WorldWideScience

Sample records for advanced compact accelerator

  1. Role of advanced RF/microwave technology and high power switch technology for developing/upgrading compact/existing accelerators

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam

    2001-01-01

    With the advances in high power microwave devices as well as in microwave technologies it has become possible to go on higher frequencies at higher powers as well as to go for newer devices which are more efficient and compact and hence reducing the power needs as well as space and weight requirement for accelerators. New devices are now available in higher frequency spectrum for example at C-Band, X-band and even higher. Also new devices like klystrodes/Higher Order Mode Inductive Output Tubes (HOM IOTs) are now becoming competitors for existing tubes which are in use at present accelerator complexes. The design/planning of the accelerators used for particle physics research, medical accelerators, industrial irradiation, or even upcoming Driver Accelerators for Sub Critical Reactors for nuclear power generation are being done taking into account the newer technologies. The accelerators which use magnetrons, klystrons and similar devices at S-Band can be modified/redesigned with devices at higher frequencies like X-Band. Pulsed accelerators need high power high voltage pulsed modulators whereas CW accelerators need high voltage power supplies for functioning of RF / Microwave tubes. There had been a remarkable growth in the development and availability of solid state switches both for switching the pulsed modulators for microwave tubes as well as for making high frequency switch mode power supplies. Present paper discusses some of the advanced devices/technologies in this field as well as their capability to make advanced/compact/reliable accelerators. Microwave systems developed/under development at Centre for Advanced Technology are also discussed briefly along with some of the efforts done to make them compact. An overview of state of art vacuum tube devices and solid state switch technologies is given. (author)

  2. Compact particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  3. Compact accelerator for medical therapy

    Science.gov (United States)

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  4. Studies of accelerated compact toruses

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-01

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  5. Acceleration of a compact torus

    International Nuclear Information System (INIS)

    Hartmann, C.W.; Eddleman, J.L.; Hammer, J.H.; Kusse, B.

    1987-01-01

    The authors report the first results of a study of acceleration of spheromak-type compact toruses in the RACE experiment (plasma Ring ACceleration Experiment). The RACE apparatus consists of (1) a magnetized, coaxial plasma gun 50 cm long, 35 cm OD, 20 cm ID, (2) 600 cm long coaxial acceleration electrodes 50 cm OD, 20 cm ID, (3) a 250 kJ electrolytic capacitor bank to drive the gun solenoid for initial magnetization, (4) a 200 kJ gun bank, (5) a 260 kJ accelerator bank, and (6) magnetic probes and other diagnostics, and vacuum apparatus. To outer acceleration electrode is an extension, at larger OD, of the gun outer electrode, and the inner acceleration electrode is supported and fed by a coaxial insert in the gun center electrode as shown

  6. Advanced Accelerators for Medical Applications

    Science.gov (United States)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  7. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  8. Ultra-high gradient compact accelerator developments

    NARCIS (Netherlands)

    Brussaard, G.J.H.; Wiel, van der M.J.

    2004-01-01

    Continued development of relatively compact, although not quite 'table-top', lasers with peak powers in the range up to 100 TW has enabled laser-plasma-based acceleration experiments with amazing gradients of up to 1 TV/m. In order to usefully apply such gradients to 'controlled' acceleration,

  9. Compact multi-energy electron linear accelerators

    International Nuclear Information System (INIS)

    Tanabe, E.; Hamm, R.W.

    1985-01-01

    Two distinctly different concepts that have been developed for compact multi-energy, single-section, standing-wave electron linear accelerator structures are presented. These new concepts, which utilize (a) variable nearest neighbor couplings and (b) accelerating field phase switching, provide the capability of continuously varying the electron output energy from the accelerator without degrading the energy spectrum. These techniques also provide the means for continuously varying the energy spectrum while maintaining a given average electron energy, and have been tested successfully with several accelerators of length from 0.1 m to 1.9 m. Theoretical amd experimental results from these accelerators, and demonstrated applications of these techniques to medical and industrial linear accelerator technology will be described. In addition, possible new applications available to research and industry from these techniques are presented. (orig.)

  10. Acceleration radiation in a compact space

    International Nuclear Information System (INIS)

    Copeland, E.J.; Davies, P.C.W.; Hinton, K.

    1984-01-01

    The response is studied of a uniformly accelerated model particle detector in a spacetime with compact spatial sections. The basic thermal character of the response re-emerges, in spite of the fact that the spacetime does not possess event horizons. The model also permits a study of detector response to twisted field states. (author)

  11. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Peterkin, R.E. Jr.; Baca, G.P.; Beason, J.D.; Bell, D.E.; Dearborn, M.E.; Dietz, D.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Hackett, K.E.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Sovinec, C.R.; Turchi, P.J.; Bird, G.; Coffey, S.K.; Seiler, S.W.; Chen, Y.G.; Gale, D.; Graham, J.D.; Scott, M.; Sommars, W.

    1993-01-01

    Research on forming, compressing, and accelerating milligram-range compact toroids using a meter diameter, two-stage, puffed gas, magnetic field embedded coaxial plasma gun is described. The compact toroids that are studied are similar to spheromaks, but they are threaded by an inner conductor. This research effort, named MARAUDER (Magnetically Accelerated Ring to Achieve Ultra-high Directed Energy and Radiation), is not a magnetic confinement fusion program like most spheromak efforts. Rather, the ultimate goal of the present program is to compress toroids to high mass density and magnetic field intensity, and to accelerate the toroids to high speed. There are a variety of applications for compressed, accelerated toroids including fast opening switches, x-radiation production, radio frequency (rf) compression, as well as charge-neutral ion beam and inertial confinement fusion studies. Experiments performed to date to form and accelerate toroids have been diagnosed with magnetic probe arrays, laser interferometry, time and space resolved optical spectroscopy, and fast photography. Parts of the experiment have been designed by, and experimental results are interpreted with, the help of two-dimensional (2-D), time-dependent magnetohydrodynamic (MHD) numerical simulations. When not driven by a second discharge, the toroids relax to a Woltjer--Taylor equilibrium state that compares favorably to the results of 2-D equilibrium calculations and to 2-D time-dependent MHD simulations. Current, voltage, and magnetic probe data from toroids that are driven by an acceleration discharge are compared to 2-D MHD and to circuit solver/slug model predictions. Results suggest that compact toroids are formed in 7--15 μsec, and can be accelerated intact with material species the same as injected gas species and entrained mass ≥1/2 the injected mass

  12. 2nd European Advanced Accelerator Concepts Workshop

    CERN Document Server

    Assmann, Ralph; Grebenyuk, Julia; EAAC 2015

    2016-01-01

    The European Advanced Accelerator Concepts Workshop has the mission to discuss and foster methods of beam acceleration with gradients beyond state of the art in operational facilities. The most cost effective and compact methods for generating high energy particle beams shall be reviewed and assessed. This includes diagnostics methods, timing technology, special need for injectors, beam matching, beam dynamics with advanced accelerators and development of adequate simulations. This workshop is organized in the context of the EU-funded European Network for Novel Accelerators (EuroNNAc2), that includes 52 Research Institutes and universities.

  13. Advances in electrostatic accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1975-01-01

    Advances in the design and performance of electrostatic accelerators since 1969 are reviewed with special emphasis on the ''forefront'' accelerators that are currently leading in voltage capability. A comparison of the acceleration tube design offered by the National Electrostatics Corporation and the High Voltage Engineering Corporation is also made. Other methods of increasing heavy ion energy by means of dual foil stripping are discussed as well as the performance of a newly developed sputter ion source for the production of negative heavy ions with reliability and flexibility that greatly exceeds all other present systems. Finally, new developments in terms of both booster systems and very high voltage electrostatic accelerators (25 to 60 MV) are discussed. (U.S.)

  14. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  15. Review of Advanced Accelerator Concepts R & D in Japan

    Science.gov (United States)

    Kitagawa, Yoneyoshi; Uesaka, Mitsuru; Koyama, Kazuyoshi; Nakajima, Kaszuhisa; Tajima, Toshiki; Daido, Hiroyuki; Ogata, Atsushi; Nemoto, Koshichi; Nishida, Yasushi; Yugami, Noboru; Miyamoto, Shuji; Dobashi, Katsuhiro

    2004-12-01

    More than 15 Japanese laboratories are dedicated to the advanced and compact accelerator development. Some use ultra-intense lasers and others use microwave concepts. As for the laser electron accleration, the topics are the capillary acceleration and the mono-energetic acceleration. The laser ion acceleration is also active. As well, the compatization is proceeding of the current rf accelerator. The National Institute for Radiological Science is promoting an advanced accelerator concept project mainly for the medical application.

  16. Physics of Compact Advanced Stellarators

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Berry, L.A.; Brooks, A.; Fredrickson, E.; Fu, G.-Y.; Hirshman, S.; Hudson, S.; Ku, L.-P.; Lazarus, E.; Mikkelsen, D.; Monticello, D.; Neilson, G.H.; Pomphrey, N.; Reiman, A.; Spong, D.; Strickler, D.; Boozer, A.; Cooper, W.A.; Goldston, R.; Hatcher, R.; Isaev, M.; Kessel, C.; Lewandowski, J.; Lyon, J.; Merkel, P.; Mynick, H.; Nelson, B.E.; Nuehrenberg, C.; Redi, M.; Reiersen, W.; Rutherford, P.; Sanchez, R.; Schmidt, J.; White, R.B.

    2001-01-01

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties

  17. Compact high-current, subnanosecond electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shpak, V G; Shunajlov, S A; Ulmaskulov, M R; Yalandin, M I [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Electrophysics; Pegel, I V [Russian Academy of Sciences, Tomsk (Russian Federation). High-Current Electronics Inst.; Tarakanov, V P [Russian Academy of Sciences, Moscow (Russian Federation). High-Temperature Inst.

    1997-12-31

    A compact subnanosecond, high-current electron accelerator producing an annular electron beam of duration up to 300 - 400 ps, energy about 250 keV, and current up to 1 kA has been developed to study transient processes in pulsed power microwave devices. The measuring and recording techniques used to experimentally investigate the dynamics of the beam current pulse and the transformation of the electron energy during the transportation of the beam in a longitudinal magnetic field are described. The experimental data obtained are compared with the predictions of a numerical simulation. (author). 6 figs., 5 refs.

  18. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Bell, D.E.; Baca, G.P.; Dearborn, M.E.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Peterkin, R.E.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Turchi, P.J.; Coffey, S.K.; Seiler, S.W.; Bird, G.

    1992-01-01

    Research on the formation, compression, and acceleration of milligram Compact Toroids (CTs) will be discussed. This includes experiments with 2-stage coaxial gun discharges and calculations including 2D- MHD. The CTs are formed by 110 μf, 70 KV, 2 MA, 3 μs rise time discharges into 2 mg gas puffs in a 90 cm inner diameter, 7.6 cm gap coaxial gun with approximately 0.15 Tesla of radial-axial initial magnetic field. Reconnection at the neck of the toroidal magnetized plasma bubble extracted from the first stage gun forms the CT. Trapping, relaxation to a minimum energy Taylor state is observed with magnetic probe arrays. Low energy (few hundred KJ, 2 MA) acceleration in straight coaxial geometry, and high energy acceleration using a conical compression stage are discussed. The Phillips Laboratory 1,300 μf, 120 KV, 9.4 MJ SHIVA STAR capacitor bank is used for the acceleration discharge. The charging and triggering of the 36-module bank has been modified to permit use of any multiple of three modules. Highlights of fast photography, current, voltage, magnetic probe array, optical spectroscopy, interferometry, VUV, and higher energy radiation data and 2D-MHD calculations will be presented. Considerably more detail is presented in companion papers

  19. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  20. Formation and acceleration of precompressed compact tori in RACE

    International Nuclear Information System (INIS)

    Molvik, A.W.; Eddleman, J.L.; Hammer, J.H.; Hartman, C.W.; McLean, H.S.

    1990-01-01

    Many applications of the compact torus accelerator, CTA, concept (such as a driver for inertial fusion, or magnetically insulated inertial fusion) require maximizing the power density by compressing the compact torus, CT. The ring accelerator experiment, RACE, has compressed CT's by a factor of 2 in radius before acceleration, after being reconfigured with a precompressor cone followed by a short, 80 cm long, coaxial accelerator. The authors show the gas valves and gun, precompressor, and the beginning of the accelerator. The inner acceleration electrode begins at the precompressor cone after passing through the inner gun electrode. The authors discuss the experimental results of slow formation, compression, and acceleration in this new geometry

  1. Acceleration of tritons with a compact cyclotron

    International Nuclear Information System (INIS)

    Wegmann, H.; Huenges, E.; Muthig, H.; Moringa, H.

    1981-01-01

    With the compact cyclotron at the Faculty of Physics of the Technical University of Munich, tritons have been accelerated to an energy of 7 MeV. A safe and reliable operation of the gas supply for the ion source was obtained by a new tritium storage system. A quantity of 1500 Ci tritium is stored by two special Zr-Al getter pumps in a non-gaseous phase. The tritium can be released in well-defined amounts by heating the getter material. During triton acceleration the pressure in the cyclotron vacuum chamber is maintained only by a large titanium sputter-ion pump, thus forming a closed vacuum system without any exhaust of tritium contaminated gas. Any tritium contaminations in the air can be detected by an extremely sensitive tritium monitoring system. The triton beam with a maximum intensity of 30 μA has been used so far to produce neutron-rich radioisotopes such as 28 Mg, 43 K, or 72 Zn, which are successfully applied in tracer techniques in the studies of biological systems. (orig.)

  2. Project of compact accelerator for cancer proton therapy

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1995-04-01

    The status of the sub-projetc 'Compact Accelerator' in the framework of the Hadrontherapy Project leaded by Prof. Amaldi is described. Emphasis is given to the reasons of the use of protons for radiotherapy applications, to the results of the preliminary design studies of four types of accelerators as possible radiotherapy dedicated 'Compact Accelerator' and to the scenario of the fonts of financial resources

  3. Advanced Accelerator Concepts

    Science.gov (United States)

    Siemann, Robert

    1998-04-01

    Current particle accelerators rely on conventional or superconducting radio frequency cavities to accelerate beams of protons or electrons for nuclear and particle research and for medical and materials science studies. New methods for achieving larger accelerating gradients have been proposed and are being studied. These include the use of high power lasers, laser driven plasmas, wake fields generated by intense low energy beams, and millimeter wavelength EM structures. The studies to date, and the prospects for practical applications of these new ideas will be discussed.

  4. Applications of the Strategic Defense Initiative's Compact Accelerators

    National Research Council Canada - National Science Library

    Montanarelli, Nick

    1992-01-01

    ...) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI sponsored compact induction linear accelerator may replace Cobalt 60 radiation...

  5. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  6. Progress in advanced accelerator concepts

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-08-01

    A review is given of recent progress in this field, drawing heavily upon material presented at the Workshop on Advanced Accelerator Concepts, The Abbey, June 12--18, 1994. Attention is addressed to (1) plasma based concepts, (2) photo-cathodes, (3) radio frequency sources and Two-Beam Accelerators, (4) near and far-field schemes (including collective accelerators), (5) beam handling and conditioning, and (6) exotic collider concepts (such as photon colliders and muon colliders)

  7. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John [CPAC, Livermore, CA (United States); Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hamm, Robert W. [R and M Technical Enterprises, Pleasanton, CA (United States); Becker, Reinard [Scientific Software Service, Gelnhausen (Germany)

    2011-12-13

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  8. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    International Nuclear Information System (INIS)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-01-01

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  9. Compact X-ray source at STF (Super Conducting Accelerator Test Facility)

    International Nuclear Information System (INIS)

    Urakawa, J

    2012-01-01

    KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.

  10. Recent results of studies of acceleration of compact toroids

    International Nuclear Information System (INIS)

    Hammer, J.H.; Hartman, C.W.; Eddleman, J.

    1984-01-01

    The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10 11 gravities

  11. Computer simulations of compact toroid formation and acceleration

    International Nuclear Information System (INIS)

    Peterkin, R.E. Jr.; Sovinec, C.R.

    1990-01-01

    Experiments to form, accelerate, and focus compact toroid plasmas will be performed on the 9.4 MJ SHIVA STAR fast capacitor bank at the Air Force Weapons Laboratory during the 1990. The MARAUDER (magnetically accelerated rings to achieve ultrahigh directed energy and radiation) program is a research effort to accelerate magnetized plasma rings with the masses between 0.1 and 1.0 mg to velocities above 10 8 cm/sec and energies above 1 MJ. Research on these high-velocity compact toroids may lead to development of very fast opening switches, high-power microwave sources, and an alternative path to inertial confinement fusion. Design of a compact toroid accelerator experiment on the SHIVA STAR capacitor bank is underway, and computer simulations with the 2 1/2-dimensional magnetohydrodynamics code, MACH2, have been performed to guide this endeavor. The compact toroids are produced in a magnetized coaxial plasma gun, and the acceleration will occur in a configuration similar to a coaxial railgun. Detailed calculations of formation and equilibration of a low beta magnetic force-free configuration (curl B = kB) have been performed with MACH2. In this paper, the authors discuss computer simulations of the focusing and acceleration of the toroid

  12. New generation of compact electron accelerators for radiation technologies

    International Nuclear Information System (INIS)

    Auslender, V.L.; Balakin, V.E.; Kraynov, G.S.

    1995-01-01

    Compact electron accelerators with energy range 0.25-1.0 MeV and beam power up to 32 kw are described. The feeding high voltage is formed by converter (working frequency 20 khz), coreless step-up transformer and a set of rectifying sections. The rectifying multiplier circuit used in rectifying sections permits to reach voltage gradient along accelerator's axis up to 14 kV/cm. The accelerators with vertical and horizontal position are described. The accelerators can be produced together with local radiation shielding and various underbeam transportation systems for irradiation of different products. Such version can be installed in any room facing general requirements for electric equipment

  13. High-gradient compact linear accelerator

    Science.gov (United States)

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  14. KLYNAC: Compact linear accelerator with integrated power supply

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  15. Final report on the LLNL compact torus acceleration project

    International Nuclear Information System (INIS)

    Eddleman, J.; Hammer, J.; Hartman, C.; McLean, H.; Molvik, A.

    1995-01-01

    In this report, we summarize recent work at LLNL on the compact torus (CT) acceleration project. The CT accelerator is a novel technique for projecting plasmas to high velocities and reaching high energy density states. The accelerator exploits magnetic confinement in the CT to stably transport plasma over large distances and to directed kinetic energies large in comparison with the CT internal and magnetic energy. Applications range from heating and fueling magnetic fusion devices, generation of intense pulses of x-rays or neutrons for weapons effects and high energy-density fusion concepts

  16. A single-beam deuteron compact accelerator for neutron generation

    International Nuclear Information System (INIS)

    Araujo, Wagner Leite; Campos, Tarcisio Passos Ribeiro de

    2011-01-01

    Portable neutron generators are devices composed by small size accelerators that produce neutrons through fusion between hydrogen isotopes. These reactions are characterized by appreciable cross section at energies at the tens of keV, which enables device portability. The project baselines follow the same physical and engineering principles of any other particle accelerators. The generator consists of a gas reservoir, apparatus for ion production, few electrodes to accelerate and focus the ion beam, and a metal hydride target where fusion reactions occur. Neutron generator applications include geophysical measurements, indus- trial process control, environmental, research, nation's security and mechanical structure analysis.This article presents a design of a compact accelerator for d-d neutron generators, describing the physical theory applied to the deuteron extraction system, and simulating the ion beam transport in the accelerator. (author)

  17. Compact torus accelerator as a driver for ICF

    International Nuclear Information System (INIS)

    Tobin, M.T.; Meier, W.R.; Morse, E.C.

    1986-01-01

    The authors have carried out further investigations of the technical issues associated with using a compact torus (CT) accelerator as a driver for inertial confinement fusion (ICF). In a CT accelerator, a magnetically confined, torus-shaped plasma is compressed, accelerated, and focused by two concentric electrodes. After its initial formation, the torus shape is maintained for lifetimes exceeding 1 ms by inherent poloidal and toroidal currents. Hartman suggests acceleration and focusing of such a plasma ring will not cause dissolution within certain constraints. In this study, we evaluated a point design based on an available capacitor bank energy of 9.2 MJ. This accelerator, which was modeled by a zero-dimensional code, produces a xenon plasma ring with a 0.73-cm radius, a velocity of 4.14 x 10 9 cm/s, and a mass of 4.42 μg. The energy of the plasma ring as it leaves the accelerator is 3.8 MJ, or 41% of the capacitor bank energy. Our studies confirm the feasibility of producing a plasma ring with the characteristics required to induce fusion in an ICF target with a gain greater than 50. The low cost and high efficiency of the CT accelerator are particularly attractive. Uncertainties concerning propagation, accelerator lifetime, and power supply must be resolved to establish the viability of the accelerator as an ICF driver

  18. Advanced Construction of Compact Containment BWR

    International Nuclear Information System (INIS)

    Takahashi, M.; Maruyama, T.; Mori, H.; Hoshino, K.; Hijioka, Y.; Heki, H.; Nakamaru, M.; Hoshi, T.

    2006-01-01

    fabricate and perform pressure-test at the factory and transport to the construction-site as a module. Basing on CCR design concept of simplification and compact, reactor building layout design has been carried out. Layout design has been performed taking into account module construction, reduced system and components and compact PCV. As a result, CCR's reactor building, specific volume to power output value is almost equal to ABWR one. Module fabrication and construction method is promising technology from the points of construction duration shortening and construction cost reduction. Electrical equipment are piled up to multi-layer and connected and tested at the factory and transported to the construction-site in one module. Other equipment rooms and areas are also built into the various pre-fabricated module types in CCR construction. The construction of the CCR by the large module is planned to achieve only 24-month construction period from bedrock inspection to commercial operation. The CCR has possibilities of attaining both economical and safe small reactor by simplified system and compact PCV technologies with advanced construction. (authors)

  19. Compact and tunable focusing device for plasma wakefield acceleration

    Science.gov (United States)

    Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.

    2018-03-01

    Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.

  20. Experimental and Numerical Investigation of Compact Dielectric Wakefield Accelerators

    Science.gov (United States)

    2016-03-01

    macroparticles. Additionally the laser is chosen to have a transverse rms spot size of σc = 0.8 mm and rms duration of σt = 1 ps. A solenoidal lens is...photocathode laser . . . . . . . . . . 24 3.3 Experimental realization of a linearly-ramped bunch with a multifrequency linac... laser . Our approach toward the development of a compact beam-driven accelerator consists of four main components depicted in Fig. 1. The production of

  1. Approach to compact terawatt CO2 laser system for particle acceleration

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Kimura, W.D.; Fisher, C.H.; Kannari, F.

    1994-01-01

    A compact table-top 20-GW 50-ps CO 2 laser system is in operation for strong-field physics studies at the ATF. We propose scaling up of the picosecond CO 2 laser to a terawatt peak power level to meet the requirements of advanced laser accelerators. Computer modeling shows that a relatively compact single-beam picosecond CO 2 laser system with a high-pressure x-ray picosecond amplifier of a 10-cm aperture is potentially scalable to the ∼1-TW peak power level

  2. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    Science.gov (United States)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  3. Present status of the compact accelerator in 2015

    International Nuclear Information System (INIS)

    Hagura, Naoto; Katoh, Yuya; Shimada, Masaru

    2016-01-01

    This paper introduces the situation of compact accelerator construction and related research and development at Tokyo City University in FY2015. In FY2014, the first year of 3-year program, this study examined the start-up of a cold cathode PIG negative ion source and the specifications for an insulated gas handling system of the compact accelerator. In the second year of FY2015, it mainly continued the development of ion sources. In the final year of FY2016, it plans to enable a simulated beam test at end-station. As the characteristic measurement around the ion source, this study examined the optimum conditions for beam extraction, as for the relationship between the magnetic field strength required for plasma confinement and the beam current in a discharge vessel. It was possible to confirm the relationship between the degree of vacuum inside the discharge vessel and the discharge voltage, when the central magnetic field strength in the vessel was changed through the unit number of neodymium magnets. The current and voltage conditions that maximize the beam current and the number of neodymium magnets were chosen. The magnetic field intensity of the incident electromagnet was measured as a basic characteristic, and it was used as basic data for the stable operation of accelerator. As other methods for the improvement and examination of equipment, purchase order for an insulated gas handling system, improvement around accelerating tank, and examination of control system were promoted. (A.O.)

  4. Compact and energy saving magnet technology for particle accelerators

    International Nuclear Information System (INIS)

    Baurichter, A.

    2013-01-01

    Despite the fact that funding agencies and industrial users of particle accelerators get more and more alerted about costs of civil engineering, installation and operation, only little effort has been put into development of sustainable, energy and cost saving accelerator technology. In order to reduce the total-cost-of ownership of accelerator magnets, operating at high electrical power for twenty years or more, permanent magnet based Green Magnet technology has been developed at a consortium around Danfysik's R and D team. Together with our partners from ISA, Aarhus University, the Aarhus School of Engineering, the company Sintex and Aalborg University all obstacles in applying permanent magnet technology as e.g. thermal drift and inhomogeneities of magnetic fields have been overcome. The first Green Magnet has now been operated for more than half a year in an Accelerator Mass Spectrometry facility at the ETH in Zurich. The performance of this B=0.43T 90 deg. H-type bending magnet and the most recently builtB=1T, 30 deg. C-type Green Magnet for the synchrotron light source ASTRID2 at ISA in Aarhus will be presented. Danfysik also is designing, manufacturing and testing 60 compact magnet systems, developed at MAX-Lab for the new MAXIV 3.0 GeV synchrotron light source. In addition, 12 for the 1.5 GeV light source and another 12 for the new SOLARIS light source in Krakow, Poland are buying built. Up to a dozen or more magnet functions have been integrated into one yoke of these compact magnet systems, which makes the new MAXIV light sources compact, energy saving and at the same time very bright. Test results and design concepts of the new MAXIV and SOLARIS magnets will be presented. (author)

  5. Resent advance in electron linear accelerators

    International Nuclear Information System (INIS)

    Takeda, Seishi; Tsumori, Kunihiko; Takamuku, Setsuo; Okada, Toichi; Hayashi, Koichiro; Kawanishi, Masaharu

    1986-01-01

    In recently constructed electron linear accelerators, there has been remarkable advance both in acceleration of a high-current single bunch electron beam for radiation research and in generation of high accelerating gradient for high energy accelerators. The ISIR single bunch electron linear accelerator has been modified an injector to increase a high-current single bunch charge up to 67 nC, which is ten times greater than the single bunch charge expected in early stage of construction. The linear collider projects require a high accelerating gradient of the order of 100 MeV/m in the linear accelerators. High-current and high-gradient linear accelerators make it possible to obtain high-energy electron beam with small-scale linear accelerators. The advance in linear accelerators stimulates the applications of linear accelerators not only to fundamental research of science but also to industrial uses. (author)

  6. A compact, repetitive accelerator for military and industrial applications

    International Nuclear Information System (INIS)

    Zutavern, F.J.; O'Malley, M.W.; Ruebush, M.H.; Rinehart, L.F.; Loubriel, G.M.; Babcock, S.R.; Denison, G.J.

    1998-04-01

    A compact, short pulse, repetitive accelerator has many useful military and commercial applications in biological counter proliferation, materials processing, radiography, and sterilization (medical instruments, waste, and food). The goal of this project was to develop and demonstrate a small, 700 kV accelerator, which can produce 7 kA particle beams with pulse lengths of 10--30 ns at rates up to 50 Hz. At reduced power levels, longer pulses or higher repetition rates (up to 10 kHz) could be achieved. Two switching technologies were tested: (1) spark gaps, which have been used to build low repetition rate accelerators for many years; and (2) high gain photoconductive semiconductor switches (PCSS), a new solid state switching technology. This plan was economical, because it used existing hardware for the accelerator, and the PCSS material and fabrication for one module was relatively inexpensive. It was research oriented, because it provided a test bed to examine the utility of other emerging switching technologies, such as magnetic switches. At full power, the accelerator will produce 700 kV and 7 kA with either the spark gap or PCSS pulser

  7. Net Shape Manufacturing of Accelerator Components by High Pressure Combustion Driven Powder Compaction

    CERN Document Server

    Nagarathnam, Karthik

    2005-01-01

    We present an overview of the net shape and cost-effective manufacturing aspects of high density accelerator (normal and superconducting) components (e.g., NLC Copper disks) and materials behavior of copper, stainless steel, refractory materials (W, Mo and TZM), niobium and SiC by innovative high pressure Combustion Driven Compaction (CDC) technology. Some of the unique process advantages include high densities, net-shaping, improved surface finish/quality, suitability for simple/complex geometries, synthesis of single as well as multilayered materials, milliseconds of compaction process time, little or no post-machining, and process flexibility. Some of the key results of CDC fabricated sample geometries, process optimization, sintering responses and structure/property characteristics such as physical properties, surface roughness/quality, electrical conductivity, select microstructures and mechanical properties will be presented. Anticipated applications of CDC compaction include advanced x-ray targets, vac...

  8. Development of compact low energy election beam accelerator

    International Nuclear Information System (INIS)

    Katsura, Ichiro

    1996-01-01

    Sumitomo Heavy Industries has developed new compact accelerator jointly with its affiliated company RPC industries and some of which have already been in use in industries. Named WIPL, or WIP, which stands for Wire Ion Plasma, this accelerator is almost half the size of existing accelerators yet with performance as high as well enough to cope with industrial requirements. Background of our determination to develop such accelerator was that there prevails fairly good numbers of small laboratory units but only small numbers of production machines are in use. The main reason which brought such environment was that those production units were husky and costly. To overcome such problem and to turn situation in favor we launched the development programme and eventually succeeded to complete WIPL. Unique feature of WIPL was materialized by adopting special method of generating electrons. Unlike existing accelerators which use heated filaments WIPL utilizes the system using electron emission by bombardment of cathode plate by helium ions as electron source. Electrons are to be generated in following manner. 1) Thin helium gas is introduced in plasma chamber in which wire(s) for applying electric power. When power is supplied helium gas is turned into helium plasma by electric field. 2) Being energized by separate high voltage power source cathode plate is charged minus simultaneously. 3) Plus charged helium ions in plasma are then accelerated toward cathode plate and hit the surface. 4) Cathode plate emits electrons by bombardment and emitted electrons are compelled by the field and accelerated to the direction which helium ion came. Since such system no longer requires insulated transformers and control system for controlling electron beam current used in filament type machines equipment becomes remarkably small and economical. We really hope that this machine is accepted widely and contributes for exploiting the new horizon of electron beam market. (author)

  9. Research opportunities with compact accelerator-driven neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Andreani, C., E-mail: carla.andreani@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Carpenter, J.M. [Argonne National Laboratory, Argonne, IL (United States); Festa, G., E-mail: giulia.festa@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Gorini, G. [Università degli Studi di Milano—Bicocca, Milano (Italy); Loong, C.-K. [Università degli Studi di Roma “Tor Vergata”, Centro NAST, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Senesi, R. [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy)

    2016-10-13

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  10. Research opportunities with compact accelerator-driven neutron sources

    Science.gov (United States)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  11. Research opportunities with compact accelerator-driven neutron sources

    International Nuclear Information System (INIS)

    Anderson, I.S.; Andreani, C.; Carpenter, J.M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-01-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  12. Applications of ultra-compact accelerator technologies for homeland security

    International Nuclear Information System (INIS)

    Sampayan, S.; Caporaso, G.; Chen, Y.J.; Falabella, S.; Guethlein, G.; Harris, J.R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Nunnally, W.; Paul, A.C.; Poole, B.; Rhodes, M.; Sanders, D.; Selenes, K.; Shaklee, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.

    2007-01-01

    We report on a technology development to address explosive detector system throughout with increased detection probability. The system we proposed and are studying consists of a pixelized X-ray based pre-screener and a pulsed neutron source quantitative post verifier. Both technologies are derived from our compact accelerator development program for the Department of Energy Radiography Mission that enables gradients >10MV/m. For the pixelized X-ray source panel technology, we have performed initial integration and testing. For the accelerator, we are presently integrating and testing cell modules. For the verifier, we performed MCNP calculations that show good detectability of military and multi-part liquid threat systems. We detail the progress of our overall effort, including research and modeling to date, recent high voltage test results and concept integration

  13. Modular compact solid-state modulators for particle accelerators

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  14. Results from the RACE [Ring ACceleration Experiment] Compact Torus Acceleration Experiment

    International Nuclear Information System (INIS)

    Hammer, J.H.; Hartman, C.W.; Eddleman, J.L.; Kusse, B.

    1987-06-01

    RACE (Ring ACceleration Experiment) is a proof-of-principle experiment aimed at demonstrating acceleration of magnetically confined compact torus plasma rings to directed kinetic energies well in excess of their magnetic and thermal energies. In the course of the first year of operation the following have been observed: successful formation of rings in the RACE geometry; acceleration of rings with large forces, F/sub accelerate/ ∼F/sub equilibrium/ without apparent degradation of the ring structure; peak velocities of ≅2.5 x 10 8 cm/sec; acceleration efficiency of >30% at speeds of 1.5 x 10 8 cm/sec inferred from trajectory and capacitor bank data; kinetic to magnetic energy ratios ∼10 were observed. Experiments in the near future will be aimed at confirmation of the mass/energy measurements by calorimetry and direct density measurements

  15. Compact all-fiber interferometer system for shock acceleration measurement

    Science.gov (United States)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the

  16. GPU accelerated manifold correction method for spinning compact binaries

    Science.gov (United States)

    Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying

    2018-04-01

    The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.

  17. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of accelerator physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  18. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of Accelerator Physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  19. CAS CERN Accelerator School: Advanced accelerator physics. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Turner, S.

    1987-01-01

    This advanced course on general accelerator physics is the second of the biennial series given by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette, Paris, in 1984. Stress is placed on the mathematical tools of Hamiltonian mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory. The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-charge effects and polarization. The seminar programme treats some specific accelerator techniques, devices, projects and future possibilities. (orig.)

  20. Dose delivery study for a novel compact proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Kim Melanie

    2014-01-15

    Proton therapy has played an important role in the treatment of cancer with radiation therapy for more than 60 years. Active spot scanning to deliver highly conformal dose to the tumor has been developed. However, the availability of proton therapy to the patients is still limited, partly, due to the high costs and sizes of large proton therapy centers. Therefore, a novel compact proton single room facility based on a linear accelerator mounted on a gantry has been proposed, named TULIP (TUrning LInac for Proton therapy). This accelerator allows for active energy variation on a milliseconds time scale. This work aims to assess the possibilities of dose delivery with TULIP to exploit its beneficial features with respect to dose delivery. We developed a software tool, simulating the dose delivery to the tumor. By means of this software tool, we assessed different delivery methods and found 3D spot scanning to be superior to rotational dose delivery with regard to dose and irradiation time. In a second part, we expanded the investigations to dose delivery to moving targets. Due to fast energy variation, we found TULIP to be preferably suitable for rescanning, confirmed by irradiation times of only a few minutes.

  1. Dose delivery study for a novel compact proton accelerator

    International Nuclear Information System (INIS)

    Kraus, Kim Melanie

    2014-01-01

    Proton therapy has played an important role in the treatment of cancer with radiation therapy for more than 60 years. Active spot scanning to deliver highly conformal dose to the tumor has been developed. However, the availability of proton therapy to the patients is still limited, partly, due to the high costs and sizes of large proton therapy centers. Therefore, a novel compact proton single room facility based on a linear accelerator mounted on a gantry has been proposed, named TULIP (TUrning LInac for Proton therapy). This accelerator allows for active energy variation on a milliseconds time scale. This work aims to assess the possibilities of dose delivery with TULIP to exploit its beneficial features with respect to dose delivery. We developed a software tool, simulating the dose delivery to the tumor. By means of this software tool, we assessed different delivery methods and found 3D spot scanning to be superior to rotational dose delivery with regard to dose and irradiation time. In a second part, we expanded the investigations to dose delivery to moving targets. Due to fast energy variation, we found TULIP to be preferably suitable for rescanning, confirmed by irradiation times of only a few minutes.

  2. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  3. Advanced accelerator research and development

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Research and development on the Positron-Electron Project (PEP), the electron rings, the superconducting accelerator (ESCAR), and the superconductivity program are reported. Efforts relating to the proposed PEP include work on: (1) the injection system; (2) the rf system; (3) the main-ring bend magnets; (4) the magnet power supplies and controls; (5) alignment; (6) radiation and shielding; (7) the vacuum system; and (8) conventional facilities (utilities, etc.). Experimental and theoretical work continued on the development of suitably intense electron rings as vehicles for the collective acceleration of ions. The most difficult problem was found to be the longitudinal (negative mass) instability. Design work was begun for ESCAR (Experimental Superconducting Accelerating Ring), a small proton synchrotron and storage ring using superconducting magnets, which should aid in the design of future large superconducting facilities. Magnet development was largely directed toward the detailed design of the dipole units. A superconducting beam transport line was installed at the Bevatron. (PMA)

  4. Advanced Accelerator Concepts Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di erences we might observe would revolutionize fundamental physics. This is the

  5. Advanced Accelerator Applications in Medicine

    International Nuclear Information System (INIS)

    Rimjiaem, Sakhorn

    2015-01-01

    besides the original purpose on development of particle acceleratora as research tools in nuclear and high-energy physics, there are large variety of accelerators used in various fileds from fundamental research to industrial usesand applications chemistry, biology and medicine. Pratical accelators used in various field of medical applications since serveral decades. Even through, a large fraction of applications is emphasized on cancer therappy, the number of accelerators used in midicine for other diagnostics and treatments has increased steady over the years. Several types of accelerated particles are used including electron, proton, neutron and ions. Presently, relativistic electron beams and radiation from linear accelerators (linas) are widely used. A combination of positron emission tomography (PRT) and radiotherapy is an example of excellent invention early detection and treat of cancer tumors. The most developments for proton and heavy ion therapy as well as a modern boron neutron capture therapy (BNCT) are also great incoming effective systems. This talk will focus on developments of the accelrator systems as well as overview on biophysical properties and medical aspects of the diacnostics and treatments.

  6. Accelerating development of advanced inverters :

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin

    2013-11-01

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  7. Recent progress of the advanced test accelerator

    International Nuclear Information System (INIS)

    Prono, D.S.

    1985-01-01

    The Advanced Test Accelerator (ATA) of Lawrence Livermore National Laboratory is a linear induction accelerator whose electron beam parameters are 10 kA, 50 MeV, and 70 ns. This accelerator structure basically is a 2.5 MeV injector followed by 190 identical induction accelerator cores each of which incrementally adds 250 kV to the electron beam as it threads the center of the core. Recent work on beam stability, beam emittance and beam brightness is reported

  8. Advanced visualization technology for terascale particle accelerator simulations

    International Nuclear Information System (INIS)

    Ma, K-L; Schussman, G.; Wilson, B.; Ko, K.; Qiang, J.; Ryne, R.

    2002-01-01

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements

  9. CAS CERN Accelerator School second advanced accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    The advanced course on general accelerator physics given in West Berlin closely followed that organised by the CERN Accelerator School at Oxford in September 1985 and whose proceedings were published as CERN Yellow Report 87-03 (1987). However, certain subjects were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include particle-photon interactions, high-brilliance lattices and single/multiple Touschek effect, while the seminars are on the major accelerators presently under construction or proposed for the near future, applications of synchrotron radiation, free-electron lasers, cosmic accelerators and crystal beams. Also included are errata, and addenda to some of the lectures, of CERN 87-03. (orig.)

  10. Proceedings of CAS - CERN Accelerator School: Advanced Accelerator Physics Course

    International Nuclear Information System (INIS)

    Herr, W

    2014-01-01

    This report presents the proceedings of the Course on Advanced Accelerator Physics organized by the CERN Accelerator School. The course was held in Trondheim, Norway from 18 to 29 August 2013, in collaboration with the Norwegian University of Science and Technology. Its syllabus was based on previous courses and in particular on the course held in Berlin 2003 whose proceedings were published as CERN Yellow Report CERN-2006-002. The field has seen significant advances in recent years and some topics were presented in a new way and other topics were added. The lectures were supplemented with tutorials on key topics and 14 hours of hands on courses on Optics Design and Corrections, RF Measurement Techniques and Beam Instrumentation and Diagnostics. These courses are a key element of the Advanced Level Course

  11. Advanced accelerator methods: The cyclotrino

    International Nuclear Information System (INIS)

    Welch, J.J.; Bertsche, K.J.; Friedman, P.G.; Morris, D.E.; Muller, R.A.

    1987-04-01

    Several new and unusual, advanced techniques in the small cyclotron are described. The cyclotron is run at low energy, using negative ions and at high harmonics. Electrostatic focusing is used exclusively. The ion source and injection system is in the center, which unfortunately does not provide enough current, but the new system design should solve this problem. An electrostatic extractor that runs at low voltage, under 5 kV, and a microchannel plate detector which is able to discriminate low energy ions from the 14 C are used. The resolution is sufficient for 14 C dating and a higher intensity source should allow dating of a milligram size sample of 30,000 year old material with less than 10% uncertainty

  12. CAS CERN Accelerator School. Third advanced accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1990-01-01

    The third version of the CERN Accelerator School's (CAS) advanced course on General Accelerator Physics was given at Uppsala University from 18-29 September, 1989. Its syllabus was based on the previous courses held in Oxford, 1985 and Berlin, 1987 whose proceedings were published as CERN Yellow Reports 87-03 and 89-01 respectively. However, the opportunity was taken to emphasize the physics of small accelerators and storage rings, to present some topics in new ways, and to introduce new seminars. Thus the lectures contained in the present volume include chromaticity, dynamic aperture, kinetic theory, Landau damping, ion-trapping, Schottky noise, laser cooling and small ring lattice problems while the seminars include interpretation of numerical tracking, internal targets and living with radiation. (orig.)

  13. Inverse free electron laser accelerator for advanced light sources

    Directory of Open Access Journals (Sweden)

    J. P. Duris

    2012-06-01

    Full Text Available We discuss the inverse free electron laser (IFEL scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  14. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    Shuets, G.

    2004-01-01

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators

  15. Diagnostics for advanced laser acceleration experiments

    International Nuclear Information System (INIS)

    Misuri, Alessio

    2002-01-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure

  16. Diagnostics for advanced laser acceleration experiments

    Energy Technology Data Exchange (ETDEWEB)

    Misuri, Alessio [Univ. of Pisa (Italy)

    2002-01-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  17. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  18. Compact RF ion source for industrial electrostatic ion accelerator

    Science.gov (United States)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  19. Linear induction accelerator approach for advanced radiography

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1997-05-01

    Recent advances in induction accelerator technology make it possible to envision a single accelerator that can serve as an intense, precision multiple pulse x-ray source for advanced radiography. Through the use of solid-state modulator technology repetition rates on the order of 1 MHz can be achieved with beam pulse lengths ranging from 200 ns to 2 microsecs. By using fast kickers, these pulses may be sectioned into pieces which are directed to different beam lines so as to interrogate the object under study from multiple lines of sight. The ultimate aim is to do a time dependent tomographic reconstruction of a dynamic object. The technology to accomplish these objectives along with a brief discussion of the experimental plans to verify it will be presented

  20. MEMS-based, RF-driven, compact accelerators

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  1. Acceleration of compact torus plasma rings in a coaxial rail-gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.

    1985-01-01

    We discuss here theoretical studies of magnetic acceleration of Compact Torus plasma rings in a coaxial, rail-gun accelerator. The rings are formed using a magnetized coaxial plasma gun and are accelerated by injection of B/sub theta/ flux from an accelerator bank. After acceleration, the rings enter a focusing cone where the ring is decelerated and reduced in radius. As the ring radius decreases, the ring magnetic energy increases until it equals the entering kinetic energy and the ring stagnates. Scaling laws and numerical calculations of acceleration using a O-D numerical code are presented. 2-D, MHD simulations are shown which demonstrate ring formation, acceleration, and focusing. Finally, 3-D calculations are discussed which determine the ideal MHD stability of the accelerated ring

  2. Acceleration of compact torus plasma rings in a coaxial rail-gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.

    1986-01-01

    They discuss here theoretical studies of magnetic acceleration of Compact Torus plasma rings in a coaxial, rail-gun accelerator. The rings are formed using a magnetized coaxial plasma gun and are accelerated by injection of B/sub Theta/ flux from an accelerator bank. After acceleration, the rings enter a focusing cone where the ring is decelerated and reduced in radius. As the ring radius decreases, the ring magnetic energy increases until it equals the entering kinetic energy and the ring stagnates. Scaling laws and numerical calculations of acceleration using a O-D numerical code are presented. 2-D, MHD simulations are shown which demonstrate ring formation, acceleration, and focusing. Finally, 3-D calculations are discussed which determine the ideal MHD stability of the accelerated ring

  3. Vacuum system for Advanced Test Accelerator

    International Nuclear Information System (INIS)

    Denhoy, B.S.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10 -6 torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing

  4. Vacuum system for Advanced Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  5. Review of Compact Commercial Accelerator Products and Applications.

    Science.gov (United States)

    Jongen, Y.

    1997-05-01

    Historically, particle accelerators were developed initially for nuclear, then for particle physics research. From this research resulted applications of accelerators in the field of medicine and industry. These application-oriented accelerators are generally built commercially, and they often emphasize other qualities than the accelerators for research. The research applications frequently require energies or beam qualities at the limit of the existing technologies. They offer the largest flexibility in term of particles and beam properties, but are more complex, more expensive and often require large and highly qualified staff to operate and maintain them. In contrast, most applications are done with low to moderate energy protons or electrons, but often with large average beam power. The accelerators are generally specialized for a specific application, and are therefore very simple and inexpensive to operate. The author will review some applications in the field of medicine, such as the production of radio-isotopes for medical diagnostic or the production of electrons, protons or fast neutron beams for cancer therapy. In the industrial field, high power electron beam are used for sterilization and for the modification of materials. Log No. 1001

  6. [Advanced accelerator R and D program]. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    This proposal requests funding for a 3-year renewal of the DOE advanced accelerator R and D (AARD) program at Texas A and M University. The program to date has focused on the development of the gigatron, a compact high-efficiency microwave driver for future linear colliders. The author reports results and progress in that project, and plans to bring it to a milestone and conclusion by mid-1995. He proposes to initiate a second project, the development of a new technology for ultra-high field superconducting magnets for future hadron colliders. This project builds upon two magnet designs which he has introduced during the past year, which have the potential for a dramatic extension of the achievable field strength for both dipoles and quadrupoles

  7. Multi-purpose use of the advanced CANDU compact simulator

    International Nuclear Information System (INIS)

    Lam, K.Y.; MacBeth, M.J.

    1997-01-01

    A near full-scope dynamic model of a CANDU-PHWR (Canadian Deuterium Uranium Pressurized Heavy Water) nuclear power plant was constructed as a multi-purpose advanced Compact Simulator using CASSIM (Cassiopeia Simulation) development system. This Compact Simulator has played an integral part in the design and verification of the CANDU 900 MW control centre mock-up located in the Atomic Energy of Canada (AECL) design office, providing CANDU plant process dynamic data to the Plant Display System (PDS) and the Distributed Control System (DCS), as well as mock-up panel devices. As a design tool, the Compact Simulator is intended to be used for control strategy development, human factors studies, analysis of overall plant control performance, tuning estimates for major control loops. As a plant commissioning and operational strategy development tool, the simulation is intended to be used to evaluate routine and non-routine operational procedures, practice 'what-if' scenarios for operational strategy development, practice malfunction recovery procedures and verify human factors activities

  8. Advanced turbine/CO2 pellet accelerator

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.

    1994-01-01

    An advanced turbine/CO 2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory. The program, sponsored by Warner Robins Air Logistics Center, Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air sandblast pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies. Applications include removal of epoxy-based points from aircraft and the cleaning of surfaces contaminated with toxic, hazardous, or radioactive substances. The lack of a secondary contaminated waste stream is of great benefit

  9. A compact permanent magnet cyclotrino for accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, A.T.; Clark, D.J.; Kunkel, W.B.; Leung, K.N.; Li, C.Y. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show that it has a uniformity on the order of 2 parts in 10{sup 4}.

  10. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  11. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  12. LightSavers : accelerating advanced outdoor lighting

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, B.; Pickering, M.

    2010-01-15

    This paper provided an update to the Toronto Atmospheric Fund (TAF) LightSavers program. The program was designed to accelerate market transformation for light emitting diode (LED) and advanced lighting management systems in outdoor lighting applications. It is expected that the program will result in significant electricity savings and emissions reductions within the Greater Toronto Area (GTA) and other Ontario municipalities. The first phase of the program established advanced outdoor lighting pilot programs in parking lots, garages, and pathway lighting applications that were guided by a common monitoring protocol to ensure useful and reliable assessment of the pilot programs. The TAF has since developed a strategy to strengthen public understanding and support for the use of advanced lighting, and continues to address policy issues that may impact the future of LED lighting programs. The TAF has also activated an electronic newsletter, delivered public workshops, and has been represented at several conferences. A working partnership has been established with Toronto Hydro Energy Services. Five pilot sites have been installed and have begun to provide monitoring data. Details of the pilot programs were provided. 16 figs.

  13. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  14. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  15. Advance study of fiber-reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-01-01

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete

  16. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  17. 12th Advanced Accelerator Concept (AAC 2006) Workshop

    International Nuclear Information System (INIS)

    Piot, Philippe

    2006-01-01

    Summary of the 12th Advanced Accelerator Concept (AAC 2006) Workshop help by NIU and ANL on July 10th-15th 2006 in Lake Geneva WI. The proceedings of the workshop have been published as an AIP conference proceedings '12th Advanced Accelerator Concepts Workshop' volume 877. The Twelfth Workshop on Advanced Accelerator Concepts was held at the Grand Geneva Resort in Lake Geneva, Wisconsin, from July 10 to July 15, 2006. The Workshop was sponsored by the High Energy Physics program of the U.S. Department of Energy, and was hosted by the Argonne Wakefield Accelerator Group (AWA) of Argonne National Laboratory and by Northern Illinois University. The workshop is a bi-annual meeting among physicist working on novel charged particle acceleration concept. The name 'advanced accelerator' physics covers long term research and development in beam physics and accelerator technologies. Some of the topics in advanced accelerator R and D are laser acceleration of electrons, wake field acceleration, novel high power rf source, new beam diagnostics, free-electron lasers, generating high brightness electron beams etc. The Advanced Accelerator Concept workshop is the only acknowledged and fully sponsored forum that provides a platform for inter- and cross-disciplinary discussion on various aspects of advanced accelerator and beam physics/technology concepts.

  18. Advanced Accelerator Development Strategy Report: DOE Advanced Accelerator Concepts Research Roadmap Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-03

    Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponents of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)

  19. Advanced freeform optics enabling ultra-compact VR headsets

    Science.gov (United States)

    Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Grabovičkić, Dejan; Buljan, Marina; Narasimhan, Bharathwaj; Gorospe, Jorge; López, Jesús; Nikolić, Milena; Sánchez, Eduardo; Lastres, Carmen; Mohedano, Ruben

    2017-06-01

    We present novel advanced optical designs with a dramatically smaller display to eye distance, excellent image quality and a large field of view (FOV). This enables headsets to be much more compact, typically occupying about a fourth of the volume of a conventional headset with the same FOV. The design strategy of these optics is based on a multichannel approach, which reduces the distance from the eye to the display and the display size itself. Unlike conventional microlens arrays, which are also multichannel devices, our designs use freeform optical surfaces to produce excellent imaging quality in the entire field of view, even when operating at very oblique incidences. We present two families of compact solutions that use different types of lenslets: (1) refractive designs, whose lenslets are composed typically of two refractive surfaces each; and (2) light-folding designs that use prism-like three-surface lenslets, in which rays undergo refraction, reflection, total internal reflection and refraction again. The number of lenslets is not fixed, so different configurations may arise, adaptable for flat or curved displays with different aspect ratios. In the refractive designs the distance between the optics and the display decreases with the number of lenslets, allowing for displaying a light-field when the lenslet becomes significantly small than the eye pupil. On the other hand, the correlation between number of lenslets and the optics to display distance is broken in light-folding designs, since their geometry permits achieving a very short display to eye distance with even a small number of lenslets.

  20. Project of compact accelerator for cancer proton therapy; Progetto di acceleratore compatto per terapia oncologica con protoni (TOP)

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L; Ronsivalle, C; Vignati, A [ENEA, Cntro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1995-04-01

    The status of the sub-project `Compact Accelerator` in the framework of the Hadrontherapy Project leaded by Prof. Amaldi is described. Emphasis is given to the reasons of the use of protons for radiotherapy applications, to the results of the preliminary design studies of four types of accelerators as possible radiotherapy dedicated `Compact Accelerator` and to the scenario of the fonts of financial resources.

  1. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Science.gov (United States)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  2. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    Science.gov (United States)

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  3. Direct electron acceleration in plasma waveguides for compact high-repetition-rate x-ray sources

    International Nuclear Information System (INIS)

    Lin, M-W; Jovanovic, I

    2014-01-01

    Numerous applications in fundamental and applied research, security, and industry require robust, compact sources of x-rays, with a particular recent interest in monochromatic, spatially coherent, and ultrafast x-ray pulses in well-collimated beams. Such x-ray sources usually require production of high-quality electron beams from compact accelerators. Guiding a radially polarized laser pulse in a plasma waveguide has been proposed for realizing direct laser acceleration (DLA), where the electrons are accelerated by the axial electric field of a co-propagating laser pulse (Serafim et al 2000 IEEE Trans. Plasma Sci. 28 1190). A moderate laser peak power is required for DLA when compared to laser wakefield acceleration, thus offering the prospect for high repetition rate operation. By using a density-modulated plasma waveguide for DLA, the acceleration distance can be extended with pulse guiding, while the density-modulation with proper axial structure can realize the quasi-phase matching between the laser pulses and electrons for a net gain accumulation (York et al 2008 Phys. Rev. Lett. 100 195001; York et al 2008 J. Opt. Soc. Am. B 25 B137; Palastro et al 2008 Phys. Rev. E 77 036405). We describe the development and application of a test particle model and particle-in-cell model for DLA. Experimental setups designed for fabrication of optically tailored plasma waveguides via the ignitor-heater scheme, and for generation and characterization of radially polarized short pulses used to drive DLA, are presented. (paper)

  4. Advanced accelerator and mm-wave structure research at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-22

    This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.

  5. Assessment of Real-Time Compaction Quality Test Indexes for Rockfill Material Based on Roller Vibratory Acceleration Analysis

    Directory of Open Access Journals (Sweden)

    Tianbo Hua

    2018-01-01

    Full Text Available Compaction quality is directly related to the structure and seepage stability of a rockfill dam. To timely and accurately test the compaction quality of the rockfill material, four real-time test indexes were chosen to characterize the soil compaction degree based on the analysis of roller vibratory acceleration, including acceleration peak value (ap, acceleration root mean square value (arms, crest factor value (CF, and compaction meter value (CMV. To determine which of these indexes is the most appropriate, a two-part field compaction experiment was conducted using a vibratory roller in different filling zones of the dam body. Data on rolling parameters, real-time test indexes, and compaction quality indexes were collected to perform statistical regression analyses. Combined with the spectrum analysis of the acceleration signal, it was found that the CF index best characterizes the compaction degree of the rockfill material among the four indexes. Furthermore, the quantitative relations between the real-time index and compaction quality index were established to determine the control criterion of CF, which can instruct the site work of compaction quality control in the rockfill rolling process.

  6. Advances of Accelerator Physics and Technologies

    CERN Document Server

    1993-01-01

    This volume, consisting of articles written by experts with international repute and long experience, reviews the state of the art of accelerator physics and technologies and the use of accelerators in research, industry and medicine. It covers a wide range of topics, from basic problems concerning the performance of circular and linear accelerators to technical issues and related fields. Also discussed are recent achievements that are of particular interest (such as RF quadrupole acceleration, ion sources and storage rings) and new technologies (such as superconductivity for magnets and RF ca

  7. Effects of rf breakdown on the beam in the Compact Linear Collider prototype accelerator structure

    Directory of Open Access Journals (Sweden)

    A. Palaia

    2013-08-01

    Full Text Available Understanding the effects of rf breakdown in high-gradient accelerator structures on the accelerated beam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC and is one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN. During a rf breakdown high currents are generated causing parasitic magnetic fields that interact with the accelerated beam affecting its orbit. The beam energy is also affected because the power is partly reflected and partly absorbed thus reducing the available energy to accelerate the beam. We discuss here measurements of such effects observed on an electron beam accelerated in a CLIC prototype structure. Measurements of the trajectory of bunch trains on a nanosecond time scale showed fast changes in correspondence of breakdown that we compare with measurements of the relative beam spots on a scintillating screen. We identify different breakdown scenarios for which we offer an explanation based also on measurements of the power at the input and output ports of the accelerator structure. Finally we present the distribution of the magnitude of the observed changes in the beam position and we discuss its correlation with rf power and breakdown location in the accelerator structure.

  8. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  9. Post-acceleration of laser driven protons with a compact high field linac

    Science.gov (United States)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  10. Physics of compact radio sources. I. Particle acceleration and flux variations

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.; Scott, J.S.

    1976-01-01

    The observed patterns of variability of compact radio sources may be explained by assuming that the radio components are plasmons containing relativistic particles, and by applying a model with the following features: (1) the plasmons are ejected at high speed into the interstellar medium in the nuclei of active galaxies: (2) ram pressure confinement of the plasmons leads to Rayleigh-Taylor and Kelvin-Helmholtz instabilities therein; (3) turbulence is thereby introduced into the plasmons; (4) the turbulence amplifies the plasmon magnetic field (for a short period) and this leads to betatron aceleration of the relativistic particles; (5) the turbulence vortices continue to accelerate the particles by the second-order Fermi acceleration mechanism. The emission patterns are the result of the combination of these accelerations and adiabatic losses

  11. ELECTROMAGNETIC AND THERMAL SIMULATIONS FOR THE SWITCH REGION OF A COMPACT PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Wang, L; Caporaso, G J; Sullivan, J S

    2007-01-01

    A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electric field simulations and thermal calculations of the switch area were performed to help determine the operating limits of rmed SiC switches. Different geometries were considered for the field simulation including the shape of the thin Indium solder meniscus between the electrodes and SiC. Electric field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady steady-state thermal simulations were analyzed to find the average power capability of the switches

  12. Advanced Accelerator Test Facility (AATF) upgrade plan

    International Nuclear Information System (INIS)

    Gai, W.; Ho, C.; Konecny, R.

    1989-01-01

    We have successfully demonstrated the principles of wake-field acceleration using structures (cavity, dielectric) and plasmas as wake-field devices using the AATF at Argonne National Laboratory. Due to the limited driver electron pulse intensity and relative long pulse length, only modest accelerating gradients were observed. In order to study the wake field effects in much greater detail and demonstrate the feasibility of wake-field accelerator for high energy physics, we are considering construction of a laser photocathode injector on the existing 20 MeV Chem-Linac to produce very intense and short electron pulses. 10 refs., 5 figs

  13. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    Science.gov (United States)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  14. Radiography with cosmic-ray and compact accelerator muons; Exploring inner-structure of large-scale objects and landforms.

    Science.gov (United States)

    Nagamine, Kanetada

    2016-01-01

    Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described.

  15. X-ray production experiments on the RACE Compact Torus Accelerator

    International Nuclear Information System (INIS)

    Hammer, J.H.; Eddleman, J.L.; Hartman, C.W.; McLean, H.S.; Molvik, A.W.; Gee, M.

    1989-12-01

    The Purpose of the Compact Torus Accelerator (CTA) program at LLNL is to prove the principle of a unique accelerator concept based on magnetically confined compact torus (CT) plasma rings and to study applications. Successful achievement of these goals could lead to a high power-density driver for many applications including an intense x-ray source for nuclear weapons effects simulation and an inertial fusion driver. Fusion applications and a description of the CTA concept are included in a companion paper at this conference. This paper will describe the initial experiments on soft x-ray production conducted on the plasma Ring ACcelerator Experiment (RACE) and compare the results to modeling studies. The experiments on CT stagnation and soft x-ray production were conducted with unfocused rings as a first of CT dynamics and the physics of x-ray production. The x-ray fluences observed are consistent with expectations based on calculations employing a radiation-hydrodynamics code. We conclude with a diffusion of future x-ray production studies that can be conducted on RACE and a possible multi-megajoule upgrade

  16. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yoshimasa, E-mail: yoshimasa.ikeda@riken.jp [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Kumagai, Masayoshi [Faculty of Engineering, Tokyo City University, Setagaya, Tokyo 158-8857 (Japan); Oba, Yojiro [Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan); Otake, Yoshie [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Suzuki, Hiroshi [Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2016-10-11

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  17. Advanced Computing for 21st Century Accelerator Science and Technology

    International Nuclear Information System (INIS)

    Dragt, Alex J.

    2004-01-01

    Dr. Dragt of the University of Maryland is one of the Institutional Principal Investigators for the SciDAC Accelerator Modeling Project Advanced Computing for 21st Century Accelerator Science and Technology whose principal investigators are Dr. Kwok Ko (Stanford Linear Accelerator Center) and Dr. Robert Ryne (Lawrence Berkeley National Laboratory). This report covers the activities of Dr. Dragt while at Berkeley during spring 2002 and at Maryland during fall 2003

  18. Advanced Computing Tools and Models for Accelerator Physics

    International Nuclear Information System (INIS)

    Ryne, Robert; Ryne, Robert D.

    2008-01-01

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics

  19. A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, M., E-mail: marcos.gaspar@psi.c [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland); Pedrozzi, M. [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland); Ferreira, L.F.R. [Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Garvey, T. [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland)

    2011-05-01

    We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.

  20. A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications

    International Nuclear Information System (INIS)

    Gaspar, M.; Pedrozzi, M.; Ferreira, L.F.R.; Garvey, T.

    2011-01-01

    We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.

  1. The design of 28 GHz ECR Ion Source for the Compact Linear Accelerator in Korea

    International Nuclear Information System (INIS)

    MiSook, Won; ByoungSeob, Lee; JinYong, Park; DongJun Park; JongPil, Kim; JongSeong, Bae; JungKeum, Ahn; SonJong, Wang; Nakagawa, T.

    2012-01-01

    The construction of a compact linear accelerator is in progress by Korea Basic Science Institute. The main capability of this facility is the production of multiply ionized metal clusters and the generation more intense beams of highly charged ions for material, medical and nuclear physical research. To produce the intense beam of highly charged ions, we will construct an Electron Cyclotron Resonance Ion Source (ECRIS) using 28 GHz microwaves. For this ECRIS, the design of a superconducting magnet, microwave inlet, beam extraction and plasma chamber was completed. Also we are constructing a superconducting magnet system. In this poster, we will report the current status of development of our 28 GHz ECRIS. (authors)

  2. Advanced Accelerator Applications University Participation Program

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; A. Hechanova

    2007-07-25

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

  3. Advanced concepts in accelerator timing control

    International Nuclear Information System (INIS)

    Frankel, R.; Salwen, C.

    1988-01-01

    The control system for the Booster accelerator presently under construction at BNL includes a timing section with serial high speed coded data distribution, computer based encoders for both real time and field driven clocks and a method of easily tracking the performance and reliability of these timing streams. We have developed a simple method for the generation of timing which operates to produce pulses which may be repeated as desired with minimal latency

  4. Advanced Accelerator Applications University Participation Program

    International Nuclear Information System (INIS)

    Chen, Y.; Hechanova, A.

    2007-01-01

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability. In the six years of this program, we saw the evolution of the national transmutation concepts go from the use of accelerators to fast reactors. We also saw an emphasis on gas-cooled reactors for both high temperature heat and deep burn of nuclear fuel. At the local level, we saw a great birth at UNLV of two new academic programs Fall term of 2004 and the addition of 10 academic and research faculty. The Ph.D. program in Radiochemistry has turned into one of the nation's most visible and successful programs; and, the M.S. program in Materials and Nuclear Engineering initiated Nuclear Engineering academic opportunities which took a long time to come. Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability

  5. A damped and detuned accelerating structure for the main linacs of the compact linear collider

    CERN Document Server

    Khan, V

    2011-01-01

    Linear colliders are an option for lepton collision at several TeV. The Compact Linear Collider (CLIC) aims at electron and positron collisions at a centre of mass energy of 3 TeV. In CLIC, the main accelerating structures are designed to operate at an X-band frequency of 12 GHz with an accelerating gradient of 100 MV/m. Two significant issues in linear accelerators that can prevent high gradient being achieved are electrical breakdown and wakefields. The baseline design for the CLIC main linacs relies on a small aperture size to reduce the breakdown probability and a strong damping scheme to suppress the wakefields. The strong damping scheme may have a higher possibility of electrical breakdown. In this thesis an alternative design for the main accelerating structures of CLIC is studied and various aspects of this design are discussed. This design is known as a Damped and Detuned Structure (DDS) which relies on moderate damping and strong detuning of the higher order modes (HOMs). The broad idea of DDS is ba...

  6. Some advanced accelerator projects and ideas

    International Nuclear Information System (INIS)

    Sessler, A.

    1987-01-01

    The author discusses projects and ideas represented, as follows: The motivation is to secure high gradients to reduce power to a reasonable amount, and reduce the length as a consequence of the high gradient; a promising solution is offered by a possibility of having a free electron laser in conjunction with induction units resulting in the following steps: A free electron laser (FEL) to generate high peak power (30 GHz, 10 times the frequency at SLAC, so the wave length is one centimeter instead of ten centimeters); translate this radiation to a conventional high gradient accelerator structure, a conventional linac so that it results in stability and all the positive things known about ordinary linacs; this becomes a power source; use induction units to pump up low energy beams and accelerate little bunches of 10'' electrons up to a few hundred GeV; the schematic of such a system is exemplified with a low energy beam which is a kilo-amp of tens of MeVs; between the FEL sections, energy returns with induction units; and wave guides take rf power to a conventional linac structure - a high gradient linac structure

  7. Advice on the accelerated market implementation of advanced biofuels

    International Nuclear Information System (INIS)

    2008-04-01

    The Platform for Sustainable Mobility aims to promote the accelerated market introduction of more sustainable motor fuels and vehicle technology. The Platform distinguishes four transition paths: hybridization of the fleet of cars; implementation of biofuels; hydrogen-fuelled driving (driving on natural gas and biogas); intelligent transport systems (ITS). This advice involves part of the transition path for the implementation of biofuels, i.e. accelerated market introduction of advances biofuels. [mk] [nl

  8. Hot spots and dark current in advanced plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. G. Manahan

    2016-01-01

    Full Text Available Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.

  9. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yun

    2015-11-21

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this paper, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  10. SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yun [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  11. New shielding material development for compact accelerator-driven neutron source

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-04-01

    Full Text Available The Compact Accelerator-driven Neutron Source (CANS, especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE, PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.

  12. MID-INFRARED EVIDENCE FOR ACCELERATED EVOLUTION IN COMPACT GROUP GALAXIES

    International Nuclear Information System (INIS)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Hibbard, John E.; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.; Jarrett, Thomas H.

    2010-01-01

    Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 μm color space of 42 galaxies from 12 Hickson compact groups (HCGs) in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples show such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR color space, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time.

  13. Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quaghebeur, Mieke; Nielsen, Peter, E-mail: peter.nielsen@vito.be; Horckmans, Liesbeth [Sustainable Materials Management, VITO, Mol (Belgium); Van Mechelen, Dirk [RECMIX bvba, Genk (Belgium)

    2015-12-17

    Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags [stainless steel (SS) slag and basic oxygen furnace (BOF) slags] in high-quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO{sub 2} at elevated pressure (up to 2 MPa) and temperatures (20–140°C). For SS slags, raising the temperature from 20 to 140°C had a positive effect on the CO{sub 2} uptake, strength development, and the environmental properties (i.e., leaching of Cr and Mo) of the carbonated slag compacts. For BOF slags, raising the temperature was not beneficial for the carbonation process. Elevated CO{sub 2} pressure and CO{sub 2} concentration of the feed gas had a positive effect on the CO{sub 2} uptake and strength development for both types of steel slags. In addition, the compaction force had a positive effect on the strength development. The carbonates that are produced in situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones) have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100–150 g CO{sub 2}/kg slag. The technology was developed on lab scale by the optimization of process parameters with regard to compressive strength development, CO{sub 2} uptake, and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-)industrial equipment and process conditions.

  14. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron G.R., E-mail: cgrgeddes@lbl.gov; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  15. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  16. Status of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    White, M.; Berg, W.; Fuja, R.; Grelick, A.; Mavrogenes, G.; Nassiri, A.; Russell, T.; Wesolowski, W.

    1993-01-01

    A 2856-MHz S-band, 450-MeV electron/positron linear accelerator is the first part of the injector for the Advanced Photon Source (APS) 7-GeV storage ring. Construction of the APS linac is currently nearing completion, and commissioning will begin in July 1993. The linac and its current status are discussed in this paper

  17. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    Science.gov (United States)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  18. Advanced Test Accelerator (ATA) pulse power technology development

    International Nuclear Information System (INIS)

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described

  19. Improvement of the quality of laser-wakefield accelerators: towards a compact free-electron laser

    International Nuclear Information System (INIS)

    Lehe, R.

    2014-01-01

    When an intense and short laser pulse propagates through an underdense gas, it can accelerate a fraction of the electrons of the gas, and thereby generate an electron bunch with an energy of a few hundreds of MeV. This phenomenon, which is referred to as laser-wakefield acceleration, has many potential applications, including the design of ultra-bright X-ray sources known as free electron lasers (FEL). However, these applications require the electron bunch to have an excellent quality (low divergence, emittance and energy spread). In this thesis, different solutions to improve the quality of the electron bunch are developed, both analytically and through the use of Particle-In-Cell (PIC) simulations. It is first shown however that PIC simulations tend to erroneously overestimate the emittance of the bunch, due to the numerical Cherenkov effect. Thus, in order to correctly estimate the emittance, a modified PIC algorithm is proposed, which is not subject to this unphysical Cherenkov effect. Using this algorithm, we have observed and studied a new mechanism to generate the electron bunch: optical transverse injection. This mechanism can produce bunches with a high charge, a low emittance and a low energy spread. In addition, we also proposed an experimental setup - the laser-plasma lens - which can strongly reduce the final divergence of the bunch. Finally, these results are put into context by discussing the properties required for the design of a compact FEL. It is shown in particular that laser-wakefield accelerator could be advantageously combined with innovative laser-plasma undulators, in order to produce bright X-rays sources. (author)

  20. The production of radionuclides for nuclear medicine from a compact, low-energy accelerator system.

    Science.gov (United States)

    Webster, William D; Parks, Geoffrey T; Titov, Dmitry; Beasley, Paul

    2014-05-01

    The field of nuclear medicine is reliant on radionuclides for medical imaging procedures and radioimmunotherapy (RIT). The recent shut-downs of key radionuclide producers have highlighted the fragility of the current radionuclide supply network, however. To ensure that nuclear medicine can continue to grow, adding new diagnostic and therapy options to healthcare, novel and reliable production methods are required. Siemens are developing a low-energy, high-current - up to 10 MeV and 1 mA respectively - accelerator. The capability of this low-cost, compact system for radionuclide production, for use in nuclear medicine procedures, has been considered. The production of three medically important radionuclides - (89)Zr, (64)Cu, and (103)Pd - has been considered, via the (89)Y(p,n), (64)Ni(p,n) and (103)Rh(p,n) reactions, respectively. Theoretical cross-sections were generated using TALYS and compared to experimental data available from EXFOR. Stopping power values generated by SRIM have been used, with the TALYS-generated excitation functions, to calculate potential yields and isotopic purity in different irradiation regimes. The TALYS excitation functions were found to have a good agreement with the experimental data available from the EXFOR database. It was found that both (89)Zr and (64)Cu could be produced with high isotopic purity (over 99%), with activity yields suitable for medical diagnostics and therapy, at a proton energy of 10MeV. At 10MeV, the irradiation of (103)Rh produced appreciable quantities of (102)Pd, reducing the isotopic purity. A reduction in beam energy to 9.5MeV increased the radioisotopic purity to 99% with only a small reduction in activity yield. This work demonstrates that the low-energy, compact accelerator system under development by Siemens would be capable of providing sufficient quantities of (89)Zr, (64)Cu, and (103)Pd for use in medical diagnostics and therapy. It is suggested that the system could be used to produce many other

  1. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Turner, S.

    1995-01-01

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 97-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.)

  2. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Turner, S.

    1995-01-01

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 87-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.)

  3. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1995-11-22

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 87-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.).

  4. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1995-11-22

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 97-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.).

  5. Effects of Field Distortions in IH-APF Linac for a Compact Medical Accelerator

    CERN Document Server

    Kapin, Valery; Yamada, Satoru

    2004-01-01

    The project on developing compact medical accelerators for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is a doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-Mev/u 200-MHz IH-APF linac are considered. The intrinsic field distortions in the IH-cavity are caused by an asymmetry of the gap fields due to presence of the stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the gap voltages from programmed values. The RF fields in the IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically. The intrinsic field distortions a...

  6. Inertial fusion energy power plant design using the Compact Torus Accelerator: HYLIFE-CT

    International Nuclear Information System (INIS)

    Moir, R.W.; Hammer, J.H.; Hartman, C.W.; Leber, R.L.; Logan, B.G.; Petzoldt, R.W.; Tabak, M.; Tobin, M.T.; Bieri, R.L.; Hoffman, M.A.

    1992-01-01

    The Compact Torus Accelerator (CTA), under development at Lawrence Livermore National Laboratory, offers the promise of a low-cost, high-efficiency, high energy, high-power-density driver for ICF and MICF (Magnetically Insulated ICF) type fusion systems. A CTA with 100 MJ driver capacitor bank energy is predicted to deliver ∼30 MJ CT kinetic energy to a 1 cm 2 target in several nanoseconds for a power density of ∼10 16 watts/cm 2 . The estimated cost of delivered energy is ∼3$/Joule, or $100M for 30 MJ. This driver appears to be cost-effective and, in this regard, is virtually alone among IFE drivers. We discuss indirect-drive ICF with a DT fusion energy gain Q = 70 for a total yield of 2 GJ. The CT can be guided to the target inside a several-meter-long disposable cone made of frozen Li 2 BeF 4 , the same material as the coolant. We have designed a power plant including CT injection, target emplacement, containment, energy recovery, and tritium breeding. The cost of electricity is predicted to be 4.8 cents/kWh, which is competitive with future coal and nuclear costs

  7. Conceptual design of compact heavy-ion inertial fusion driver with an r.f. LINAC with high acceleration rate

    International Nuclear Information System (INIS)

    Hattori, T.; Sasa, K.; Okamura, M.; Ito, T.; Tomizawa, H.; Katayose, T.; Hayashizaki, N.; Yoshida, T.; Isokawa, K.; Aoki, M.; Fujita, N.; Okada, M.

    1996-01-01

    The interdigital-H-type (IH) linear accelerator (LINAC) is well known for its high shunt impedance at low and medium particle velocities. Therefore, it can be used to operate efficiently with a high acceleration gradient. The IH LINAC cavity is able to generate 10 MV m -1 (average acceleration gradient) with focusing of the particles by a superconducting solenoid and quadrupole. The LINAC can accelerate particles with a charge to mass ratio (q/A) greater than 1/250 from 0.3 MeV a.m.u. -1 . In a compact heavy-ion inertial fusion driver design, the total effective length of the IH LINAC cavities is about 1250 m. (orig.)

  8. Bookshelf (Advances of Accelerator Physics Technologies, edited by Herwig Schooper)

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Particle accelerators have always drawn upon the most advanced technologies. For Cockcroft and Walton it was high voltages, while the cyclotrons and synchrotrons that followed depended upon acceleration systems designed in the race to perfect wartime radar. As accelerators became too big for the university workshop to handle, the manufacturers of heavy electrical machinery were brought in to make hundreds of metres of electromagnets. They found the requirements of precision and reliability surpassed the quality of the best of their products and had to develop new methods of insulation and precision assembly. They now readily admit that in meeting our challenge they extended their own grasp of technology to the benefit of their less exotic customers; not to mention their shareholders. The stimulation of industry did not stop there - the physicist, by the nature of his craft, is always the first to know of what has just become possible. In their turn many industries, from those which prospect for petrochemicals to others constructing the channel tunnel, have become the technological beneficiaries of this big science. The latest of these technologies is of course that of superconductivity, and this is fully covered in this book. But in the many chapters which describe the state of the art of accelerator design, the reader will encounter numerous examples where the possible awaits an everyday application. This excellent compendium of advances in the accelerator field is therefore obligatory reading for anyone in an industry striving to deserve the label of high-tech. Not only does it for the first time draw together authoritative contributions by those who lead these technologies, but it explains how the large majority of today's accelerators are put to work to cure patients in hospital and to provide synchrotron radiation for a rich spectrum of new industrial applications. In addition there is much in the volume that is essential reading for the accelerator

  9. Advanced multipoles for accelerator magnets theoretical analysis and their measurement

    CERN Document Server

    Schnizer, Pierre

    2017-01-01

    This monograph presents research on the transversal beam dynamics of accelerators and evaluates and describes the respective magnetic field homogeneity.  The widely used cylindrical circular multipoles have disadvantages for elliptical apertures or curved trajectories, and the book also introduces new types of advanced multipole magnets, detailing their application, as well as the numerical data and measurements obtained. The research presented here provides more precise descriptions of the field and better estimates of the beam dynamics. Moreover, the effects of field inhomogeneity can be estimated with higher precision than before. These findings are further elaborated to demonstrate their usefulness for real magnets and accelerator set ups, showing their advantages over cylindrical circular multipoles. The research findings are complemented with data obtained from the new superconducting beam guiding magnet models (SIS100) for the FAIR (Facility for Antiproton and Ion Research) project.  Lastly, the book...

  10. CAS course on Advanced Accelerator Physics in Warsaw

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) and the National Centre for Nuclear Research (NCBJ) recently organised a course on Advanced Accelerator Physics. The course was held in Warsaw, Poland from 27 September to 9 October 2015.    The course followed an established format with lectures in the mornings and practical courses in the afternoons. The lecture programme consisted of 34 lectures, supplemented by private study, tutorials and seminars. The practical courses provided ‘hands-on’ experience of three topics: ‘Beam Instrumentation and Diagnostics’, ‘RF Measurement Techniques’ and ‘Optics Design and Corrections’. Participants selected one of the three courses and followed their chosen topic throughout the duration of the school. Sixty-six students representing 18 nationalities attended this course, with most participants coming from European counties, but also from South Korea, Taiwan and Russia. Feedback from th...

  11. Database requirements for the Advanced Test Accelerator project

    International Nuclear Information System (INIS)

    Chambers, F.W.

    1984-01-01

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures

  12. CAS course on advanced accelerator physics in Trondheim, Norway

    CERN Multimedia

    CERN Accelerator School

    2013-01-01

    The CERN Accelerator School (CAS) and the Norwegian University of Science and Technology (NTNU) recently organised a course on advanced accelerator physics. The course was held in Trondheim, Norway, from 18 to 29 August 2013. Accommodation and lectures were at the Hotel Britannia and practical courses were held at the university.   The course's format included lectures in the mornings and practical courses in the afternoons. The lecture programme consisted of 32 lectures supplemented by discussion sessions, private study and tutorials. The practical courses provided "hands-on" experience in three topics: RF measurement techniques, beam instrumentation and diagnostics, and optics design and corrections. Participants selected one of the three courses and followed the chosen topic throughout the course. The programme concluded with seminars and a poster session.  70 students representing 21 nationalities were selected from over 90 applicants, with most participa...

  13. New Developments in the Simulation of Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-01-01

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating and gt;10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ∼2,000 as compared to standard particle-in-cell.

  14. Preliminary design of a technologically advanced and compact synchrotron for proton therapy

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.; Bartolini, R.

    1994-11-01

    This paper describes the activity on optimising the parameters of a compact protosynchrotron in the energy range of 80-200 MeV. Based on the 200-MeV protosynchrotron under development at the Budker Institute for Nuclear Physics at Novosibirsk, the work was stimulated by the Italian 'Progetto Adroterapia' whose aim is to diffuse cancer therapy with protons and ions. The innovative aspect of the project is the use of 4-Tesla warm pulsed dipole magnets that allow an accelerator diameter of the order of 2 meters, thus permitting the machine to be transported pre-assembled

  15. Some advances in medical applications of low energy accelerators

    Science.gov (United States)

    Valković, V.; Moschini, G.

    1991-05-01

    Medical applications of low energy accelerators include: the use of nuclear analytical methods and procedures for laboratory studies and routine measurements; material productions and modifications to meet special requirements; radioisotope productions and their applications in radiopharmaceuticals as well as in positron emission tomography; and radiotherapy with ions, based on improved understanding of the interaction of charged particles with living tissue. Some of the recent advances in these fields are critically summarized. The plan for an improved charged particle facility in a hospital environment dedicated to applications in biology and medicine is presented.

  16. Recent advances in kicker pulser technology for linear induction accelerators

    International Nuclear Information System (INIS)

    Chen, Y. J.; Cook, E.; Davis, B.; Dehope, W. J.; Yen, B.

    1999-01-01

    Recent progress in the development and understanding of linear induction accelerator have produced machines with 10s of MeV of beam energy and multi-kiloampere currents. Near-term machines, such as DARHT-2, are envisioned with microsecond pulselengths. Fast beam kickers, based on cylindrical electromagnetic stripline structures, will permit effective use of these extremely high-energy beams in an increasing number of applications. In one application, radiography, kickers were an essential element in resolving temporal evolution of hydrodynamic events by cleaving out individual pulses from long, microsecond beams. Advanced schemes are envisioned where these individual pulses are redirected through varying length beam lines and suitably recombined for stereographic imaging or tomographic reconstruction. Recent advances in fast kickers and their pulsed power technology are described. Kicker pulsers based on both planar triode and all solid-state componentry are discussed and future development plans are presented

  17. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    International Nuclear Information System (INIS)

    Green, O; Mutic, S; Li, H; Low, D; Chmielewski, T; Fought, G; Hernandez, M; Kawrakow, I; Sharma, A; Shvartsman, S; Dempsey, J

    2016-01-01

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the ability to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.

  18. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Green, O; Mutic, S; Li, H [Washington University School of Medicine, St. Louis, MO (United States); Low, D [University of California, Los Angeles, CA (United States); Chmielewski, T; Fought, G; Hernandez, M; Kawrakow, I; Sharma, A; Shvartsman, S; Dempsey, J [ViewRay, Inc., Oakwood Village, OH (United States)

    2016-06-15

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the ability to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.

  19. Accelerated Innovation Deployment (AID) Demonstration Project : Intelligent Compaction and Infrared Scanning Projects

    Science.gov (United States)

    2018-02-01

    This report documents the Missouri Department of Transportation (MoDOT) demonstration grant award for field demonstration projects using intelligent compaction (IC) and infrared scanning (IR) (also called paver-mounted thermal profiles PMTP in the AA...

  20. Ultra-trace determination of neptunium-237 and plutonium isotopes in urine samples by compact accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dai, X.; Christl, M.; Kramer-Tremblay, S., E-mail: sheila.kramer-tremblay@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Synal, H-A. [ETH Zurich, Lab. of Ion Beam Physics, Zurich (Switzerland)

    2015-12-15

    Ultra-trace analysis of actinides, such as Pu isotopes and {sup 237}Np, in bioassay samples is often needed for radiation protection programs at nuclear facilities. Accelerator mass spectrometry (AMS), particularly the compact ETH Zurich system “Tandy”, has evolved over the years as one of the most sensitive, selective, and robust techniques for actinide analysis. Employment of the AMS technique can reduce the demands on sample preparation chemistry and increase sample analysis throughput, due to very low instrumental detection limit, high rejection of interferences, and low susceptibility to adverse sample matrices. Initial research and development tests were performed to explore and demonstrate the analytical capability of AMS for Pu and Np urine bioassay. In this study, urine samples spiked with femtogram levels of Np and Pu isotopes were prepared and measured using compact ETH AMS system and the results showed excellent analytical capability for measuring Np and Pu isotopes at femtogram/litre levels in urine. (author)

  1. Compact and intense parametric x-ray radiation source based on a linear accelerator with cryogenic accelerating and decelerating copper structures

    Science.gov (United States)

    Hyun, J.; Satoh, M.; Yoshida, M.; Sakai, T.; Hayakawa, Y.; Tanaka, T.; Hayakawa, K.; Sato, I.; Endo, K.

    2018-01-01

    This paper describes a proposal for a compact x-ray source based on parametric x-ray radiation (PXR). The PXR, which is produced when a single crystal is bombarded with relativistic electrons, has good monochromaticity and spatial coherence, and is expected to be well suited for imaging of low-Z materials and medical application. The proposed system employs a pair of copper accelerating structures which are operated at a cryogenic temperature of 20 K and arranged to form a resonant ring configuration. The electron beam is once accelerated up to 75 MeV in one of the structures, being decelerated down to lower than 7 MeV in the other structure after generating PXR at a single crystal, and then dumped. The expected x-ray yield is 1 09 photons /s at a center energy of 15 keV or higher.

  2. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    Energy Technology Data Exchange (ETDEWEB)

    Church, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Edwards, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Harms, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Henderson, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holmes, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kephart, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Levedev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leibfritz, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nagaitsev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Piot, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States); Prokop, C. [Northern Illinois Univ., DeKalb, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sun, Y. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Valishev, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support the accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP

  3. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    International Nuclear Information System (INIS)

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e + 3 - linear colliders

  4. Compact Heat Exchanger Design and Testing for Advanced Reactors and Advanced Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Zhang, Xiaoqin; Christensen, Richard; Anderson, Mark

    2018-03-31

    The goal of the proposed research is to demonstrate the thermal hydraulic performance of innovative surface geometries in compact heat exchangers used as intermediate heat exchangers (IHXs) and recuperators for the supercritical carbon dioxide (s-CO2) Brayton cycle. Printed-circuit heat exchangers (PCHEs) are the primary compact heat exchangers of interest. The overall objectives are: 1. To develop optimized PCHE designs for different working fluid combinations including helium to s-CO2, liquid salt to s-CO2, sodium to s-CO2, and liquid salt to helium; 2. To experimentally and numerically investigate thermal performance, thermal stress and failure mechanism of PCHEs under various transients; and 3. To study diffusion bonding techniques for elevated-temperature alloys and examine post-test material integrity of the PCHEs. The project objectives were accomplished by defining and executing five different tasks corresponding to these specific objectives. The first task involved a thorough literature review and a selection of IHX candidates with different surface geometries as well as a summary of prototypic operational conditions. The second task involved optimization of PCHE design with numerical analyses of thermal-hydraulic performances and mechanical integrity. The subsequent task dealt with the development of testing facilities and engineering design of PCHE to be tested in s-CO2 fluid conditions. The next task involved experimental investigation and validation of the thermal-hydraulic performances and thermal stress distribution of prototype PCHEs manufactured with particular surface geometries. The last task involved an investigation of diffusion bonding process and posttest destructive testing to validate mechanical design methods adopted in the design process. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed s-CO2 test loop (STL

  5. Education in a rapidly advancing technology: Accelerators and beams

    International Nuclear Information System (INIS)

    Month, Mel

    2000-01-01

    The field of accelerators and beams (A and B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A and B is described and addressed. The solution proposed, a type of ''distance'' education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A and B, primarily but not exclusively the national laboratories. The field of A and B is briefly summarized. The need for education outside the university framework, the raison d'etre for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities. (c) 2000 American Association of Physics Teachers

  6. Advances on study of temperature effects on hydro-mechanical behaviour of densely compacted bentonite

    International Nuclear Information System (INIS)

    Ye Weimin; Wan Min; Chen Bao; Liu Yuemiao; Cui Yujun

    2008-01-01

    During the operation of a multiple-barrier geological repository, bentonite that works as a buffer/fill material of an artificial barrier will suffer complex coupling effects of thermal (T), hydrological (H), mechanical (M) process, which comes from heat of the nuclear waste radiation, mechanical stress from parent rock mass and seepage action of groundwater. The scientific results show that temperature has influence on the water retention, saturated permeability, swelling pressure, swelling strain and thermal strain of compacted bentonite. As a whole, the research about GMZ (Gao Miaozi) bentonite, which may potentially be chose as Chinese buffer/backfill material for high radioactive nuclear waste disposal, has a long way to go compare to developed contraries. Based on comprehensive laboratory tests and advanced theoretical framework, both of the study on behaviour of compacted GMZ bentonite under HTM coupling conditions, and the establishment of a constitutive relation for prediction of behaviour of compacted bentonite under multi-field coupling conditions are important in theoretic and practical way. (authors)

  7. Particle acceleration by plasma waves

    International Nuclear Information System (INIS)

    Joshi, C.

    2006-01-01

    In an advanced particle accelerator particles are driven near by light velocity through ionized gas. Such plasma devices are compact, cost efficient and usable in many fields. Examples are given in detail. (GL)

  8. Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era

    International Nuclear Information System (INIS)

    Adams, T; Buskulic, D; Germain, V; Marion, F; Mours, B; Guidi, G M; Montani, M; Piergiovanni, F; Wang, G

    2016-01-01

    The multi-band template analysis (MBTA) pipeline is a low-latency coincident analysis pipeline for the detection of gravitational waves (GWs) from compact binary coalescences. MBTA runs with a low computational cost, and can identify candidate GW events online with a sub-minute latency. The low computational running cost of MBTA also makes it useful for data quality studies. Events detected by MBTA online can be used to alert astronomical partners for electromagnetic follow-up. We outline the current status of MBTA and give details of recent pipeline upgrades and validation tests that were performed in preparation for the first advanced detector observing period. The MBTA pipeline is ready for the outset of the advanced detector era and the exciting prospects it will bring. (paper)

  9. GPU-accelerated low-latency real-time searches for gravitational waves from compact binary coalescence

    International Nuclear Information System (INIS)

    Liu Yuan; Du Zhihui; Chung, Shin Kee; Hooper, Shaun; Blair, David; Wen Linqing

    2012-01-01

    We present a graphics processing unit (GPU)-accelerated time-domain low-latency algorithm to search for gravitational waves (GWs) from coalescing binaries of compact objects based on the summed parallel infinite impulse response (SPIIR) filtering technique. The aim is to facilitate fast detection of GWs with a minimum delay to allow prompt electromagnetic follow-up observations. To maximize the GPU acceleration, we apply an efficient batched parallel computing model that significantly reduces the number of synchronizations in SPIIR and optimizes the usage of the memory and hardware resource. Our code is tested on the CUDA ‘Fermi’ architecture in a GTX 480 graphics card and its performance is compared with a single core of Intel Core i7 920 (2.67 GHz). A 58-fold speedup is achieved while giving results in close agreement with the CPU implementation. Our result indicates that it is possible to conduct a full search for GWs from compact binary coalescence in real time with only one desktop computer equipped with a Fermi GPU card for the initial LIGO detectors which in the past required more than 100 CPUs. (paper)

  10. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    Science.gov (United States)

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements. © The Author(s) 2014.

  11. Highly Compact Accelerator-Driven Subcritical Assembly for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Jasmina Vujic; William Kastenberg; Ehud Greenspan; Ka-Ngo Leung

    2006-01-01

    A novel, highly compact, fusion neutron source (CNS) based on a coaxial electrostatic accelerator is under development at the Lawrence Berkeley National Laboratory. This source is designed to generate up to ∼1012 D-D n/s. This source intensity is an order of magnitude too small for Boron Neutron Capture Therapy (BNCT) applications. The objective of this project is to assess the feasibility of using a small, safe and inexpensive subcritical fission assembly to multiply the fusion neutrons by a factor of (ge)30. The overall design objective is to get a treatment time for deep seated rain tumors that does not significantly increase beyond one hour when the effective multiplication factor of the SCM is k eff = 0.98. There are two major parts to this study: the optimization of the Sub-Critical Multiplier (SCM) and the optimization of the Beam Shaping Assembly (BSA), including the reflector for both subsystems. The SCM optimization objective is to maximize the current of neutrons that leak out from the SCM in the direction of the patient, without exceeding the maximum permissible k eff . Minimizing the required uranium inventory is another objective. SCM design variables considered include the uranium enrichment level in the range not exceeding 20% 235U (for proliferation concerns), SCM geometry and dimensions, fuel thickness and moderator thickness. The objective of the BSA optimization is to maximize the tumor dose rate using the optimal SCM while maintaining a tumor-to-normal tissue dose ratio of at least 20 to 12.5 (corresponding to the tumor control dose and to the healthy tissue dose limit). The BSA design variables include its shape, dimensions and composition. The reflector optimization is, in fact, an integral part of the SCM optimization and of the BSA optimization. The reflector design variables are composition and thickness. The study concludes that it is not quite feasible to achieve the project objective. Nevertheless, it appears feasible to develop a

  12. Accelerated Hyperfractionated Radiotherapy for Locally Advanced Uterine Cervix Cancers

    International Nuclear Information System (INIS)

    Seo, Young Seok; Cho, Chul Koo; Yoo, Seong Yul

    2008-01-01

    To assess the efficacy of the use of accelerated hyperfractionated radiotherapy (AHRT) for locally advanced uterine cervix cancers. Between May 2000 and September 2002, 179 patients were identified with FIGO stage IIB, IIIB, and IVA cancers. Of the 179 patients, 45 patients were treated with AHRT (AHRT group) and 134 patients were treated with conventional radiotherapy (CRT group), respectively. Patients undergoing the AHRT regimen received a dose of 30 Gy in 20 fractions (1.5 Gyx2 fractions/day) to the whole pelvis. Subsequently, with a midline block, we administered a parametrial boost with a dose of 20 Gy using 2 Gy fractions. Patients also received two courses of low-dose-rate brachytherapy, up to a total dose of 85∼90 Gy to point A. In the CRT group of patients, the total dose to point A was 85∼90 Gy. The overall treatment duration was a median of 37 and 66 days for patients that received AHRT and CRT, respectively. Statistical analysis was calculated by use of the Kaplan-Meier method, the log-rank test, and Chi-squared test. For patients that received cisplatin-based concurrent chemotherapy and radiotherapy, the local control rate at 5 years was 100% and 79.2% for the AHRT and CRT group of patients, respectively (p=0.028). The 5-year survival rate for patients with a stage IIB bulky tumor was 82.6% and 62.1% for the AHRT group and CRT group, respectively (p=0.040). There was no statistically significant difference for severe late toxicity between the two groups (p=0.561). In this study, we observed that treatment with AHRT with concurrent chemotherapy allows a significant advantage of local control and survival for locally advanced uterine cervix cancers

  13. Accelerated fractionation radiotherapy for advanced haed and neck cancer

    International Nuclear Information System (INIS)

    Lamb, D.S.; Spry, N.A.; Gray, A.J.; Johnson, A.D.; Alexander, S.R.; Dally, M.J.

    1990-01-01

    Between 1981 and 1986, 89 patients with advanced head and neck squamous cancer were treated with a continuous accelerated fractionation radiotherapy (AFRT) regimen. Three fractions of 1.80 Gy, 4 h apart, were given on three treatment days per week, and the tumour dose was taken to 59.40 Gy in 33 fractions in 24-25 days. Acute mucosal reactions were generally quite severe, but a split was avoided by providing the patient with intensive support, often as an in-patient, until the reactions settled. Late radiation effects have been comparable to those obtained with conventional fractionation. The probability of local-regional control was 47% at 3 years for 69 previously untreated patients, whereas it was only 12% at one year for 20 patients treated for recurrence after radical surgery. Fifty-eight previously untreated patients with tumours arising in the upper aero-digestive tract were analysed in greated detail. The probability of local-regional control at 3 years was 78% for 17 Stage III patients and 15% for 31 Stage IV patients. This schedule of continuous AFRT is feasible and merits further investigation. (author). 31 refs.; 4 figs.; 6 tabs

  14. Advance in Vertical Buffered Electropolishing on Niobium for Particle Accelerators

    International Nuclear Information System (INIS)

    Wu, A.T.; Jin, S.; Mammosser, J.D.; Reece, C.E.; Rimmer, R.A.; Lin, L.; Lu, X.Y.; Zhao, K.

    2011-01-01

    Niobium (Nb) is the most popular material that has been employed for making superconducting radio frequency (SRF) cavities to be used in various particle accelerators over the last couple of decades. One of the most important steps in fabricating Nb SRF cavities is the final chemical removal of 150 μm of Nb from the inner surfaces of the SRF cavities. This is usually done by either buffered chemical polishing (BCP) or electropolishing (EP). Recently a new Nb surface treatment technique called buffered electropolishing (BEP) has been developed at Jefferson Lab. It has been demonstrated that BEP can produce the smoothest surface finish on Nb ever reported in the literature while realizing a Nb removal rate as high as 10 μm/min that is more than 25 and 5 times quicker than those of EP and BCP(112) respectively. In this contribution, recent advance in optimizing and understanding BEP treatment technique is reviewed. Latest results from RF measurements on BEP treated Nb single cell cavities by our unique vertical polishing system will be reported.

  15. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    International Nuclear Information System (INIS)

    Loulergue, A; Labat, M; Benabderrahmane, C; Couprie, M E; Evain, C; Malka, V

    2015-01-01

    Free-electron lasers (FELs) are a unique source of light, particularly in the x-ray domain. After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA). However, the present LWFA electron bunch properties do not permit use directly for a significant FEL amplification. It is known that longitudinal decompression of electron beams delivered by state-of-the-art LWFA eases the FEL process. We propose here a second order transverse beam manipulation turning the large inherent transverse chromatic emittances of LWFA beams into direct FEL gain advantage. Numerical simulations are presented showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation. (paper)

  16. CO2 laser technology for advanced particle accelerators

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  17. THz cavities and injectors for compact electron acceleration using laser-driven THz sources

    Directory of Open Access Journals (Sweden)

    Moein Fakhari

    2017-04-01

    Full Text Available We present a design methodology for developing ultrasmall electron injectors and accelerators based on cascaded cavities excited by short multicycle THz pulses obtained from laser-driven THz generation schemes. Based on the developed concept for optimal coupling of the THz pulse, a THz electron injector and two accelerating stages are designed. The designed electron gun consists of a four cell cavity operating at 300 GHz and a door-knob waveguide to coaxial coupler. Moreover, special designs are proposed to mitigate the problem of thermal heat flow and induced mechanical stress to achieve a stable device. We demonstrated a gun based on cascaded cavities that is powered by only 1.1 mJ of THz energy in 300 cycles to accelerate electron bunches up to 250 keV. An additional two linac sections can be added with five and four cell cavities both operating at 300 GHz boosting the bunch energy up to 1.2 MeV using a 4-mJ THz pulse.

  18. Recent progress in accelerator activities at Raja Ramanna Centre for Advanced Technology, Indore

    International Nuclear Information System (INIS)

    Gupta, P.D.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology, Indore is a premier national institute engaged in R and D work in front-line areas of accelerator science, technology, and applications. The Centre has designed, developed, and commissioned two synchrotron radiation sources: Indus-1 and Indus-2, serving as national facilities. The Centre is pursuing various other accelerator activities viz. development of a high energy proton accelerator for a spallation neutron source, electron accelerators for food irradiation and industrial applications and free electron lasers (FEL) in THz and IR spectral region, study of innovative schemes of laser driven electron acceleration, and development of advanced technologies to support these activities such as superconducting RF (SCRF) technology, cryogenics, RF power, magnets, ultra high vacuum and control instrumentation. In this talk, an overview of the progress made in accelerator activities at Raja Ramanna Centre for Advanced Technology in recent years is be presented

  19. Advances in X-Band and S-Band Linear Accelerators for Security, NDT, and Other Applications

    CERN Document Server

    Mishin, Andrey V

    2005-01-01

    At AS&E High Energy Systems Division, we designed several new advanced high energy electron beam and X-ray sources. Our primary focus has always been in building the world's most portable commercial X-band accelerators. Today, our X-band systems frequently exceed performance of the similar S-band machines, while they are more portable compared to the latter. The new designs of the X-band accelerators in the most practical energy range from 1 MeV to 6 MeV have been tested delivering outstanding results. Seventy 6 MeV X-band linacs systems have been produced. The most compact linac for security is used by AS&E in a self-shielded, Shaped Energy™ cargo screening system. We pioneered using the X-band linear accelerators for CT, producing high quality images of oil pipes and wood logs. An X-band linear accelerator head on a robotic arm has been used for electron beam radiation curing of an odd-shaped graphite composite part. We developed the broad-range 4 MeV to over 10 MeV energy-regulated X-band ...

  20. Low-beam-loss design of a compact, high-current deuteron radio frequency quadrupole accelerator

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2004-10-01

    Full Text Available A 201.5 MHz, 50 mA, 2.0 MeV deuteron radio frequency quadrupole accelerator is proposed as the neutron generator for the neutron experiment facility project at Peking University, China. Based on better understanding of beam losses, some new optimization procedures concerning both longitudinal and transverse dynamics are adopted. Accordingly, the beam transmission efficiency is improved from 91.2% to 98.3% and the electrode length is shortened from 2.91 to 2.71 m. The fundamental physical analyses are performed to look inside the new design recipe and explain why it works.

  1. Method to prevent ejecta from damaging the Compact Torus Accelerator driver of an inertial fusion energy power plant

    International Nuclear Information System (INIS)

    Mattingly, S.E.K.; Moir, R.W.

    1992-01-01

    Concern has been expressed about the conceptual design of fusion reactors using a Compact Torus Accelerator (CTA). A CTA accelerates a plasma torus toward a fusion target. When the torus nears the target, it is compressed and focused down to a small volume, creating a very high energy density and initiating a fusion micro explosion. The focusing cone is destroyed with each shot due to the stress from the passage of the torus as well as from the force of the explosion (1 800 MJ of yield, ∼0.5 Ton TNT equivalent). The focusing cone could be made of solidified Li 2 BeF 4 ; the same material used in liquid state to protect the reaction chamber from the micro explosion and to transport heat away to a power plant. The problem with this design is that when the focusing cone is shattered, the resulting small pieces of solid and liquid debris (ejecta) might be carded along by the expanding vapor of the explosion and might enter the CTA itself, causing damage and shortening the life of the CTA. The proposed solution for this possible problem is to bend the focusing cone so that the ejecta no longer have a clear path to the CTA. Calculations show that the plasma torus may be sent through a radius of curvature of less than 0.5 m just after the focusing cone, without significantly disturbing the plasma

  2. Exploring the Physics Limitations of Compact High Gradient Accelerating Structures Simulations of the Electron Current Spectrometer Setup in Geant4

    CERN Document Server

    Van Vliet, Philine Julia

    2017-01-01

    The high field gradient of 100 MV/m that will be applied to the accelerator cavities of the Compact Linear Collider (CLIC), gives rise to the problem of RF breakdowns. The field collapses and a plasma of electrons and ions is being formed in the cavity, preventing the RF field from penetrating the cavity. Electrons in the plasma are being accelerated and ejected out, resulting in a breakdown current up to a few Amp`eres, measured outside the cavities. These breakdowns lead to luminosity loss, so reducing their amount is of great importance. For this, a better understanding of the physics behind RF breakdowns is needed. To study these breakdowns, the XBox 2 test facility has a spectrometer setup installed after the RF cavity that is being conditioned. For this report, a simulation of this spectrometer setup has been made using Geant4. Once a detailed simulation of the RF field and cavity has been made, it can be connected to this simulation of the spectrometer setup and used to recreate the data that has b...

  3. GPGPU accelerated Krylov methods for compact modeling of on-chip passive integrated structures within the Chameleon-RF workflow

    Directory of Open Access Journals (Sweden)

    Sebastian Gim

    2012-11-01

    Full Text Available Continued device scaling into the nanometer region and high frequencies of operation well into the multi-GHz region has given rise to new effects that previously had negligible impact but now present greater challenges and unprecedented complexity to designing successful mixed-signal silicon. The Chameleon-RF project was conceived to address these challenges. Creative use of domain decomposition, multi grid techniques or reduced order modeling techniques (ROM can be selectively applied at all levels of the process to efficiently prune down degrees of freedom (DoFs. However, the simulation of complex systems within a reasonable amount of time remains a computational challenge. This paper presents work done in the incorporation of GPGPU technology to accelerate Krylov based algorithms used for compact modeling of on-chip passive integrated structures within the workflow of the Chameleon-RF project. Based upon insight gained from work done above, a novel GPGPU accelerated algorithm was developed for the Krylov ROM (kROM methods and is described here for the benefit of the wider community.

  4. XCAMS: The compact 14C accelerator mass spectrometer extended for 10Be and 26Al at GNS Science, New Zealand

    Science.gov (United States)

    Zondervan, A.; Hauser, T. M.; Kaiser, J.; Kitchen, R. L.; Turnbull, J. C.; West, J. G.

    2015-10-01

    A detailed description is given of the 0.5 MV tandem accelerator mass spectrometry (AMS) system for 10Be, 14C, 26Al, installed in early 2010 at GNS Science, New Zealand. Its design follows that of previously commissioned Compact 14C-only AMS (CAMS) systems based on the Pelletron tandem accelerator. The only basic departure from that design is an extension of the rare-isotope achromat with a 45° magnet and a two-anode gas-ionisation detector, to provide additional filtering for 10Be. Realised performance of the three AMS modes is discussed in terms of acceptance-test scores, 14C Poisson and non-Poisson errors, and 10Be detection limit and sensitivity. Operational details and hardware improvements, such as 10Be beam transport and particle detector setup, are highlighted. Statistics of repeat measurements of all graphitised 14C calibration cathodes since start-up show that 91% of their total uncertainty values are less than 0.3%, indicating that the rare-isotope beamline extension has not affected precision of 14C measurement. For 10Be, the limit of detection in terms of the isotopic abundance ratio 10Be/9Be is 6 × 10-15 at at-1 and the total efficiency of counting atoms in the sample cathode is 1/8500 (0.012%).

  5. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    International Nuclear Information System (INIS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-01-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  6. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    International Nuclear Information System (INIS)

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R and D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  7. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    Energy Technology Data Exchange (ETDEWEB)

    Salehpour, M., E-mail: mehran.salehpour@physics.uu.se [Department of Physics and Astronomy, Ion Physics, Applied Nuclear Physics Division, P.O. Box 516, SE-751 20 Uppsala (Sweden); Håkansson, K.; Possnert, G. [Department of Physics and Astronomy, Ion Physics, Applied Nuclear Physics Division, P.O. Box 516, SE-751 20 Uppsala (Sweden); Wacker, L.; Synal, H.-A. [Ion Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 (Switzerland)

    2016-03-15

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV {sup 14,13,12}C{sup 3+} ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the {sup 14}C/{sup 12}C and the {sup 13}C/{sup 12}C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  8. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    Science.gov (United States)

    Salehpour, M.; Håkansson, K.; Possnert, G.; Wacker, L.; Synal, H.-A.

    2016-03-01

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV 14,13,12C3+ ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the 14C/12C and the 13C/12C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  9. CO2 laser technology for advanced particle accelerators. Revision

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage distance, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  10. U.S. advanced accelerator applications program: plans to develop and test waste transmutation technologies

    International Nuclear Information System (INIS)

    Van Tuyle, G.; Bennett, D.; Arthur, E.; Cappiello, M.; Finck, P.; Hill, D.; Herczeg, J.; Goldner, F.

    2001-01-01

    The primary mission of the U.S. Advanced Accelerator Applications (AAA) Program is to establish a national nuclear technology research capability that can demonstrate accelerator-based transmutation of waste and conduct transmutation research while at the same time providing a capability for the production of tritium if required. The AAA Program was created during fiscal year 2001 from the Accelerator Transmutation of Waste (ATW) Program and the Accelerator Production of Tritium (APT) Project. This paper describes the new AAA Program, as well as its two major components: development and testing of waste transmutation technologies and construction of an integrated accelerator-driven test facility (ADTF). (author)

  11. Optically controlled laser-plasma electron accelerator for compact gamma-ray sources

    Science.gov (United States)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2018-02-01

    Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent-scale energy spread and five-dimensional brightness over 1016 A m-2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n 0 ˜ 1019 cm-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing component of the stack induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt γ-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4-16 MeV), containing over 106 photons within a microsteradian-scale observation cone.

  12. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    2011-11-14

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As the department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.

  13. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    International Nuclear Information System (INIS)

    Colby, Eric R.; Hogan, Mark J.

    2008-01-01

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As the department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.

  14. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.

  15. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    International Nuclear Information System (INIS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-01-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a 0 ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10 −12 ) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements

  16. 76 FR 23543 - The Jobs and Innovation Accelerator Challenge; a Coordinated Initiative To Advance Regional...

    Science.gov (United States)

    2011-04-27

    ... Jobs and Innovation Accelerator Challenge; a Coordinated Initiative To Advance Regional Competitiveness... Federal resources to support regional innovation and sustainable economic prosperity. Knowing that regional innovation clusters provide a globally proven approach for developing economic prosperity, this...

  17. Nanosurveyor 2: A Compact Instrument for Nano-Tomography at the Advanced Light Source

    Science.gov (United States)

    Celestre, Richard; Nowrouzi, Kasra; Shapiro, David A.; Denes, Peter; Joseph, John M.; Schmid, Andreas; Padmore, Howard A.

    2017-06-01

    The Advanced Light Source has developed a compact tomographic microscope based on soft x-ray ptychography for the study of nanoscale materials [1,2]. The microscope utilizes the sample manipulator mechanism from a commercial TEM coupled with laser interferometric feedback for zone plate positioning and a fast frame rate charge-coupled device detector for soft x-ray diffraction measurements. The microscope has achieved point to point (25 nm steps) scan rates of greater than 120 Hz with a positioning accuracy of better than 1 nm RMS. The instrument will enable the use of commercially available sample holders compatible with FEI transmission electron microscopes thus also allowing in-situ measurement of samples using both soft x-rays and electrons. This instrument is a refinement of a currently commissioned instrument called The Nanosurveyor, which has demonstrated resolution of better than 10 nm in two dimensions using 750 eV x-rays. Once moved to the new Coherent Scattering and Microscopy beamline it will enable spectromicroscopy and tomography of nano-materials with wavelength limited spatial resolution.

  18. An Advanced Control Technique for Floating Offshore Wind Turbines Based on More Compact Barge Platforms

    Directory of Open Access Journals (Sweden)

    Joannes Olondriz

    2018-05-01

    Full Text Available Hydrodynamic Floating Offshore Wind Turbine (FOWT platform specifications are typically dominated by seaworthiness and maximum operating platform-pitch angle-related requirements. However, such specifications directly impact the challenge posed by an FOWT in terms of control design. The conventional FOWT systems are typically based on large, heavy floating platforms, which are less likely to suffer from the negative damping effect caused by the excessive coupling between blade-pitch control and platform-pitch motion. An advanced control technique is presented here to increase system stability for barge type platforms. Such a technique mitigates platform-pitch motions and improves the generator speed regulation, while maintaining blade-pitch activity and reducing blade and tower loads. The NREL’s 5MW + ITI Energy barge reference model is taken as a basis for this work. Furthermore, the capabilities of the proposed controller for performing with a more compact and less hydrodynamically stable barge platform is analysed, with encouraging results.

  19. Advanced low-beta cavity development for proton and ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Conway, Z.A., E-mail: zconway@anl.gov; Kelly, M.P.; Ostroumov, P.N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.

  20. Advanced low-beta cavity development for proton and ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for beta = 0.077 ions.

  1. Advanced low-beta cavity development for proton and ion accelerators

    International Nuclear Information System (INIS)

    Conway, Z.A.; Kelly, M.P.; Ostroumov, P.N.

    2015-01-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions

  2. Advanced ponderomotive description of electron acceleration in ICRF discharge initiation

    Directory of Open Access Journals (Sweden)

    Wauters Tom

    2017-01-01

    An example for plasma production by the TOMAS ICRF system is given. Following the described conditions it can be derived that plasma production is (i most efficient close to the antenna straps (few cm's where the field gradient and amplitude are large, and (ii that the lower frequency field accelerates electrons more easily for a given antenna voltage.

  3. Applications of accelerator mass spectrometry: advances and innovation

    International Nuclear Information System (INIS)

    Fifield, L.K.

    2004-01-01

    Emerging trends in the applications of accelerator mass spectrometry (AMS) are identified and illustrated with specific examples. Areas of application covered include rapid landscape evolution, calibration of the radiocarbon time scale, compound-specific radiocarbon studies, tracing of nuclear discharges, and searches for extraterrestrial isotopes

  4. Advances of dense plasma physics with particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Roth, M.; Udrea, S.; Varentsov, D. [DarmstadtTechnische Univ., Institut fur Kernphysik (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Patras Univ., Dept. of Physics (Greece); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2006-06-15

    High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)

  5. Advances of dense plasma physics with particle accelerators

    International Nuclear Information System (INIS)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K.; Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Roth, M.; Udrea, S.; Varentsov, D.; Jacoby, J.; Zioutas, K.; Sharkov, B.Y.

    2006-01-01

    High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)

  6. Report on the Lake Arrowhead workshop on advanced acceleration concepts

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1989-03-01

    We review the present status of the field of New Acceleration Concepts, as presented at the Lake Arrowhead workshop, held at the beginning of 1989. Many new and promising results have been obtained recently, and the field is actively developing. We discuss briefly some of the main results presented at the workshop. 43 refs., 2 tabs

  7. Development of advanced technological systems for accelerator transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P. [Russian Academy of Sciences, Moscow (Russian Federation)] [and others

    1995-10-01

    A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.

  8. Optical diagnostics in the advanced test accelerator (ATA) environment

    International Nuclear Information System (INIS)

    Chong, Y.P.; Cornish, J.P.; Donnelly, D.

    1987-05-01

    The ATA is a 50-MeV, 10-kA, 70-ns pulsed electron beam accelerator that generates an extremely harsh environment for diagnostic measurements. Diagnostic targets placed in the beamline are subject to damage, frequently being destroyed by a single pulse. High radiation (x-ray, gamma, and neutron) and electromagnetic interference levels preclude placing components near the beamline that are susceptible to radiation damage. Examples of such components are integrated circuit elements, hydrocarbons such as Teflon insulation, and optical components that darken, resulting in transmission loss. Optical diagnostics play an important part in measuring experimental parameters such as the beam current density profile. A large number of optical lines of sight (LOS) are routinely deployed along the experimental beamlines that use the ATA beam. Gated TV cameras are located outside the accelerator tunnel, because the tunnel is inaccessible during operations. We will describe and discuss the difficulties, problems, and solutions encountered in making optical measurements in the ATA environment

  9. Traveling wave accelerating structures with a large phase advance

    International Nuclear Information System (INIS)

    Paramonov, V.V.

    2012-01-01

    The cells RF parameters for the well known Disk Loaded Waveguide (DLW) are considered in higher pass bands of TM01 wave, providing operating phase advance between 180 o - 1230 o per cell. With an appropriate shape optimization and some additional elements proposed traveling wave structures with such large phase advance overlap the classical first band DLW in RF efficiency. Examples of proposed structures together with RF and dispersion properties are presented.

  10. NATO Advanced Research Workshiop on Superdense QCD Matter and Compact Stars

    CERN Document Server

    Blaschke, David

    2006-01-01

    This volume covers the main topics in the theory of superdense QCD matter and its application to the astrophysics of compact stars in a comprehensive and yet accessible way. The material is presented as a combination of extensive introductory lectures and more topical contributions. The book is centered around the question whether hypothetical new states of dense matter in the compact star interior could give clues to the explanation of puzzling phenomena such as gamma-ray bursts, pulsar glitches, compact star cooling and gravitational waves.

  11. Proceedings of the Advanced Hadron Facility accelerator design workshop

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1989-01-01

    The International Workshop on Hadron Facility Technology was held February 22-27, 1988, at the Study Center at Los Alamos National Laboratory. The program included papers on facility plans, beam dynamics, and accelerator hardware. The parallel sessions were particularly lively with discussions of all facets of kaon factory design. The workshop provided an opportunity for communication among the staff involved in hadron facility planning from all the study groups presently active. The recommendations of the workshop include: the need to use h=1 RF in the compressor ring; the need to minimize foil hits in painting schemes for all rings; the need to consider single Coulomb scattering in injection beam los calculations; the need to study the effect of field inhomogeneity in the magnets on slow extraction for the 2.2 Tesla main ring of AHF; and agreement in principle with the design proposed for a joint Los Alamos/TRIUMF prototype main ring RF cavity

  12. Advanced power flow technologies for high current ICF accelerators

    International Nuclear Information System (INIS)

    VanDevender, J.P.; McDaniel, D.H.

    1978-01-01

    Two new technologies for raising the power density in high current, inertial confinement fusion accelerators have been developed in the past two years. Magnetic flashover inhibition utilizes the self-magnetic fields around the vacuum insulator surface to inhibit surface flashover; average electric fields of 40 Mv/m at magnetic fields of 1.1 T have been achieved. Self-magnetic insulation of long, vacuum transmission lines has been used to transport power at 1.6 x 10 14 W/m 2 over six meters and up to 1.6 x 10 15 W/m 2 over short distances in a radial anode-cathode feed. The recent data relevant to these new technologies and their implications for ICF will be explored

  13. Compact ion accelerator source

    Science.gov (United States)

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  14. Advanced Computational Models for Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Talamo, A.; Ravetto, P.; Gudowsk, W.

    2012-01-01

    In the nuclear engineering scientific community, Accelerator Driven Systems (ADSs) have been proposed and investigated for the transmutation of nuclear waste, especially plutonium and minor actinides. These fuels have a quite low effective delayed neutron fraction relative to uranium fuel, therefore the subcriticality of the core offers a unique safety feature with respect to critical reactors. The intrinsic safety of ADS allows the elimination of the operational control rods, hence the reactivity excess during burnup can be managed by the intensity of the proton beam, fuel shuffling, and eventually by burnable poisons. However, the intrinsic safety of a subcritical system does not guarantee that ADSs are immune from severe accidents (core melting), since the decay heat of an ADS is very similar to the one of a critical system. Normally, ADSs operate with an effective multiplication factor between 0.98 and 0.92, which means that the spallation neutron source contributes little to the neutron population. In addition, for 1 GeV incident protons and lead-bismuth target, about 50% of the spallation neutrons has energy below 1 MeV and only 15% of spallation neutrons has energies above 3 MeV. In the light of these remarks, the transmutation performances of ADS are very close to those of critical reactors.

  15. Advances in compact manufacturing for shape and performance controllability of large-scale components-a review

    Science.gov (United States)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li

    2017-01-01

    Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.

  16. A test harness for accelerating physics parameterization advancements into operations

    Science.gov (United States)

    Firl, G. J.; Bernardet, L.; Harrold, M.; Henderson, J.; Wolff, J.; Zhang, M.

    2017-12-01

    The process of transitioning advances in parameterization of sub-grid scale processes from initial idea to implementation is often much quicker than the transition from implementation to use in an operational setting. After all, considerable work must be undertaken by operational centers to fully test, evaluate, and implement new physics. The process is complicated by the scarcity of like-to-like comparisons, availability of HPC resources, and the ``tuning problem" whereby advances in physics schemes are difficult to properly evaluate without first undertaking the expensive and time-consuming process of tuning to other schemes within a suite. To address this process shortcoming, the Global Model TestBed (GMTB), supported by the NWS NGGPS project and undertaken by the Developmental Testbed Center, has developed a physics test harness. It implements the concept of hierarchical testing, where the same code can be tested in model configurations of varying complexity from single column models (SCM) to fully coupled, cycled global simulations. Developers and users may choose at which level of complexity to engage. Several components of the physics test harness have been implemented, including a SCM and an end-to-end workflow that expands upon the one used at NOAA/EMC to run the GFS operationally, although the testbed components will necessarily morph to coincide with changes to the operational configuration (FV3-GFS). A standard, relatively user-friendly interface known as the Interoperable Physics Driver (IPD) is available for physics developers to connect their codes. This prerequisite exercise allows access to the testbed tools and removes a technical hurdle for potential inclusion into the Common Community Physics Package (CCPP). The testbed offers users the opportunity to conduct like-to-like comparisons between the operational physics suite and new development as well as among multiple developments. GMTB staff have demonstrated use of the testbed through a

  17. The first terawatt picosecond CO2 laser for advanced accelerator studies at the Brookhaven ATF

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Skaritka, J.

    1996-10-01

    The first terawatt picosecond C0 2 laser system is under development at the Brookhaven Accelerator Test Facility. Presently operational 1 Joule 100-ps ATF laser will be upgraded with a 10 atm amplifier capable of delivery ∼ 15 Joules of laser energy in a 3 ps pulse. We describe the design of the x-ray preionized 10 atm amplifier of a 10 liter active volume energized by a 1 MV, 200 kA transverse electric discharge. The amplifier, equipped with internal optics, permits the accommodation of a regenerative stage and a multi-pass booster in a relatively compact single discharge volume. The ATF terawatt C0 2 laser shall become operational in 1997 to serve for laser acceleration, x-ray generation and other strong-field physics experiments

  18. Advanced test accelerator (ATA), a 50 MeV, 10 kA induction linac

    International Nuclear Information System (INIS)

    Reginato, L.

    1983-01-01

    The ATA is an induction accelerator designed to produce 70 ns pulses of electrons at currents of 10 kA and energies in excess of 50 MeV. The accelerator is capable of operating at an average rate of 5 Hz or at 1 kHz for ten pulses. The parameters were chosen primarily to provide the experimental basis for advancing the understanding of electron beam propagation physics. The 85 m accelerator has been under construction for the past four years and has adopted mainly an improved version of the ETA technology to satisfy the required parameters. Initial operation of the facility and the energy conversion system from primary power to axial electric field will be described; recent advances in magnetic switching which have been incorporated in the innector will also be discussed

  19. Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to the Enterprise

    Science.gov (United States)

    2010-04-29

    Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to

  20. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V.K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A.A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Huther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K.V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V.A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Oz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z.M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A.P.; Spitsyn, R.I.; Trines, R.; Tuev, P.V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C.P.; Wing, M.; Xia, G.; Zhang, H.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  1. Advanced beam dynamics and diagnostics concepts for laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Dornmair, Irene

    2017-05-15

    Laser-Plasma Accelerators (LPAs) combine a multitude of unique features, which makes them very attractive as drivers for next generation brilliant light sources including compact X-ray free-electron lasers. They provide high accelerating gradients, thereby drastically shrinking the accelerator size, while at the same time the produced electron bunches are intrinsically as short as a few femtoseconds and carry high peak currents. LPA are subject of very active research, yet, the field currently faces the challenge of improving the beam quality, and achieving stable and well-controlled injection and acceleration. This thesis tackles this issue from three different sides. A novellongitudinal phase space diagnostics is proposed that employs the strong fields present in plasma wakefields to streak ultrashort electron bunches. This allows for a temporal resolution down to the attosecond range, enabling direct determination to the current profile and the slice energy spread, both crucial quantities for the performance of free-electron lasers. Furthermore, adiabatic matching sections at the plasma-vacuum boundary are investigated. These can drastically reduce the beam divergence and thereby relax the constraints on the subsequent beam optics. For externally injected beams, the matching sections could even provide the key technology that permits emittance conservation by increasing the matched beam size to a level achievable with currently available magnetic optics. Finally, a new method is studied that allows to modify the wakefield shape. To this end, the plasma density is periodically modulated. One possible application can be to remove the linearly correlated energy spread, or chirp, from the accelerated bunch, which is suspected of being responsible for the main part of the often large energy spread of plasma accelerated beams.

  2. Advanced beam dynamics and diagnostics concepts for laser-plasma accelerators

    International Nuclear Information System (INIS)

    Dornmair, Irene

    2017-05-01

    Laser-Plasma Accelerators (LPAs) combine a multitude of unique features, which makes them very attractive as drivers for next generation brilliant light sources including compact X-ray free-electron lasers. They provide high accelerating gradients, thereby drastically shrinking the accelerator size, while at the same time the produced electron bunches are intrinsically as short as a few femtoseconds and carry high peak currents. LPA are subject of very active research, yet, the field currently faces the challenge of improving the beam quality, and achieving stable and well-controlled injection and acceleration. This thesis tackles this issue from three different sides. A novellongitudinal phase space diagnostics is proposed that employs the strong fields present in plasma wakefields to streak ultrashort electron bunches. This allows for a temporal resolution down to the attosecond range, enabling direct determination to the current profile and the slice energy spread, both crucial quantities for the performance of free-electron lasers. Furthermore, adiabatic matching sections at the plasma-vacuum boundary are investigated. These can drastically reduce the beam divergence and thereby relax the constraints on the subsequent beam optics. For externally injected beams, the matching sections could even provide the key technology that permits emittance conservation by increasing the matched beam size to a level achievable with currently available magnetic optics. Finally, a new method is studied that allows to modify the wakefield shape. To this end, the plasma density is periodically modulated. One possible application can be to remove the linearly correlated energy spread, or chirp, from the accelerated bunch, which is suspected of being responsible for the main part of the often large energy spread of plasma accelerated beams.

  3. Medium-Term Stability of the Photon Beam Energy of An Elekta CompactTM Linear Accelerator Based on Daily Measurements of Beam Quality Factor

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Mosleh-Shirazi

    2016-04-01

    Full Text Available Introduction In this study, we aimed to assess the medium-term energy stability of a 6MV Elekta CompactTM linear accelerator. To the best of our knowledge, this is the first published article to evaluate this linear accelerator in terms of energy stability. As well as investigating the stability of the linear accelerator energy over a period of several weeks, the results will be useful for estimation of the required tolerance values for the beam quality factor (BQF of the PTW QUICKCHECK weblineTM (QCW daily checking device. Materials and Methods Over a 13 week period of routine clinical service, 52 daily readings of BQF were taken and then analyzed for a 10×10 cm2 field. Results No decreasing or increasing trend in BQF was observed over the study period. The mean BQF value was estimated at 5.4483 with a standard deviation (SD of 0.0459 (0.8%. The mean value was only 0.1% different from the baseline value. Conclusion The results of this medium-term stability study of the Elekta Compact linear accelerator energy showed that 96.2% of the observed BQF values were within ±1.3% of the baseline value. This can be considered to be within the recommended tolerance for linear accelerator photon beam energy. If an approach of applying ±3 SD is taken, the tolerance level for BQF may be suggested to be set at ±2.5%. However, further research is required to establish a relationship between BQF value and the actual changes in beam energy and penetrative quality.

  4. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    International Nuclear Information System (INIS)

    Low, D; Mutic, S; Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J

    2016-01-01

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placed in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.

  5. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Low, D [UCLA, Los Angeles, CA (United States); Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J [ViewRay, Inc., Oakwood Village, OH (United States)

    2016-06-15

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placed in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.

  6. Recent advances of mid-infrared compact, field deployable sensors: principles and applications

    Science.gov (United States)

    Tittel, Frank; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Dong, Lei; Li, Chunguang; Patimisco, Pietro; Sampaolo, Angelo; Spagnolo, Vincenzo; Wojtas, Jacek

    2016-04-01

    The recent development of compact interband cascade lasers(ICLs) and quantum cascade lasers (QCLs) based trace gas sensors will permit the targeting of strong fundamental rotational-vibrational transitions in the mid-infrared which are one to two orders of magnitude more intense than transitions in the overtone and combination bands in the near-infrared. This has led to the design and fabrication of mid-infrared compact, field deployable sensors for use in the petrochemical industry, environmental monitoring and atmospheric chemistry. Specifically, the spectroscopic detection and monitoring of four molecular species, methane (CH4) [1], ethane (C2H6), formaldehyde (H2CO) [2] and hydrogen sulphide (H2S) [3] will be described. CH4, C2H6 and H2CO can be detected using two detection techniques: mid-infrared tunable laser absorption spectroscopy (TDLAS) using a compact multi-pass gas cell and quartz enhanced photoacoustic spectroscopy (QEPAS). Both techniques utilize state-of-the-art mid-IR, continuous wave (CW), distributed feedback (DFB) ICLs and QCLs. TDLAS was performed with an ultra-compact 54.6m effective optical path length innovative spherical multipass gas cell capable of 435 passes between two concave mirrors separated by 12.5 cm. QEPAS used a small robust absorption detection module (ADM) which consists of a quartz tuning fork (QTF), two optical windows, gas inlet/outlet ports and a low noise frequency pre-amplifier. Wavelength modulation and second harmonic detection were employed for spectral data processing. TDLAS and QEPAS can achieve minimum detectable absorption losses in the range from 10-8 to 10-11cm-1/Hz1/2. Several recent examples of real world applications of field deployable gas sensors will be described. For example, an ICL based TDLAS sensor system is capable of detecting CH4 and C2H6 concentration levels of 1 ppb in a 1 sec. sampling time, using an ultra-compact, robust sensor architecture. H2S detection was realized with a THz QEPAS sensor

  7. Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, Ben [NICADD, DeKalb; Mihalcea, Daniel [NICADD, DeKalb; Panuganti, Harsha [NICADD, DeKalb; Piot, Philippe [Fermilab; Brau, Charles [Vanderbilt U.; Choi, Bo [Vanderbilt U.; Gabella, William [Vanderbilt U.; Ivanov, Borislav [Vanderbilt U.; Mendenhall, Marcus [Vanderbilt U.; Lynn, Christopher [Swarthmore Coll.; Sen, Tanaji [Fermilab; Wagner, Wolfgang [Forschungszentrum Dresden Rossendorf

    2014-07-01

    In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.

  8. Construction, commissioning and operational experience of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    White, M.; Arnold, N.; Berg, W.

    1996-01-01

    The Advanced Photon Source linear accelerator system consists of a 200 MeV, 2856 MHz S-Band electron linac and a 2-radiation-thick tungsten target followed by a 450 MeV positron linac. The linac system has operated 24 hours per day for the past year to support accelerator commissioning and beam studies and to provide beam for the user experimental program. It achieves the design goal for positron current of 8 mA and produces electron energies up to 650 MeV without the target in place. The linac is described and its operation and performance are discussed

  9. Construction, commissioning and operational experience of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    White, M.; Arnold, N.; Berg, W.; Cours, A.; Fuja, R.; Grelick, A. E.; Sereno, N.; Wesolowski, W.; Ko, K.; Qian, Y.L.; Russell, T.

    1996-01-01

    The Advanced Photon Source linear accelerator system consists of a 200-MeV, 2856-MHz S-band electron linac and a 2-radiation-thick tungsten target followed by a 450-MeV positron linac. The linac system has operated 24 hours per day for the past year to support accelerator commissioning and beam studies and to provide beam for the user experimental program. It achieves the design goal for positron current of 8 mA and produces electron energies up to 650 MeV without the target in place. The linac is described and its operation and performance are discussed. (author)

  10. The influence of using accelerator addition on High strength self-compacting concrete (HSSCC) in case of enhancement early compressive strength and filling ability parameters

    Science.gov (United States)

    Wibowo; Fadillah, Y.

    2018-03-01

    Efficiency in a construction works is a very important thing. Concrete with ease of workmanship and rapid achievement of service strength will to determine the level of efficiency. In this research, we studied the optimization of accelerator usage in achieving performance on compressive strength of concrete in function of time. The addition of variation of 0.3% - 2.3% to the weight of cement gives a positive impact of the rapid achievement of hardened concrete, however the speed of increasing of concrete strength achievement in term of time influence present increasing value of filling ability parameter of self-compacting concrete. The right composition of accelerator aligned with range of the values standard of filling ability parameters of HSSCC will be an advantage guidance for producers in the ready-mix concrete industry.

  11. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    Science.gov (United States)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  12. A preliminary study of a D-T tokamak fusion reactor with advanced blanket using the compact fusion advanced Brayton (CFAB) cycle

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Ishikawa, M.; Umoto, J.; Fukuyama, A.; Mitarai, O.; Okamoto, M.; Sekimoto, H.; Nagatsu, M.

    1995-01-01

    Preliminary key issues for a synchrotron radiation-enhanced compact fusion advanced Brayton (CFAB) cycle fusion reactor similar to the CFAR (compact fusion advanced Rankine) cycle reactor are presented. These include plasma operation windows as a function of the first wall reflectivity and related issues, to estimate an allowance for deterioration of the first wall reflectivity due to dpa effects. It was found theoretically that first wall reflectivities down to 0.8 are still adequate for operation at an energy confinement scaling of 3 times Kaye-Goldston. Measurements of the graphite first wall reflectivities at Nagoya University indicate excellent reflectivities in excess of 90% for CC-312, PCC-2S, and PD-330S in the submillimeter regime, even at high temperatures in excess of 1000K. Some engineering issues inherent to the CFAB cycle are also discussed briefly in comparison with the CFAR cycle which uses hazardous limited-resource materials but is capable of using mercury as coolant for high heat removal. The CFAB cycle using helium coolant is found to achieve higher net plant conversion efficiencies in excess 60% using a non-equilibrium magnetohydrodynamic disk generator in the moderate pressure range, even at the cost of a relatively large pumping power, and at the penalty of high temperature materials, although excellent heat removal characteristics in the moderate pressure range need to be guaranteed in the future. (orig.)

  13. Advanced diffusion model in compacted bentonite based on modified Poisson-Boltzmann equations

    International Nuclear Information System (INIS)

    Yotsuji, K.; Tachi, Y.; Nishimaki, Y.

    2012-01-01

    Document available in extended abstract form only. Diffusion and sorption of radionuclides in compacted bentonite are the key processes in the safe geological disposal of radioactive waste. JAEA has developed the integrated sorption and diffusion (ISD) model for compacted bentonite by coupling the pore water chemistry, sorption and diffusion processes in consistent way. The diffusion model accounts consistently for cation excess and anion exclusion in narrow pores in compacted bentonite by the electric double layer (EDL) theory. The firstly developed ISD model could predict the diffusivity of the monovalent cation/anion in compacted bentonite as a function of dry density. This ISD model was modified by considering the visco-electric effect, and applied for diffusion data for various radionuclides measured under wide range of conditions (salinity, density, etc.). This modified ISD model can give better quantitative agreement with diffusion data for monovalent cation/anion, however, the model predictions still disagree with experimental data for multivalent cation and complex species. In this study we extract the additional key factors influencing diffusion model in narrow charged pores, and the effects of these factors were investigated to reach a better understanding of diffusion processes in compacted bentonite. We investigated here the dielectric saturation effect and the excluded volume effect into the present ISD model and numerically solved these modified Poisson-Boltzmann equations. In the vicinity of the negatively charged clay surfaces, it is necessary to evaluate concentration distribution of electrolytes considering the dielectric saturation effects. The Poisson-Boltzmann (P-B) equation coupled with the dielectric saturation effects was solved numerically by using Runge-Kutta and Shooting methods. Figure 1(a) shows the concentration distributions of Na + as numerical solutions of the modified and original P-B equations for 0.01 M pore water, 800 kg m -3

  14. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    Science.gov (United States)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  15. Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Jørgensen, Søren; Blaabjerg, Frede

    2016-01-01

    This paper presents an apparatus and methodology for an advanced accelerated power cycling test of insulated-gate bipolar transistor (IGBT) modules. In this test, the accelerated power cycling test can be performed under more realistic electrical operating conditions with online wear-out monitoring...... of tested power IGBT module. The various realistic electrical operating conditions close to real three-phase converter applications can be achieved by the simple control method. Further, by the proposed concept of applying the temperature stress, it is possible to apply various magnitudes of temperature...... swing in a short cycle period and to change the temperature cycle period easily. Thanks to a short temperature cycle period, test results can be obtained in a reasonable test time. A detailed explanation of apparatus such as configuration and control methods for the different functions of accelerated...

  16. Design and construction of a novel compact doubly achromatic asymmetric 2700 magnet system for 25 MeV therapy electron accelerator

    International Nuclear Information System (INIS)

    Hutcheon, R.M.; Hodge, S.B.

    1980-09-01

    A modern cancer therapy electron accelerator unit must satisfy many design constraints, one of which is the isocentric height above floor level. Usually 130 cm is considered the maximum height at which a nurse can work with a patient. The advent of higher energy machines has increasingly made this more difficult to achieve, as higher magnetic fields are required in the magnet that directs the beam onto the patient. A new 270 degree doubly-achromatic magnet configuration has been developed which minimizes the isocentre height for a given maximum energy and maximum magnetic field. The system is an asymmetric two-magnet configuration, with zero field index, equal fields and a bend of greater than 180 degrees in the first magnet. It is compact, easy to manufacture and relatively insensitive to assembly tolerances. Energy defining slits are easily incorporated in the design and can readily be radiation shielded. Input and output beam matching and steering is easily accomplished with a compact input quadrupole doublet and small steering windings. This report details the design and bench testing of a head magnet for a 25 MeV electron accelerator with +- 10 percent energy acceptance. The output beam requirement is < 3 mm diameter with < +- 17 mrad angular divergence. (auth)

  17. A compact control system to achieve stable voltage and low jitter trigger for repetitive intense electron-beam accelerator based on resonant charging

    Science.gov (United States)

    Qiu, Yongfeng; Liu, Jinliang; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao

    2017-08-01

    A compact control system based on Delphi and Field Programmable Gate Array(FPGA) is developed for a repetitive intense electron-beam accelerator(IEBA), whose output power is 10GW and pulse duration is 160ns. The system uses both hardware and software solutions. It comprises a host computer, a communication module and a main control unit. A device independent applications programming interface, devised using Delphi, is installed on the host computer. Stability theory of voltage in repetitive mode is analyzed and a detailed overview of the hardware and software configuration is presented. High voltage experiment showed that the control system fulfilled the requests of remote operation and data-acquisition. The control system based on a time-sequence control method is used to keep constant of the voltage of the primary capacitor in every shot, which ensured the stable and reliable operation of the electron beam accelerator in the repetitive mode during the experiment. Compared with the former control system based on Labview and PIC micro-controller developed in our laboratory, the present one is more compact, and with higher precision in the time dimension. It is particularly useful for automatic control of IEBA in the high power microwave effects research experiments where pulse-to-pulse reproducibility is required.

  18. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J; Low, D [University of California, Los Angeles, Los Angeles, CA (United States); Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J [ViewRay, Inc., Oakwood Village, OH (United States)

    2016-06-15

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency of 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was

  19. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    International Nuclear Information System (INIS)

    Lamb, J; Low, D; Mutic, S; Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J

    2016-01-01

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency of 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was

  20. Advanced particle-in-cell simulation techniques for modeling the Lockheed Martin Compact Fusion Reactor

    Science.gov (United States)

    Welch, Dale; Font, Gabriel; Mitchell, Robert; Rose, David

    2017-10-01

    We report on particle-in-cell developments of the study of the Compact Fusion Reactor. Millisecond, two and three-dimensional simulations (cubic meter volume) of confinement and neutral beam heating of the magnetic confinement device requires accurate representation of the complex orbits, near perfect energy conservation, and significant computational power. In order to determine initial plasma fill and neutral beam heating, these simulations include ionization, elastic and charge exchange hydrogen reactions. To this end, we are pursuing fast electromagnetic kinetic modeling algorithms including a two implicit techniques and a hybrid quasi-neutral algorithm with kinetic ions. The kinetic modeling includes use of the Poisson-corrected direct implicit, magnetic implicit, as well as second-order cloud-in-cell techniques. The hybrid algorithm, ignoring electron inertial effects, is two orders of magnitude faster than kinetic but not as accurate with respect to confinement. The advantages and disadvantages of these techniques will be presented. Funded by Lockheed Martin.

  1. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.

    Science.gov (United States)

    Seguin, F H; Sinenian, N; Rosenberg, M; Zylstra, A; Manuel, M J-E; Sio, H; Waugh, C; Rinderknecht, H G; Johnson, M Gatu; Frenje, J; Li, C K; Petrasso, R; Sangster, T C; Roberts, S

    2012-10-01

    Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

  2. Frontier of Advanced Accelerator Applications and Medical Treatments Using Nuclear Techniques. Abstract

    International Nuclear Information System (INIS)

    2015-01-01

    To address the challenges of research-based practice, developing advanced accelerator applications, and medical treatments using nuclear tecniqoes, researchers from Rajamakala University of Technology Lanna, Office of Atoms for Peace, and Chiang Mai University have joined in hosting this conference. Nuclear medicine, amedical specialty, diagnoses and treats diseases in a safe and painless way. Nuclear techniques can determine medical information that may otherwise be unavailable, require surgery, or necessitate more expensive and invasive diagnostic tests. Advance in nuclear techniques also offer the potential to detect abnormalities at earlier stages, leasding to earlier treatment and a more successful prognosis.

  3. Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes, and light optics

    International Nuclear Information System (INIS)

    Dragt, A.J.

    1987-01-01

    A review is given of elementary Lie algebraic methods for treating Hamiltonian systems. This review is followed by a brief exposition of advanced Lie algebraic methods including resonance bases and conjugacy theorems. Finally, applications are made to the design of third-order achromats for use in accelerators, to the design of subangstroem resolution electron microscopes, and to the classification and study of high order aberrations in light optics. (orig.)

  4. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O’Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; O’Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-03-01

    The first observing run of Advanced LIGO spanned 4 months, from 12 September 2015 to 19 January 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 yr to less than 1 in 186 000 yr.

  5. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    Science.gov (United States)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  6. Development and application of compact and on-chip electron linear accelerators for dynamic tracking cancer therapy and DNA damage/repair analysis

    Science.gov (United States)

    Uesaka, M.; Demachi, K.; Fujiwara, T.; Dobashi, K.; Fujisawa, H.; Chhatkuli, R. B.; Tsuda, A.; Tanaka, S.; Matsumura, Y.; Otsuki, S.; Kusano, J.; Yamamoto, M.; Nakamura, N.; Tanabe, E.; Koyama, K.; Yoshida, M.; Fujimori, R.; Yasui, A.

    2015-06-01

    We are developing compact electron linear accelerators (hereafter linac) with high RF (Radio Frequency) frequency (9.3 GHz, wavelength 32.3 mm) of X-band and applying to medicine and non-destructive testing. Especially, potable 950 keV and 3.95 MeV linac X-ray sources have been developed for on-site transmission testing at several industrial plants and civil infrastructures including bridges. 6 MeV linac have been made for pinpoint X-ray dynamic tracking cancer therapy. The length of the accelerating tube is ∼600 mm. The electron beam size at the X-ray target is less than 1 mm and X-ray spot size at the cancer is less than 3 mm. Several hardware and software are under construction for dynamic tracking therapy for moving lung cancer. Moreover, as an ultimate compact linac, we are designing and manufacturing a laser dielectric linac of ∼1 MeV with Yr fiber laser (283 THz, wavelength 1.06 pm). Since the wavelength is 1.06 μm, the length of one accelerating strcture is tens pm and the electron beam size is in sub-micro meter. Since the sizes of cell and nuclear are about 10 and 1 μm, respectively, we plan to use this “On-chip” linac for radiation-induced DNA damage/repair analysis. We are thinking a system where DNA in a nucleus of cell is hit by ∼1 μm electron or X-ray beam and observe its repair by proteins and enzymes in live cells in-situ.

  7. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  8. Organization of the 16th Advanced Accelerator Concepts (AAC) Workshop by Stanford University

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States); Hogan, Mark [Stanford Univ., CA (United States)

    2015-09-30

    Essentially all we know today and will learn in the future about the fundamental nature of matter is derived from probing it with directed beams of particles such as electrons, protons, neutrons, heavy ions, and photons. The resulting ability to “see” the building blocks of matter has had an immense impact on society and our standard of living. Over the last century, particle accelerators have changed the way we look at nature and the universe we live in and have become an integral part of the Nation’s technical infrastructure. Today, particle accelerators are essential tools of modern science and technology. The cost and capabilities of accelerators would be greatly enhanced by breakthroughs in acceleration methods and technology. For the last 32 years, the Advanced Accelerator Concepts (AAC) Workshop has acted as the focal point for discussion and development of the most promising acceleration physics and technology. It is a particularly effective forum where the discussion is leveraged and promoted by the unique and demanding feature of the AAC Workshop: the working group structure, in which participants are asked to consider their contributions in terms of even larger problems to be solved. The 16th Advanced Accelerator Concepts (AAC2014) Workshop was organized by Stanford University from July 13 - 18, 2014 at the Dolce Hays Mansion in San Jose, California. The conference had a record 282 attendees including 62 students. Attendees came from 11 countries representing 66 different institutions. The workshop format consisted of plenary sessions in the morning with topical leaders from around the world presenting the latest breakthroughs to the entire workshop. In the late morning and afternoons attendees broke out into eight different working groups for more detailed presentations and discussions that were summarized on the final day of the workshop. In addition, there were student tutorial presentations on two afternoons to provide in depth education and

  9. Role of accelerator science and technology in medical science

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2006-01-01

    Updated status of compact and advanced-compact medical accelerator development is reviewed. In their applications, medical physics and medical physicist are necessary. Their educational programs have started in several universities and institutes. As one important new trend on life-science, the research on the synergy of DDS (Drug Delivery System) and physical energies are proposed. (author)

  10. Initial measurements of beam breakup instability in the advanced test accelerator

    International Nuclear Information System (INIS)

    Chong, Y.P.; Caporaso, G.T.; Struve, K.W.

    1985-01-01

    This paper reports the measurements of beam breakup (BBU) instability performed on the Advanced Test Accelerator (ATA) up to the end of February 1984. The main objective was to produce a high current usable electron beam at the ATA output. A well-known instability is BBU which arises from the accelerator cavity modes interacting with the electron beam. The dominant mode is TM130 at a frequency of approximately 785 MHz. It couples most strongly to the beam motion and has been observed to grow in the Experimental Test Accelerator (ETA), which has only eight accelerator cavities. ATA has one hundred and seventy cavities and therefore the growth of BBU is expected to be more severe. In this paper, BBU measurements are reported for ATA with beam currents of 4 to 7 kA. Analysis showed that the growth of the instability with propagation distance was as expected for the lower currents. However, the high current data showed an apparent higher growth rate than expected. An explanation for this anomaly is given in terms of a ''corkscrew'' excitation. The injector BBU noise level for a field emission brush cathode was found to be an order of magnitude lower than for a cold plasma discharge cathode. These injector rf amplitudes agree very well with values obtained using the method of differenced Btheta loops

  11. Status of the Advanced Photon Source and its accelerator control system

    International Nuclear Information System (INIS)

    McDowell, W.; Knott, M.; Kraimer, K.M.

    1993-01-01

    This paper presents the current status of the Advanced Photon Source (APS), its control system and the Experimental Physics and Industrial Control System (EPICS) tools being used to implement this control system. The status of the physical plant and each of the accelerators as well as detailed descriptions of the software tools used to build the accelerator control system are presented. The control system uses high-performance graphic workstations and the X-windows graphical user interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high-performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  12. Compact ILU-type electron accelerators as a base for industrial 4-sided irradiation systems for cable and tubes

    International Nuclear Information System (INIS)

    Auslender, V.L.; Nekhaev, V.E.; Panfilov, A.D.; Tuvik, A.A.

    1999-01-01

    The ILU-type industrial electron accelerators are developed in BINP sins 1967. Their energy range is 0.7-4.0 MeV at beam power of 20-50 kW. The comparison of the irradiation results after bilateral and four-sided irradiation of cables and tubes is given. It is shown that the required electron energy and beam power in the case of four-sided irradiation are sufficiently lower than in the case of bilateral irradiation, resulting in an increase of productive rate of the process and improvement of treatment quality. The installations for four-sided irradiation of cables and tubes are based on the industrial electron accelerators type ILU

  13. Simulation studies of the ion beam transport system in a compact electrostatic accelerator-based D-D neutron generator

    Directory of Open Access Journals (Sweden)

    Das Basanta Kumar

    2014-01-01

    Full Text Available The study of an ion beam transport mechanism contributes to the production of a good quality ion beam with a higher current and better beam emittance. The simulation of an ion beam provides the basis for optimizing the extraction system and the acceleration gap for the ion source. In order to extract an ion beam from an ion source, a carefully designed electrode system for the required beam energy must be used. In our case, a self-extracted penning ion source is used for ion generation, extraction and acceleration with a single accelerating gap for the production of neutrons. The characteristics of the ion beam extracted from this ion source were investigated using computer code SIMION 8.0. The ion trajectories from different locations of the plasma region were investigated. The simulation process provided a good platform for a study on optimizing the extraction and focusing system of the ion beam transported to the required target position without any losses and provided an estimation of beam emittance.

  14. University Programs of the U.S. Department of Energy Advanced Accelerator Applications Program

    International Nuclear Information System (INIS)

    Beller, Denis E.; Ward, Thomas E.; Bresee, James C.

    2002-01-01

    The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY-01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of transmutation of nuclear waste. An Accelerator-Driven Test Facility (ADTF), which may be built during the first decade of the 21. Century, is a major component of this effort. The ADTF would include a large, state-of-the-art charged-particle accelerator, proton-neutron target systems, and accelerator-driven R and D systems. This new facility and its underlying science and technology will require a large cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and student populations. Thus, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. In this paper we describe university programs that have supported, are supporting, and will support the R and D necessary for the AAA Project. Previous work included research for the Accelerator Transmutation of Waste (ATW) project, current (FY-01) programs include graduate fellowships and research for the AAA Project, and it is expected that future programs will expand and add to the existing programs. (authors)

  15. Special issue on compact x-ray sources

    Science.gov (United States)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities

  16. Advanced high brightness ion rf accelerator applications in the nuclear energy

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1991-01-01

    The capability of modern rf linear accelerators to provide intense high quality beams of protons, deuterons, or heavier ions is opening new possibilities for transmuting existing nuclear wastes, for generating electricity from readily available fuels with minimal residual wastes, for building intense neutron sources for materials research, for inertial confinement fusion using heavy ions, and for other new applications. These are briefly described, couched in a perspective of the advances in the understanding of the high brightness beams that has enabled these new programs. 32 refs., 2 figs

  17. CoalFleet for tomorrow. An industry initiative to accelerate the deployment of advanced coal-based generation plants

    Energy Technology Data Exchange (ETDEWEB)

    Parkes, J.; Holt, N.; Phillips, J. [Electric Power Research Institute (United States)

    2006-07-01

    The industry initiative 'CoalFleet for tomorrow' was launched in November 2004 to accelerate the deployment and commercialization of clean, efficient, advanced coal power systems. This paper discusses the structure of CoalFleet and its strategy for reducing the cost, leadtime and risk of deploying advanced coal technologies such as combined-cycle power plants. 6 figs.

  18. Vacuum-to-air interface for the advanced test accelerator beam director

    International Nuclear Information System (INIS)

    Cruz, G.E.; Edwards, W.F.; Kavanagh, D.P.; Addis, R.B.; Weiss, W.C.; Livenspargar, C.M.

    1986-01-01

    A vacuum-to-air transition was created to facilitate the Lawrence Livermore National Laboratory's Advanced Test Accelerator (ATA) electron beam 1-Hz pulse rate. It is necessary that a pulsed particle beam go from a region at 10 -6 torr through a 1-cm-diam maximum aperture into a region at 760 torr. This must be accomplished without the use of windows or solid barriers. Two tests will be conducted on the vacuum-to-air interface. The first determines pressure profiles through 1.0-mm- and 10.0-mm-diam orifices. The second test employs an expendable foil and foil advancement mechanism. In this paper, the experimental results of the orifice test are presented and the analytical results are compared with the empirical results. The foil advancement test will be documented after the test is completed. The mechanism serves both as an orifice and as a fast-acting vacuum valve. In operation, the electron beam penetrates the thin foil, thereby creating an aperture of minimum geometry. During the balance of the pulse cycle, after the beam duration, the foil is advanced to seal the opening and recover the almost negligible loss in vacuum

  19. An accelerator technology legacy

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1994-01-01

    Accelerator technology has been a major beneficiary of the investment made over the last decade. It is the intention of this paper to provide the reader with a glimpse of the broad nature of those advances. Development has been on a broad front and this paper can highlight only a few of those. Two spin-off applications will be outlined -- a concept for a compact, active, beam probe for solar body exploration and the concept for an accelerator-driven transmutation system for energy production

  20. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  1. Visual outcome of accelerated fractionated radiation for advanced sinonasal malignancies employing photons/protons

    International Nuclear Information System (INIS)

    Weber, Damien C.; Chan, Annie W.; Lessell, Simmons; McIntyre, James F.; Goldberg, Saveli I.; Bussiere, Marc R.; Fitzek, Markus M.; Thornton, Allan F.; DeLaney, Thomas F.

    2006-01-01

    Purpose: To investigate the visual outcomes of patients with advanced sinonasal malignancies treated with proton/photon accelerated fractionated radiation (AFR). Patients and methods: Between 1991 and 2001, AFR was used to treat 36 patients with advanced stage primary (n = 33) or recurrent (n = 3) nasal or paranasal malignant tumors. Full ophthalmologic follow-up was documented. The median dose to the gross tumor volume (GTV) was 69.6 CGE (range 60.8-77). Visual complications were graded according to the National Cancer Institute Common Toxicity Criteria (CTC) and the late effects of normal tissue (LENT) scoring systems. The median follow-up was 52.4 months (range 17-122.8). Results: Thirteen patients developed late visual/ocular toxicity. Cataracts were LENT grade 1 and 3 in 2 patients and 1 patient, respectively. One LENT grade 1 vascular retinopathy and 1 optic neuropathy were also observed. Three and five patients presented with nasolacrimal duct stenosis (CTC grade 2, 2 patients; CTC grade 3, 1 patient) and dry-eye syndrome (CTC grade 1, 1 patient; CTC grade 2, 4 patients), respectively. The 3- and 5-year probability of LENT/CTC grade ≥2 visual toxicity were 15.8 ± 6.7% and 20.7 ± 7.8%, respectively. Conclusions: AFR for locally advanced nasal cavity and paranasal sinus tumors enables delivery of 70 CGE to the tumor with acceptable ophthalmologic complications

  2. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    Science.gov (United States)

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  3. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    Science.gov (United States)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  4. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  5. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    Science.gov (United States)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  6. Establishment of an Advanced Accelerator Applications University Participation Program at the University of Nevada, Las Vegas

    International Nuclear Information System (INIS)

    Hechanova, A.E.; Cerefice, G.S.

    2002-01-01

    The University of Nevada, Las Vegas (UNLV) established an Advanced Accelerator Applications (AAA) University Participation Program in March 2001 to develop a world-class research program for accelerator-driven transmutation technology while building core competencies and facilities to promote the University's strategic growth goals. The goal of this program is to involve UNLV students in research on the cutting edge of science and engineering as an integrated part of the national program to develop this emerging technology. This program augments UNLV's research capabilities and infrastructure, while establishing national and international research collaborations with national laboratories, industrial partners, and other universities, increasing the UNL V research community's presence in the global scientific community. The UNL V Program is closely integrated into the national project led by Los Alamos and Argonne National Laboratories. The primary mechanism to insure this degree of integration is the teaming of national laboratory scientists with UNL V faculty and students on student research proposals. The Program was implemented under an aggressive schedule with faculty response that surpassed expectations. A total of 12 multi-tasked projects that involve 21 graduate students and 13 faculty members began under first year funding. Other major accomplishments include establishment of an administrative structure implementing all the components of the Program and establishment of a communications network between national laboratory project leaders and UNL V faculty. (authors)

  7. XCAMS: The compact "1"4C accelerator mass spectrometer extended for "1"0Be and "2"6Al at GNS Science, New Zealand

    International Nuclear Information System (INIS)

    Zondervan, A.; Hauser, T.M.; Kaiser, J.; Kitchen, R.L.; Turnbull, J.C.; West, J.G.

    2015-01-01

    Highlights: • We review the performance of a 0.5 MV AMS system for "1"0Be, "1"4C, and "2"6Al. • We identify the limiting factors to "1"0Be machine blank and detection efficiency. • We discuss an AMS data reduction method that accounts for non-Poisson uncertainty. - Abstract: A detailed description is given of the 0.5 MV tandem accelerator mass spectrometry (AMS) system for "1"0Be, "1"4C, "2"6Al, installed in early 2010 at GNS Science, New Zealand. Its design follows that of previously commissioned Compact "1"4C-only AMS (CAMS) systems based on the Pelletron tandem accelerator. The only basic departure from that design is an extension of the rare-isotope achromat with a 45° magnet and a two-anode gas-ionisation detector, to provide additional filtering for "1"0Be. Realised performance of the three AMS modes is discussed in terms of acceptance-test scores, "1"4C Poisson and non-Poisson errors, and "1"0Be detection limit and sensitivity. Operational details and hardware improvements, such as "1"0Be beam transport and particle detector setup, are highlighted. Statistics of repeat measurements of all graphitised "1"4C calibration cathodes since start-up show that 91% of their total uncertainty values are less than 0.3%, indicating that the rare-isotope beamline extension has not affected precision of "1"4C measurement. For "1"0Be, the limit of detection in terms of the isotopic abundance ratio "1"0Be/"9Be is 6 × 10"−"1"5 at at"−"1 and the total efficiency of counting atoms in the sample cathode is 1/8500 (0.012%).

  8. XCAMS: The compact {sup 14}C accelerator mass spectrometer extended for {sup 10}Be and {sup 26}Al at GNS Science, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Zondervan, A., E-mail: a.zondervan@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); Hauser, T.M. [National Electrostatics Corporation, Middleton, WI (United States); Kaiser, J. [GNS Science, Lower Hutt (New Zealand); Kitchen, R.L. [National Electrostatics Corporation, Middleton, WI (United States); Turnbull, J.C.; West, J.G. [GNS Science, Lower Hutt (New Zealand)

    2015-10-15

    Highlights: • We review the performance of a 0.5 MV AMS system for {sup 10}Be, {sup 14}C, and {sup 26}Al. • We identify the limiting factors to {sup 10}Be machine blank and detection efficiency. • We discuss an AMS data reduction method that accounts for non-Poisson uncertainty. - Abstract: A detailed description is given of the 0.5 MV tandem accelerator mass spectrometry (AMS) system for {sup 10}Be, {sup 14}C, {sup 26}Al, installed in early 2010 at GNS Science, New Zealand. Its design follows that of previously commissioned Compact {sup 14}C-only AMS (CAMS) systems based on the Pelletron tandem accelerator. The only basic departure from that design is an extension of the rare-isotope achromat with a 45° magnet and a two-anode gas-ionisation detector, to provide additional filtering for {sup 10}Be. Realised performance of the three AMS modes is discussed in terms of acceptance-test scores, {sup 14}C Poisson and non-Poisson errors, and {sup 10}Be detection limit and sensitivity. Operational details and hardware improvements, such as {sup 10}Be beam transport and particle detector setup, are highlighted. Statistics of repeat measurements of all graphitised {sup 14}C calibration cathodes since start-up show that 91% of their total uncertainty values are less than 0.3%, indicating that the rare-isotope beamline extension has not affected precision of {sup 14}C measurement. For {sup 10}Be, the limit of detection in terms of the isotopic abundance ratio {sup 10}Be/{sup 9}Be is 6 × 10{sup −15} at at{sup −1} and the total efficiency of counting atoms in the sample cathode is 1/8500 (0.012%).

  9. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  10. Progress of Laser-Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa

    2007-01-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators

  11. Systemic Analysis, Mapping, Modeling, and Simulation of the Advanced Accelerator Applications Program

    International Nuclear Information System (INIS)

    Guan, Yue; Laidler, James J.; Morman, James A.

    2002-01-01

    Advanced chemical separations methods envisioned for use in the Department of Energy Advanced Accelerator Applications (AAA) program have been studied using the Systemic Analysis, Mapping, Modeling, and Simulation (SAMMS) method. This integrated and systematic method considers all aspects of the studied process as one dynamic and inter-dependent system. This particular study focuses on two subjects: the chemical separation processes for treating spent nuclear fuel, and the associated non-proliferation implications of such processing. Two levels of chemical separation models are developed: level 1 models treat the chemical process stages by groups; and level 2 models depict the details of each process stage. Models to estimate the proliferation risks based on proliferation barrier assessment are also developed. This paper describes the research conducted for the single-stratum design in the AAA program. Further research conducted for the multi-strata designs will be presented later. The method and models described in this paper can help in the design of optimized processes that fulfill the chemical separation process specifications and non-proliferation requirements. (authors)

  12. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  13. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    Directory of Open Access Journals (Sweden)

    Marziye Ebrahimkhani

    2016-02-01

    Full Text Available Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee and source multiplication coefficient (ks, has been investigated. A Monte Carlo code (MCNPX_2.6 has been used to calculate neutronic parameters such as effective multiplication coefficient (keff, net neutron multiplication (M, neutron yield (Yn/e, energy constant gain (G0, energy gain (G, importance of neutron source (φ∗, axial and radial distributions of neutron flux, and power peaking factor (Pmax/Pave in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current (Ie have been decreased in the highest case of ks, but G and φ∗ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing Ee from 100 MeV up to 1 GeV, Yn/e and G improved by 91.09% and 10.21%, and Ie and Pacc decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np–Pu assemblies on the periphery allows for a consistent keff because the Np–Pu assemblies experience less burn-up.

  14. Hyperfractionated-accelerated radiotherapy followed by radical surgery in locally advanced tumors of the oral cavity

    International Nuclear Information System (INIS)

    Hoeller, U.; Biertz, I.; Tribius, S.; Alberti, W.; Flinzberg, S.; Schmelzle, R.

    2006-01-01

    Purpose: to evaluate the outcome of hyperfractionated-accelerated radiotherapy and subsequent planned primary tumor resection and radical neck dissection in locally advanced tumors of the oral cavity. Patients and Methods: this retrospective analysis evaluates 126 subsequent patients who were treated between 1988 and 1997 for locally advanced tumors of the oral cavity (with extension into the oropharynx in 17 patients), 34 (27%) AJCC stage III and 92 (73%) stage IV. Primary tumor and nodal metastases were irradiated with 1.4 Gy bid to a median total dose of 72.8 Gy (range 58.8-75.6 Gy). Then, planned radical surgery of the primary site according to the initial tumor extent and cervical nodes was performed. Median follow-up of living patients was 6 years (range 1-11 years). Results: 4 weeks after radiotherapy, 14 patients (11%) had complete tumor remission, 92 (73%) partial remission, 15 (12%) no change, and five (4%) progressive disease. Complete resection was achieved in 117 (93%) patients (nine incomplete resections). 5-year locoregional control rate was 62 ± 9%, overall survival 36 ± 9%. Surgery-related morbidity occurred in 42 patients (33%; mainly delayed wound healing and fistulae), overall severe treatment-related morbidity in 46 patients (36%). 24/84 relapse-free patients (29%) required a percutaneous gastrostomy or nasal tube ≥ 1 year after therapy. Conclusion: in this study, the outcome of combined curative radiotherapy and planned surgery of the primary tumor and neck nodes was comparable to reported results of hyperfractionated radiotherapy with or without salvage surgery of the neck nodes with respect to locoregional control and overall survival. Planned surgery carries a substantial risk of morbidity and seems to offer no benefit in comparison to salvage surgery of the neck nodes only. Therefore, salvage surgery is preferred. (orig.)

  15. Design of a high-magnification and low-aberration compact catadioptric telescope for the Advanced Virgo gravitational-wave interferometric detector

    International Nuclear Information System (INIS)

    Buy, C; Barsuglia, M; Tacca, M; Genin, E; Gouaty, R

    2017-01-01

    Advanced Virgo is a major upgrade of the Virgo gravitational-wave detector, aiming to increase its sensitivity by an order of magnitude. Among the main modifications of the instrument, the size of the laser beam inside the central area has been roughly doubled. Consequently, the input/output optics systems have been re-designed. Due to the overall Advanced Virgo optical scheme, high-magnification and compact telescopes are needed. These telescopes also have to fulfill stringent requirements in terms of aberrations, separation of secondary beams and scattered light. In this paper we describe the design of the Advanced Virgo telescopes and their estimated performances in terms of tuning capability and optical properties. (paper)

  16. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    International Nuclear Information System (INIS)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira

    2017-01-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  17. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernández, Carlos García, E-mail: danielgonro@gmail.com, E-mail: mmhamada@ipen.br [Instituto Superior de Tecnologías y Ciencias aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  18. X-ray beam size measurements on the Advanced Test Accelerator

    International Nuclear Information System (INIS)

    Struve, K.W.; Chambers, F.W.; Lauer, E.J.; Slaughter, D.R.

    1986-01-01

    The electron beam size has been determined on the Advanced Test Accelerator (ATA) by intercepting the beam with a target and measuring the resulting x-ray intensity as a function of time as the target is moved through the beam. Several types of targets have been used. One is a tantalum rod which extends completely across the drift chamber. Another is a tungsten powder filled carbon crucible. Both of these probes are moved from shot to shot so that the x-ray signal intensity varies with probe position. A third is a larger tantalum disk which is inserted on beam axis to allow determining beam size on a one shot basis. The x-ray signals are detected with an MCP photomultiplier tube located at 90 0 to the beamline. It is sufficiently shielded to reject background x-rays and neutrons. The signals were digitized, recorded and later unfolded to produce plots of x-ray intensity versus probe position for several times during the pulse. The presumption that the x-ray intensity is proportional to beam current density is checked computationally. Details of the probe construction and PMT shielding, as well as sample measurements are given

  19. Accelerator-driven systems (ADS) and fast reactors (FR) in advanced nuclear fuel cycles

    International Nuclear Information System (INIS)

    2002-01-01

    The long-term hazard of radioactive waste arising from nuclear energy production is a matter of continued discussion and public concern in many countries. Through partitioning and transmutation (P and T) of the actinides and some of the long-lived fission products, the radiotoxicity of high-level waste (HLW) can be reduced by a factor of 100 compared with the current once-through fuel cycle. This requires very effective reactor and fuel cycle strategies, including fast reactors (FR) and/or accelerator-driven, sub-critical systems (ADS). The present study compares FR- and ADS-based actinide transmutation systems with respect to reactor properties, fuel cycle requirements, safety, economic aspects and (R and D) needs. Several advanced fuel cycle strategies are analysed in a consistent manner to provide insight into the essential differences between the various systems in which the role of ADS is emphasised. The report includes a summary aimed at policy makers and research managers as well as a detailed technical section for experts in this domain. (authors)

  20. 15 N utilization in nitride nuclear fuels for advanced nuclear power reactors and accelerator - driven systems

    International Nuclear Information System (INIS)

    Axente, D.

    2005-01-01

    15 N utilization for nitride nuclear fuels production for nuclear power reactors and accelerator - driven systems is presented. Nitride nuclear fuel is the obvious choice for advanced nuclear reactors and ADS because of its favorable properties: a high melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in nuclear reactors and ADS requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Accelerator - driven system is a recent development merging of accelerator and fission reactor technologies to generate electricity and transmute long - lived radioactive wastes as minor actinides: Np, Am, Cm. A high-energy proton beam hitting a heavy metal target produces neutrons by spallation. The neutrons cause fission in the fuel, but unlike in conventional reactors, the fuel is sub-critical and fission ceases when the accelerator is turned off. Nitride fuel is a promising candidate for transmutation in ADS of minor actinides, which are converted into nitrides with 15 N for that purpose. Tacking into account that the world wide market is about 20 to 40 Kg 15 N annually, the supply of that isotope for nitride fuel production for nuclear power reactors and ADS would therefore demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N, using present technology of isotopic exchange in NITROX system, the first separation stage of the cascade would be fed with 10M HNO 3 solution of 600 mc/h flow - rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for a production plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million mc/y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle of SO 2 is a problem to be solved to compensate the cost of SO 2

  1. Using Advanced Mixed Waste Treatment Technology To Meet Accelerated Cleanup Program Milestones

    International Nuclear Information System (INIS)

    Larsen, P.J.; Garcia, J.; Estes, C.H.; Palmer, C.R.; Meyers, G.S.

    2006-01-01

    Some DOE Complex facilities are entering the late stages of facility closure. As waste management operations are completed at these sites, remaining inventories of legacy mixed wastes must be finally disposed. These wastes have unique physical, chemical and radiological properties that have made their management troublesome, and hence why they have remained on site until this late stage of closure. Some of these wastes have had no approved or practical treatment alternative until just recently. Results are provided from using advanced mixed waste treatment technology to perform two treatment campaigns on these legacy wastes. Combinations of macro-encapsulation, vacuum thermal desorption (VTD), and chemical stabilization, with off-site incineration of the organic condensate, provided a complete solution to the problem wastes. One program included approximately 1,900 drums of material from the Fernald Environmental Management Project. Another included approximately 1,200 drums of material from the Accelerated Cleanup Program at the Oak Ridge Reservation. Both of these campaigns were conducted under tight time schedules and demanding specifications, and were performed in a matter of only a few months each. Coordinated rapid waste shipment, flexible permitting and waste acceptance criteria, adequate waste receiving and storage capacity, versatile feed preparation and sorting capability, robust treatment technology with a broad feed specification, and highly reliable operations were all valuable components to successful accomplishment of the project requirements. Descriptions of the waste are provided; material that was difficult or impossible to treat in earlier phases of site closure. These problem wastes included: 1) the combination of special nuclear materials mixed with high organic chemical content and/or mercury, 2) high toxic metal content mixed with high organic chemical content, and 3) very high organic chemical content mixed with debris, solids and sludge

  2. Accelerated superfractionated radiotherapy with concomitant boost for locally advanced head-and-neck squamous cell carcinomas

    International Nuclear Information System (INIS)

    Morris, Monica M.; Schmidt-Ullrich, Rupert K.; DiNardo, L.; Manning, Matthew A.; Silverman, L.; Clay, L.; Johnson, Christopher R.; Amir, Cyrus

    2002-01-01

    Purpose: A growing body of evidence supports the efficacy of accelerated superfractionated radiotherapy with concomitant boost for advanced head-and-neck carcinomas. This study represents a single-institution experience, performed to identify the factors influencing tumor control, survival, and toxicity. Methods and Materials: Between 1988 and 1999, 133 patients with primary squamous cell head-and-neck carcinoma underwent accelerated superfractionated radiotherapy using a concomitant boost. The concomitant boost in this regimen was delivered using reduced fields delivered 3 times weekly in a twice-daily schedule during the final phase. The total radiation dose ranged from 64.8 Gy to 76.5 Gy (mean 71.1). Patients were evaluated in follow-up for local control and late toxicity. Multivariate analysis of treatment and patient parameters was performed to evaluate their influence on toxicity, local control, and overall survival. Results: With a mean follow-up of 37 months, the actuarial overall survival rate for the entire group at 5 years was 24% and the local control rate was 57%. The tumor volume was the most significant predictor of local control, such that each 1-cm 3 increase in volume was associated with a 1% decrease in local control. For patients with tumor volumes ≤30 cm 3 vs. >30 cm 3 , the 5-year disease-specific survival rate was 52% and 27% (p = 0.004) and locoregional control rate was 76% and 26% (p<0.001), respectively. Seventy-six patients with a minimum of 12 months and median of 39 months toxicity follow-up were studied for late effects. None of these patients experienced Grade 4 or 5 toxicity. The actuarial rate of significant toxicity (Grade III or greater) was 32% at 5 years. Of the toxicities observed, xerostomia (19%) was the most common. Multivariate analysis revealed N stage and dose as independent predictors of Grade 3 effects. Conclusion: The locoregional control and survival for patients in this institutional experience compare favorably to

  3. The Proceedings of Joint 28th ICFA Advanced Beam Dynamics and Advanced Nova Accelerator Workshops on Quantum Aspects of Beam Physics

    International Nuclear Information System (INIS)

    Chen, P

    2004-01-01

    The Joint 28th ICFA (International Committee for Future Accelerators) Advanced Beam Dynamics and Advanced and Novel Accelerators Workshop on ''QUANTUM ASPECTS OF BEAM PHYSICS and Other Critical Issues of Beams in Physics and Astrophysics'', was held on January 7-11, 2003, in Hiroshima, Japan. This was the third in the QABP workshop series. The first QABP workshop was launched in January 1998, in Monterey, California, and the second was held in October 2000, in Capri, Italy. Over the past five years, this workshop series has passed its torch around the world, from the U.S. to Europe, and this time to Japan in Asia. Following the footsteps of the first two workshops, this one in Hiroshima was again a tremendous success. The frontier of beam research points to increasingly higher energy, greater brightness and lower emittance beams with ever-increasing particle species. These demands have triggered a rapidly growing number of beam phenomena that involve quantum effects. With the significant advancement of laser and accelerator technologies, there is also a growing interest in using high energy, high intensity particle and photon beams for laboratory astrophysics investigations, as well as the application of beam physics expertise to astrophysics studies. It has therefore become a tradition that this workshop series attracted a broad spectrum of experts from beam physics, astrophysics, cosmology, particle physics, condensed matter physics, nuclear physics, atomic physics, and laser science, to explore a common frontier where their individual expertise and interests overlapped

  4. Short-Course Accelerated Radiotherapy in Palliative Treatment of Advanced Pelvic Malignancies: A Phase I Study

    Energy Technology Data Exchange (ETDEWEB)

    Caravatta, Luciana [Department of Radiation Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Padula, Gilbert D.A. [Department of Radiation Oncology, Lacks Cancer Center Saint Mary' s Health Care, Grand Rapids, MI (United States); Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.it [Department of Radiation Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Ferrandina, Gabriella [Department of Gynecologic Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Bonomo, Pierluigi; Deodato, Francesco; Massaccesi, Mariangela [Department of Radiation Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Mignogna, Samantha; Tambaro, Rosa [Department of Palliative Therapies, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Rossi, Marco [Department of Anaesthesia, Intensive Care, and Pain Medicine, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Flocco, Mariano [' Madre Teresa di Calcutta' Hospice, Larino (Italy); Scapati, Andrea [Department of Radiation Oncology, ' San Francesco' Hospital, Nuoro (Italy); and others

    2012-08-01

    Purpose: To define the maximum tolerated dose of a conformal short-course accelerated radiotherapy in patients with symptomatic advanced pelvic cancer. Methods and Materials: A phase I trial in 3 dose-escalation steps was designed: 14 Gy (3.5-Gy fractions), 16 Gy (4-Gy fractions), and 18 Gy (4.5-Gy fractions). The eligibility criteria included locally advanced and/or metastatic pelvic cancer and Eastern Cooperative Oncology Group performance status of {<=}3. Treatment was delivered in 2 days with twice-daily fractionation and at least an 8-hour interval. Patients were treated in cohorts of 6-12 to define the maximum tolerated dose. The dose-limiting toxicity was defined as any acute toxicity of grade 3 or greater, using the Radiation Therapy Oncology Group scale. Pain was recorded using a visual analog scale. The effect on quality of life was evaluated according to Cancer Linear Analog Scale (CLAS). Results: Of the 27 enrolled patients, 11 were male and 16 were female, with a median age of 72 years (range 47-86). The primary tumor sites were gynecologic (48%), colorectal (33.5%), and genitourinary (18.5%). The most frequent baseline symptoms were bleeding (48%) and pain (33%). Only grade 1-2 acute toxicities were recorded. No patients experienced dose-limiting toxicity. With a median follow-up time of 6 months (range 3-28), no late toxicities were observed. The overall (complete plus partial) symptom remission was 88.9% (95% confidence interval 66.0%-97.8%). Five patients (41.7%) had complete pain relief, and six (50%) showed >30% visual analog scale reduction. The overall response rate for pain was 91.67% (95% confidence interval 52.4%-99.9%). Conclusions: Conformal short course radiotherapy in twice-daily fractions for 2 consecutive days was well tolerated up to a total dose of 18 Gy. A phase II study is ongoing to confirm the efficacy on symptom control and quality of life indexes.

  5. Short-Course Accelerated Radiotherapy in Palliative Treatment of Advanced Pelvic Malignancies: A Phase I Study

    International Nuclear Information System (INIS)

    Caravatta, Luciana; Padula, Gilbert D.A.; Macchia, Gabriella; Ferrandina, Gabriella; Bonomo, Pierluigi; Deodato, Francesco; Massaccesi, Mariangela; Mignogna, Samantha; Tambaro, Rosa; Rossi, Marco; Flocco, Mariano; Scapati, Andrea

    2012-01-01

    Purpose: To define the maximum tolerated dose of a conformal short-course accelerated radiotherapy in patients with symptomatic advanced pelvic cancer. Methods and Materials: A phase I trial in 3 dose-escalation steps was designed: 14 Gy (3.5-Gy fractions), 16 Gy (4-Gy fractions), and 18 Gy (4.5-Gy fractions). The eligibility criteria included locally advanced and/or metastatic pelvic cancer and Eastern Cooperative Oncology Group performance status of ≤3. Treatment was delivered in 2 days with twice-daily fractionation and at least an 8-hour interval. Patients were treated in cohorts of 6-12 to define the maximum tolerated dose. The dose-limiting toxicity was defined as any acute toxicity of grade 3 or greater, using the Radiation Therapy Oncology Group scale. Pain was recorded using a visual analog scale. The effect on quality of life was evaluated according to Cancer Linear Analog Scale (CLAS). Results: Of the 27 enrolled patients, 11 were male and 16 were female, with a median age of 72 years (range 47-86). The primary tumor sites were gynecologic (48%), colorectal (33.5%), and genitourinary (18.5%). The most frequent baseline symptoms were bleeding (48%) and pain (33%). Only grade 1-2 acute toxicities were recorded. No patients experienced dose-limiting toxicity. With a median follow-up time of 6 months (range 3-28), no late toxicities were observed. The overall (complete plus partial) symptom remission was 88.9% (95% confidence interval 66.0%-97.8%). Five patients (41.7%) had complete pain relief, and six (50%) showed >30% visual analog scale reduction. The overall response rate for pain was 91.67% (95% confidence interval 52.4%-99.9%). Conclusions: Conformal short course radiotherapy in twice-daily fractions for 2 consecutive days was well tolerated up to a total dose of 18 Gy. A phase II study is ongoing to confirm the efficacy on symptom control and quality of life indexes.

  6. ACCELERATED HYPERFRACTIONATED RADIOTHERAPY IN THE TREATMENT FOR INOPERABLE, LOCALLY ADVANCED GASTRIC CANSER

    Directory of Open Access Journals (Sweden)

    S. S. Litinskiy

    2015-01-01

    Full Text Available Purpose: to compare survival of patients with locally advanced inoperable gastric cancer (LAIGC, receiving accelerated hyperfractionated (AHF or conventionally fractionated (CF radiation therapy (RT. Methods and Materials. Between November 1993 and March 2010, 137 patients with LAIGC receiving CF (2 Gy daily or AHF (1.3 Gy b.i.d. to total at least 50 Gy RT in combination or without chemotherapy were retrospectively selected from the hospital database of Arkhangelsk clinical oncological dispensary. Overall survival (OS assessed using actuarial analysis, Kaplan – Meier method and Cox regression. results. The CF and AHF groups were 102 and 35 patients, respectively. Median follow-up time for all patients was 12 years. By the time of analysis 123 (90 % patients of all cohort died. Median, 7-year survival were 24 (95 % confidence intervals (CI, 17–31 vs 16 (95 % CI, 11–21 months, hazard ratio (HR=0.71 (95 % CI, 0.46–1.06, р=0.097; and 19 % (95 % CI 8–34 % vs 6% (95 % CI 2–13 % in the AHF and CF groups, respectively. In multivariate OS model the difference decreased to HR=0.87 (95 % CI, 0.49–1.55. The location of the tumor in median third (HR=0.60, 95 % CI, 0.37–0.99 in refer to upper third was the only independent factor influencing survival.  There was no influence of the total dose in chosen level on survival. conclusion. Our retrospective shows trend towards better OS for those LAIGC patients receiving RT in AHF regimen compared to CF. The prospective randomized study with conformal radiation technics is necessary to confirm these findings.

  7. Long-term results of accelerated radiation treatment for advanced head and neck cancer

    International Nuclear Information System (INIS)

    Lamb, D.S.; Morum, P.E.; Denham, J.W.; Gray, A.J.

    1998-01-01

    Background and purpose: This report presents long-term follow-up data from a prospective but unrandomized trial of a continuous 3.5-week course of accelerated radiation treatment (ART) used as primary treatment for patients with loco-regionally advanced head and neck cancer. Materials and methods: Ninety-three patients in three centres in New Zealand and Australia were treated with ART (59.40 Gy in 33 fractions over 24-25 days). Their disease originated from three anatomical regions (oral cavity, 35 patients; pharynx, 31 patients; larynx, 27 patients). Seventy-nine of these patients had stage III or IV cancers. Results: Follow-up ranged from 68 to 203 months (median 139 months). Loco-regional (LR) failure occurred in 52 patients leading to a 10-year actuarial expectation of LR control of 38%. The actuarial expectation of LR control at 10 years was highly dependent on stage and for stage III, IVA and IVB patients it was 57±8.1%, 32±1.7% and 7±0.5%, respectively. Multivariate analysis could not confirm an independent impact of primary site or histological differentiation on LR failure. Two patients died of acute toxicity of treatment and six patients developed grade 3/4 late complications affecting soft tissues only, yielding an actuarial expectation of complications of this severity at 5 years of 9%. No cases of osteoradionecrosis or myelitis were observed. Conclusion: This ART, which has proved easy to use at a number of large and small centres, has produced encouraging long-term LR control at a cost of limited soft tissue morbidity. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Solid targetry for compact cyclotrons

    International Nuclear Information System (INIS)

    Comor, J.

    2004-01-01

    In this presentation authors present experimental results of solid targetry for compact cyclotrons. It is concluded: Solid targetry is not restricted to large accelerator centers anymore; Small and medium scale radioisotope production is feasible with compact cyclotrons; The availability of versatile solid target systems is expected to boost the radiochemistry of 'exotic' positron emitters

  9. Gemcitabine, cisplatin, and hyperfractionated accelerated radiotherapy for locally advanced non-small cell lung cancer.

    Science.gov (United States)

    Zwitter, Matjaz; Kovac, Viljem; Smrdel, Uros; Strojan, Primoz

    2006-09-01

    Due to potent radiosensitization and potential serious or fatal toxicity, concurrent gemcitabine and irradiation should only be applied within clinical trials. We here present experience from a phase I-II clinical trial for patients with locally advanced non-small cell lung cancer (NSCLC) treated with hyperfractionated accelerated radiotherapy and concurrent low-dose gemcitabine. Eligible patients had locally advanced inoperable NSCLC without pleural effusion, Eastern Cooperative Oncology Group performance status 0-1, were chemotherapy naïve and had no previous radiotherapy to the chest, and had adequate hematopoietic, liver, and kidney function. Routine brain computed tomography was not performed, and positron emission tomography/computed tomography was not available. Treatment consisted of three parts: induction chemotherapy with gemcitabine and cisplatin in standard doses, local treatment with concurrent chemotherapy and radiotherapy, and consolidation chemotherapy. Patients were irradiated with opposed AP-PA and oblique fields, using 2.5-D treatment planning. Although corrections for inhomogeneous tissue were made, volume of total lung receiving > or =20 Gy (V20) could not be determined. The trial started as phase I, aimed to determine the dose-limiting toxicity and maximal tolerated dose (MTD) for concurrent hyperfractionated radiotherapy (1.4 Gy twice daily) and gemcitabine 55 mg/m twice weekly as a radiosensitizer. Phase II of the trial then continued at the level of MTD. Twenty-eight patients with NSCLC, nine patients with stage IIIA, 16 patients with IIIB, and three patients with an inoperable recurrence after previous surgery, entered the trial. The first 12 patients entered Phase I of the trial at the initial level of 42 Gy in 30 fractions in 3 weeks. Dose-limiting toxicity was acute esophagitis; 47.6 Gy in 34 fractions in 3.5 weeks was the MTD for this regimen of concurrent chemotherapy and radiotherapy. In phase II of the trial, this dose was applied

  10. Approach to the open advanced facilities initiative for innovation (strategic use by industry) at the University of Tsukuba, Tandem Accelerator Complex

    International Nuclear Information System (INIS)

    Sasa, K.; Tagishi, Y.; Naramoto, H.; Kudo, H.; Kita, E.

    2010-01-01

    The University of Tsukuba, Tandem Accelerator Complex (UTTAC) possesses the 12UD Pelletron tandem accelerator and the 1 MV Tandetron accelerator for University's inter-department education research. We have actively advanced collaborative researches with other research institutes and industrial users. Since the Open Advanced Facilities Initiative for Innovation by the Ministry of Education, Culture, Sports, Science and Technology started in 2007, 12 industrial experiments have been carried out at the UTTAC. This report describes efforts by University's accelerator facility to get industrial users. (author)

  11. Compact LINAC for deuterons

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; O'Hara, J.F.; Rybarcyk, L.J.

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  12. Accelerating Innovation that Enhances Resource Recovery in the Wastewater Sector: Advancing a National Testbed Network.

    Science.gov (United States)

    Mihelcic, James R; Ren, Zhiyong Jason; Cornejo, Pablo K; Fisher, Aaron; Simon, A J; Snyder, Seth W; Zhang, Qiong; Rosso, Diego; Huggins, Tyler M; Cooper, William; Moeller, Jeff; Rose, Bob; Schottel, Brandi L; Turgeon, Jason

    2017-07-18

    This Feature examines significant challenges and opportunities to spur innovation and accelerate adoption of reliable technologies that enhance integrated resource recovery in the wastewater sector through the creation of a national testbed network. The network is a virtual entity that connects appropriate physical testing facilities, and other components needed for a testbed network, with researchers, investors, technology providers, utilities, regulators, and other stakeholders to accelerate the adoption of innovative technologies and processes that are needed for the water resource recovery facility of the future. Here we summarize and extract key issues and developments, to provide a strategy for the wastewater sector to accelerate a path forward that leads to new sustainable water infrastructures.

  13. X-BAND LINEAR COLLIDER R and D IN ACCELERATING STRUCTURES THROUGH ADVANCED COMPUTING

    International Nuclear Information System (INIS)

    Li, Z

    2004-01-01

    This paper describes a major computational effort that addresses key design issues in the high gradient accelerating structures for the proposed X-band linear collider, GLC/NLC. Supported by the US DOE's Accelerator Simulation Project, SLAC is developing a suite of parallel electromagnetic codes based on unstructured grids for modeling RF structures with higher accuracy and on a scale previously not possible. The new simulation tools have played an important role in the R and D of X-Band accelerating structures, in cell design, wakefield analysis and dark current studies

  14. Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers.

    Science.gov (United States)

    Driben, Rodislav; Babushkin, Ihar

    2012-12-15

    Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between copropagating solitons with small temporal and wavelength separation. We show that the mechanism of acceleration of a trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic-crystal fibers. As a result of fusion, large-intensity robust light structures arise and propagate over significant distances. In the presence of small random noise the delicate condition for the effective fusion between solitons can easily be broken, making the fusion-induced giant waves a rare statistical event. Thus oblong-shaped giant accelerated waves become excellent candidates for optical rogue waves.

  15. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  16. Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

    Science.gov (United States)

    Königstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J. B.; Hidding, B.; Hidding

    2012-08-01

    We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.

  17. Radiation safety of Takasaki ion accelerators for advanced radiation in JAERI

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Tanaka, Susumu; Anazawa, Yutaka

    1991-01-01

    Building layout of Takasaki ion accelerator facility has been started since 1987, with the propulsion of research development of (1) cosmetic environment materials, (2) nuclear fusion reactors, (3) biotechnology, and (4) new functional materials. This paper deals with an AVF cyclotron and a tandem type accelerator, focusing on safety design, radiation safety management, and radioactive waste management. Safety design is discussed in view of radiation shielding and activation countermeasures. Radiation safety management covers radiation monitoring in the workplace, exhaust radioactivity, environment outside the facility, and the other equipments; personal monitoring; and protective management of exposure. For radiation waste management, basic concept and management methods are commented on. (N.K.)

  18. Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    Science.gov (United States)

    Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.

    2011-01-01

    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.

  19. The electron accelerator Ridgetron

    International Nuclear Information System (INIS)

    Hayashizaki, N.; Hattori, T.; Odera, M.; Fujisawa, T.

    1999-01-01

    Many electron accelerators of DC or RF type have been widely used for electron beam irradiation (curing, crosslinking of polymers, sterilization of medical disposables, preservation of food, etc.). Regardless of the acceleration energy, the accelerators to be installed in industrial facilities, have to satisfy the requires of compact size, low power consumption and stable operation. The DC accelerator is realized very compact in the energy under 300 keV, however, it is large to prevent the discharge of an acceleration column in the energy over 300 keV. The RF electron accelerator Ridgetron has been developed to accelerate the continuous beam of the 0.5-10 MeV range in compact space. It is the first example as an electron accelerator incorporated a ridged RF cavity. A prototype system of final energy of 2.5 MeV has been studied to confirm the feasibility at present

  20. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K.M.; Baker, P. T.; Bulten, H. J.; Cheng, C.; Del Pozzo, W.; Jonker, R. J.G.; Li, T. G.F.; Meidam, J.; Rabeling, D. S.; Van Bakel, N.; Van Den Brand, J. F.J.; Veitch, J.

    2018-01-01

    The first observing run of Advanced LIGO spanned 4 months, from 12 September 2015 to 19 January 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of

  1. Data acquisition, control, and analysis for the Argonne Advanced Accelerator Test Facility (AATF)

    International Nuclear Information System (INIS)

    Schoessow, P.

    1989-01-01

    The AATF has been used to study wakefield acceleration and focusing in plasmas and rf structures. A PC-based system is described which incorporates the functions of beamline control and acquisition, storage, and preliminary analysis of video images from luminescent screen beam diagnostics. General features of the offline analysis of wakefield data are also discussed. 4 refs., 3 figs

  2. Laser irradiations of advanced targets promoting absorption resonance for ion acceleration in TNSA regime

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Calcagno, L.; Giulietti, D.; Cutroneo, Mariapompea; Zimbone, M.; Skála, Jiří

    2015-01-01

    Roč. 355, JUL (2015), s. 221-226 ISSN 0168-583X Institutional support: RVO:68378271 ; RVO:61389005 Keywords : "p"-polarization * laser-generated plasma * TNSA regtime * ion acceleration in plasma Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BH - Optics, Masers, Lasers (FZU-D) Impact factor: 1.389, year: 2015

  3. Electron accelerator

    International Nuclear Information System (INIS)

    Abramyan.

    1981-01-01

    The USSR produces an electron accelerator family of a simple design powered straight from the mains. The specifications are given of accelerators ELITA-400, ELITA-3, ELT-2, TEUS-3 and RIUS-5 with maximum electron energies of 0.3 to 5 MeV, a mean power of 10 to 70 kW operating in both the pulsed and the continuous (TEUS-3) modes. Pulsed accelerators ELITA-400 and ELITA-3 and RIUS-5 in which TESLA resonance transformers are used are characterized by their compact size. (Ha)

  4. Electron-beam dynamics for an advanced flash-radiography accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Laboratory

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.

  5. ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

    2010-05-12

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  6. Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant.

    Science.gov (United States)

    Singh, Ravendra; Sahay, Abhishek; Karry, Krizia M; Muzzio, Fernando; Ierapetritou, Marianthi; Ramachandran, Rohit

    2014-10-01

    It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design (QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an advanced hybrid MPC-PID control architecture coupled with real time inline/online monitoring tools and principal components analysis (PCA) based additional supervisory control layer has been proposed for a continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have been utilized in a hybrid scheme. The control hardware and software integration and implementation of the control system has been demonstrated using feeders and blending unit operation of a continuous tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC-PID control scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Reconstruction of compact diagnostic and therapeutic systems of electron and X-ray

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2003-01-01

    This paper describes the state of the reconstruction study in the title by the Tokyo University in the project (organized by National Institute of Radiological Sciences) by the Ministry of Education, Culture, Sports Science and Technology, toward the development of advanced compact accelerators. The review of the accelerator development from the global aspect concludes that, at present, the medical linacs' are those of S-band, 6 MW Klystron with high energy (-20 Mev) and of X-band (9.3 GHz), 1 MW Magnetron with low energy (-6 Mev). A more compact, hard X-ray source (X-band 11.424 GHz, 2.4 cm wavelength) is proposed by the authors and is under development, where collision of accelerated electron and laser generates the X-ray (33 keV). This enables the volume-size to be reduced to 1/64. Globally, novel, advanced accelerators of C-W band (90 GHz), and laser/plasma (THz) are being developed. Problems in Japanese state of medical physics involving manpower are described together with idea of space-time control of Chemo-radiotherapy' composing from utilization of advanced compact accelerators, control of space and of time. (N.I.)

  8. Electron accelerators: History, applications, and perspectives

    International Nuclear Information System (INIS)

    Martins, M.N.; Silva, T.F.

    2014-01-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs. - Highlights: ► We present an outlook on sources of radiation, focusing on electron accelerators. ► We review important advances for the development of modern electron accelerators. ► We outline advances that allowed for brighter synchrotron light sources. ► We describe the history of the development of electron accelerators in Brazil

  9. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  10. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    International Nuclear Information System (INIS)

    Neau, E.L.

    1994-01-01

    Short-pulse accelerator technology developed during the early 1960's through the late 1980's is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm 2 . Similar high average power technology is being used at ≤ 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100's of cm 2

  11. Radiation effects at a high power accelerator and applications to advanced energy sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Garner, F.A.; Brown, R.D.; Wechsler, M.S.

    1989-01-01

    Many materials are exposed to atom-displacing radiation at high-power accelerators such as the Los Alamos Meson Physics Facility (LAMPF). Beam current densities in the 800-MeV proton beam vary from 12.5 mA cm -2 (8 x 10 16 p/cm 2 s) on graphite targets to 20-μA cm -2 (1.3 x 10 14 p/cm 2 s) on metal-alloy windows. High-level radiation damage results from these particle fluxes. As a consequence of secondary-particle generation in targets and windows and low-level beam losses that lead to particle interactions with structural material, various components are exposed to low-level proton fluxes, gamma radiation, and neutron fluxes of 10 6 --10 10 n/cm 2 s. These include vacuum seals and vacuum chambers of stainless steel and aluminum alloys, solid-state devices for control, diagnostic, and data acquisition electronics, closed-loop cooling-water systems, and insulators. Properties of these materials are degraded by the radiation exposure. Studies of LAMPF and other accelerators, however, have produced solutions to materials problems, allowing the machines to operate for acceptable times without failure. Nevertheless, additional improvements are being investigated in order to further improve operational reliability and safety. 25 refs., 3 figs., 3 tabs

  12. Uncertainty quantification an accelerated course with advanced applications in computational engineering

    CERN Document Server

    Soize, Christian

    2017-01-01

    This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. < This book is intended to be a graduate-level textbook for stu...

  13. From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology.

    Science.gov (United States)

    Nai, Corrado; Meyer, Vera

    2018-06-01

    Since the onset of microbiology in the late 19th century, scientists have been growing microorganisms almost exclusively as pure cultures, resulting in a limited and biased view of the microbial world. Only a paradigm shift in cultivation techniques - from axenic to mixed cultures - can allow a full comprehension of the (chemical) communication of microorganisms, with profound consequences for natural product discovery, microbial ecology, symbiosis, and pathogenesis, to name a few areas. Three main technical advances during the last decade are fueling the realization of this revolution in microbiology: microfluidics, next-generation 3D-bioprinting, and single-cell metabolomics. These technological advances can be implemented for large-scale, systematic cocultivation studies involving three or more microorganisms. In this review, we present recent trends in microbiology tools and discuss how these can be employed to decode the chemical language that microorganisms use to communicate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Linear accelerator based stereotactic radiosurgery with micro multi-leaf collimator : technological advancement in precision radiotherapy

    International Nuclear Information System (INIS)

    Dayananda, S.; Kinhikar, R.A.; Saju, Sherley; Deshpande, D.D.; Jalali, R.; Sarin, R.; Shrivastava, S.K.; Dinshaw, K.A.

    2003-01-01

    Stereotactic Radiosurgery (SRS) is an advancement on precision radiotherapy, in which stereo tactically guided localized high dose is delivered to the lesion (target) in a single fraction, while sparing the surrounding normal tissue. Radiosurgery has been used to treat variety of benign and malignant lesions as well as functional disorders in brain such as arteriovenous malformation (AVM), acoustic neuroma, solitary primary brain tumor, single metastasis, pituitary adenoma etc

  15. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    International Nuclear Information System (INIS)

    Amann, J.; Bane, K.

    2009-01-01

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  16. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  17. Electron accelerators: History, applications, and perspectives

    Science.gov (United States)

    Martins, M. N.; Silva, T. F.

    2014-02-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs.

  18. A high peak power S-band switching system for the Advanced Photon Source (APS) Linear Accelerator (Linac)

    International Nuclear Information System (INIS)

    Grelick, A. E.

    1998-01-01

    An S-band linear accelerator is the source of particles and front end of the Advanced Photon Source [1] injector. Additionally, it will be used to support a low-energy undulator test line (LEUTL) and to drive a free-electron laser (FEL). To provide maximum linac availability for all uses, an additional modulator-klystron subsystem has been built,and a waveguide-switching and distribution subsystem is now under construction. The combined subsystems provide a hot spare for any of the five S-band transmitters that power the lina cand have been given the additional function of powering an rf gun test stand whenever they are not otherwise needed. Design considerations for the waveguide-switching subsystem, topology selection, timing, control, and system protection provisions are described

  19. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P. D. [Raja Rammana Centre for Advanced Technology (RRCAT), Indore 452013 (India)

    2013-09-15

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  20. Mechanical design of a pinger system for the LBNL Advanced Light Source Accelerator

    International Nuclear Information System (INIS)

    Thur, W.; Akre, J.; Gavidia, A.; Guigli, J.

    1997-05-01

    A fast magnet ''Pinger System'' has been designed for the Advanced Light Source 1.9 GeV electron Storage Ring. Intended for beam dynamics studies, its purpose is to provide a fast (< 600 ns) transverse magnetic field pulse to perturb the orbit of an electron bunch in a single turn. A key component is the special resistive-coated ceramic beam tube which is needed for fast magnetic field penetration. The evolution of the design concept is described, with emphasis on simplifications to provide an economical and mechanically robust device

  1. Advanced modeling to accelerate the scale up of carbon capture technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  2. Randomized phase III trial of concurrent chemoradiotherapy vs accelerated hyperfractionation radiotherapy in locally advanced head and neck cancer

    International Nuclear Information System (INIS)

    Chitapanarux, Imjai; Kamnerdsupaphon, Pimkhuan; Pukanhapan, Nantaka; Tharavichitkul, Ekkasit; Vongtama, Roy

    2013-01-01

    The aim of this study was to compare the efficacy and safety of concurrent chemoradiotherapy (CCRT) vs accelerated hyperfractionation with concomitant boost (CCB) as a primary treatment for patients with Stage III-IV squamous cell carcinoma of head and neck (SCCHN). A total of 85 non-metastatic advanced SCCHN patients were accrued from January 2003 to December 2007. Of these, 48 and 37 patients received CCRT and CCB, respectively. The patients were randomized to receive either three cycles of carboplatin and 5-fluorouracil plus conventional radiotherapy (CCRT, 66 Gy in 6.5 weeks) or hybrid accelerated radiotherapy (CCB, 70 Gy in 6 weeks). The primary endpoint was determined by locoregional control rate. The secondary endpoints were overall survival and toxicity. With a median follow-up of 43 months (range, 3-102), the 5-year locoregional control rate was 69.6% in the CCRT arm vs 55.0% in the CCB arm (P = 0.184). The 5-year overall survival rate was marginally significantly different (P = 0.05): 76.1% in the CCRT arm vs 63.5% in the CCB arm. Radiotherapy treatment interruptions of more than three days were 60.4% and 40.5% in the CCRT arm and CCB arm, respectively. The median total treatment time was 55.5 days in the CCRT arm and 49 days in the CCB arm. The rate of Grade 3 - 4 acute mucositis was significantly higher in the CCB arm (67.6% vs 41.7%, P = 0.01), but no high grade hematologic toxicities were found in the CCB arm (27.2% vs 0%). CCRT has shown a trend of improving outcome over CCB irradiation in locoregionally advanced head and neck cancer. (author)

  3. A randomized study of accelerated fractionation radiotherapy with and without mitomycin C in the treatment of locally advanced head and neck cancer

    DEFF Research Database (Denmark)

    Ezzat, M.; Shouman, T.; Zaza, K.

    2005-01-01

    Objectives: This single-institution study evaluates the feasibility of accelerated fractionation radiotherapy (AF) with and without mitomycin C (MMC) in the treatment of locally advanced head and neck cancer. Patients and Methods: Between May 1998 and October 2001, sixty patients with locally...... advanced stage III and IV of head and neck cancer were randomized into three treatment arms: (1) conventional fractionation radiotherapy (CF) (5 fractions per week); (2) accelerated fractionation radiotherapy (AF) (6 fractions per week); and (3) AF plus Mitomycin C (MMC). Results: The 2-year overall....... Key Words: Head and Neck cancer , Radiotherapy , Altered fractionation , Mitomycin C....

  4. Advanced quadrature sets and acceleration and preconditioning techniques for the discrete ordinates method in parallel computing environments

    Science.gov (United States)

    Longoni, Gianluca

    In the nuclear science and engineering field, radiation transport calculations play a key-role in the design and optimization of nuclear devices. The linear Boltzmann equation describes the angular, energy and spatial variations of the particle or radiation distribution. The discrete ordinates method (S N) is the most widely used technique for solving the linear Boltzmann equation. However, for realistic problems, the memory and computing time require the use of supercomputers. This research is devoted to the development of new formulations for the SN method, especially for highly angular dependent problems, in parallel environments. The present research work addresses two main issues affecting the accuracy and performance of SN transport theory methods: quadrature sets and acceleration techniques. New advanced quadrature techniques which allow for large numbers of angles with a capability for local angular refinement have been developed. These techniques have been integrated into the 3-D SN PENTRAN (Parallel Environment Neutral-particle TRANsport) code and applied to highly angular dependent problems, such as CT-Scan devices, that are widely used to obtain detailed 3-D images for industrial/medical applications. In addition, the accurate simulation of core physics and shielding problems with strong heterogeneities and transport effects requires the numerical solution of the transport equation. In general, the convergence rate of the solution methods for the transport equation is reduced for large problems with optically thick regions and scattering ratios approaching unity. To remedy this situation, new acceleration algorithms based on the Even-Parity Simplified SN (EP-SSN) method have been developed. A new stand-alone code system, PENSSn (Parallel Environment Neutral-particle Simplified SN), has been developed based on the EP-SSN method. The code is designed for parallel computing environments with spatial, angular and hybrid (spatial/angular) domain

  5. Protein Science by DNA Sequencing: How Advances in Molecular Biology Are Accelerating Biochemistry.

    Science.gov (United States)

    Higgins, Sean A; Savage, David F

    2018-01-09

    A fundamental goal of protein biochemistry is to determine the sequence-function relationship, but the vastness of sequence space makes comprehensive evaluation of this landscape difficult. However, advances in DNA synthesis and sequencing now allow researchers to assess the functional impact of every single mutation in many proteins, but challenges remain in library construction and the development of general assays applicable to a diverse range of protein functions. This Perspective briefly outlines the technical innovations in DNA manipulation that allow massively parallel protein biochemistry and then summarizes the methods currently available for library construction and the functional assays of protein variants. Areas in need of future innovation are highlighted with a particular focus on assay development and the use of computational analysis with machine learning to effectively traverse the sequence-function landscape. Finally, applications in the fundamentals of protein biochemistry, disease prediction, and protein engineering are presented.

  6. Advanced Portal Images Processing for Cobalt Radiotherapy Systems and Lineal Accelerator for cancer treatment

    International Nuclear Information System (INIS)

    Valdes Cabrera, D.

    2013-01-01

    It is presented an investigation project to design software that allows image processing and treatment of an Electronic Portal Image Device (EPID) for lineal accelerators and cobalt machines. For the development of the software it was used the programming language MATLAB and DICOM RT images with a spatial resolution in the isocenter of 0.40 mm/pixel, dimensions of 1024x1024 pixels and 65536 tones in grey scale, that were taken by a linac from Elekta trademark located in the National Institute of Oncology and Radiobiology. Methods and algorithms implemented were the improvements in the contrast, brightness, equalization and inversion of grey scale of images through modifications in their histogram; the possibility of making rotations, segmentations of zones of interest basing in users criteria for thresholding taking in count the visualization of pixels intensity and measuring of distances in pixels. For the calculations of displacements and rotations between the reference and the actual image was used the canny method for edges detection of the radiation fields and anatomical structures, and normalized bidimensional correlation algorithms for seeking and calculation of objects of interest between two images. The results were obtained using 23 pairs of images of six treatments and the average of the reported errors were: horizontal, vertical and rotational fields errors: ± .531 mm, ± 1.278 mm and ± 0.087 o ; horizontal, vertical and rotational anatomical structures errors: ± 0.766 mm, ± 0.573 mm, ± 0.174 o . these values are under the limit values for each one of these treatments according to the consulted bibliography. (Author)

  7. Toward the popular therapeutic equipment for cancers by heavy particle beam (2). Development of a compact highly efficient injector. 1. Success of its beam test set in front of the RFQ linear accelerator

    International Nuclear Information System (INIS)

    Iwata, Yoshiyuki

    2005-01-01

    For popularization of heavy particle beams for cancer treatment, efforts have been done to reduce the size of injector, and the recently developed one is far more compact in size and more electricity-saving than the current Heavy Ion Medical Accelerator in Chiba (HIMAC) injector. This paper describes its outline. The injector has made it possible to decrease the manufacturing cost of the injector itself, the size of therapeutic equipment, and costs of facility construction and operation. Its beam has been tested and found to be satisfactory in the RFQ (radio frequency quadrupole) linac. The IH-DTL (interdigital H-mode drift tube linac) to be set backward is now under manufacturing and is to be completed within this year. Thus total beam test in combination of the RFQ linac and IH-DTL can be examined to design a more popular equipment for cancer therapy. The accelerator developed hereby is conceivably useful not only in the medical field but also for application as a physical and industrial heavy ion injector. (S.I.)

  8. Overview of graduate training program of John Adams Institute for Accelerator Science

    Science.gov (United States)

    Seryi, Andrei

    The John Adams Institute for Accelerator Science is a center of excellence in the UK for advanced and novel accelerator technology, providing expertise, research, development and training in accelerator techniques, and promoting advanced accelerator applications in science and society. We work in JAI on design of novel light sources upgrades of 3-rd generation and novel FELs, on plasma acceleration and its application to industrial and medical fields, on novel energy recovery compact linacs and advanced beam diagnostics, and many other projects. The JAI is based on three universities - University of Oxford, Imperial College London and Royal Holloway University of London. Every year 6 to 10 accelerators science experts, trained via research on cutting edge projects, defend their PhD thesis in JAI partner universities. In this presentation we will overview the research and in particular the highly successful graduate training program in JAI.

  9. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of an innovative two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, the beam is compressed with an advanced velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a conventional magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch to a notable factor of 100 while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  10. Accelerated Adoption of Advanced Health Information Technology in Beacon Community Health Centers.

    Science.gov (United States)

    Jones, Emily; Wittie, Michael

    2015-01-01

    To complement national and state-level HITECH Act programs, 17 Beacon communities were funded to fuel community-wide use of health information technology to improve quality. Health centers in Beacon communities received supplemental funding. This article explores the association between participation in the Beacon program and the adoption of electronic health records. Using the 2010-2012 Uniform Data System, trends in health information technology adoption among health centers located within and outside of Beacon communities were explored using differences in mean t tests and multivariate logistic regression. Electronic health record adoption was widespread and rapidly growing in all health centers, especially quality improvement functionalities: structured data capture, order and results management, and clinical decision support. Adoption lagged for functionalities supporting patient engagement, performance measurement, care coordination, and public health. The use of advanced functionalities such as care coordination grew faster in Beacon health centers, and Beacon health centers had 1.7 times higher odds of adopting health records with basic safety and quality functionalities in 2010-2012. Three factors likely underlie these findings: technical assistance, community-wide activation supporting health information exchange, and the layering of financial incentives. Additional technical assistance and community-wide activation is needed to support the use of functionalities that are currently lagging. © Copyright 2015 by the American Board of Family Medicine.

  11. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy

    International Nuclear Information System (INIS)

    Haie-Meder, Christine; Siebert, Frank-Andre; Poetter, Richard

    2011-01-01

    Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on 'Radiotherapy and Oncology'. These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted.

  12. Compact Spreader Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  13. Split Course Hyperfractionated Accelerated Radio-Chemotherapy (SCHARC) for patients with advanced head and neck cancer: Influence of protocol deviations and hemoglobin on overall survival, a retrospective analysis

    OpenAIRE

    Stadler, Peter; Putnik, Kurt; Kreimeyer, Thore; Sprague, Lisa D; Koelbl, Oliver; Schäfer, Christof

    2006-01-01

    Abstract Background The advantage of hyperfractionated accelerated radiation therapy for advanced head and neck cancer has been reported. Furthermore, randomized trials and meta-analyses have confirmed the survival benefit of additional chemotherapy to radiotherapy. We retrospectively analyzed the efficiency and toxicity of the Regensburg standard therapy protocol "SCHARC" and the overall survival of our patients. Methods From 1997 to 2004, 64 patients suffering from advanced head and neck ca...

  14. ACCELERATING COMPACT OBJECT MERGERS IN TRIPLE SYSTEMS WITH THE KOZAI RESONANCE: A MECHANISM FOR 'PROMPT' TYPE Ia SUPERNOVAE, GAMMA-RAY BURSTS, AND OTHER EXOTICA

    International Nuclear Information System (INIS)

    Thompson, Todd A.

    2011-01-01

    White dwarf-white dwarf (WD-WD) and neutron star-neutron star (NS-NS) mergers may produce Type Ia supernovae and gamma-ray bursts (GRBs), respectively. A general problem is how to produce binaries with semi-major axes small enough to merge in significantly less than the Hubble time (t H ), and thus accommodate the observation that these events closely follow episodes of star formation. I explore the possibility that such systems are not binaries at all, but actually coeval, or dynamical formed, triple systems. The tertiary induces Kozai oscillations in the inner binary, driving it to high eccentricity, and reducing its gravitational wave (GW) merger timescale. This effect significantly increases the allowed range of binary period P such that the merger time is t merge H . In principle, Chandrasekhar-mass binaries with P ∼ 300 days can merge in ∼ H if they contain a prograde solar-mass tertiary at high enough inclination. For retrograde tertiaries, the maximum P such that t merge ∼ H is yet larger. In contrast, P ∼< 0.3 days is required in the absence of a tertiary. I discuss implications of these findings for the production of transients formed via compact object binary mergers. Based on the statistics of solar-type binaries, I argue that many such binaries should be in triple systems affected by the Kozai resonance. If true, expectations for the mHz GW signal from individual sources, the diffuse background, and the foreground for GW experiments like LISA are modified. This work motivates future studies of triples systems of A, B, and O stars, and new types of searches for WD-WD binaries in triple systems.

  15. Phase 1 Dose Escalation Study of Accelerated Radiation Therapy With Concurrent Chemotherapy for Locally Advanced Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Chris R., E-mail: christopher.kelsey@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Das, Shiva [Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (United States); Gu, Lin [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Dunphy, Frank R.; Ready, Neal E. [Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (United States)

    2015-12-01

    Purpose: To determine the maximum tolerated dose of radiation therapy (RT) given in an accelerated fashion with concurrent chemotherapy using intensity modulated RT. Methods and Materials: Patients with locally advanced lung cancer (non-small cell and small cell) with good performance status and minimal weight loss received concurrent cisplatin and etoposide with RT. Intensity modulated RT with daily image guidance was used to facilitate esophageal avoidance and delivered using 6 fractions per week (twice daily on Fridays with a 6-hour interval). The dose was escalated from 58 Gy to a planned maximum dose of 74 Gy in 4 Gy increments in a standard 3 + 3 trial design. Dose-limiting toxicity (DLT) was defined as acute grade 3-5 nonhematologic toxicity attributed to RT. Results: A total of 24 patients were enrolled, filling all dose cohorts, all completing RT and chemotherapy as prescribed. Dose-limiting toxicity occurred in 1 patient at 58 Gy (grade 3 esophagitis) and 1 patient at 70 Gy (grade 3 esophageal fistula). Both patients with DLTs had large tumors (12 cm and 10 cm, respectively) adjacent to the esophagus. Three additional patients were enrolled at both dose cohorts without further DLT. In the final 74-Gy cohort, no DLTs were observed (0 of 6). Conclusions: Dose escalation and acceleration to 74 Gy with intensity modulated RT and concurrent chemotherapy was tolerable, with a low rate of grade ≥3 acute esophageal reactions.

  16. Inverse compton light source: a compact design proposal

    Energy Technology Data Exchange (ETDEWEB)

    Deitrick, Kirsten Elizabeth [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source was constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the

  17. A pilot study of accelerated superfractionated radiotherapy for locally advanced cancer of the uterine cervix

    Energy Technology Data Exchange (ETDEWEB)

    Gieschen, H; Kavanagh, B; Kaufman, N; West, R; Goplerud, D; Schmidt-Ullrich, R

    1995-07-01

    Purpose: Retrospective studies have suggested that overall treatment time is an important determinant of outcome for locally advanced squamous carcinoma of the cervix managed with definitive radiotherapy. We initiated a prospective clinical trial to test the hypothesis that minimizing treatment time can prevent tumor cell repopulation in squamous cell carcinoma of the cervix. Materials and Methods: Between 1989 and 1994 twenty two patients with FIGO stage IIIA to IVA squamous cell carcinoma of the cervix were treated as follows: Forty-five Gy was delivered to the whole pelvis in 25 fractions in 5 weeks using photon energies of 6 MV or greater. On Monday, Wednesday, and Friday of each of the last three weeks of treatment, a boost treatment of 1.6 Gy was given via small lateral parallel opposed fields, six hours after the first fraction. Thus, the total dose to the tumor and parametrial region was 59.4 Gy. A single brachytherapy procedure (Standard Tandem and Ovoids or Interstitial Template) was performed one week after the completion of external beam radiotherapy to bring the point A dose to 90 Gy in 6 weeks. Results: With a median follow-up of 30 months, (range: 5 to 42 months) the actuarial 3 year overall survival is 61.5% and the disease-free survival is 51.4%. Two out of twenty two patients (9.1%) had loco-regional failure alone, (5(22)) (22.7%) had distant failure only, and (4(22)) (18.2%) had both. The actuarial loco-regional control at 3 years is 69.5% with a distant metastasis-free survival of 57.5%. The median length of treatment was 46 days with a range of 35 to 107 days Most of the patients had only mild acute reactions, mainly diarrhea. There were no severe acute reactions. Thirteen of 22 patients (59.1%) had no late complications. Three patients had chronic proctitis, one with intermittent bleeding. Six (27.3%) patients experienced severe late complications consisting of vesico-vaginal fistulas, recto-vaginal fistulas and small bowel obstruction. One

  18. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    International Nuclear Information System (INIS)

    1995-01-01

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation

  19. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  20. Compact synchrotron radiation source

    International Nuclear Information System (INIS)

    Liu, N.; Wang, T.; Tian, J.; Lin, Y.; Chen, S.; He, W.; Hu, Y.; Li, Q.

    1985-01-01

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  1. Advanced Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.

    2005-02-14

    The research into advanced acceleration concepts for electron linear accelerators being pursued at SLAC is reviewed. This research includes experiments in laser acceleration, plasma wakefield acceleration, and mmwavelength RF driven accelerators.

  2. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  3. Advances in conceptual design of a gas-cooled accelerator driven system (ADS) transmutation devices to sustainable nuclear energy development

    International Nuclear Information System (INIS)

    Garcia, Rosales; Fajardo, Garcia; Curbelo, Perez; Oliva, Munoz; Hernandez, Garcia; Castells, Escriva; Abanades

    2011-01-01

    The possibilities of a nuclear energy development are considerably increasing with the world energetic demand increment. However, the management of nuclear waste from conventional nuclear power plants and its inventory minimization are the most important issues that should be addressed. Fast reactors and Accelerator Driven Systems (ADS) are the main options to reduce the long-lived radioactive waste inventory. Pebble Bed Very High Temperature advanced systems have great perspectives to assume the future nuclear energy development challenges. The conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made in preliminary studies. The TADSEA is an ADS cooled by helium and moderated by graphite that uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles forming a pebble bed configuration. It would be used for nuclear waste transmutation and energy production. In this paper, the results of a method for calculating the number of whole pebbles fitting in a volume according to its size are showed. From these results, the packing fraction influence on the TADSEAs main work parameters is studied. In addition, a redesign of the previous configuration, according to the established conditions in the preliminary design, i.e. the exit thermal power, is made. On the other hand, the heterogeneity of the TRISO particles inside the pebbles can not be negligible. In this paper, a study of the power density distribution inside the pebbles by means of a detailed simulation of the TRISO fuel particles and using an homogeneous composition of the fuel is addressed. (author)

  4. Compact stars

    Science.gov (United States)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  5. A compact, coherent light source system architecture

    Science.gov (United States)

    Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.

    2016-09-01

    Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.

  6. FINAL REPORT DE-FG02-04ER41317 Advanced Computation and Chaotic Dynamics for Beams and Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cary, John R [U. Colorado

    2014-09-08

    During the year ending in August 2013, we continued to investigate the potential of photonic crystal (PhC) materials for acceleration purposes. We worked to characterize acceleration ability of simple PhC accelerator structures, as well as to characterize PhC materials to determine whether current fabrication techniques can meet the needs of future accelerating structures. We have also continued to design and optimize PhC accelerator structures, with the ultimate goal of finding a new kind of accelerator structure that could offer significant advantages over current RF acceleration technology. This design and optimization of these requires high performance computation, and we continue to work on methods to make such computation faster and more efficient.

  7. The Study of Advanced Accelerator Physics Research at UCLA Using the ATF at BNL: Vacuum Acceleration by Laser of Free Electrons

    International Nuclear Information System (INIS)

    Cline, David B.

    2016-01-01

    An experiment was designed and data were taken to demonstrate that a tightly focused laser on vacuum can accelerate an electron beam in free space. The experiment was proof-of-principle and showed a clear effect for the laser beam off and on. The size of the effect was about 20% and was consistent over 30 laser and beam shots.

  8. Preoperative hyperfractionated accelerated radiotherapy and radical surgery in advanced head and neck cancer: A prospective phase II study

    International Nuclear Information System (INIS)

    Lindholm, Paula; Valavaara, Ritva; Aitasalo, Kalle; Kulmala, Jarmo; Laine, Juhani; Elomaa, Liisa; Sillanmaeki, Lauri; Minn, Heikki; Grenman, Reidar

    2006-01-01

    Background and purpose: To evaluate whether preoperative hyperfractionated accelerated radiotherapy (RT) combined with major radical surgery is feasible and successful in the treatment of advanced primary head and neck cancer. Patients and methods: Ninety four patients with histologically confirmed head and neck squamous cell cancer (HNSCC) in the oral cavity (41/96; 43%), supraglottis (14/96; 15%), glottis (5/96; 5%), oropharynx (16/96; 17%), nasal cavity/paranasal sinuses (8/96; 8%), nasopharynx (3/96; 3%), hypopharynx (7/96; 7%) and two (2%) with unknown primary tumour and large cervical lymph nodes entered into the study. 21/96 patients (22%) had stage II, 17/96 (18%) stage III and 58/96 patients (60%) stage IV disease. The patients received preoperative hyperfractionated RT 1.6 Gy twice a day, 5 days a week to a median tumour dose of 63 Gy with a planned break for 11 days (median) after the median dose of 37 Gy. Then, after a median of 27 days the patients underwent major radical surgery of the primary tumour and metastatic lymph nodes including reconstructions with pedicled or microvascular free flaps when indicated as a part of the scheduled therapy. 12/96 patients had only ipsilateral or bilateral neck dissections. Results: After a median follow-up time of 37.2 mos 77/96 (80.2%) patients had complete locoregional control. All but 2 patients had complete histological remission after surgery. 40/96 pts were alive without disease, two of them after salvage surgery. 32/96 patients had relapsed; 15 had locoregional and 13 distant relapses, 4 patients relapsed both locoregionally and distantly. Fifty patients have died; 29 with locoregional and/or distant relapse, eight patients died of second malignancy, and 19 had intercurrent diseases. Disease-specific and overall survival at 3 years was 67.7 and 51%, respectively. Acute grade three mucosal reactions were common, but transient and tolerable. Late grade 3-4 adverse effects were few. Conclusions: Preoperative

  9. Lasers and new methods of particle acceleration

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    There has been a great progress in development of high power laser technology. Harnessing their potential for particle accelerators is a challenge and of great interest for development of future high energy colliders. The author discusses some of the advances and new methods of acceleration including plasma-based accelerators. The exponential increase in sophistication and power of all aspects of accelerator development and operation that has been demonstrated has been remarkable. This success has been driven by the inherent interest to gain new and deeper understanding of the universe around us. With the limitations of the conventional technology it may not be possible to meet the requirements of the future accelerators with demands for higher and higher energies and luminosities. It is believed that using the existing technology one can build a linear collider with about 1 TeV center of mass energy. However, it would be very difficult (or impossible) to build linear colliders with energies much above one or two TeV without a new method of acceleration. Laser driven high gradient accelerators are becoming more realistic and is expected to provide an alternative, (more compact, and more economical), to conventional accelerators in the future. The author discusses some of the new methods of particle acceleration, including laser and particle beam driven plasma based accelerators, near and far field accelerators. He also discusses the enhanced IFEL (Inverse Free Electron Laser) and NAIBEA (Nonlinear Amplification of Inverse-Beamstrahlung Electron Acceleration) schemes, laser driven photo-injector and the high energy physics requirements

  10. Gamma-Rays from Galactic Compact Sources

    Science.gov (United States)

    Kaaret, Philip

    2007-04-01

    Recent discoveries have revealed many sources of TeV photons in our Mikly Way galaxy powered by compact objects, either neutron stars or black holes. These objects must be powerful particle accelerators, some with peak energies of at least 100 TeV, and may be neutrino, as well as photon, sources. Future TeV observations will enable us to address key questions concerning particle acceleration by compact objects including the fraction of energy which accreting black holes channel into relativstic jet production, whether the compact object jets are leptonic or hadronic, and the mechanism by which pulsar winds accelerate relativistic particles. We report on work done related to compact Galactic objects in preparation of a White Paper on the status and future of ground-based gamma-ray astronomy requested by the Division of Astrophysics of the American Physical Society.

  11. Development of compact toroids injector for direct plasma controls

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, K. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Oda, Y. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Uyama, T. [Himeji Inst. of Tech. (Japan); Nagata, M. [Himeji Inst. of Tech. (Japan); Fukumoto, N. [Himeji Inst. of Tech. (Japan)

    1995-12-31

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10{sup 21}m{sup -3}. (orig.).

  12. Development of compact toroids injector for direct plasma controls

    International Nuclear Information System (INIS)

    Azuma, K.; Oda, Y.; Onozuka, M.; Uyama, T.; Nagata, M.; Fukumoto, N.

    1995-01-01

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10 21 m -3 . (orig.)

  13. PREFACE: Joint IPPP Durham/Cockcroft Institute/ICFA Workshop on Advanced QED methods for Future Accelerators

    Science.gov (United States)

    Bailey, I. R.; Barber, D. P.; Chattopadhyay, S.; Hartin, A.; Heinzl, T.; Hesselbach, S.; Moortgat-Pick, G. A.

    2009-11-01

    The joint IPPP Durham/Cockcroft Institute/ICFA workshop on advanced QED methods for future accelerators took place at the Cockcroft Institute in early March 2009. The motivation for the workshop was the need for a detailed consideration of the physics processes associated with beam-beam effects at the interaction points of future high-energy electron-positron colliders. There is a broad consensus within the particle physics community that the next international facility for experimental high-energy physics research beyond the Large Hadron Collider at CERN should be a high-luminosity electron-positron collider working at the TeV energy scale. One important feature of such a collider will be its ability to deliver polarised beams to the interaction point and to provide accurate measurements of the polarisation state during physics collisions. The physics collisions take place in very dense charge bunches in the presence of extremely strong electromagnetic fields of field strength of order of the Schwinger critical field strength of 4.4×1013 Gauss. These intense fields lead to depolarisation processes which need to be thoroughly understood in order to reduce uncertainty in the polarisation state at collision. To that end, this workshop reviewed the formalisms for describing radiative processes and the methods of calculation in the future strong-field environments. These calculations are based on the Furry picture of organising the interaction term of the Lagrangian. The means of deriving the transition probability of the most important of the beam-beam processes - Beamsstrahlung - was reviewed. The workshop was honoured by the presentations of one of the founders, V N Baier, of the 'Operator method' - one means for performing these calculations. Other theoretical methods of performing calculations in the Furry picture, namely those due to A I Nikishov, V I Ritus et al, were reviewed and intense field quantum processes in fields of different form - namely those

  14. Administration of melatonin in drinking water promotes the phase advance of light-dark cycle in senescence-accelerated mice, SAMR1 but not SAMP8.

    Science.gov (United States)

    Asai, M; Ikeda, M; Akiyama, M; Oshima, I; Shibata, S

    2000-09-08

    We analyzed effects of aging on behavioral rhythms in the mouse showing senescence acceleration, SAMP8 strains. The free-running rhythms had longer free-running periods (tau) in SAMP8 than in the control strain (SAMR1). Drinking of melatonin promoted the adaptation to advanced LD in SAMR1 but not in SAMP8, although both strains exhibited melatonin MT1 and MT2 receptors. The present results suggest that melatonin promotes the adaptation to advanced LD cycles in normal aging mice.

  15. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  16. Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-scaling FFAGs and Accelerators including Modern User Interfaces

    International Nuclear Information System (INIS)

    Mills, F.; Makino, K.; Berz, M.; Johnstone, C.

    2010-01-01

    With the U.S. experimental effort in HEP largely located at laboratories supporting the operations of large, highly specialized accelerators, colliding beam facilities, and detector facilities, the understanding and prediction of high energy particle accelerators becomes critical to the success, overall, of the DOE HEP program. One area in which small businesses can contribute to the ongoing success of the U.S. program in HEP is through innovations in computer techniques and sophistication in the modeling of high-energy accelerators. Accelerator modeling at these facilities is performed by experts with the product generally highly specific and representative only of in-house accelerators or special-interest accelerator problems. Development of new types of accelerators like FFAGs with their wide choices of parameter modifications, complicated fields, and the simultaneous need to efficiently handle very large emittance beams requires the availability of new simulation environments to assure predictability in operation. In this, ease of use and interfaces are critical to realizing a successful model, or optimization of a new design or working parameters of machines. In Phase I, various core modules for the design and analysis of FFAGs were developed and Graphical User Interfaces (GUI) have been investigated instead of the more general yet less easily manageable console-type output COSY provides.

  17. Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-scaling FFAGs and Accelerators including Modern User Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mills, F.; Makino, Kyoko; Berz, Martin; Johnstone, C.

    2010-09-01

    With the U.S. experimental effort in HEP largely located at laboratories supporting the operations of large, highly specialized accelerators, colliding beam facilities, and detector facilities, the understanding and prediction of high energy particle accelerators becomes critical to the success, overall, of the DOE HEP program. One area in which small businesses can contribute to the ongoing success of the U.S. program in HEP is through innovations in computer techniques and sophistication in the modeling of high-energy accelerators. Accelerator modeling at these facilities is performed by experts with the product generally highly specific and representative only of in-house accelerators or special-interest accelerator problems. Development of new types of accelerators like FFAGs with their wide choices of parameter modifications, complicated fields, and the simultaneous need to efficiently handle very large emittance beams requires the availability of new simulation environments to assure predictability in operation. In this, ease of use and interfaces are critical to realizing a successful model, or optimization of a new design or working parameters of machines. In Phase I, various core modules for the design and analysis of FFAGs were developed and Graphical User Interfaces (GUI) have been investigated instead of the more general yet less easily manageable console-type output COSY provides.

  18. A compact x-ray free electron laser

    International Nuclear Information System (INIS)

    Barletta, W.; Attac, M.; Cline, D.B.

    1988-01-01

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs

  19. Use of oxygen dosing to prevent flow accelerated corrosion in British Energy's Advanced Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Quirk, G.P.; Woolsey, I.S.; Rudge, A.

    2010-01-01

    Flow accelerated corrosion (FAC) was recognized as major threat to the carbon steel feed and economizer tubing of the once-through boilers of the UK's Advanced Gas-cooled Reactors (AGRs) following the observation of FAC damage of the boiler inlet orifice assemblies at two plants in 1977, and subsequent review of the likelihood of further damage elsewhere within the boilers of all AGRs. In most cases, replacement of susceptible tubing was not feasible; due to the inaccessibility of the boiler components within the reactor concrete pressure vessel. Preventing further FAC damage within the boilers therefore had to rely largely on changes to the boiler feedwater chemistry. Following extensive research programs carried out in the late 1970s and early 1980s two main feedwater chemistry regimes were adopted to suppress FAC in different AGRs. The four units found to be at greatest risk of FAC damage adopted an oxygen dosed All Volatile Treatment (AVT) regime during commissioning, while four other units retained the original deoxygenated ammonia dosed AVT regime, but with an increased feedwater pH. The deoxygenated ammonia dosed chemistry regime was also adopted in four AGR units subsequently built, which used 1%Cr0.5%Mo feed and economizer tubing in their once-through boilers. The oxygen dosed AVT chemistry regime adopted in four units having helical once-through boilers has proved highly effective in preventing FAC, with no evidence of damage after around 150,000 hours of operation. However, FAC damage was eventually found in some of the other units operating with a deoxygenated feedwater chemistry regime, in spite of having adopted an elevated feedwater pH. These units have now successfully converted to an oxygen dosed AVT feedwater chemistry regime to prevent further FAC damage, with the result that all 14 AGR reactors now operate with variants of the original oxygen dosed feedwater chemistry regime developed during the 1980s. The paper outlines the development of

  20. Compact electron accelerator for pumping gas lasers

    International Nuclear Information System (INIS)

    Duncan, C.V.; Bradley, L.P.

    1976-01-01

    A description is given of the design and application of a simple e-beam generator for the repetitive pulse pumping of gas lasers. The circuit uses a low inductance Marx and series tuned pulse forming elements

  1. Compilation of Technical Papers Published Under Work Unit 72312501 (71844501) "Acceleration Performance in Advanced Operational Systems," 1985-2000

    National Research Council Canada - National Science Library

    Albery, William

    2001-01-01

    ... at the Dynamic Environment Simulator centrifuge, in the Biodynamics and Acceleration Branch (AFRL/HEPA), from 1985-2000. The papers are listed by first author and chronologically under ten different categories...

  2. Beam dynamics in stripline linear induction accelerators

    International Nuclear Information System (INIS)

    Adler, R.J.

    1983-01-01

    Stripline (parallel plate transmission line) pulsed power modules have been considered for application to advanced high current linear accelerators. Some advantages of the stripline designs include compact size, easy maintenance, and most importantly, the small number of switches required (one switch per 2 MeV). The principle drawback of stripline designs is that they impart a NET transverse force to particles in the gap. This is shown to result in randomized transverse momentum, and NET, constructive transverse guiding center motion. In this paper, a semi-quantitative analysis of several facets of the problem is presented

  3. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  4. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    ... through the compaction formulation process and application. Compaction of powder constituents both active ingredient and excipients is examined to ensure consistent and reproducible disintegration and dispersion profiles...

  5. Organization of the 17th Advanced Accelerator Concepts (AAC16) Workshop by the IEEE. Final Scientific/Technical Report On AWARD NO. DE-SC0015635

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, David F. [Inst. of Electrical and Electronics Engineers Inc., Piscataway, NJ (United States)

    2017-07-15

    The 2016 Workshop on Advanced Accelerator Concepts (AAC) was held at the Gaylord Hotel and Conference Center, National Harbor, Maryland, from July 31 through August 5, 2016. This workshop was the seventeenth in a biennial series that began at Los Alamos National Laboratory in 1982 with a workshop on laser acceleration of particles (see AIP Conf. Proc. 91). AAC16 was organized under the sponsorship of the IEEE Council on Superconductivity with financial support from the U. S. Department of Energy Office of High Energy Physics and the National Science Foundation. The scope of the AAC Workshop has grown since 1982 to encompass a broad range of topics related to advancing accelerator science and technology beyond its current scientific and technical limits and is now an internationally acknowledged forum for interdisciplinary discussions on advanced accelerator and beam physics/technology concepts covering the widest possible range of applications. The Workshop continued the trend of growing worldwide participation, attracting world wide participation. The Workshop had a total of 256 attendees comprising (including the U.S.) representatives from 11 countries representing 65 different institutions. Each day’s schedule began with plenary sessions covering broad, cross disciplinary interests or general tutorial topics as selected by the Program Committee, followed by a break out into more narrowly focused working groups. The Workshop was organized into eight Working Groups each with a published statement of topical focus, scope of discussion and goals. A summary of the Working Group activities and conclusions is included in the American Institute of Physics’ (AIP) Conference Proceedings now available as an on line open source document. It has been a long tradition of the AAC workshops to encourage strong student participation. This is accomplished in part by subsidizing student attendance, done for this work shop by using funds from the DOE and National Science

  6. The MIT HEDP Accelerator Facility for education and advanced diagnostics development for OMEGA, Z and the NIF

    Science.gov (United States)

    Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2015-11-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  7. Professional Windows Embedded Compact 7

    CERN Document Server

    Phung, Samuel; Joubert, Thierry; Hall, Mike

    2011-01-01

    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  8. Design study of the compact ERL

    International Nuclear Information System (INIS)

    Hajima, Ryoichi; Nakamura, Norio; Sakanaka, Shogo; Kobayashi, Yukinori

    2008-02-01

    Energy-recovery linac (ERL) is a promising device for future X-ray light sources, which can produce coherent X-rays and femto-second X-ray pulses. In Japan, we have organized a collaboration team, consisting of the members of KEK, JAEA, ISSP and other laboratories, toward realization of future ERL light sources, and started R and D efforts to establish accelerator technologies relevant to the ERL light source. In order to demonstrate all the accelerator technologies working together, we have decided to build a small facility, the Compact ERL. This report presents a design study of the Compact ERL, which includes R and D issues for each accelerator component, studies on the beam dynamics, performance of the Compact ERL as a light source of THz and X-ray. (author)

  9. Testing and Implementation Progress on the Advanced Photon Source (APS) Linear Accelerator (Linac) High-Power S-band Switching System

    OpenAIRE

    Grelick, A. E.; Arnold, N.; Berg, S.; Dohan, D.; Goeppner, G.; Kang, Y. W.; Nassiri, A.; Pasky, S.; Pile, G.; Smith, T.; Stein, S. J.

    2000-01-01

    An S-band linear accelerator is the source of particles and the front end of the Advanced Photon Source injector. In addition, it supports a low-energy undulator test line (LEUTL) and drives a free-electron laser (FEL). A waveguide-switching and distribution system is now under construction. The system configuration was revised to be consistent with the recent change to electron-only operation. There are now six modulator-klystron subsystems, two of which are being configured to act as hot sp...

  10. Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques - A European effort to accelerate fusion materials development

    DEFF Research Database (Denmark)

    Linsmeier, Ch.; Fu, C.-C.; Kaprolat, A.

    2013-01-01

    as testing under neutron flux-induced conditions. For the realization of a DEMO power plant, the materials solutions must be available in time. The European initiative FEMaS-CA – Fusion Energy Materials Science – Coordination Action – aims at accelerating materials development by integrating advanced...... having energies up to 14 MeV. In addition to withstanding the effects of neutrons, the mechanical stability of structural materials has to be maintained up to high temperatures. Plasma-exposed materials must be compatible with the fusion plasma, both with regard to the generation of impurities injected...

  11. Restoration of compact Golgi morphology in advanced prostate cancer enhances susceptibility to galectin-1-induced apoptosis by modifying mucin O-glycan synthesis.

    Science.gov (United States)

    Petrosyan, Armen; Holzapfel, Melissa S; Muirhead, David E; Cheng, Pi-Wan

    2014-12-01

    Prostate cancer progression is associated with upregulation of sialyl-T antigen produced by β-galactoside α-2,3-sialyltransferase-1 (ST3Gal1) but not with core 2-associated polylactosamine despite expression of core 2 N-acetylglucosaminyltransferase-L (C2GnT-L/GCNT1). This property allows androgen-refractory prostate cancer cells to evade galectin-1 (LGALS1)-induced apoptosis, but the mechanism is not known. We have recently reported that Golgi targeting of glycosyltransferases is mediated by golgins: giantin (GOLGB1) for C2GnT-M (GCNT3) and GM130 (GOLGA2)-GRASP65 (GORASP1) or GM130-giantin for core 1 synthase. Here, we show that for Golgi targeting, C2GnT-L also uses giantin exclusively whereas ST3Gal1 uses either giantin or GM130-GRASP65. In addition, the compact Golgi morphology is detected in both androgen-sensitive prostate cancer and normal prostate cells, but fragmented Golgi and mislocalization of C2GnT-L are found in androgen-refractory cells as well as primary prostate tumors (Gleason grade 2-4). Furthermore, failure of giantin monomers to be phosphorylated and dimerized prevents Golgi from forming compact morphology and C2GnT-L from targeting the Golgi. On the other hand, ST3Gal1 reaches the Golgi by an alternate site, GM130-GRASP65. Interestingly, inhibition or knockdown of non-muscle myosin IIA (MYH9) motor protein frees up Rab6a GTPase to promote phosphorylation of giantin by polo-like kinase 3 (PLK3), which is followed by dimerization of giantin assisted by protein disulfide isomerase A3 (PDIA3), and restoration of compact Golgi morphology and targeting of C2GnT-L. Finally, the Golgi relocation of C2GnT-L in androgen-refractory cells results in their increased susceptibility to galectin-1-induced apoptosis by replacing sialyl-T antigen with polylactosamine. This study demonstrates the importance of Golgi morphology and regulation of glycosylation and provides insight into how the Golgi influences cancer progression and metastasis. ©2014 American

  12. Compact XFEL and AMO sciences: SACLA and SCSS

    International Nuclear Information System (INIS)

    Yabashi, M; Tanaka, H; Tanaka, T; Tomizawa, H; Nagasono, M; Ishikawa, T; Harries, J R; Hikosaka, Y; Hishikawa, A; Nagaya, K; Saito, N; Shigemasa, E; Yamanouchi, K; Ueda, K; Togashi, T

    2013-01-01

    The concept, design and performance of Japan's compact free-electron laser (FEL) facilities, the SPring-8 Compact SASE Source test accelerator (SCSS) and SPring-8 Angstrom Compact free electron LAser (SACLA), and their applications in mainly atomic, molecular and optical science are reviewed. At SCSS, intense, ultrafast FEL pulses at extreme ultraviolet (EUV) wavelengths have been utilized for investigating various multi-photon processes in atoms, molecules and clusters by means of ion and electron spectroscopy. The quantum optical effect superfluorescence has been observed with EUV excitation. A pump–probe technique combining FEL pulses with near infrared laser pulses has been realized to study the ultrafast dynamics of atoms, molecules and clusters in the sub-picosecond regime. At SACLA, deep inner-shell multi-photon ionization by intense x-ray FEL pulses has been investigated. The development of seeded FEL sources for producing transversely and temporally coherent light, as well as the expected impact on advanced science are discussed. (invited paper)

  13. A meta-analysis of hyperfractionated and accelerated radiotherapy and combined chemotherapy and radiotherapy regimens in unresected locally advanced squamous cell carcinoma of the head and neck

    Directory of Open Access Journals (Sweden)

    Budach V

    2006-01-01

    Full Text Available Abstract Background Former meta-analyses have shown a survival benefit for the addition of chemotherapy (CHX to radiotherapy (RT and to some extent also for the use of hyperfractionated radiation therapy (HFRT and accelerated radiation therapy (AFRT in locally advanced squamous cell carcinoma (SCC of the head and neck. However, the publication of new studies and the fact that many older studies that were included in these former meta-analyses used obsolete radiation doses, CHX schedules or study designs prompted us to carry out a new analysis using strict inclusion criteria. Methods Randomised trials testing curatively intended RT (≥60 Gy in >4 weeks/>50 Gy in Results Thirty-two trials with a total of 10 225 patients were included into the meta-analysis. An overall survival benefit of 12.0 months was observed for the addition of simultaneous CHX to either CFRT or HFRT/AFRT (p Conclusion RT combined with simultaneous 5-FU, cisplatin, carboplatin, and mitomycin C as single drug or combinations of 5-FU with one of the other drugs results in a large survival advantage irrespective the employed radiation schedule. If radiation therapy is used as single modality, hyperfractionation leads to a significant improvement of overall survival. Accelerated radiation therapy alone, especially when given as split course radiation schedule or extremely accelerated treatments with decreased total dose, does not increase overall survival.

  14. Accelerated radiation therapy for locally advanced squamous cell carcinomas of the oral cavity and oropharynx selected according to tumor cell kinetics--a phase II multicenter study

    International Nuclear Information System (INIS)

    Antognoni, Paolo; Bignardi, Mario; Cazzaniga, L. Franco; Poli, A. Marisa; Richetti, Antonella; Bossi, Alberto; Rampello, Giuseppina; Barbera, Fernando; Soatti, Carlo; Bardelli, Donata; Giordano, Monica; Danova, Marco

    1996-01-01

    Purpose: A Phase II multicenter trial testing an accelerated regimen of radiotherapy in locally advanced and inoperable cancers of the head and neck, in patients selected on the basis of 5-bromo-2-deoxyuridine/DNA flow cytometry-derived tumor potential doubling time (T pot ). Methods and Materials: From September 1992 to September 1993, 23 patients consecutively diagnosed to have locally advanced, inoperable carcinomas of the oral cavity and the oropharynx, with T pot of ≤5 days, received an accelerated radiotherapy regimen (AF) based on a modification of the concomitant boost technique: 2 Gy/fraction once a day, delivered 5 days a week up to 26 Gy, followed by 2 Gy/fraction twice a day, with a 6-h interval, one of the two fractions being delivered as a concomitant boost to reduced fields, up to 66 Gy total dose (off-cord reduction at 46 Gy), shortening the overall treatment time to 4.5 weeks. A contemporary control group of 46 patients with T pot of >5 days or unknown was treated with conventional fractionation (CF): 2 Gy/fraction once a day, 5 days a week, up to 66 Gy in 6.5 weeks, with fields shrinkage after 46 Gy. Results: All patients completed the accelerated regimen according to protocol and in the prescribed overall treatment time. Immediate tolerance was fairly good: 65% of the patients in the AF group experienced Grade 3 mucositis vs. 45% in the CF group (p = n.s.). Symptoms related to mucosal reactions seemed to persist longer in AF than in CF patients. The crude proportion of mild (Grades 1 and 2) late effects on skin (p < 0.01) and salivary glands (p < 0.05) was higher in AF than in CF patients, although these reactions did not exceed the limits of tolerance. Three patients in the AF and 1 in the CF arm experienced a late Grade 4 bone complication. Actuarial estimates of severe (Grades 3 and 4) late complications showed a 2-year hazard of 33.3% in the AF arm and 49.7% in CF (p = NS). The actuarial 2-year local control rate of the AF patients was 49

  15. Accelerating Scientific Advancement for Pediatric Rare Lung Disease Research. Report from a National Institutes of Health-NHLBI Workshop, September 3 and 4, 2015.

    Science.gov (United States)

    Young, Lisa R; Trapnell, Bruce C; Mandl, Kenneth D; Swarr, Daniel T; Wambach, Jennifer A; Blaisdell, Carol J

    2016-12-01

    Pediatric rare lung disease (PRLD) is a term that refers to a heterogeneous group of rare disorders in children. In recent years, this field has experienced significant progress marked by scientific discoveries, multicenter and interdisciplinary collaborations, and efforts of patient advocates. Although genetic mechanisms underlie many PRLDs, pathogenesis remains uncertain for many of these disorders. Furthermore, epidemiology and natural history are insufficiently defined, and therapies are limited. To develop strategies to accelerate scientific advancement for PRLD research, the NHLBI of the National Institutes of Health convened a strategic planning workshop on September 3 and 4, 2015. The workshop brought together a group of scientific experts, intramural and extramural investigators, and advocacy groups with the following objectives: (1) to discuss the current state of PRLD research; (2) to identify scientific gaps and barriers to increasing research and improving outcomes for PRLDs; (3) to identify technologies, tools, and reagents that could be leveraged to accelerate advancement of research in this field; and (4) to develop priorities for research aimed at improving patient outcomes and quality of life. This report summarizes the workshop discussion and provides specific recommendations to guide future research in PRLD.

  16. Recircular accelerator to proton ocular therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Luisa A.; Campos, Tarcisio P.R., E-mail: luisarabelo88@gmail.com, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2013-07-01

    Proton therapy has been used for the treatment of Ocular Tumors, showing control in most cases as well as conservation of the eyeball, avoiding the enucleation. The protons provide higher energetic deposition in depth with reduced lateral spread, compared to the beam of photons and electrons, with characteristic dose deposition peak (Bragg peak). This technique requires large particle accelerators hampering the deployment a Proton Therapy Center in some countries due to the need for an investment of millions of dollars. This study is related to a new project of an electromagnetic unit of proton circular accelerator to be coupled to the national radiopharmaceutical production cyclotrons, to attend ocular therapy. This project evaluated physical parameters of proton beam circulating through classical and relativistic mechanical formulations and simulations based on an ion transport code in electromagnetic fields namely CST (Computer Simulation Technology). The structure is differentiated from other circular accelerations (patent CTIT/UFMG NRI research group/UFMG). The results show the feasibility of developing compact proton therapy equipment that works like pre-accelerator or post-accelerator to cyclotrons, satisfying the interval energy of 15 MeV to 64 MeV. Methods of reducing costs of manufacture, installation and operation of this equipment will facilitate the dissemination of the proton treatment in Brazil and consequently advances in fighting cancer. (author)

  17. Recircular accelerator to proton ocular therapy

    International Nuclear Information System (INIS)

    Rabelo, Luisa A.; Campos, Tarcisio P.R.

    2013-01-01

    Proton therapy has been used for the treatment of Ocular Tumors, showing control in most cases as well as conservation of the eyeball, avoiding the enucleation. The protons provide higher energetic deposition in depth with reduced lateral spread, compared to the beam of photons and electrons, with characteristic dose deposition peak (Bragg peak). This technique requires large particle accelerators hampering the deployment a Proton Therapy Center in some countries due to the need for an investment of millions of dollars. This study is related to a new project of an electromagnetic unit of proton circular accelerator to be coupled to the national radiopharmaceutical production cyclotrons, to attend ocular therapy. This project evaluated physical parameters of proton beam circulating through classical and relativistic mechanical formulations and simulations based on an ion transport code in electromagnetic fields namely CST (Computer Simulation Technology). The structure is differentiated from other circular accelerations (patent CTIT/UFMG NRI research group/UFMG). The results show the feasibility of developing compact proton therapy equipment that works like pre-accelerator or post-accelerator to cyclotrons, satisfying the interval energy of 15 MeV to 64 MeV. Methods of reducing costs of manufacture, installation and operation of this equipment will facilitate the dissemination of the proton treatment in Brazil and consequently advances in fighting cancer. (author)

  18. Hadron accelerators in medicine

    International Nuclear Information System (INIS)

    Amaldi, U.

    1996-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  19. Advances in Compact Torus research. Report on the IAEA technical committee meeting, held in Sydney, Australia, 4-7 March 1985

    Energy Technology Data Exchange (ETDEWEB)

    Durance, G

    1985-08-01

    A Compact Torus (CT) is a low-aspect-ratio, axisymmetric, closed-magnetic-field-line configuration with no vessel wall or magnetic field coils linking the hole in the plasma toroid. The potential reactor advantages include high beta, simple geometry, high power density, and translation of the toroid. FRC (Field Reversed Configuration) have negligible toroidal magnetic fields; equilibria tend to be elongated. Gross stability is observed for several Alfven times, but transport mechanisms and confinement time scaling are poorly understood. Translation experiments are expanding the accessable parameter space. Spheromaks have comparable toroidal and poloidal fields. The configuration is related to the RFP although the toroidal field is generated by internal plasma currents. Detached mode (plasma and gun or flux core not connected) and linked mode have been studied. Rotamaks use a rotating magnetic field to maintain the plasma toroidal current; the drive mechanism is analagous to an induction motor. There has been no evidence for gross instabilities although temperatures are low. Particle rings generate CT with particle gyroradii comparable to plasma dimensions. The large orbits may aid in gross MHD stability.

  20. Design of a compact application-oriented free-electron laser

    Science.gov (United States)

    Chan, K. C. D.; Meier, K.; Nguyen, D.; Sheffield, R.; Wang, T. S.; Warren, R. W.; Wilson, W.; Young, L. M.

    The goal of the Advanced Free-Electron Laser Project at the Los Alamos National Laboratory is to demonstrate that a free-electron laser (FEL) suitable for industrial, medical, and research applications can be built. This FEL system should be efficient, compact, robust, and user-friendly. To achieve this goal, we have incorporated advanced components presently available. Electrons produced by a photoelectron source are accelerated to 20 MeV by a high-brightness accelerator. They are transported by an emittance-preserving beamline with permanent-magnet quadrupoles and dipoles. The electron beam has excellent instantaneous beam quality better than: 2.5 (pi) mm mrad in transverse emittance and 0.3 percent in energy spread at a Peak current up to 310 A. It is used to excite a FEL oscillator with a pulsed-current microwiggler. Including operation at higher harmonics, the laser wavelength extends from 3.7 to 0.4 microns.

  1. Intelligent Compaction and Infrared Scanning Field Projects with Consulting Support

    Science.gov (United States)

    2018-02-01

    The Missouri Department of Transportation (MoDOT) was awarded a grant from the FHWA Accelerated Innovation Deployment (AID) program, in 2016. MoDOT provided the required matching funds to support this Intelligent Compaction (IC) and Infrared Scanning...

  2. Compact two-beam push-pull free electron laser

    Science.gov (United States)

    Hutton, Andrew [Yorktown, VA

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  3. Pathway to a compact SASE FEL device

    Science.gov (United States)

    Dattoli, G.; Di Palma, E.; Petrillo, V.; Rau, Julietta V.; Sabia, E.; Spassovsky, I.; Biedron, S. G.; Einstein, J.; Milton, S. V.

    2015-10-01

    Newly developed high peak power lasers have opened the possibilities of driving coherent light sources operating with laser plasma accelerated beams and wave undulators. We speculate on the combination of these two concepts and show that the merging of the underlying technologies could lead to new and interesting possibilities to achieve truly compact, coherent radiator devices.

  4. Pathway to a compact SASE FEL device

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G., E-mail: giuseppe.dattoli@enea.it [ENEA – Centro Ricerche Frascati, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Di Palma, E. [ENEA – Centro Ricerche Frascati, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Petrillo, V. [Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Rau, Julietta V. [Istituto di Struttura della Materia, ISM-CNR, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Sabia, E.; Spassovsky, I. [ENEA – Centro Ricerche Frascati, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Biedron, S.G.; Einstein, J.; Milton, S.V. [CSU – Colorado State University, Fort Collins, CO (United States)

    2015-10-21

    Newly developed high peak power lasers have opened the possibilities of driving coherent light sources operating with laser plasma accelerated beams and wave undulators. We speculate on the combination of these two concepts and show that the merging of the underlying technologies could lead to new and interesting possibilities to achieve truly compact, coherent radiator devices.

  5. A review of advanced small-scale parallel bioreactor technology for accelerated process development: current state and future need.

    Science.gov (United States)

    Bareither, Rachel; Pollard, David

    2011-01-01

    The pharmaceutical and biotech industries face continued pressure to reduce development costs and accelerate process development. This challenge occurs alongside the need for increased upstream experimentation to support quality by design initiatives and the pursuit of predictive models from systems biology. A small scale system enabling multiple reactions in parallel (n ≥ 20), with automated sampling and integrated to purification, would provide significant improvement (four to fivefold) to development timelines. State of the art attempts to pursue high throughput process development include shake flasks, microfluidic reactors, microtiter plates and small-scale stirred reactors. The limitations of these systems are compared to desired criteria to mimic large scale commercial processes. The comparison shows that significant technological improvement is still required to provide automated solutions that can speed upstream process development. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  6. Compact neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  7. Induction-linear accelerators for food processing with ionizing radiation

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.

    1985-01-01

    Electron accelerators with sufficient beam power and reliability of operation will be required for applications in the large-scale radiation processing of food. Electron beams can be converted to the more penetrating bremsstrahlung radiation (X-rays), although at a great expense in useful X-ray power due to small conversion efficiencies. Recent advances in the technology of pulse-power accelerators indicates that Linear Induction Electron Accelerators (LIEA) are capable of sufficiently high-beam current and pulse repetition rate, while delivering ultra-short pulses of high voltage. The application of LIEA systems in food irradiation provides the potential for high product output and compact, modular-type systems readily adaptable to food processing facilities. (orig.)

  8. High Gradient Accelerating Structures for Carbon Therapy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Faillace, L.; Goel, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.; Plastun, A.; Savin, E.

    2016-05-01

    Carbon therapy is the most promising among techniques for cancer treatment, as it has demonstrated significant improvements in clinical efficiency and reduced toxicity profiles in multiple types of cancer through much better localization of dose to the tumor volume. RadiaBeam, in collaboration with Argonne National Laboratory, are developing an ultra-high gradient linear accelerator, Advanced Compact Carbon Ion Linac (ACCIL), for the delivery of ion-beams with end-energies up to 450 MeV/u for 12C6+ ions and 250 MeV for protons. In this paper, we present a thorough comparison of standing and travelling wave designs for high gradient S-Band accelerating structures operating with ions at varying velocities, relative to the speed of light, in the range 0.3-0.7. In this paper we will compare these types of accelerating structures in terms of RF, beam dynamics and thermo-mechanical performance.

  9. Radionuclide production for PET with a linear electrostatic accelerator

    International Nuclear Information System (INIS)

    Shefer, R.E.; Hughey, B.J.; Klinkowstein, R.E.; Welch, M.J.

    1993-01-01

    A new type of linear electrostatic accelerator for the production of short-lived radionuclides for PET has been developed at Science Research Laboratory. The tandem cascade accelerator (TCA) is a low energy (3.7 MeV) proton and deuteron accelerator which can generate the four short-lived PET radionuclides in the quantities required for clinical use. The compact size, low weight, low power consumption and reduced radiation shielding requirements of the TCA result in a significant reduction in capital and operating costs when compared with higher energy cyclotron-based systems. Radioisotope target for the production of O-15, F-18, N-13 and C-11 have been designed specifically for use with the low energy TCA beam. A simple to use PC-based computer control system allows fully automated system operation and advanced scheduling of isotope production. Operating experience with the TCA and its PET radionuclide targets is described

  10. Feasibility and efficacy of accelerated weekly concomitant boost postoperative radiation therapy combined with concomitant chemotherapy in patients with locally advanced head and neck cancer.

    Science.gov (United States)

    Pehlivan, Berrin; Luthi, Francois; Matzinger, Oscar; Betz, Michael; Dragusanu, Daniela; Bulling, Shelley; Bron, Luc; Pasche, Philippe; Seelentag, Walter; Mirimanoff, René O; Zouhair, Abderrahim; Ozsahin, Mahmut

    2009-05-01

    The aim of this study was to assess feasibility and efficacy of weekly concomitant boost accelerated postoperative radiation therapy (PORT) with concomitant chemotherapy (CT) in patients with locally advanced head and neck cancer (LAHNC). Conformal or intensity-modulated 66-Gy RT was performed in 5.5 weeks in 40 patients. Cisplatin was given at days 1, 22, and 43. Median follow-up was 36 months. Grade 3 mucositis, dysphagia, and erythema was observed in ten (25%), nine (23%), and six (13%) patients, respectively. Grade 3 or more anemia was observed in two (6%) patients, and leukopenia in five (13%) patients. No grade 3 or 4 thrombocytopenia was observed. Grade 3 nephrotoxicity was observed in one patient (3%). No treatment-related mortality was observed. Grade 2 or more xerostomia and edema were observed in ten (25%) and one (3%) patient, respectively. Locoregional relapse occurred in eight patients, and seven patients developed distant metastases. Median time to locoregional relapse was 6 months. Three-year overall, disease-free survival, and locoregional control rates were 63%, 62%, and 81%, respectively. Multivariate analysis revealed that the only prognostic factor was nodal status. Reducing overall treatment time using accelerated PORT/CT by weekly concomitant boost (six fractions per week) combined with concomitant cisplatin CT is easily feasible with acceptable morbidity.

  11. Compact Process Development at Babcock & Wilcox

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  12. Feasibility Study of Moderately Accelerated Intensity-Modulated Radiotherapy Plus Concurrent Weekly Cisplatin After Induction Chemotherapy in Locally Advanced Head-and Neck Cancer

    International Nuclear Information System (INIS)

    Morganti, Alessio G.; Mignogna, Samantha; Deodato, Francesco; Massaccesi, Mariangela; Cilla, Savino; Calista, Franco; Serafini, Giovanni; Digesu, Cinzia; Macchia, Gabriella; Picardi, Vincenzo; Caravatta, Luciana; Di Lullo, Liberato; Giglio, Gianfranco; Sallustio, Giuseppina; Piermattei, Angelo

    2011-01-01

    Purpose: To evaluate the feasibility and efficacy of moderately accelerated intensity-modulated radiation therapy (IMRT) along with weekly cisplatin, after induction chemotherapy, in patients with locally advanced unresectable head and neck cancer (HNC). Methods and Materials: Patients with Stage III or IV locally advanced HNC, without progressive disease after three courses of induction chemotherapy, received concurrent chemo-IMRT (weekly cisplatin 30 mg/m 2 plus simultaneous integrated boost IMRT). A total of 67.5 Gy in 30 fractions were delivered to primary tumor and involved nodes, 60 Gy in 30 fractions to high-risk nodal areas, and 55.5 Gy in 30 fractions to low-risk nodal areas. Results: In all, 36 patients (median age, 56 years) with International Union Against Cancer (UICC) Stage III (n = 5) and IV (n = 31) were included. Of the 36 patients, 17 had received CF (cisplatin and 5-fluorouracil (CF) and 19 had received docetaxel cisplatin and 5-fluorouracil (DCF). During concurrent chemoradiation, 11 of 36 patients (30.5%) experienced Grade III mucositis (CF, 47%; DCF, 15%; p < 0.04). Grade III pharyngeal-esophageal toxicity was observed in 5 of 19 patients (26.3%; CF, 0.0%; DCF, 26.3%; p = 0.02). Two patients died of complications (5.5%). After chemoradiation, the complete response rate was 63.8%. Two-year local control was 88.7%. Two-year progression free survival and overall survival were 74.5% and 60.9%, respectively. Conclusions: In our experience, a moderately accelerated chemo-IMRT was feasible after induction chemotherapy. However, a noteworthy early death rate of 5.5% was observed. Intensive supportive care strategies should be defined to better manage radiation-induced toxic effects. Longer follow-up is required to determine the incidence of late radiation toxicities and tumor control rates.

  13. Advances in pulsed-power-driven radiography system design

    International Nuclear Information System (INIS)

    Portillo, Salvador; Hinshelwood, David D.; Rovang, Dean Curtis; Cordova, Steve Ray; Oliver, Bryan Velten; Weber, Bruce V.; Welch, Dale Robert; Shelton, Bradley Allen; Sceiford, Matthew E.; Cooperstein, Gerald; Gignac, Raymond Edward; Puetz, Elizabeth A.; Rose, David Vincent; Barker, Dennis L.; Van De Valde, David M.; Droemer, Darryl W.; Wilkins, Frank Lee; Molina, Isidro; Jaramillo, Deanna M.; Swanekamp, Stephen Brian; Commisso, Robert J.; Bailey, Vernon Leslie; Maenchen, John Eric; Johnson, David Lee; Griffin, Fawn A.; Hahn, Kelly Denise; Smith, Ian

    2004-01-01

    Flash x-ray radiography has undergone a transformation in recent years with the resurgence of interest in compact, high intensity pulsed-power-driven electron beam sources. The radiographic requirements and the choice of a consistent x-ray source determine the accelerator parameters, which can be met by demonstrated Induction Voltage Adder technologies. This paper reviews the state of the art and the recent advances which have improved performance by over an order of magnitude in beam brightness and radiographic utility.

  14. Laser-plasma acceleration with multi-color pulse stacks: Designer electron beams for advanced radiation sources

    Science.gov (United States)

    Kalmykov, Serge; Shadwick, Bradley; Ghebregziabher, Isaac; Davoine, Xavier

    2015-11-01

    Photon engineering offers new avenues to coherently control electron beam phase space on a femtosecond time scale. It enables generation of high-quality beams at a kHz-scale repetition rate. Reducing the peak pulse power (and thus the average laser power) is the key to effectively exercise such control. A stepwise negative chirp, synthesized by incoherently stacking collinear sub-Joule pulses from conventional CPA, affords a micron-scale bandwidth. It is sufficient to prevent rapid compression of the pulse into an optical shock, while delaying electron dephasing. This extends electron energy far beyond the limits suggested by accepted scalings (beyond 1 GeV in a 3 mm plasma), without compromising beam quality. In addition, acceleration with a stacked pulse in a channel favorably modifies electron beam on a femtosecond time scale, controllably producing synchronized sequences of 100 kA-scale, quasi-monoenergetic bunches. These comb-like, designer GeV electron beams are ideal drivers of polychromatic, tunable inverse Thomson γ-ray sources. The work of SYK and BAS is supported by the US DOE Grant DE-SC0008382 and NSF Grant PHY-1104683. Inverse Thomson scattering simulations were completed utilizing the Holland Computing Center of the University of Nebraska.

  15. Aacsfi-PSC. Advanced accelerator concepts for strong field interaction simulated with the Plasma-Simulation-Code

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, Hartmut [Munich Univ. (Germany). Chair for Computational and Plasma Physics

    2016-11-01

    Since the installation of SuperMUC phase 2 the 9216 nodes of phase 1 are more easily available for large scale runs allowing for the thin foil and AWAKE simulations. Besides phase 2 could be used in parallel for high throughput of the ion acceleration simulations. Challenging to our project were the full-volume checkpoints required by PIC that strained the I/O-subsystem of SuperMUC to its limits. New approaches considered for the next generation system, like burst buffers could overcome this bottleneck. Additionally, as the FDTD solver in PIC is strongly bandwidth bound, PSC will benefit profoundly from high-bandwidth memory (HBM) that most likely will be available in future HPC machines. This will be of great advantage as in 2018 phase II of AWAKE should begin, with a longer plasma channel further increasing the need for additional computing resources. Last but not least, it is expected that our methods used in plasma physics (many body interaction with radiation) will be more and more adapted for medical diagnostics and treatments. For this research field we expect centimeter sized volumes with necessary resolutions of tens of micro meters resulting in boxes of >10{sup 12} voxels (100-200 TB) on a regular basis. In consequence the demand for computing time and especially for data storage and data handling capacities will also increase significantly.

  16. Commissioning and early experience with a new-generation low-energy linear accelerator with advanced delivery and imaging functionalities

    Directory of Open Access Journals (Sweden)

    Fogliata Antonella

    2011-09-01

    Full Text Available Abstract Background A new-generation low-energy linear accelerator (UNIQUE was introduced in the clinical arena during 2009 by Varian Medical Systems. The world's first UNIQUE was installed at Oncology Institute of Southern Switzerland and put into clinical operation in June 2010. The aim of the present contribution was to report experience about its commissioning and first year results from clinical operation. Methods Commissioning data, beam characteristics and the modeling into the treatment planning system were summarized. Imaging system of UNIQUE included a 2D-2D matching capability and tests were performed to identify system repositioning capability. Finally, since the system is capable of delivering volumetric modulated arc therapy with RapidArc, a summary of the tests performed for such modality to assess its performance in preclinical settings and during clinical usage was included. Results Isocenter virtual diameter was measured as less than 0.2 mm. Observed accuracy of isocenter determination and repositioning for 2D-2D matching procedures in image guidance was Conclusions The results of the commissioning tests and of the first period of clinical operation, resulted meeting specifications and having good margins respect to tolerances. UNIQUE was put into operation for all delivery techniques; in particular, as shown by the pre-treatment quality assurance results, it enabled accurate and safe delivery of RapidArc plans.

  17. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  18. A nuclear powered pulsed inductive plasma accelerator as a viable propulsion concept for advanced OTV space applications

    International Nuclear Information System (INIS)

    Tapper, M.L.

    1982-01-01

    An electric propulsion concept suitable for delivering heavy payloads from low earth orbit (LEO) to high energy earth orbit is proposed. The system consists of a number of pulsed inductive plasma thrusters powered by a 100 kWe space nuclear power system. The pulsed plasma thruster is a relatively simple electrodeless device. It also exhibits adequate conversion to thrust power in the desired I sub sp regime of 1500 to 3000 seconds for optimal payload transfer from low earth to high earth orbit. Because of these features and the fact that the nuclear power unit will be capable of delivering sustained high power levels throughout the duration of any given mission, the system presented appears to be a very promising propulsion candidate for advanced orbital transfer vehicle (OTV) applications. An OTV, which makes use of this propulsion system and which has been designed to lift a 9000-lb payload into geosynchronous earth orbit, (GEO) is also examined

  19. Ion acceleration and D-D nuclear fusion in laser-generated plasma from advanced deuterated polyethylene.

    Science.gov (United States)

    Torrisi, Lorenzo

    2014-10-23

    Deuterated polyethylene targets have been irradiated by means of a 1016 W/cm2 laser using 600 J pulse energy, 1315 nm wavelength, 300 ps pulse duration and 70 micron spot diameter. The plasma parameters were measured using on-line diagnostics based on ion collectors, SiC detectors and plastic scintillators, all employed in time-of-flight configuration. In addition, a Thomson parabola spectrometer, an X-ray streak camera, and calibrated neutron dosimeter bubble detectors were employed. Characteristic protons and neutrons at maximum energies of 3.0 MeV and 2.45 MeV, respectively, were detected, confirming that energy spectra of reaction products coming from deuterium-deuterium nuclear fusion occur. In thick advanced targets a fusion rate of the order of 2 × 108 fusions per laser shot was calculated.

  20. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The CERN Accelerator School (CAS) recently held its Advanced Accelerator Physics course in Greece on the island of Rhodes. Complementing the general course in Finland last year, this course was organized together with the University of Athens and NCSR. Demokritos. Accelerator specialists from Europe, CIS, Japan and USA followed two weeks of ''state-of-theart'' lectures designed to complete their education in the field

  1. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  2. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia.

    Science.gov (United States)

    Miyata, T; Ueda, Y; Yamada, Y; Izuhara, Y; Wada, T; Jadoul, M; Saito, A; Kurokawa, K; van Ypersele de Strihou, C

    1998-12-01

    Advanced glycation end product (AGE) formation is related to hyperglycemia in diabetes but not in uremia, because plasma AGE levels do not differ between diabetic and nondiabetic hemodialysis patients. The mechanism of this phenomenon remains elusive. Previously, it was suggested that elevation of AGE levels in uremia might result from the accumulation of unknown AGE precursors. The present study evaluates the in vitro generation of pentosidine, a well identified AGE structure. Plasma samples from healthy subjects and nondiabetic hemodialysis patients were incubated under air for several weeks. Pentosidine levels were determined at intervals by HPLC assay. Pentosidine rose to a much larger extent in uremic than in control plasma. Pentosidine yield, i.e., the change in pentosidine level between 0 and 4 wk divided by 28 d, averaged 0.172 nmol/ml per d in uremic versus 0.072 nmol/ml per d in control plasma (P aminoguanidine and OPB-9195, which inhibit the Maillard reaction, lowered pentosidine yield in both uremic and control plasma. When ultrafiltrated plasma was exposed to 2,4-dinitrophenylhydrazine, the yield of hydrazones, formed by interaction with carbonyl groups, was markedly higher in uremic than in control plasma. These observations strongly suggest that the pentosidine precursors accumulated in uremic plasma are carbonyl compounds. These precursors are unrelated to glucose or ascorbic acid, whose concentration is either normal or lowered in uremic plasma. They are also unrelated to 3-deoxyglucosone, a glucose-derived dicarbonyl compound whose level is raised in uremic plasma: Its addition to normal plasma fails to increase pentosidine yield. This study reports an elevated level of reactive carbonyl compounds ("carbonyl stress") in uremic plasma. Most have a lower than 5000 Da molecular weight and are thus partly removed by hemodialysis. Their effect on pentosidine generation can be inhibited by aminoguanidine or OPB-9195. Carbonyl stress might contribute to

  3. CERN Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford.

  4. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford

  5. Accelerator breeder concept

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Fraser, J.S.; Garvey, P.M.

    1978-10-01

    The principal components and functions of an accelerator breeder are described. The role of the accelerator breeder as a possible long-term fissile production support facility for CANDU (Canada Deuterium Uranium) thorium advanced fuel cycles and the Canadian research and development program leading to such a facility are outlined. (author)

  6. Compact Polarimetry Potentials

    Science.gov (United States)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  7. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    "Revised to reflect modern pharmaceutical compacting techniques, this Second Edition guides pharmaceutical engineers, formulation scientists, and product development and quality assurance personnel...

  8. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  9. Study on compressive strength of self compacting mortar cubes under normal & electric oven curing methods

    Science.gov (United States)

    Prasanna Venkatesh, G. J.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    In the majority of civil engineering applications, the basic building blocks were the masonry units. Those masonry units were developed as a monolithic structure by plastering process with the help of binding agents namely mud, lime, cement and their combinations. In recent advancements, the mortar study plays an important role in crack repairs, structural rehabilitation, retrofitting, pointing and plastering operations. The rheology of mortar includes flowable, passing and filling properties which were analogous with the behaviour of self compacting concrete. In self compacting (SC) mortar cubes, the cement was replaced by mineral admixtures namely silica fume (SF) from 5% to 20% (with an increment of 5%), metakaolin (MK) from 10% to 30% (with an increment of 10%) and ground granulated blast furnace slag (GGBS) from 25% to 75% (with an increment of 25%). The ratio between cement and fine aggregate was kept constant as 1: 2 for all normal and self compacting mortar mixes. The accelerated curing namely electric oven curing with the differential temperature of 128°C for the period of 4 hours was adopted. It was found that the compressive strength obtained from the normal and electric oven method of curing was higher for self compacting mortar cubes than normal mortar cube. The cement replacement by 15% SF, 20% MK and 25%GGBS obtained higher strength under both curing conditions.

  10. Scientists at Brookhaven contribute to the development of a better electron accelerator

    CERN Multimedia

    2004-01-01

    Scientists working at Brookhaven have developed a compact linear accelerator called STELLA (Staged Electron Laser Acceleration). Highly efficient, it may help electron accelerators become practical tools for applications in industry and medicine, such as radiation therapy (1 page)

  11. Heavy-ion accelerator mass spectrometry with a 'small' accelerator

    International Nuclear Information System (INIS)

    Steier, P.; Golser, R.; Priller, A.; Vockenhuber, C.; Irlweck, K.; Kutschera, W.; Lichtenstein, V.

    2001-01-01

    Full text: VERA, the Vienna environmental research accelerator, is based on a 3-MV pelletron tandem accelerator and is designed to allow the transport of ions of all elements, from the lightest to the heaviest. The VERA heavy ion program tries to establish measurement methods which work for the long-lived radionuclides where suppression of isobars is not required. Among these are 129 I, 210 Pb, 236 U and all heavier ions where no stable isobars exist. To suppress neighboring masses, the resolution of VERA was increased, both by improving the ion optics of existing elements and by installing a new electrostatic separator after the analyzing magnet. Interfering ions which pass all beam filters are identified with a high-resolution time-of-flight system, using a 0.5 μg/cm 2 DLC (diamond-like carbon) foil in the start detector, which substantially reduces beam straggling. Compared to heavy ion AMS at large tandem accelerators (TV ≥ 8 MV) and for cases where stable isobar interference is absent, it is possible to offset the disadvantage of lower ion energy. Moreover, the more compact facilities like VERA achieve higher stability and reliability and provide advanced computer control. This promises even higher precision and sensitivity for a larger number of samples, which is a prerequisite for research on natural-occurring heavy radioisotopes at environmental levels. First results on the measurement of 210 Pb (half-life 22 a) and 236 U (23 Ma) encourages us to push towards even heavier radionuclides (e.g. 224 Pu, 81 Ma). (author)

  12. Controlled Compact High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Postolati V.

    2016-04-01

    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  13. A meta-analysis of hyperfractionated and accelerated radiotherapy and combined chemotherapy and radiotherapy regimens in unresected locally advanced squamous cell carcinoma of the head and neck

    International Nuclear Information System (INIS)

    Budach, W; Hehr, T; Budach, V; Belka, C; Dietz, K

    2006-01-01

    Former meta-analyses have shown a survival benefit for the addition of chemotherapy (CHX) to radiotherapy (RT) and to some extent also for the use of hyperfractionated radiation therapy (HFRT) and accelerated radiation therapy (AFRT) in locally advanced squamous cell carcinoma (SCC) of the head and neck. However, the publication of new studies and the fact that many older studies that were included in these former meta-analyses used obsolete radiation doses, CHX schedules or study designs prompted us to carry out a new analysis using strict inclusion criteria. Randomised trials testing curatively intended RT (≥60 Gy in >4 weeks/>50 Gy in <4 weeks) on SCC of the oral cavity, oropharynx, hypopharynx, and larynx published as full paper or in abstract form between 1975 and 2003 were eligible. Trials comparing RT alone with concurrent or alternating chemoradiation (5-fluorouracil (5-FU), cisplatin, carboplatin, mitomycin C) were analyzed according to the employed radiation schedule and the used CHX regimen. Studies comparing conventionally fractionated radiotherapy (CFRT) with either HFRT or AFRT without CHX were separately examined. End point of the meta-analysis was overall survival. Thirty-two trials with a total of 10 225 patients were included into the meta-analysis. An overall survival benefit of 12.0 months was observed for the addition of simultaneous CHX to either CFRT or HFRT/AFRT (p < 0.001). Separate analyses by cytostatic drug indicate a prolongation of survival of 24.0 months, 16.8 months, 6.7 months, and 4.0 months, respectively, for the simultaneous administration of 5-FU, cisplatin-based, carboplatin-based, and mitomycin C-based CHX to RT (each p < 0.01). Whereas no significant gain in overall survival was observed for AFRT in comparison to CFRT, a substantial prolongation of median survival (14.2 months, p < 0.001) was seen for HFRT compared to CFRT (both without CHX). RT combined with simultaneous 5-FU, cisplatin, carboplatin, and mitomycin C as

  14. Decease of accelerator size for radiation processing

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi; Sunaga, Hiromi

    2003-01-01

    The decrease of accelerator size is an essential means to improve the market competition power of the radiation processing industry and to expand the wide application. Trials for the decrease or minimization are increasing steadily including development of irradiation equipments for exclusive uses. Compact irradiation systems were outlined for the significance and recent examples of the decrease in radiation processing, the problems in the industrial application, and the future of compact accelerators. (author)

  15. Uniaxial backfill block compaction

    International Nuclear Information System (INIS)

    Koskinen, V.

    2012-05-01

    The main parts of the project were: to make a literature survey of the previous uniaxial compaction experiments; do uniaxial compaction tests in laboratory scale; and do industrial scale production tests. Object of the project was to sort out the different factors affecting the quality assurance chain of the backfill block uniaxial production and solve a material sticking to mould problem which appeared during manufacturing the blocks of bentonite and cruched rock mixture. The effect of mineralogical and chemical composition on the long term functionality of the backfill was excluded from the project. However, the used smectite-rich clays have been tested for mineralogical consistency. These tests were done in B and Tech OY according their SOPs. The objective of the Laboratory scale tests was to find right material- and compaction parameters for the industrial scale tests. Direct comparison between the laboratory scale tests and industrial scale tests is not possible because the mould geometry and compaction speed has a big influence for the compaction process. For this reason the selected material parameters were also affected by the previous compaction experiments. The industrial scale tests were done in summer of 2010 in southern Sweden. Blocks were done with uniaxial compaction. A 40 tons of the mixture of bentonite and crushed rock blocks and almost 50 tons of Friedland-clay blocks were compacted. (orig.)

  16. Compaction properties of isomalt

    NARCIS (Netherlands)

    Bolhuis, Gerad K.; Engelhart, Jeffrey J. P.; Eissens, Anko C.

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of

  17. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  18. The influence of quantitative tumor volume measurements on local control in advanced head and neck cancer using concomitant boost accelerated superfractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher R; Khandelwal, Shiv R; Schmidt-Ullrich, Rupert K; Ravalese, Joseph; Wazer, David E

    1995-06-15

    Purpose: Current methods to clinically define head and neck tumor bulk are qualitative and imprecise. Although the American Joint Committee on Cancer (AJCC) staging system is important for this purpose, limitations exist. This study will investigate the prognostic value of computed tomography (CT) derived tumor volume measurements in comparison to AJCC stage and other significant variables. Materials and Methods: Seventy-six patients with advanced head and neck squamous cell carcinoma were treated with concomitant boost accelerated superfractionated irradiation. Doses ranged from 68.4-73.8 Gy (median 70.2 Gy). Good quality pretherapy CT scans were available in 51 patients. Total tumor volume (TTV) estimates were derived from these scans using digital integration of primary tumor and metastatic lymphadenopathy. Actuarial and multivariate statistical techniques were applied to analyze local control. Results: Thirty-six-month local control was 63%. TTV ranged from 5-196 cm{sup 3} (median 35 cm{sup 3}) for all cases, 5-142 cm{sup 3} (median 17 cm{sup 3}) for those controlled, and 16-196 cm{sup 3} (median 47 cm{sup 3}) for local failures. There was a significant increase in failures above 35 cm{sup 3}. Univariate analysis found that TTV, T-stage, N-stage, and primary site were each significant prognostic variables. Local control for TTV {<=}35 cm{sup 3} was 92% at 36 months vs. 34% for TTV >35 cm{sup 3} (p = 0.0001). Multivariate analysis, however, found that TTV, primary site, and sex were important as independent variables; T and N stage were not independently significant unless TTV was removed from the model. Conclusions: This study demonstrates the prognostic significance of TTV in advanced carcinoma of the head and neck. This variable appears to be a more predictive than AJCC clinical stage. Quantitative tumor volume measurements may prove to be a useful parameter in future analyses of head and neck cancer.

  19. Hyperfractionated accelerated radiotherapy with concomitant integrated boost of 70-75 Gy in 5 weeks for advanced head and neck cancer. A phase I dose escalation study

    Energy Technology Data Exchange (ETDEWEB)

    Cvek, J.; Skacelikova, E.; Otahal, B.; Halamka, M.; Feltl, D. [University Hospital Ostrava (Czech Republic). Dept. of Oncology; Kubes, J. [University Hospital Bulovka, Prague (Czech Republic). Dept. of Radiation Oncology; Kominek, P. [University Hospital Ostrava (Czech Republic). Dept. of Otolaryngology

    2012-08-15

    Background and purpose: The present study was performed to evaluate the feasibility of a new, 5-week regimen of 70-75 Gy hyperfractionated accelerated radiotherapy with concomitant integrated boost (HARTCIB) for locally advanced, inoperable head and neck cancer. Methods and materials: A total of 39 patients with very advanced, stage IV nonmetastatic head and neck squamous cell carcinoma (median gross tumor volume 72 ml) were included in this phase I dose escalation study. A total of 50 fractions intensity-modulated radiotherapy (IMRT) were administered twice daily over 5 weeks. Prescribed total dose/dose per fraction for planning target volume (PTV{sub tumor}) were 70 Gy in 1.4 Gy fractions, 72.5 Gy in 1.45 Gy fractions, and 75 Gy in 1.5 Gy fractions for 10, 13, and 16 patients, respectively. Uninvolved lymphatic nodes (PTV{sub uninvolved}) were irradiated with 55 Gy in 1.1 Gy fractions using the concomitant integrated boost. Results: Acute toxicity was evaluated according to the RTOG/EORTC scale; the incidence of grade 3 mucositis was 51% in the oral cavity/pharynx and 0% in skin and the recovery time was {<=} 9 weeks for all patients. Late toxicity was evaluated in patients in complete remission according to the RTOG/EORTC scale. No grade 3/4 late toxicity was observed. The 1-year locoregional progression-free survival was 50% and overall survival was 55%. Conclusion: HARTCIB (75 Gy in 5 weeks) is feasible for patients deemed unsuitable for chemoradiation. Acute toxicity was lower than predicted from radiobiological models; duration of dysphagia and confluent mucositis were particularly short. Better conformity of radiotherapy allows the use of more intensive altered fractionation schedules compared with older studies. These results suggest that further dose escalation might be possible when highly conformal techniques (e.g., stereotactic radiotherapy) are used.

  20. R and D Toward a Compact High-Brilliance X-Ray Source Based on Channeling Radiation

    International Nuclear Information System (INIS)

    Piot, P.; Brau, C.A.; Gabella, W.E.; Choi, B.K.; Jarvis, J.D.; Mendenhall, M.H.; Lewellen, J.W.; Mihalcea, D.

    2012-01-01

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B ∼ 10 12 photons.(mm-mrd) -2 .(0.1% BW) -1 .s -1 is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  1. BEAM DYNAMICS STUDIES FOR A COMPACT CARBON ION LINAC FOR THERAPY

    Energy Technology Data Exchange (ETDEWEB)

    Plastun, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.

    2016-05-01

    Feasibility of an Advanced Compact Carbon Ion Linac (ACCIL) for hadron therapy is being studied at Argonne National Laboratory in collaboration with RadiaBeam Technologies. The 45-meter long linac is designed to deliver 109 carbon ions per second with variable energy from 45 MeV/u to 450 MeV/u. S-band structure provides the acceleration in this range. The carbon beam energy can be adjusted from pulse to pulse, making 3D tumor scanning straightforward and fast. Front end accelerating structures such as RFQ, DTL and coupled DTL are designed to operate at lower frequencies. The design of the linac was accompanied with extensive end-to-end beam dynamics studies which are presented in this paper.

  2. Preliminary study on development of 300 Kv compact focused gaseous ion beam system

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, T.; Ishii, Y.; Kamiya, T. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA) 1233 Watanuki-machi, Takasaki, Gunma, 370-1292 (Japan); Miyake, Y. [Beam Seiko Instruments Inc., 2-10-1 Kamata, Ohta-ku, Tokyo, 144-0052 (Japan)

    2013-04-19

    A new 300 kV compact focused gaseous ion beam (gas-FIB) system with three-stage acceleration lens was constructed at JAEA. The preliminary experiments of formation of the focused gaseous ion beams were carried out to show the availability of the gas-FIB system as a writing tool for 3D proton lithography. As a result of the experiments, it was proved that the focal point was kept at the same position under changing the kinetic energy but with keeping the kinetic energy ratio constant, which was defined as the ratio of kinetic energy in object side to that in image side for the third acceleration lens. This characteristic of the gas-FIB is a good point to advance the 3D proton lithography changing penetration depth in a sample by varying the beam energy.

  3. Preliminary study on development of 300 Kv compact focused gaseous ion beam system

    International Nuclear Information System (INIS)

    Ohkubo, T.; Ishii, Y.; Kamiya, T.; Miyake, Y.

    2013-01-01

    A new 300 kV compact focused gaseous ion beam (gas-FIB) system with three-stage acceleration lens was constructed at JAEA. The preliminary experiments of formation of the focused gaseous ion beams were carried out to show the availability of the gas-FIB system as a writing tool for 3D proton lithography. As a result of the experiments, it was proved that the focal point was kept at the same position under changing the kinetic energy but with keeping the kinetic energy ratio constant, which was defined as the ratio of kinetic energy in object side to that in image side for the third acceleration lens. This characteristic of the gas-FIB is a good point to advance the 3D proton lithography changing penetration depth in a sample by varying the beam energy.

  4. Stabilization of compactible waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs

  5. Computer design of a compact cyclotron

    International Nuclear Information System (INIS)

    Bing Wang; Huanfeng Hao; Qinggao Yao; Jinquan Zhang; Mingtao Song; Vorozhtsov, S.B.; Smirnov, V.L.; Hongwei Zhao

    2011-01-01

    Here we present results of the computer design of the structural elements of a compact cyclotron by the example of HITFiL cyclotron selected as the driving accelerator that is under construction at the Institute of Modern Physics (Lanzhou, China). In the article a complex approach to modeling of the compact cyclotron, including calculation of electromagnetic fields of the structural elements and beam dynamics calculations, is described. The existing design data on the axial injection, magnetic, acceleration and extraction systems of the cyclotron are used as a starting point in the simulation. Some of the upgrades of the cyclotron structural elements were proposed, which led to substantial improvement of the beam quality and transmission

  6. Quality of life assessment in advanced non-small-cell lung cancer patients undergoing an accelerated radiotherapy regimen: report of ECOG study 4593

    International Nuclear Information System (INIS)

    Auchter, Richard M.; Scholtens, Denise; Adak, Sudeshna; Wagner, Henry; Cella, David F.; Mehta, Minesh P.

    2001-01-01

    Purpose: To prospectively evaluate the quality of life (QOL) before, at completion, and after therapy for patients receiving an accelerated fractionation schedule of radiotherapy for advanced, unresectable non-small-cell lung cancer in a Phase II multi-institutional trial. Methods and Materials: The Functional Assessment of Cancer Therapy-Lung (FACT-L) patient questionnaire was used to score the QOL in patients enrolled in the Eastern Cooperative Oncology Group Phase II trial (ECOG 4593) of hyperfractionated accelerated radiotherapy in non-small-cell lung cancer. Radiotherapy (total dose 57.6 Gy in 36 fractions) was delivered during 15 days, with three radiation fractions given each treatment day. The protocol was activated in 1993, and 30 patients had accrued by November 1995. The FACT-L questionnaire was administered at study entry (baseline), on the last day of radiotherapy (assessment 2), and 4 weeks after therapy (assessment 3). The FACT-L includes scores for physical, functional, emotional, and social well-being (33 items), and a subscale of lung cancer symptoms (10 additional items). The summation of the physical, functional, and lung cancer symptom subscales (21 items) constitutes the Trial Outcome Index (TOI), considered the most clinically relevant outcome measure in lung cancer treatment trials. Results: The FACT-L completion rates at the designated study time points were as follows: baseline, 30 of 30 (100%); assessment 2, 29 (97%) of 30; and assessment 3, 24 (80%) of 30. At treatment completion, statistically significant declines in QOL scores were noted, compared with baseline for physical and functional well-being. Emotional well-being scores improved at both assessment 2 and assessment 3. The physical and functional scores returned approximately to baseline values at assessment 3. The change in TOI score was evaluated as a function of the clinical response to treatment, toxicity grade, and survival; no clear association was noted. A trend for the

  7. Split Course Hyperfractionated Accelerated Radio-Chemotherapy (SCHARC for patients with advanced head and neck cancer: Influence of protocol deviations and hemoglobin on overall survival, a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Sprague Lisa D

    2006-12-01

    Full Text Available Abstract Background The advantage of hyperfractionated accelerated radiation therapy for advanced head and neck cancer has been reported. Furthermore, randomized trials and meta-analyses have confirmed the survival benefit of additional chemotherapy to radiotherapy. We retrospectively analyzed the efficiency and toxicity of the Regensburg standard therapy protocol "SCHARC" and the overall survival of our patients. Methods From 1997 to 2004, 64 patients suffering from advanced head and neck cancer (88 % stage IV, 12 % stage III were assigned to receive the SCHARC protocol. Around half of the patients were diagnosed with oro-hypopharynx carcinoma (52 %, one third with tongue and floor of mouth tumors (29 % and one fifth (19 % suffered from H & N cancer at other sites. The schedule consisted of one therapy block with 30 Gy in 20 fractions over a two week period with concomitant chemotherapy (d 1–5: 20 mg/m2/d DDP + 750–1000 mg/m2/d 5FU (cont. infusion. This therapy block was repeated after a fortnight break up to a cumulative dose of 60 Gy and followed by a boost up to 70 Gy (69–70.5 Gy. All patients assigned to this scheme were included in the survival evaluation. Results Forty patients (63 % received both radiation and chemotherapy according to the protocol. The mean follow up was 2.3 years (829 d and the median follow up was 1.9 years (678 d, respectively. The analysis of survival revealed an estimated 3 year overall survival rate of 57 %. No patient died of complications, 52 patients (80 % had acute grade 2–3 mucositis, and 33 patients (58 % suffered from acute grade 3 skin toxicity. Leucopenia was no major problem (mean nadir 3.4 g/nl, no patient 10.5 g/dl and for patients who completed the protocol. Conclusion The SCHARC protocol was effective in patients diagnosed with advanced head and neck cancer. It led to long-term disease control and survival in about 50 % of the patients with significant but acceptable toxicity. Most patients

  8. Split Course Hyperfractionated Accelerated Radio-Chemotherapy (SCHARC) for patients with advanced head and neck cancer: Influence of protocol deviations and hemoglobin on overall survival, a retrospective analysis

    International Nuclear Information System (INIS)

    Stadler, Peter; Putnik, Kurt; Kreimeyer, Thore; Sprague, Lisa D; Koelbl, Oliver; Schäfer, Christof

    2006-01-01

    The advantage of hyperfractionated accelerated radiation therapy for advanced head and neck cancer has been reported. Furthermore, randomized trials and meta-analyses have confirmed the survival benefit of additional chemotherapy to radiotherapy. We retrospectively analyzed the efficiency and toxicity of the Regensburg standard therapy protocol 'SCHARC' and the overall survival of our patients. From 1997 to 2004, 64 patients suffering from advanced head and neck cancer (88 % stage IV, 12 % stage III) were assigned to receive the SCHARC protocol. Around half of the patients were diagnosed with oro-hypopharynx carcinoma (52 %), one third with tongue and floor of mouth tumors (29 %) and one fifth (19 %) suffered from H & N cancer at other sites. The schedule consisted of one therapy block with 30 Gy in 20 fractions over a two week period with concomitant chemotherapy (d 1–5: 20 mg/m 2 /d DDP + 750–1000 mg/m 2 /d 5FU (cont. infusion). This therapy block was repeated after a fortnight break up to a cumulative dose of 60 Gy and followed by a boost up to 70 Gy (69–70.5 Gy). All patients assigned to this scheme were included in the survival evaluation. Forty patients (63 %) received both radiation and chemotherapy according to the protocol. The mean follow up was 2.3 years (829 d) and the median follow up was 1.9 years (678 d), respectively. The analysis of survival revealed an estimated 3 year overall survival rate of 57 %. No patient died of complications, 52 patients (80 %) had acute grade 2–3 mucositis, and 33 patients (58 %) suffered from acute grade 3 skin toxicity. Leucopenia was no major problem (mean nadir 3.4 g/nl, no patient < 1.0 g/nl) and the mean hemoglobin value decreased from 13.2 to 10.5 g/dl. Univariate analysis of survival showed a better outcome for patients with a hemoglobin nadir >10.5 g/dl and for patients who completed the protocol. The SCHARC protocol was effective in patients diagnosed with advanced head and neck cancer. It led

  9. Split course hyperfractionated accelerated radio-chemotherapy (SCHARC) for patients with advanced head and neck cancer: influence of protocol deviations and hemoglobin on overall survival, a retrospective analysis.

    Science.gov (United States)

    Stadler, Peter; Putnik, Kurt; Kreimeyer, Thore; Sprague, Lisa D; Koelbl, Oliver; Schäfer, Christof

    2006-12-07

    The advantage of hyperfractionated accelerated radiation therapy for advanced head and neck cancer has been reported. Furthermore, randomized trials and meta-analyses have confirmed the survival benefit of additional chemotherapy to radiotherapy. We retrospectively analyzed the efficiency and toxicity of the Regensburg standard therapy protocol "SCHARC" and the overall survival of our patients. From 1997 to 2004, 64 patients suffering from advanced head and neck cancer (88 % stage IV, 12 % stage III) were assigned to receive the SCHARC protocol. Around half of the patients were diagnosed with oro-hypopharynx carcinoma (52 %), one third with tongue and floor of mouth tumors (29 %) and one fifth (19 %) suffered from H & N cancer at other sites. The schedule consisted of one therapy block with 30 Gy in 20 fractions over a two week period with concomitant chemotherapy (d 1-5: 20 mg/m2/d DDP + 750-1000 mg/m2/d 5FU (cont. infusion). This therapy block was repeated after a fortnight break up to a cumulative dose of 60 Gy and followed by a boost up to 70 Gy (69-70.5 Gy). All patients assigned to this scheme were included in the survival evaluation. Forty patients (63 %) received both radiation and chemotherapy according to the protocol. The mean follow up was 2.3 years (829 d) and the median follow up was 1.9 years (678 d), respectively. The analysis of survival revealed an estimated 3 year overall survival rate of 57 %. No patient died of complications, 52 patients (80 %) had acute grade 2-3 mucositis, and 33 patients (58 %) suffered from acute grade 3 skin toxicity. Leucopenia was no major problem (mean nadir 3.4 g/nl, no patient hemoglobin value decreased from 13.2 to 10.5 g/dl. Univariate analysis of survival showed a better outcome for patients with a hemoglobin nadir >10.5 g/dl and for patients who completed the protocol. The SCHARC protocol was effective in patients diagnosed with advanced head and neck cancer. It led to long-term disease control and survival in

  10. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  11. Can Accelerators Accelerate Learning?

    Science.gov (United States)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  12. Towards stable acceleration in LINACS

    CERN Document Server

    Dubrovskiy, A D

    2014-01-01

    Ultra-stable and -reproducible high-energy particle beams with short bunches are needed in novel linear accelerators and, in particular, in the Compact Linear Collider CLIC. A passive beam phase stabilization system based on a bunch compression with a negative transfer matrix element R56 and acceleration at a positive off-crest phase is proposed. The motivation and expected advantages of the proposed scheme are outlined.

  13. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA; Poole, Brian R [Tracy, CA

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  14. Mouse Embryo Compaction.

    Science.gov (United States)

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  15. Compact instantaneous water heater

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)

  16. A compact mobile neutron generator

    International Nuclear Information System (INIS)

    Zhou Changgeng; Li Yan; Hu Yonghong; Lou Benchao; Wu Chunlei

    2007-06-01

    Through fitting the high voltage terminal from introducing overseas and pulse system et al. from oneself developing together, a compact mobile neutron generator is established. The length and weight of this neutron generator are 2 500 mm and less than 1 t, respectively. It can be expediently moved to the location which is required by experimental people. It is consisted of RF ion source, acceleration tube, high voltage generator, focus device, microsecond pulse system, gas leak system, control system, vacuum system and experimental target. It can produce 150 μA continuous deuterium ion beam current, also can produce the pulse deuterium ion beam current. The pulse widths are 10-100 μs and frequencies 10 Hz, 1 000 Hz, 10 000 Hz. The D-T neutron yields of the neutron generator may arrive 1.5 x 10 10 s -1 . The working principle and the structure of the main parts of this neutron generator are described. (authors)

  17. Compact torus compression of microwaves

    International Nuclear Information System (INIS)

    Hewett, D.W.; Langdon, A.B.

    1985-01-01

    The possibility that a compact torus (CT) might be accelerated to large velocities has been suggested by Hartman and Hammer. If this is feasible one application of these moving CTs might be to compress microwaves. The proposed mechanism is that a coaxial vacuum region in front of a CT is prefilled with a number of normal electromagnetic modes on which the CT impinges. A crucial assumption of this proposal is that the CT excludes the microwaves and therefore compresses them. Should the microwaves penetrate the CT, compression efficiency is diminished and significant CT heating results. MFE applications in the same parameters regime have found electromagnetic radiation capable of penetrating, heating, and driving currents. We report here a cursory investigation of rf penetration using a 1-D version of a direct implicit PIC code

  18. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  19. First muon acceleration using a radio-frequency accelerator

    Directory of Open Access Journals (Sweden)

    S. Bae

    2018-05-01

    Full Text Available Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu^{-}, which are bound states of positive muons (μ^{+} and two electrons, are generated from μ^{+}’s through the electron capture process in an aluminum degrader. The generated Mu^{-}’s are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ. In the RFQ, the Mu^{-}’s are accelerated to 89 keV. The accelerated Mu^{-}’s are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  20. Small Valdivia compact spaces

    CERN Document Server

    Kubi's, W; Kubi\\'s, Wieslaw; Michalewski, Henryk

    2005-01-01

    We prove a preservation theorem for the class of Valdivia compact spaces, which involves inverse sequences of ``simple'' retractions. Consequently, a compact space of weight $\\loe\\aleph_1$ is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, we show that the class of Valdivia compacta of weight at most $\\aleph_1$ is preserved both under retractions and under open 0-dimensional images. Finally, we characterize the class of all Valdivia compacta in the language of category theory, which implies that this class is preserved under all continuous weight preserving functors.

  1. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  2. Final Results of a Randomized Phase 2 Trial Investigating the Addition of Cetuximab to Induction Chemotherapy and Accelerated or Hyperfractionated Chemoradiation for Locoregionally Advanced Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Seiwert, Tanguy Y., E-mail: tseiwert@medicine.bsd.uchicago.edu [Departments of Medicine, University of Chicago, Chicago, Illinois (United States); Melotek, James M. [Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois (United States); Blair, Elizabeth A. [Department of Otolaryngology, University of Chicago, Chicago, Illinois (United States); Stenson, Kerstin M. [Department of Otolaryngology, Rush University, Chicago, Illinois (United States); Salama, Joseph K. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Witt, Mary Ellyn [Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois (United States); Brisson, Ryan J.; Chawla, Apoorva; Dekker, Allison [Departments of Medicine, University of Chicago, Chicago, Illinois (United States); Lingen, Mark W. [Department of Pathology, University of Chicago, Chicago, Illinois (United States); Kocherginsky, Masha [Department of Public Health Sciences, University of Chicago, Chicago, Illinois (United States); Villaflor, Victoria M. [Departments of Medicine, University of Chicago, Chicago, Illinois (United States); Cohen, Ezra E.W. [Moores Cancer Center, University of California, San Diego, San Diego, California (United States); Haraf, Daniel J. [Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois (United States); Vokes, Everett E. [Departments of Medicine, University of Chicago, Chicago, Illinois (United States)

    2016-09-01

    Purpose: The role of cetuximab in the treatment of locoregionally advanced head and neck squamous cell cancer (LA-HNSCC) remains poorly defined. In this phase 2 randomized study, we investigated the addition of cetuximab to both induction chemotherapy (IC) and hyperfractionated or accelerated chemoradiation. Methods and Materials: Patients with LA-HNSCC were randomized to receive 2 cycles of weekly IC (cetuximab, paclitaxel, carboplatin) and either Cetux-FHX (concurrent cetuximab, 5-fluorouracil, hydroxyurea, and 1.5 Gy twice-daily radiation therapy every other week to 75 Gy) or Cetux-PX (cetuximab, cisplatin, and accelerated radiation therapy with delayed concomitant boost to 72 Gy in 42 fractions). The primary endpoint was progression-free survival (PFS), with superiority compared with historical control achieved if either arm had 2-year PFS ≥70%. Results: 110 patients were randomly assigned to either Cetux-FHX (n=57) or Cetux-PX (n=53). The overall response rate to IC was 91%. Severe toxicity on IC was limited to rash (23% grade ≥3) and myelosuppression (38% grade ≥3 neutropenia). The 2-year rates of PFS for both Cetux-FHX (82.5%) and Cetux-PX (84.9%) were significantly higher than for historical control (P<.001). The 2-year overall survival (OS) was 91.2% for Cetux-FHX and 94.3% for Cetux-PX. With a median follow-up time of 72 months, there were no significant differences in PFS (P=.35) or OS (P=.15) between the treatment arms. The late outcomes for the entire cohort included 5-year PFS, OS, locoregional failure, and distant metastasis rates of 74.1%, 80.3%, 15.7%, and 7.4%, respectively. The 5-year PFS and OS were 84.4% and 91.3%, respectively, among human papillomavirus (HPV)-positive patients and 65.9% and 72.5%, respectively, among HPV-negative patients. Conclusions: The addition of cetuximab to IC and chemoradiation was tolerable and produced long-term control of LA-HNSCC, particularly among poor-prognosis HPV-negative patients. Further

  3. Final Results of a Randomized Phase 2 Trial Investigating the Addition of Cetuximab to Induction Chemotherapy and Accelerated or Hyperfractionated Chemoradiation for Locoregionally Advanced Head and Neck Cancer

    International Nuclear Information System (INIS)

    Seiwert, Tanguy Y.; Melotek, James M.; Blair, Elizabeth A.; Stenson, Kerstin M.; Salama, Joseph K.; Witt, Mary Ellyn; Brisson, Ryan J.; Chawla, Apoorva; Dekker, Allison; Lingen, Mark W.; Kocherginsky, Masha; Villaflor, Victoria M.; Cohen, Ezra E.W.; Haraf, Daniel J.; Vokes, Everett E.

    2016-01-01

    Purpose: The role of cetuximab in the treatment of locoregionally advanced head and neck squamous cell cancer (LA-HNSCC) remains poorly defined. In this phase 2 randomized study, we investigated the addition of cetuximab to both induction chemotherapy (IC) and hyperfractionated or accelerated chemoradiation. Methods and Materials: Patients with LA-HNSCC were randomized to receive 2 cycles of weekly IC (cetuximab, paclitaxel, carboplatin) and either Cetux-FHX (concurrent cetuximab, 5-fluorouracil, hydroxyurea, and 1.5 Gy twice-daily radiation therapy every other week to 75 Gy) or Cetux-PX (cetuximab, cisplatin, and accelerated radiation therapy with delayed concomitant boost to 72 Gy in 42 fractions). The primary endpoint was progression-free survival (PFS), with superiority compared with historical control achieved if either arm had 2-year PFS ≥70%. Results: 110 patients were randomly assigned to either Cetux-FHX (n=57) or Cetux-PX (n=53). The overall response rate to IC was 91%. Severe toxicity on IC was limited to rash (23% grade ≥3) and myelosuppression (38% grade ≥3 neutropenia). The 2-year rates of PFS for both Cetux-FHX (82.5%) and Cetux-PX (84.9%) were significantly higher than for historical control (P<.001). The 2-year overall survival (OS) was 91.2% for Cetux-FHX and 94.3% for Cetux-PX. With a median follow-up time of 72 months, there were no significant differences in PFS (P=.35) or OS (P=.15) between the treatment arms. The late outcomes for the entire cohort included 5-year PFS, OS, locoregional failure, and distant metastasis rates of 74.1%, 80.3%, 15.7%, and 7.4%, respectively. The 5-year PFS and OS were 84.4% and 91.3%, respectively, among human papillomavirus (HPV)-positive patients and 65.9% and 72.5%, respectively, among HPV-negative patients. Conclusions: The addition of cetuximab to IC and chemoradiation was tolerable and produced long-term control of LA-HNSCC, particularly among poor-prognosis HPV-negative patients. Further

  4. Accelerating Development of Advanced Inverters.

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ropp, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Increasing the penetration of distributed renewable sources, including photovoltaic (PV) generators, poses technical challenges for grid management. The grid has been optimized over decades to rely on large centralized power plants with well-established feedback controls. Conventional generators provide relatively constant dispatchable power and help to regulate both voltage and frequency. In contrast, photovoltaic (PV) power is variable, is only as predictable as the weather, and provides no control action. Thus, as conventional generation is displaced by PV power, utility operation stake holders are concerned about managing fluctuations in grid voltage and frequency. Furthermore, since the operation of these distributed resources are bound by certain rules that require they stop delivering power when measured voltage or frequency deviate from the nominal operating point, there are also concerns that a single grid event may cause a large fraction of generation to turn off, triggering a black out or break-up of an electric power system.

  5. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  6. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  7. Compact turbidity meter

    Science.gov (United States)

    Hirschberg, J. G.

    1979-01-01

    Proposed monitor that detects back-reflected infrared radiation makes in situ turbidity measurements of lakes, streams, and other bodies of water. Monitor is compact, works well in daylight as at night, and is easily operated in rough seas.

  8. Accelerators in the 1970s

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1980-01-15

    As usual, the advances in our understanding of the nature of matter firing the past decade have leaned heavily on the availability of high energy accelerators which have both revealed new phenomena and enabled theories to be exposed to experiment. There have been many advances in technique, many new approaches, many new ideas on accelerator applications and many splendid new machines brought into operation. We pick out three themes to characterize how accelerators have progressed in ten years.

  9. Intensified hyperfractionated accelerated radiotherapy limits the additional benefit of simultaneous chemotherapy--results of a multicentric randomized German trial in advanced head-and-neck cancer.

    Science.gov (United States)

    Staar, S; Rudat, V; Stuetzer, H; Dietz, A; Volling, P; Schroeder, M; Flentje, M; Eckel, H E; Mueller, R P

    2001-08-01

    To demonstrate the efficacy of radiochemotherapy (RCT) as the first choice of treatment for advanced unresectable head-and-neck cancer. To prove an expected benefit of simultaneously given chemotherapy, a two-arm randomized study with hyperfractionated accelerated radiochemotherapy (HF-ACC-RCT) vs. hyperfractionated accelerated radiotherapy (HF-ACC-RT) was initiated. The primary endpoint was 1-year survival with local control (SLC). Patients with Stage III and IV (UICC) unresectable oro- and hypopharyngeal carcinomas were randomized for HF-ACC-RCT with 2 cycles of 5-FU (600 mg/m(2)/day)/carboplatinum (70 mg/m(2)) on days 1--5 and 29--33 (arm A) or HF-ACC-RT alone (arm B). In both arms, there was a second randomization for testing the effect of prophylactically given G-CSF (263 microg, days 15--19) on mucosal toxicity. Total RT dose in both arms was 69.9 Gy in 38 days, with a concomitant boost regimen (weeks 1--3: 1.8 Gy/day, weeks 4 and 5: b.i.d. RT with 1.8 Gy/1.5 Gy). Between July 1995 and May 1999, 263 patients were randomized (median age 56 years; 96% Stage IV tumors, 4% Stage III tumors). This analysis is based on 240 patients: 113 patients with RCT and 127 patients with RT, qualified for protocol and starting treatment. There were 178 oropharyngeal and 62 hypopharyngeal carcinomas. Treatment was tolerable in both arms, with a higher mucosal toxicity after RCT. Restaging showed comparable nonsignificant different CR + PR rates of 92.4% after RCT and 87.9% after RT (p = 0.29). After a median observed time of 22.3 months, l- and 2-year local-regional control (LRC) rates were 69% and 51% after RCT and 58% and 45% after RT (p = 0.14). There was a significantly better 1-year SLC after RCT (58%) compared with RT (44%, p = 0.05). Patients with oropharyngeal carcinomas showed significantly better SLC after RCT (60%) vs. RT (40%, p = 0.01); the smaller group of hypopharyngeal carcinomas had no statistical benefit of RCT (p = 0.84). For both tumor locations

  10. Intensified hyperfractionated accelerated radiotherapy limits the additional benefit of simultaneous chemotherapy--results of a multicentric randomized German trial in advanced head-and-neck cancer

    International Nuclear Information System (INIS)

    Staar, Susanne; Rudat, Volker; Stuetzer, Hartmut; Dietz, Andreas; Volling, Peter; Schroeder, Michael; Flentje, Michael; Eckel, Hans Edmund; Mueller, Rolf-Peter

    2001-01-01

    Purpose: To demonstrate the efficacy of radiochemotherapy (RCT) as the first choice of treatment for advanced unresectable head-and-neck cancer. To prove an expected benefit of simultaneously given chemotherapy, a two-arm randomized study with hyperfractionated accelerated radiochemotherapy (HF-ACC-RCT) vs. hyperfractionated accelerated radiotherapy (HF-ACC-RT) was initiated. The primary endpoint was 1-year survival with local control (SLC). Methods and Materials: Patients with Stage III and IV (UICC) unresectable oro- and hypopharyngeal carcinomas were randomized for HF-ACC-RCT with 2 cycles of 5-FU (600 mg/m 2 /day)/carboplatinum (70 mg/m 2 ) on days 1-5 and 29-33 (arm A) or HF-ACC-RT alone (arm B). In both arms, there was a second randomization for testing the effect of prophylactically given G-CSF (263 μg, days 15-19) on mucosal toxicity. Total RT dose in both arms was 69.9 Gy in 38 days, with a concomitant boost regimen (weeks 1-3: 1.8 Gy/day, weeks 4 and 5: b.i.d. RT with 1.8 Gy/1.5 Gy). Between July 1995 and May 1999, 263 patients were randomized (median age 56 years; 96% Stage IV tumors, 4% Stage III tumors). Results: This analysis is based on 240 patients: 113 patients with RCT and 127 patients with RT, qualified for protocol and starting treatment. There were 178 oropharyngeal and 62 hypopharyngeal carcinomas. Treatment was tolerable in both arms, with a higher mucosal toxicity after RCT. Restaging showed comparable nonsignificant different CR + PR rates of 92.4% after RCT and 87.9% after RT (p=0.29). After a median observed time of 22.3 months, l- and 2-year local-regional control (LRC) rates were 69% and 51% after RCT and 58% and 45% after RT (p=0.14). There was a significantly better 1-year SLC after RCT (58%) compared with RT (44%, p=0.05). Patients with oropharyngeal carcinomas showed significantly better SLC after RCT (60%) vs. RT (40%, p=0.01); the smaller group of hypopharyngeal carcinomas had no statistical benefit of RCT (p=0.84). For both

  11. A phase I study of dose-escalated chemoradiation with accelerated intensity modulated radiotherapy in locally advanced head and neck cancer

    International Nuclear Information System (INIS)

    Guerrero Urbano, Teresa; Clark, Catharine H.; Hansen, Vibeke N.; Adams, Elizabeth J.; A'Hern, Roger; Miles, Elizabeth A.; McNair, Helen; Bidmead, Margaret; Warrington, Alan P.; Dearnaley, David P.; Harrington, Kevin J.; Nutting, Christopher M.

    2007-01-01

    Background and purpose: Intensity modulated radiotherapy (IMRT) allows the delivery of higher and more homogeneous radiation dose to head and neck tumours. This study aims to determine the safety of dose-escalated chemo-IMRT for larynx preservation in locally advanced head and neck cancer. Methods: Patients with T2-4, N1-3, M0 squamous cell carcinoma of the larynx or hypopharynx were treated with a simultaneous-boost IMRT. Two radiation dose levels (DL) were tested: In DL 1, 63 Gy/28F was delivered to primary tumour and involved nodes and 51.8 Gy/28F to elective nodes. In DL 2, the doses were 67.2 Gy/28F and 56 Gy/28F, respectively, representing a 9% dose escalation for the primary. All patients received 2 cycles of neoadjuvant cisplatin and 5-fluorouracil, and concomitant cisplatin. Acute (NCICTCv.2.0) and late toxicity (RTOG and modified LENTSOM) were collected. Results: Thirty patients were entered, 15 in each dose level. All patients completed the treatment schedule. In DL 1, the incidences of acute G3 toxicities were 27% (pain), 20% (radiation dermatitis), 0% (xerostomia) and 67% required gastrostomy tubes. For DL 2 the corresponding incidences were 40%, 20%, 7%, and 87%. G3 dysphagia and pain persisted longer in DL 2. With regard to mucositis, a prolonged healing time for DL 2 was found, with prevalence of G2 of 58% in week 10. No acute grade 4 toxicity was observed. At 6 months, 1 patient in DL 2 had G3 late toxicity (dysphagia). No dose limiting toxicity was found. Complete response rates were 80% in DL 1, and 87% in DL 2. Conclusion: Moderately accelerated chemo-IMRT is safe and feasible with good compliance and acceptable acute toxicity. Dose escalation was possible without a significant difference in acute toxicity. Longer follow-up is required to determine the incidence of late radiation toxicities, and tumour control rates

  12. Compacted dimensions and singular plasmonic surfaces

    Science.gov (United States)

    Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-01

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.

  13. Virtual Accelerator for Accelerator Optics Improvement

    CERN Document Server

    Yan Yi Ton; Decker, Franz Josef; Ecklund, Stanley; Irwin, John; Seeman, John; Sullivan, Michael K; Turner, J L; Wienands, Ulrich

    2005-01-01

    Through determination of all quadrupole strengths and sextupole feed-downs by fitting quantities derivable from precision orbit measurement, one can establish a virtual accelerator that matches the real accelerator optics. These quantities (the phase advances, the Green's functions, and the coupling eigen-plane ellipses tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a model-independent analysis (MIA). Instead of trying to identify magnet errors, a limited number of quadrupoles are chosen for optimized strength adjustment to improve the virtual accelerator optics and then applied to the real accelerator accordingly. These processes have been successfully applied to PEP-II rings for beta beating fixes, phase and working tune adjustments, and linear coupling reduction to improve PEP-II luminosity.

  14. Laser-wakefield accelerators for medical phase contrast imaging: Monte Carlo simulations and experimental studies

    Science.gov (United States)

    Cipiccia, S.; Reboredo, D.; Vittoria, Fabio A.; Welsh, G. H.; Grant, P.; Grant, D. W.; Brunetti, E.; Wiggins, S. M.; Olivo, A.; Jaroszynski, D. A.

    2015-05-01

    X-ray phase contrast imaging (X-PCi) is a very promising method of dramatically enhancing the contrast of X-ray images of microscopic weakly absorbing objects and soft tissue, which may lead to significant advancement in medical imaging with high-resolution and low-dose. The interest in X-PCi is giving rise to a demand for effective simulation methods. Monte Carlo codes have been proved a valuable tool for studying X-PCi including coherent effects. The laser-plasma wakefield accelerators (LWFA) is a very compact particle accelerator that uses plasma as an accelerating medium. Accelerating gradient in excess of 1 GV/cm can be obtained, which makes them over a thousand times more compact than conventional accelerators. LWFA are also sources of brilliant betatron radiation, which are promising for applications including medical imaging. We present a study that explores the potential of LWFA-based betatron sources for medical X-PCi and investigate its resolution limit using numerical simulations based on the FLUKA Monte Carlo code, and present preliminary experimental results.

  15. Hadron accelerators in cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1997-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadrontherapy Project (the largest project of this type in Europe) is then described, with reference to both the National Centre for Oncological Hadrontherapy and the design of two types of compact proton accelerators aimed at introducing proton therapy in a large number of hospitals. Finally, the radiation protection requirements are discussed. (author)

  16. Accelerator Service

    International Nuclear Information System (INIS)

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  17. Compaction of FGD-gypsum

    NARCIS (Netherlands)

    Stoop, B.T.J.; Larbi, J.A.; Heijnen, W.M.M.

    1996-01-01

    It is shown that it is possible to produce compacted gypsum with a low porosity and a high strength on a laboratory scale by uniaxial compaction of flue gas desulphurization (FGD-) gypsum powder. Compacted FGD-gypsum cylinders were produced at a compaction pres-sure between 50 and 500 MPa yielding

  18. Symmetric tape round REBCO wire with J e (4.2 K, 15 T) beyond 450 A mm-2 at 15 mm bend radius: a viable candidate for future compact accelerator magnet applications

    Science.gov (United States)

    Kar, Soumen; Luo, Wenbo; Ben Yahia, Anis; Li, Xiaofen; Majkic, Goran; Selvamanickam, Venkat

    2018-04-01

    Round REBCO (RE = rare earth) wires of 1.6-1.85 mm diameter have been fabricated using ultrathin REBCO tapes where the superconductor film is positioned near the geometric center. Such symmetric tape round (STAR) wires exhibit excellent tolerance to bend strain with a critical current retention of more than 97% when bent to a radius of 15 mm. A 1.6 mm diameter REBCO STAR wire made with six 2.5 mm wide symmetric tapes reached an engineering current density (J e) of 454 A mm-2 at 4.2 K in a background field of 15 T at a bend radius of 15 mm. Such superior performance at a small bend radius can enable fabrication of future accelerator magnets, operating at magnetic fields above 20 T.

  19. JAPC Compact Simulator evolution to latest integration

    International Nuclear Information System (INIS)

    Nabeta, T.; Nakayama, Y.

    1999-01-01

    This paper describes the evolution of JAPC compact simulator from the first installation in 1988 until recent integration with SIMULATE-3 engineering code core model and extended simulation for Mid-loop operation and severe accidents. JAPC Compact Simulator has an advanced super compact rotating panel design. Three plants, Tokai 2 (GE BWR 5), Tsuruga 1 (GE BWR 2), Tsuruga 2 (MHI PWR 4-Loop) are simulated. The simulator has been used for training of operator and engineering personnel, and has continuously been upgraded to follow normal plant modifications as well as development in modeling and computer technology. The integration of SIMULATE-3 core model is, to our knowledge, the first integration of a real design code into a training simulator. SIMULATE-3 has been successfully integrated into the simulator and run in real time, without compromising the accuracy of SIMULATE-3. The code has been modified to also handle mid-loop operation and severe accidents. (author)

  20. CEBAF Accelerator Achievements

    International Nuclear Information System (INIS)

    Chao, Y C; Drury, M; Hovater, C; Hutton, A; Krafft, G A; Poelker, M; Reece, C; Tiefenback, M

    2011-01-01

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  1. Physically detached 'compact groups'

    Science.gov (United States)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  2. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  3. The tandem betatron accelerator

    International Nuclear Information System (INIS)

    Keinigs, R.

    1991-01-01

    This paper reports that the tandem betatron is a compact, high-current induction accelerator that has the capability to accelerate electrons to an energy of order one gigavolt. Based upon the operating principle of a conventional betatron, the tandem betatron employs two synchronized induction cores operating 180 degrees out of phase. Embedded within the cores are the vacuum chambers, and these are connected by linear transport sections to allow for moving the beam back and forth between the two betatrons. The 180 degree phase shift between the core fluxes permits the circumvention of the flux swing constraint that limits the maximum energy gain of a conventional betatron. By transporting the beam between the synchronized cores, an electron can access more than one acceleration cycle, and thereby continue to gain energy. This added degree of freedom also permits a significant decrease in the size of the magnet system. Biasing coils provide independent control of the confining magnetic field. Provided that efficient beam switching can be performed, it appears feasible that a one gigavolt electron beam can be generated and confined. At this energy, a high current electron beam circulating in a one meter radius orbit could provide a very intense source of short wavelength (λ < 10 nm) synchrotron radiation. This has direct application to the emerging field of x-ray lithography. At more modest energies (10 MeV-30 MEV) a compact tandem betatron could be employed in the fields of medical radiation therapy, industrial radiography, and materials processing

  4. Concurrent hyperfractionated accelerated radiotherapy with 5-FU and once weekly cisplatin in locally advanced head and neck cancer. The 10-year results of a prospective phase II trial

    Energy Technology Data Exchange (ETDEWEB)

    Budach, V.; Boehmer, D.; Badakhshi, H.; Jahn, U.; Stromberger, C. [Campus Virchow Klinikum, Charite Universitaetsmedizin Berlin, Department for Radiooncology, Clinic for Radiooncology, Berlin (Germany); Becker, E.T. [Charite Universitaetsmedizin, Department of Otorhinolaryngology, Berlin (Germany); Wernecke, K.D. [Sostana Statistics GmbH, Charite Universitaetsmedizin Berlin, Berlin (Germany)

    2014-03-15

    In this study, the acute toxicity and long-term outcome of a hyperfractionated accelerated chemoradiation regimen with cisplatin/5-fluorouracil (5-FU) in patients with locally advanced squamous cell carcinomas of head and neck were evaluated. From 2000-2002, 38 patients with stage III (5.3 %) and stage IV (94.7 %) head and neck cancer were enrolled in a phase II study. Patients received hyperfractionated-accelerated radiotherapy with 72 Gy in 15 fractions of 2 Gy followed by 1.4 Gy twice daily with concurrent, continuous infusion 5-FU of 600 mg/m{sup 2} on days 1-5 and 6 cycles of weekly cisplatin (30 mg/m{sup 2}). Acute toxicities (CTCAEv2.0), locoregional control (LRC), metastases-free (MFS), and overall survival (OS) were analyzed and exploratively compared with the ARO 95-06 trial. Median follow-up was 11.4 years (95 % CI 8.6-14.2) and mean dose 71.6 Gy. Of the patients, 82 % had 6 (n = 15) or 5 (n = 16) cycles of cisplatin, 5 and 2 patients received 4 and 3 cycles, respectively. Grade 3 anemia, leukopenia, and thrombocytopenia were observed in 15.8, 15.8, and 2.6 %, respectively. Grade 3 mucositis in 50 %, grade 3 and 4 dysphagia in 55 and 13 %. The 2-, 5-, and 10-year LRC was 65, 53.6, and 48.2 %, the MFS was 77.5, 66.7, and 57.2 % and the OS 59.6, 29.2, and 15 %, respectively. Chemoradiation with 5-FU and cisplatin seems feasible and superior in terms of LRC and OS to the ARO 95-06C-HART arm at 2 years. However, this did not persist at the 5- and 10-year follow-ups. (orig.) [German] Untersuchung der Akuttoxizitaet und des Langzeitueberlebens einer hyperfraktioniert-akzelerierten simultanen Radiochemotherapie mit Cisplatin/5-Fluorouracil (5-FU) bei Patienten mit lokal fortgeschrittenen Kopf-Hals-Tumoren. Von 2000 bis 2002 wurden 38 Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region im Stadium III (5,3 %) und IV (94,7 %) eingeschlossen. Es erfolgte eine simultane hyperfraktionierte akzelerierte Radiochemotherapie mit 72 Gy in 15 Fraktionen a 2 Gy

  5. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  6. Acceleration mechanisms flares, magnetic reconnection and shock waves

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1979-01-01

    Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references

  7. ACCELERATORS: School prizes

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  8. UCLA accelerator research ampersand development. Progress report

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses work on advanced accelerators and beam dynamics at ANL, BNL, SLAC, UCLA and Pulse Sciences Incorporated. Discussed in this report are the following concepts: Wakefield acceleration studies; plasma lens research; high gradient rf cavities and beam dynamics studies at the Brookhaven accelerator test facility; rf pulse compression development; and buncher systems for high gradient accelerator and relativistic klystron applications

  9. Inhomogeneous compact extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.

  10. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  11. Locoregionally advanced carcinoma of the oropharynx: conventional radiotherapy vs. accelerated hyperfractionated radiotherapy vs. concomitant radiotherapy and chemotherapy - a multicenter randomized trial

    International Nuclear Information System (INIS)

    Olmi, Patrizia; Crispino, Sergio; Fallai, Carlo; Torri, Valter; Rossi, Francesca; Bolner, Andrea; Amichetti, Maurizio; Signor, Marco; Taino, Raffaella; Squadrelli, Massimo; Colombo, Alessandro; Ardizzoia, Alessandro; Ponticelli, Pietro; Franchin, Giovanni; Minatel, Emilio; Gobitti, Carlo; Atzeni, Guido; Gava, Alessandro; Flann, Monica; Marsoni, Silvia

    2003-01-01

    Purpose: To compare conventional fractionation radiation therapy (RT), Arm A, vs. split-course accelerated hyperfractionated RT (S-AHF), Arm B, vs. conventional fractionation RT plus concomitant chemotherapy (CT), Arm C, in terms of survival and toxicity for advanced, unresectable epidermoid tumors of oropharynx. Methods and Materials: Between January 1993 and June 1998, 192 previously untreated patients affected with Stage III and IV oropharyngeal carcinoma (excluding T1N1 and T2N1) were accrued in a multicenter, randomized Phase III trial (ORO 93-01). For Arms A and C, 66-70 Gy in 33-35 fractions, 5 days a week, were administered in 6.5-7 weeks to tumor and positive nodes. In Arm B, the dose delivered to tumor and involved nodes was 64-67.2 Gy, giving 2 fractions of 1.6 Gy every day with an interfraction interval of at least 4 h and preferably 6 h, 5 days a week. At 38.4 Gy, a 2-week split was planned; after the split, RT was resumed with the same modality. In Arm C, CT regimen consisted of carboplatin and 5-fluorouracil (CBDCA 75 mg/m 2 , Days 1-4; 5-FU 1,000 mg/m 2 i.v. over 96 h, Days 1-4, recycling every 28 days (at 1st, 5th, and 9th week). Results: No statistically significant difference was detected in overall survival (p=0.129): 40% Arm A vs. 37% Arm B vs. 51% Arm C were alive at 24 months. Similarly, there was no statistically significant difference in terms of event-free survival (p=0.196): 20% for Arm A, 19% for Arm B, and 37% for Arm C were event free at 24 months. On the contrary, the 2-year disease-free survival was significantly different among the three arms (p = 0.022), with a superiority for Arm C. At 24 months, the proportion of patients without relapse was 42% for Arm C vs. 23% for Arm A and 20% for Arm B. Patients in Arm A less frequently developed G3+ acute mucositis than their counterparts in Arm B or C (14.7% vs. 40.3% vs. 44%). Regarding the CT-related acute toxicity, apart from 1 case of fatal nephrotoxicity, only hematologic G3+ (Grade 3

  12. Where does particle acceleration occur in extended extragalactic radio sources

    International Nuclear Information System (INIS)

    Hughes, P.A.

    1980-01-01

    It is suggested that particle acceleration does not occur in the extended lobes of extragalactic radio sources, but only in the compact heads. Away from these, waves capable of accelerating particles may not propagate. Although wave generation within the lobes would allow acceleration there, it is not obvious that the plasma is sufficiently disturbed for this to occur. (author)

  13. Nonponderomotive electron acceleration in ultrashort surface-plasmon fields

    Energy Technology Data Exchange (ETDEWEB)

    Racz, Peter; Dombi, Peter [Wigner Research Centre for Physics, Konkoly-Thege M. ut 29-33, H-1121 Budapest (Hungary)

    2011-12-15

    We investigate the nonponderomotive nature of ultrafast plasmonic electron acceleration in strongly decaying electromagnetic fields generated by few-cycle and single-cycle femtosecond laser pulses. We clearly identify the conditions contributing to nonponderomotive acceleration and establish fundamental scaling laws and carrier-envelope phase effects. These all-optically accelerated compact, femtosecond electron sources can be utilized in contemporary ultrafast methods.

  14. Picosecond CO2 laser for relativistic particle acceleration

    International Nuclear Information System (INIS)

    Pogorelsky, I.; Ben-Zvi, I.; Kimura, W.D.; Kurnit, N.A.; Kannari, F.

    1994-01-01

    A table-top 20-GW 50-ps CO 2 laser system is under operation at the Brookhaven Accelerator Test Facility. We compare laser performance with model predictions. Extrapolations suggest the possibility of compact terawatt CO 2 laser systems suitable as laser accelerator drivers and for other strong-field applications. Latest progress on an Inverse Cherenkov Laser Accelerator experiment is reported

  15. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  16. Characterization of ceramic powder compacts

    International Nuclear Information System (INIS)

    Yanai, K.; Ishimoto, S.; Kubo, T.; Ito, K.; Ishikawa, T.; Hayashi, H.

    1995-01-01

    UO 2 and Al 2 O 3 powder packing structures in cylindrical powder compacts are observed by scanning electron microscopy using polished cross sections of compacts fixed by low viscosity epoxy resin. Hard aggregates which are not destroyed during powder compaction are observed in some of the UO 2 powder compacts. A technique to measure local density in powder compacts is developed based on counting characteristic X-ray intensity by energy dispersive X-ray analysis (EDX). The local density of the corner portion of the powder compact fabricated by double-acting dry press is higher than that of the inner portion. ((orig.))

  17. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960's to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore's Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail

  18. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1997-01-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at Lawrence Livermore National Laboratory (LLNL) from the early 1960s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400-ns pulses. The Advanced Test Accelerator (ATA) built at Livermore close-quote s Site 300 produced 10,000-Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and Lawrence Berkeley National Laboratory (LBNL). This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high-current, short-pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail. copyright 1997 American Institute of Physics

  19. Electron acceleration by femtosecond laser interaction with micro-structured plasmas

    Science.gov (United States)

    Goers, Andy James

    Laser-driven accelerators are a promising and compact alternative to RF accelerator technology for generating relativistic electron bunches for medical, scientific, and security applications. This dissertation presents three experiments using structured plasmas designed to advance the state of the art in laser-based electron accelerators, with the goal of reducing the energy of the drive laser pulse and enabling higher repetition rate operation with current laser technology. First, electron acceleration by intense femtosecond laser pulses in He-like nitrogen plasma waveguides is demonstrated. Second, significant progress toward a proof of concept realization of quasi-phasematched direct acceleration (QPM-DLA) is presented. Finally, a laser wakefield accelerator at very high plasma density is studied, enabling relativistic electron beam generation with ˜10 mJ pulse energies. Major results from these experiments include: • Acceleration of electrons up to 120 MeV from an ionization injected wakefield accelerator driven in a 1.5 mm long He-like nitrogen plasma waveguide • Guiding of an intense, quasi-radially polarized femtosecond laser pulse in a 1 cm plasma waveguide. This pulse provides a strong drive field for the QPM-DLA concept. • Wakefield acceleration of electrons up to ˜10 MeV with sub-terawatt, ˜10 mJ pulses interacting with a thin (˜200 mum), high density (>1020 cm-3) plasma. • Observation of an intense, coherent, broadband wave breaking radiation flash from a high plasma density laser wakefield accelerator. The flash radiates > 1% of the drive laser pulse energy in a bandwidth consistent with half-cycle (˜1 fs) emission from violent unidirectional acceleration of electron bunches from rest. These results open the way to high repetition rate (>˜kHz) laser-driven generation of relativistic electron beams with existing laser technology.

  20. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  1. Seventh International Accelerator School for Linear Colliders

    CERN Document Server

    Organizers of the Seventh International Accelerator School for Linear Colliders

    2012-01-01

    We are pleased to announce the Seventh International Accelerator School for Linear Colliders. This school is a continuation of the series of schools which began six years ago.  The first school was held in 2006 in Sokendai, Japan, the second in 2007 in Erice, Italy, the third in 2008 in Oakbrook Hills, USA, the fourth in 2009 in Huairou, China, the fifth in 2010 in Villars-sur-Ollon, Switzerland, and the sixth in 2011 in Pacific Grove, USA.   The school is organized by the International Linear Collider (ILC) Global Design Effort (GDE), the Compact Linear Collider (CLIC) and the International Committee for Future Accelerators (ICFA) Beam Dynamics Panel. The school this year will take place at the Radisson Blu Hotel, Indore, India from November 27 to December 8, 2012. It is hosted by the Raja Ramanna Center for Advanced Technology (RRCAT) and sponsored by a number of funding agencies and institutions around the world including the U.S. Department of Energy (DOE), the U.S. National Science...

  2. A review of the radiological safety of the ISIS accelerator - A paper prepared for the advanced reactor safety topical meeting, Orlando, Florida (USA) June 1997

    International Nuclear Information System (INIS)

    Wright, P.

    1997-01-01

    This paper describes the current radiological safety aspects of operation of ISIS accelerator components and spallation targets. Improvements in the design of a new facility with higher power are also suggested for each main component. General comments on the regulatory and organisational aspects are made. Regulation is by European Union and British Legislation. Specific ISIS components described are the ion source, linear accelerator, synchrotron, target station, experimental beam lines and radioactive materials stores. The reliability of tantalum and uranium targets is discussed. Environmental discharges of tritium and other nuclides can become a limiting factor in accelerator operation. Methods of discharge monitoring at ISIS are explained and suggestions for improvements are outlined. Waste accumulation, associated doses and costs are described. 3 refs

  3. Weakly compact operators and interpolation

    OpenAIRE

    Maligranda, Lech

    1992-01-01

    The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. In this survey, we have collected and ordered some of this (partly very new) knowledge. We have also included some comments, remarks and examples. The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. I...

  4. Accelerated product development

    NARCIS (Netherlands)

    Langerak, F.; Seth, J.N.; Malhotra, N.K.

    2011-01-01

    Accelerated product development is a competitive strategy that seeks to reduce the development cycle time of new products. However, there has been little theoretical advancement and empirical model testing in the identification of the conditions under which cycle time reduction is appropriate, the

  5. Compact neutron generator with nanotube ion source

    Science.gov (United States)

    Chepurnov, A. S.; Ionidi, V. Y.; Ivashchuk, O. O.; Kirsanov, M. A.; Kitsyuk, E. P.; Klenin, A. A.; Kubankin, A. S.; Nazhmudinov, R. M.; Nikulin, I. S.; Oleinik, A. N.; Pavlov, A. A.; Shchagin, A. V.; Zhukova, P. N.

    2018-02-01

    In this letter, we report the observation of fast neutrons generated when a positive acceleration potential is applied to an array of orientated carbon nanotubes, which are used as an ion source. The neutrons with energy of 2.45 MeV are generated as a result of D-D fusion reaction. The dependencies of the neutron yield on the value of the applied potential and residual pressure of deuterium are measured. The proposed approach is planned to be used for the development of compact neutron generators.

  6. Angular Speed of a Compact Disc

    Science.gov (United States)

    Sawicki, Mikolaj ``Mik''

    2006-09-01

    A spinning motion of a compact disc in a CD player offers an interesting and challenging problem in rotational kinematics with a nonconstant angular acceleration that can be incorporated into a typical introductory physics class for engineers and scientists. It can be used either as an example presented during the lecture, emphasizing application of calculus, or as a homework assignment that could be handled easily with the help of a spreadsheet, thus eliminating the calculus aspect altogether. I tried both approaches, and the spreadsheet study was favored by my students.

  7. Accelerator for medical applications and electron acceleration by laser plasma

    International Nuclear Information System (INIS)

    Hosokai, Tomonao; Uesaka, Mitsuru

    2006-01-01

    In this article, the current status of radiation therapies in Japan and updated medical accelerators are reviewed. For medical use, there is a strong demand of a compact and flexible accelerator. At present, however, we have only two choices of the S-band linac with one or two rotation axis combined with the multi leaf collimator, or the X-band linac with a rather flexible robotic arm. In addition, the laser plasma cathode that is the second generation of the laser wake-field accelerator (LWFA) is studied as a high-quality electron source for medical use though it is still at the stage of the basic research. The potential of LWFA as medical accelerator near future is discussed based on updated results of laser plasma cathode experiment in Univ. of Tokyo. (author)

  8. High gradient accelerators for linear light sources

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1988-01-01

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs

  9. Ion acceleration from relativistic laser nano-target

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Daniel

    2012-01-06

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the {mu}m range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, {lambda}=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C{sup 6+} energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH{sub 2} targets. Experimental data is presented, where the conversion efficiency into carbon C{sup 6+} (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil

  10. Ion acceleration from relativistic laser nano-target interaction

    International Nuclear Information System (INIS)

    Jung, Daniel

    2012-01-01

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the μm range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, λ=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C 6+ energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH 2 targets. Experimental data is presented, where the conversion efficiency into carbon C 6+ (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil targets at Trident with an

  11. Wake field acceleration experiments

    International Nuclear Information System (INIS)

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics? I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs

  12. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  13. Compact torsatron reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Carreras, B.A.; Lynch, V.E.; Tolliver, J.S.; Sviatoslavsky, I.N.

    1988-05-01

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R 0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R 0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs

  14. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  15. Compact nuclear fuel storage

    International Nuclear Information System (INIS)

    Kiselev, V.V.; Churakov, Yu.A.; Danchenko, Yu.V.; Bylkin, B.K.; Tsvetkov, S.V.

    1983-01-01

    Different constructions of racks for compact storage of spent fuel assemblies (FA) in ''coolin''g pools (CP) of NPPs with the BWR and PWR type reactors are described. Problems concerning nuclear and radiation safety and provision of necessary thermal conditions arising in such rack design are discussed. It is concluded that the problem of prolonged fuel storage at NPPs became Very actual for many countries because of retapdation of the rates of fuel reprocessing centers building. Application of compact storage racks is a promising solution of the problem of intermediate FA storage at NPPs. Such racks of stainless boron steel and with neutron absorbers in the from of boron carbide panels enable to increase the capacity of the present CP 2-2.6 times, and the period of FA storage in them up to 5-10 years

  16. Analysis of laboratory compaction methods of roller compacted concrete

    Science.gov (United States)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  17. Accelerator and fusion research division

    International Nuclear Information System (INIS)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations

  18. Accelerator development for medical applications

    International Nuclear Information System (INIS)

    Tanabe, Eiji

    2007-01-01

    Electron linear accelerators have been widely used in medical applications, especially in radiation therapy for cancer treatment. There are more than 7,000 medical electron linear accelerators in the world, treating over 250,000 patients per day. This paper reviews the current status of accelerator applications and technologies in radiation therapy, and presents the anticipated requirements for advanced radiation therapy technology in the foreseeable future. (author)

  19. Compaction of cereal grain

    OpenAIRE

    Wychowaniec, J.; Griffiths, I.; Gay, A.; Mughal, A.

    2013-01-01

    We report on simple shaking experiments to measure the compaction of a column of Firth oat grain. Such grains are elongated anisotropic particles with a bimodal polydispersity. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical shaking evolve to a dense state with evidence of nematic-like structure at the surface of the confining tube. This is accompanied by an increase in the packing fraction of the grain.

  20. Compact nuclear reactor

    International Nuclear Information System (INIS)

    Juric, S.I.

    1975-01-01

    A compact nuclear reactor of the pressurized-water variety is described which has two separate parts separably engageable for ease of inspection, maintenance and repair. One of the parts is a pressure vessel having an active core and the other of the parts is a closure adapted on its lower surface with an integral steam generator. An integral pump, external pressurizer and control rods are provided which communicate with the active core when engaged to form a total unit. (U.S.)