
2011-01-01
A comprehensive analysis of the health effects of inhaled toxic aerosols requires exact data on airway deposition. A knowledge of the effect of inhaled drugs is essential to the optimization of aerosol drug delivery. Sophisticated analytical deposition models can be used for the computation of total, regional and generation specific deposition efficiencies. The continuously enhancing computer seem to allow us to study the particle transport and deposition in more and more realistic airway geometries with the help of computational fluid dynamics (CFD) simulation method. In this article, the trends in aerosol deposition models and lung models, and the methods for achievement of deposition simulations are also reviewed. (authors)
Enhanced operational safety of BWRs by advanced computer technology and human engineering
International Nuclear Information System (INIS)
Tomizawa, T.; Fukumoto, A.; Neda, T.; Toda, Y.; Takizawa, Y.
1984-01-01
In BWR nuclear power plants, where unit capacity is increasing and the demand for assured safety is growing, it has become important for the information interface between man and machine to work smoothly. Efforts to improve man-machine communication have been going on for the past ten years in Japan. Computer facilities and colour CRT display systems are amongst the most useful new methods. Advanced computer technology has been applied to operating plants and found to be very helpful for safe operation. A display monitoring system (DMS) is in operation in a 1100 MW(e) BWR plant. A total combination test was successfully completed on the 'plant operation by displayed information and automation' system (PODIA) in February 1983 before shipment to the site. The objective of this test was to verify the improved qualification of the newly developed advanced PODIA man-machine system by this enlarged fabrication test concept. In addition, the development of special graphics displays for the main control room and technical support centre to assist operators in assessing plant safety and diagnosing problems is required to meet post-TMI regulations. For this purpose, a prototype safety parameter display system (called Toshiba SPDS) with two colour CRT displays and a computer (TOSBAC-7/70) was developed in 1981 as an independent safety monitoring system. The PODIA and SPDS are now independent systems, but their combination has been found to be more useful and valuable for nuclear power plant safety. The paper discusses supervisory and operational concepts in the advanced main control room including SPDS, and describes the PODIA and SPDS verification tests including the valuable experience obtained after improvements in the qualification of these systems had been made to satisfactory operational safety levels. (author)
Methodics of computing the results of monitoring the exploratory gallery
Directory of Open Access Journals (Sweden)
Krúpa Víazoslav
2000-09-01
Full Text Available At building site of motorway tunnel Viòové-Dubná skala , the priority is given to driving of exploration galley that secures in detail: geologic, engineering geology, hydrogeology and geotechnics research. This research is based on gathering information for a supposed use of the full profile driving machine that would drive the motorway tunnel. From a part of the exploration gallery which is driven by the TBM method, a fulfilling information is gathered about the parameters of the driving process , those are gathered by a computer monitoring system. The system is mounted on a driving machine. This monitoring system is based on the industrial computer PC 104. It records 4 basic values of the driving process: the electromotor performance of the driving machine Voest-Alpine ATB 35HA, the speed of driving advance, the rotation speed of the disintegrating head TBM and the total head pressure. The pressure force is evaluated from the pressure in the hydraulic cylinders of the machine. Out of these values, the strength of rock mass, the angle of inner friction, etc. are mathematically calculated. These values characterize rock mass properties as their changes. To define the effectivity of the driving process, the value of specific energy and the working ability of driving head is used. The article defines the methodics of computing the gathered monitoring information, that is prepared for the driving machine Voest Alpine ATB 35H at the Institute of Geotechnics SAS. It describes the input forms (protocols of the developed method created by an EXCEL program and shows selected samples of the graphical elaboration of the first monitoring results obtained from exploratory gallery driving process in the Viòové Dubná skala motorway tunnel.
Tutorial on Computing: Technological Advances, Social Implications, Ethical and Legal Issues
Debnath, Narayan
2012-01-01
Computing and information technology have made significant advances. The use of computing and technology is a major aspect of our lives, and this use will only continue to increase in our lifetime. Electronic digital computers and high performance communication networks are central to contemporary information technology. The computing applications in a wide range of areas including business, communications, medical research, transportation, entertainments, and education are transforming lo...
Center for Advanced Energy Studies: Computer Assisted Virtual Environment (CAVE)
Federal Laboratory Consortium — The laboratory contains a four-walled 3D computer assisted virtual environment - or CAVE TM — that allows scientists and engineers to literally walk into their data...
Advances in Physarum machines sensing and computing with Slime mould
2016-01-01
This book is devoted to Slime mould Physarum polycephalum, which is a large single cell capable for distributed sensing, concurrent information processing, parallel computation and decentralized actuation. The ease of culturing and experimenting with Physarum makes this slime mould an ideal substrate for real-world implementations of unconventional sensing and computing devices The book is a treatise of theoretical and experimental laboratory studies on sensing and computing properties of slime mould, and on the development of mathematical and logical theories of Physarum behavior. It is shown how to make logical gates and circuits, electronic devices (memristors, diodes, transistors, wires, chemical and tactile sensors) with the slime mould. The book demonstrates how to modify properties of Physarum computing circuits with functional nano-particles and polymers, to interface the slime mould with field-programmable arrays, and to use Physarum as a controller of microbial fuel cells. A unique multi-agent model...
Methods for studying fuel management in advanced gas cooled reactors
International Nuclear Information System (INIS)
Buckler, A.N.; Griggs, C.F.; Tyror, J.G.
1971-07-01
The methods used for studying fuel and absorber management problems in AGRs are described. The basis of the method is the use of ARGOSY lattice data in reactor calculations performed at successive time steps. These reactor calculations may be quite crude but for advanced design calculations a detailed channel-by-channel representation of the whole core is required. The main emphasis of the paper is in describing such an advanced approach - the ODYSSEUS-6 code. This code evaluates reactor power distributions as a function of time and uses the information to select refuelling moves and determine controller positions. (author)
Advancements in Violin-Related Human-Computer Interaction
DEFF Research Database (Denmark)
Overholt, Daniel
2014-01-01
of human intelligence and emotion is at the core of the Musical Interface Technology Design Space, MITDS. This is a framework that endeavors to retain and enhance such traits of traditional instruments in the design of interactive live performance interfaces. Utilizing the MITDS, advanced Human...
Computational methods in sequence and structure prediction
Lang, Caiyi
This dissertation is organized into two parts. In the first part, we will discuss three computational methods for cis-regulatory element recognition in three different gene regulatory networks as the following: (a) Using a comprehensive "Phylogenetic Footprinting Comparison" method, we will investigate the promoter sequence structures of three enzymes (PAL, CHS and DFR) that catalyze sequential steps in the pathway from phenylalanine to anthocyanins in plants. Our result shows there exists a putative cis-regulatory element "AC(C/G)TAC(C)" in the upstream of these enzyme genes. We propose this cis-regulatory element to be responsible for the genetic regulation of these three enzymes and this element, might also be the binding site for MYB class transcription factor PAP1. (b) We will investigate the role of the Arabidopsis gene glutamate receptor 1.1 (AtGLR1.1) in C and N metabolism by utilizing the microarray data we obtained from AtGLR1.1 deficient lines (antiAtGLR1.1). We focus our investigation on the putatively co-regulated transcript profile of 876 genes we have collected in antiAtGLR1.1 lines. By (a) scanning the occurrence of several groups of known abscisic acid (ABA) related cisregulatory elements in the upstream regions of 876 Arabidopsis genes; and (b) exhaustive scanning of all possible 6-10 bps motif occurrence in the upstream regions of the same set of genes, we are able to make a quantative estimation on the enrichment level of each of the cis-regulatory element candidates. We finally conclude that one specific cis-regulatory element group, called "ABRE" elements, are statistically highly enriched within the 876-gene group as compared to their occurrence within the genome. (c) We will introduce a new general purpose algorithm, called "fuzzy REDUCE1", which we have developed recently for automated cis-regulatory element identification. In the second part, we will discuss our newly devised protein design framework. With this framework we have developed
Computational methods for corpus annotation and analysis
Lu, Xiaofei
2014-01-01
This book reviews computational tools for lexical, syntactic, semantic, pragmatic and discourse analysis, with instructions on how to obtain, install and use each tool. Covers studies using Natural Language Processing, and offers ideas for better integration.
EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...
Cloud computing methods and practical approaches
Mahmood, Zaigham
2013-01-01
This book presents both state-of-the-art research developments and practical guidance on approaches, technologies and frameworks for the emerging cloud paradigm. Topics and features: presents the state of the art in cloud technologies, infrastructures, and service delivery and deployment models; discusses relevant theoretical frameworks, practical approaches and suggested methodologies; offers guidance and best practices for the development of cloud-based services and infrastructures, and examines management aspects of cloud computing; reviews consumer perspectives on mobile cloud computing an
Advances in mixed-integer programming methods for chemical production scheduling.
Velez, Sara; Maravelias, Christos T
2014-01-01
The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.
OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing
Strayer, Michael
2005-01-01
Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations
Advanced neural network-based computational schemes for robust fault diagnosis
Mrugalski, Marcin
2014-01-01
The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...
Advances in Computing and Information Technology : Proceedings of the Second International
Nagamalai, Dhinaharan; Chaki, Nabendu
2012-01-01
The international conference on Advances in Computing and Information technology (ACITY 2012) provides an excellent international forum for both academics and professionals for sharing knowledge and results in theory, methodology and applications of Computer Science and Information Technology. The Second International Conference on Advances in Computing and Information technology (ACITY 2012), held in Chennai, India, during July 13-15, 2012, covered a number of topics in all major fields of Computer Science and Information Technology including: networking and communications, network security and applications, web and internet computing, ubiquitous computing, algorithms, bioinformatics, digital image processing and pattern recognition, artificial intelligence, soft computing and applications. Upon a strength review process, a number of high-quality, presenting not only innovative ideas but also a founded evaluation and a strong argumentation of the same, were selected and collected in the present proceedings, ...
Directory of Open Access Journals (Sweden)
Chantal Basurto
2015-12-01
Full Text Available Complex Fenestration Systems (CFS are advanced daylighting systems that are placed on the upper part of a window to improve the indoor daylight distribution within rooms. Due to their double function of daylight redirection and solar protection, they are considered as a solution to mitigate the unfavorable effects due to the admission of direct sunlight in buildings located in prevailing sunny climates (risk of glare and overheating. Accordingly, an adequate assessment of their performance should include an annual evaluation of the main aspects relevant to the use of daylight in such regions: the indoor illuminance distribution, thermal comfort, and visual comfort of the occupant’s. Such evaluation is possible with the use of computer simulations combined with the bi-directional scattering distribution function (BSDF data of these systems. This study explores the use of available methods to assess the visible and thermal annual performance of five different CFS using advanced computer simulations. To achieve results, an on-site daylight monitoring was carried out in a building located in a predominantly sunny climate location, and the collected data was used to create and calibrate a virtual model used to carry-out the simulations. The results can be employed to select the CFS, which improves visual and thermal interior environment for the occupants.
Energy Technology Data Exchange (ETDEWEB)
Almgren, Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeMar, Phil [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vetter, Jeffrey [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Riley, Katherine [Argonne Leadership Computing Facility, Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Science Network; Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Science Network; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Science Network; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bethel, Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bosilca, George [Univ. of Tennessee, Knoxville, TN (United States); Cappello, Frank [Argonne National Lab. (ANL), Argonne, IL (United States); Gamblin, Todd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Habib, Salman [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, Judy [Oak Ridge Leadership Computing Facility, Oak Ridge, TN (United States); Hollingsworth, Jeffrey K. [Univ. of Maryland, College Park, MD (United States); McInnes, Lois Curfman [Argonne National Lab. (ANL), Argonne, IL (United States); Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moore, Shirley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moreland, Ken [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roser, Rob [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Shende, Sameer [Univ. of Oregon, Eugene, OR (United States); Shipman, Galen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-06-20
The widespread use of computing in the American economy would not be possible without a thoughtful, exploratory research and development (R&D) community pushing the performance edge of operating systems, computer languages, and software libraries. These are the tools and building blocks — the hammers, chisels, bricks, and mortar — of the smartphone, the cloud, and the computing services on which we rely. Engineers and scientists need ever-more specialized computing tools to discover new material properties for manufacturing, make energy generation safer and more efficient, and provide insight into the fundamentals of the universe, for example. The research division of the U.S. Department of Energy’s (DOE’s) Office of Advanced Scientific Computing and Research (ASCR Research) ensures that these tools and building blocks are being developed and honed to meet the extreme needs of modern science. See also http://exascaleage.org/ascr/ for additional information.
77 FR 12823 - Advanced Scientific Computing Advisory Committee
2012-03-02
... Early Career technical talks Summary of Applied Math and Computer Science Workshops ASCR's new SBIR... least 5 business days prior to the meeting. Reasonable provision will be made to include the scheduled... the orderly conduct of business. Public comment will follow the 10-minute rule. Minutes: The minutes...
Advanced Simulation and Computing Co-Design Strategy
Energy Technology Data Exchange (ETDEWEB)
Ang, James A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoang, Thuc T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McPherson, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Rob [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-11-01
This ASC Co-design Strategy lays out the full continuum and components of the co-design process, based on what we have experienced thus far and what we wish to do more in the future to meet the program’s mission of providing high performance computing (HPC) and simulation capabilities for NNSA to carry out its stockpile stewardship responsibility.
Connecting Performance Analysis and Visualization to Advance Extreme Scale Computing
Energy Technology Data Exchange (ETDEWEB)
Bremer, Peer-Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mohr, Bernd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schulz, Martin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pasccci, Valerio [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gamblin, Todd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunst, Holger [Dresden Univ. of Technology (Germany)
2015-07-29
The characterization, modeling, analysis, and tuning of software performance has been a central topic in High Performance Computing (HPC) since its early beginnings. The overall goal is to make HPC software run faster on particular hardware, either through better scheduling, on-node resource utilization, or more efficient distributed communication.
METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY
The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...
Advances in the Analytical Methods for Determining the Antioxidant ...
African Journals Online (AJOL)
Advances in the Analytical Methods for Determining the Antioxidant Properties of Honey: A Review. M Moniruzzaman, MI Khalil, SA Sulaiman, SH Gan. Abstract. Free radicals and reactive oxygen species (ROS) have been implicated in contributing to the processes of aging and disease. In an effort to combat free radical ...
Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review
Directory of Open Access Journals (Sweden)
Wang Qiu-kuan
2012-01-01
Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.
A computer method for spectral classification
International Nuclear Information System (INIS)
Appenzeller, I.; Zekl, H.
1978-01-01
The authors describe the start of an attempt to improve the accuracy of spectroscopic parallaxes by evaluating spectroscopic temperature and luminosity criteria such as those of the MK classification spectrograms which were analyzed automatically by means of a suitable computer program. (Auth.)
Computational structural biology: methods and applications
National Research Council Canada - National Science Library
Schwede, Torsten; Peitsch, Manuel Claude
2008-01-01
... sequencing reinforced the observation that structural information is needed to understand the detailed function and mechanism of biological molecules such as enzyme reactions and molecular recognition events. Furthermore, structures are obviously key to the design of molecules with new or improved functions. In this context, computational structural biology...
Alfieri, Luisa
2015-12-01
Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.
Recent advances in swarm intelligence and evolutionary computation
2015-01-01
This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference f...
Advances in Computer Science and Information Engineering Volume 2
Lin, Sally
2012-01-01
CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.
Advances in Computer Science and Information Engineering Volume 1
Lin, Sally
2012-01-01
CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.
A computed microtomography method for understanding epiphyseal growth plate fusion
Staines, Katherine A.; Madi, Kamel; Javaheri, Behzad; Lee, Peter D.; Pitsillides, Andrew A.
2017-12-01
The epiphyseal growth plate is a developmental region responsible for linear bone growth, in which chondrocytes undertake a tightly regulated series of biological processes. Concomitant with the cessation of growth and sexual maturation, the human growth plate undergoes progressive narrowing, and ultimately disappears. Despite the crucial role of this growth plate fusion ‘bridging’ event, the precise mechanisms by which it is governed are complex and yet to be established. Progress is likely hindered by the current methods for growth plate visualisation; these are invasive and largely rely on histological procedures. Here we describe our non-invasive method utilising synchrotron x-ray computed microtomography for the examination of growth plate bridging, which ultimately leads to its closure coincident with termination of further longitudinal bone growth. We then apply this method to a dataset obtained from a benchtop microcomputed tomography scanner to highlight its potential for wide usage. Furthermore, we conduct finite element modelling at the micron-scale to reveal the effects of growth plate bridging on local tissue mechanics. Employment of these 3D analyses of growth plate bone bridging is likely to advance our understanding of the physiological mechanisms that control growth plate fusion.
Emerging Computational Methods for the Rational Discovery of Allosteric Drugs.
Wagner, Jeffrey R; Lee, Christopher T; Durrant, Jacob D; Malmstrom, Robert D; Feher, Victoria A; Amaro, Rommie E
2016-06-08
Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages.
Advances in bio-inspired computing for combinatorial optimization problems
Pintea, Camelia-Mihaela
2013-01-01
Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a
Higher geometry an introduction to advanced methods in analytic geometry
Woods, Frederick S
2005-01-01
For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study
Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool
Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.
2013-01-01
In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…
UNEDF: Advanced Scientific Computing Transforms the Low-Energy Nuclear Many-Body Problem
International Nuclear Information System (INIS)
Stoitsov, Mario; Nam, Hai Ah; Nazarewicz, Witold; Bulgac, Aurel; Hagen, Gaute; Kortelainen, E.M.; Pei, Junchen; Roche, K.J.; Schunck, N.; Thompson, I.; Vary, J.P.; Wild, S.
2011-01-01
The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper illustrates significant milestones accomplished by UNEDF through integration of the theoretical approaches, advanced numerical algorithms, and leadership class computational resources.
Parallel computing in genomic research: advances and applications.
Ocaña, Kary; de Oliveira, Daniel
2015-01-01
Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.
Proceedings of the international conference on advances in computer and communication technology
International Nuclear Information System (INIS)
Bakal, J.W.; Kunte, A.S.; Walinjkar, P.B.; Karnani, N.K.
2012-02-01
A nation's development is coupled with advancement and adoption of new technologies. During the past decade advancements in computer and communication technologies have grown multi fold. For the growth of any country it is necessary to keep pace with the latest innovations in technology. International Conference on Advances in Computer and Communication Technology organised by Institution of Electronics and Telecommunication Engineers, Mumbai Centre is an attempt to provide a platform for scientists, engineering students, educators and experts to share their knowledge and discuss the efforts put by them in the field of R and D. The papers relevant to INIS are indexed separately
International Nuclear Information System (INIS)
Nam, H; Stoitsov, M; Nazarewicz, W; Hagen, G; Kortelainen, M; Pei, J C; Bulgac, A; Maris, P; Vary, J P; Roche, K J; Schunck, N; Thompson, I; Wild, S M
2012-01-01
The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multi-disciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. We illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadership-class computational resources.
Application of advanced data reduction methods to gas turbine dynamic analysis
International Nuclear Information System (INIS)
Juhl, P.B.
1978-01-01
This paper discusses the application of advanced data reduction methods to the evaluation of dynamic data from gas turbines and turbine components. The use of the Fast Fourier Transform and of real-time spectrum analyzers is discussed. The use of power spectral density and probability density functions for analyzing random data is discussed. Examples of the application of these modern techniques to gas turbine testing are presented. The use of the computer to automate the data reduction procedures is discussed. (orig.) [de
Turbulence-cascade interaction noise using an advanced digital filter method
Gea Aguilera, Fernando; Gill, James; Zhang, Xin; Nodé-Langlois, Thomas
2016-01-01
Fan wakes interacting with outlet guide vanes is a major source of noise in modern turbofan engines. In order to study this source of noise, the current work presents two-dimensional simulations of turbulence-cascade interaction noise using a computational aeroacoustic methodology. An advanced digital filter method is used for the generation of isotropic synthetic turbulence in a linearised Euler equation solver. A parameter study is presented to assess the influence of airfoil thickness, mea...
National facility for advanced computational science: A sustainable path to scientific discovery
Energy Technology Data Exchange (ETDEWEB)
Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter
2004-04-02
Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.
Advances in the operation of the DIII-D neutral beam computer systems
International Nuclear Information System (INIS)
Phillips, J.C.; Busath, J.L.; Penaflor, B.G.; Piglowski, D.; Kellman, D.H.; Chiu, H.K.; Hong, R.M.
1998-02-01
The DIII-D neutral beam system routinely provides up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak, and is a critical part of the DIII-D physics experimental program. The four computer systems previously used to control neutral beam operation and data acquisition were designed and implemented in the late 1970's and used on DIII and DIII-D from 1981--1996. By comparison to modern standards, they had become expensive to maintain, slow and cumbersome, making it difficult to implement improvements. Most critical of all, they were not networked computers. During the 1997 experimental campaign, these systems were replaced with new Unix compliant hardware and, for the most part, commercially available software. This paper describes operational experience with the new neutral beam computer systems, and new advances made possible by using features not previously available. These include retention and access to historical data, an asynchronously fired ''rules'' base, and a relatively straightforward programming interface. Methods and principles for extending the availability of data beyond the scope of the operator consoles will be discussed
SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA
International Nuclear Information System (INIS)
Jang, Inseok; Jung, Wondea; Seong, Poong Hyun
2015-01-01
The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation
Teaching advance care planning to medical students with a computer-based decision aid.
Green, Michael J; Levi, Benjamin H
2011-03-01
Discussing end-of-life decisions with cancer patients is a crucial skill for physicians. This article reports findings from a pilot study evaluating the effectiveness of a computer-based decision aid for teaching medical students about advance care planning. Second-year medical students at a single medical school were randomized to use a standard advance directive or a computer-based decision aid to help patients with advance care planning. Students' knowledge, skills, and satisfaction were measured by self-report; their performance was rated by patients. 121/133 (91%) of students participated. The Decision-Aid Group (n = 60) outperformed the Standard Group (n = 61) in terms of students' knowledge (p satisfaction with their learning experience (p student performance. Use of a computer-based decision aid may be an effective way to teach medical students how to discuss advance care planning with cancer patients.
Advanced non-destructive methods for an efficient service performance
International Nuclear Information System (INIS)
Rauschenbach, H.; Clossen-von Lanken Schulz, M.; Oberlin, R.
2015-01-01
Due to the power generation industry's desire to decrease outage time and extend inspection intervals for highly stressed turbine parts, advanced and reliable Non-destructive methods were developed by Siemens Non-destructive laboratory. Effective outage performance requires the optimized planning of all outage activities as well as modern Non-destructive examination methods, in order to examine the highly stressed components (turbine rotor, casings, valves, generator rotor) reliably and in short periods of access. This paper describes the experience of Siemens Energy with an ultrasonic Phased Array inspection technique for the inspection of radial entry pinned turbine blade roots. The developed inspection technique allows the ultrasonic inspection of steam turbine blades without blade removal. Furthermore advanced Non-destructive examination methods for joint bolts will be described, which offer a significant reduction of outage duration in comparison to conventional inspection techniques. (authors)
Advanced airflow distribution methods for reducing exposure of indoor pollution
DEFF Research Database (Denmark)
Cao, Guangyu; Nielsen, Peter Vilhelm; Melikov, Arsen
2017-01-01
The adverse effect of various indoor pollutants on occupants’ health have been recognized. In public spaces flu viruses may spread from person to person by airflow generated by various traditional ventilation methods, like natural ventilation and mixing ventilation (MV Personalized ventilation (PV......) supplies clean air close to the occupant and directly into the breathing zone. Studies show that it improves the inhaled air quality and reduces the risk of airborne cross-infection in comparison with total volume (TV) ventilation. However, it is still challenging for PV and other advanced air distribution...... methods to reduce the exposure to gaseous and particulate pollutants under disturbed conditions and to ensure thermal comfort at the same time. The objective of this study is to analyse the performance of different advanced airflow distribution methods for protection of occupants from exposure to indoor...
Advanced airflow distribution methods for reducing exposure of indoor pollution
DEFF Research Database (Denmark)
Cao, Guangyu; Nielsen, Peter Vilhelm; Melikov, Arsen Krikor
methods to reduce the exposure to gaseous and particulate pollutants under disturbed conditions and to ensure thermal comfort at the same time. The objective of this study is to analyse the performance of different advanced airflow distribution methods for protection of occupants from exposure to indoor......The adverse effect of various indoor pollutants on occupants’ health have been recognized. In public spaces flu viruses may spread from person to person by airflow generated by various traditional ventilation methods, like natural ventilation and mixing ventilation (MV Personalized ventilation (PV......) supplies clean air close to the occupant and directly into the breathing zone. Studies show that it improves the inhaled air quality and reduces the risk of airborne cross-infection in comparison with total volume (TV) ventilation. However, it is still challenging for PV and other advanced air distribution...
Soft computing methods for geoidal height transformation
Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.
2009-07-01
Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.
Soft Computing Methods in Design of Superalloys
Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.
1996-01-01
Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modelled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.
Statistical methods and computing for big data
Wang, Chun; Chen, Ming-Hui; Schifano, Elizabeth; Wu, Jing
2016-01-01
Big data are data on a massive scale in terms of volume, intensity, and complexity that exceed the capacity of standard analytic tools. They present opportunities as well as challenges to statisticians. The role of computational statisticians in scientific discovery from big data analyses has been under-recognized even by peer statisticians. This article summarizes recent methodological and software developments in statistics that address the big data challenges. Methodologies are grouped into three classes: subsampling-based, divide and conquer, and online updating for stream data. As a new contribution, the online updating approach is extended to variable selection with commonly used criteria, and their performances are assessed in a simulation study with stream data. Software packages are summarized with focuses on the open source R and R packages, covering recent tools that help break the barriers of computer memory and computing power. Some of the tools are illustrated in a case study with a logistic regression for the chance of airline delay. PMID:27695593
Statistical methods and computing for big data.
Wang, Chun; Chen, Ming-Hui; Schifano, Elizabeth; Wu, Jing; Yan, Jun
2016-01-01
Big data are data on a massive scale in terms of volume, intensity, and complexity that exceed the capacity of standard analytic tools. They present opportunities as well as challenges to statisticians. The role of computational statisticians in scientific discovery from big data analyses has been under-recognized even by peer statisticians. This article summarizes recent methodological and software developments in statistics that address the big data challenges. Methodologies are grouped into three classes: subsampling-based, divide and conquer, and online updating for stream data. As a new contribution, the online updating approach is extended to variable selection with commonly used criteria, and their performances are assessed in a simulation study with stream data. Software packages are summarized with focuses on the open source R and R packages, covering recent tools that help break the barriers of computer memory and computing power. Some of the tools are illustrated in a case study with a logistic regression for the chance of airline delay.
Recent advances in radial basis function collocation methods
Chen, Wen; Chen, C S
2014-01-01
This book surveys the latest advances in radial basis function (RBF) meshless collocation methods which emphasis on recent novel kernel RBFs and new numerical schemes for solving partial differential equations. The RBF collocation methods are inherently free of integration and mesh, and avoid tedious mesh generation involved in standard finite element and boundary element methods. This book focuses primarily on the numerical algorithms, engineering applications, and highlights a large class of novel boundary-type RBF meshless collocation methods. These methods have shown a clear edge over the traditional numerical techniques especially for problems involving infinite domain, moving boundary, thin-walled structures, and inverse problems. Due to the rapid development in RBF meshless collocation methods, there is a need to summarize all these new materials so that they are available to scientists, engineers, and graduate students who are interest to apply these newly developed methods for solving real world’s ...
Advanced and intelligent computations in diagnosis and control
2016-01-01
This book is devoted to the demands of research and industrial centers for diagnostics, monitoring and decision making systems that result from the increasing complexity of automation and systems, the need to ensure the highest level of reliability and safety, and continuing research and the development of innovative approaches to fault diagnosis. The contributions combine domains of engineering knowledge for diagnosis, including detection, isolation, localization, identification, reconfiguration and fault-tolerant control. The book is divided into six parts: (I) Fault Detection and Isolation; (II) Estimation and Identification; (III) Robust and Fault Tolerant Control; (IV) Industrial and Medical Diagnostics; (V) Artificial Intelligence; (VI) Expert and Computer Systems.
Vision 20/20: Automation and advanced computing in clinical radiation oncology
International Nuclear Information System (INIS)
Moore, Kevin L.; Moiseenko, Vitali; Kagadis, George C.; McNutt, Todd R.; Mutic, Sasa
2014-01-01
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy
Vision 20/20: Automation and advanced computing in clinical radiation oncology
Energy Technology Data Exchange (ETDEWEB)
Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States); Kagadis, George C. [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); McNutt, Todd R. [Department of Radiation Oncology and Molecular Radiation Science, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Mutic, Sasa [Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri 63110 (United States)
2014-01-15
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.
Vision 20/20: Automation and advanced computing in clinical radiation oncology.
Moore, Kevin L; Kagadis, George C; McNutt, Todd R; Moiseenko, Vitali; Mutic, Sasa
2014-01-01
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.
Condition monitoring through advanced sensor and computational technology
International Nuclear Information System (INIS)
Kim, Jung Taek; Hur, S.; Seong, S. H.; Hwang, Il Soon; Lee, Joon Hyun; You, Jun; Lee, Sang Jung
2004-01-01
In order to successfully implement the extended-life operation plan of the nuclear power plant (NPP), predictive maintenance based on on-line monitoring of deteriorated components becomes highly important. In this work, we present progresses in the development of an advanced monitoring system to detect the health condition on check valve failures and pipe wall-thinning phenomena. The failures of check valves have resulted in significant maintenance efforts, on occasion, have resulted in water hammer, over-pressurization of low-pressure systems, and damage to flow system components. Pipe wall-thinning is usually caused by Flow-Accelerated Corrosion (FAC) under the undesirable combination of water chemistry, flow velocity and material composition. A piping elbow in the moisture separator/reheater drain line on the secondary waterside of a PWR is chosen as a monitoring target
Advances in Intelligent Control Systems and Computer Science
2013-01-01
The conception of real-time control networks taking into account, as an integrating approach, both the specific aspects of information and knowledge processing and the dynamic and energetic particularities of physical processes and of communication networks is representing one of the newest scientific and technological challenges. The new paradigm of Cyber-Physical Systems (CPS) reflects this tendency and will certainly change the evolution of the technology, with major social and economic impact. This book presents significant results in the field of process control and advanced information and knowledge processing, with applications in the fields of robotics, biotechnology, environment, energy, transportation, et al.. It introduces intelligent control concepts and strategies as well as real-time implementation aspects for complex control approaches. One of the sections is dedicated to the complex problem of designing software systems for distributed information processing networks. Problems as complexity an...
Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code
Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.
2017-10-01
A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.
Advanced Markov chain Monte Carlo methods learning from past samples
Liang, Faming; Carrol, Raymond J
2010-01-01
This book provides comprehensive coverage of simulation of complex systems using Monte Carlo methods. Developing algorithms that are immune to the local trap problem has long been considered as the most important topic in MCMC research. Various advanced MCMC algorithms which address this problem have been developed include, the modified Gibbs sampler, the methods based on auxiliary variables and the methods making use of past samples. The focus of this book is on the algorithms that make use of past samples. This book includes the multicanonical algorithm, dynamic weighting, dynamically weight
Kron, Frederick W.; Fetters, Michael D.; Scerbo, Mark W.; White, Casey B.; Lypson, Monica L.; Padilla, Miguel A.; Gliva-McConvey, Gayle A.; Belfore, Lee A.; West, Temple; Wallace, Amelia M.; Guetterman, Timothy C.; Schleicher, Lauren S.; Kennedy, Rebecca A.; Mangrulkar, Rajesh S.; Cleary, James F.; Marsella, Stacy C.; Becker, Daniel M.
2016-01-01
Objectives To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group’s experiences and learning preferences. Methods A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR’s intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. Secondary outcomes: student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. Results MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. Conclusions MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. Practice Implications MPathic-VR’s virtual human simulation offers an effective and engaging means of advanced communication training. PMID:27939846
Advanced computational model for three-phase slurry reactors
International Nuclear Information System (INIS)
Goodarz Ahmadi
2001-10-01
In the second year of the project, the Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is further developed. The approach uses an Eulerian analysis of liquid flows in the bubble column, and makes use of the Lagrangian trajectory analysis for the bubbles and particle motions. An experimental set for studying a two-dimensional bubble column is also developed. The operation of the bubble column is being tested and diagnostic methodology for quantitative measurements is being developed. An Eulerian computational model for the flow condition in the two-dimensional bubble column is also being developed. The liquid and bubble motions are being analyzed and the results are being compared with the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures is also being studied. Further progress was also made in developing a thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion. The balance laws are obtained and the constitutive laws are being developed. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The technique of Phase-Doppler anemometry was used in these studies. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also establish the
Global Seabed Materials and Habitats Mapped: The Computational Methods
Jenkins, C. J.
2016-02-01
What the seabed is made of has proven difficult to map on the scale of whole ocean-basins. Direct sampling and observation can be augmented with proxy-parameter methods such as acoustics. Both avenues are essential to obtain enough detail and coverage, and also to validate the mapping methods. We focus on the direct observations such as samplings, photo and video, probes, diver and sub reports, and surveyed features. These are often in word-descriptive form: over 85% of the records for site materials are in this form, whether as sample/view descriptions or classifications, or described parameters such as consolidation, color, odor, structures and components. Descriptions are absolutely necessary for unusual materials and for processes - in other words, for research. This project dbSEABED not only has the largest collection of seafloor materials data worldwide, but it uses advanced computing math to obtain the best possible coverages and detail. Included in those techniques are linguistic text analysis (e.g., Natural Language Processing, NLP), fuzzy set theory (FST), and machine learning (ML, e.g., Random Forest). These techniques allow efficient and accurate import of huge datasets, thereby optimizing the data that exists. They merge quantitative and qualitative types of data for rich parameter sets, and extrapolate where the data are sparse for best map production. The dbSEABED data resources are now very widely used worldwide in oceanographic research, environmental management, the geosciences, engineering and survey.
Gyrokinetic particle-in-cell simulations of plasma microturbulence on advanced computing platforms
International Nuclear Information System (INIS)
Ethier, S; Tang, W M; Lin, Z
2005-01-01
Since its introduction in the early 1980s, the gyrokinetic particle-in-cell (PIC) method has been very successfully applied to the exploration of many important kinetic stability issues in magnetically confined plasmas. Its self-consistent treatment of charged particles and the associated electromagnetic fluctuations makes this method appropriate for studying enhanced transport driven by plasma turbulence. Advances in algorithms and computer hardware have led to the development of a parallel, global, gyrokinetic code in full toroidal geometry, the gyrokinetic toroidal code (GTC), developed at the Princeton Plasma Physics Laboratory. It has proven to be an invaluable tool to study key effects of low-frequency microturbulence in fusion plasmas. As a high-performance computing applications code, its flexible mixed-model parallel algorithm has allowed GTC to scale to over a thousand processors, which is routinely used for simulations. Improvements are continuously being made. As the US ramps up its support for the International Tokamak Experimental Reactor (ITER), the need for understanding the impact of turbulent transport in burning plasma fusion devices is of utmost importance. Accordingly, the GTC code is at the forefront of the set of numerical tools being used to assess and predict the performance of ITER on critical issues such as the efficiency of energy confinement in reactors
Recent advances in computational intelligence in defense and security
Falcon, Rafael; Zincir-Heywood, Nur; Abbass, Hussein
2016-01-01
This volume is an initiative undertaken by the IEEE Computational Intelligence Society’s Task Force on Security, Surveillance and Defense to consolidate and disseminate the role of CI techniques in the design, development and deployment of security and defense solutions. Applications range from the detection of buried explosive hazards in a battlefield to the control of unmanned underwater vehicles, the delivery of superior video analytics for protecting critical infrastructures or the development of stronger intrusion detection systems and the design of military surveillance networks. Defense scientists, industry experts, academicians and practitioners alike will all benefit from the wide spectrum of successful applications compiled in this volume. Senior undergraduate or graduate students may also discover uncharted territory for their own research endeavors.
Advances in neural networks computational and theoretical issues
Esposito, Anna; Morabito, Francesco
2015-01-01
This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and bio-inspired memristor-based networks. Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive, and context-aware Information Communication Technologies.
Advances in engineering turbulence modeling. [computational fluid dynamics
Shih, T.-H.
1992-01-01
Some new developments in two equation models and second order closure models are presented. In this paper, modified two equation models are proposed to remove shortcomings such as computing flows over complex geometries and the ad hoc treatment near the separation and reattachment points. The calculations using various two equation models are compared with direct numerical solutions of channel flows and flat plate boundary layers. Development of second order closure models will also be discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All existing models poorly predict the normal stresses near the wall and fail to predict the three dimensional effect of mean flow on the turbulence. The newly developed second order near-wall turbulence model to be described in this paper is capable of capturing the near-wall behavior of turbulence as well as the effect of three dimension mean flow on the turbulence.
Tensor network method for reversible classical computation
Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.
2018-03-01
We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.
Advanced symbolic analysis for VLSI systems methods and applications
Shi, Guoyong; Tlelo Cuautle, Esteban
2014-01-01
This book provides comprehensive coverage of the recent advances in symbolic analysis techniques for design automation of nanometer VLSI systems. The presentation is organized in parts of fundamentals, basic implementation methods and applications for VLSI design. Topics emphasized include statistical timing and crosstalk analysis, statistical and parallel analysis, performance bound analysis and behavioral modeling for analog integrated circuits . Among the recent advances, the Binary Decision Diagram (BDD) based approaches are studied in depth. The BDD-based hierarchical symbolic analysis approaches, have essentially broken the analog circuit size barrier. In particular, this book • Provides an overview of classical symbolic analysis methods and a comprehensive presentation on the modern BDD-based symbolic analysis techniques; • Describes detailed implementation strategies for BDD-based algorithms, including the principles of zero-suppression, variable ordering and canonical reduction; • Int...
Computational methods for two-phase flow and particle transport
Lee, Wen Ho
2013-01-01
This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
Reference depth for geostrophic computation - A new method
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.; Sastry, J.S.
Various methods are available for the determination of reference depth for geostrophic computation. A new method based on the vertical profiles of mean and variance of the differences of mean specific volume anomaly (delta x 10) for different layers...
Lattice Boltzmann method fundamentals and engineering applications with computer codes
Mohamad, A A
2014-01-01
Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.
16th International workshop on Advanced Computing and Analysis Techniques in physics (ACAT)
Lokajicek, M; Tumova, N
2015-01-01
16th International workshop on Advanced Computing and Analysis Techniques in physics (ACAT). The ACAT workshop series, formerly AIHENP (Artificial Intelligence in High Energy and Nuclear Physics), was created back in 1990. Its main purpose is to gather researchers related with computing in physics research together, from both physics and computer science sides, and bring them a chance to communicate with each other. It has established bridges between physics and computer science research, facilitating the advances in our understanding of the Universe at its smallest and largest scales. With the Large Hadron Collider and many astronomy and astrophysics experiments collecting larger and larger amounts of data, such bridges are needed now more than ever. The 16th edition of ACAT aims to bring related researchers together, once more, to explore and confront the boundaries of computing, automatic data analysis and theoretical calculation technologies. It will create a forum for exchanging ideas among the fields an...
An Augmented Fast Marching Method for Computing Skeletons and Centerlines
Telea, Alexandru; Wijk, Jarke J. van
2002-01-01
We present a simple and robust method for computing skeletons for arbitrary planar objects and centerlines for 3D objects. We augment the Fast Marching Method (FMM) widely used in level set applications by computing the paramterized boundary location every pixel came from during the boundary
Classical versus Computer Algebra Methods in Elementary Geometry
Pech, Pavel
2005-01-01
Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…
Methods for teaching geometric modelling and computer graphics
Energy Technology Data Exchange (ETDEWEB)
Rotkov, S.I.; Faitel`son, Yu. Ts.
1992-05-01
This paper considers methods for teaching the methods and algorithms of geometric modelling and computer graphics to programmers, designers and users of CAD and computer-aided research systems. There is a bibliography that can be used to prepare lectures and practical classes. 37 refs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Hules, J. [ed.
1996-11-01
National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).
Advanced computational model for three-phase slurry reactors
International Nuclear Information System (INIS)
Goodarz Ahmadi
2000-11-01
In the first year of the project, solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions are compared with the experimental data and good agreement was found. Progress was also made in analyzing the gravity chute flows of solid-liquid mixtures. An Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is being developed. The approach uses an Eulerian analysis of gas liquid flows in the bubble column, and makes use of the Lagrangian particle tracking procedure to analyze the particle motions. Progress was also made in developing a rate dependent thermodynamically consistent model for multiphase slurry flows in a state of turbulent motion. The new model includes the effect of phasic interactions and leads to anisotropic effective phasic stress tensors. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The formulation of a thermodynamically consistent model for chemically active multiphase solid-fluid flows in a turbulent state of motion was also initiated. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also to establish the material parameters of the model. (2) To provide experimental data for phasic fluctuation and mean velocities, as well as the solid volume fraction in the shear flow devices. (3) To develop an accurate computational capability incorporating the new rate-dependent and anisotropic model for analyzing reacting and
Computational Methods for Conformational Sampling of Biomolecules
DEFF Research Database (Denmark)
Bottaro, Sandro
mathematical approach to a classic geometrical problem in protein simulations, and demonstrated its superiority compared to existing approaches. Secondly, we have constructed a more accurate implicit model of the aqueous environment, which is of fundamental importance in protein chemistry. This model......Proteins play a fundamental role in virtually every process within living organisms. For example, some proteins act as enzymes, catalyzing a wide range of reactions necessary for life, others mediate the cell interaction with the surrounding environment and still others have regulatory functions...... is computationally much faster than models where water molecules are represented explicitly. Finally, in collaboration with the group of structural bioinformatics at the Department of Biology (KU), we have applied these techniques in the context of modeling of protein structure and flexibility from low...
Computational Method for Atomistic-Continuum Homogenization
National Research Council Canada - National Science Library
Chung, Peter
2002-01-01
The homogenization method is used as a framework for developing a multiscale system of equations involving atoms at zero temperature at the small scale and continuum mechanics at the very large scale...
Advances in computed radiography systems and their physical imaging characteristics
International Nuclear Information System (INIS)
Cowen, A.R.; Davies, A.G.; Kengyelics, S.M.
2007-01-01
Radiological imaging is progressing towards an all-digital future, across the spectrum of medical imaging techniques. Computed radiography (CR) has provided a ready pathway from screen film to digital radiography and a convenient entry point to PACS. This review briefly revisits the principles of modern CR systems and their physical imaging characteristics. Wide dynamic range and digital image enhancement are well-established benefits of CR, which lend themselves to improved image presentation and reduced rates of repeat exposures. However, in its original form CR offered limited scope for reducing the radiation dose per radiographic exposure, compared with screen film. Recent innovations in CR, including the use of dual-sided image readout and channelled storage phosphor have eased these concerns. For example, introduction of these technologies has improved detective quantum efficiency (DQE) by approximately 50 and 100%, respectively, compared with standard CR. As a result CR currently affords greater scope for reducing patient dose, and provides a more substantive challenge to the new solid-state, flat-panel, digital radiography detectors
Contingency Analysis Post-Processing With Advanced Computing and Visualization
Energy Technology Data Exchange (ETDEWEB)
Chen, Yousu; Glaesemann, Kurt; Fitzhenry, Erin
2017-07-01
Contingency analysis is a critical function widely used in energy management systems to assess the impact of power system component failures. Its outputs are important for power system operation for improved situational awareness, power system planning studies, and power market operations. With the increased complexity of power system modeling and simulation caused by increased energy production and demand, the penetration of renewable energy and fast deployment of smart grid devices, and the trend of operating grids closer to their capacity for better efficiency, more and more contingencies must be executed and analyzed quickly in order to ensure grid reliability and accuracy for the power market. Currently, many researchers have proposed different techniques to accelerate the computational speed of contingency analysis, but not much work has been published on how to post-process the large amount of contingency outputs quickly. This paper proposes a parallel post-processing function that can analyze contingency analysis outputs faster and display them in a web-based visualization tool to help power engineers improve their work efficiency by fast information digestion. Case studies using an ESCA-60 bus system and a WECC planning system are presented to demonstrate the functionality of the parallel post-processing technique and the web-based visualization tool.
Advances in methods and applications of reliability and safety analysis
International Nuclear Information System (INIS)
Fieandt, J.; Hossi, H.; Laakso, K.; Lyytikaeinen, A.; Niemelae, I.; Pulkkinen, U.; Pulli, T.
1986-01-01
The know-how of the reliability and safety design and analysis techniques of Vtt has been established over several years in analyzing the reliability in the Finnish nuclear power plants Loviisa and Olkiluoto. This experience has been later on applied and developed to be used in the process industry, conventional power industry, automation and electronics. VTT develops and transfers methods and tools for reliability and safety analysis to the private and public sectors. The technology transfer takes place in joint development projects with potential users. Several computer-aided methods, such as RELVEC for reliability modelling and analysis, have been developed. The tool developed are today used by major Finnish companies in the fields of automation, nuclear power, shipbuilding and electronics. Development of computer-aided and other methods needed in analysis of operating experience, reliability or safety is further going on in a number of research and development projects
Development and application of advanced methods for electronic structure calculations
DEFF Research Database (Denmark)
Schmidt, Per Simmendefeldt
. For this reason, part of this thesis relates to developing and applying a new method for constructing so-called norm-conserving PAW setups, that are applicable to GW calculations by using a genetic algorithm. The effect of applying the new setups significantly affects the absolute band positions, both for bulk......This thesis relates to improvements and applications of beyond-DFT methods for electronic structure calculations that are applied in computational material science. The improvements are of both technical and principal character. The well-known GW approximation is optimized for accurate calculations...... of electronic excitations in two-dimensional materials by exploiting exact limits of the screened Coulomb potential. This approach reduces the computational time by an order of magnitude, enabling large scale applications. The GW method is further improved by including so-called vertex corrections. This turns...
van den Berg, Yvonne H M; Gommans, Rob
2017-09-01
New technologies have led to several major advances in psychological research over the past few decades. Peer nomination research is no exception. Thanks to these technological innovations, computerized data collection is becoming more common in peer nomination research. However, computer-based assessment is more than simply programming the questionnaire and asking respondents to fill it in on computers. In this chapter the advantages and challenges of computer-based assessments are discussed. In addition, a list of practical recommendations and considerations is provided to inform researchers on how computer-based methods can be applied to their own research. Although the focus is on the collection of peer nomination data in particular, many of the requirements, considerations, and implications are also relevant for those who consider the use of other sociometric assessment methods (e.g., paired comparisons, peer ratings, peer rankings) or computer-based assessments in general. © 2017 Wiley Periodicals, Inc.
Digital spectral analysis parametric, non-parametric and advanced methods
Castanié, Francis
2013-01-01
Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a
Advanced method of double contrast examination of the stomach
International Nuclear Information System (INIS)
Vlasov, P.V.; Yakimenko, V.F.
1981-01-01
An advanced method of double contrast examination of the stomach with the use of high concentrated barium suspension is described. It is shown that concentration of barium suspension must be not less than 200 mass/volume per cent to obtain the sharp image of the mucosal microrelief 6 standard position are recommended for the double contrast examination of all stomach walls. 200 patients with different digestive system diseases are examined with the help of developed methods. The sharp image of the mucosal microrelief is obtained in 70% cases [ru
Advances in computational modelling for personalised medicine after myocardial infarction.
Mangion, Kenneth; Gao, Hao; Husmeier, Dirk; Luo, Xiaoyu; Berry, Colin
2018-04-01
Myocardial infarction (MI) is a leading cause of premature morbidity and mortality worldwide. Determining which patients will experience heart failure and sudden cardiac death after an acute MI is notoriously difficult for clinicians. The extent of heart damage after an acute MI is informed by cardiac imaging, typically using echocardiography or sometimes, cardiac magnetic resonance (CMR). These scans provide complex data sets that are only partially exploited by clinicians in daily practice, implying potential for improved risk assessment. Computational modelling of left ventricular (LV) function can bridge the gap towards personalised medicine using cardiac imaging in patients with post-MI. Several novel biomechanical parameters have theoretical prognostic value and may be useful to reflect the biomechanical effects of novel preventive therapy for adverse remodelling post-MI. These parameters include myocardial contractility (regional and global), stiffness and stress. Further, the parameters can be delineated spatially to correspond with infarct pathology and the remote zone. While these parameters hold promise, there are challenges for translating MI modelling into clinical practice, including model uncertainty, validation and verification, as well as time-efficient processing. More research is needed to (1) simplify imaging with CMR in patients with post-MI, while preserving diagnostic accuracy and patient tolerance (2) to assess and validate novel biomechanical parameters against established prognostic biomarkers, such as LV ejection fraction and infarct size. Accessible software packages with minimal user interaction are also needed. Translating benefits to patients will be achieved through a multidisciplinary approach including clinicians, mathematicians, statisticians and industry partners. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless
2D automatic body-fitted structured mesh generation using advancing extraction method
Zhang, Yaoxin; Jia, Yafei
2018-01-01
This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like topography with extrusion-like structures (i.e., branches or tributaries) and intrusion-like structures (i.e., peninsula or dikes). With the AEM, the hierarchical levels of sub-domains can be identified, and the block boundary of each sub-domain in convex polygon shape in each level can be extracted in an advancing scheme. In this paper, several examples were used to illustrate the effectiveness and applicability of the proposed algorithm for automatic structured mesh generation, and the implementation of the method.
Advances in Statistical Methods for Substance Abuse Prevention Research
MacKinnon, David P.; Lockwood, Chondra M.
2010-01-01
The paper describes advances in statistical methods for prevention research with a particular focus on substance abuse prevention. Standard analysis methods are extended to the typical research designs and characteristics of the data collected in prevention research. Prevention research often includes longitudinal measurement, clustering of data in units such as schools or clinics, missing data, and categorical as well as continuous outcome variables. Statistical methods to handle these features of prevention data are outlined. Developments in mediation, moderation, and implementation analysis allow for the extraction of more detailed information from a prevention study. Advancements in the interpretation of prevention research results include more widespread calculation of effect size and statistical power, the use of confidence intervals as well as hypothesis testing, detailed causal analysis of research findings, and meta-analysis. The increased availability of statistical software has contributed greatly to the use of new methods in prevention research. It is likely that the Internet will continue to stimulate the development and application of new methods. PMID:12940467
Instrument design optimization with computational methods
Energy Technology Data Exchange (ETDEWEB)
Moore, Michael H. [Old Dominion Univ., Norfolk, VA (United States)
2017-08-01
Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density uctuations from the liquid hydrogen (LH2) target used in the Q_{wea}k experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High Momentum Spectrometer (SHMS) is presented with a focus on primary electron beam deflection downstream of the target. The SHMS consists of a superconducting horizontal bending magnet (HB) and three superconducting quadrupole magnets. The HB allows particles scattered at an angle of 5:5 deg to the beam line to be steered into the quadrupole magnets which make up the optics of the spectrometer. Without mitigation, remnant fields from the SHMS may steer the unscattered beam outside of the acceptable envelope on the beam dump and limit beam operations at small scattering angles. A solution is proposed using optimal placement of a minimal amount of shielding iron around the beam line.
Computer methods in physics 250 problems with guided solutions
Landau, Rubin H
2018-01-01
Our future scientists and professionals must be conversant in computational techniques. In order to facilitate integration of computer methods into existing physics courses, this textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple). Its also intended as a self-study guide for learning how to use computer methods in physics. The authors include an introductory chapter on numerical tools and indication of computational and physics difficulty level for each problem.
Kron, Frederick W; Fetters, Michael D; Scerbo, Mark W; White, Casey B; Lypson, Monica L; Padilla, Miguel A; Gliva-McConvey, Gayle A; Belfore, Lee A; West, Temple; Wallace, Amelia M; Guetterman, Timothy C; Schleicher, Lauren S; Kennedy, Rebecca A; Mangrulkar, Rajesh S; Cleary, James F; Marsella, Stacy C; Becker, Daniel M
2017-04-01
To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group's experiences and learning preferences. A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR's intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. MPathic-VR's virtual human simulation offers an effective and engaging means of advanced communication training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Data analysis of asymmetric structures advanced approaches in computational statistics
Saito, Takayuki
2004-01-01
Data Analysis of Asymmetric Structures provides a comprehensive presentation of a variety of models and theories for the analysis of asymmetry and its applications and provides a wealth of new approaches in every section. It meets both the practical and theoretical needs of research professionals across a wide range of disciplines and considers data analysis in fields such as psychology, sociology, social science, ecology, and marketing. In seven comprehensive chapters this guide details theories, methods, and models for the analysis of asymmetric structures in a variety of disciplines and presents future opportunities and challenges affecting research developments and business applications.
NATO Advanced Study Institute on Advances in the Computer Simulations of Liquid Crystals
Zannoni, Claudio
2000-01-01
Computer simulations provide an essential set of tools for understanding the macroscopic properties of liquid crystals and of their phase transitions in terms of molecular models. While simulations of liquid crystals are based on the same general Monte Carlo and molecular dynamics techniques as are used for other fluids, they present a number of specific problems and peculiarities connected to the intrinsic properties of these mesophases. The field of computer simulations of anisotropic fluids is interdisciplinary and is evolving very rapidly. The present volume covers a variety of techniques and model systems, from lattices to hard particle and Gay-Berne to atomistic, for thermotropics, lyotropics, and some biologically interesting liquid crystals. Contributions are written by an excellent panel of international lecturers and provides a timely account of the techniques and problems in the field.
Electromagnetic computation methods for lightning surge protection studies
Baba, Yoshihiro
2016-01-01
This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell's equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of e...
Recent advances in neutral particle transport methods and codes
International Nuclear Information System (INIS)
Azmy, Y.Y.
1996-01-01
An overview of ORNL's three-dimensional neutral particle transport code, TORT, is presented. Special features of the code that make it invaluable for large applications are summarized for the prospective user. Advanced capabilities currently under development and installation in the production release of TORT are discussed; they include: multitasking on Cray platforms running the UNICOS operating system; Adjacent cell Preconditioning acceleration scheme; and graphics codes for displaying computed quantities such as the flux. Further developments for TORT and its companion codes to enhance its present capabilities, as well as expand its range of applications are disucssed. Speculation on the next generation of neutron particle transport codes at ORNL, especially regarding unstructured grids and high order spatial approximations, are also mentioned
Three-dimensional protein structure prediction: Methods and computational strategies.
Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C
2014-10-12
A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Novitsky, Andrey; de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn
2017-01-01
Five state-of-the-art computational methods are benchmarked by computing quality factors and resonance wavelengths in photonic crystal membrane L5 and L9 line defect cavities. The convergence of the methods with respect to resolution, degrees of freedom and number of modes is investigated. Specia...
An Advanced Actuator Line Method for Wind Energy Applications and Beyond: Preprint
Energy Technology Data Exchange (ETDEWEB)
Churchfield, Matthew; Schreck, Scott; Martinez-Tossas, Luis A.; Meneveau, Charles; Spalart, Philippe R.
2017-03-24
The actuator line method to represent rotor aerodynamics within computational fluid dynamics has been in use for over a decade. This method applies a body force to the flow field along rotating lines corresponding to the individual rotor blades and employs tabular airfoil data to compute the force distribution. The actuator line method is attractive because compared to blade-resolved simulations, the required mesh is much simpler and the computational cost is lower. This work proposes a higher fidelity variant of the actuator line method meant to fill the space between current actuator line and blade-resolved simulations. It contains modifications in two key areas. The first is that of freestream velocity vector estimation along the line, which is necessary to compute the lift and drag along the line using tabular airfoil data. Most current methods rely on point sampling in which the location of sampling is ambiguous. Here we test a velocity sampling method that uses a properly weighted integral over space, removing this ambiguity. The second area of improvement is the function used to project the one-dimensional actuator line force onto the three-dimensional fluid mesh as a body force. We propose and test a projection function that spreads the force over a region that looks something like a real blade with the hope that it will produce the blade local and near wake flow features with more accuracy and higher fidelity. Our goal is that between these two improvements, not only will the flow field predictions be enhanced, but also the spanwise loading will be made more accurate. We refer to this combination of improvements as the advanced actuator line method. We apply these improvements to two different wind turbine cases. Although there is a strong wind energy motivation in our work, there is no reason these advanced actuator line ideas cannot be used in other applications, such as helicopter rotors.
An Advanced Actuator Line Method for Wind Energy Applications and Beyond
Energy Technology Data Exchange (ETDEWEB)
Churchfield, Matthew J.; Schreck, Scott; Martinez-Tossas, Luis A.; Meneveau, Charles; Spalart, Philippe R.
2017-01-09
The actuator line method to represent rotor aerodynamics within computational fluid dynamics has been in use for over a decade. This method applies a body force to the flow field along rotating lines corresponding to the individual rotor blades and employs tabular airfoil data to compute the force distribution. The actuator line method is attractive because compared to blade-resolved simulations, the required mesh is much simpler and the computational cost is lower. This work proposes a higher fidelity variant of the actuator line method meant to fill the space between current actuator line and blade-resolved simulations. It contains modifications in two key areas. The first is that of freestream velocity vector estimation along the line, which is necessary to compute the lift and drag along the line using tabular airfoil data. Most current methods rely on point sampling in which the location of sampling is ambiguous. Here we test a velocity sampling method that uses a properly weighted integral over space, removing this ambiguity. The second area of improvement is the function used to project the one-dimensional actuator line force onto the three-dimensional fluid mesh as a body force. We propose and test a projection function that spreads the force over a region that looks something like a real blade with the hope that it will produce the blade local and near wake flow features with more accuracy and higher fidelity. Our goal is that between these two improvements, not only will the flow field predictions be enhanced, but also the spanwise loading will be made more accurate. We refer to this combination of improvements as the advanced actuator line method. We apply these improvements to two different wind turbine cases. Although there is a strong wind energy motivation in our work, there is no reason these advanced actuator line ideas cannot be used in other applications, such as helicopter rotors.
Kim, Jong Hoon; Kim, Won Oak; Min, Kyeong Tae; Yang, Jong Yoon; Nam, Yong Taek
2002-01-01
For an effective acquisition and the practical application of rapidly increasing amounts of information, computer-based learning has already been introduced in medical education. However, there have been few studies that compare this innovative method to traditional learning methods in studying advanced cardiac life support (ACLS). Senior medical students were randomized to computer simulation and a textbook study. Each group studied ACLS for 150 minutes. Tests were done one week before, immediately after, and one week after the study period. Testing consisted of 20 questions. All questions were formulated in such a way that there was a single best answer. Each student also completed a questionnaire designed to assess computer skills as well as satisfaction with and benefit from the study materials. Test scores improved after both textbook study and computer simulation study in both groups but the improvement in scores was significantly higher for the textbook group only immediately after the study. There was no significant difference between groups in their computer skill and satisfaction with the study materials. The textbook group reported greater benefit from study materials than did the computer simulation group. Studying ACLS with a hard copy textbook may be more effective than computer simulation for the acquisition of simple information during a brief period. However, the difference in effectiveness is likely transient.
Measurement method of cardiac computed tomography (CT)
International Nuclear Information System (INIS)
Watanabe, Shigeru; Yamamoto, Hironori; Yumura, Yasuo; Yoshida, Hideo; Morooka, Nobuhiro
1980-01-01
The CT was carried out in 126 cases consisting of 31 normals, 17 cases of mitral stenosis (MS), 8 cases of mitral regurgitation (MR), 11 cases of aortic stenosis (AS), 9 cases of aortic regurgitation (AR), 20 cases of myocardial infarction (MI), 8 cases of atrial septal defect (ASD) and 22 hypertensives. The 20-second scans were performed every 1.5 cm from the 2nd intercostal space to the 5th or 6th intercostal space. The computed tomograms obtained were classified into 8 levels by cross-sectional anatomy; levels of (1) the aortic arch, (2) just beneath the aortic arch, (3) the pulmonary artery bifurcation, (4) the right atrial appendage or the upper right atrium, (5) the aortic root, (6) the upper left ventricle, (7) the mid left ventricle, and (8) the lower left ventricle. The diameter (anteroposterior and transverse) and cross-sectional area were measured about ascending aorta (Ao), descending aorta (AoD), superior vena cava (SVC), inferoir vena cava (IVC), pulmonary artery branch (PA), main pulmonary artery (mPA), left atrium (LA), right atrium (RA), and right ventricular outflow tract (RVOT) on each level where they were clearly distinguished. However, it was difficult to separate cardiac wall from cardiac cavity because there was little difference of X-ray attenuation coefficient between the myocardium and blood. Therefore, on mid ventricular level, diameter and area about total cardiac shadow were measured, and then cardiac ratios to the thorax were respectively calculated. The normal range of their values was shown in table, and abnormal characteristics in cardiac disease were exhibited in comparison with normal values. In MS, diameter and area in LA were significantly larger than normal. In MS and ASD, all the right cardiac system were larger than normal, especially, RA and SVC in MS, PA and RVOT in ASD. The diameter and area of the aortic root was larger in the order of AR, AS and HT than normal. (author)
Three numerical methods for the computation of the electrostatic energy
International Nuclear Information System (INIS)
Poenaru, D.N.; Galeriu, D.
1975-01-01
The FORTRAN programs for computation of the electrostatic energy of a body with axial symmetry by Lawrence, Hill-Wheeler and Beringer methods are presented in detail. The accuracy, time of computation and the required memory of these methods are tested at various deformations for two simple parametrisations: two overlapping identical spheres and a spheroid. On this basis the field of application of each method is recomended
The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report
Energy Technology Data Exchange (ETDEWEB)
Diachin, L F; Garaizar, F X; Henson, V E; Pope, G
2009-10-12
In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.
Reduced order methods for modeling and computational reduction
Rozza, Gianluigi
2014-01-01
This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This...
Testing and Validation of Computational Methods for Mass Spectrometry.
Gatto, Laurent; Hansen, Kasper D; Hoopmann, Michael R; Hermjakob, Henning; Kohlbacher, Oliver; Beyer, Andreas
2016-03-04
High-throughput methods based on mass spectrometry (proteomics, metabolomics, lipidomics, etc.) produce a wealth of data that cannot be analyzed without computational methods. The impact of the choice of method on the overall result of a biological study is often underappreciated, but different methods can result in very different biological findings. It is thus essential to evaluate and compare the correctness and relative performance of computational methods. The volume of the data as well as the complexity of the algorithms render unbiased comparisons challenging. This paper discusses some problems and challenges in testing and validation of computational methods. We discuss the different types of data (simulated and experimental validation data) as well as different metrics to compare methods. We also introduce a new public repository for mass spectrometric reference data sets ( http://compms.org/RefData ) that contains a collection of publicly available data sets for performance evaluation for a wide range of different methods.
Advanced imaging in acute stroke management-Part I: Computed tomographic.
Saini, Monica; Butcher, Ken
2009-01-01
Neuroimaging is fundamental to stroke diagnosis and management. Non-contrast computed tomography (NCCT) has been the primary imaging modality utilized for this purpose for almost four decades. Although NCCT does permit identification of intracranial hemorrhage and parenchymal ischemic changes, insights into blood vessel patency and cerebral perfusion are limited. Advances in reperfusion strategies have made identification of potentially salvageable brain tissue a more practical concern. Advances in CT technology now permit identification of acute and chronic arterial lesions, as well as cerebral blood flow deficits. This review outlines principles of advanced CT image acquisition and its utility in acute stroke management.
Developing a multimodal biometric authentication system using soft computing methods.
Malcangi, Mario
2015-01-01
Robust personal authentication is becoming ever more important in computer-based applications. Among a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the personal authentication process and to generalize the applicability. This chapter describes the embedded implementation of a multi-biometric (voiceprint and fingerprint) multimodal identification system based on hard computing methods (DSP) for feature extraction and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic engine (FLE) for data fusion and decision.
Computational Simulations and the Scientific Method
Kleb, Bil; Wood, Bill
2005-01-01
As scientific simulation software becomes more complicated, the scientific-software implementor's need for component tests from new model developers becomes more crucial. The community's ability to follow the basic premise of the Scientific Method requires independently repeatable experiments, and model innovators are in the best position to create these test fixtures. Scientific software developers also need to quickly judge the value of the new model, i.e., its cost-to-benefit ratio in terms of gains provided by the new model and implementation risks such as cost, time, and quality. This paper asks two questions. The first is whether other scientific software developers would find published component tests useful, and the second is whether model innovators think publishing test fixtures is a feasible approach.
Computer systems and methods for visualizing data
Stolte, Chris; Hanrahan, Patrick
2013-01-29
A method for forming a visual plot using a hierarchical structure of a dataset. The dataset comprises a measure and a dimension. The dimension consists of a plurality of levels. The plurality of levels form a dimension hierarchy. The visual plot is constructed based on a specification. A first level from the plurality of levels is represented by a first component of the visual plot. A second level from the plurality of levels is represented by a second component of the visual plot. The dataset is queried to retrieve data in accordance with the specification. The data includes all or a portion of the dimension and all or a portion of the measure. The visual plot is populated with the retrieved data in accordance with the specification.
Advanced codes and methods supporting improved fuel cycle economics - 5493
International Nuclear Information System (INIS)
Curca-Tivig, F.; Maupin, K.; Thareau, S.
2015-01-01
AREVA's code development program was practically completed in 2014. The basic codes supporting a new generation of advanced methods are the followings. GALILEO is a state-of-the-art fuel rod performance code for PWR and BWR applications. Development is completed, implementation started in France and the U.S.A. ARCADIA-1 is a state-of-the-art neutronics/ thermal-hydraulics/ thermal-mechanics code system for PWR applications. Development is completed, implementation started in Europe and in the U.S.A. The system thermal-hydraulic codes S-RELAP5 and CATHARE-2 are not really new but still state-of-the-art in the domain. S-RELAP5 was completely restructured and re-coded such that its life cycle increases by further decades. CATHARE-2 will be replaced in the future by the new CATHARE-3. The new AREVA codes and methods are largely based on first principles modeling with an extremely broad international verification and validation data base. This enables AREVA and its customers to access more predictable licensing processes in a fast evolving regulatory environment (new safety criteria, requests for enlarged qualification databases, statistical applications, uncertainty propagation...). In this context, the advanced codes and methods and the associated verification and validation represent the key to avoiding penalties on products, on operational limits, or on methodologies themselves
Advances in product family and product platform design methods & applications
Jiao, Jianxin; Siddique, Zahed; Hölttä-Otto, Katja
2014-01-01
Advances in Product Family and Product Platform Design: Methods & Applications highlights recent advances that have been made to support product family and product platform design and successful applications in industry. This book provides not only motivation for product family and product platform design—the “why” and “when” of platforming—but also methods and tools to support the design and development of families of products based on shared platforms—the “what”, “how”, and “where” of platforming. It begins with an overview of recent product family design research to introduce readers to the breadth of the topic and progresses to more detailed topics and design theory to help designers, engineers, and project managers plan, architect, and implement platform-based product development strategies in their companies. This book also: Presents state-of-the-art methods and tools for product family and product platform design Adopts an integrated, systems view on product family and pro...
Control rod computer code IAMCOS: general theory and numerical methods
International Nuclear Information System (INIS)
West, G.
1982-11-01
IAMCOS is a computer code for the description of mechanical and thermal behavior of cylindrical control rods for fast breeders. This code version was applied, tested and modified from 1979 to 1981. In this report are described the basic model (02 version), theoretical definitions and computation methods [fr
Combinatorial methods for advanced materials research and development
Energy Technology Data Exchange (ETDEWEB)
Cremer, R.; Dondorf, S.; Hauck, M.; Horbach, D.; Kaiser, M.; Krysta, S.; Kyrylov, O.; Muenstermann, E.; Philipps, M.; Reichert, K.; Strauch, G. [Rheinisch-Westfaelische Technische Hochschule Aachen (Germany). Lehrstuhl fuer Theoretische Huettenkunde
2001-10-01
The applicability of combinatorial methods in developing advanced materials is illustrated presenting four examples for the deposition and characterization of one- and two-dimensionally laterally graded coatings, which were deposited by means of (reactive) magnetron sputtering and plasma-enhanced chemical vapor deposition. To emphasize the advantages of combinatorial approaches, metastable hard coatings like (Ti,Al)N and (Ti,Al,Hf)N respectively, as well as Ge-Sb-Te based films for rewritable optical data storage were investigated with respect to the relations between structure, composition, and the desired materials properties. (orig.)
Computation of saddle-type slow manifolds using iterative methods
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall
2015-01-01
with respect to , appropriate estimates are directly attainable using the method of this paper. The method is applied to several examples, including a model for a pair of neurons coupled by reciprocal inhibition with two slow and two fast variables, and the computation of homoclinic connections in the Fitz......This paper presents an alternative approach for the computation of trajectory segments on slow manifolds of saddle type. This approach is based on iterative methods rather than collocation-type methods. Compared to collocation methods, which require mesh refinements to ensure uniform convergence...
Fulton, Robert E.
1985-01-01
Research performed over the past 10 years in engineering data base management and parallel computing is discussed, and certain opportunities for research toward the next generation of structural analysis capability are proposed. Particular attention is given to data base management associated with the IPAD project and parallel processing associated with the Finite Element Machine project, both sponsored by NASA, and a near term strategy for a distributed structural analysis capability based on relational data base management software and parallel computers for a future structural analysis system.
Lebeda, Frank J; Zalatoris, Jeffrey J; Scheerer, Julia B
2018-02-07
indicated that the security infrastructure in cloud services may be more compliant with the Health Insurance Portability and Accountability Act of 1996 regulations than traditional methods. To gauge the DoD's adoption of cloud technologies proposed metrics included cost factors, ease of use, automation, availability, accessibility, security, and policy compliance. Since 2009, plans and policies were developed for the use of cloud technology to help consolidate and reduce the number of data centers which were expected to reduce costs, improve environmental factors, enhance information technology security, and maintain mission support for service members. Cloud technologies were also expected to improve employee efficiency and productivity. Federal cloud computing policies within the last decade also offered increased opportunities to advance military healthcare. It was assumed that these opportunities would benefit consumers of healthcare and health science data by allowing more access to centralized cloud computer facilities to store, analyze, search and share relevant data, to enhance standardization, and to reduce potential duplications of effort. We recommend that cloud computing be considered by DoD biomedical researchers for increasing connectivity, presumably by facilitating communications and data sharing, among the various intra- and extramural laboratories. We also recommend that policies and other guidances be updated to include developing additional metrics that will help stakeholders evaluate the above mentioned assumptions and expectations. Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Discrete linear canonical transform computation by adaptive method.
Zhang, Feng; Tao, Ran; Wang, Yue
2013-07-29
The linear canonical transform (LCT) describes the effect of quadratic phase systems on a wavefield and generalizes many optical transforms. In this paper, the computation method for the discrete LCT using the adaptive least-mean-square (LMS) algorithm is presented. The computation approaches of the block-based discrete LCT and the stream-based discrete LCT using the LMS algorithm are derived, and the implementation structures of these approaches by the adaptive filter system are considered. The proposed computation approaches have the inherent parallel structures which make them suitable for efficient VLSI implementations, and are robust to the propagation of possible errors in the computation process.
Platform-independent method for computer aided schematic drawings
Vell, Jeffrey L [Slingerlands, NY; Siganporia, Darius M [Clifton Park, NY; Levy, Arthur J [Fort Lauderdale, FL
2012-02-14
A CAD/CAM method is disclosed for a computer system to capture and interchange schematic drawing and associated design information. The schematic drawing and design information are stored in an extensible, platform-independent format.
International Nuclear Information System (INIS)
Anon.
1990-01-01
This book discusses the following topics: expert systems and knowledge engineering-I; verification and validation of software; methods for modeling UMAN/computer performance; MAN/computer interaction problems in producing procedures -1-2; progress and problems with automation-1-2; experience with electronic presentation of procedures-2; intelligent displays and monitors; modeling user/computer interface; and computer-based human decision-making aids
Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report
Energy Technology Data Exchange (ETDEWEB)
Hoffman, Forest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bochev, Pavel B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cameron-Smith, Philip J.. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Easter, Richard C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Scott M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ghan, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Xiaohong [Univ. of Wyoming, Laramie, WY (United States); Lowrie, Robert B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, Po-lun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sacks, William J. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Shrivastava, Manish [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Singh, Balwinder [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tautges, Timothy J. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, Mark A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vertenstein, Mariana [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Worley, Patrick H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2014-01-15
The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.
Simulating elastic light scattering using high performance computing methods
Hoekstra, A.G.; Sloot, P.M.A.; Verbraeck, A.; Kerckhoffs, E.J.H.
1993-01-01
The Coupled Dipole method, as originally formulated byPurcell and Pennypacker, is a very powerful method tosimulate the Elastic Light Scattering from arbitraryparticles. This method, which is a particle simulationmodel for Computational Electromagnetics, has one majordrawback: if the size of the
A first attempt to bring computational biology into advanced high school biology classrooms.
Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S
2011-10-01
Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.
Advanced approaches to characterize the human intestinal microbiota by computational meta-analysis
Nikkilä, J.; Vos, de W.M.
2010-01-01
GOALS: We describe advanced approaches for the computational meta-analysis of a collection of independent studies, including over 1000 phylogenetic array datasets, as a means to characterize the variability of human intestinal microbiota. BACKGROUND: The human intestinal microbiota is a complex
Computed tomography findings after radiofrequency ablation in locally advanced pancreatic cancer
Rombouts, Steffi J. E.; Derksen, Tyche C.; Nio, Chung Y.; van Hillegersberg, Richard; van Santvoort, Hjalmar C.; Walma, Marieke S.; Molenaar, Izaak Q.; van Leeuwen, Maarten S.
2018-01-01
The purpose of the study was to provide a systematic evaluation of the computed tomography(CT) findings after radiofrequency ablation (RFA) in locally advanced pancreatic cancer(LAPC). Eighteen patients with intra-operative RFA-treated LAPC were included in a prospective case series. All CT-scans
International Nuclear Information System (INIS)
Noyek, A.M.; Friedberg, J.; Fitz, C.R.; Greyson, N.D.; Gilday, D.; Ash, J.; Miskin, M.; Rothberg, R.
1982-01-01
This presentation considers the diagnostic role of three major advanced imaging modalities in paediatric otolaryngology: computed tomography, nuclear medicine and ultrasound. These techniques allow for both more specific diagnosis, and for more precise understanding of the natural history of diagnoses already rendered. (Auth.)
Computational and experimental methods for enclosed natural convection
International Nuclear Information System (INIS)
Larson, D.W.; Gartling, D.K.; Schimmel, W.P. Jr.
1977-10-01
Two computational procedures and one optical experimental procedure for studying enclosed natural convection are described. The finite-difference and finite-element numerical methods are developed and several sample problems are solved. Results obtained from the two computational approaches are compared. A temperature-visualization scheme using laser holographic interferometry is described, and results from this experimental procedure are compared with results from both numerical methods
Advanced methods for fabrication of PHWR and LMFBR fuels
International Nuclear Information System (INIS)
Ganguly, C.
1988-01-01
For self-reliance in nuclear power, the Department of Atomic Energy (DAE), India is pursuing two specific reactor systems, namely the pressurised heavy water reactors (PHWR) and the liquid metal cooled fast breeder reactors (LMFBR). The reference fuel for PHWR is zircaloy-4 clad high density (≤ 96 per cent T.D.) natural UO 2 pellet-pins. The advanced PHWR fuels are UO 2 -PuO 2 (≤ 2 per cent), ThO 2 -PuO 2 (≤ 4 per cent) and ThO 2 -U 233 O 2 (≤ 2 per cent). Similarly, low density (≤ 85 per cent T.D.) (UPu)O 2 pellets clad in SS 316 or D9 is the reference fuel for the first generation of prototype and commercial LMFBRs all over the world. However, (UPu)C and (UPu)N are considered as advanced fuels for LMFBRs mainly because of their shorter doubling time. The conventional method of fabrication of both high and low density oxide, carbide and nitride fuel pellets starting from UO 2 , PuO 2 and ThO 2 powders is 'powder metallurgy (P/M)'. The P/M route has, however, the disadvantage of generation and handling of fine powder particles of the fuel and the associated problem of 'radiotoxic dust hazard'. The present paper summarises the state-of-the-art of advanced methods of fabrication of oxide, carbide and nitride fuels and highlights the author's experience on sol-gel-microsphere-pelletisation (SGMP) route for preparation of these materials. The SGMP process uses sol gel derived, dust-free and free-flowing microspheres of oxides, carbide or nitride for direct pelletisation and sintering. Fuel pellets of both low and high density, excellent microhomogeneity and controlled 'open' or 'closed' porosity could be fabricated via the SGMP route. (author). 5 tables, 14 figs., 15 refs
Method and computer program product for maintenance and modernization backlogging
Mattimore, Bernard G; Reynolds, Paul E; Farrell, Jill M
2013-02-19
According to one embodiment, a computer program product for determining future facility conditions includes a computer readable medium having computer readable program code stored therein. The computer readable program code includes computer readable program code for calculating a time period specific maintenance cost, for calculating a time period specific modernization factor, and for calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. In another embodiment, a computer-implemented method for calculating future facility conditions includes calculating a time period specific maintenance cost, calculating a time period specific modernization factor, and calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. Other embodiments are also presented.
Computer Anti-forensics Methods and their Impact on Computer Forensic Investigation
Pajek, Przemyslaw; Pimenidis, Elias
2009-01-01
Electronic crime is very difficult to investigate and prosecute, mainly\\ud due to the fact that investigators have to build their cases based on artefacts left\\ud on computer systems. Nowadays, computer criminals are aware of computer forensics\\ud methods and techniques and try to use countermeasure techniques to efficiently\\ud impede the investigation processes. In many cases investigation with\\ud such countermeasure techniques in place appears to be too expensive, or too\\ud time consuming t...
Fibonacci’s Computation Methods vs Modern Algorithms
Directory of Open Access Journals (Sweden)
Ernesto Burattini
2013-12-01
Full Text Available In this paper we discuss some computational procedures given by Leonardo Pisano Fibonacci in his famous Liber Abaci book, and we propose their translation into a modern language for computers (C ++. Among the other we describe the method of “cross” multiplication, we evaluate its computational complexity in algorithmic terms and we show the output of a C ++ code that describes the development of the method applied to the product of two integers. In a similar way we show the operations performed on fractions introduced by Fibonacci. Thanks to the possibility to reproduce on a computer, the Fibonacci’s different computational procedures, it was possible to identify some calculation errors present in the different versions of the original text.
Methods and Systems for Advanced Spaceport Information Management
Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)
2007-01-01
Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).
SmartShadow models and methods for pervasive computing
Wu, Zhaohui
2013-01-01
SmartShadow: Models and Methods for Pervasive Computing offers a new perspective on pervasive computing with SmartShadow, which is designed to model a user as a personality ""shadow"" and to model pervasive computing environments as user-centric dynamic virtual personal spaces. Just like human beings' shadows in the physical world, it follows people wherever they go, providing them with pervasive services. The model, methods, and software infrastructure for SmartShadow are presented and an application for smart cars is also introduced. The book can serve as a valuable reference work for resea
Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment
Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.
1979-01-01
The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.
Moving finite elements: A continuously adaptive method for computational fluid dynamics
International Nuclear Information System (INIS)
Glasser, A.H.; Miller, K.; Carlson, N.
1991-01-01
Moving Finite Elements (MFE), a recently developed method for computational fluid dynamics, promises major advances in the ability of computers to model the complex behavior of liquids, gases, and plasmas. Applications of computational fluid dynamics occur in a wide range of scientifically and technologically important fields. Examples include meteorology, oceanography, global climate modeling, magnetic and inertial fusion energy research, semiconductor fabrication, biophysics, automobile and aircraft design, industrial fluid processing, chemical engineering, and combustion research. The improvements made possible by the new method could thus have substantial economic impact. Moving Finite Elements is a moving node adaptive grid method which has a tendency to pack the grid finely in regions where it is most needed at each time and to leave it coarse elsewhere. It does so in a manner which is simple and automatic, and does not require a large amount of human ingenuity to apply it to each particular problem. At the same time, it often allows the time step to be large enough to advance a moving shock by many shock thicknesses in a single time step, moving the grid smoothly with the solution and minimizing the number of time steps required for the whole problem. For 2D problems (two spatial variables) the grid is composed of irregularly shaped and irregularly connected triangles which are very flexible in their ability to adapt to the evolving solution. While other adaptive grid methods have been developed which share some of these desirable properties, this is the only method which combines them all. In many cases, the method can save orders of magnitude of computing time, equivalent to several generations of advancing computer hardware
Advanced computational simulations of water waves interacting with wave energy converters
Pathak, Ashish; Freniere, Cole; Raessi, Mehdi
2017-03-01
Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.
Innovations and advances in computing, informatics, systems sciences, networking and engineering
Elleithy, Khaled
2015-01-01
Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers from the conference proceedings of the Eighth and some selected papers of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2012 & CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. · Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; · Includes chapters in the most a...
1st International Conference on Computational Advancement in Communication Circuits and Systems
Dalapati, Goutam; Banerjee, P; Mallick, Amiya; Mukherjee, Moumita
2015-01-01
This book comprises the proceedings of 1st International Conference on Computational Advancement in Communication Circuits and Systems (ICCACCS 2014) organized by Narula Institute of Technology under the patronage of JIS group, affiliated to West Bengal University of Technology. The conference was supported by Technical Education Quality Improvement Program (TEQIP), New Delhi, India and had technical collaboration with IEEE Kolkata Section, along with publication partner by Springer. The book contains 62 refereed papers that aim to highlight new theoretical and experimental findings in the field of Electronics and communication engineering including interdisciplinary fields like Advanced Computing, Pattern Recognition and Analysis, Signal and Image Processing. The proceedings cover the principles, techniques and applications in microwave & devices, communication & networking, signal & image processing, and computations & mathematics & control. The proceedings reflect the conference’s emp...
On the potential of computational methods and numerical simulation in ice mechanics
International Nuclear Information System (INIS)
Bergan, Paal G; Cammaert, Gus; Skeie, Geir; Tharigopula, Venkatapathi
2010-01-01
This paper deals with the challenge of developing better methods and tools for analysing interaction between sea ice and structures and, in particular, to be able to calculate ice loads on these structures. Ice loads have traditionally been estimated using empirical data and 'engineering judgment'. However, it is believed that computational mechanics and advanced computer simulations of ice-structure interaction can play an important role in developing safer and more efficient structures, especially for irregular structural configurations. The paper explains the complexity of ice as a material in computational mechanics terms. Some key words here are large displacements and deformations, multi-body contact mechanics, instabilities, multi-phase materials, inelasticity, time dependency and creep, thermal effects, fracture and crushing, and multi-scale effects. The paper points towards the use of advanced methods like ALE formulations, mesh-less methods, particle methods, XFEM, and multi-domain formulations in order to deal with these challenges. Some examples involving numerical simulation of interaction and loads between level sea ice and offshore structures are presented. It is concluded that computational mechanics may prove to become a very useful tool for analysing structures in ice; however, much research is still needed to achieve satisfactory reliability and versatility of these methods.
Development of an Evaluation Method for the Design Complexity of Computer-Based Displays
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyoung Ju; Lee, Seung Woo; Kang, Hyun Gook; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Park, Jin Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2011-10-15
The importance of the design of human machine interfaces (HMIs) for human performance and the safety of process industries has long been continuously recognized for many decades. Especially, in the case of nuclear power plants (NPPs), HMIs have significant implications for the safety of the NPPs because poor HMIs can impair the decision making ability of human operators. In order to support and increase the decision making ability of human operators, advanced HMIs based on the up-to-date computer technology are provided. Human operators in advanced main control room (MCR) acquire information through video display units (VDUs) and large display panel (LDP), which is required for the operation of NPPs. These computer-based displays contain a huge amount of information and present it with a variety of formats compared to those of a conventional MCR. For example, these displays contain more display elements such as abbreviations, labels, icons, symbols, coding, etc. As computer-based displays contain more information, the complexity of advanced displays becomes greater due to less distinctiveness of each display element. A greater understanding is emerging about the effectiveness of designs of computer-based displays, including how distinctively display elements should be designed. This study covers the early phase in the development of an evaluation method for the design complexity of computer-based displays. To this end, a series of existing studies were reviewed to suggest an appropriate concept that is serviceable to unravel this problem
International Nuclear Information System (INIS)
Page, B.; Hilty, L.M.
1994-01-01
Environmental computer science is a new partial discipline of applied computer science, which makes use of methods and techniques of information processing in environmental protection. Thanks to the inter-disciplinary nature of environmental problems, computer science acts as a mediator between numerous disciplines and institutions in this sector. The handbook reflects the broad spectrum of state-of-the art environmental computer science. The following important subjects are dealt with: Environmental databases and information systems, environmental monitoring, modelling and simulation, visualization of environmental data and knowledge-based systems in the environmental sector. (orig.) [de
Gangeh, Mehrdad J; Tadayyon, Hadi; Sannachi, Lakshmanan; Sadeghi-Naini, Ali; Tran, William T; Czarnota, Gregory J
2016-03-01
A noninvasive computer-aided-theragnosis (CAT) system was developed for the early therapeutic cancer response assessment in patients with locally advanced breast cancer (LABC) treated with neoadjuvant chemotherapy. The proposed CAT system was based on multi-parametric quantitative ultrasound (QUS) spectroscopic methods in conjunction with advanced machine learning techniques. Specifically, a kernel-based metric named maximum mean discrepancy (MMD), a technique for learning from imbalanced data based on random undersampling, and supervised learning were investigated with response-monitoring data from LABC patients. The CAT system was tested on 56 patients using statistical significance tests and leave-one-subject-out classification techniques. Textural features using state-of-the-art local binary patterns (LBP), and gray-scale intensity features were extracted from the spectral parametric maps in the proposed CAT system. The system indicated significant differences in changes between the responding and non-responding patient populations as well as high accuracy, sensitivity, and specificity in discriminating between the two patient groups early after the start of treatment, i.e., on weeks 1 and 4 of several months of treatment. The proposed CAT system achieved an accuracy of 85%, 87%, and 90% on weeks 1, 4 and 8, respectively. The sensitivity and specificity of developed CAT system for the same times was 85%, 95%, 90% and 85%, 85%, 91%, respectively. The proposed CAT system thus establishes a noninvasive framework for monitoring cancer treatment response in tumors using clinical ultrasound imaging in conjunction with machine learning techniques. Such a framework can potentially facilitate the detection of refractory responses in patients to treatment early on during a course of therapy to enable possibly switching to more efficacious treatments.
CHF predictor derived from a 3D thermal-hydraulic code and an advanced statistical method
International Nuclear Information System (INIS)
Banner, D.; Aubry, S.
2004-01-01
A rod bundle CHF predictor has been determined by using a 3D code (THYC) to compute local thermal-hydraulic conditions at the boiling crisis location. These local parameters have been correlated to the critical heat flux by using an advanced statistical method based on spline functions. The main characteristics of the predictor are presented in conjunction with a detailed analysis of predictions (P/M ratio) in order to prove that the usual safety methodology can be applied with such a predictor. A thermal-hydraulic design criterion is obtained (1.13) and the predictor is compared with the WRB-1 correlation. (author)
Advances in the Surface Renewal Flux Measurement Method
Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.
2011-12-01
The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments
Advanced communication methods developed for nuclear data communication applications
International Nuclear Information System (INIS)
Tiwari, Akash; Tiwari, Railesha; Tiwari, S.S.; Panday, Lokesh; Suri, Nitin; Takle, Tarun Rao; Jain, Sanjeev; Gupta, Rishi; Sharma, Dipeeka; Takle, Rahul Rao; Gautam, Rajeev; Bhargava, Vishal; Arora, Himanshu; Agarwal, Ankur; Rupesh; Chawla, Mohit; Sethi, Amardeep Singh; Gupta, Mukesh; Gupta, Ankit; Verma, Neha; Sood, Nitin; Singh, Sunil; Agarwal, Chandresh
2004-01-01
We conducted various experiments and tested data communications methods that may be useful for various applications in nuclear industries. We explored the following areas. I. Scientific data communication among scientists within the laboratory and inter-laboratory data exchange. 2.Data from sensors from remote and wired sensors. 3.Data from multiple sensors with small zone. 4.Data from single or multiple sensors from distances above 100 m and less than 10 km. No any single data communication method was found to be the best solution for nuclear applications and multiple modes of communication were found to be advantageous than any single mode of data communication. Network of computers in the control room and in between laboratories connected with optical fiber or an isolated Ethernet coaxial LAN was found to be optimum. Information from multiple analog process sensors in smaller zones like reactor building and laboratories on 12C LAN and short-range wireless LAN were found to be advantageous. Within the laboratory sensor data network of 12C was found to be cost effective and wireless LAN was comparatively expansive. Within a room infrared optical LAN and FSK wireless LAN were found to be highly useful in making the sensors free from wires. Direct sensor interface on FSK wireless link were found to be fast accurate, cost effective over large distance data communication. Such links are the only way to communicate from sea boy and balloons hardware. 1-wire communication network of Dallas Semiconductor USA for weather station data communication Computer to computer communication using optical LAN links has been tried, temperature pressure, humidity, ionizing radiation, generator RPM and voltage and various other analog signals were also transported o FSK optical and wireless links. Multiple sensors needed a dedicated data acquisition system and wireless LAN for data telemetry. (author)
Recent Advances in Conotoxin Classification by Using Machine Learning Methods.
Dao, Fu-Ying; Yang, Hui; Su, Zhen-Dong; Yang, Wuritu; Wu, Yun; Hui, Ding; Chen, Wei; Tang, Hua; Lin, Hao
2017-06-25
Conotoxins are disulfide-rich small peptides, which are invaluable peptides that target ion channel and neuronal receptors. Conotoxins have been demonstrated as potent pharmaceuticals in the treatment of a series of diseases, such as Alzheimer's disease, Parkinson's disease, and epilepsy. In addition, conotoxins are also ideal molecular templates for the development of new drug lead compounds and play important roles in neurobiological research as well. Thus, the accurate identification of conotoxin types will provide key clues for the biological research and clinical medicine. Generally, conotoxin types are confirmed when their sequence, structure, and function are experimentally validated. However, it is time-consuming and costly to acquire the structure and function information by using biochemical experiments. Therefore, it is important to develop computational tools for efficiently and effectively recognizing conotoxin types based on sequence information. In this work, we reviewed the current progress in computational identification of conotoxins in the following aspects: (i) construction of benchmark dataset; (ii) strategies for extracting sequence features; (iii) feature selection techniques; (iv) machine learning methods for classifying conotoxins; (v) the results obtained by these methods and the published tools; and (vi) future perspectives on conotoxin classification. The paper provides the basis for in-depth study of conotoxins and drug therapy research.
Big data mining analysis method based on cloud computing
Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao
2017-08-01
Information explosion era, large data super-large, discrete and non-(semi) structured features have gone far beyond the traditional data management can carry the scope of the way. With the arrival of the cloud computing era, cloud computing provides a new technical way to analyze the massive data mining, which can effectively solve the problem that the traditional data mining method cannot adapt to massive data mining. This paper introduces the meaning and characteristics of cloud computing, analyzes the advantages of using cloud computing technology to realize data mining, designs the mining algorithm of association rules based on MapReduce parallel processing architecture, and carries out the experimental verification. The algorithm of parallel association rule mining based on cloud computing platform can greatly improve the execution speed of data mining.
A Krylov Subspace Method for Unstructured Mesh SN Transport Computation
International Nuclear Information System (INIS)
Yoo, Han Jong; Cho, Nam Zin; Kim, Jong Woon; Hong, Ser Gi; Lee, Young Ouk
2010-01-01
Hong, et al., have developed a computer code MUST (Multi-group Unstructured geometry S N Transport) for the neutral particle transport calculations in three-dimensional unstructured geometry. In this code, the discrete ordinates transport equation is solved by using the discontinuous finite element method (DFEM) or the subcell balance methods with linear discontinuous expansion. In this paper, the conventional source iteration in the MUST code is replaced by the Krylov subspace method to reduce computing time and the numerical test results are given
Computational methods for high-energy source shielding
International Nuclear Information System (INIS)
Armstrong, T.W.; Cloth, P.; Filges, D.
1983-01-01
The computational methods for high-energy radiation transport related to shielding of the SNQ-spallation source are outlined. The basic approach is to couple radiation-transport computer codes which use Monte Carlo methods and discrete ordinates methods. A code system is suggested that incorporates state-of-the-art radiation-transport techniques. The stepwise verification of that system is briefly summarized. The complexity of the resulting code system suggests a more straightforward code specially tailored for thick shield calculations. A short guide line to future development of such a Monte Carlo code is given
Monte Carlo methods of PageRank computation
Litvak, Nelli
2004-01-01
We describe and analyze an on-line Monte Carlo method of PageRank computation. The PageRank is being estimated basing on results of a large number of short independent simulation runs initiated from each page that contains outgoing hyperlinks. The method does not require any storage of the hyperlink
Geometric optical transfer function and tis computation method
International Nuclear Information System (INIS)
Wang Qi
1992-01-01
Geometric Optical Transfer Function formula is derived after expound some content to be easily ignored, and the computation method is given with Bessel function of order zero and numerical integration and Spline interpolation. The method is of advantage to ensure accuracy and to save calculation
Efficient Numerical Methods for Stochastic Differential Equations in Computational Finance
Happola, Juho
2017-09-19
Stochastic Differential Equations (SDE) offer a rich framework to model the probabilistic evolution of the state of a system. Numerical approximation methods are typically needed in evaluating relevant Quantities of Interest arising from such models. In this dissertation, we present novel effective methods for evaluating Quantities of Interest relevant to computational finance when the state of the system is described by an SDE.
Fully consistent CFD methods for incompressible flow computations
DEFF Research Database (Denmark)
Kolmogorov, Dmitry; Shen, Wen Zhong; Sørensen, Niels N.
2014-01-01
Nowadays collocated grid based CFD methods are one of the most e_cient tools for computations of the ows past wind turbines. To ensure the robustness of the methods they require special attention to the well-known problem of pressure-velocity coupling. Many commercial codes to ensure the pressure...
Efficient Numerical Methods for Stochastic Differential Equations in Computational Finance
Happola, Juho
2017-01-01
Stochastic Differential Equations (SDE) offer a rich framework to model the probabilistic evolution of the state of a system. Numerical approximation methods are typically needed in evaluating relevant Quantities of Interest arising from such models. In this dissertation, we present novel effective methods for evaluating Quantities of Interest relevant to computational finance when the state of the system is described by an SDE.
Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.
2017-10-01
The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.
Advances in dynamic and mean field games theory, applications, and numerical methods
Viscolani, Bruno
2017-01-01
This contributed volume considers recent advances in dynamic games and their applications, based on presentations given at the 17th Symposium of the International Society of Dynamic Games, held July 12-15, 2016, in Urbino, Italy. Written by experts in their respective disciplines, these papers cover various aspects of dynamic game theory including mean-field games, stochastic and pursuit-evasion games, and computational methods for dynamic games. Topics covered include Pedestrian flow in crowded environments Models for climate change negotiations Nash Equilibria for dynamic games involving Volterra integral equations Differential games in healthcare markets Linear-quadratic Gaussian dynamic games Aircraft control in wind shear conditions Advances in Dynamic and Mean-Field Games presents state-of-the-art research in a wide spectrum of areas. As such, it serves as a testament to the continued vitality and growth of the field of dynamic games and their applications. It will be of interest to an interdisciplinar...
Computational mathematics models, methods, and analysis with Matlab and MPI
White, Robert E
2004-01-01
Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI explores and illustrates this process. Each section of the first six chapters is motivated by a specific application. The author applies a model, selects a numerical method, implements computer simulations, and assesses the ensuing results. These chapters include an abundance of MATLAB code. By studying the code instead of using it as a "black box, " you take the first step toward more sophisticated numerical modeling. The last four chapters focus on multiprocessing algorithms implemented using message passing interface (MPI). These chapters include Fortran 9x codes that illustrate the basic MPI subroutines and revisit the applications of the previous chapters from a parallel implementation perspective. All of the codes are available for download from www4.ncsu.edu./~white.This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether us...
Directory of Open Access Journals (Sweden)
Peigang Ning
Full Text Available OBJECTIVE: This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR and model-based iterative reconstruction (MBIR algorithms in reducing computed tomography (CT radiation dosages in abdominal imaging. METHODS: CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the filtered back-projection (FBP, 50% ASiR and MBIR algorithms and compared. The CT value, image noise and contrast-to-noise ratios (CNRs of the reconstructed abdominal images were measured. Volumetric CT dose indexes (CTDIvol were recorded. RESULTS: At different tube currents, 50% ASiR and MBIR significantly reduced image noise and increased the CNR when compared with FBP. The minimal tube current values required by FBP, 50% ASiR, and MBIR to achieve acceptable image quality using this phantom were 200, 140, and 80 mA, respectively. At the identical image quality, 50% ASiR and MBIR reduced the radiation dose by 35.9% and 59.9% respectively when compared with FBP. CONCLUSIONS: Advanced iterative reconstruction techniques are able to reduce image noise and increase image CNRs. Compared with FBP, 50% ASiR and MBIR reduced radiation doses by 35.9% and 59.9%, respectively.
On the Predictability of Computer simulations: Advances in Verification and Validation
Prudhomme, Serge
2014-01-06
We will present recent advances on the topics of Verification and Validation in order to assess the reliability and predictability of computer simulations. The first part of the talk will focus on goal-oriented error estimation for nonlinear boundary-value problems and nonlinear quantities of interest, in which case the error representation consists of two contributions: 1) a first contribution, involving the residual and the solution of the linearized adjoint problem, which quantifies the discretization or modeling error; and 2) a second contribution, combining higher-order terms that describe the linearization error. The linearization error contribution is in general neglected with respect to the discretization or modeling error. However, when nonlinear effects are significant, it is unclear whether ignoring linearization effects may produce poor convergence of the adaptive process. The objective will be to show how both contributions can be estimated and employed in an adaptive scheme that simultaneously controls the two errors in a balanced manner. In the second part of the talk, we will present novel approach for calibration of model parameters. The proposed inverse problem not only involves the minimization of the misfit between experimental observables and their theoretical estimates, but also an objective function that takes into account some design goals on specific design scenarios. The method can be viewed as a regularization approach of the inverse problem, one, however, that best respects some design goals for which mathematical models are intended. The inverse problem is solved by a Bayesian method to account for uncertainties in the data. We will show that it shares the same structure as the deterministic problem that one would obtain by multi-objective optimization theory. The method is illustrated on an example of heat transfer in a two-dimensional fin. The proposed approach has the main benefit that it increases the confidence in predictive
Advanced methods for the study of PWR cores
International Nuclear Information System (INIS)
Lambert, M.; Salvatores, St.; Ferrier, A.; Pelet, J.; Nicaise, N.; Pouliquen, J.Y.; Foret, F.; Chauliac, C.; Johner, J.; Cohen, Ch.
2003-01-01
This document gathers the transparencies presented at the 6. technical session of the French nuclear energy society (SFEN) in October 2003. The transparencies of the annual meeting are presented in the introductive part: 1 - status of the French nuclear park: nuclear energy results, management of an exceptional climatic situation: the heat wave of summer 2003 and the power generation (J.C. Barral); 2 - status of the research on controlled thermonuclear fusion (J. Johner). Then follows the technical session about the advanced methods for the study of PWR reactor cores: 1 - the evolution approach of study methodologies (M. Lambert, J. Pelet); 2 - the point of view of the nuclear safety authority (D. Brenot); 3 - the improved decoupled methodology for the steam pipe rupture (S. Salvatores, J.Y. Pouliquen); 4 - the MIR method for the pellet-clad interaction (renovated IPG methodology) (E. Baud, C. Royere); 5 - the improved fuel management (IFM) studies for Koeberg (C. Cohen); 6 - principle of the methods of accident study implemented for the European pressurized reactor (EPR) (F. Foret, A. Ferrier); 7 - accident studies with the EPR, steam pipe rupture (N. Nicaise, S. Salvatores); 8 - the co-development platform, a new generation of software tools for the new methodologies (C. Chauliac). (J.S.)
Class of reconstructed discontinuous Galerkin methods in computational fluid dynamics
International Nuclear Information System (INIS)
Luo, Hong; Xia, Yidong; Nourgaliev, Robert
2011-01-01
A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness. (author)
Data analysis through interactive computer animation method (DATICAM)
International Nuclear Information System (INIS)
Curtis, J.N.; Schwieder, D.H.
1983-01-01
DATICAM is an interactive computer animation method designed to aid in the analysis of nuclear research data. DATICAM was developed at the Idaho National Engineering Laboratory (INEL) by EG and G Idaho, Inc. INEL analysts use DATICAM to produce computer codes that are better able to predict the behavior of nuclear power reactors. In addition to increased code accuracy, DATICAM has saved manpower and computer costs. DATICAM has been generalized to assist in the data analysis of virtually any data-producing dynamic process
Multigrid methods for the computation of propagators in gauge fields
International Nuclear Information System (INIS)
Kalkreuter, T.
1992-11-01
In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. We discuss proper averaging operations for bosons and for staggered fermions. An efficient algorithm for computing C numerically is presented. The averaging kernels C can be used not only in deterministic multigrid computations, but also in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies of gauge theories. Actual numerical computations of kernels and propagators are performed in compact four-dimensional SU(2) gauge fields. (orig./HSI)
Water demand forecasting: review of soft computing methods.
Ghalehkhondabi, Iman; Ardjmand, Ehsan; Young, William A; Weckman, Gary R
2017-07-01
Demand forecasting plays a vital role in resource management for governments and private companies. Considering the scarcity of water and its inherent constraints, demand management and forecasting in this domain are critically important. Several soft computing techniques have been developed over the last few decades for water demand forecasting. This study focuses on soft computing methods of water consumption forecasting published between 2005 and 2015. These methods include artificial neural networks (ANNs), fuzzy and neuro-fuzzy models, support vector machines, metaheuristics, and system dynamics. Furthermore, it was discussed that while in short-term forecasting, ANNs have been superior in many cases, but it is still very difficult to pick a single method as the overall best. According to the literature, various methods and their hybrids are applied to water demand forecasting. However, it seems soft computing has a lot more to contribute to water demand forecasting. These contribution areas include, but are not limited, to various ANN architectures, unsupervised methods, deep learning, various metaheuristics, and ensemble methods. Moreover, it is found that soft computing methods are mainly used for short-term demand forecasting.
Method of public support evaluation for advanced NPP deployment
International Nuclear Information System (INIS)
Zezula, L.; Hermansky, B.
2005-01-01
Public support of nuclear power could be fully recovered only if the public would, from the very beginning of the new power source selection process, receive transparent information and was made a part of interactive dialogue. The presented method was developed with the objective to facilitate the complex process of the utilities - public interaction. Our method of the public support evaluation allows to classify designs of new nuclear power plants taking into consideration the public attitude to continued nuclear power deployment in the Czech Republic as well as the preference of a certain plant design. The method is based on the model with a set of probabilistic input metrics, which permits to compare the offered concepts with the reference one, with a high degree of objectivity. This method is a part of the more complex evaluation procedure applicable for the new designs assessment that uses the computer code ''Potencial'' developed at the NRI Rez plc. The metrics of the established public support criteria are discussed. (author)
Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5
Energy Technology Data Exchange (ETDEWEB)
McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-09-16
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.