WorldWideScience

Sample records for advanced coal-based power

  1. Monolithic solid oxide fuel cell technology advancement for coal-based power generation

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-14

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  2. Monolithic solid oxide fuel cell technology advancement for coal-based power generation

    Science.gov (United States)

    1994-05-01

    This project has successfully advanced the technology for MSOFC's for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-sq cm per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  3. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  4. Trends in Global Demonstrations of Carbon Management Technologies to Advance Coal- Based Power Generation With Carbon Capture and Storage

    Science.gov (United States)

    Cohen, K. K.; Plasynski, S.; Feeley, T. J.

    2008-05-01

    conditions with geophysics. Borehole-based technologies include a novel geochemical two-phase reservoir sampler deployed at Otway, and thermal-based measurements at CO2SINK for coupled hydrologic-geochemical reservoir analyses. Seismic, geomechanical, hydrologic, geochemical, and core studies are used in a multidisciplinary approach to assess CO2 trapping and reservoir integrity at In Salah. With estimated lifetime storage of 17 MtCO2 at In Salah, this and other CCS demonstrations provide opportunities to gain commercial experience for advancing coal-based power generation-CCS for carbon management.

  5. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Quarterly technical status report, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-14

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  6. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  7. Comparative Evaluation of Advanced Coal-based Power Plants

    OpenAIRE

    Chen Bernero, Yanzi

    2002-01-01

    Das Ziel dieser Studie ist es, vier fortschrittliche kohlebefeuerte Kraftwerkskonzepte hinsichtlich des Wirkungsgrades, der Stromgestehungskosten und der Emissionen unter vergleichbaren wirtschaftlichen und technischen Bedingungen zu bewerten. Betrachtet werden ein überkritisches Dampfkraftwerk SC 580°C, ein extern befeuertes Kombikraftwerk (HIPPS), ein Kombikraftwerk mit zirkulierender Druckwirbelschichtfeuerung mit vorgeschalteter Teilvergasung (PFBC) und ein Kombikraftwerk mit integrierter...

  8. Identification and quantification of environmental issues of aging coal-based power plant - Case study

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M.; Vyas, P. [Indian Institute of Technology, Kanpur (India). Dept. of Civil Engineering, Environmental Engineering & Management Programme

    2001-12-01

    This research has focused on three environmental issues: (1) fugitive dust emissions; (2) water management; and (3) operational parameters (such as thermal efficiency) of aging coal-based thermal power plants, using a case study. Regarding dust emissions, it was observed that the identified sources are fugitive in nature and contribute to a significant loss of raw material and particulate emissions. These sources include coal dust emissions from a wagon tippler area, ball mill operations, and leakage from the ash hoppers of electrostatic precipitators. In situ measurements of air quality and meteorological measurements were undertaken to estimate the emissions from a wagon tippler area, and a mass balance technique was applied across other operations to estimate the emissions. These fugitive emissions were about 98% of the total particulate emissions and the remaining 2% emissions were from the stack. The losses of water in various unit operations were also examined. The sources of water losses include the clariflocculator, the demineralization plant, and auxiliary water cooling of motors and pumps. The operational parameters such as auxiliary power requirement and thermal efficiency that indirectly affect the environment were also studied. The auxiliary power requirement was estimated as 9 MW against the accepted requirement of 7 MW. The thermal efficiency of the plant was estimated to be 26%, against the acceptable level of 32% of such plants in India. This study suggests that a significant reduction in cost and improvements in the environment could be achieved if the plant could be operated at rated efficiencies. It was observed that nonpoint (fugitive) sources, although significant, are ignored.

  9. Environmental externalities: An ASEAN application to coal-based power generation. Extract

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1992-06-01

    Significant benefits to human health that result from emissions control programs may justify the costs of pollution control policies. Many scientists, economists, risk analysts, and policymakers believe that comparisons of the benefits with the costs of pollution control demonstrate that the US stationary source, air emissions control program is justified. This justification is based upon pronounced benefits to human health, especially from controlling suspended particulates and sulfur compounds. Market decisions are usually made on the basis of a consideration of traditional costs such as capital, operating and maintenance, fuel costs, and fixed charges. Social costs, which could be significant, are not incorporated explicitly into such decisions. These social costs could result in a net reduction in the welfare of individuals, and of society as a whole. Because these social costs and their effects are not represented in the price of energy, individual have no way to explicitly value them; hence, they remain unaccounted for in market decisions. By accounting for external costs, the selection of energy sources and production of energy products can lead to and equilibrium, where the total cost of energy and energy products, together with resulting social costs, can be brought to an economic minimum. The concept of an air emissions control program is of interest to the ASEAN countries (Brunei, Indonesia, Malaysia, the Philippines, Singapore, and Thailand) and their governments, especially if such a program could be justified in cost-benefit terms and shown to be directly applicable to ASEAN conditions. It is the intent of the effort described herein to demonstrate that technical options are available to control emissions from coal-based, electric power plants and that that costs of these options may be justified in cost-benefit terms.

  10. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  11. Environmental externalities: Applying the concept to Asian coal-based power generation

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1993-03-01

    This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies.

  12. Environmental externalities: An ASEAN application to coal-based power generation. [Association of South East Asian Nations (ASEAN)

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1992-06-01

    Significant benefits to human health that result from emissions control programs may justify the costs of pollution control policies. Many scientists, economists, risk analysts, and policymakers believe that comparisons of the benefits with the costs of pollution control demonstrate that the US stationary source, air emissions control program is justified. This justification is based upon pronounced benefits to human health, especially from controlling suspended particulates and sulfur compounds. Market decisions are usually made on the basis of a consideration of traditional costs such as capital, operating and maintenance, fuel costs, and fixed charges. Social costs, which could be significant, are not incorporated explicitly into such decisions. These social costs could result in a net reduction in the welfare of individuals, and of society as a whole. Because these social costs and their effects are not represented in the price of energy, individual have no way to explicitly value them; hence, they remain unaccounted for in market decisions. By accounting for external costs, the selection of energy sources and production of energy products can lead to and equilibrium, where the total cost of energy and energy products, together with resulting social costs, can be brought to an economic minimum. The concept of an air emissions control program is of interest to the ASEAN countries (Brunei, Indonesia, Malaysia, the Philippines, Singapore, and Thailand) and their governments, especially if such a program could be justified in cost-benefit terms and shown to be directly applicable to ASEAN conditions. It is the intent of the effort described herein to demonstrate that technical options are available to control emissions from coal-based, electric power plants and that that costs of these options may be justified in cost-benefit terms.

  13. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcos L.S. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Development Department of Touristic Opportunities, Catarinense Institute of Environmental Research and Human Development – IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Marostega, Fabiane; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Saikia, Binoy K. [Coal Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006 (India); Waanders, Frans B. [School of Chemical and Minerals Engineering, North West University (Potchefstroom campus), Potchefstroom 2531 (South Africa); DaBoit, Kátia [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Baruah, Bimala P. [Coal Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006 (India); and others

    2014-01-01

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles. - Highlights: • We research changes in the level of ultrafine and nanoparticles about coal–ash quality. • Increasing dates will increase human health quality in this Indian coal area. • Welfare effects depend on ex-ante or ex-post assumptions about

  14. Advanced Power Plant Development and Analysis Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  15. Advanced Power Plant Development and Analyses Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  16. Advanced Power Electronics Components

    Science.gov (United States)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  17. Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India.

    Science.gov (United States)

    Bajpai, Rajesh; Upreti, Dalip K; Nayaka, S; Kumari, B

    2010-02-15

    The lichen diversity assessment carried out around a coal-based thermal power plant indicated the increase in lichen abundance with the increase in distance from power plant in general. The photosynthetic pigments, protein and heavy metals were estimated in Pyxine cocoes (Sw.) Nyl., a common lichen growing around thermal power plant for further inference. Distributions of heavy metals from power plant showed positive correlation with distance for all directions, however western direction has received better dispersion as indicated by the concentration coefficient-R(2). Least significant difference analysis showed that speed of wind and its direction plays a major role in dispersion of heavy metals. Accumulation of Al, Cr, Fe, Pb and Zn in the thallus suppressed the concentrations of pigments like chlorophyll a, chlorophyll b and total chlorophyll, however, enhanced the level of protein. Further, the concentrations of chlorophyll contents in P. cocoes increased with the decreasing the distance from the power plant, while protein, carotenoid and phaeophytisation exhibited significant decrease.

  18. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization; Bilanz natuerlicher Radionuklide in der Braunkohleverstromung und Unbedenklichkeit bei der Verwendung von Rueckstaenden und Nebenprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger [IAF-Radiooekologie GmbH, Radeberg (Germany)

    2017-04-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  19. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  20. Calculating the Energy Cost of CO2 Removal in a Coal Based Gas Turbine Fuel Cell Hybrid Power Generation System with an Isolated Anode Stream

    Energy Technology Data Exchange (ETDEWEB)

    Vanosdol, J G; Gemmen, R S; Liese, E A

    2007-10-01

    In recent years there has been significant interest in identifying carbon capturing technologies that can be applied to fossil fuel power generation plants.CO2 capture technologies seek to reduce the amount of CO2 that would normally be emitted into the atmosphere from the daily operation of these plants. In terms of system efficiency and operating costs, this carbon capture is expensive. Further, the additional equipment that would be used to capture CO2 emissions greatly adds to the complexity of the system. There has also been significant interest in coal based gas turbine fuel cell hybrid power plants. A hybrid power plant can have much greater system efficiency than a normal gas turbine power plant because the heat that is normally unused in a standalone solid oxide fuel cell (SOFC) is recovered and used to drive a power producing turbine. It is thought that the increased system efficiency of the hybrid system might compensate for the increased expense of performing carbon capture. In order to provide some analytical insight on this tradeoff we present a 100 MW class coal fired gas turbine SOFC hybrid power generation system. The hybrid system operates at a pressure ratio of 6, and uses heat recuperation and cathode air recirculation to control the SOFC inlet temperature and the temperature change across the SOFC. A carbon capture scheme is added to this system in order to calculate the relative energy cost in terms of system efficiency due to CO2 compression. The carbon capture is performed by burning the unused fuel from the SOFC in an isolated anode stream using pure O2 injection. The resulting heat that is generated from this process is then used to drive a secondary turbine that is placed in the anode exhaust stream where more work is extracted. With an isolated anode stream, the products of combustion from this secondary combustion process are mostly water and carbon dioxide. The water by-product is

  1. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  2. Advanced stellarator power plants

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  3. Advanced stellarator power plants

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  4. Technologies for coal based hydrogen and electricity co-production power plants with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, C.G.; Tzimas, E.; Peteves, S.D.

    2009-07-01

    Integrated Gasification Combined Cycle (IGCC) plants allow the combination of the production of hydrogen and electricity because coal gasification process produces a syngas that can be used for the production of both commodities. A hydrogen and electricity power plant has been denominated as HYPOGEN. This report starts by reviewing the basics of the coal gasification process and continues by trying to map all the technological options currently available in the market as well as possible future trends that can be included in a HYPOGEN system. Besides, it offers an overview of the operating conditions and outputs of each process in order to provide the modeller with a useful information tool enabling an easier analysis of compatibilities and implementation of the model. 119 refs., 53 figs., 38 tabs.

  5. Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Radisav Vidic; David Dzombak; Ming-Kai Hsieh; Heng Li; Shih-Hsiang Chien; Yinghua Feng; Indranil Chowdhury; Jason Monnell

    2009-06-30

    This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown

  6. Impact Assessment of Atmospheric Dust on Foliage Pigments and Pollution Resistances of Plants Grown Nearby Coal Based Thermal Power Plants.

    Science.gov (United States)

    Hariram, Manisha; Sahu, Ravi; Elumalai, Suresh Pandian

    2017-09-06

    Plant species grown in the vicinity of thermal power plants (TPP) are one of the immobile substrates to sink most of the pollutants emitted from their stacks. The continuous exposure of toxic pollutants to these plants may affect their resistances and essential biochemical's concentrations. In the present study, we estimated the impact of dust load generated by a TPPs to plant's dust retention capacity and pollution resistances (APTI and API). The observed ambient air quality index (AQI) showed that the surroundings of TPPs are in the severe air pollution category. Observed AQI was greater than 100 in the surrounding area of TPP. The mean dust load on plant foliage was significantly greater in the polluted site compared with the control site: 4.45 ± 1.96 versus 1.38 ± 0.41 mg cm(-2). Nearby, TPP highest and lowest dust load were founded in F. benghalensis (7.58 ± 0.74) and F. religiosa (2.25 ± 0.12 mg cm(-2)) respectively. Analysis revealed the strong negative correlation between dust load and essential pigments of foliage, such as chlorophyll content, carotenoids, pH of foliage extract, and relative water content. Conversely, strong positive correlation was observed with the ascorbic acid content of plant species. Correlation and percentage change analysis in ascorbic acid content for the polluted site against the control site showed the adverse impact on plants due to dust load. Based on their responses to dust pollution, A. scholaris, P. longifolia, and M. indica were observed as most suitable plant species. Estimation of DRC, chlorophyll a/b ratio, APTI and API revealed the A. scholaris, F. benghalensis, P. longifolia, and M. indica as the most suitable plant species for green belt formation. The high gradation was obtained in A. scholaris, F. benghalensis, P. longifolia, and M. indica for opted parameters and showed their most suitability for green belt formation. Salient features of the present study provide useful evidences to estimate the

  7. Examination of the effect of system pressure ratio and heat recuperation on the efficiency of a coal based gas turbine fuel cell hybrid power generation system with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    VanOsdol, J.G.; Gemmen, R.S.; Liese, E.A

    2008-06-01

    This paper examines two coal-based hybrid configurations that employ separated anode and cathode streams for the capture and compression of CO2. One configuration uses a standard Brayton cycle, and the other adds heat recuperation ahead of the fuel cell. Results show that peak efficiencies near 55% are possible, regardless of cycle configuration, including the cost in terms of energy production of CO2 capture and compression. The power that is required to capture and compress the CO2 is shown to be approximately 15% of the total plant power.

  8. Advanced aircraft electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Segrest, J.D.

    1981-01-01

    The role of electric energy in both military and commercial aircraft increases in importance with every advancement in airframe performance and avionic technology. Microcircuits and volatile memories impact power continuity and quality, digital flight control and stability augmentation require high reliability. This paper presents the system concept, hardware development and status of the Navy program.

  9. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  10. Seca Coal-Based Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Alinger

    2008-05-31

    This report summarizes the progress made during the August 1, 2006 - May 31, 2008 award period under Cooperative Agreement DE-FC26-05NT42614 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled 'SECA Coal Based Systems'. The initial overall objective of this program was to design, develop, and demonstrate multi-MW integrated gasification fuel cell (IGFC) power plants with >50% overall efficiency from coal (HHV) to AC power. The focus of the program was to develop low-cost, high performance, modular solid oxide fuel cell (SOFC) technology to support coal gas IGFC power systems. After a detailed GE internal review of the SOFC technology, the program was de-scoped at GE's request. The primary objective of this program was then focused on developing a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). There were two initial major objectives in this program. These were: (1) Develop and optimize a design of a >100 MWe integrated gasification fuel cell (IGFC) power plant; (2) Resolve identified barrier issues concerning the long-term economic performance of SOFC. The program focused on designing and cost estimating the IGFC system and resolving technical and economic barrier issues relating to SOFC. In doing so, manufacturing options for SOFC cells were evaluated, options for constructing stacks based upon various cell configurations identified, and key performance characteristics were identified. Key factors affecting SOFC performance degradation for cells in contact with metallic interconnects were be studied and a fundamental understanding of associated mechanisms was developed using a fixed materials set. Experiments and modeling were carried out to identify key processes/steps affecting cell performance degradation under SOFC operating conditions. Interfacial microstructural and elemental changes were characterized, and their relationships to observed

  11. Advancing Concentrating Solar Power Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  12. Advanced Accessory Power Supply Topologies

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.

    2010-06-15

    This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power

  13. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  14. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2004-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic

  15. Characterization and supply of coal based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  16. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  17. Expert assessment of advanced power sources

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C.L. [March Scientific Ltd., Dunrobin, ON (Canada)

    2007-07-15

    The technology trends to year 2020 in advanced power sources were identified by Defence Research and Development Canada (DRDC) in a comprehensive technical report dated August 2001, in which research and development opportunities were prioritized. However, due to heightened national security adopted by the Canadian Department of National Defence (DND) following September 11, 2001, developments in power source technology have proceeded at an accelerated pace. In response to this rapid development in the field of advanced power sources, the 2001 report has been updated to reexamine the advanced power source area. This report described the results of this update. Eight power source technologies were selected for study, notably batteries; fuel cells; microengines; pulse power; energy harvesting; small nuclear reactors; radioisotopic power sources; hybrid systems and power management. A questionnaire was distributed to technical experts on each power source technology in order to gather information. The experts were asked specifically what role nanotechnology is expected to play in the development of advanced power sources. March Scientific Ltd. also surveyed the various power source areas independently. The ability of the various power sources to meet the requirements of important military applications was analyzed with reference to total system weight, state-of-development and supply logistics. A Technology Readiness Level document was subsequently prepared for each of the power source technology areas. 62 refs., 21 tabs., 16 figs.

  18. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    Energy Technology Data Exchange (ETDEWEB)

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity

  19. Advanced Coordinating Control System for Power Plant

    Institute of Scientific and Technical Information of China (English)

    WU Peng; WEI Shuangying

    2006-01-01

    The coordinating control system is popular used in power plant. This paper describes the advanced coordinating control by control methods and optimal operation, introduces their principals and features by using the examples of power plant operation. It is wealthy for automation application in optimal power plant operation.

  20. Advanced Vehicle and Power Initiative

    Science.gov (United States)

    2010-07-29

    bases.) Qualifying advanced propulsion vehicles for this initiative are battery electric vehicles (BEV), hybrid electric vehicles (HEV), hybrid...hydraulic vehicles (HHV), plug-in hybrid electric vehicles (PHEV) and fuel cell electric vehicles (FCEV). The AVPI integrates use of renewable energy at

  1. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  2. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  3. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  4. Environmental externalities: Applying the concept to Asian coal-based power generation. [Includes external environmental and societal costs and methods of evaluating them

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1993-03-01

    This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies.

  5. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... to be applied, especially at low power levels where gating loss becomes a significant percentage of the total loss budget. Various resonant gate drive methods have been proposed to address this design challenge, with varying size, cost, and complexity. This dissertation presents a self-oscillating resonant gate...

  6. Saving Energy Through Advanced Power Strips (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  7. Advanced power sources for space missions

    Science.gov (United States)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  8. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  9. Advanced IGCC technology for competitive power generation

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, H.-R.; Ullrich, N.; Haupt, G.; Zimmermann, G.; Pruschek, R.; Oeljeklaus, G. [Krupp Uhde GmbH (Germany)

    1998-12-31

    The paper reports interim results of a comprehensive ongoing study of potential for development funded by the European Commission. First, the status of the advanced IGCC technology is described. This IGCC 98 concept, including what has been achieved in 1998, results in net station efficiencies around 52% according to the site conditions prevailing in Denmark, where one of the world`s most modern pulverised-coal-fired power plants (design efficiency 47%) is currently under construction. The advanced IGCC station will be equipped with PRENFLO gasification developed by Krupp and a Siemens Model V94.3A gas turbine-generator. The second section depicts the results of a detailed cost estimate based on Western European conditions and aimed at clearly lower specific capital investment for an IGCC power plant. This cost estimate is based mainly on bidding information from competent manufacturers and suggests that the target purchase price of 1,100 US dollars per kW installed capacity is likely to be verified in the near future. One main factor contributing to achievement of this figure is the tremendous increase in net power output to about 450 MW with nearly the same absolute capital investment as for IGCC plants designed previously. Consequently, this permits IGCC generating costs surely lower than those of a comparable pulverised-coal-fired (PCF) steam power plant, so that the advanced IGCC stations described in this paper can be regarded as truly competitive. 2 refs., 3 figs., 3 tabs.

  10. The NASA Advanced Space Power Systems Project

    Science.gov (United States)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  11. Advanced coal-fired power plant technology

    Energy Technology Data Exchange (ETDEWEB)

    Klauke, F. [Babcock Borsig Power Energy GmbH (Germany)

    2001-07-01

    This paper presents the joint efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700{degree}C PF Power Plant'. Net efficiences of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700{degree}C. The principal efforts are based on development of creep resistent nickel-based materials named super-alloys for the hottest areas of the water/steam cycle. The Advanced 700{degree}C PF Power Plant project will improve the competitiveness of coal-fired power generation. Furthermore, it will provide a major reduction of CO{sub 2} from coal-fired power plants in the range of 15% from the best PF power plants presently and up to 40% from older plants. The demonstration programme will leave the possibility of any plant output between 400 and 1000 MW. The project will run to the end of 2003. 8 figs.

  12. Recent Advances in Ocean Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Kang-Heon Lee

    2015-10-01

    Full Text Available In this paper, recent advances in Ocean Nuclear Power Plants (ONPPs are reviewed, including their general arrangement, design parameters, and safety features. The development of ONPP concepts have continued due to initiatives taking place in France, Russia, South Korea, and the United States. Russia’s first floating nuclear power stations utilizing the PWR technology (KLT-40S and the spar-type offshore floating nuclear power plant designed by a research group in United States are considered herein. The APR1400 and SMART mounted Gravity Based Structure (GBS-type ONPPs proposed by a research group in South Korea are also considered. In addition, a submerged-type ONPP designed by DCNS of France is taken into account. Last, issues and challenges related to ONPPs are discussed and summarized.

  13. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    ZYGARLICKE, CHRISTOPHER J; MCCOLLOR, DONALD P; KAY, JOHN P; SWANSON, MICHAEL L

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems.

  14. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y. [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T. [Aston Univ. Birmingham (United Kingdom); Beckman, D. [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  15. Advances in industrial high-power lasers

    Science.gov (United States)

    Schlueter, Holger

    2005-03-01

    Four major types of laser sources are used for material processing. Excluding Excimer lasers, this paper focuses on advances in High Power CO2 lasers, Solid State Lasers and Diode Lasers. Because of their unrivaled cost to brightness relationship the fast axial flow CO2 laser remains unrivaled for flat-sheet laser cutting. Adding approximately a kW of output power ever four years, this laser type has been propelling the entire sheet metal fabrication industry for the last two decades. Very robust, diffusion cooled annular discharge CO2 lasers with 2kW output power have enabled robot mounted lasers for 3D applications. Solid State Lasers are chosen mainly because of the option of fiber delivery. Industrial applications still rely on lamp-pumped Nd:YAG lasers with guaranteed output powers of 4.5 kW at the workpiece. The introduction of the diode pumped Thin Disc Laser 4.5 kW laser enables new applications such as the Programmable Focus Optics. Pumping the Thin Disc Laser requires highly reliable High Power Diode Lasers. The necessary reliability can only be achieved in a modern, automated semiconductor manufacturing facility. For Diode Lasers, electro-optical efficiencies above 65% are as important as the passivation of the facets to avoid Burn-In power degradation.

  16. Advances in high power semiconductor diode lasers

    Science.gov (United States)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  17. Advanced power assessment for Czech lignite. Task 3.6, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is a challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.

  18. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating multiple stack building

  19. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating

  20. Advanced coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hebel, G.; Weirich, P.H.

    1988-02-01

    Reconstruction of coal-fired power plants under the aspects of higher economic efficiency and lower emissions has become more interesting as the petroleum and natural gas reserves have become shorter. A number of advanced concepts have been presented in the last few years and tested in experimental facilities, pilot plants and demonstration plants. If construction is envisaged within the next five years, better steam processes and coal gas turbines should be employed. Supercharged steam generators, which will bring about further improvements, will be available by the mid-Nineties.

  1. SECA Coal-Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pierre, Joseph

    2010-09-10

    This report documents the results of Cooperative Agreement DE-FC26-05NT42613 between Siemens Energy and the U.S. Department of Energy for the period October 1, 2008 through September 30, 2010. The Phase I POCD8R0 stack test was successfully completed as it operated for approximately 5,300 hrs and achieved all test objectives. The stack test article contained twenty-four 75 cm active length Delta8 scandiastabilized zirconia cells. Maximum power was approximately 10 kWe and the SOFC generator demonstrated an availability factor of 85% at 50% power or greater. The Phase II POCD8R1 stack test operated for approximately 410 hrs before being aborted due to a sudden decrease in voltage accompanied by a rapid increase in temperature. The POCD8R1 test article contained forty-eight 100 cm active length Delta8 scandiastabilized zirconia cells arranged in an array of six bundles, with each bundle containing eight cells. Cell development activities resulted in an approximate 100% improvement in cell power at 900°C. Cell manufacturing process improvements led to manufacturing yields of greater than 40% for the Delta8 cells. Delta8 cells with an active length of 100 cm were successfully manufactured as were cells with a seamless closed end. A pressurized cell test article was assembled, installed into the pressurized test facility and limited pressurized testing conducted. Open circuit voltage tests were performed at one and three atmospheres at 950°C were in agreement with the theoretical increase in the Nernst potential. Failed guard heaters precluded further testing. The SOFC analytical basis for the baseline system was validated with experimental data. Two system configurations that utilize a pressurized SOFC design with separated anode and cathode streams were analyzed. System efficiencies greater than 60% were predicted when integrating the separated anode and cathode stream module configuration with a high efficiency catalytic gasifier.

  2. SECA Coal-Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Pierre

    2010-09-01

    This report documents the results of Cooperative Agreement DE-FC26-05NT42613 between Siemens Energy and the U.S. Department of Energy for the period October 1, 2008 through September 30, 2010. The Phase I POCD8R0 stack test was successfully completed as it operated for approximately 5,300 hrs and achieved all test objectives. The stack test article contained twenty-four 75 cm active length Delta8 scandia-stabilized zirconia cells. Maximum power was approximately 10 kWe and the SOFC generator demonstrated an availability factor of 85% at 50% power or greater. The Phase II POCD8R1 stack test operated for approximately 410 hrs before being aborted due to a sudden decrease in voltage accompanied by a rapid increase in temperature. The POCD8R1 test article contained forty-eight 100 cm active length Delta8 scandia-stabilized zirconia cells arranged in an array of six bundles, with each bundle containing eight cells. Cell development activities resulted in an approximate 100% improvement in cell power at 900°C. Cell manufacturing process improvements led to manufacturing yields of greater than 40% for the Delta8 cells. Delta8 cells with an active length of 100 cm were successfully manufactured as were cells with a seamless closed end. A pressurized cell test article was assembled, installed into the pressurized test facility and limited pressurized testing conducted. Open circuit voltage tests were performed at one and three atmospheres at 950°C were in agreement wi th the theoretical increase in the Nernst potential. Failed guard heaters precluded further testing. The SOFC analytical basis for the baseline system was validated with experimental data. Two system configurations that utilize a pressurized SOFC design with separated anode and cathode streams were analyzed. System efficiencies greater than 60% were predicted when integrating the separated anode and cathode stream module configuration with a high efficiency catalytic gasifier.

  3. Advanced power electronics and electric machinery program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  4. Prospect of Coal Based IGCC to Meet the Clean Energy Challenge

    Directory of Open Access Journals (Sweden)

    Md. Kamruzzaman

    2014-12-01

    Full Text Available The development of a country is nearly proportional to the average per person energy consumption rate, which is very low in our country. However, the rate of average energy consumption is increasing day by day throughout the world. With increasing the production of energy, the problem of environment pollution from the power generation sources and energy efficiency becomes more imperative. Coal is the major source of primary energy of the world, however, the energy efficiency of coal based power plant is low, and also it significantly polluted the environment. Therefore, to improve the energy efficiency and reduce the pollution from coal based power plant is an important issue to discuss. In this paper, the primary reserves of energy throughout the world are discussed. Integrated gasification combined cycle (IGCC is a latest technology used to improve the performance of coal based power plant. The process of IGCC and the present condition of IGCC throughout the world is discussed. Finally the advantages of IGCC and necessity of moving towards IGCC from convention coal based power plant is discussed in terms of cost, efficiency and environmental issues.

  5. Advanced superconducting power cable for MV urban power supply

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [Nexans Deutschland GmbH, Hannover (Germany); Merschel, Frank [RWE Deutschland AG, Essen (Germany); Noe, Mathias [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-07-01

    In recent years the technology of superconducting power cable systems has progressed such that the technical hurdles preparing for commercial applications have been mastered. Several field tests of large scale prototypes for the applications of superconducting cables as well as superconducting fault current limiters have been successfully accomplished and the technology of such systems is ready for commercialization. The presentation will give a detailed overview of the German AmpaCity project. An overview will be given on the development, manufacturing and installation of the 10 kV, 40 MVA HTS system consisting of a fault current limiter and of a 1 km cable in the city of Essen. Since it is the first time that a one kilometer HTS cable system is installed together with an HTS fault current limiter in a real grid application between two substations within a city center area, AmpaCity serves as a lighthouse project. In addition it is worldwide the longest installed HTS cable system so far. It is expected that relatively large technical advances will be made in the future of the comparatively new HTS technology, which in turn will bring associated cost reductions. For this reason, the AmpaCity pilot project in the downtown area of Essen in Germany will be an important step on the way to achieving more widespread application of HTS technology.

  6. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bennion, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeVoto, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moreno, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rugh, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waye, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  7. Advanced power electronics converters PWM converters processing AC voltages

    CERN Document Server

    dos Santos, Euzeli

    2014-01-01

    This book covers power electronics, in depth, by presenting the basic principles and application details, which can be used both as a textbook and reference book.  Introduces a new method to present power electronics converters called Power Blocks Geometry. Applicable for courses focusing on power electronics, power electronics converters, and advanced power converters. Offers a comprehensive set of simulation results to help understand the circuits presented throughout the book

  8. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  9. Advanced Space Power Systems (ASPS): Advanced Energy Storage Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of high specific energy devices will enable NASA’s future robotic and human-exploration missions.  The need for advances in energy storage...

  10. Advanced Power Technology Development Activities for Small Satellite Applications

    Science.gov (United States)

    Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew; hide

    2017-01-01

    NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.

  11. Interagency Advanced Power Group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  12. Interagency Advanced Power Group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  13. Power-efficient computer architectures recent advances

    CERN Document Server

    Själander, Magnus; Kaxiras, Stefanos

    2014-01-01

    As Moore's Law and Dennard scaling trends have slowed, the challenges of building high-performance computer architectures while maintaining acceptable power efficiency levels have heightened. Over the past ten years, architecture techniques for power efficiency have shifted from primarily focusing on module-level efficiencies, toward more holistic design styles based on parallelism and heterogeneity. This work highlights and synthesizes recent techniques and trends in power-efficient computer architecture.Table of Contents: Introduction / Voltage and Frequency Management / Heterogeneity and Sp

  14. Advanced Power Transmission of the Future

    OpenAIRE

    Rabinowitz, Mario

    2003-01-01

    Electric power is a vital ingredient of modern society. This article is written to provide an insight into the physics and engineering that go into the transmission of electric power and its potential modernization. Topics covered will be Transmission and Distribution, Comparing Overhead and Underground Delivery, Pros and Cons of Underground Delivery, Superconducting Transmission, Cryorisistive Delivery, Hyperconductivity, and Metal-Plated Graphite Fibers.

  15. High power infrared QCLs: advances and applications

    Science.gov (United States)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  16. Advanced materials for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  17. Advancement Of Tritium Powered Betavoltaic Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coughlin, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Neikirk, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fisher, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  18. Advanced photovoltaic power system technology for lunar base applications

    Science.gov (United States)

    Brinker, David J.; Flood, Dennis J.

    1992-01-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  19. Results of Laboratory Testing of Advanced Power Strips: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  20. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  1. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth [Wheeling, WV; Plucinski, Janusz Wladyslaw [Glen Dale, WV

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  2. Advanced LVDC Electrical Power Architectures and Microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Vasquez, Juan Carlos; Guerrero, Josep M.

    2014-01-01

    the high set goals for share of renewable energy sources (RESs) in satisfying total demand. RESs operate either natively at DC or have a DC link in the heart of their power electronic interface, whereas the end point connection of electronic loads, batteries and fuel cells is exclusively DC. Therefore......Current trends indicate that worldwide electricity distribution networks are experiencing a transformation towards direct-current (DC) at both generation and consumption level. This tendency is powered by the outburst of various electronic loads and, at the same time, with the struggle to meet......, merging these devices into dedicated DC distribution architectures through corresponding DC-DC converters arises as an attractive option not only in terms of enhancing efficiency due to reduction of conversion steps, but also for having power quality independence from the utility mains. These kinds...

  3. Expert Assessment of Advanced Power Sources

    Science.gov (United States)

    2007-07-01

    Batteries had to be air lifted from US depots to Iraq and round the clock production of new inventories had to be initiated with six manufacturers...phones and laptop computers and military interest as a high energy density power source for the S MTI Micro, Toshiba and Samsung . Under the DARPA...batteries are fully developed and are already in the CF inventory . The energy density of these batteries falls far short of the 600 Wh/kg target for

  4. Model-free adaptive control of advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  5. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy......On-state collector-emitter voltage (VCE) is a good indicator to determine the wear-out condition of power device modules. Further, it is a one of the Temperature Sensitive Electrical Parameters (TSEPs) and thus can be used for junction temperature estimation. In this paper, the junction temperature...

  6. Model-free adaptive control of advanced power plants

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  7. Improving Advanced Inverter Control Convergence in Distribution Power Flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, Adarsh; Palmintier, Bryan; Ding, Fei; Mather, Barry; Baggu, Murali

    2016-11-21

    Simulation of modern distribution system powerflow increasingly requires capturing the impact of advanced PV inverter voltage regulation on powerflow. With Volt/var control, the inverter adjusts its reactive power flow as a function of the point of common coupling (PCC) voltage. Similarly, Volt/watt control curtails active power production as a function of PCC voltage. However, with larger systems and higher penetrations of PV, this active/reactive power flow itself can cause significant changes to the PCC voltage potentially introducing oscillations that slow the convergence of system simulations. Improper treatment of these advanced inverter functions could potentially lead to incorrect results. This paper explores a simple approach to speed such convergence by blending in the previous iteration's reactive power estimate to dampen these oscillations. Results with a single large (5MW) PV system and with multiple 500kW advanced inverters show dramatic improvements using this approach.

  8. Advanced radioisotope power source options for Pluto Express

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, M.L. [California Inst. of Technology, Pasadena, CA (United States). Jet Propulsion Lab.

    1995-12-31

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

  9. SECA Coal-Based Systems - LGFCS

    Energy Technology Data Exchange (ETDEWEB)

    Goettler, Richard

    2014-01-31

    LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. This Department of Energy Solid-State Energy Conversion Alliance (SECA) program has been aimed at achieving further cell and stack technical advancements and assessing the readiness of the LGFCS SOFC stack technology to be scaled to larger-scale demonstrations as a path to commercialization. Significant progress was achieved in reducing to practice a higher performance and lower cost cell technology, identifying and overcoming degradation mechanisms, confirming the structural capability of the porous substrate for reliability, maturing the strip design for improved flow to allow high fuel utilization operation while minimizing degradation mechanisms and obtaining full scale block testing at 19 kW under representative conditions for eventual product and meeting SECA degradation metrics. The SECA program has played a key role within the overall LGFCS development program in setting the foundation of the technology to justify the progression of the technology to the next level of technology readiness testing.

  10. Advanced and intelligent control in power electronics and drives

    CERN Document Server

    Blaabjerg, Frede; Rodríguez, José

    2014-01-01

    Power electronics and variable frequency drives are continuously developing multidisciplinary fields in electrical engineering, and it is practically not possible to write a book covering the entire area by one individual specialist. Especially by taking account the recent fast development in the neighboring fields like control theory, computational intelligence and signal processing, which all strongly influence new solutions in control of power electronics and drives. Therefore, this book is written by individual key specialist working on the area of modern advanced control methods which penetrates current implementation of power converters and drives. Although some of the presented methods are still not adopted by industry, they create new solutions with high further research and application potential. The material of the book is presented in the following three parts: Part I: Advanced Power Electronic Control in Renewable Energy Sources (Chapters 1-4), Part II: Predictive Control of Power Converters and D...

  11. Software Framework for Advanced Power Plant Simulations

    Energy Technology Data Exchange (ETDEWEB)

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  12. Advanced solutions in power systems HVDC, facts, and artificial intelligence

    CERN Document Server

    Liu, Chen-Ching; Edris, Abdel-Aty

    2016-01-01

    Provides insight on both classical means and new trends in the application of power electronic and artificial intelligence techniques in power system operation and control This book presents advanced solutions for power system controllability improvement, transmission capability enhancement and operation planning. The book is organized into three parts. The first part describes the CSC-HVDC and VSC-HVDC technologies, the second part presents the FACTS devices, and the third part refers to the artificial intelligence techniques. All technologies and tools approached in this book are essential for power system development to comply with the smart grid requirements.

  13. Cogeneration power plant concepts using advanced gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Huettenhofer, K.; Lezuo, A. [Siemens Power Generation, Erlangen (Germany)

    2001-07-01

    Cogeneration of heat and power (CHP) is undeniably the environmentally most favourable way of making efficient use of energy in the power generation industry. Cogeneration is also particularly appreciated by political decision makers because of its high yield from primary energy sources, and thus its contribution to the protection of the environment and the conservation of resources. Advanced gas turbines, along with an intelligent power plant design consisting of pre-engineered, modular power plant items, will help cogeneration to play an important role in future energy markets also from an economic point of view. (orig.)

  14. Apparatus for advancing a wellbore using high power laser energy

    Science.gov (United States)

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  15. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  16. Current Advanced Power Generation Technologies and Options for China (1)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In China,electricity consumption keeps growing at a high speed and installed capacity will be doubled in the next fifteen years.As the world second CO2 producer and also a member of Kyoto Protocol,how to balance energy needs and environmental protection responsibility in the future is a serious problem for China.As such,there are a number of technology choices for today's electric power generation.After discussing the current advanced power generation technologies based on Chinese energy structure and current conditions of power industry,this paper gives a reference to the technology options for China in the future.

  17. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems

    Science.gov (United States)

    Hennessy, Michael J.

    2014-01-01

    NASA is investigating advanced turboelectric aircraft propulsion systems that use superconducting motors to drive multiple distributed turbofans. Conventional electric motors are too large and heavy to be practical for this application; therefore, superconducting motors are required. In order to improve aircraft maneuverability, variable-speed power converters are required to throttle power to the turbofans. The low operating temperature and the need for lightweight components that place a minimum of additional heat load on the refrigeration system open the possibility of incorporating extremely efficient cryogenic power conversion technology. This Phase II project is developing critical components required to meet these goals.

  18. FY2009 Annual Progress Report for Advanced Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Susan A. [Dept. of Energy (DOE), Washington DC (United States)

    2010-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  19. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  20. Results of Laboratory Testing of Advanced Power Strips

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  1. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1987-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  2. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  3. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  4. Center for Space Power and Advanced Electronics, Auburn University

    Science.gov (United States)

    Deis, Dan W.; Hopkins, Richard H.

    1991-01-01

    The union of Auburn University's Center for Space Power and Advanced Electronics and the Westinghouse Science and Technology Center to form a Center for the Commercial Development of Space (CCDS) is discussed. An area of focus for the CCDS will be the development of silicon carbide electronics technology, in terms of semiconductors and crystal growth. The discussion is presented in viewgraph form.

  5. Interagency Advanced Power Group -- Steering group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-18

    This document contains the draft meeting minutes of the Steering Group of the Interagency Advanced Power Group. Included are the discussions resulting from the presentation of working group reports and the results of a discussion of IAPG policies and procedures. In the appendix are the reports of the following working groups: Electrical, Mechanical, Solar, and Systems.

  6. Energy survey of the coal based sponge iron industry

    Directory of Open Access Journals (Sweden)

    Nishant R. Dey

    2015-09-01

    Full Text Available A survey is made on a typical coal based Indian sponge iron plant of capacity 500 t/d in order to identify the largest energy losses and find ways to increase the efficiency. The required data are obtained by measurements or taken from production industries. The process efficiency is about 51.31%. The energy balances of the process show that the gap between theoretical and actual energy consumption is 45.2% and the exhausts make up the largest loss of 43.5%. A huge amount of waste gas is generated during operation and substantial part of it associated with the waste gas, remains unutilized. The energy content in the exhaust gases which is found at useful temperature can be used in three different ways: by internal use; by external energy supply; or by power generation. The four possible potential areas are identified where energy is being lost and untapped. The largest improvements would be made by design modifications adopting a novel energy conservation scenario by process integration and thereby decreasing the coal and water consumption and by decreasing the cold fresh air.

  7. Advanced Integrated Power and Attitude Control System (IPACS) study

    Science.gov (United States)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  8. Advanced EMS and its trial operation in Shanghai power system

    Institute of Scientific and Technical Information of China (English)

    LU Qiang; HE GuangYu; MEI ShengWei; SUN YingYun; RUAN QianTu; WANG Wei; ZHANG WangJun; YU XuFeng

    2008-01-01

    To meet the demand of high stability, high quality, and low losses of power systems, the advanced energy management system (AEMS) is established and revealed in this bulletin, which has been put into trial operation in Shanghai power system for almost half a year. The AEMS is novel from all aspects covering idea, theory, method, software, and engineering. The essence of AEMS is exercising the hybrid automatic control theory and technology to realize multi-objective optimal closedloop control of power systems. Based on an "event-driven" strategy, the AEMS transforms multi-objective optimal control problems into event identification and elimination by defining the unsatisfactory states of a power system as events. This bulletin concisely presents the theory and main advantages of AEMS, as well as its implementation in Shanghai power system.

  9. Advanced EMS and its trial operation in Shanghai power system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To meet the demand of high stability,high quality,and low losses of power systems,the advanced energy management system (AEMS) is established and revealed in this bulletin,which has been put into trial operation in Shanghai power system for almost half a year. The AEMS is novel from all aspects covering idea,theory,method,software,and engineering. The essence of AEMS is exercising the hybrid automatic control theory and technology to realize multi-objective optimal closed-loop control of power systems. Based on an "event-driven" strategy,the AEMS transforms multi-objective optimal control problems into event identification and elimination by defining the unsatisfactory states of a power system as events. This bulletin concisely presents the theory and main advantages of AEMS,as well as its implementation in Shanghai power system.

  10. Gasification CFD Modeling for Advanced Power Plant Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  11. Advanced Derating Strategy for Extended Lifetime of Power Electronics in Wind Power Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    It is well known that one of the main causes of failure in wind power applications is due to the power converter and its semiconductor devices. Consequently, the main objective of this paper consists of analyzing the impact of converter derating on the lifetime of the power devices by means...... of advanced reliability models and tools. The wind power system together with the thermal cycling in the power semiconductor devices has been modeled and the dynamic behavior of the system has been analyzed under certain mission profiles. Based on the thermal loading of the devices, the lifetime estimation...

  12. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  13. SECA Coal-Based Systems - LGFCS

    Energy Technology Data Exchange (ETDEWEB)

    Goettler, Richard

    2013-08-01

    LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. This Department of Energy Solid-State Energy Conversion Alliance (SECA) program is aimed at achieving further cell and stack technical advancements and assessing the readiness of the LGFCS SOFC stack technology to be scaled to larger-scale demonstrations in subsequent phases. LGFCS is currently in Phase 2 of the program with the Phase 1 test carrying over for completion during Phase 2. Major technical results covering the initial Phase 2 budget period include: Metric Stack Testing: 1. The Phase I metric test is a ~7.6 kW block test (2 strips) in Canton that started in March 2012 and logged 2135 hours of testing prior to an event that required the test to be shutdown. The degradation rate through 2135 hours was 0.4%/1000 hours, well below the Phase I target of 2%/1000 hours and the Phase 2 target of 1.5%/1000 hours. 2. The initial Phase II metric test consisting of 5 strips (~19 kW) was started in May 2012. At the start of the test OCV was low and stack temperatures were out of range. Shutdown and inspection revealed localized structural damage to the strips. The strips were repaired and the test restarted October 11, 2012. 3. Root cause analysis of the Phase 1 and initial Phase 2 start-up failures concluded a localized short circuit across adjacent tubes/bundles caused localized heating and thermal stress fracture of substrates. Pre-reduction of strips rather than in-situ reduction within block test rigs now provides a critical quality check prior to block testing. The strip interconnect design has been modified to avoid short circuits. Stack Design: 1. Dense ceramic strip components were redesigned to achieve common components and a uniform design for all 12 bundles of a strip while meeting a flow uniformity of greater

  14. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    Science.gov (United States)

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  15. Expert assessment of advanced power sources. Contract report

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C.L. [March Scientific Ltd., Dunrobin, Ontario (Canada)

    2007-07-15

    Although DRDC published an exhaustive technical report (in August 2001) on technology trends in advanced power sources projected out to the year 2020, the terrorist attacks on the US on September 11, 2001 (and the consequent, augmented and more broadly-based defence and national security posture adopted by the CF/DND), together with rapid developments in power source technologies over the past five years, internationally, prompted DRDC to update the 2001 report, on a selected number of power source technologies or applications and to provide further guidance to DRDC's Advanced Power Source R and D program. Eight wide-ranging, power source technologies or applications were investigated, using the technique of 'expert elicitation' (that is, using independent experts in the various and diverse technological fields), based on a standardized questionnaire, augmented by the contractor's own expertise (and his overall analysis of the experts' responses) in these diverse areas. In addition, each expert was asked about his/her view on the likely role of nanotechnology in each technological area or application. Following collection and analysis of all the data, the contractor made recommendations on the ability of each power source to meet the future requirements of the CF/DND, taking into account the Technology Readiness Level, for each technology or application.

  16. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Delene, J.G.; Hudson, C.R. II

    1993-05-01

    Several advanced power plant concepts are currently under development. These include the Modular High Temperature Gas Cooled Reactors, the Advanced Liquid Metal Reactor and the Advanced Light Water Reactors. One measure of the attractiveness of a new concept is its cost. Invariably, the cost of a new type of power plant will be compared with other alternative forms of electrical generation. This report provides a common starting point, whereby the cost estimates for the various power plants to be considered are developed with common assumptions and ground rules. Comparisons can then be made on a consistent basis. This is the second update of these cost estimate guidelines. Changes have been made to make the guidelines more current (January 1, 1992) and in response to suggestions made as a result of the use of the previous report. The principal changes are that the reference site has been changed from a generic Northeast (Middletown) site to a more central site (EPRI`s East/West Central site) and that reference bulk commodity prices and labor productivity rates have been added. This report is designed to provide a framework for the preparation and reporting of costs. The cost estimates will consist of the overnight construction cost, the total plant capital cost, the operation and maintenance costs, the fuel costs, decommissioning costs and the power production or busbar generation cost.

  17. Prospects for advanced coal-fuelled fuel cell power plants

    Science.gov (United States)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  18. Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Jørgensen, Søren; Blaabjerg, Frede

    2016-01-01

    of tested power IGBT module. The various realistic electrical operating conditions close to real three-phase converter applications can be achieved by the simple control method. Further, by the proposed concept of applying the temperature stress, it is possible to apply various magnitudes of temperature......This paper presents an apparatus and methodology for an advanced accelerated power cycling test of insulated-gate bipolar transistor (IGBT) modules. In this test, the accelerated power cycling test can be performed under more realistic electrical operating conditions with online wear-out monitoring...... power cycling test setup is given. Then, an improved in situ junction temperature estimation method using on-state collector–emitter voltage VCE ON and load current is proposed. In addition, a procedure of advanced accelerated power cycling test and test results with 600 V, 30 A transfer molded IGBT...

  19. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    Much more efforts have been made on the integration of renewable energies into the grid in order to meet the imperative demand of a clean and reliable electricity generation. In this case, the grid stability and robustness may be violated due to the intermittency and interaction of the solar...... and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...... power injection for both single-phase and three-phase systems. Other control strategies like constant power generation control for PV systems to further increase the penetration level, and the improvements of LVRT performance for a doubly fed induction generator based wind turbine system by means...

  20. Parametric instability in the high power era of Advanced LIGO

    Science.gov (United States)

    Hardwick, Terra; Blair, Carl; Kennedy, Ross; Evans, Matthew; Fritschel, Peter; LIGO Virgo Scientific Collaboration

    2017-01-01

    After the first direct detections of gravitational waves, Advanced LIGO aims to increase its detection rate during the upcoming science runs through a series of detector improvements, including increased optical power. Higher circulating power increases the likelihood for three-mode parametric instabilities (PIs), in which mechanical modes of the mirrors scatter light into higher-order optical modes in the cavity and the resulting optical modes reinforce the mechanical modes via radiation pressure. Currently, LIGO uses two PI mitigation methods: thermal tuning to change the cavity g-factor and effectively decrease the frequency overlap between mechanical and optical modes, and active damping of mechanical modes with electrostatic actuation. While the combined methods provide stability at the current operating power, there is evidence that these will be insufficient for the next planned power increase; future suppression methods including acoustic mode dampers and dynamic g-factor modulation are discussed.

  1. Advanced Thermally Stable Coal-Based Jet Fuels

    Science.gov (United States)

    2008-02-01

    extraction residue. A collaboration has been established between the Penn State group and colleagues in the Separation Science and Technology focus area...Srinivas, Richard Steinberger, Roger Woodward Support Staff Carol Brantner, Teresa Carmody, Ronald Copenhaver , Jaime Crissinger, Donna Dean, Glenn

  2. Advanced Thermally Stable Coal-Based Jet Fuels

    Science.gov (United States)

    2009-09-30

    hydrotreating to remove sulfur and then by hydrogenation for partial or complete ring saturation. Although this approach leads to a fuel of excellent quality...contributed by this coal were mainly two- and three-ring compounds. With hydrotreating to reduce sulfur and nitrogen and saturation of the aromatics...it could be a useful solvent for process configurations that couple coal conversion upstream with standard downstream hydrotreating , aromatics

  3. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  4. Conceptual design of advanced central receiver power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tracey, T. R.

    1978-09-01

    The design of a 300 MWe tower focus power plant which uses molten salt heat transfer fluids and sensible heat storage is described in detail. The system consists of nine heliostat fields with 7711 heliostats in each. Four cavity receivers are located at the top of a 155-meter tower. Tasks include: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) selection of preferred configuration; (4) commercial plant conceptual design; (5) assessment of commercial-sized advanced central power system; (6) development plan; (7) program plan; (8) reports and data; (9) program management; (10) safety analysis; and (11) material study and test program. (WHK)

  5. Injector power supplies reliability improvements at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Hillman, A.; Pasky, S.; Sereno, N.; Soliday, R.; Wang, J.

    2006-01-01

    Operational goals for the Advanced Photon Source (APS) facility include 97% availability and a mean time between unscheduled beam losses (faults) of 70 hours, with more than 5000 user hours of scheduled beam per year. To meet this objective, our focus has been maximizing the mean time between faults (MTBF). We have made various hardware and software improvements to better operate and monitor the injector power supply systems. These improvements have been challenging to design and implement in light of the facility operating requirements but are critical to maintaining maximum reliability and availability of beam for user operations. This paper presents actions taken as well as future plans to continue improving injector power supply hardware and software to meet APS user operation goals. The Advanced Photon Source (APS) has two major components. The storage ring (SR) accelerator is the primary accelerator that delivers X-ray beams to users and uses over 1,400 power supplies. The injector accelerators provide beam to the SR and use 361 different supplies. The control system ranges from the standard VME-IOC and Allen Bradley to GESPAC with additional mini-PLCs for monitoring. Injector power supplies range from {approx}30 watts DC to a ramped peak of 4.6 megawatts in 250 ms. Finally, all accelerators use pulsed supplies, and some of them deliver peak power in megawatts. In the SR, each multipole and corrector magnet is separately powered, with only the main dipole magnets on a common bus. Independent power supplies provide increased flexibility, but place additional demands on power supply reliability. The APS reliability goals are 97% availability and 70 hours mean time to unscheduled beam loss. There are 5,129 user hours scheduled per year, 1,315 hours used for machine studies, and the remaining 2,316 hours used for maintenance. The present annual operating schedule provides for three user runs (typically 10 to 12 weeks long), and three machine shutdowns (typically

  6. An Advanced Turbo-Brayton Converter for Radioisotope Power Systems

    Science.gov (United States)

    Zagarola, Mark V.; Izenson, Michael G.; Breedlove, Jeffrey J.; O'Connor, George M.; Ketchum, Andrew C.; Jetley, Richard L.; Simons, James K.

    2005-02-01

    Past work has shown that Brayton power converters are an attractive option for high power, long-duration space missions. More recently, Creare has shown that Brayton technology could be scaled with high efficiency and specific power to lower power levels suitable for radioisotope power conversion systems. Creare is currently leading the development of an advanced turbo-Brayton converter under NASA's Prometheus Program. The converter design is based on space-proven cryocooler technologies that have been shown to be safe; to provide long, maintenance-free lifetimes; and to have high reliability, negligible vibration emittance, and low EMI/EMC. The predicted performance of a converter at the beginning of life is greater than 20% (including electronic inefficiencies and overhead) with a converter specific power of greater than 8 We/kg for a test unit and greater than 15 We/kg for a flight unit. The degradation in performance over a 14-year mission lifetime is predicted to be negligible, and the primary life limiting factor is not expected to be an issue for greater than twice the mission duration. Work during the last year focused on the material and fabrication issues associated with a high temperature turbine and a lightweight recuperator, and the performance issues associated with the high-temperature insulation and power conversion electronics. The development of the converter is on schedule. Thermal vacuum testing to demonstrate a technology readiness level of 5 is currently planned for 2006.

  7. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    Science.gov (United States)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  8. Thermoeconomic Analysis of Advanced Solar-Fossil Combined Power Plants

    OpenAIRE

    Yassine Allani; Klaus Ziegler; Daniel Favrat; Malick Kane

    2000-01-01

    Hybrid solar thermal power plants (with parabolic trough type of solar collectors) featuring gas burners and Rankine steam cycles have been successfully demonstrated by California's Solar Electric Generating System (SEGS). This system has been proven to be one of the most efficient and economical schemes to convert solar energy into electricity. Recent technological progress opens interesting prospects for advanced cycle concepts: a) the ISCCS (Integrated Solar Combined Cycle System)...

  9. HSC simulations of coal based DR in ULCORED

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, L.; Larsson, M. [Mefos Metallurgical Research Plant, Lulea (Sweden)

    2009-10-15

    The ULCORED coal based concept is simulated based on the production of syngas using existing coal gasification technology. The shifter gives the option to produce CO{sub 2}-lean H{sub 2} from coal/biomass for in plant use. Large CO{sub 2} emissions arise on site from the use of natural gas in heating ovens and from the use of electricity in EAF melting. In the case of these coal based systems, production of 'excess gas' to be used as fuel gas in various processes will reduce the CO{sub 2} emission for the total site.

  10. Current Advanced Power Generation Technologies and Options for China (2)

    Institute of Scientific and Technical Information of China (English)

    Deng Nubo; Mohsen Assadi; Yang Cheng

    2008-01-01

    @@ In China,electricity consumption keeps growing at a high speed and installed capacity will be doubled in the next fifteen years.As the world second CO2 producer and also a member of Kyoto Protocol,how to balance energy needs arid environmental protection responsibility in the future is a serious problem for China.As such,there are a number of technology choices for today's electric power generation.After discussing the current advanced power generation technologies based on Chinese energy structure and current conditions of power industry,this paper gives a reference to the technology options for China in the future.Here published is the second part of the paper.

  11. Advanced Test Accelerator (ATA) pulse power technology development

    Energy Technology Data Exchange (ETDEWEB)

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-03-09

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described.

  12. Advanced Rock Drilling Technologies Using High Laser Power

    Science.gov (United States)

    Buckstegge, Frederik; Michel, Theresa; Zimmermann, Maik; Roth, Stephan; Schmidt, Michael

    Drilling through hard rock formations causes high mechanical wear and most often environmental disturbance. For the realization of an Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) power plant a new and efficient method for tunneling utilising laser technology to support mechanical ablation of rock formations will be developed. Laser irradiation of inhomogeneous rock surfaces causes irregular thermal expansion leading to the formation of cracks and splintering as well as melting and slag-formation. This study focuses on the interaction of laser irradiation with calcite, porphyrite and siderite rock formations. A high power disc laser system at 1030nm wavelength is used to investigate the specific energy necessary to remove a unit volume depending on interaction times and applied power. Specific energies have been measured and an increase of fragility and brittleness of the rock surface has been observed.

  13. Application of advanced pattern recognition to power plant condition assessment

    Energy Technology Data Exchange (ETDEWEB)

    Caudill, M.B.; Griebenow, R.D.; Hansen, E.J.

    1996-05-01

    As electric utilities strive to become more competitive, efficient operation and maintenance of steam power cycles becomes a greater concern. As part of an aggressive thermal performance monitoring and improvement program, Tri-State Generation and Transmission Association has integrated advanced pattern recognition technology with more conventional heat balance analysis methods to monitor and diagnose plant cycle deficiencies. Advanced pattern recognition (APR) technology is used for continuous monitoring of plant operation. It can quickly diagnose faulty instrumentation and supply accurate replacement values, providing confidence in the data used for daily operating and engineering decisions. Furthermore, it accurately identifies calibration drift, providing Tri-State with the information required to allocate manpower to only those instruments requiring maintenance. APR is also integrated into the data validation and analysis portions of annual thermal performance tests, providing increased confidence in test data and reducing data analysis time. This paper will present the advanced pattern recognition methodology applied at Tri-State and the benefits in optimizing plant operations and assessing power plant performance.

  14. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  15. A Conceptual Venus Rover Mission Using Advanced Radioisotope Power Systems

    Science.gov (United States)

    Evans, Michael; Shirley, James H.; Abelson, Robert Dean

    2006-01-01

    This concept study demonstrates that a long lived Venus rover mission could be enabled by a novel application of advanced RPS technology. General Purpose Heat Source (GPHS) modules would be employed to drive an advanced thermoacoustic Stirling engine, pulse tube cooler and linear alternator that provides electric power and cooling for the rover. The Thermoacoustic Stirling Heat Engine (TASHE) is a system for converting high-temperature heat into acoustic power which then drives linear alternators and a pulse tube cooler to provide both electric power and coolin6g for the rover. A small design team examined this mission concept focusing on the feasibility of using the TASHE system in this hostile environment. A rover design is described that would provide a mobile platform for science measurements on the Venus surface for 60 days, with the potential of operating well beyond that. A suite of science instruments is described that collects data on atmospheric and surface composition, surface stratigraphy, and subsurface structure. An Earth-Venus-Venus trajectory would be used to deliver the rover to a low entry angle allowing an inflated ballute to provide a low deceleration and low heat descent to the surface. All rover systems would be housed in a pressure vessel in vacuum with the internal temperature maintained by the TASHE at under 50 °C.

  16. SECA Coal-Based Systems – LGFCS

    Energy Technology Data Exchange (ETDEWEB)

    Goettler, Richard [LG Fuel Cell Systems Incorporated, North Canton, OH (United States)

    2016-03-31

    LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale distributed power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. The overall goal of this project is to demonstrate, through analysis and testing, progress towards adequate stack life and stability in a low-cost solid-oxide fuel cell (SOFC) stack design. The emphasis of the proposed work has been the further understanding of the degradation mechanisms present within the LGFCS SOFC stack and development of the active layers to mitigate such mechanisms for achievement of a lower rate of power degradation. Performance enhancement has been achieved to support cost reduction. Testing is performed at a range of scales from single cells to ~350 kW bundles and ultimately pressurized 15kW blocks in test rigs that are representative of the product system cycle. The block is the representative fuel cell module that forms the building block for the LGFCS SOFC power system.

  17. Advanced binary geothermal power plants: Limits of performance

    Science.gov (United States)

    Bliem, C. J.; Mines, G. L.

    1991-01-01

    The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. The feasible limits on efficiency of a plant given practical limits on equipment performance is explored and the methods used in these advanced concept plants to achieve the maximum possible efficiency are discussed. (Here feasible is intended to mean reasonably achievable and not cost effective.) No direct economic analysis was made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, a standard is presented of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies.

  18. Advanced thermal management techniques for space power electronics

    Science.gov (United States)

    Reyes, Angel Samuel

    1992-01-01

    Modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Current thermal management techniques are not sufficient for the increasing waste heat dissipation of novel electronic technologies. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. The benefits and limitations of emerging cooling technologies are discussed. These technologies include: liquid pumped devices, mechanically pumped two-phase cooling, capillary pumped evaporative cooling, and thermoelectric devices. Currently, liquid pumped devices offer the most promising alternative for electronics thermal control.

  19. PowerPivot for advanced reporting and dashboards

    CERN Document Server

    Bosco, Robert

    2013-01-01

    A step-by-step tutorial with focused examples that builds progressively from basic to advanced topics and helps you create business intelligence reports and dashboards quickly and efficiently using the PowerPivot add-in.This book is ideal for data analysts, reporting and MIS professionals, business analysts, managers, dashboard makers, business intelligence professionals, self-service business intelligence personnel, and students. It is assumed that you have basic data analysis skills and intermediate level Excel skills. Familiarity with Pivot Tables as well as basic knowledge of VBA scripting

  20. The advanced smart grid edge power driving sustainability

    CERN Document Server

    Carvallo, Andres

    2011-01-01

    Placing emphasis on practical ""how-to"" guidance, this cutting-edge resource provides you with a first-hand, insider's perspective on the advent and evolution of smart grids in the 21st century (smart grid 1.0). You gain a thorough understanding of the building blocks that comprise basic smart grids, including power plant, transmission substation, distribution, and meter automation. Moreover, this forward-looking volume explores the next step of this technology's evolution. It provides a detailed explanation of how an advanced smart grid incorporates demand response with smart appliances and

  1. Thermodynamic analysis of the advanced zero emission power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-03-01

    Full Text Available The paper presents the structure and parameters of advanced zero emission power plant (AZEP. This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i oxygen separation from the air through the membrane, (ii combustion of the fuel, and (iii heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC through the main heat recovery steam generator (HRSG. Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  2. Thermodynamic analysis of the advanced zero emission power plant

    Science.gov (United States)

    Kotowicz, Janusz; Job, Marcin

    2016-03-01

    The paper presents the structure and parameters of advanced zero emission power plant (AZEP). This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i) oxygen separation from the air through the membrane, (ii) combustion of the fuel, and (iii) heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC) through the main heat recovery steam generator (HRSG). Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  3. Directions for advanced use of nuclear power in century XXI

    Energy Technology Data Exchange (ETDEWEB)

    Walter, C E

    1999-05-01

    Nuclear power can provide a significant contribution to electricity generation and meet other needs of the world and the US during the next century provided that certain directions are taken to achieve its public acceptance. These directions include formulation of projections of population, energy consumption, and energy resources over a responsible period of time. These projections will allow assessment of cumulative effects on the environment and on fixed resources. Use of fossil energy resources in a century of growing demand for energy must be considered in the context of long-term environmental damage and resource depletion. Although some question the validity of these consequences, they can be mitigated by use of advanced fast reactor technology. It must be demonstrated that nuclear power technology is safe, resistant to material diversion for weapon use, and economical. An unbiased examination of all the issues related to energy use, especially of electricity, is an essential direction to take.

  4. Recent advances in phosphate laser glasses for high power applications

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  5. Advanced simulation of windmills in electric power supply

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Knudsen, Hans; Nielsen, Arne Hejde

    2000-01-01

    -connected windmills as a part of realistic electrical grid models. That means an arbitrary number of wind farms or single windmills within an arbitrary network configuration. The windmill model may be applied to study of electric power system stability and of power quality as well. It is found that a grid......-connected windmill operates as a low-pass filter, whereby two following observations are made: 1. interaction between the electrical grid and the mechanical systems of grid-connected windmills is given by a low frequency oscillation as the result of disturbances in the electric grid; 2. flicker, which is commonly......An advanced model of a grid-connected windmill is set up where the windmill is a complex electro-mechanical system. The windmill model is implemented as a standardised component in the dynamic simulation tool, PSS/E, which makes it possible to investigate dynamic behaviour of grid...

  6. Advanced Grid Support Functionality Testing for Florida Power and Light

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hurtt, James [Florida Power and Light, Juno Beach, FL (United States)

    2017-03-21

    This report describes the results of laboratory testing of advanced photovoltaic (PV) inverter testing undertaken by the National Renewable Energy Laboratory (NREL) on behalf of the Florida Power and Light Company (FPL). FPL recently commissioned a 1.1 MW-AC PV installation on a solar carport at the Daytona International Speedway in Daytona Beach, Florida. In addition to providing a source of clean energy production, the site serves as a live test bed with 36 different PV inverters from eight different manufacturers. Each inverter type has varied support for advanced grid support functions (GSFs) that are becoming increasingly commonplace, and are being required through revised interconnection standards such as UL1741, IEEE1547, and California (CA) Rule 21. FPL is interested in evaluating the trade-offs between different GSFs, their compliance to emerging standards, and their effects on efficiency and reliability. NREL has provided a controlled laboratory environment to undertake such a study. This work covered nine different classes of tests to compare inverter capabilities and performance for four different inverters that were selected by FPL. The test inverters were all three-phase models rated between 24-36 kW, and containing multiple PV input power point trackers. Advanced grid support functions were tested for functional behavior, and included fixed power factor operation, voltage-ride through, frequency ride-through, volt-var control, and frequency-Watt control. Response to abnormal grid conditions with GSFs enabled was studied through anti-islanding, fault, and load rejection overvoltage tests. Finally, efficiency was evaluated across a range of operating conditions that included power factor, output power, and input voltage variations. Test procedures were derived from requirements of a draft revision of UL741, CA Rule 21, and/or previous studies at NREL. This reports summarizes the results of each test case, providing a comparative performance analysis

  7. Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission

    Science.gov (United States)

    Howell, Joe T.; ONeill, Mark; Fork, Richard

    2004-01-01

    For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology

  8. Operation of the power information center: Performance of secretariat functions and information exchange activities in the advanced power field of the interagency advanced power group

    Science.gov (United States)

    1983-01-01

    Highlights of activities conducted during the reporting period to facilitate the exchange of technical information among scientists and engineers both within the federal government and within industry are cited. Interagency Advanced Power Group meetings and special efforts, project briefs, and organization development are considered.

  9. Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant

    Directory of Open Access Journals (Sweden)

    George Tsatsaronis

    2012-06-01

    Full Text Available A conventional exergy analysis can highlight the main components having high thermodynamic inefficiencies, but cannot consider the interactions among components or the true potential for the improvement of each component. By splitting the exergy destruction into endogenous/exogenous and avoidable/unavoidable parts, the advanced exergy analysis is capable of providing additional information to conventional exergy analysis for improving the design and operation of energy conversion systems. This paper presents the application of both a conventional and an advanced exergy analysis to a supercritical coal-fired power plant. The results show that the ratio of exogenous exergy destruction differs quite a lot from component to component. In general, almost 90% of the total exergy destruction within turbines comes from their endogenous parts, while that of feedwater preheaters contributes more or less 70% to their total exergy destruction. Moreover, the boiler subsystem is proven to have a large amount of exergy destruction caused by the irreversibilities within the remaining components of the overall system. It is also found that the boiler subsystem still has the largest avoidable exergy destruction; however, the enhancement efforts should focus not only on its inherent irreversibilities but also on the inefficiencies within the remaining components. A large part of the avoidable exergy destruction within feedwater preheaters is exogenous; while that of the remaining components is mostly endogenous indicating that the improvements mainly depend on advances in design and operation of the component itself.

  10. Advanced nuclear power plants for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J. [BNFL, Inc. (United States)

    1996-10-01

    This paper examines, following four issues: capacity; the closure of the fuel cycle; deregulation; and the need to maintain the development of the advanced systems. Demand is a governing parameter: if one doesn`t need the power then there is no need to increase generating capacity. However, there is no question but that the population is growing. All predictions are that new generating capacity will be needed -- the questions are when and how? Until the various issues involved in deregulation are played through it is not clear what form markets will take for the longer term or how investment in large-capital-cost facilities will fit into the financial structure. Deregulation needs the time to throw light on these matters and to gain some experience in the various financial options. The lack of closure of the fuel cycle is both a cost and public perception issue. The US program, as a result of a cold-war paranoia against recycling the partially used fuel, is based upon the final disposal of useful supplies of energy. However, the program itself is plagued with poor management, delays, and uncertainties that are due, in no small measure, to half-uttered thoughts by all concerned, that this is the wrong policy. Current efforts to rethink the policy, and its implementing projects, are welcome. Finally, if it is important to keep design options for advanced nuclear power plants open for the future, then it necessary to maintain valid research and development programs for those designs. Current US policy is damaging to a number of the more advanced options. This paper discusses the candidate systems: LWR, ALMR, HTGR, and CANDU systems for the special contributions they may each provide in an ideal electrical generating industry of the mid-twenty-first century, and makes suggestions for the future. (J.P.N.)

  11. Application of advanced austenitic alloys to fossil power system components

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.

    1996-06-01

    Most power and recovery boilers operating in the US produce steam at temperatures below 565{degrees}C (1050{degrees}F) and pressures below 24 MPa (3500 psi). For these operating conditions, carbon steels and low alloy steels may be used for the construction of most of the boiler components. Austenitic stainless steels often are used for superheater/reheater tubing when these components are expected to experience temperatures above 565{degrees}C (1050{degrees}F) or when the environment is too corrosive for low alloys steels. The austenitic stainless steels typically used are the 304H, 321H, and 347H grades. New ferritic steels such as T91 and T92 are now being introduced to replace austenitic: stainless steels in aging fossil power plants. Generally, these high-strength ferritic steels are more expensive to fabricate than austenitic stainless steels because the ferritic steels have more stringent heat treating requirements. Now, annealing requirements are being considered for the stabilized grades of austenitic stainless steels when they receive more than 5% cold work, and these requirements would increase significantly the cost of fabrication of boiler components where bending strains often exceed 15%. It has been shown, however, that advanced stainless steels developed at ORNL greatly benefit from cold work, and these steels could provide an alternative to either conventional stainless steels or high-strength ferritic steels. The purpose of the activities reported here is to examine the potential of advanced stainless steels for construction of tubular components in power boilers. The work is being carried out with collaboration of a commercial boiler manufacturer.

  12. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  13. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  14. High temperature, harsh environment sensors for advanced power generation systems

    Science.gov (United States)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  15. Conceptual design of a solar electric advanced Stirling power system

    Science.gov (United States)

    White, M. A.; Brown, A. T.

    1987-02-01

    The objective is to develop a high confidence conceptual design for a free-piston Stirling engine based system designed to deliver 25 kW of three-phase electric power to a utility grid when coupled to the 11 meter Test Bed Concentrator (TBC) at SNLA. Further objectives include a design life of 60,000 hours, minimum life cycle cost and dynamic balancing. The approach used to achieve these objectives is to utilize a hermetically sealed Stirling hydraulic concept based on technology developed to an advanced level during the past 19 years for an artificial heart power source. Such engines and critical metal bellows components have demonstrated operating times in the desired range. This approach provides full film hydraulic lubrication of all sliding parts, simple construction with conventional manufacturing tolerances, proven hydraulically coupled counterbalancing, and simple but effective power control to follow insolation variations. Other advantages include use of commercially available hydraulic motors and rotary alternators which can be placed on the ground to minimize suspended weight. The output from several engine/concentrator modules can be directed to one large motor/alternator for further cost savings. Three monthly progress reports for the same period, January 1 to January 31, 1987, are compiled within this document.

  16. Thermoeconomic Analysis of Advanced Solar-Fossil Combined Power Plants

    Directory of Open Access Journals (Sweden)

    Yassine Allani

    2000-12-01

    Full Text Available

    Hybrid solar thermal power plants (with parabolic trough type of solar collectors featuring gas burners and Rankine steam cycles have been successfully demonstrated by California's Solar Electric Generating System (SEGS. This system has been proven to be one of the most efficient and economical schemes to convert solar energy into electricity. Recent technological progress opens interesting prospects for advanced cycle concepts: a the ISCCS (Integrated Solar Combined Cycle System that integrates the parabolic trough into a fossil fired combined cycle, which allows a larger exergy potential of the fuel to be converted. b the HSTS (Hybrid Solar Tower System which uses high concentration optics (via a power tower generator and high temperature air receivers to drive the combined cycle power plant. In the latter case, solar energy is used at a higher exergy level as a heat source of the topping cycle. This paper presents the results of a thermoeconomic investigation of an ISCCS envisaged in Tunisia. The study is realized in two phases. In the first phase, a mixed approach, based on pinch technology principles coupled with a mathematical optimization algorithm, is used to minimize the heat transfer exergy losses in the steam generators, respecting the off design operating conditions of the steam turbine (cone law. In the second phase, an economic analysis based on the Levelized Electricity Cost (LEC approach was carried out for the configurations, which provided the best concepts during the first phase. A comparison of ISCCS with pure fossil fueled plants (CC+GT is reported for the same electrical power load. A sensitivity analysis based on the relative size of the solar field is presented.

    •  This paper was presented at the ECOS'00 Conference in Enschede, July 5-7, 2000

  17. High-power ultrasonic processing: Recent developments and prospective advances

    Science.gov (United States)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  18. Recent advances in flexible low power cholesteric LCDs

    Science.gov (United States)

    Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.

    2006-05-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.

  19. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  20. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  1. Impact of fuel properties on advanced power systems

    Energy Technology Data Exchange (ETDEWEB)

    Sondreal, E.A.; Jones, M.L.; Hurley, J.P.; Benson, S.A.; Willson, W.G. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Advanced coal-fired combined-cycle power systems currently in development and demonstration have the goal of increasing generating efficiency to a level approaching 50% while reducing the cost of electricity from new plants by 20% and meeting stringent standards on emissions of SO{sub x} NO{sub x} fine particulates, and air toxic metals. Achieving these benefits requires that clean hot gas be delivered to a gas turbine at a temperature approaching 1350{degrees}C, while minimizing energy losses in the gasification, combustion, heat transfer, and/or gas cleaning equipment used to generate the hot gas. Minimizing capital cost also requires that the different stages of the system be integrated as simply and compactly as possible. Second-generation technologies including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), externally fired combined cycle (EFCC), and other advanced combustion systems rely on different high-temperature combinations of heat exchange, gas filtration, and sulfur capture to meet these requirements. This paper describes the various properties of lignite and brown coals.

  2. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  3. The Mercury Laser Advances Laser Technology for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  4. Advanced Gunn diode as high power terahertz source for a millimetre wave high power multiplier

    Science.gov (United States)

    Amir, F.; Mitchell, C.; Farrington, N.; Missous, M.

    2009-09-01

    An advanced step-graded Gunn diode is reported, which has been developed through joint modelling-experimental work. The ~ 200 GHz fundamental frequency devices have been realized to test GaAs based Gunn oscillators at sub-millimetre wave for use as a high power (multi mW) Terahertz source in conjunction with a mm-wave multiplier, with novel Schottky diodes. The epitaxial growth of both the Gunn diode and Schottky diode wafers were performed using an industrial scale Molecular Beam Epitaxy (V100+) reactor. The Gunn diodes were then manufactured and packaged by e2v Technologies (UK) Plc. Physical models of the high power Gunn diode sources, presented here, are developed in SILVACO.

  5. Concentrating solar power (CSP) power cycle improvements through application of advanced materials

    Science.gov (United States)

    Siefert, John A.; Libby, Cara; Shingledecker, John

    2016-05-01

    Concentrating solar power (CSP) systems with thermal energy storage (TES) capability offer unique advantages to other renewable energy technologies in that solar radiation can be captured and stored for utilization when the sun is not shining. This makes the technology attractive as a dispatchable resource, and as such the Electric Power Research Institute (EPRI) has been engaged in research and development activities to understand and track the technology, identify key technical challenges, and enable improvements to meet future cost and performance targets to enable greater adoption of this carbon-free energy resource. EPRI is also involved with technically leading a consortium of manufacturers, government labs, and research organizations to enable the next generation of fossil fired power plants with advanced ultrasupercritical (A-USC) steam temperatures up to 760°C (1400°F). Materials are a key enabling technology for both of these seemingly opposed systems. This paper discusses how major strides in structural materials for A-USC fossil fired power plants may be translated into improved CSP systems which meet target requirements.

  6. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  7. Design, Fabrication and Certification of Advanced Modular PV Power Systems

    Science.gov (United States)

    Minyard, Glen E.; Lambarski, Timothy J.

    1997-02-01

    The Design, Fabrication and Certification of Advanced Modular PV Power Systems contract is a Photovoltaic Manufacturing Technology (PVMaT) cost-shared contract under Phase 4A1 for Product Driven Systems and Component Technologies. Phase 4A1 has the goals to improve the cost-effectiveness and manufacturing efficiency of PV end-products, optimize manufacturing and packaging methods, and generally improve balance-of-system performance, integration and manufacturing. This contract has the specific goal to reduce the installed PV system life cycle costs to the customer with the ultimate goal of increasing PV system marketability and customer acceptance. The specific objectives of the project are to develop certified, standardized, modular, pre-engineered products lines of our main stand-alone systems, the Modular Autonomous PV Power Supply (MAPPS) and PV-Generator Hybrid System (Photogenset). To date, we have designed a 200 W MAPPS and a 1 kW Photogenset and are in the process of having the MAPPS certified by Underwriters Laboratories (UL Listed) and approved for hazardous locations by Factory Mutual (FM). We have also developed a manufacturing plan for product line expansion for the MAPPS. The Photogenset will be fabricated in February 1997 and will also be UL Listed. Functionality testing will be performed at NREL and Sandia with the intentions of providing verification of performance and reliability and of developing test-based performance specifications. In addition to an expansion on the goals, objectives and status of the project, specific accomplishments and benefits are also presented in this paper.

  8. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  9. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  10. Cascaded Thermoelectric Converters for Advanced Radioisotope Power Systems

    Science.gov (United States)

    El-Genk, Mohamed S.; Saber, Hamed H.

    2004-02-01

    Three Cascaded Thermoelectric Converters (CTCs) are optimized for potential use in Multi-Mission Advanced Radioisotope Power Systems (MM-ARPS) for electrical powers up to 1 kWe, or even higher, in support of 7-10 year missions. The peak efficiencies of these CTCs of 9.43% to 14.32% are 40% to 110% higher than that of SiGe in State-of-the-Art (SOA) Radioisotope Thermoelectric Generators (RTGs). Such high efficiencies would significantly reduce the amount of 238PuO2 fuel and the total system mass for a lower mission cost. Each CTC is comprised of a SiGe top unicouple that is thermally, but not electrically, coupled to a bottom unicouple with one of the following three choices of thermoelectric materials: (a) p-leg of TAGS-85 and n-leg of 2N-PbTe (b) p-leg of CeFe3.5Co0.5Sb12 and n-leg of CoSb3; and (c) segmented p-leg of CeFe3.5Co0.5Sb12 and Zn4Sb3 and n-leg of CoSb3. The length of the top and bottom unicouples is 10 mm, but the cross-sectional areas of the n- and p-legs of the unicouples are optimized for maximum efficiency operation. They vary with the thermal power inputs of 1, 2, and 3 Wth per SiGe unicouple, and the heat rejection temperature of 375 K, 475 K, and 575 K, from the bottom unicouple. Such geometrical optimization is at nominal hot shoe temperature of 1273 K for the SiGe unicouple and cold shoe temperature of either 780 K or 980 K, depending on the materials of the bottom unicouples. The hot shoe temperature of the bottom unicouples is 20 K lower than the cold shoe of the top SiGe unicouple, but the rate of heat input is the same as the rate of heat rejection from the top unicouple. The present results are conservative as they assume a contact resistance of 150 μΩ-cm2 per leg for the top and the bottom unicouples in the CTCs; however, decreasing this resistance to 50 μΩ-cm2 per leg could increase the current efficiency estimates by an additional 1 - 2 percentage points.

  11. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  12. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

    1988-10-01

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  13. Coal-based carbons with molecular sieve properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, A.M.; Youssef, A.M.; Tollan, K.A. (Mansoura Univ. (Egypt))

    1991-01-01

    Carbon molecular sieves are used extensively in gas chromatography for the separation of permanent gases and light hydrocarbons. Carbon molecular sieves also find commercial application for the manufacture of pure hydrogen from hydrogen-rich gases such as coke-oven gas, and for the separation of air by the pressure-swing adsorption technique. The objective of this investigation was to prepare carbons from Maghara coal, recently available on the commercial market. Coal-based carbons, if they possess molecular sieve properties, are superior to molecular sieve carbons from agricultural by-products because they have more satisfactory mechanical properties.

  14. Advanced Techniques for Power System Identification from Measured Data

    Energy Technology Data Exchange (ETDEWEB)

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block

  15. A Virtual Engineering Framework for Simulating Advanced Power System

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  16. Innovation on Energy Power Technology (15)Great Advances in Power System Stabilizing Technology triggered by the Wide-area Outage

    Science.gov (United States)

    Egawa, Masanao

    On July 23, 1987, a very hot day, the largest wide-area power outage occurred in Kanto-Area, Japan. The cause was a voltage collapse on the bulk power network of Tokyo Electric Power Company, due to the abnormal rate of demand rising following resume after lunch break. Aggressive studies on voltage collapse throughout industry and university have led to great advances in power system stability. This essay describes the detail record of the outage, the applied countermeasures, and the inside story when the multiple voltage solutions of power flow on actual power system were found out for the first time.

  17. Lifetime prediction modeling of airfoils for advanced power generation

    Science.gov (United States)

    Karaivanov, Ventzislav Gueorguiev

    The use of gases produced from coal as a turbine fuel offers an attractive means for efficiently generating electric power from our Nation's most abundant fossil fuel resource. The oxy-fuel and hydrogen-fired turbine concepts promise increased efficiency and low emissions on the expense of increased turbine inlet temperature (TIT) and different working fluid. Developing the turbine technology and materials is critical to the creation of these near-zero emission power generation technologies. A computational methodology, based on three-dimensional finite element analysis (FEA) and damage mechanics is presented for predicting the evolution of creep and fatigue in airfoils. We took a first look at airfoil thermal distributions in these advanced turbine systems based on CFD analysis. The damage mechanics-based creep and fatigue models were implemented as user modified routine in commercial package ANSYS. This routine was used to visualize the creep and fatigue damage evolution over airfoils for hydrogen-fired and oxy-fuel turbines concepts, and regions most susceptible to failure were indentified. Model allows for interaction between creep and fatigue damage thus damage due to fatigue and creep processes acting separately in one cycle will affect both the fatigue and creep damage rates in the next cycle. Simulation results were presented for various thermal conductivity of the top coat. Surface maps were created on the airfoil showing the development of the TGO scale and the Al depletion of the bond coat. In conjunction with model development, laboratory-scale experimental validation was executed to evaluate the influence of operational compressive stress levels on the performance of the TBC system. TBC coated single crystal coupons were exposed isothermally in air at 900, 1000, 1100oC with and without compressive load. Exposed samples were cross-sectioned and evaluated with scanning electron microscope (SEM). Performance data was collected based on image analysis

  18. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  19. TNO-ADVANCE: a modular power train simulation and design tool

    NARCIS (Netherlands)

    Venne, J.W.C. van de; Hendriksen, P.; Smokers, R.T.M.; Verkiel, M.

    1998-01-01

    To support its activities in the field of conventional and hybrid vehicles, TNO has developed ADVANCE, a modular simulation tool for the design and evaluation of advanced power trains. In this paper the various features and the potential of ADVANCE are described and illustrated by means of two case

  20. TNO-ADVANCE: a modular power train simulation and design tool

    NARCIS (Netherlands)

    Venne, J.W.C. van de; Hendriksen, P.; Smokers, R.T.M.; Verkiel, M.

    1998-01-01

    To support its activities in the field of conventional and hybrid vehicles, TNO has developed ADVANCE, a modular simulation tool for the design and evaluation of advanced power trains. In this paper the various features and the potential of ADVANCE are described and illustrated by means of two case

  1. CHRONICLE: International forum on advanced high-power lasers and applications (AHPLA '99)

    Science.gov (United States)

    Afanas'ev, Yurii V.; Zavestovskaya, I. N.; Zvorykin, V. D.; Ionin, Andrei A.; Senatsky, Yu V.; Starodub, Aleksandr N.

    2000-05-01

    A review of reports made on the International Forum on Advanced High-Power Lasers and Applications, which was held at the beginning of November 1999 in Osaka (Japan), is presented. Five conferences were held during the forum on High-Power Laser Ablation, High-Power Lasers in Energy Engineering, High-Power Lasers in Civil Engineering and Architecture, High-Power Lasers in Manufacturing, and Advanced High-Power Lasers. The following trends in the field of high-power lasers and their applications were presented: laser fusion, laser applications in space, laser-triggered lightning, laser ablation of materials by short and ultrashort pulses, application of high-power lasers in manufacturing, application of high-power lasers in mining, laser decommissioning and decontamination of nuclear reactors, high-power solid-state and gas lasers, x-ray and free-electron lasers. One can find complete information on the forum in SPIE, vols. 3885-3889.

  2. Advanced Capacitors for High-Power Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the consumer and industrial requirements for compact, high-power-density, electrical power systems grow substantially over the next decade; there will be a...

  3. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

    Science.gov (United States)

    Soltis, James V.

    1998-01-01

    The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

  4. Advances in Application of Silicon Carbide for High Power Electronics

    Science.gov (United States)

    2011-08-11

    lower operating temperature for these items – Peltier heat pump power supply – Peltier heat pump controller (to improve part-power efficiency...Goal: Buck/Boost efficiency, 90°C ambient, 100°C coolant Shown with and without Peltier heat pump power supply 31 16 96 84 49.43, 97.49 100

  5. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    Science.gov (United States)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  6. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  7. Microwave dynamic large signal waveform characterization of advanced InGaP HBT for power amplifiers

    Institute of Scientific and Technical Information of China (English)

    Zhao Lixin; Jin Zhi; Liu Xinyu

    2009-01-01

    In wireless mobile communications and wireless local area networks (WLAN), advanced lnGaP HBT with power amplifiers are key components. In this paper, the microwave large signal dynamic waveform characteristics of an advanced InGaP HBT are investigated experimentally for 5.8 GHz power amplifier applications. The microwave large signal waveform distortions at various input power levels, especially at large signal level, are investigated and the reasons are analyzed. The output power saturation is also explained. These analyses will be useful for power amplifier designs.

  8. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    OpenAIRE

    Timbus, Adrian Vasile

    2007-01-01

    The movement towards a clean technology for energy production and the constraints in reducing the CO2 emissions are some factors facilitating the growth of distributed power generation systems based on renewable energy resources. Consequently, large penetration of distributed generators has been reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power...

  9. Reference Operational Concepts for Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques Victor [Idaho National Lab. (INL), Idaho Falls, ID (United States); Farris, Ronald Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report represents the culmination of a four-year research project that was part of the Instrumentation and Control and Human Machine Interface subprogram of the DOE Advanced Reactor Technologies program.

  10. Construction Starts for China's First Production Line of Coal-based Synthetic Oil

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ On Feb. 22, the foundation-laying ceremony for the Lu'an Coal-based Synthetic Oil Plant, a major component of China's first coal-based synthetic oil demonstration project,was held at Tunliu Coal Mine of the Lu'an Coal Mine Group in north China's Shanxi Province, marking the start of the first such production line in this country.

  11. An Advanced Light Weight Recuperator for Space Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear Electric Propulsion (NEP) technology holds great promise for power and propulsion demands of NASA current and future deep space explorations. Closed Brayton...

  12. Advanced Radiative Emitters for Radioisotope Thermophotovoltaic Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radioisotope Power Systems (RPS) are critical for future flagship exploration missions in space and on planetary surfaces. Small improvements in the RPS performance,...

  13. An Advanced Light Weight Recuperator for Space Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Closed Brayton Cycle (CBC) space power system is one of the most efficient energy conversion technologies for nuclear and solar electric propulsion. The recuperator...

  14. Advanced Space Power Systems (ASPS): Regenerative Fuel Cells (RFC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the regenerative fuel cell project element is to develop power and energy storage technologies that enable new capabilities for future human space...

  15. Method and system for advancement of a borehole using a high power laser

    Energy Technology Data Exchange (ETDEWEB)

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  16. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  17. System configuration for advanced water management in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Queirazza, G.; Sigon, F.; Zagano, C. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-12-01

    Water ie required for power plant operation and electricity generation. The water demand is steadily increasing depending on the enrgy pro-capite demand, the available or innovative technologies for power generation and the need for emissions control. Water management is also required to comply with the regulatory trends and it agrees with the guidelines for the sustainable development, as recommended at the Rio conference (Agenda 21). In order to assess the design and the operating alternatives for the water system of power plants and the impact of innovative technologies, a simulation code has been developed. The ENEL proprietary WATERSOFT code is presented in this paper. Some significant results will be presented and discussed, within the frame of improving the water management and optimizing the overall performances of the actual water systems.

  18. Proceedings: Workshop on advanced mathematics and computer science for power systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Esselman, W.H.; Iveson, R.H. (Electric Power Research Inst., Palo Alto, CA (United States))

    1991-08-01

    The Mathematics and Computer Workshop on Power System Analysis was held February 21--22, 1989, in Palo Alto, California. The workshop was the first in a series sponsored by EPRI's Office of Exploratory Research as part of its effort to develop ways in which recent advances in mathematics and computer science can be applied to the problems of the electric utility industry. The purpose of this workshop was to identify research objectives in the field of advanced computational algorithms needed for the application of advanced parallel processing architecture to problems of power system control and operation. Approximately 35 participants heard six presentations on power flow problems, transient stability, power system control, electromagnetic transients, user-machine interfaces, and database management. In the discussions that followed, participants identified five areas warranting further investigation: system load flow analysis, transient power and voltage analysis, structural instability and bifurcation, control systems design, and proximity to instability. 63 refs.

  19. RFX machine and power supply improvements for RFP advanced studies

    Energy Technology Data Exchange (ETDEWEB)

    Piovan, R. E-mail: piovan@igi.pd.cnr.it; Gnesotto, F.; Ortolani, S.; Baker, W.; Barana, O.; Bettini, P.; Cavazzana, R.; Chitarin, G.; Dal Bello, S.; De Lorenzi, A.; Fiorentin, P.; Gaio, E.; Grando, L.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Masiello, A.; Milani, F.; Peruzzo, S.; Pomaro, N.; Sonato, P.; Taliercio, C.; Toigo, V.; Zaccaria, P.; Zanotto, L.; Zollino, G

    2001-10-01

    Experimental results and theoretical studies call for Reversed Field Experiment (RFX) machine and power supply improvements to allow studies that go beyond those of a conventional Reversed Field Pinch (RFP) with passively stabilized turbulent MHD dynamo. The new paths opened by recent results in RFX and other RFP machines are introduced; then the goals and the design lines of the technical modifications of RFX, mainly addressed to improve the first wall, the plasma magnetic boundaries and to increase the operational flexibility of the toroidal field circuit power supply, are reported.

  20. Electric power systems advanced forecasting techniques and optimal generation scheduling

    CERN Document Server

    Catalão, João P S

    2012-01-01

    Overview of Electric Power Generation SystemsCláudio MonteiroUncertainty and Risk in Generation SchedulingRabih A. JabrShort-Term Load ForecastingAlexandre P. Alves da Silva and Vitor H. FerreiraShort-Term Electricity Price ForecastingNima AmjadyShort-Term Wind Power ForecastingGregor Giebel and Michael DenhardPrice-Based Scheduling for GencosGovinda B. Shrestha and Songbo QiaoOptimal Self-Schedule of a Hydro Producer under UncertaintyF. Javier Díaz and Javie

  1. Advancing the Power and Utility of Server-Side Aggregation

    Science.gov (United States)

    Fulker, Dave; Gallagher, James

    2016-01-01

    During the upcoming Summer 2016 meeting of the ESIP Federation (July 19-22), OpenDAP will hold a Developers and Users Workshop. While a broad set of topics will be covered, a key focus is capitalizing on recent EOSDIS-sponsored advances in Hyrax, OPeNDAPs own software for server-side realization of the DAP2 and DAP4 protocols. These Hyrax advances are as important to data users as to data providers, and the workshop will include hands-on experiences of value to both. Specifically, a balanced set of presentations and hands-on tutorials will address advances in1.server installation,2.server configuration,3.Hyrax aggregation capabilities,4.support for data-access from clients that are HTTP-based, JSON-based or OGC-compliant (especially WCS and WMS),5.support for DAP4,6.use and extension of server-side computational capabilities, and7.several performance-affecting matters.Topics 2 through 7 will be relevant to data consumers, data providers andnotably, due to the open-source nature of all OPeNDAP softwareto developers wishing to extend Hyrax, to build compatible clients and servers, andor to employ Hyrax as middleware that enables interoperability across a variety of end-user and source-data contexts. A session for contributed talks will elaborate the topics listed above and embrace additional ones.

  2. The Power of the President: Recommendations to Advance Progressive Change

    Science.gov (United States)

    Wartell, Sarah Rosen, Comp.

    2010-01-01

    Concentrating on executive powers presents a real opportunity for the Obama administration to turn its focus away from a divided Congress and the unappetizing process of making legislative sausage. Instead, the administration can focus on the president's ability to deliver results for the American people on the things that matter most to them. The…

  3. Advances in power system modelling, control and stability analysis

    CERN Document Server

    Milano, Federico

    2016-01-01

    This book describes the variety of new methodologies and technologies that are changing the way modern electric power systems are modelled, simulated and operated. It mixes theoretical aspects with practical considerations, as well as benchmarks test systems and real-world applications.

  4. Advances in Optimizing Weather Driven Electric Power Systems.

    Science.gov (United States)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  5. Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lifeng [Energy Technology Innovation Policy, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138 (United States); Key Laboratory of Advanced Energy and Power, Chinese Academy of Sciences, Institute of Engineering Thermophysics, 11 Beisihuan West Road, Beijing 100190 (China)], E-mail: lifeng_zhao@ksg.harvard.edu; Xiao Yunhan [Key Laboratory of Advanced Energy and Power, Chinese Academy of Sciences, Institute of Engineering Thermophysics, 11 Beisihuan West Road, Beijing 100190 (China); Gallagher, Kelly Sims [Energy Technology Innovation Policy, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138 (United States); Wang Bo; Xu Xiang [Key Laboratory of Advanced Energy and Power, Chinese Academy of Sciences, Institute of Engineering Thermophysics, 11 Beisihuan West Road, Beijing 100190 (China)

    2008-07-15

    The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China.

  6. Advanced structures for grid Synchronization of power converters in distributed generation applications

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Candela, I.

    2012-01-01

    The Transmission System Operators are specially concerned about the Low Voltage Ride Through requirements of distributed generation power plants. Solutions based on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters have contrib...... under such conditions. Its response will be analyzed with respect the synchronization needs that can be extracted from the standards....

  7. Topology Zero: Advancing Theory and Experimentation for Power Electronics Education

    Science.gov (United States)

    Luchino, Federico

    For decades, power electronics education has been based on the fundamentals of three basic topologies: buck, boost, and buck-boost. This thesis presents the analytical framework for the Topology Zero, a general circuit topology that integrates the basic topologies and provides significant insight into the behaviour of converters. As demonstrated, many topologies are just particular cases of the Topology Zero, an important contribution towards the understanding, integration, and conceptualization of topologies. The investigation includes steady-state, small-signal, and frequency response analysis. The Topology Zero is physically implemented as an educational system. Experimental results are presented to show control applications and power losses analysis using the educational system. The steady-state and dynamic analyses of the Topology Zero provide profuse proof of its suitability as an integrative topology, and of its ability to be indirectly controlled. As well, the implementation of the Topology Zero within an experimentation system is explained and application examples are provided.

  8. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Jovanovic, A. [MPA Stuttgart (Germany)

    1998-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  9. An Advanced Partial Discharge Recognition Strategy of Power Cable

    Directory of Open Access Journals (Sweden)

    Xiaotian Bi

    2015-01-01

    Full Text Available Detection and localization of partial discharge are very important in condition monitoring of power cables, so it is necessary to build an accurate recognizer to recognize the discharge types. In this paper, firstly, a power cable model based on FDTD simulation is built to get the typical discharge signals as training samples. Secondly, because the extraction of discharge signal features is crucial, fractal characteristics of the training samples are extracted and inputted into the recognizer. To make the results more accurate, multi-SVM recognizer made up of six Support Vector Machines (SVM is proposed in this paper. The result of the multi-SVM recognizer is determined by the vote of the six SVM. Finally, the BP neural networks and ELM are compared with multi-SVM. The accuracy comparison shows that the multi-SVM recognizer has the best accuracy and stability, and it can recognize the discharge type efficiently.

  10. Advanced Electrodes for High Power Li-ion Batteries.

    Science.gov (United States)

    Zaghib, Karim; Mauger, Alain; Groult, Henri; Goodenough, John B; Julien, Christian M

    2013-03-15

    While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future.

  11. Advanced Electrodes for High Power Li-ion Batteries

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2013-03-01

    Full Text Available While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future.

  12. Advanced manufacturing techniques for next generation power FET technology

    OpenAIRE

    2005-01-01

    The development and incorporation of an evaporated airbridge technology into an established power pHEMT device is described. Advantages of this technology over a conventional plated technology are discussed. Use of this technology has resulted in improvements to the process flow in terms of reduced complexity and cycle time. Improvements in uniformity and reduced feature size have enabled the use of an automated visual inspection capability to reliably differentiate good and bad die.

  13. MHD Advanced Power Train Phase I, Final Report, Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    A. R. Jones

    1985-08-01

    This appendix provides additional data in support of the MHD/Steam Power Plant Analyses reported in report Volume 5. The data is in the form of 3PA/SUMARY computer code printouts. The order of presentation in all four cases is as follows: (1) Overall Performance; (2) Component/Subsystem Information; (3) Plant Cost Accounts Summary; and (4) Plant Costing Details and Cost of Electricity.

  14. Topology zero: advancing theory and experimentation for power electronics education

    OpenAIRE

    Luchino, Federico

    2012-01-01

    For decades, power electronics education has been based on the fundamentals of three basic topologies: buck, boost, and buck-boost. This thesis presents the analytical framework for the Topology Zero, a general circuit topology that integrates the basic topologies and provides significant insight into the behaviour of converters. As demonstrated, many topologies are just particular cases of the Topology Zero, an important contribution towards the understanding, integration, and conceptualizat...

  15. Enteric virus removal inactivation by coal-based media

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Chaudhuri, M. [Indian Institute of Technology, Kanpur (India). Dept. of Civil Engineering

    1995-02-01

    Four coal-based media, viz. alum-pretreated or ferric hydroxide-impregnated Giridih bituminous coal and lignite (alum-GBC, Fe-GBC; alum-lignite and Fe-Lignite) were laboratory tested to assess their potential in removing/inactivating enteric viruses in water. Batch-sorption screening tests, employing a poliovirus-spiked canal water, indicated high poliovirus sorption by Fe-GBC and alum-GBC in a short contact time of 5 min. Based on the results of further batch-sorption tests, using silver incorporated media (alum/Ag-GBC, alum-GBC-Ag and Fe-GBC-Ag), as well as aesthetic water quality consideration and previous findings on removal of coliforms and turbidity, alum/Ag-GBC, alum-GBC and alum-GBC-AG were included in downflow column studies employing poliovirus-spiked canal water. All three media showed potential in removing/inactivating enteric viruses. In a separate column study employing a joint challenge of poliovirus and rotavirus, alum/Ag-GBC removed 59.3-86.5% of the viruses along with more than 99% reduction in indigenous heterotrophic bacteria. Alum/silver-pretreated bituminous coal medium appears promising for use in household water filters in rural areas of the developing world. However, improved medium preparation to further enhance its efficiency is needed; also, its efficacy in removing/inactivating indigenous enteric bacteria, viruses and protozoa has to be ensured and practicalities or economics of application need to be considered.

  16. Testing of Passive Safety System Performance for Higher Power Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    brian G. Woods; Jose Reyes, Jr.; John Woods; John Groome; Richard Wright

    2004-12-31

    This report describes the results of NERI research on the testing of advanced passive safety performance for the Westinghouse AP1000 design. The objectives of this research were: (a) to assess the AP1000 passive safety system core cooling performance under high decay power conditions for a spectrum of breaks located at a variety of locations, (b) to compare advanced thermal hydraulic computer code predictions to the APEX high decay power test data and (c) to develop new passive safety system concepts that could be used for Generation IV higher power reactors.

  17. Comparison of advanced engines for parabolic dish solar thermal power plants

    Science.gov (United States)

    Fujita, T.; Bowyer, J. M.; Gajanana, B. C.

    1980-01-01

    A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.

  18. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  19. Advanced maintenance, inspection & repair technology for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  20. HFE safety reviews of advanced nuclear power plant control rooms

    Science.gov (United States)

    Ohara, John

    1994-01-01

    Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.

  1. Advances in high voltage power switching with GTOs

    Energy Technology Data Exchange (ETDEWEB)

    Podlesak, T.F. (US Army Electronic Technology and Devices Lab., Fort Monmouth, NJ (US)); McMurray, J.A. (Vitronics, Eatontown, NJ (US)); Carter, J.L.

    1990-12-01

    The control of high voltage at high power, particularly opening switches, has been difficult in the past. Using gate turnoff thyristors (GTOs) arranged in series enables large currents to be switched at high voltage. A high voltage opening switch has been successfully demonstrated in our laboratory. This switch uses GTOs in series and successfully operates at voltages higher than the rated voltage of the individual devices. It is believed that this is the first time this has been successfully demonstrated, in that GTOs have been operated in series before, but always in a manner as to not exceed the voltage capability of the individual devices. In short, the devices have not worked together, sharing the voltage, but one device has been operated using several backup devices. Of particular interest is how well the individual devices share the voltage applied to them. Equal voltage sharing between devices is absolutely essential, in order to not exceed the voltage rating of any of the devices in the series chain. This is accomplished at high (microsecond) switching speeds. Thus, the system is useful for high frequency applications as well as high power, making for a flexible circuit system element. This paper reports on this demonstration system that is rated at 5 KV and uses 1 KV devices. A larger 24 KV system is under design and will use 4.5 KV devices. In order to design the 24 KV switch, the safe operating area of the large devices must be known thoroughly.

  2. Ceramic membranes for gas separation in advanced fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Ivanova, M.; Gestel, T. van; Bram, M.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF)

    2010-07-01

    The reduction or elimination of CO{sub 2} emissions from electricity generation power plants fuelled by coal or gas is a major target in the current socio-economic, environmental and political discussion to reduce green house gas emissions such as CO{sub 2}. This mission can be achieved by introducing gas separation techniques making use of membrane technology, which is, as a rule, associated with significantly lower efficiency losses compared with the conventional separation technologies. Depending on the kind of power plant process different membrane types (ceramic, polymer, metal) can be implemented. The possible technology routes are currently investigated to achieve the emission reduction. They rely on different separation tasks. The CO{sub 2}/N{sub 2} separation is the main target in the post-combustion process. Air separation (O{sub 2}/N{sub 2}) is the focus of the oxyfuel process. In the pre-combustion process an additional H{sub 2}/CO{sub 2} separation is included. Although all separation concepts imply different process requirements they have in common a need in membranes with high permeability, selectivity and stability. In each case CO{sub 2} is obtained in a readily condensable form. CO{sub 2}/N{sub 2} separation membranes like microporous membranes or polymer membranes are applicable in post-combustion stages. In processes with oxyfuel combustion, where the fuel is combusted with pure oxygen, oxygen transport membranes i.e. mixed ionic electronic conducting (MIEC) membranes with mainly perovskite or fluorite structure can be integrated. In the pre-combustion stages of the power plant process, H{sub 2}/CO{sub 2} separation membranes like microporous membranes e.g. doped silica or mixed protonic electronic conductors or metal membranes can be applied. The paper gives an overview about the considered ceramic materials for the different gas separation membranes. The manufacturing of bulk materials as well as supported thin films of these membranes along

  3. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    . First part of the thesis investigates possible algorithms for fast and accurate identi cation of utility network variables such as voltage amplitude, frequency, phase angle and line impedance. Special attention has been paid to grid synchronization algorithm in terms of accurate estimation of grid...... of grid voltage and the frequency of utility network. As a result, fast and accurate identi cation of both variables has been achieved. In addition, positive and negative sequence components of grid voltage can also be calculated. Simple, yet powerful ltering techniques, based on second order generalized...... integrator (SOGI) and delay signal cancellation (DSC) have been used to separate the sequence components. Simulation and experimental results attest the accuracy and e ectiveness of the developed algorithms in identifying the frequency, phase angle and magnitude of grid voltages during severe distortions...

  4. Advanced nonlinear control of three phase series active power filter

    Directory of Open Access Journals (Sweden)

    Abouelmahjoub Y.

    2014-01-01

    Full Text Available The problem of controlling three-phase series active power filter (TPSAPF is addressed in this paper in presence of the perturbations in the voltages of the electrical supply network. The control objective of the TPSAPF is twofold: (i compensation of all voltage perturbations (voltage harmonics, voltage unbalance and voltage sags, (ii regulation of the DC bus voltage of the inverter. A controller formed by two nonlinear regulators is designed, using the Backstepping technique, to provide the above compensation. The regulation of the DC bus voltage of the inverter is ensured by the use of a diode bridge rectifier which its output is in parallel with the DC bus capacitor. The Analysis of controller performances is illustrated by numerical simulation in Matlab/Simulink environment.

  5. Advanced Power Management of a Telehandler using Electronic Load Sensing

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm

    2009-01-01

    -sharing, power-sharing, anti-stall and high pressure protection to electronic control. These features are integrated into the developed control structure, which is implemented and tested. The ability of electronically controlling the position of the swash-plate in a variable-displacement pump is an essential...... part of the developed control solution. Hence, the development of a control structure for electronic control of a variable-displacement axial piston pump using a three-way servo valve is also treated....... application, a telehandler, can be replaced with electronic control, i.e. Electronic Load Sensing (ELS). The motivation for ELS is the potentials of better dynamic performance and system utilization, along with reduced mechanical complexity by transferring features as pump pressure control, flow...

  6. NASA advanced aeronautics design solar powered remotely piloted vehicle

    Science.gov (United States)

    Elario, David S.; Guillmette, Neal H.; Lind, Gregory S.; Webster, Jonathan D.; Ferreira, Michael J.; Konstantakis, George C.; Marshall, David L.; Windt, Cari L.

    1991-01-01

    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process.

  7. Second law analysis of advanced power generation systems using variable temperature heat sources

    Science.gov (United States)

    Bliem, C. J.; Mines, G. L.

    Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants.

  8. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, W. S.; Cha, H. R.; Ham, Y. S.; Lee, Y. G.; Kim, K. P.; Hong, Y. D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  9. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, W. S.; Cha, H. R.; Ham, Y. S.; Lee, Y. G.; Kim, K. P.; Hong, Y. D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  10. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 17, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1993-08-01

    Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1993, the following technical progress was made: Completed modeling calculations of coal mineral matter transformations, deposition behavior, and heat transfer impacts of six test fuels; and ran pilot-scale tests of Upper Freeport feed coal, microagglomerate product, and mulled product.

  11. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 8, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1991-07-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Calculated the kinetic characteristics of chars from the combustion of spherical oil agglomeration beneficiated products; continued drop tube devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; and started writing a summary topical report to include all results on the nine fuels tested.

  12. Powerful tools for genetic modification: Advances in gene editing.

    Science.gov (United States)

    Roesch, Erica A; Drumm, Mitchell L

    2017-09-27

    Recent discoveries and technical advances in genetic engineering, methods called gene or genome editing, provide hope for repairing genes that cause diseases like cystic fibrosis (CF) or otherwise altering a gene for therapeutic benefit. There are both hopes and hurdles with these technologies, with new ideas emerging almost daily. Initial studies using intestinal organoid cultures carrying the common, F508del mutation have shown that gene editing by CRISPR/Cas9 can convert cells lacking CFTR function to cells with normal channel function, providing a precedent that this technology can be harnessed for CF. While this is an important precedent, the challenges that remain are not trivial. A logistical issue for this and many other genetic diseases is genetic heterogeneity. Approximately, 2000 mutations associated with CF have been found in CFTR, the gene responsible for CF, and thus a feasible strategy that would encompass all individuals affected by the disease is particularly difficult to envision. However, single strategies that would be applicable to all subjects affected by CF have been conceived and are being investigated. With all of these approaches, efficiency (the proportion of cells edited), accuracy (how often other sites in the genome are affected), and delivery of the gene editing components to the desired cells are perhaps the most significant, impending hurdles. Our understanding of each of these areas is increasing rapidly, and while it is impossible to predict when a successful strategy will reach the clinic, there is every reason to believe it is a question of "when" and not "if." © 2017 Wiley Periodicals, Inc.

  13. Advances in electric power and energy systems load and price forecasting

    CERN Document Server

    2017-01-01

    A comprehensive review of state-of-the-art approaches to power systems forecasting from the most respected names in the field, internationally. Advances in Electric Power and Energy Systems is the first book devoted exclusively to a subject of increasing urgency to power systems planning and operations. Written for practicing engineers, researchers, and post-grads concerned with power systems planning and forecasting, this book brings together contributions from many of the world’s foremost names in the field who address a range of critical issues, from forecasting power system load to power system pricing to post-storm service restoration times, river flow forecasting, and more. In a time of ever-increasing energy demands, mounting concerns over the environmental impacts of power generation, and the emergence of new, smart-grid technologies, electricity price forecasting has assumed a prominent role within both the academic and industrial ar nas. Short-run forecasting of electricity prices has become nece...

  14. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  15. Advanced power conversion based on the Aerocapacitor{trademark}. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roark, D.

    1997-03-05

    This report summarizes work performed under contract No. DE-FC07-94ID13283, {open_quotes}Advanced Power Conversion Based on the Aerocapacitors{trademark}.{close_quotes} Under this contract high power density, high energy density, organic electrolyte Aerocapacitors{trademark} were developed and characterized for power conversion applications. Pilot facilities for manufacturing prototype AA-size Aerocapacitors{trademark} were put in place. The low ESR and good frequency response of these devices show that they are ideal components for high discharge rate and low to moderate frequency (< 10 kHz) applications such as power conversion.

  16. Advanced power cycling test for power module with on-line on-state VCE measurement

    DEFF Research Database (Denmark)

    Choi, Ui-min; Trintis, Ionut; Blaabjerg, Frede

    2015-01-01

    module. The proposed concept can perform various stress conditions which is valid in a real mission profile and it is using a real power converter application with small loss. The concept of the proposed test setup is first presented. Then, the on-line on-state collector-emitter voltage VCE measurement......Recent research has made an effort to improve the reliability of power electronic systems to comply with more stringent constraints on cost, safety, predicted lifetime and availability in many applications. For this, studies about failure mechanisms of power electronic components and lifetime...

  17. Advanced Power Conversion and Distribution - Efficient Power for JPL Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We will develop a power conversion solution that will increase end-to-end efficiency to 80% or more compared to the 30%-50% efficiency typically obtained through use...

  18. Projected techno-economic improvements for advanced solar thermal power plants

    Science.gov (United States)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  19. Advanced Design Tools for the Lifetime of Power Electronics – Study Case on Motor Drive Application

    DEFF Research Database (Denmark)

    Ma, Ke; Vernica, Ionut; Blaabjerg, Frede

    2016-01-01

    electronics. In this paper, an advanced design tool structure, which can acquire various reliability metrics of the power electronics, is proposed. The proposed design tool is based on the failure mechanisms in the critical components of the power electronics, and the mission profiles in the converter......In many important energy conversion systems, the power electronic converters are proven to have high failure rates. At the same time, the failures of the power electronics systems are becoming more and more unacceptable because of the high cost of failures. As a consequence, an appropriate...... assessment of reliability performance for the power electronics is a crucial and emerging need, because it is the essential information for the reliability improvements, and thus reduction of the cost-of-energy. Unfortunately, there is still lack of suitable tools for the reliability assessment in power...

  20. Improving human reliability through better nuclear power plant system design: Program for advanced nuclear power studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Golay, M.W.

    1993-10-10

    The project on ``Development of a Theory of the Dependence of Human Reliability upon System Designs as a Means of Improving Nuclear Power Plant Performance`` was been undertaken in order to address the problem of human error in advanced nuclear power plant designs. Lack of a mature theory has retarded progress in reducing likely frequencies of human errors. Work being pursued in this project is to perform a set of experiments involving human subjects who are required to operate, diagnose and respond to changes in computer-simulated systems, relevant to those encountered in nuclear power plants, which are made to differ in complexity in a systematic manner. The computer program used to present the problems to be solved also records the response of the operator as it unfolds.

  1. Grid synchronization for advanced power processing and FACTS in wind power systems

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Vazquez, G.

    2010-01-01

    and also to support the grid operation, as the new grid codes demand. The connection of FACTS based on power converters, such as STATCOMs, are also contributing to the integration of renewable energies improving their behavior under contingencies. However, in both cases it is needed to have a grid voltage...... constraints will be established according to the Grid Code Requirements (GCRs)....

  2. Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration

    Science.gov (United States)

    Oeftering, Richard; Soeder, James F.; Beach, Ray

    2014-01-01

    The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.

  3. Proceedings: Workshop on Advanced Mathematics and Computer Science for Power Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-08-01

    EPRI's Office of Exploratory Research sponsors a series of workshops that explore how to apply recent advances in mathematics and computer science to the problems of the electric utility industry. In this workshop, participants identified research objectives that may significantly improve the mathematical methods and computer architecture currently used for power system analysis.

  4. Women Being Coached to Advance Their Careers to Positions of Power and Influence: A Narrative Inquiry

    Science.gov (United States)

    Theune, Doris P.

    2010-01-01

    This study presents the discipline of executive coaching as a form of contemporary adult education informed by transformative learning theory appropriate for the education, support, and empowerment of adult women seeking to identify, understand, and break through the obstacles and barriers to career advancement to achieve positions of power and…

  5. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    Energy Technology Data Exchange (ETDEWEB)

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

  6. External costs of silicon carbide fusion power plants compared to other advanced generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lechon, Y. E-mail: yolanda.lechon@ciemat.es; Cabal, H.; Saez, R.M.; Hallberg, B.; Aquilonius, K.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R

    2003-09-01

    This study was performed in the framework of the Socio-Economic Research on Fusion (SERF3), which is jointly conducted by Euratom and the fusion associations. Assessments of monetarized external impacts of the fusion fuel-cycle were previously performed (SERF1 and SERF2). Three different power plant designs were studied, with the main difference being the structural materials and cooling system used. In this third phase of the SERF project the external costs of three additional fusion power plant models using silicon carbide as structural material have been analysed. A comparison with other advanced generation technologies expected to be in use around 2050, when the first fusion power plant would be operative, has also been performed. These technologies include advanced fossil technologies, such as Natural Gas Combined Cycle, Pressurised Fluidised Bed Combustion and Integrated Gasification Combined Cycle with carbon sequestration technologies; fuel cells and renewable technologies including geothermal energy, wind energy and photovoltaic systems with energy storage devices. Fusion power plants using silicon carbide as structural material have higher efficiencies than plants using steel and this fact has a very positive effect on the external costs per kW h. These external costs are in the lowest range of the external costs of advanced generation technologies indicating the outstanding environmental performance of fusion power.

  7. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  8. Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James

    2011-01-01

    A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.

  9. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    Institute of Scientific and Technical Information of China (English)

    陈均杰; 李国强; 钱金平; 刘子奚

    2012-01-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta/3N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  10. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zelenay, Piotr [Los Alamos National Laboratory

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  11. NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task

    Science.gov (United States)

    Kennedy, Cheryl

    2010-03-01

    Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.

  12. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neill, Barbara [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  13. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 15, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1993-03-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; re-analyzed the samples from the pilot-scale ash deposition tests of the first nine feed coals and BCFs using a modified CCSEM technique; updated the topical summary report; and prepared for upcoming tests of new BCFs being produced.

  14. In Situ Synthesis of NaY Zeolite with Coal-Based Kaolin

    Institute of Scientific and Technical Information of China (English)

    Xinmei Liu; Zifeng Yan; Huaiping Wang; Yantuo Luo

    2003-01-01

    NaY zeolites were in-situ synthesized from coal-based kaolin via the hydrothermal method.The effects of various factors on the structure of the samples were extensively investigated. The sampleswere characterized by N2 adsorption, XRD, IR and DTG-DTA methods, and the results show that thecrystallization temperature and amount of added water play an important role in the formation of the zeo-lite structure. The 4A and P zeolites are the competitive phase present in the resulting product. However,NaY zeolites with a higher relative crystallinity, excluding impure crystals and the well hydrothermal sta-bility, can be synthesized from coal-based kaolin. These zeolites possess a larger surface area and a narrowpore size distribution, and this means that optimization of this process might result in a commercial routeto synthesize NaY zeolites from coal-based kaolin.

  15. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  16. Power Control Technique for Efficient Call Admission Control in Advanced Wirless Networks

    Directory of Open Access Journals (Sweden)

    Ch. Sreenivasa Rao

    2012-06-01

    Full Text Available In 4G networks, call admission control techniques have been proposed to provide Quality of Service (QoS in a network by restricting the access to network resources. Power control is essential in call admission control in order to provide fair access to all users, improve battery lifetime and system performance. But the existing call admission control algorithms rarely consider the power controlling techniques in the handoff process for different traffic classes. In this paper, we propose to develop a power controlled call admission control scheme for handoff in the advanced wireless networks. The incoming call measures the initial interference on it and then the base station starts transmitting the packets to the new call. The new call is rejected when the interference reaches a threshold value.Whenever an existing call meets the power constraint, the transmit power is decremented based on thetraffic class and incoming call obtains this information by monitoring the interference received on it. Theconvergence of the power control algorithm is checked and the power levels of all incoming calls areadjusted. From our simulation results we prove that this power control technique provides efficienthandoff in the 4G networks by increasing the throughput and reducing the delay of the existing users.

  17. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  18. Recent advance on the efficiency at maximum power of heat engines

    Institute of Scientific and Technical Information of China (English)

    Tu Zhan-Chun

    2012-01-01

    This review reports several key advances on the theoretical investigations of efficiency at maximum power of heat engines in the past five years.The analytical results of efficiency at maximum power for the Curzon-Ahlborn heat engine,the stochastic heat engine constructed from a Brownian particle,and Feynman's ratchet as a heat engine are presented.It is found that:the efficiency at maximum power exhibits universal behavior at small relative temperature differences; the lower and the upper bounds might exist under quite general conditions; and the problem of efficiency at maximum power comes down to seeking for the minimum irreversible entropy production in each finite-time isothermal process for a given time.

  19. Recent advances and challenges of fuel cell based power system architectures and control – A review

    DEFF Research Database (Denmark)

    Das, Vipin; Sanjeevikumar, Padmanaban; Venkitusamy, Karthikeyan

    2017-01-01

    Renewable energy generation is rapidly growing in the power sector industry and widely used for two categories: grid connected and standalone system. This paper gives the insights about fuel cell operation and application of various power electronics systems. The fuel cell voltage decreases bit...... of utilization. In order to improve the reliability of fuel cell based power system, the integration of energy storage system and advanced research methods are focused in this paper. The control algorithms of power architecture for the couple of well-known applications are discussed. Additionally, the paper...... addresses the suitable processor utilized as a part of the energy unit application on the premise of fuel cell characteristics. In this paper, the challenges to improve the dynamics of controller in fuel cell based applications are mentioned....

  20. Conceptual design of an advanced Stirling conversion system for terrestrial power generation

    Science.gov (United States)

    1988-01-01

    A free piston Stirling engine coupled to an electric generator or alternator with a nominal kWe power output absorbing thermal energy from a nominal 100 square meter parabolic solar collector and supplying electric power to a utility grid was identified. The results of the conceptual design study of an Advanced Stirling Conversion System (ASCS) were documented. The objectives are as follows: define the ASCS configuration; provide a manufacturability and cost evaluation; predict ASCS performance over the range of solar input required to produce power; estimate system and major component weights; define engine and electrical power condidtioning control requirements; and define key technology needs not ready by the late 1980s in meeting efficiency, life, cost, and with goalds for the ASCS.

  1. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Susan A. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  2. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  3. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Susan A. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-01-31

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  4. Stabilized high-power laser system for the gravitational wave detector advanced LIGO.

    Science.gov (United States)

    Kwee, P; Bogan, C; Danzmann, K; Frede, M; Kim, H; King, P; Pöld, J; Puncken, O; Savage, R L; Seifert, F; Wessels, P; Winkelmann, L; Willke, B

    2012-05-07

    An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments.

  5. The advanced supercritical 700 C pulverised coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, S.; Kristensen, P. [Tech-wise A/S, Fredericia (Denmark); Klauke, F. [Babcock Borsig Power Energy, Oberhausen (Germany); Vanstone, R. [ALSTOM Power UK Ltd., Rugby (United Kingdom); Zeijseink, A. [KEMA Nederland B.V., Arnhem (Netherlands); Weissinger, G. [ALSTOM Power Boilers GmbH, Stuttgart (Germany); Meier, J. [ALSTOM Power Ltd., Baden (Switzerland); Blum, R. [Elsam A/S, Fredericia (Denmark); Wieghardt, K. [Siemens, Muelheim (Germany)

    2002-07-01

    This paper presents the joint efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700 C PF Power Plant'. Net efficiencies of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700 C. The principal efforts are based on development of creep resistant - and expensive - Nickel-based materials. (orig.) [German] Der Beitrag beschreibt die gemeinsamen Anstrengungen einer grossen Gruppe europaeischer Kraftwerksbauer, Kraftwerksbetreiber und Institute, die in einem gestuften langfristigen Projekt mit dem Titel 'Advanced 700 C PF Power Plant' zusammenarbeiten. Nettowirkungsgrade von mehr als 50% sollen durch die Entwicklung eines ueberkritischen Dampfkreislaufs erreicht werden, der mit maximalen Dampftemperaturen in der Groessenordnung von 700 C arbeitet. Die Hauptbemuehungen gelten der Entwicklung von kriechfesten und aufwaendigen Werkstoffen auf Nickelbasis, die als Superlegierungen bezeichnet werden. (orig.)

  6. Advanced structures for grid Synchronization of power converters in distributed generation applications

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Candela, I.

    2012-01-01

    The Transmission System Operators are specially concerned about the Low Voltage Ride Through requirements of distributed generation power plants. Solutions based on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters have...... contributed to enhance their response under faulty and distorted scenarios, and hence to fulfill these requirements. In order to achieve satisfactory results it is necessary to count on accurate and fast grid voltage synchronization algorithms, which are able to work under unbalanced and distorted conditions....... This paper analyzes and compares the synchronization capability of three advanced synchronization systems: the Decoupled Double Synchronous Reference Frame-Phase-Locked Loop, the Dual Second Order Generalized Integgrator- Phase-Locked Loop and the Three-Phase Enhanced Phase-Locked Loop, designed to work...

  7. Analytical investigation of thermal barrier coatings on advanced power generation gas turbines

    Science.gov (United States)

    Amos, D. J.

    1977-01-01

    An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.

  8. The role of advanced technology in the future of the power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  9. Analisis Kinerja Metode Power Control untuk Manajemen Interferensi Sistem Komunikasi Uplink LTE-Advanced dengan Femtocell

    OpenAIRE

    Safirina Febryanti; Gamantyo Hendrantoro; Devy Kuswidiastuti

    2013-01-01

    Teknologi LTE-Advanced menghadirkan fitur baru bernama femtocell atau disebut juga Home Enhanced NodeB (HeNB) yang dapat meningkatkan area cakupan indoor. Di lain sisi HeNB menimbulkan interferensi baik uplink maupun downlink. Interferensi uplink terjadi antara user HeNB (HUE) dan user eNB (MUE) maupun sesama HUE. Interferensi ini mendegradasi kinerja sistem terutama dari sisi Signal to Interference plus Noise Ratio (SINR). Penelitian ini memberi penjelasan mengenai penerapan power control se...

  10. Modified 9% Cr steels for advanced power generation: microstructure and properties

    OpenAIRE

    Czyrska-Filemonowicz, A; A. Zielińska-Lipiec; Ennis, P. J.

    2006-01-01

    Purpose: The 9-10%Cr steels developed for advanced power stations, P91, P92 and E911, have beeninvestigated.Design/methodology/approach: Quantitative microstructural investigations (sub-grain width, dislocationdensity, particle size distribution and their chemical compositions) have been carried out using analyticaltransmission electron microscopy.Findings: Comparison of the microstructural parameters of three 9%Cr steels mentioned above and a correlationwith different creep rupture behaviour...

  11. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mugerwa, Michael [Technip USA, Inc., Claremont, CA (United States)

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  12. Characterization and supply of coal based fuels. Quarterly report, August 1, 1987--October 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements; Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed.

  13. ORNL R and D on advanced small and medium power reactors: Selected topics

    Energy Technology Data Exchange (ETDEWEB)

    White, J.D.; Trauger, D.B.

    1988-01-01

    From 1984-1985, ORNL studied several innovative small and medium power nuclear concepts with respect to viability. Criteria for assessment of market attractiveness were developed and are described here. Using these criteria and descriptions of selected advanced reactor concepts, and assessment of their projected market viability in the time period 2000-2010 was made. All of these selected concepts could be considered as having the potential for meeting the criteria but, in most cases, considerable RandD would be required to reduce uncertainties. This work and later studies of safety and licensing of advanced, passively safe reactor concepts by ORNL are described. The results of these studies are taken into account in most of the current (FY 1989) work at ORNL on advanced reactors. A brief outline of this current work is given. One of the current RandD efforts at ORNL which addresses the operability and safety of advanced reactors is the Advanced Controls Program. Selected topics from this Program are described. 13 refs., 1 fig.

  14. Advances in 808nm high power diode laser bars and single emitters

    Science.gov (United States)

    Morales, J.; Lehkonen, S.; Liu, G.; Schleuning, D.; Acklin, B.

    2016-03-01

    Key applications for 780-830nm high power diode lasers include the pumping of various gas, solid state, and fiber laser media; medical and aesthetic applications including hair removal; direct diode materials processing; and computer-to-plate (CtP) printing. Many of these applications require high brightness fiber coupled beam delivery, in turn requiring high brightness optical output at the bar and chip level. Many require multiple bars per system, with aggregate powers on the order of kWs, placing a premium on high power and high power conversion efficiency. This paper presents Coherent's recent advances in the production of high power, high brightness, high efficiency bars and chips at 780-830nm. Results are presented for bars and single emitters of various geometries. Performance data is presented demonstrating peak power conversion efficiencies of 63% in CW mode. Reliability data is presented demonstrating <50k hours lifetime for products including 60W 18% fill factor and 80W 28% fill factor conduction cooled bars, and <1e9 shots lifetime for 500W QCW bars.

  15. A variable structure unified power flow controller for advanced industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.-T.

    2004-07-01

    This paper presents a new application example of flexible ac transmission systems (FACTS) devices in the advanced industrial power control schemes. An integrated multi-functional power quality controller and energy saving system based on the unified power flow controller (UPFC) is proposed. The proposed integrated system can compensate the reactive power, harmonic current and the unbalanced power of the controlled distribution system with a capacity-limitation manner by its shunt branch. It also can regulate multiple load voltages simultaneously based on the prescribed P-V characteristics of distinct loads for the purpose of energy saving via its series branch. The detailed design procedure of the controllers providing flexible hardware configuration and multiple control functions is presented. A 15 KVA test-system with the variable structure UPFC configuration performing active power filter functions and simultaneously regulating an 7HP induction motor for energy saving is numerically investigated with EMTP programs. The feasibility and effectiveness of the proposed system and the related control techniques are confirmed through some simulation results. (author)

  16. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    Science.gov (United States)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  17. The advanced super critical 700{sup o}C pulverized coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, S.; Klauke, F.; Vanstone, R.; Zeijseink, A.; Weissinger, G.; Kristensen, P.; Meier, J.; Blum, R.; Wieghardt, K. [Tech-Wise A/S, Fredericia (Denmark)

    2001-07-01

    This paper presents the efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700{sup o}C PF Power Plant'. The first phase started in 1998 based on a grant from the Commission's Thermie programme under the 4th Framework programme. The overall objective of the project is to ensure a role for coal in Europe also in future. The project's targets renewedpublic and political acceptance of coal by improving efficiency and economy of well-proven, super critical pulverised coal-fired technology. Net efficiencies of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700{sup o}C. Principal efforts are based on development of creep resistant - and expensive - nickel-based materials named super-alloys for the hottest areas of the water/steam cycle. Three benchmarks for theinvestigations have been set up: (i) the net efficiency of the demonstration plant from the present state of the art performance of 44% will be boosted into the range of 50-51% for a plant located inland with a cooling tower and 53-54% for the best seawater-cooled versions. (ii) reductions of investment cost of PF power plant by revising the overall architecture of the plant. (iii) Co-firing of up to 20% biomass with coal. The Advanced 700{sup o}C PF power plant project (or AD700) will improve the competitiveness of coal-fired power generation and give a major reduction of CO{sub 2} from coal-fired power plants in the range of 15% from the best PF power plants presently and up to 40% from older plants. 11 figs., 2 tabs.

  18. Advanced Adaptive Particle Swarm Optimization based SVC Controller for Power System Stability

    Directory of Open Access Journals (Sweden)

    Poonam Singhal

    2014-12-01

    Full Text Available The interconnected systems is continually increasing in size and extending over whole geographical regions, it is becoming increasingly more difficult to maintain synchronism between various parts of the power system. This paper work presents an advanced adaptive Particle swarm optimization technique to optimize the SVC controller parameters for enhancement of the steady state stability & overcoming the premature convergence & stagnation problems as in basic PSO algorithm & Particle swarm optimization with shrinkage factor & inertia weight approach (PSO-SFIWA. In this paper SMIB system along with PID damped SVC controller is considered for study. The generator speed deviation is used as an auxiliary signal to SVC, to generate the desired damping. This controller improves the dynamic performance of power system by reducing the steady-state error. The controller parameters are optimized using basic PSO, PSO-SFIWA & Advanced Adaptive PSO. Computational results show that Advanced Adaptive based SVC controller is able to find better quality solution as compare to conventional PSO & PSO-SFIWA Techniques.

  19. Improvement of environmental aspects of thermal power plant operation by advanced control concepts

    Directory of Open Access Journals (Sweden)

    Mikulandrić Robert

    2012-01-01

    Full Text Available The necessity of the reduction of greenhouse gas emissions, as formulated in the Kyoto Protocol, imposes the need for improving environmental aspects of existing thermal power plants operation. Improvements can be reached either by efficiency increment or by implementation of emission reduction measures. Investments in refurbishment of existing plant components or in plant upgrading by flue gas desulphurization, by primary and secondary measures of nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by modernisation of thermal power plant instrumentation and control system including sensors, equipment diagnostics and advanced controls. Impact of advanced control solutions implementation depends on technical characteristics and status of existing instrumentation and control systems as well as on design characteristics and actual conditions of installed plant components. Evaluation of adequacy of implementation of advanced control concepts is especially important in Western Balkan region where thermal power plants portfolio is rather diversified in terms of size, type and commissioning year and where generally poor maintenance and lack of investments in power generation sector resulted in high greenhouse gases emissions and low efficiency of plants in operation. This paper is intended to present possibilities of implementation of advanced control concepts, and particularly those based on artificial intelligence, in selected thermal power plants in order to increase plant efficiency and to lower pollutants emissions and to comply with environmental quality standards prescribed in large combustion plant directive. [Acknowledgements. This paper has been created within WBalkICT - Supporting Common RTD actions in WBCs for developing Low Cost and Low Risk ICT based solutions for TPPs Energy Efficiency increasing, SEE-ERA.NET plus project in cooperation among partners from IPA SA - Romania, University of Zagreb - Croatia and Vinca

  20. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  1. Development of power storage system. Advanced battery power storage system. (The development results and research plan in 1988 fiscal year)

    Energy Technology Data Exchange (ETDEWEB)

    Kouda, Atsushi; Yazawa, Tetsuo

    1988-07-01

    The research and trial manufacture of 1kW battery on the electrode and battery construction, development of 10kW battery module, capacity enlarging and trial manufacturing as to four type batteries, that is, Na-S battery, Zn-Cl battery, Zn-Br battery and redox flow type battery were forwarded as the items to be developed in Japan for the advanced battery power storage system. The research and development of system technology was started in 1980 to verify the operating and controlling characteristics and the protection system. The technology of the 60kW class module for 1,000kW class battery system was established in 1987 and the total system research and development is forwarding. The 1,000kW class system test is continued; the 60kW class module batteries of Na-S battery and Zn-Br battery are operated; the fabrication of 1,000kW class pilot plant is initiated; and the reliability and safety of the power system are verified in 1988. (1 fig, 2 tabs)

  2. Advanced DC-DC converter for power conditioning in hydrogen fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovacevic, G.; Tenconi, A.; Bojoi, R. [Department of Electrical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2008-06-15

    The fuel cell (FC) generators can produce electric energy directly from hydrogen and oxygen. The DC voltage generated by FC is generally low amplitude and it is not constant, depending on the operating conditions. Furthermore, FC systems have dynamic response that is slower than the transient responses typically requested by the load. For this reason, in many applications the FC generators must be interfaced with other energy/power sources by means of an electronic power converter. An advanced full-bridge (FB) DC-DC converter, which effectively achieves zero-voltage switching and zero-current switching (ZVS-ZCS), is proposed for power-conditioning (PC) in hydrogen FC applications. The operation and features of the converter are analyzed and verified by simulations results. The ZVS-ZCS operation is obtained by means of a simple auxiliary circuit. Introduction of the soft-switching operation in PC unit brings improvements not only from the converter efficiency point of view, but also in terms of increased converter power density. Quantitative analysis of hard and soft-switching operating of the proposed converter is also made, bringing in evidence the benefits of soft-switching operation mode. The proposed converter can be a suitable solution for PC in hydrogen FC systems, especially for the medium to high-power applications. (author)

  3. Analysis of R&D Strategy for Advanced Combined Cycle Power Systems

    Science.gov (United States)

    Akimoto, Keigo; Hayashi, Ayami; Kosugi, Takanobu; Tomoda, Toshimasa

    This article analyzes and evaluates the R&D strategy for advanced power generation technologies, such as natural gas combined cycles, IGCCs (Integrated coal Gasification Combined Cycles), and large-scale fuel cell power generation systems with a mixed-integer programming model. The R&D processes are explicitly formulated in the model through GERT (Graphical Evaluation and Review Technique), and the data on each required time of R&D was collected through questionnaire surveys among the experts. The obtained cost-effective strategy incorporates the optimum investment allocation among the developments of various elemental technologies, and at the same time, it incorporates the least-cost expansion planning of power systems in Japan including other power generation technologies such as conventional coal, oil, and gas fired, and hydro and wind power. The simulation results show the selection of the cost-effective technology developments and the importance of the concentrated investments in them. For example, IGCC, which has a relatively high thermal efficiency, and LNG-CCs of the assumed two efficiencies are the cost-effective investment targets in the no-CO2-regulation case.

  4. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  5. Interagency Advanced Power Group (IAPG) meeting compendium. October 1991--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Under the direction of the Interagency Advanced Power Group (IAPG), the Power Information Center (PIC) provides support services for each IAPG information exchange session. IAPG members meet a minimum of once each year to share programmatic and technical information on federally funded research and development (R&D) projects in the area of advanced power. This R&D is directed by one of the five IAPG member agencies-the US Army, US Navy, US Air Force, US Department of Energy, and the National Aeronautics and Space Administration. Affiliated Federal groups and federally funded research and development centers can also participate. To enhance the exchange of information between Government researchers, this 1992 IAPG Meeting Compendium has been assembled. This publication is a re-printing of abstracts of each IAPG presentation offered during 1991-1992. The information is arranged chronologically by IAPG meeting. During the 1992 IAPG meeting year, there were presentations restricted to Government audiences only. These ``Restricted`` minutes have not been included in this compilation.

  6. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  7. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitch [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  8. Advanced biomass gasification for high-efficiency power. Final activity report of BiGPower Project

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Kurkela, M. (eds.)

    2009-11-15

    The BiGPower project was related to the development of 2nd generation high-efficiency biomass-to-electricity technologies, which have the potential to meet the targets of cost effective electricity production from wide range of biomass and waste fuels in size ranges typical to locally available feedstock sources (below 100 MW{sub e}). This project was designed to create the fundamental and technical basis for successful future industrial developments and demonstration projects aiming to commercial breakthrough by 2010-2020. This overall aim was approached by carrying out in pre-competitive manner well-focused R and D activities on the key bottlenecks of advanced biomass gasification power systems. Three promising European gasification technologies in this target size range were selected to form the basis for the development: 1) air-blow novel fixed-bed gasifier for size range of 0.5-5 MWe, 2) steam gasification in a dual-fluidisedbed gasifier for 5-50 MWe and 3) air-blown pressurised fluidised-bed gasification technology for 5-100 MWe. In all biomass gasification processes, the product gas contains several types of gas contaminants, which have to be efficiently removed before utilising the gas in advanced power systems. The key technical solutions developed in the BiGPower project were: a) high-temperature catalytic removal of tars and ammonia by new catalytic methods, and b) development of innovative low cost gas filtration. Three most potential power production cycle alternatives were examined and developed: 1) gas engines, 2) molten carbonate fuel cells (MCFC) and 3) the simplified Integrated Gasification Combined Cycle (IGCC) process. The performance and techno-economic feasibility of these advanced gasification-topower concepts were examined by carrying out case studies in different European Union. (orig.)

  9. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T.P.; Tchizhik, A.A.; Chavchanidze, N.N. [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1998-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  10. Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Ostergaard, Jacob;

    2012-01-01

    This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy...... the oscillations in the stator and rotor currents and the DC bus voltage. The effectiveness of the proposed control strategy has been demonstrated through various simulation cases. Compared with conventional crowbar protection, the proposed control method can not only improve the LVRT capability of the DFIG WT......, but also help maintaining continuous active and reactive power control of the DFIG during the grid faults....

  11. Vibration behavior of fuel-element vibration suppressors for the advanced power reactor

    Science.gov (United States)

    Adams, D. W.; Fiero, I. B.

    1973-01-01

    Preliminary shock and vibration tests were performed on vibration suppressors for the advanced power reactor for space application. These suppressors position the fuel pellets in a pin type fuel element. The test determined the effect of varying axial clearance on the behavior of the suppressors when subjected to shock and vibratory loading. The full-size suppressor was tested in a mockup model of fuel and clad which required scaling of test conditions. The test data were correlated with theoretical predictions for suppressor failure. Good agreement was obtained. The maximum difference with damping neglected was about 30 percent. Neglecting damping would result in a conservative design.

  12. Recent advances in phosphate laser glasses for high power applications. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.

    1996-05-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4 cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  13. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  14. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Susan A. [Dept. of Energy (DOE), Washington DC (United States). Vehicle Technologies Office

    2014-02-01

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  15. Comparison of Coal-Based Dimethyl Ether and Diesel as Vehicle Fuels from Well to Wheel in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liang; HUANG Zhen

    2009-01-01

    With life cycle assessment (LCA) methodology, a life cycle model of coal-based vehicle fuels (CBVFs) including coal-based dimethyl ether (CBDME) and coal-based diesel (CBD) is established. Their primary energy consumption (PEC) and global warming potential (GWP) from well to wheel including feedstock extraction, fuel production, fuel consumption in vehicle and energy transportation are calculated and compared. Results show that the life cycle PEC and GWP of CBD pathway are 1.17 and 1.34 times as CBDME pathway. Based on the above results, CBDME will become a choice with great potential to replace conventional petroleum-based diesel (CPBD) in China.

  16. Power Saving Scheduling Scheme for Internet of Things over LTE/LTE-Advanced Networks

    Directory of Open Access Journals (Sweden)

    Yen-Wei Kuo

    2015-01-01

    Full Text Available The devices of Internet of Things (IoT will grow rapidly in the near future, and the power consumption and radio spectrum management will become the most critical issues in the IoT networks. Long Term Evolution (LTE technology will become a promising technology used in IoT networks due to its flat architecture, all-IP network, and greater spectrum efficiency. The 3rd Generation Partnership Project (3GPP specified the Discontinuous Reception (DRX to reduce device’s power consumption. However, the DRX may pose unexpected communication delay due to missing Physical Downlink Control Channel (PDCCH information in sleep mode. Recent studies mainly focus on optimizing DRX parameters to manage the tradeoff between the energy consumption and communication latency. In this paper, we proposed a fuzzy-based power saving scheduling scheme for IoT over the LTE/LTE-Advanced networks to deal with the issues of the radio resource management and power consumption from the scheduling and resource allocation perspective. The proposed scheme considers not only individual IoT device’s real-time requirement but also the overall network performance. The simulation results show that our proposed scheme can meet the requirements of the DRX cycle and scheduling latency and can save about half of energy consumption for IoT devices compared to conventional approaches.

  17. NATO Advanced Research Workshop “Nuclear Power and Energy Security”

    CERN Document Server

    Apikyan, Samuel A; Nuclear Power and Energy Security

    2010-01-01

    World energy consumption has grown dramatically over the past few decades. This growth in energy demand will be driven by large increases in both economic growth and world population coupled with rising living standards in rapidly growing countries. The last years, we routinely hear about a "renaissance" of nuclear energy. The recognition that nuclear power is vital to global energy security in the 21st century has been growing for some time. "The more we look to the future, the more we can expect countries to be considering the potential benefits that expanding nuclear power has to offer for the global environment and for economic growth," IAEA Director General Mohamed ElBaradei said in advance of a gathering of 500 nuclear power experts assembled in Moscow for the "International Conference on Fifty Years of Nuclear Power - the Next Fifty Years". But such a renaissance is not a single-valued and sure thing. Legitimate four unresolved questions remain about high relative costs; perceived adverse safety, envir...

  18. Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification

    Energy Technology Data Exchange (ETDEWEB)

    Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb; van der Merwe, Wim; Jorg, Pieder

    2017-02-16

    Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristics is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.

  19. Evaluation and Testing of the Suitability of a Coal-Based Jet Fuel

    Science.gov (United States)

    2008-06-01

    oxidative thermal stability was attributed to the lack of heteroatomic species, which contribute to deposition in petroleum -derived fuels...exists, petroleum -based fuels have more desirable low temperature properties, while at extremely low temperatures (<-50C) where solidification...production than the petroleum -derived fuel, but more than the coal-based fuel. In both the engine tests and the research combustor, the synthetic fuel

  20. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    Science.gov (United States)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  1. Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

    2011-01-01

    In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the

  2. Advanced component development of MCFC technology at M-C Power

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, D.S.; Haugh, E.J.; Benjamin, T.G. [M-C Power Corp., Burr Ridge, IL (United States)

    1996-12-31

    M-C Power Corporation (MCP) was founded in 1987 to commercialize Molten Carbonate Fuel Cell (MCFC) stacks. The first generation of active area cell components were successfully scaled-up from the 100-cm{sup 2} area laboratory scale to continuous production of commercial-area (1-m) components. These components have been tested in five commercial-area subscale (20-kW) stacks and one commercial-scale (250-kW) stack. The second 250 kW stack is being installed in the power plant for operation in late 1996 and components have already been manufactured for the third 250-kW stack which is scheduled to go on-line in the middle of 1997. Concurrent with commercial-area (1-m{sup 2}) active component manufacturing has been an ongoing effort to develop and test advanced component technologies that will enable MCP to meet its future cost and performance goals. The primary goal is to lower the total cell package cost, while attaining improvements in cell performance and endurance. This work is being completed through analysis of the cost drivers for raw materials and manufacturing techniques. A program is in place to verify the performance of the lower cost materials through pressurized (3 atm) bench scale (100-cm{sup 2}) cell tests. Bench-scale cell testing of advanced active area components has shown that simultaneous cost reduction and improvements in the performance and endurance are attainable. Following performance verification at the bench scale level, scale-up of the advanced component manufacturing processes to commercial-area has been ongoing in the past year. The following sections discuss some of the performance improvements and reductions in cost that have been realized.

  3. Multi-scale sustainability assessments for biomass-based and coal-based fuels in China.

    Science.gov (United States)

    Man, Yi; Xiao, Honghua; Cai, Wei; Yang, Siyu

    2017-12-01

    Transportation liquid fuels production is heavily depend on oil. In recent years, developing biomass based and coal based fuels are regarded as promising alternatives for non-petroleum based fuels in China. With the rapid growth of constructing and planning b biomass based and coal based fuels production projects, sustainability assessments are needed to simultaneously consider the resource, the economic, and the environmental factors. This paper performs multi-scale analyses on the biomass based and coal based fuels in China. The production cost, life cycle cost, and ecological life cycle cost (ELCC) of these synfuels are investigated to compare their pros to cons and reveal the sustainability. The results show that BTL fuels has high production cost. It lacks of economic attractiveness. However, insignificant resource cost and environmental cost lead to a substantially lower ELCC, which may indicate better ecological sustainability. CTL fuels, on the contrary, is lower in production cost and reliable for economic benefit. But its coal consumption and pollutant emissions are both serious, leading to overwhelming resource cost and environmental cost. A shifting from petroleum to CTL fuels could double the ELCC, posing great threat to the sustainability of the entire fuels industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Studies on advanced water-cooled reactors beyond generation Ⅲ for power generation

    Institute of Scientific and Technical Information of China (English)

    CHENG Xu

    2007-01-01

    China's ambitious nuclear power program motivates the country's nuclear community to develop advanced reactor concepts beyond generation Ⅲ to ensure a long-term, stable, and sustainable development of nuclear power. The paper discusses some main criteria for the selection of future water-cooled reactors by considering the specific Chinese situation. Based on the suggested selection criteria, two new types of water-cooled reactors are recommended for future Chinese nuclear power generation. The high conversion pressurized water reactor utilizes the present PWR technology to a large extent. With a conversion ratio of about 0.95, the fuel utilization is increased about 5 times. This significantly improves the sustainability of fuel resources. The supercritical water-cooled reactor has favorable features in economics,sustainability and technology availability. It is a logical extension of the generation Ⅲ PWR technology in China.The status of international R&D work is reviewed. A new supercritieal water-cooled reactor (SCWR) core structure (the mixed reactor core) and a new fuel assembly design (two-rows FA) are proposed. The preliminary analysis using a coupled neutron-physics/thermal-hydranlics method is carded out. It shows good feasibility for the new design proposal.

  5. An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power

    Directory of Open Access Journals (Sweden)

    Antonio Bracale

    2015-09-01

    Full Text Available Currently, among renewable distributed generation systems, wind generators are receiving a great deal of interest due to the great economic, technological, and environmental incentives they involve. However, the uncertainties due to the intermittent nature of wind energy make it difficult to operate electrical power systems optimally and make decisions that satisfy the needs of all the stakeholders of the electricity energy market. Thus, there is increasing interest determining how to forecast wind power production accurately. Most the methods that have been published in the relevant literature provided deterministic forecasts even though great interest has been focused recently on probabilistic forecast methods. In this paper, an advanced probabilistic method is proposed for short-term forecasting of wind power production. A mixture of two Weibull distributions was used as a probability function to model the uncertainties associated with wind speed. Then, a Bayesian inference approach with a particularly-effective, autoregressive, integrated, moving-average model was used to determine the parameters of the mixture Weibull distribution. Numerical applications also are presented to provide evidence of the forecasting performance of the Bayesian-based approach.

  6. Proposing a new advanced control technique for micro hydro power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hanmandlu, M.; Goyal, Himani [Department of Electrical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India)

    2008-05-15

    Micro hydropower plants are emerging as a major renewable energy resource today as they do not encounter the problems of population displacement and environmental problems associated with the large hydro power plants. However, they require control systems to limit the huge variation in input flows expected in rivulets over which these are established to produce a constant power supply. This paper proposes an electric servomotor as a governor for a micro hydro power plant especially those plants that are operated in isolated mode. An advanced controller is developed combining four control schemes for the control of the governor following the concept that the control action can be split up into linear and non-linear parts. The linear part of this controller contains an adaptive fast transversal filter (FTF) algorithm and normalized LMS (nLMS) algorithm. The non-linear part of the controller incorporates Fuzzy PI and a neural network. The concept behind splitting the control action is reasoned out and the conditions for stability of the controller are proved. The new controller has a superior performance compared to other control schemes. (author)

  7. Coated Particles Fuel Compact-General Purpose Heat Source for Advanced Radioisotope Power Systems

    Science.gov (United States)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2003-01-01

    Coated Particles Fuel Compacts (CPFC) have recently been shown to offer performance advantage for use in Radioisotope Heater Units (RHUs) and design flexibility for integrating at high thermal efficiency with Stirling Engine converters, currently being considered for 100 We. Advanced Radioisotope Power Systems (ARPS). The particles in the compact consist of 238PuO2 fuel kernels with 5-μm thick PyC inner coating and a strong ZrC outer coating, whose thickness depends on the maximum fuel temperature during reentry, the fuel kernel diameter, and the fraction of helium gas released from the kernels and fully contained by the ZrC coating. In addition to containing the helium generated by radioactive decay of 238Pu for up to 10 years before launch and 10-15 years mission lifetime, the kernels are intentionally sized (>= 300 μm in diameter) to prevent any adverse radiological effects on reentry. This paper investigates the advantage of replacing the four iridium-clad 238PuO2 fuel pellets, the two floating graphite membranes, and the two graphite impact shells in current State-Of-The-Art (SOA) General Purpose Heat Source (GPHS) with CPFC. The total mass, thermal power, and specific power of the CPFC-GPHS are calculated as functions of the helium release fraction from the fuel kernels and maximum fuel temperature during reentry from 1500 K to 2400 K. For the same total mass and volume as SOA GPHS, the generated thermal power by single-size particles CPFC-GPHS is 260 W at Beginning-Of-Mission (BOM), versus 231 W for the GPHS. For an additional 10% increase in total mass, the CPFC-GPHS could generate 340 W BOM; 48% higher than SOA GPHS. The corresponding specific thermal power is 214 W/kg, versus 160 W/kg for SOA GPHS; a 34% increase. Therefore, for the same thermal power, the CPFC-GPHS is lighter than SOA GPHS, while it uses the same amount of 238PuO2 fuel and same aeroshell. For the same helium release fraction and fuel temperature, binary-size particles CPFC-GPHS could

  8. ADX: a high field, high power density, advanced divertor and RF tokamak

    Science.gov (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  9. Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power

    Science.gov (United States)

    Bracale, Antonio; Carpinelli, Guido; Di Fazio, Annarita; Khormali, Shahab

    2014-01-01

    Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems' losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.

  10. Advance care directives

    Science.gov (United States)

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  11. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  12. Intelligent software system for the advanced control room of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Choi, Seong Soo; Park, Jin Kyun; Heo, Gyung Young [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Han Gon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The intelligent software system for nuclear power plants (NPPs) has been conceptually designed in this study. Its design goals are to operate NPPs in an improved manner and to support operators` cognitive takes. It consists of six major modules such as {sup I}nformation Processing,{sup {sup A}}larm Processing,{sup {sup P}}rocedure Tracking,{sup {sup P}}erformance Diagnosis,{sup a}nd {sup E}vent Diagnosis{sup m}odules for operators and {sup M}alfunction Diagnosis{sup m}odule for maintenance personnel. Most of the modules have been developed for several years and the others are under development. After the completion of development, they will be combined into one system that would be main parts of advanced control rooms in NPPs. 5 refs., 4 figs. (Author)

  13. Power Law Versus Exponential Form of Slow Crack Growth of Advanced Structural Ceramics: Dynamic Fatigue

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    The life prediction analysis based on an exponential crack velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress-rate ("dynamic fatigue") and preload testing at ambient and elevated temperatures. The data fit to the strength versus In (stress rate) relation was found to be very reasonable for most of the materials. It was also found that preloading technique was equally applicable for the case of slow crack growth (SCG) parameter n > 30. The major limitation in the exponential crack velocity formulation, however, was that an inert strength of a material must be known priori to evaluate the important SCG parameter n, a significant drawback as compared to the conventional power-law crack velocity formulation.

  14. Evaluation of Resting Cardiac Power Output as a Prognostic Factor in Patients with Advanced Heart Failure.

    Science.gov (United States)

    Yildiz, Omer; Aslan, Gamze; Demirozu, Zumrut T; Yenigun, Cemal Deniz; Yazicioglu, Nuran

    2017-09-15

    If the heart is represented by a hydraulic pump, cardiac power represents the hydraulic function of the heart. Cardiac pump function is frequently determined through left ventricular ejection fraction using imaging. This study aims to validate resting cardiac power output (CPO) as a predictive biomarker in patients with advanced heart failure (HF). One hundred and seventy-two patients with HF severe enough to warrant cardiac transplantation were retrospectively reviewed at a single tertiary care institution between September 2010 and July 2013. Patients were initially evaluated with simultaneous right-sided and left-sided cardiac catheter-based hemodynamic measurements, followed by longitudinal follow-up (median of 52 months) for adverse events (cardiac mortality, cardiac transplantation, or ventricular assist device placement). Median resting CPO was 0.54 W (long rank chi-square = 33.6; p < 0.0001). Decreased resting CPO (<0.54 W) predicted increased risk for adverse outcomes. Fifty cardiac deaths, 10 cardiac transplants, and 12 ventricular assist device placements were documented. The prognostic relevance of resting CPO remained significant after adjustment for age, gender, left ventricular ejection fraction, mean arterial pressure, pulmonary vascular resistance, right atrial pressure, and estimated glomerular filtration rate (HR, 3.53; 95% confidence interval, 1.66 to 6.77; p = 0.0007). In conclusion, lower resting CPO supplies independent prediction of adverse outcomes. Thus, it could be effectively used for risk stratification in patients with advanced HF. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. ADX: a high field, high power density, Advanced Divertor test eXperiment

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  16. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Young Cho; Alexander Fridman

    2009-04-02

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filter membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the

  17. Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

    1998-10-01

    Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

  18. Results of studies on application of CCMHD to advanced fossil fuel power plant cycles

    Energy Technology Data Exchange (ETDEWEB)

    Foote, J.P.; Wu, Y.C.L.S.; Lineberry, J.T.

    1998-07-01

    A study was conducted to assess the potential for application of a Closed Cycle MHD disk generator (CCMHD) in advanced fossil fuel power generation systems. Cycle analyses were conducted for a variety of candidate power cycles, including simple cycle CCMHD (MHD); a cycle combining CCMHD and gas turbines (MHD/GT); and a triple combined cycle including CCMHD, gas turbines, and steam turbines (MHD/GT/ST). The above cycles were previously considered in cycle studies reported by Japanese researchers. Also considered was a CCMHD cycle incorporating thermochemical heat recovery through reforming of the fuel stream (MHD/REF), which is the first consideration of this approach. A gas turbine/steam turbine combined cycle (GT/ST) was also analyzed for baseline comparison. The only fuel considered in the study was CH4. Component heat and pressure losses were neglected, and the potential for NOx emission due to high combustion temperatures was not considered. Likewise, engineering limitations for cycle components, particularly the high temperature argon heater, were not considered. This approach was adopted to simplify the analysis for preliminary screening of candidate cycles. Cycle calculations were performed using in-house code. Ideal gas thermodynamic properties were calculated using the NASA SP- 273 data base, and thermodynamic properties for steam were calculated using the computerized ASME Steam Tables. High temperature equilibrium compositions for combustion gas were calculated using tabulated values of the equilibrium constants for the important reactions.

  19. High power CO II lasers and their material processing applications at Centre for Advanced Technology, India

    Science.gov (United States)

    Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.

    2006-01-01

    We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.

  20. Materials for advanced power engineering 2006. Proceedings of the 8th Liege conference. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, J.; Carton, M.; Schubert, F.; Ennis, P.J. (eds.)

    2006-07-01

    The European Co-operation in the field of Scientific and Technical Research (COST) is a well-established organisation for the co-ordination of national research and development programmes on the European level. The series of Liege conferences began in 1978 with the aim of disseminating the results of the COST Action 50 in which materials for gas turbines were investigated. Since then, a Liege Conference has been held every four years and the results of COST Actions 501 and 522, which were concerned with materials for power generation plant, reported. At this, the Eighth Liege Conference, the materials research and development work being carried out in the current COST Actions 536 'Alloy Development for Critical Components of Environmentally Friendly Steam Power Plant' with the acronym ACCEPT and 538 'High Temperature Plant Lifetime Extension' will be reported. Reliable energy supply at reasonable cost is one of the most important factors in the development and maintenance of the modern industrial society, but there are increasing concerns about the environmental impact of energy production as well as about the need to conserve valuable energy resources for future generations. New and emerging energy technologies are of great interest, but fossil fuels will continue to make a considerable contribution to energy requirements into the foreseeable future. The emphasis in this field is therefore on the most efficient use of fossil fuels, which can be achieved by increasing the thermal efficiency of the energy conversion process. For steam power plant and gas turbines, this means raising the temperature and pressure of the process. This in turn requires the application of improved materials that are able to withstand the increasingly arduous service conditions. In the COST Actions, the materials research and development activities that are necessary for the critical components of advanced, highly efficient power generation plant have been based on the

  1. Materials for advanced power engineering 2006. Proceedings of the 8th Liege conference. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, J.; Carton, M.; Schubert, F.; Ennis, P.J. (eds.)

    2006-07-01

    The European Co-operation in the field of Scientific and Technical Research (COST) is a well-established organisation for the co-ordination of national research and development programmes on the European level. The series of Liege conferences began in 1978 with the aim of disseminating the results of the COST Action 50 in which materials for gas turbines were investigated. Since then, a Liege Conference has been held every four years and the results of COST Actions 501 and 522, which were concerned with materials for power generation plant, reported. At this, the Eighth Liege Conference, the materials research and development work being carried out in the current COST Actions 536 'Alloy Development for Critical Components of Environmentally Friendly Steam Power Plant' with the acronym ACCEPT and 538 'High Temperature Plant Lifetime Extension' will be reported. Reliable energy supply at reasonable cost is one of the most important factors in the development and maintenance of the modern industrial society, but there are increasing concerns about the environmental impact of energy production as well as about the need to conserve valuable energy resources for future generations. New and emerging energy technologies are of great interest, but fossil fuels will continue to make a considerable contribution to energy requirements into the foreseeable future. The emphasis in this field is therefore on the most efficient use of fossil fuels, which can be achieved by increasing the thermal efficiency of the energy conversion process. For steam power plant and gas turbines, this means raising the temperature and pressure of the process. This in turn requires the application of improved materials that are able to withstand the increasingly arduous service conditions. In the COST Actions, the materials research and development activities that are necessary for the critical components of advanced, highly efficient power generation plant have been based on the

  2. Materials for advanced power engineering 2006. Proceedings of the 8th Liege conference. Pt. 3

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, J.; Carton, M.; Schubert, F.; Ennis, P.J. (eds.)

    2006-07-01

    The European Co-operation in the field of Scientific and Technical Research (COST) is a well-established organisation for the co-ordination of national research and development programmes on the European level. The series of Liege conferences began in 1978 with the aim of disseminating the results of the COST Action 50 in which materials for gas turbines were investigated. Since then, a Liege Conference has been held every four years and the results of COST Actions 501 and 522, which were concerned with materials for power generation plant, reported. At this, the Eighth Li ege Conference, the materials research and development work being carried out in the current COST Actions 536 'Alloy Development for Critical Components of Environmentally Friendly Steam Power Plant' with the acronym ACCEPT and 538 'High Temperature Plant Lifetime Extension' will be reported. Reliable energy supply at reasonable cost is one of the most important factors in the development and maintenance of the modern industrial society, but there are increasing concerns about the environmental impact of energy production as well as about the need to conserve valuable energy resources for future generations. New and emerging energy technologies are of great interest, but fossil fuels will continue to make a considerable contribution to energy requirements into the foreseeable future. The emphasis in this field is therefore on the most efficient use of fossil fuels, which can be achieved by increasing the thermal efficiency of the energy conversion process. For steam power plant and gas turbines, this means raising the temperature and pressure of the process. This in turn requires the application of improved materials that are able to withstand the increasingly arduous service conditions. In the COST Actions, the materials research and development activities that are necessary for the critical components of advanced, highly efficient power generation plant have been based on

  3. Cascaded Thermoelectric Conversion-Advanced Radioisotope Power Systems (CTC-ARPSs)

    Science.gov (United States)

    El-Genk, Mohamed S.; Saber, Hamed H.

    2004-02-01

    Conceptual designs of Advanced Radioisotope Power System (ARPS) with Cascaded Thermoelectric Converters (CTCs) are developed and optimized for maximum efficiency operation for End-Of Mission (EOM) electrical power of at least 100 We. These power systems each employs four General Purpose Heat Source (GPHS) bricks generating 1000 Wth at Beginning-of-Life (BOL) and 32 Cascaded Thermoelectric Modules (CTMs). Each CTM consists of a top and a bottom array of thermoelectric unicouples, which are thermally, but not electrically, coupled. The top and bottom arrays of the CTMs are connected electrically in series in two parallel strings with the same nominal voltage of > 28 VDC. The SiGe unicouples in the top array of the CTMs are optimized for nominal hot shoe temperature of 1273 K and constant cold shoe temperature of either 780 K or 980 K, depending on the thermoelectric materials of the unicouples in the bottom array. For a SiGe cold junction temperature of 780 K, the unicouples in the bottom array have p-legs of TAGS-85 and n-legs of 2N-PbTe and operate at constant hot junction temperature of 765 K and nominal cold junction temperature of 476.4 K. When the SiGe cold junction temperature is 980 K, the unicouples in the bottom arrays of CTMs have p-legs of CeFe3.5Co0.5Sb12 or CeFe3.5Co0.5Sb12 and Zn4Sb3, segments and n-legs of CoSb3 and operate at constant hot junction temperature of 965 K and nominal cold junction temperatures of 446.5 K or 493.5 K, respectively. The CTC-ARPSs have a nominal efficiency of 10.82% - 10.85% and generate BOL power of 108 We. This system efficiency is ~ 80% higher than that of State-of-the-Art (SOA) Radioisotope Thermoelectric Generators (RTGs), requiring 7 GHPS bricks and generating 105 We at BOL. The CTC-ARPSs have specific powers of 8.2 We/kg to 8.8 We/kg, which are 71% to 83% higher, respectively, than that of the SOA-RTGs, and use ~ 43% less 238PuO2 fuel.

  4. Techno-economic projections for advanced small solar thermal electric power plants to years 1990--2000

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T.; Manvi, R.; Roschke, E.J.; El Gabalawi, N.; Herrera, G.; Kuo, T.J.; Chen, K.H.

    1978-11-15

    Advanced technologies applicable to solar thermal electric power systems in the 1990--2000 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings <10 MWe. Techno-economic projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies. The key characteristic of advanced technology systems is an efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers possess this characteristic. For these two basic concepts, advanced technologies including, e.g., conversion systems such as Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered. In addition to techno-economic aspects, technologies are also judged in terms of factors such as developmental risk, relative reliability, and probability of success. Improvements accruing to projected advanced technology systems are measured with respect to current (or pre-1985) steam-Rankine systems, as represented by the central receiver pilot plant being constructed near Barstow, California. These improvements, for both central receivers and parabolic dish systems, indicate that pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems; i.e., capital costs of $600 kWe and energy costs of 50 mills/kWe-hr (1977 dollars).

  5. Methane Adsorption Study Using Activated Carbon Fiber and Coal Based Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Guo Deyong; Li Fei; Liu Wenge

    2013-01-01

    Inlfuence of ammonium salt treatment and alkali treatment of the coal based activated carbon (AC) and activated carbon ifber (ACF) adsorbents on methane adsorption capacity was studied via high-pressure adsorption experiment. Sur-face functional groups and pore structure of two types of adsorbents were characterized by the application of infrared ab-sorption spectroscopy (IR) and low temperature liquid nitrogen adsorption method. The results show that both ammonium salt treatment and alkali treatment have obvious effect on changing BET, pore volume as well as pore size distribution of adsorbents; and methane adsorption capacity of the activated carbon ifber is the maximum after the ammonium salt treatment.

  6. Automatic proximate analyzer of coal based on isothermal thermogravimetric analysis (TGA) with twin-furnace

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Youhui; Jiang, Taiyi; Zou, Xianhong [National Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2003-12-17

    A new type of rapid and automatic proximate analyzer for coal based on isothermal thermogravimetric analysis (TGA) with twin-furnace is introduced in this paper. This automatic proximate analyzer was developed by combination with some novel technologies, such as the automatic weighting method for multi-samples in a high temperature and dynamic gas flow circumstance, the self-protection system for the electric balance, and the optimal method and procedure for coal analysis process. Additionally, the comparison between standard values and the measurement values derived from the new instrument of standard coals was presented.

  7. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    Directory of Open Access Journals (Sweden)

    Mark P. McHenry

    2016-01-01

    Full Text Available The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the network characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.

  8. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    Energy Technology Data Exchange (ETDEWEB)

    LiVecchi, Al [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In funding provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.

  9. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [General Electric Global Research, Niskayuna, NY (United States)

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  10. Development of a rotor alloy for advanced ultra super critical turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Miyashita, Shigekazu; Yamada, Masayuki; Suga, Takeo; Imai, Kiyoshi; Nemoto, Kuniyoshi; Yoshioka, Youmei [Toshiba Corporation, Yokohama (Japan)

    2008-07-01

    A Ni-based superalloy ''TOS1X'', for the rotor material of the 700 class advanced ultra super critical (A-USC) turbine power generation system was developed. TOS1X is an alloy that is improved in the creep rupture strength of Inconel trademark 617 maintaining both forgeability and weldability. The 7 t weight model rotor made of TOS1X was manufactured by double melt process, vacuum induction melting and electro slag remelting, and forging. During forging process, forging cracks and any other abnormalities were not detected on the ingots. The metallurgical and the mechanical properties in this rotor were investigated. Macro and micro structure observation, and some mechanical tests were conducted. According to the metallurgical structure investigation, there was no remarkable segregation in whole area and the forging effect was reached in the center part of the rotor ingot. The results of tensile test and creep rupture test proved that proof stress and tensile stress of the TOS1X are higher than those of Inconel trademark 617 and creep rupture strength of TOS1X is much superior than that of Inconel trademark 617. (orig.)

  11. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle W.; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  12. New technology for the design of advanced ultrasonic transducers for high-power applications.

    Science.gov (United States)

    Parrini, Lorenzo

    2003-06-01

    A new high-frequency ultrasonic transducer for wire bonding has been conceived, designed, prototyped and tested. In the design phase an advanced approach was used and established. The method is based on the two basic principles of modularity and iteration. The transducer is decomposed to its elementary components. For each component an initial design is obtained with finite elements method (FEM) simulations. The simulated ultrasonic modules are then built and characterized experimentally through laser-interferometry measurements and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be iteratively adjusted and optimized. The achieved FEM simulations exhibit a remarkably high-predictive potential and allow full control on the vibration behavior of the ultrasonic modules and of the whole transducer. The new transducer is fixed on the wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the converter to be attached on the wire bonder not only in longitudinal nodes but also in radial nodes of the ultrasonic field excited in the horn. This leads to a nearly complete decoupling of the transducer to the wire bonder, which has not been previously obtained. The new approach to mount ultrasonic transducers on a welding-device is of major importance not only for wire bonding but also for all high-power ultrasound applications and has been patented.

  13. Techno-economic projections for advanced small solar thermal electric power plants to years 1990-2000

    Science.gov (United States)

    Fujita, T.; Manvi, R.; Roschke, E. J.; El-Gabalawi, N.; Herrera, G.; Kuo, T. J.; Chen, K. H.

    1979-01-01

    Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems.

  14. Advanced high-power pulsed light device to decontaminate food from pathogens: effects on Salmonella typhimurium viability in vitro.

    Science.gov (United States)

    Luksiene, Z; Gudelis, V; Buchovec, I; Raudeliuniene, J

    2007-11-01

    The aim of this study was to construct an advanced high-power pulsed light device for decontamination of food matrix and to evaluate its antibacterial efficiency. Key parameters of constructed device-emitted light spectrum, pulse duration, pulse power density, frequency of pulses, dependence of emitted spectrum on input voltage, irradiation homogenicity, possible thermal effects as well as antimicrobial efficiency were evaluated. Antimicrobial efficiency of high-power pulsed light technique was demonstrated and evaluated by two independent methods - spread plate and Miles-Misra method. Viability of Salmonella typhimurium as function of a given light dose (number of pulses) and pulse frequency was examined. According to the data obtained, viability of Salmonella typhimurium reduced by 7 log order after 100 light pulses with power density 133 W cm(-2). In addition, data indicate, that the pulse frequency did not influence the outcome of pathogen inactivation in the region 1-5 Hz. Moreover, no hyperthermic effect was detected during irradiation even after 500 pulses on all shelves with different distance from light source and subsequently different pulse power density (0-252 W cm(-2)). Newly constructed high-power pulsed light technique is effective nonthermal tool for inactivation of Salmonella typhimurium even by 7 log order in vitro. Novel advanced high-power pulsed light device can be a useful tool for development of nonthermal food decontamination technologies.

  15. Power Systems Development Facility. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell.

  16. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  17. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 1. Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The conceptual design of an advanced central receiver power system using liquid sodium as a heat transport medium has been completed by a team consisting of the Energy Systems Group (prime contractor), McDonnell Douglas, Stearns-Roger, The University of Houston, and Salt River Project. The purpose of this study was to determine the technical and economic advantages of this concept for commercial-scale power plants. This final report covers all tasks of the project. These tasks were as follows: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) select commercial configuration; (4) commercial plant conceptual design; (5) assessment of commercial plant; (6) advanced central receiver power system development plan; (7) program plan; (8) reports and data; (9) program management; and (10) safety analysis. A programmatic overview of the accomplishments of this program is given. The 100-MW conceptual commercial plant, the 281-MW optimum plant, and the 10-MW pilot plant are described. (WHK)

  18. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  19. MHD advanced power train. Phase 1, Final report: Volume 3, Power train system description and specification for 200MWe Plant

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.R.

    1985-08-01

    This System Design Description and Specification provides the basis for the design of the magnetohydrodynamic (MHD) Power Train (PT) for a nominal 200 MWe early commercial tiHD/Steam Power Plant. This document has been developed under Task 2, Conceptual Design, of Contract DE-AC22-83PC60575 and is to be used by the project as the controlling and coordinating documentation during future design efforts. Modification and revision of this specification will occur as the design matures, and tiie-Westinghouse MHD Project Manager will be the focal point for maintaining this document and issuing periodic revisions. This document is intended to delineate the power train and-power train components requirements and assumptions that properly reflect the MHD/Steam Power Plant in the PT design. The parameters discussed in this document have been established through system calculations as well as through constraints set by technology and by limitations on materials, cost, physical processes associated with MHD, and the expected operating data for the plant. The specifications listed in this document have precedence over all referenced documents. Where this specification appears to conflict with the requirements of a reference document, such conflicts should be brought to the attention of the Westinghouse MHD Project Manager for resolution.

  20. ADVANCED POWER SYSTEMS - ASH BEHAVIOR IN POWER SYSTEMS. INCLUDES THE SEMIANNUAL REPORT FOR THE PERIOD JANUARY 01, 1998 - JUNE 30, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature; Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined; Identify the relationship between the temperature of critical viscosity (T{sub cv}) as measured in a viscometer and the crystallization occurring in the melt; Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles; Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems; and Evaluate corrosion for alloys being used in supercritical combustion systems.

  1. Advanced numerical description of the behavior of 700 C steam power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Maile, K. [Materialpruefungsanstalt, Univ. Stuttgart (Germany); Schmidt, K.; Roos, E.; Klenk, A.; Speicher, M.

    2009-07-01

    To make full use of the strength potential of new boiler materials like the new 9-11% Cr steels and nickel based alloys, taking into account their specific stress-strain relaxation behavior, new design methods are required in the design of today's power plants. Highly loaded components are approaching more and more the classical design limits with regard to critical wall thicknesses and the related tolerable thermal gradients, due to planed increases of steam parameters like steam pressure and steam temperature. ''Design by analysis'' can be realized by modern state of the art Numerical Finite Element (FE) simulation codes and in some cases by the use of user defined advanced inelastic material laws. These material laws have to be adjusted to specific material behavior of new boiler materials. To model the strain and stress situation in components under high temperature loading, a constitutive equation based on a Graham-Walles approach is used in this paper. Furthermore essential steps and recommendations to implement experimental data in the user defined subroutines and the subsequent integration of the subroutines in modern FE codes like ABAQUS trademark and ANSYS trademark are given. As an example, the results of FE simulations of components like hollow cylinders and waterwall like components made of Alloy 617 or 9-11% Cr steels are discussed and verified with experimental results. In a last step, the successful application of the developed creep equation will be demonstrated by calculating the creep strains and stress relaxation of a P92 steam header under constant loading. (orig.)

  2. Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, Keren

    2014-08-28

    Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformational advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM

  3. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2002-10-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  4. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan

    2002-04-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced

  6. Advanced power converters for universal and flexible power management in future electricity network - Converter applications in future European electricity network

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    The present report summarizes the work done in the Work Package 2 where the main goal is to provide essential data for the other workpackages in the UNIFLEX-PM project and determines in detail the performance requirements that will be placed upon power converters to make the Future European...

  7. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is investigating advanced turboelectric aircraft propulsion systems that utilize superconducting motors to drive a number of distributed turbofans. In an...

  8. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources for both terrestrial and space...

  9. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is investigating advanced turboelectric aircraft propulsion systems that utilize superconducting motors to drive a number of distributed turbofans. Conventional...

  10. The Plant-Window System: A framework for an integrated computing environment at advanced nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.T.; Mullens, J.A. [Oak Ridge National Lab., TN (United States); Naser, J.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-10-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The extensive use of computer technology in advanced reactor designs provides the opportunity to greatly expand the capability to obtain, analyze, and present data about the plant to station personnel. However, to support highly efficient and increasingly safe operation of nuclear power plants, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and sued, to the proper users throughout the plan. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed On Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications within a common computing environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces so as to define a flexible computing environment for both current generation nuclear power plants and advanced reactor designs.

  11. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical

  12. Progress of nuclear safety for symbiosis and sustainability advanced digital instrumentation, control and information systems for nuclear power plants

    CERN Document Server

    Yoshikawa, Hidekazu

    2014-01-01

    This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human?machine interface technologies (ii) Risk? monitoring methods for large and? complex? plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and val

  13. Advanced superconducting power conditioning system with SMES for effective use of renewable energy

    Science.gov (United States)

    Hamajima, T.; Tsuda, M.; Miyagi, D.; Amata, H.; Iwasaki, T.; Son, K.; Atomura, N.; Shintomi, T.; Makida, Y.; Takao, T.; Munakata, K.; Kajiwara, M.

    Since it is an urgent issue to reduce the global Carbon-dioxide in the world, renewable energy should be supplied as a large amount of the electric power. However, if a large amount of fluctuating renewable energy becomes more than adjustable amount of a utility grid capacity, instabilities such as frequency deviation might occur. We propose a system that is composed of SMES and FC-H2-Electrolyzer and also installed adjacent to Liquid Hydrogen station to cool down the SMES. Since the SMES has potentials of quick response and large I/O power, and Fuel Cell has potentials of slow response and steady power supplied from a large amount of hydrogen, we combine both storage devices and apply them to suppress the fluctuating power. We convert the fluctuating power to the constant power by using a developed prediction technology of Kalman filter to predict a trend of the fluctuating power. While the trend power should be supplied by FC or absorbed by the electrolyzer to produce hydrogen, the power difference between the renewable power and the trend power should be stored by the SMES. We simulate the power balance and analyze the required SMES capacity, design the concept of the SMES, and propose an operation algorithm for the SMES to estimate the electric efficiency of the system. It is found that the electric efficiency of the ASPCS can become greater than that of a pumped hydro-machine.

  14. Transient Load Following and Control Analysis of Advanced S-CO2 Power Conversion with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, Anton; Sienicki, James J.

    2016-01-01

    Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for load following operation in regions where dry air cooling is a requirement

  15. Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

  16. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1997-01-31

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  17. Boulder Wind Power Advanced Gearless Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-12-00463

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J.

    2013-04-01

    The Boulder Wind Power (BWP) Advanced Gearless Drivetrain Project explored the application of BWP's innovative, axial-gap, air-core, permanent-magnet direct-drive generator in offshore wind turbines. The objective of this CRADA is to assess the benefits that result from reduced towerhead mass of BWP's technology when used in 6 MW offshore turbines installed on a monopile or a floating spar foundation.

  18. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    Science.gov (United States)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  19. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    2008-11-01

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

  20. Advanced power plant concepts based on CFB combustion and combined cycles

    Energy Technology Data Exchange (ETDEWEB)

    Plass, L.; Beisswenger, H.; Anders, R. (Lurgi GmbH, Frankfurt am Main (Germany, F.R.). Coal and Energy Division)

    1990-01-01

    The paper describes several power plants employing circulating fluidized bed (CFB) technology. The Moabit power plant of BEWAG (Berliner Kraft und Licht Aktiengesellschaft) supplies electric power and steam for district heating. The Charbonnages de France group has built a 367 t/h CFB boiler with reheat at the Emile Huchet power station in Carling, Lorraine France. This uses dry fuel but operation with slurry feed is scheduled soon. The 150 MWe CFB boiler operated by Texas New Mexico Power Company is the largest CFB boiler worldwide. Salient features of boiler design for these plants are discussed. All meet requirements for low SO{sub 2} and NO{sub x} and particulate emission but have been developed to the full. Improved efficiency and low emission levels can be met by combined cycle power plants employing coal gasification. Demonstration plants for example using the BGL-fixed bed gasifier are mentioned. 1 ref., 13 figs., 7 tabs.

  1. Large scale renewable power generation advances in technologies for generation, transmission and storage

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book focuses on the issues of integrating large-scale renewable power generation into existing grids. The issues covered in this book include different types of renewable power generation along with their transmission and distribution, storage and protection. It also contains the development of medium voltage converters for step-up-transformer-less direct grid integration of renewable generation units, grid codes and resiliency analysis for large-scale renewable power generation, active power and frequency control and HVDC transmission. The emerging SMES technology for controlling and int

  2. Technology Advancement in Support of NASAs Evolutionary Xenon Thruster (NEXT) System Power Processing Unit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this IRAD is to advance the TRL of the PPU to 6.  This includes supporting GRC with requirements review and validation, design updates and...

  3. Radiation/Temperature Hardened Advanced Readout Array with Dynamic Power Modes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has an interest in the development of advanced instruments and components for Lunar and planetary science missions. Instrumentation is needed for the...

  4. Advanced Spacesuit Informatics Software Design for Power, Avionics and Software Version 2.0

    Science.gov (United States)

    Wright, Theodore W.

    2016-01-01

    A description of the software design for the 2016 edition of the Informatics computer assembly of the NASAs Advanced Extravehicular Mobility Unit (AEMU), also called the Advanced Spacesuit. The Informatics system is an optional part of the spacesuit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and warning information. It also provides an interface to the suit mounted camera for recording still images, video, and audio field notes.

  5. Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Rubiolo, Pablo R. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Conway, Lawarence E. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Oriani, Luca [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Lahoda, Edward J. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; DeSilva, Greg [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Hu, Min H. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Hartz, Josh [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Bachrach, Uriel [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Smith, Larry [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Dudek, Daniel F. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Toman, Gary J. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Feng, Dandong [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hejzlar, Pavel [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kazimi, Mujid S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-03-31

    This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a standard 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (~600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output.

  6. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  7. Vulnerability of advanced encryption standard algorithm to differential power analysis attacks implemented on ATmega-128 microcontroller

    CSIR Research Space (South Africa)

    Mpalane, Kealeboga

    2016-09-01

    Full Text Available encryption standard(AES) cryptographic algorithm implementation in a microcontroller crypto-device against differential power analysis (DPA) attacks. ChipWhisperer capture hardware Rev2 tool was used to collect 1000 power traces for DPA. We observed...

  8. Advanced stability control of multi-machine power system by vips apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, A. [Tokyo Univ., Tokyo (Japan). Dept. of Electrical Engineering; Sekine, Y. [Science Univ. of Tokyo, Tokyo (Japan). Dept. of Electrical Engineering

    1994-12-31

    New technology such as synchronized switching and power electronics will make it possible to change the configuration of transmission network, the impedances of transmission lines and the phase angles of voltage in the future power systems. This paper presents a comprehensive power system damping control by power electronics based variable impedance apparatus such as variable series capacitor and high speed phase shifter and also shows a novel switching-over control of transmission lines by synchronized switching for the first awing stability and damping enhancement. The control scheme discussed in this paper is based on an energy function of multi-machine power system and its time derivative. Its effectiveness is demonstrated by digital simulations and eigenvalue analysis in multi-machine test systems. It is demonstrated that multiple switching of transmission lines improves damping in the post-fault conditions. (author) 13 refs., 24 figs., 5 tabs.

  9. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States); Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States)

    2014-07-31

    estimated cost of carbon v capture is in the range of $31-$44/ton, suggesting that a regenerative MgO-Based process can be a viable option for pre-combustion carbon dioxide capture in advanced gasification based power systems.

  10. A Traction Three-Phase to Single-Phase Cascade Converter Substation in an Advanced Traction Power Supply System

    Directory of Open Access Journals (Sweden)

    Xiaoqiong He

    2015-09-01

    Full Text Available The advanced traction power supply system (ATPSS is a new directional development for traction power supply systems, which can totally remove the neutral sections and effectively promote power quality. However, the existing converters suffer from small substation capacity. In this paper, a new configuration based on a three-level neutral point clamped (3L-NPC three-phase to single-phase cascade converter in a substation is proposed for ATPSS, which can be used to match the capacity of the converter for high voltage and large power applications. The control strategy of the proposed converter is analyzed in depth, and the phase disposition sinusoidal pulse width modulation (PD-SPWM with phase shift carrier SPWM (PSC-SPWM is employed in the inverters. Then, the inductance equalizing circuit is applied for the voltage balance on the DC-link. Besides, a LC filter circuit is designed to eliminate the double line-frequency ripple of DC voltage. Afterwards, a simulation model and an experimental prototype are developed, respectively. The simulation results show that the proposed converter in this paper can not only meet the requirements of voltage and capacity for the traction network, but also improve power quality. Finally, the experimental results verify the correctness and feasibility of the proposed control strategy.

  11. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  12. Proceedings: 1989 conference on advanced computer technology for the power industry

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, B. (ed.)

    1990-07-01

    An EPRI conference to address advanced computer technology was hosted by Arizona Public Service in Scottsdale, Arizona, December 4--6, 1989. Participants represented US and foreign utilities, major electric and computer industry vendors, R D contractors, and consulting firms. These proceedings contain the text of the technical presentations and summaries of the panel discussions. The conference objectives were: to assess modern computer technologies and how they will affect utility operations; to share US and foreign utility experiences in developing computer-based technical products; and to discuss research conducted by EPRI in advanced computer technology on behalf of its utility members. Technical presentations addressed a broad range of computer-related topics: computer-based training; engineering workshops; hypermeida and other advanced user interfaces; networks and communications; expert systems and other decision-support methodologies; intelligent database management; supercomputing architectures and applications; real-time data processing; computerized technology and information transfer; and neural networks and other emerging technologies.

  13. Beta Test Plan for Advanced Inverters Interconnecting Distributed Resources with Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, A.; Chakraborty, S.; Basso, T.; Coddington, M.

    2014-01-01

    This document provides a preliminary (beta) test plan for grid interconnection systems of advanced inverter-based DERs. It follows the format and methodology/approach established by IEEE Std 1547.1, while incorporating: 1. Upgraded tests for responses to abnormal voltage and frequency, and also including ride-through. 2. A newly developed test for voltage regulation, including dynamic response testing. 3. Modified tests for unintentional islanding, open phase, and harmonics to include testing with the advanced voltage and frequency response functions enabled. Two advanced inverters, one single-phase and one three-phase, were tested under the beta test plan. These tests confirmed the importance of including tests for inverter dynamic response, which varies widely from one inverter to the next.

  14. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  15. Advanced In-Space Propulsion (AISP): High Temperature Boost Power Processing Unit (PPU) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The task is to investigate the technology path to develop a 10kW modular Silicon Carbide (SiC) based power processing unit (PPU). The PPU utilizes the high...

  16. Choosing a Pathway Towards Advancing China's Reform of the Power Industry

    Institute of Scientific and Technical Information of China (English)

    Lin Boqiang; Jia Yulu

    2007-01-01

    @@ Considering China's reality when moving towards marketization In April 2007,the State Council issued the"Proposal for the Implementation of Furthering the Institutional Reform of the Power Industry during the 11th Five-Year Plan."

  17. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  18. Electric Arc Locator in Photovoltaic Power Systems Using Advanced Signal Processing Techniques

    OpenAIRE

    Digulescu, Angela; Candel, Ion; Dahmani, Jawad; Ioana, Cornel; Vasile, Gabriel

    2013-01-01

    International audience; In this paper, we present two techniques for the localization of electric arcs produced in photovoltaic power systems. High order statistic analysis (HOSA) and recurrence plot analysis (RPA) have already proven successful in detecting the partial discharges associated with the production of an electric arc in a high voltage power system. However, this solves only the first half of the problem, since a localization of the arc also needed. Using a four sensors array dete...

  19. Development of an Intelligent Maximum Power Point Tracker Using an Advanced PV System Test Platform

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Amoiridis, Anastasios; Beres, Remus Narcis

    2013-01-01

    The performance of photovoltaic systems is often reduced by the presence of partial shadows. The system efficiency and availability can be improved by a maximum power point tracking algorithm that is able to detect partial shadow conditions and to optimize the power output. This work proposes an ...... photovoltaic inverter system test platform that is able to reproduce realistic partial shadow conditions, both in simulation and on hardware test system....

  20. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The appendices include: (A) design data sheets and P and I drawing for 100-MWe commercial plant design, for all-sodium storage concept; (B) design data sheets and P and I drawing for 100-MWe commercial plant design, for air-rock bed storage concept; (C) electric power generating water-steam system P and I drawing and equipment list, 100-MWe commercial plant design; (D) design data sheets and P and I drawing for 281-MWe commercial plant design; (E) steam generator system conceptual design; (F) heat losses from solar receiver surface; (G) heat transfer and pressure drop for rock bed thermal storage; (H) a comparison of alternative ways of recovering the hydraulic head from the advanced solar receiver tower; (I) central receiver tower study; (J) a comparison of mechanical and electromagnetic sodium pumps; (K) pipe routing study of sodium downcomer; and (L) sodium-cooled advanced central receiver system simulation model. (WHK)

  1. Treatment of complex Remazol dye effluent using sawdust- and coal-based activated carbons.

    Science.gov (United States)

    Vijayaraghavan, K; Won, Sung Wook; Yun, Yeoung-Sang

    2009-08-15

    A complex Remazol dye effluent, comprised of four reactive dyes and auxiliary chemicals, was decolorized using SPS-200 (sawdust-based) and SPC-100 (coal-based) activated carbons. A detailed characterization revealed that the pore diameter of the activated carbon played an important role in dye adsorption. The solution pH had no significant effect on the adsorption capacity in the pH range of 2-10.7. According to the Langmuir model, the maximum uptakes of SPS-200 were 415.4, 510.3, 368.5 and 453.0 mg g(-1) for Reactive Black 5 (RB5), Reactive Orange 16 (RO16), Remazol Brilliant Blue R (RBBR) and Remazol Brilliant Violet 5R (RBV), respectively. Conversely, those of SPC-100 were slightly lower, at 150.8, 197.4, 178.3 and 201.1 mg g(-1) for RB5, RO16, RBBR and RBV, respectively. In the case of Remazol effluent, SPS-200 exhibited a decolorization efficiency of 100% under unadjusted pH conditions at 10.7, compared to that of 52% for SPC-100.

  2. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore

    Science.gov (United States)

    Sun, Yong-sheng; Han, Yue-xin; Li, Yan-feng; Li, Yan-jun

    2017-02-01

    To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally reduced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the reduced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumulative frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol-1, and 922.05, respectively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains.

  3. Uplink Performance of Dynamic Interference Coordination under Fractional Power Control for LTE-Advanced Femtocells

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2010-01-01

    It has been identified in numerous contributions that dynamic interference coordination is very appealing in case of dense and uncoordinated deployments of home eNBs (eNBs), also known as femtocells. One of the proposed schemes for LTE-Advanced is known as Autonomous Component Carrier Selection (...

  4. Assessment of advanced small-scale combined heat and power production

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, J. [Joanneum Research (Austria)

    1996-12-31

    To increase the share of renewable energy sources, bioenergy has to be used for electricity generation, preferably in combined heat and power (CHP) production systems, besides its traditional use in space heating. The need for small-scale, i.e. below 5 MW{sub el}, CHP production arises from the fact that a considerable portion of the available solid biofuels may not be transported over long distances for economic reasons and that in many cases the heat demand is below 10 MW{sub el} in district heating schemes in communities with less than 10 000 inhabitants. The available technical options have to be assessed with respect to performance, reliability and economy. Such an assessment has been performed in a study where the following options have been compared: Gasification - combustion engine or gas turbine; Combustion - steam turbine/engine; Combustion - hot air turbine; Combustion - Stirling engine. While conventional steam cycle systems are available and reliable they are generally not economical in the power range under consideration. Among the other systems, which are not yet commercially available, the Stirling engine system seems to be attractive in the power range below 500 kW{sub el} and the hot air system could close the gap to the steam cycle systems, i.e. cover the power range between 0.5 and 5.0 MW{sub el}. Gasification schemes seem less suitable: The power generation part (combustion engine and gas turbine) is well established for natural gas, with the combustion engine in the lower (<5 MW{sub el}) and the gas turbine in the higher (>5MW{sub el}) power range. However, the gas quality needed for the operation of a combustion engine requires expensive pre-treatment of the gas from wood gasification so that this scheme is less attractive for the power range under consideration. These conclusions lead to R and D efforts in Austria in two directions: Hot air turbine: A utility demonstration plant is under construction with a power of 1 600 kW{sub el

  5. Extrapolating power-ramp performance criteria for current and advanced CANDU fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M.; Chassie, G.G

    2000-06-01

    To improve the precision and accuracy of power-ramp performance criteria for high-burnup fuel, we have examined in-reactor fuel performance data as well as out-reactor test data. The data are consistent with some of the concepts used in the current formulations for defining fuel failure thresholds, such as size of power-ramp and extent of burnup. Our review indicates that there is a need to modify some other aspects of the current formulations; therefore, a modified formulation is presented in this paper. The improvements mainly concern corrodent concentration and its relationships with threshold stress for failure. The new formulation is consistent with known and expected trends such as strength of Zircaloy in corrosive environment, timing of the release of fission products to the pellet-to-sheath gap, CANLUB coating, and fuel burnup. Because of the increased precision and accuracy, the new formulation is better able to identify operational regimes that are at risk of power-ramp failures; this predictive ability provides enhanced protection to fuel against power-ramp defects. At die same time, by removing unnecessary conservatisms in other areas, the new formulation permits a greater range of defect-free operational envelope as well as larger operating margins in regions that are, in fact, not prone to power-ramp failures. (author)

  6. Dynamics and Control of Switched Electronic Systems Advanced Perspectives for Modeling, Simulation and Control of Power Converters

    CERN Document Server

    Iannelli, Luigi

    2012-01-01

    The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal approaches to the analysis and control of power electronics converters. Switched systems represent a useful framework for modeling these converters and the peculiarities of their operating conditions and control goals justify the specific classification of “switched electronic systems”. Indeed, idealized switched models of power converters introduce problems not commonly encountered when analyzing generic switched models or non-switched electrical networks. In that sense the analysis of switched electronic systems represents a source for new ideas and benchmarks for switched and hybrid systems generally. Dynamics and Control of Switched Electronic Systems draws on the expertise of an international group of expert contributors to give an overview of recent advances in the modeling, simulation and control of switched electronic systems. The reader is provided...

  7. Development of Proof-of-Concept Units for the Advanced Medium-Sized Mobile Power Sources (AMMPS) Program

    Energy Technology Data Exchange (ETDEWEB)

    Andriulli, JB

    2002-04-03

    The purpose of this report is to document the development of the proof-of-concept units within the Advanced Medium-sized Mobile Power Sources (AMMPS) program. The design used a small, lightweight diesel engine, a permanent magnet alternator, power electronics and digital controls as outlined in the philosophy detailed previously. One small proof-of-concept unit was completed and delivered to the military. The unit functioned well but was not optimized at the time of delivery to the military. A tremendous amount of experience was gained during this phase that can be used in the development of any follow-on AMMPS production systems. Lessons learned and recommendations for follow-on specifications are provided. The unit demonstrated that significant benefits are possible with the new design philosophy. Trade-offs will have to be made but many of the advantages appear to be within the technical grasp of the market.

  8. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    Science.gov (United States)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.; Richter, P. H.

    1980-01-01

    The performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States was studied. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs and energy costs. The regional variation in solar plant performance was assessed in relation to the expected rise in the future cost of residential and commercial electricity supplied by conventional utility power systems in the same regions. A discussion of the regional insolation data base is presented along with a description of the solar systems performance and costs. A range for the forecast cost of conventional electricity by region and nationally over the next several decades is given.

  9. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Englebretson, Steven [ABB Inc., Cary, NC (United States); Ouyang, Wen [ABB Inc., Cary, NC (United States); Tschida, Colin [ABB Inc., Cary, NC (United States); Carr, Joseph [ABB Inc., Cary, NC (United States); Ramanan, V.R. [ABB Inc., Cary, NC (United States); Johnson, Matthew [Texas A& M Univ., College Station, TX (United States); Gardner, Matthew [Texas A& M Univ., College Station, TX (United States); Toliyat, Hamid [Texas A& M Univ., College Station, TX (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Hazra, Samir [ABB Inc., Cary, NC (United States); Bhattacharya, Subhashish [ABB Inc., Cary, NC (United States)

    2017-05-13

    This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability of the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.

  10. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  11. Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules

    Science.gov (United States)

    Fraas, L. M.; Kuryla, M. S.; Pietila, D. A.; Sundaram, V. S.; Gruenbaum, P. E.; Avery, J. E.; Dihn, V.; Ballantyne, R.; Samuel, C.

    1992-01-01

    In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg.

  12. Advances in thin-film solar cells for lightweight space photovoltaic power

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The development of photovoltaic arrays beyond the next generation is discussed with attention given to the potentials of thin-film polycrystalline and amorphous cells. Of particular importance is the efficiency (the fraction of incident solar energy converted to electricity) and specific power (power to weight ratio). It is found that the radiation tolerance of thin-film materials is far greater than that of single crystal materials. CuInSe2 shows no degradation when exposed to 1-MeV electrons.

  13. Advanced Magnetic-Nuclear Power Systems for Reliability Demanding Applications Including Deep Space Missions

    OpenAIRE

    2010-01-01

    The MAGNUS concept, which is based on the FFMCR approach, offers space power and propulsion technology with a number of unique characteristics such as: ï‚· Direct FF energy conversion is uniquely suitable for space operation; ï‚· High efficiency DEC promises reduced thermal control and radiators; ï‚· High specific impulse allows short trip times and extends exploration to the outer reaches of the solar system and beyond; ï‚· Achievability of long-term operation assures power for missions with...

  14. The advances and characteristics of high-power diode laser materials processing

    Science.gov (United States)

    Li, Lin

    2000-10-01

    This paper presents a review of the direct applications of high-power diode lasers for materials processing including soldering, surface modification (hardening, cladding, glazing and wetting modifications), welding, scribing, sheet metal bending, marking, engraving, paint stripping, powder sintering, synthesis, brazing and machining. The specific advantages and disadvantages of diode laser materials processing are compared with CO 2, Nd:YAG and excimer lasers. An effort is made to identify the fundamental differences in their beam/material interaction characteristics and materials behaviour. Also an appraisal of the future prospects of the high-power diode lasers for materials processing is given.

  15. Advanced Microbial Fuel Cell Development, Miniaturization and Energy and Power Density Enhancement

    Science.gov (United States)

    2007-04-30

    fuel cell development, miniaturization, and energy and power density enhancement. The anode is very important in the performance of a microbial fuel cell "MFC", and is often the limiting factor for a high power output. In present work, we used the CNT/PANI composite as the anode materials of MFCs for the first time and investigated the electrocatalytic properties of the composite associated with the bacterium biocatalyst. A method was developed to fabricate a nanostructured CNT/PANI composite anode for

  16. Status of an advanced radioisotope space power system using free-piston Stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    White, M.A,; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-07-01

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel

  17. Dynamic modeling, simulation and control design of an advanced micro-hydro power plant for distributed generation applications

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, J.L. [Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Molina, M.G. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Pacas, J.M. [Institut fuer Leistungselektronik und Elektrische Antriebe, Universitaet Siegen, Fachbereich 12 Hoelderlinstr 3, D 57068 Siegen (Germany)

    2010-06-15

    A small-scale hydropower station is usually a run-of-river plant that uses a fixed speed drive with mechanical regulation of the turbine water flow rate for controlling the active power generation. This design enables to reach high efficiency over a wide range of water flows but using a complex operating mechanism, which is in consequence expensive and tend to be more affordable for large systems. This paper proposes an advanced structure of a micro-hydro power plant (MHPP) based on a smaller, lighter, more robust and more efficient higher-speed turbine. The suggested design is much simpler and eliminates all mechanical adjustments through a novel electronic power conditioning system for connection to the electric grid. In this way, it allows obtaining higher reliability and lower cost of the power plant. A full detailed model of the MHPP is derived and a new three-level control scheme is designed. The dynamic performance of the proposed MHPP is validated through digital simulations and employing a small-scale experimental set-up. (author)

  18. Orofacial hereditary haemorrhagic telangiectasia: high power diode laser in early and advanced lesion treatment

    Science.gov (United States)

    Tempesta, Angela; Franco, Simonetta; Miccoli, Simona; Suppressa, Patrizia; De Falco, Vincenzo; Crincoli, Vito; Lacaita, Mariagrazia; Giuliani, Michele; Favia, Gianfranco

    2014-01-01

    Hereditary Haemorrhagic Telangiectasia (HHT) is a muco-cutaneous inherited disease. Symptoms are epistaxis, visceral arterio-venous malformations, multiple muco-cutaneous telangiectasia with the risk of number increasing enlargement, bleeding, and super-infection. The aim of this work is to show the dual Diode Laser efficacy in preventive treatment of Early Lesions (EL < 2mm) and therapeutic treatment of Advanced Lesions (AL < 2mm). 21 patients affected by HHT with 822 muco-cutaneous telangiectatic nodules have been treated in several sessions with local anaesthesia and cooling of treated sites. EL preventive treatment consists of single Laser impulse (fibre 320) in ultrapulsed mode (2 mm single point spot). AL therapeutic treatment consists of repeated Laser impulses in pulsed mode (on 200ms / off 400ms). According to the results, Diode Laser used in pulsed and ultra-pulsed mode is very effective as noninvasive treatment both in early and advanced oral and perioral telangiectasia.

  19. High Efficiency Space Power Systems Project Advanced Space-Rated Batteries

    Science.gov (United States)

    Reid, Concha M.

    2011-01-01

    Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.

  20. Advanced design and economic considerations for commercial geothermal power plants at Heber and Niland, California. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    Two separate studies, involving advanced design and economic considerations for commercial geothermal power plants using liquid-dominated hydrothermal resources, are presented. In the first study, the effects on design, capital cost, and bus bar electric energy production cost caused by an anticipated decline in available geothermal fluid temperature over the lifetime of power plants are described. A two-stage, flashed-steam energy conversion process was used for the conceptual design of the power plants, which operate from the moderate-temperature, low-salinity reservoir at Heber, California. Plants with net capacities of 50, 100, and 200 MWe (net) were investigated. The results show that it is important to include provision for geothermal fluid temperature decline in the design of power plants to prevent loss of electric energy production capability and to reduce bus bar electric energy costs. In the second study, the technical, economic, and environmental effects of adding regeneration to a 50 MWe (net) power plant employing the multistage-flash/binary process are described. Regeneration is potentially attractive because it recovers waste heat from the turbine exhaust and uses it in the power cycle. However, the pressure drop caused by the introduction of the regenerator decreases the turbine expansion and thus decreases system performance. An innovative approach was taken in the design of the regenerator, which minimized the expected performance degradation of the turbine. The result was that the performance, capital cost, and bus bar electric energy production cost are nearly the same for the processes with and without regeneration. On the other hand, the addition of regeneration has the environmental benefits of substantially reducing heat rejection to the atmosphere and cooling tower makeup and blowdown water requirements. It also increases the temperature of the brine returned to the field for reinjection.

  1. Advances in Dilute Nitride Multi-Junction Solar Cells for Space Power Applications

    Directory of Open Access Journals (Sweden)

    Suarez F.

    2017-01-01

    In this paper, we review the latest performance and qualification results of Solar Junction Corp.’s lattice matched 4J-on-Ge space solar cells and CIC (Cell- Interconnect-Coverglass products incorporating GaInNAsSb dilute nitride material. We also report on the production readiness of these advanced space solar cells manufactured using an optimized hybrid Molecular Beam Epitaxy (MBE / Metal Organic Vapor Phase Epitaxy (MOVPE growth process.

  2. Advanced Technology for Ultra-Low Power System-on-Chip (SoC)

    Science.gov (United States)

    2017-06-01

    GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E 6. AUTHOR(S) Jason Woo, Weicong Li, and Peng Lu 5d. PROJECT NUMBER 1000 5e. TASK NUMBER N/A 5f...Defense Advanced Research Projects AgencyDARPA/MTO 675 North Randolph Street Arlington, VA 22203 AFRL/RYDI 11. SPONSORING/MONITORING AGENCY REPORT...13 Figure 18: (a) Electron Density

  3. Proceedings: 1989 conference on advanced computer technology for the power industry

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, B. (ed.)

    1990-07-01

    An EPRI conference to address advanced computer technology was hosted by Arizona Public Service in Scottsdale, Arizona, December 4--6, 1989. Participants represented US and foreign utilities, major electric and computer industry vendors, R D contractors, and consulting firms. These Proceedings contain the text of the technical presentations and summaries of the panel discussions. The conference objectives were: to asses modern computer technologies and how they will effect utility operations; to share US and foreign utility experiences in developing computer-based technical products; and to discuss research conducted by EPRI in advanced computer technology on behalf of its utility members. Technical presentations addressed a broad range of computer-related topics: Computer-Based Training, Engineering Workstations, Hypermedia and Other Advanced User Interfaces, Networks and Communications, Expert Systems and Other Decision-Support Methodologies, Intelligent Database Management, Supercomputing Architectures and Applications, Real-Time Data Processing, Computerized Technology and Information Transfer, and Neural Networks and Other Emerging Technologies. In addition, two panel sessions were conducted to provide a forum for utilities to discuss past and future directions of EPRI software, and the future role of engineering workstations in utilities. The results of these two panels are summarized in this paper.

  4. Advanced Education Facilities for Power Electronics and Renewable Energy Systems at Aalborg University

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Lungeanu, Marian; Blaabjerg, Frede

    2005-01-01

    A new approach for the project- and problem-based learning method is achieved at Aalborg University. Two new laboratories called Flexible Drives System Laboratory (FDSL) and Green Power Laboratory (GPL) have been developed. A common feature is that these facilities are using entirely Simulink for...

  5. Advancement Of Tritium Powered Betavoltaic Battery Systems FY16 EOY Report

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-12

    The goal of this work is to increase the power output of tritium powered betavoltaic batteries and investigate the change in power output and film resistance in real-time during tritium loading of adsorbent films. To this end, several tritium compatible test vessels with the capability of measuring both the resistivity of a tritium trapping film and the power output of a betavoltaic device in-situ have been designed and fabricated using four electrically insulated feedthroughs in tritium compatible load cells. Energy conversion devices were received from Widetronix, a betavoltaic manufacturing firm based in Ithaca, NY. Thin films were deposited on the devices and capped with palladium to facilitate hydrogen loading. Gold contacts were then deposited on top of the films to allow resistivity measurements of the film during hydrogen loading. Finally, the chips were wire bonded and installed in the test cells. The cells were then baked-out under vacuum and leak checked at temperature to reduce the chances of tritium leaks during loading. Following the bake-out, IV curves were measured to verify no internal wires were compromised, and the cells were delivered to Tritium for loading. Tritium loading is anticipated in October, 2017.

  6. Advancement Of Tritium Powered Betavoltaic Battery Systems FY16 EOY Report

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-12

    The goal of this work is to increase the power output of tritium-powered betavoltaic batteries and investigate the change in power output and film resistance in real-time during tritium loading of adsorbent films. To this end, several tritium-compatible test vessels with the capability of measuring both the resistivity of a tritium trapping film and the power output of a betavoltaic device in-situ have been designed and fabricated using four electrically insulated feedthroughs in tritium-compatible load cells. Energy conversion devices were received from Widetronix, a betavoltaic manufacturing firm based in Ithaca, NY. Thin films were deposited on the devices and capped with palladium to facilitate hydrogen loading. Gold contacts were then deposited on top of the films to allow resistivity measurements of the film during hydrogen loading. Finally, the chips were wire bonded and installed in the test cells. The cells were then baked-out under vacuum and leak checked at temperature to reduce the chances of tritium leaks during loading. Following the bake-out, IV curves were measured to verify no internal wires were compromised, and the cells were delivered to Tritium for loading. Tritium loading is anticipated in October, 2017.

  7. Development and Implementation of an Advanced Power Management Algorithm for Electronic Load Sensing on a Telehandler

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2010-01-01

    , flow-sharing, prioritization of steering, anti-stall and high pressure protection into electronics. In order to implement these features, the paper presents and tests a general power management algorithm for a telehandler. The algorithm is capable of implementing the above features, while also handling...

  8. 煤基合成气间接法制乙二醇技术工艺探讨%Inquiry into Technology Process of Indirect Process for Coal Based Syngas to Ethylene Glycol

    Institute of Scientific and Technical Information of China (English)

    方凤银

    2015-01-01

    A brief description is given of the fundamental principle and main characters of indirect process for coal based syngas to ethylene glycol, based on actual experimental conditions of 1 000 t/a pilot plant the process control parameters and problems arisen are analyzed and discussed. Appraisal result of the pilot plant shows that the technology has reached international advanced level, the indirect process of 100 kt/a coal based syngas to ethylene glycol project using this technology has interconnected full process, all indices of ethylene glycol products produced meet the design value.%简要介绍了煤基合成气间接法制乙二醇的基本原理及主要特点,根据1000 t/a 中试装置实际试验情况,对工艺控制参数和出现的问题进行了分析和探讨。中试装置鉴定结果表明,该技术达到了国际先进水平,采用该技术建成的100 kt/a 煤基合成气间接法制乙二醇项目已贯通全流程,生产的乙二醇产品各项指标达到了设计值。

  9. Analysis and Effect of Impurities on UV Transmittance of Coal-based Ethylene Glycol%影响煤基乙二醇紫外透光率杂质分析∗

    Institute of Scientific and Technical Information of China (English)

    郑永军; 郑勇; 韩联国; 李素贤

    2016-01-01

    分析草酸二甲酯加氢制煤基乙二醇反应过程中产生杂质的原因,并测定了不同杂质对煤基乙二醇紫外透光率的影响,通过实验研究,发现影响煤基乙二醇紫外透光率主要杂质为草酸酯、1,2-己二醇、乙二醇单甲醚、酸、醛、酮类,并提出煤基乙二醇生产工艺改进的建议,对提高煤基乙二醇产品质量具有指导意义。%The impurities of coal-based ethylene glycol produced by hydrogenation of dimethyl oxalate were analyzed, and the influences of the impurities on UV transmittance of the product were determined. It was found that the major influences were oxalates, 1,2-hexanediol, ethylene glycol monomethyl ether, acid, aldehyde and ketone. Some suggestions were advanced to improve the quality of coal-based glycol.

  10. Final Scientific/Technical Report: ADVANCED INTEGRATION OF POWER TAKE-OFF IN VIVACE

    Energy Technology Data Exchange (ETDEWEB)

    Simiao, Gustavo

    2014-03-21

    Vortex Hydro Energy is commercializing a University of Michigan patented MHK device, the VIVACE converter (Vortex Induced Vibration Aquatic Clean Energy). Unlike water turbines, it does not use propeller blades. Rather, river or ocean currents flow around cylinders causing them to move up and down in Flow Induced Motions (FIM). This kinetic energy of the cylinder is then converted to electricity. Importantly, the VIVACE converter is simpler in design and more cost effective than water turbines. This project accelerated the development of the VIVACE technology. Funding from the DOE enabled VHE to accelerate the development in three ways. One was to increase the efficiency of the hydrodynamics of the system. This aided in maximizing the power output for a wide range of water speeds. The second was to design, build, and test an efficient power take-off (PTO) that converted the most power from the VIVACE cylinders into electricity. This effort was necessary because of the nature of power generated using this technology. Although the PTO uses off-the-shelf components, it is specifically tuned to the specific water flow characteristics. The third way the development was accelerated was by testing the improved Beta 1B prototype over a longer period of time in a river. The greatest benefit from the longer open-water testing-period is a better understand of the power generation characteristics of the system as well as the maintenance lifespan of the device. Renewable energy generation is one of today’s most challenging global dilemmas. The energy crisis requires tapping into every source of energy and developing every technology that can generate energy at a competitive cost within the next 50 years. Development of VIVACE will bolster domestic energy security and mitigate global climate change. There are numerous commercial and military applications for a fully developed system, which could generate clean/renewable energy from small scale (1-5kW) to medium scale (500k

  11. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power...... and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable...... and floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity...

  12. An Investigation for Arranging the Video Display Unit Information in a Main Control Room of Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chong Cheng; Yang, Chih Wei [Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan (China)

    2014-08-15

    Current digital instrumentation and control and main control room (MCR) technology has extended the capability of integrating information from numerous plant systems and transmitting needed information to operations personnel in a timely manner that could not be envisioned when previous generation plants were designed and built. A MCR operator can complete all necessary operating actions on the video display unit (VDU). It is extremely flexible and convenient for operators to select and to control the system display on the screen. However, a high degree of digitalization has some risks. For example, in nuclear power plants, failures in the instrumentation and control devices could stop the operation of the plant. Human factors engineering (HFE) approaches would be a manner to solve this problem. Under HFE considerations, there exists 'population stereotype' for operation. That is, the operator is used to operating a specific display on the specific VDU for operation. Under emergency conditions, there is possibility that the operator will response with this habit population stereotype, and not be aware that the current situation has already changed. Accordingly, the advanced nuclear power plant should establish the MCR VDU configuration plan to meet the consistent teamwork goal under normal operation, transient and accident conditions. On the other hand, the advanced nuclear power plant should establish the human factors verification and validation plan of the MCR VDU configuration to verify and validate the configuration of the MCR VDUs, and to ensure that the MCR VDU configuration allows the operator shift to meet the HFE consideration and the consistent teamwork goal under normal operation, transient and accident conditions. This paper is one of the HF V V plans of the MCR VDU configuration of the advanced nuclear power plant. The purpose of this study is to confirm whether the VDU configuration meets the human factors principles and the consistent

  13. Next-generation sequencing as a powerful motor for advances in the biological and environmental sciences.

    Science.gov (United States)

    Faure, Denis; Joly, Dominique

    2015-04-01

    Next-generation sequencing (NGS) provides unprecedented insight into (meta)genomes, (meta)transcriptomes (cDNA) and (meta)barcodes of individuals, populations and communities of Archaea, Bacteria and Eukarya, as well as viruses. This special issue combines reviews and original papers reporting technical and scientific advances in genomics and transcriptomics of non-model species, as well as quantification and functional analyses of biodiversity using NGS technologies of the second and third generations. In addition, certain papers also exemplify the transition from Sanger to NGS barcodes in molecular taxonomy.

  14. Advanced Control Strategy of Back-to-Back PWM Converters in PMSG Wind Power System

    Directory of Open Access Journals (Sweden)

    Tan Luong Van

    2015-01-01

    Full Text Available This paper proposes a control scheme of back-to-back PWM converters for the permanent magnet synchronous generator (PMSG wind turbine system. The DC-link voltage can be controlled at the machine-side converter (MSC, while the grid-side converter (GSC controls the grid active power for a maximum power point tracking (MPPT. At the grid fault condition, the DC-link voltage controller is designed using a feedback linearization (FL theory. For the MPPT, a proportional control loop is added to the torque control to reduce the influence of the inertia moment in the wind turbines, which can improve its dynamic performance. The validity of this control algorithm has been verified by the simulation of the 2-MW PMSG wind turbine system.

  15. Transputers in Fluid Power - Design and Applications. Chapter 5 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with results and trends on mechatronics in fluid power and intelligent control of machines and robots. New results are presented concerning transputer-basen distributed control of machines and robots. Experimental results with the DTU mechatronic test facility are presented and discussed. S....... Several adaptive control algoritms are investigated and evaluated. Promissing results are obtained with Computed Valve-Input Control (CIC), Adaptive Model-based Actuator Control (AMAC) and Linear Pertubation Adaptive Control (LPAC).......Deals with results and trends on mechatronics in fluid power and intelligent control of machines and robots. New results are presented concerning transputer-basen distributed control of machines and robots. Experimental results with the DTU mechatronic test facility are presented and discussed...

  16. Design of an Advanced Modular Automated Evaluation System for Experimental High Power SGTOS

    Science.gov (United States)

    2013-06-01

    HIGH POWER SGTOS Shelby Lacouture, Kevin Lawson, Stephen Bayne , Michael Giesselmann, Heather O’Brien 1 , Aderinto Ogunniyi 1 , Charles J...hopefully aid in understanding of why failure occurred, and lead to improvements in device durability. VI. REFERENCES [1] Lacouture, S.; Bayne ...Conference (PPC), 2011 IEEE , vol., no., pp.1474-1476, 19-23 June 2011. [2] Lacouture, S.; Bayne , S.B.; Giesselmann, M.G.; Lawson, K.; O’Brien, H

  17. A study on advanced man-machine interface system for autonomous nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Takeshi; Numano, Masayoshi; Someya, Minoru; Fukuto, Junji; Mitomo, Noboru; Miyazaki, Keiko; Sugasawa, Shinobu [Ship Research Inst., Mitaka, Tokyo (Japan)

    1997-01-01

    Research on Artificial Intelligence Systems for Nuclear Installations has been performed in cooperation with five research institutes (Ship Research Institute, Electrotechnical Laboratory, Japan Atomic Energy Research Institute, Power Reactor and Nuclear Fuel Development Corporation, The Institute of Physical and Chemical Research), from 1989 to 1994 as the Cross-over Research Group with the support of the Science and Technology Agency. Ship Research Institute has been carrying out the research on the Man-Machine Interface (MMI) system for autonomous nuclear power plants. This paper describes the concept of autonomous nuclear power plants, a plant simulator of an autonomous nuclear power plant, a contracted function model of a plant state, three-dimensional color graphic display of a plant state, and a function of automatic classification of plant states by the COBWEB method. A plant simulator has been developed by using the expert system G2 (Gensym Co.). The simulator generates plant process data at each component of a plant. This simulator models a pressurized water reactor and some examples of autonomous functions are incorporated. A contracted function model of a plant state has been produced at the main part of the MMI system based on plant process data from the simulator. The main purpose of the present study is to give the MMI system a function to identify the plant operational state, to update and revise the function model, and to expand a knowledge. A plant state is expressed in a three-dimensional graphic display which receives sensor values from the plant simulator and expresses the plant state in nearly real time speed. A research on the automatic classification of plant states has been also performed, which shows us the relations among different plant states. The study is being continued to the 2nd stage Cross-over Research from 1994, as the Study on Divers, Cooperative Intelligent System for Autonomous Plants. (J.P.N.)

  18. The development of advanced cooling methods for high-power electronics

    Science.gov (United States)

    Bland, T. J.; Ciaccio, M. P.; Downing, R. S.; Smith, W. G.

    1990-10-01

    Consideration is given to various technologies developed to meet the difficult cooling requirements of high-density power electronics equipment for the aerospace industry. Topics discussed include liquid impingement cooling, compact high-density cooler, integrally cooled semiconductor, high heat flux cold plane, immersion cooling, modular reflux cooler, and forced-flow two-phase cooling systems. It is concluded that the new technologies are capable of providing the temperature control necessary to maintain desired electronic reliabilities using high-conductance cooling approaches.

  19. Interagency Advanced Power Group Solar Photovoltaic Panel Fall meeting minutes, October 22, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This report contains discussions on the following topics: Leaf, TPL, and {sup 60}Co Gamma source testing facilities; in-house photovolatic research effort; US Army`s interest developing small thermophotovoatic power source for a variety of missions; charging lead acid batteries with unregulated photovolatic panels; testing of solar array panels for space applications; polycrystalline CuInSe{sub 2} & CdTe PV solar cells and, current activities in the US photovolatic program.

  20. Advanced safety engineering for wind power plants; Moderne Sicherheitstechnik fuer Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Malin, Juergen [Bachmann Electronic GmbH, Feldkirch (Austria). Safety und Security

    2010-06-15

    Wind power systems are classified as machines and are subject to the 2006/42/EC directive on machinery. They must meet specifications concerning functional safety. Modern safety solutions including programmable control systems offer a wide range of options. For example, remote monitoring and servicing can be combined with intelligent redundancies in order to ensure and even improve availability. Bachman Electronic offers an integrated safety package for this purpose. (orig.)

  1. Advanced ceramics sintering using high-power millimeter-wave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Setsuhara, Y.; Kamai, M.; Kinoshita, S.; Abe, N.; Miyake, S. [Osaka Univ. (Japan). Welding Research Inst.; Saji, T. [Fujidempa Kogyo Co., Ltd., Ibaraki (Japan)

    1996-12-31

    The results of ceramics sintering experiments using high-power millimeter-wave radiation are reported. Sintering of silicon nitride with 5% Al{sub 2}O{sub 3} and 5% Y{sub 2}O{sub 3} was performed in a multi-mode applicator using a 10-kW 28-GHz gyrotron in CW operation. It was found that the silicon nitride samples sintered with 28 GHz radiation at 1,650 C for 30 min reached to as high as theoretical density (TD), while the conventionally sintered samples at 1700 C for 60 min resulted in the density as low as 90% TD. Focusing experiments of millimeter-wave radiation from the high-power pulsed 60-GHz gyrotron have been performed using a quasi-optical antenna system (two-dimensional ellipso-parabolic focusing antenna system) to demonstrate the feasibility of the power density of as high as 100 kW/cm{sup 2}. Typical heating characteristics using the focused beam were made clear for this system. It was found that the densification of yttria-stabilized zirconia (ZrO{sub 2}-8mol%Y{sub 2}O{sub 3}) samples to as high as 97% TD was obtained from the sintering with focused 60 GHz beam in pulse operation with a 10-ms pulse duration at a 0.5Hz repetition. The densification temperature for the zirconia could be lowered by 200 C than that expected conventionally.

  2. Artists' advance: decreased upper alpha power while drawing in artists compared with non-artists.

    Science.gov (United States)

    Kottlow, Mara; Praeg, Elke; Luethy, Christine; Jancke, Lutz

    2011-01-01

    Brain mechanisms associated with artistic talents or skills are still not well understood. This exploratory study investigated differences in brain activity of artists and non-artists while drawing previously presented perspective line-drawings from memory and completing other drawing-related tasks. Electroencephalography (EEG) data were analyzed for power in the frequency domain by means of a Fast Fourier Transform (FFT). Low Resolution Brain Electromagnetic Tomography (LORETA) was applied to localize emerging significances. During drawing and related tasks, decreased power was seen in artists compared to non-artists mainly in upper alpha frequency ranges. Decreased alpha power is often associated with an increase in cognitive functioning and may reflect enhanced semantic memory performance and object recognition processes in artists. These assumptions are supported by the behavioral data assessed in this study and complement previous findings showing increased parietal activations in non-artists compared to artists while drawing. However, due to the exploratory nature of the analysis, additional confirmatory studies will be needed.

  3. Proceedings of the Department of Energy advanced gas turbine central power systems workshop

    Energy Technology Data Exchange (ETDEWEB)

    D' Angelo, S. (ed.)

    1980-04-01

    The basic objective of the DOE Central Power Systems group is the development of technology for increasing the use of coal in central station electric power generation in an economical and environmentally acceptable manner. The two major research and development areas of this program are the Open Cycle Gas Turbine System and the Closed Cycle Gas Turbine System. Recognizing that the ultimate success of the DOE program is measured by end-user acceptance of the technology developed, the workshop was held to obtain utility industry comments and suggestions on the development of these systems and their potential use by electric power utilities. Representatives of equipment manufacturers, architect and engineering firms, and universities were also invited as participants to provide a comprehensive review of the technology development and implementation process. The 65 participants and observers examined the following topics: technical considerations of the Open Cycle and of the Closed Cycle Gas Turbine program; commercialization of both systems; and regulatory impacts on the development of both systems. Each group evaluated the existing program, indicating R and D objectives that they supported and cited recommendations for modifications and expansion of future R and D work.

  4. Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Lambarski, T.; Minyard, G. (Solar Electric Specialties Co., Willits, California)

    1998-10-06

    This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redesign of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products.

  5. REDUCING TRANSMITTED POWER OF MOVING RELAY NODE IN LONG-TERM EVOLUTION-ADVANCED CELLULAR NETWORKS

    Directory of Open Access Journals (Sweden)

    Jaafar A. Aldhaibani

    2014-01-01

    Full Text Available Wireless multi-hop relay networks have become very significant technologies in mobile communications. These networks ensure data rate transfer and coverage extension with a low cost. In this study two types of relay are studied; Fixed Relay Node (FRN and Moving Relay Node (MRN. Where system analyses for uplink and downlink transmission are derived in this study. Moreover the optimal relay location of FRN was proposed to provide a maximum achievable rate at user in cell edge region. Finally, a new algorithm was suggested to balance and control on the transmitted power of MRN over cell size to provide the required SNR and throughput at the users inside vehicle with reducing the consumption transmitted relay power. Numerical results indicate an enhancement in received signal strength for users at the cell edge from (-90 to -65 dBm and 40% increment from all cell size after deploying FRN at proposed locations. As well as, the results revealed that there is saving nearly 75% from transmitted power in MRN after using proposed algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain.

  6. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States)

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  7. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  8. Reducing the power consumption in LTE-Advanced wireless access networks by a capacity based deployment tool

    Science.gov (United States)

    Deruyck, Margot; Joseph, Wout; Tanghe, Emmeric; Martens, Luc

    2014-09-01

    As both the bit rate required by applications on mobile devices and the number of those mobile devices are steadily growing, wireless access networks need to be expanded. As wireless networks also consume a lot of energy, it is important to develop energy-efficient wireless access networks in the near future. In this study, a capacity-based deployment tool for the design of energy-efficient wireless access networks is proposed. Capacity-based means that the network responds to the instantaneous bit rate requirements of the users active in the selected area. To the best of our knowledge, such a deployment tool for energy-efficient wireless access networks has never been presented before. This deployment tool is applied to a realistic case in Ghent, Belgium, to investigate three main functionalities incorporated in LTE-Advanced: carrier aggregation, heterogeneous deployments, and Multiple-Input Multiple-Output (MIMO). The results show that it is recommended to introduce femtocell base stations, supporting both MIMO and carrier aggregation, into the network (heterogeneous deployment) to reduce the network's power consumption. For the selected area and the assumptions made, this results in a power consumption reduction up to 70%. Introducing femtocell base stations without MIMO and carrier aggregation can already result in a significant power consumption reduction of 38%.

  9. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip A. [Air Products And Chemicals, Inc., Allentown, PA (United States)

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  10. Analytical investigation of thermal barrier coatings for advanced power generation combustion turbines

    Science.gov (United States)

    Amos, D. J.

    1977-01-01

    An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.

  11. High-temperature coal-syngas plasma characteristics for advanced MHD power generation

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, A.V.; Kayukawa, N.; Okinaka, N.; Kamada, Y.; Yatsu, S. [Hokkaido University, Hokkaido (Japan)

    2006-03-15

    Properties of magnetohydrodynamic (MHD) plasma based on syngas (CO, H{sub 2}) combustion products were investigated experimentally with shock tube facility. The experiments were carried out under various MHD generator load and shock tube operation conditions. Important characteristics of syngas plasma such as temperature, electric field, conductivity, and total output power were directly measured and evaluated. Special attention was paid to the influence of syngas composition (CO : H{sub 2} : O{sub 2} ratio). The results show that syngas combustion can provide high plasma ionization and attainable plasma electrical conductivity has an order of 60-80 S/m at gas temperature 3100-3300 K.

  12. Materials technology for an advanced space power nuclear reactor concept: Program summary

    Science.gov (United States)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  13. Technology demonstration of a free-piston stirling advanced radioisotope space power system

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Olan, Ronald W.; Erbeznik, Raymond M.

    1999-01-01

    Free-piston Stirling convertors (Stirling engine with integral linear alternator) are a mature technology with demonstrated long-life, maintenance-free, degradation-free operation exceeding 46,000 hours (5+ years) on one unit. Tens of thousands of hours have been accumulated on numerous systems in beta trials, plus more than 8 million flexure-hours (900 flexure-years) on the most critical component (flexure bearings), all with no failures when operated within specifications. Vibration is a key concern for Stirling convertors in space. Recent tests have demonstrated a factor of 50 reduction in vibration, relative to a single convertor, by coupling two convertors mechanically and electrically. Even though the measured vibration level is below Jet Propulsion Laboratory (JPL) specified vibration objectives, demonstration of an additional factor of 10 vibration reduction is pending with an active vibration reduction system. Stirling cycle efficiency is well established. A four-convertor 150-W(e) end of mission (EOM) power system for deep space missions is projected to require only three general purpose heat source (GPHS) modules with conservative Inconel 718 heater heads, leaving significant efficiency improvement potential when used with higher temperature materials. Even in the unlikely scenario of one inoperative convertor, the other three convertors ramp up to provide full output. A two-convertor demonstration system, representative of one-half of a 150-W(e) power system, is described in this paper and scheduled to become operational in December 1998.

  14. Advanced concepts for high-power, short-pulse CO2 laser development

    Science.gov (United States)

    Gordon, Daniel F.; Hasson, Victor; von Bergmann, Hubertus; Chen, Yu-hsin; Schmitt-Sody, A.; Penano, Joseph R.

    2016-06-01

    Ultra-short pulse lasers are dominated by solid-state technology, which typically operates in the near-infrared. Efforts to extend this technology to longer wavelengths are meeting with some success, but the trend remains that longer wavelengths correlate with greatly reduced power. The carbon dioxide (CO2) laser is capable of delivering high energy, 10 micron wavelength pulses, but the gain structure makes operating in the ultra-short pulse regime difficult. The Naval Research Laboratory and Air Force Research Laboratory are developing a novel CO2 laser designed to deliver ~1 Joule, ~1 picosecond pulses, from a compact gain volume (~2x2x80 cm). The design is based on injection seeding an unstable resonator, in order to achieve high energy extraction efficiency, and to take advantage of power broadening. The unstable resonator is seeded by a solid state front end, pumped by a custom built titanium sapphire laser matched to the CO2 laser bandwidth. In order to access a broader range of mid infrared wavelengths using CO2 lasers, one must consider nonlinear frequency multiplication, which is non-trivial due to the bandwidth of the 10 micron radiation.

  15. On the Path to SunShot - Advancing Concentrating Solar Power Technology, Performance, and Dispatchability

    Energy Technology Data Exchange (ETDEWEB)

    Mehos, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to develop, design, construct, and operate, and they require a much larger minimum effective scale—typically at least 50 MW, compared with PV systems that can be as small as a few kilowatts. In recent years, PV’s greater modularity and lower LCOE have made it more attractive to many solar project developers, and some large projects that were originally planned for CSP have switched to PV. However, the ability of CSP to use thermal energy storage—and thus provide continuous power for long periods when the sun is not shining—could give CSP a vital role in evolving electricity systems. Because CSP with storage can store energy when net demand is low and release that energy when demand is high, it increases the electricity system’s ability to balance supply and demand over multiple time scales. Such flexibility becomes increasingly important as more variable-generation renewable energy is added to the system. For example, one analysis suggests that, under a 40% renewable portfolio standard in California, CSP with storage could provide more than twice as much value to the electricity system as variable-generation PV. For this reason, enhanced thermal energy storage is a critical component of the SunShot Initiative’s 2020 CSP technology-improvement roadmap.

  16. Recent advancements in transparent ceramics and crystal fibers for high power lasers

    Science.gov (United States)

    Kim, W.; Baker, C.; Villalobos, G.; Florea, C.; Gibson, D.; Shaw, L. B.; Bowman, S.; Bayya, S.; Sadowski, B.; Hunt, M.; Askins, C.; Peele, J.; Aggarwal, I. D.; Sanghera, J. S.

    2013-05-01

    In this paper, we present our recent progress in the development of rare-earth (Yb3+ or Ho3+) doped Lu2O3 and Y2O3 sesquioxides for high power solid state lasers. We have fabricated high quality transparent ceramics using nano-powders synthesized by a co-precipitation method. This was accomplished by developments in high purity powder synthesis and low temperature scalable sintering technology developed at NRL. The optical, spectral and morphological properties as well as the lasing performance from our highly transparent ceramics are presented. In the second part of the paper, we discuss our recent research effort in developing cladded-single crystal fibers for high power single frequency fiber lasers has the potential to significantly exceed the capabilities of existing silica fiber based lasers. Single crystal fiber cores with diameters as small as 35μm have been drawn using high purity rare earth doped ceramic or single crystal feed rods by the Laser Heated Pedestal Growth (LHPG) process. Our recent results on the development of suitable claddings on the crystal fiber core are discussed.

  17. Development of advanced risk informed asset management tool based on system dynamics approach for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyoung Cheol

    2007-02-15

    In the competitive circumstance of electricity industry, the economic efficiency of electricity generation facility is the most important factor to increase their competitiveness. For nuclear power plant (NPP), safety is also an essential factor. Over fast several years, efforts for development of safety concerned and financial asset maximizing method, process and tools have been continued internationally and Risk-Informed Asset Management (RIAM) methodology is suggested by Electric Power Research Institute (EPRI). This RIAM methodology is expected to provide plant operators with a project prioritization and life cycle management planning tool for making long-term maintenance plans, guiding plant budgeting, and determining the sensitivity of a plant's economic risk to the reliability and availability of system, structure, and components (SSC), as well as other technical and economic parameters. The focus of this study is to develop model that help us to resource allocation, to find what effect such allocations on the plant economic and safety performance. Detailed research process for this goal is as follow; First step for development of advanced RIAM model is to review for current RIAM model of EPRI. This part describes the overall RIAM methodology including its conceptual model, implementation process, modular approach etc. Second step is to perform feasibility study for current EPRI's RIAM model with case study. This part shows the result of feasibility study for current RIAM method by case study and discussion for result. Finally, concept of Advanced RIAM model is developed based on system dynamics approach and parameter relationship is formulated. In advanced RIAM Model, Identification of scheduled maintenance effect on other parameters and the relationship between PM Activity and failure rate is most important factor. In this study, these relationships are formulated based on system dynamics approach. Creations of these modeling tool using Vensim

  18. Advances in CO2 laser fabrication for high power fibre laser devices

    Science.gov (United States)

    Boyd, Keiron; Rees, Simon; Simakov, Nikita; Daniel, Jae M. O.; Swain, Robert; Mies, Eric; Hemming, Alexander; Clarkson, W. A.; Haub, John

    2016-03-01

    CO2 laser processing facilitates contamination free, rapid, precise and reproducible fabrication of devices for high power fibre laser applications. We present recent progress in fibre end-face preparation and cladding surface modification techniques. We demonstrate a fine feature CO2 laser process that yields topography significantly smaller than that achieved with typical mechanical cleaving processes. We also investigate the side processing of optical fibres for the fabrication of all-glass cladding light strippers and demonstrate extremely efficient cladding mode removal. We apply both techniques to fibres with complex designs containing multiple layers of doped and un-doped silica as well as shaped and circularly symmetric structures. Finally, we discuss the challenges and approaches to working with various fibre and glass-types.

  19. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    Energy Technology Data Exchange (ETDEWEB)

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  20. Probability-Based Software for Grid Optimization: Improved Power System Operations Using Advanced Stochastic Optimization

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-24

    GENI Project: Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia’s software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia’s formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.

  1. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    Science.gov (United States)

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  2. Mechanical and oxidation testing of advanced materials for steam power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bontempi, P.; Guardamagna, C.; Ricci, N.; Torri, L. [CESI, Segrate (Milano) (Italy)

    2002-07-01

    In the frame of the COST522 programme, Steam Power Plant Working Group, CESI is carrying out an experimental programme in order to evaluate boiler and turbine innovative materials suitable for applications up to 650 C. In this paper results from Low Cycle Fatigue, creep and oxidation-corrosion testing are presented. LCF tests at T=600 C have been performed on a new cast steel (CB6), evaluating also the effect of hold time period. The preliminary creep results at T=625 C on four new 11%Cr ferritic steels for piping are presented: the experimentation is still in progress. The steamside corrosion - oxidation test results at T=600 C and T=650 till now obtained on both boiler and turbine innovative materials are shown. (orig.)

  3. Applied studies in advanced boiler technology for Rankine cycle power systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul, F.W.; Negreanu, M.J.

    1978-02-01

    A study is presented on a new rotational boiler design which has improved passive dynamic response and two-phase flow stability characteristics. A survey of small boiler manufacturers in the United States indicated that currently available designs are based on steady-state operating requirements rather than for dynamic performance. Recent work by EPA and ERDA which addressed boiler designs for mobile automotive Rankine cycle power systems showed that boilers of a monotube or multipass tube configuration design could be developed which were physically compact, but still were subject to the two-phase flow instability problem when coupled within an operating power system. The objectives of this work were to evaluate alternative boiler configurations which would improve boiler dynamic response and also have good two-phase liquid-vapor interface flow stability. The major physical design limitation of any boiler is the small external hot gas heat transfer coefficient. Such a low coefficient requires considerable design enhancements to increase the rate of energy transfer to the circulation system fluid. The rotational boiler is a physical design configuration which addresses this problem. The results of an analytic study using several mathematical model formulations showed that a rotational boiler could have a passive response time constant which was approximately one-half the magnitude for an equivalent single pass monotube boiler. An experimental prototype rotational boiler was designed, manufactured and tested, with the experimental results confirming that the experimental passive response time constants were comparable to the estimates from the analytic models. The experimental boiler operating in two-phase flow was found to be stable and responsive to external inputs. A rotational boiler configuration is a good alternative design configuration for small compact vapor generator designs based on fast transient passive response and two-phase flow stability.

  4. Advanced Nanofabrication Process Development for Self-Powered System-on-Chip

    KAUST Repository

    Rojas, Jhonathan Prieto

    2010-11-01

    In this work the development of a Self-Powered System-On-Chip is explored by examining two components of process development in different perspectives. On one side, an energy component is approached from a biochemical standpoint where a Microbial Fuel Cell (MFC) is built with standard microfabrication techniques, displaying a novel electrode based on Carbon Nanotubes (CNTs). The fabrication process involves the formation of a micrometric chamber that hosts an enhanced CNT-based anode. Preliminary results are promising, showing a high current density (113.6mA/m2) compared with other similar cells. Nevertheless many improvements can be done to the main design and further characterization of the anode will give a more complete understanding and bring the device closer to a practical implementation. On a second point of view, nano-patterning through silicon nitride spacer width control is developed, aimed at producing alternative sub-100nm device fabrication with the potential of further scaling thanks to nanowire based structures. These nanostructures are formed from a nano-pattern template, by using a bottom-up fabrication scheme. Uniformity and scalability of the process are demonstrated and its potential described. An estimated area of 0.120μm2 for a 6T-SRAM (Static Random Access Memory) bitcell (6 devices) can be achieved. In summary, by using a novel sustainable energy component and scalable nano-patterning for logic and computing module, this work has successfully collected the essential base knowledge and joined two different elements that synergistically will contribute for the future implementation of a Self-Powered System-on-Chip.

  5. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  6. Improving the AGR Fuel Testing Power Density Profile Versus Irradiation-Time in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gray S. Chang; David A. Petti; John T. Maki; Misti A. Lillo

    2009-05-01

    The Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on ceramic-coated fuel particles. Each TRISO-coated fuel particle has its own containment which serves as the principal barrier against radionuclide release under normal operating and accident conditions. These fuel particles, in the form of graphite fuel compacts, are currently undergoing a series of irradiation tests in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) to support the Advanced Gas-Cooled Reactor (AGR) fuel qualification program. A representive coated fuel particle with an 235U enrichment of 19.8 wt% was used in this analysis. The fuel burnup analysis tool used to perform the neutronics study reported herein, couples the Monte Carlo transport code MCNP, with the radioactive decay and burnup code ORIGEN2. The fuel burnup methodology known as Monte-Carlo with ORIGEN2 (MCWO) was used to evaluate the AGR experiment assembly and demonstrate compliance with ATR safety requirements. For the AGR graphite fuel compacts, the MCWO-calculated fission power density (FPD) due to neutron fission in 235U is an important design parameter. One of the more important AGR fuel testing requirements is to maintain the peak fuel compact temperature close to 1250°C throughout the proposed irradiation campaign of 550 effective full power days (EFPDs). Based on the MCWO-calculated FPD, a fixed gas gap size was designed to allow regulation of the fuel compact temperatures throughout the entire fuel irradiation campaign by filling the gap with a mixture of helium and neon gases. The chosen fixed gas gap can only regulate the peak fuel compact temperature in the desired range during the irradiation test if the ratio of the peak power density to the time-dependent low power density (P/T) at 550 EFPDs is less than 2.5. However, given the near constant neutron flux within the ATR driver core and the depletion of 235U in

  7. The Relieving Effects of BrainPower Advanced, a Dietary Supplement, in Older Adults with Subjective Memory Complaints: A Randomized, Double-Blind, Placebo-Controlled Trial

    Directory of Open Access Journals (Sweden)

    Jingfen Zhu

    2016-01-01

    Full Text Available Subjective memory complaints (SMCs are common in older adults that can often predict further cognitive impairment. No proven effective agents are available for SMCs. The effect of BrainPower Advanced, a dietary supplement consisting of herbal extracts, nutrients, and vitamins, was evaluated in 98 volunteers with SMCs, averaging 67 years of age (47–88, in a randomized, double-blind, placebo-controlled trial. Subjective hypomnesis/memory loss (SML and attention/concentration deficits (SAD were evaluated before and after 12-week supplementation of BrainPower Advanced capsules (n=47 or placebo (n=51, using a 5-point memory questionnaire (1 = no/slight, 5 = severe. Objective memory function was evaluated using 3 subtests of visual/audio memory, abstraction, and memory recall that gave a combined total score. The BrainPower Advanced group had more cases of severe SML (severity ⩾ 3 (44/47 and severe SAD (43/47 than the placebo group (39/51 and 37/51, < 0.05, < 0.05, resp. before the treatment. BrainPower Advanced intervention, however, improved a greater proportion of the severe SML (29.5%(13/44 (P<0.01 and SAD (34.9%(15/43(P<0.01 than placebo (5.1% (2/39 and 13.5% (5/37, resp.. Thus, 3-month BrainPower Advanced supplementation appears to be beneficial to older adults with SMCs.

  8. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  9. Myositis registries and biorepositories: powerful tools to advance clinical, epidemiologic and pathogenic research

    Science.gov (United States)

    Rider, Lisa G.; Dankó, Katalin; Miller, Frederick W.

    2016-01-01

    Purpose of review Clinical registries and biorepositories have proven extremely useful in many studies of diseases, especially rare diseases. Given their rarity and diversity, the idiopathic inflammatory myopathies, or myositis syndromes, have benefited from individual researchers’ collections of cohorts of patients. Major efforts are being made to establish large registries and biorepositories that will allow many additional studies to be performed that were not possible before. Here we describe the registries developed by investigators and patient support groups that are currently available for collaborative research purposes. Recent findings We have identified 46 myositis research registries, including many with biorepositories, which have been developed for a wide variety of purposes and have resulted in great advances in understanding the range of phenotypes, clinical presentations, risk factors, pathogenic mechanisms, outcome assessment, therapeutic responses, and prognoses. These are now available for collaborative use to undertake additional studies. Two myositis patient registries have been developed for research, and myositis patient support groups maintain demographic registries with large numbers of patients available to be contacted for potential research participation. Summary Investigator-initiated myositis research registries and biorepositories have proven extremely useful in understanding many aspects of these rare and diverse autoimmune diseases. These registries and biorepositories, in addition to those developed by myositis patient support groups, deserve continued support to maintain the momentum in this field as they offer major opportunities to improve understanding of the pathogenesis and treatment of these diseases in cost-effective ways. PMID:25225838

  10. Advance in ERG Analysis: From Peak Time and Amplitude to Frequency, Power, and Energy

    Directory of Open Access Journals (Sweden)

    Mathieu Gauvin

    2014-01-01

    Full Text Available Purpose. To compare time domain (TD: peak time and amplitude analysis of the human photopic electroretinogram (ERG with measures obtained in the frequency domain (Fourier analysis: FA and in the time-frequency domain (continuous (CWT and discrete (DWT wavelet transforms. Methods. Normal ERGs n=40 were analyzed using traditional peak time and amplitude measurements of the a- and b-waves in the TD and descriptors extracted from FA, CWT, and DWT. Selected descriptors were also compared in their ability to monitor the long-term consequences of disease process. Results. Each method extracted relevant information but had distinct limitations (i.e., temporal and frequency resolutions. The DWT offered the best compromise by allowing us to extract more relevant descriptors of the ERG signal at the cost of lesser temporal and frequency resolutions. Follow-ups of disease progression were more prolonged with the DWT (max 29 years compared to 13 with TD. Conclusions. Standardized time domain analysis of retinal function should be complemented with advanced DWT descriptors of the ERG. This method should allow more sensitive/specific quantifications of ERG responses, facilitate follow-up of disease progression, and identify diagnostically significant changes of ERG waveforms that are not resolved when the analysis is only limited to time domain measurements.

  11. Towards swift ion bunch acceleration by high-power laser pulses at the Centre for Advanced Laser Applications (CALA)

    Science.gov (United States)

    Lindner, F. H.; Haffa, D.; Bin, J. H.; Englbrecht, F.; Gao, Y.; Gebhard, J.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Lehrack, S.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Würl, M.; Parodi, K.; Schreiber, J.; Thirolf, P. G.

    2017-07-01

    Laser-driven acceleration of ions has inspired novel applications, that can benefit from ion bunch properties different from conventionally (non-laser based) accelerated particle beams. Those differences range from extremely short bunch durations, broad energy spectra, large divergence angles and small source sizes to ultra-high ion bunch densities. So far, the main focus of research has been concentrating on the physics of the interaction of intense laser pulses with plasmas and the related mechanisms of ion acceleration. Now, the new Centre for Advanced Laser Applications (CALA) near Munich aims at pushing these ion bunches towards applications, including radiation therapy of tumors and the development of heavy ion bunches with solid-state-like density. These are needed for novel reaction mechanisms ('fission-fusion') to study the origin of heavy elements in the universe and to prepare for related studies at the upcoming EU-funded high-power laser facility ELI - Nuclear Physics in Bucharest.

  12. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  13. An advanced method for determination of loss of coolant accident in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, R. [Department of Engineering, Shahid Beheshti University, GC, Evin, Tehran (Iran, Islamic Republic of); Shahriari, M., E-mail: m-shahriari@sbu.ac.ir [Department of Engineering, Shahid Beheshti University, GC, Evin, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A. [Department of Engineering, Shahid Beheshti University, GC, Evin, Tehran (Iran, Islamic Republic of)

    2011-06-15

    Highlights: > The considerations of vibration signals are introduced as a new method for determination of accidents directly by detecting of vibration signals without including signals from other components and this is the superiority of the proposed method. > FFT provides an alternate way of representing data. Instead of representing vibration signal amplitude as a function of time, the signal is represented by the amount of information which is contained at different frequencies. > The most of frequencies of structure and fluid coupled are presented in the FFT of structural response and through it the dominant frequency of excitation is obtained. > The Power Spectral Density, a measurement of energy at various frequencies is worked out. MATLAB software is used to convert signals from the time to frequency domain and to obtain PSD of signals. - Abstract: A major objective in reactor design is to provide the capability to withstand a wide range of postulated events without exceeding specified safety limits. Assessment of the consequence of hypothetical loss of coolant accident (LOCA) in primary circuit is an essential element to address fulfilment of acceptance criteria. In addition, finding the position of rupture, one could manage accident in a right direction. In this work, the transient vibration signal from a pipe rupture is used to determine the position of LOCA. A finite element formulation (Galerkin Method) is implemented to include the effect of fluid-structure interaction (FSI). The coupled equations of fluid motion and pipe displacement are solved. The obtained results are in good agreement with published data. Fast Fourier transform (FFT) provides an alternate way of representing data. Instead of representing vibration signal amplitude as a function of time, the signal is represented by the amount of information, which is contained at different frequencies. The most of frequencies of structure and fluid coupled are presented in the FFT of structural

  14. Palladium-rare-earth metal alloys-advanced materials for hydrogen power engineering

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Hydrogen of no less than 99. 999 % (vol. fraction) purity is a principal power media of hydrogen power engineering. A single method for the preparation of high purity hydrogen consists in its separation from vapour-gas mixtures via the selective diffusion of hydrogen through a palladium membrane. The rate of hydrogen diffusion and the strength and stability during the operation in aggressive gases are important characteristics of palladium membranes. The increase in the strength, plasticity, and hydrogen-permeability of membrane alloys can be reached by alloying palladium with the formation of solid solutions.The formation of wide ranges of palladium-rare-earth metal (REM) solid solutions is an interesting feature of palladium. Earlier, we have shown that the alloying of Pd with REM substantially increases the rate of hydrogen diffusion and markedly increases the strength of palladium on retention of the adequate plasticity.In this work, we have studied alloys of the Pd-Y and Pd-Y-Me systems. It was shown that the following conditions should be satisfied to prepare high-quality alloys exhibiting high service properties: (1)the use of high-purity components (whose purity is no less than 99.95%, mass fraction), in particular,high-purity Y prepared by vacuum distillation, and (2) holding the reached purity for the final product.For this purpose, we suggested a cycle of manufacturing operations including the preparation of a vacuumtight foil of 50 (m thick as the final stage.The hydrogen-permeability of the alloys was measured at different temperatures and hydrogen pressures. The instability of operation of binary Pd-Y alloys w alloying the composition with a Ⅷ Group metal. For example, the alloy of the optimum composition Pd-8Y-Me in the annealed state exhibits the following mechanical properties: HV= 75 kg/mm2 , σu = 58 kg/mm2 , and δ= 20%. Its hydrogen-permeability (QH2) measured as a function of the temperature exceeds that of the Pd-23Ag alloy (that is widely

  15. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    Science.gov (United States)

    Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.

    1982-01-01

    Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.

  16. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  17. Judo match analysis,a powerful coaching tool, basic and advanced tools

    CERN Document Server

    Sacripanti, A

    2013-01-01

    In this second paper on match analysis, we analyze in deep the competition steps showing the evolution of this tool at National Federation level.On the basis of our,first classification. Furthermore, it is the most important source of technical assessment. Studying competition with this tool is essential for the coaches because they can obtain useful information for their coaching. Match Analysis is today the master key in situation sports like Judo, to help in useful way the difficult task of coach or best for National or Olympic coaching equips. In this paper it is presented a deeper study of the judo competitions at high level both from the male and female point of view, explaining at light of biomechanics, not only the throws evolution in time, introduction of Innovative and Chaotic techniques, but also the evolution of fighting style in these high level competitions, both connected with the grow of this Olympic Sport in the Word Arena. It is shown how new interesting ways are opened by this powerful coac...

  18. ADVANCED COMPUTATIONALMETHODS FOR COMPLEX SIMULATION OF THERMAL PROCESSES IN POWER ENGINEERING

    Directory of Open Access Journals (Sweden)

    Risto V. Filkoski

    2007-04-01

    Full Text Available The overall frame and principal steps of complex numerical modelling of thermal processes in power boiler furnaces on pulverised coal with tangential disposition of the burners are presented in the paper. Computational fluid dynamics (CFD technique is used as a tool to perform comprehensive thermal analysis in two test cases. The methodology for creation of three-dimensional models of boiler furnaces is briefly described. Standard steady k- model is employed for description of the turbulent flow. The coupling of continuity and momentum is achieved by the SIMPLEC method. Coal combustion is modelled by the mixture fraction/probability density function approach for the reaction chemistry, with equilibrium assumption applied for description of the system chemistry. Thermal radiation is computed by means of the simplified P-N model, based on expansion of the radiation intensity into an orthogonal series of spherical harmonics.Comparison between the simulation predictions and available site measurements leads to a conclusion that the model produces realistic insight into the furnace processes. Qualitative agreement of the results indicates reasonability of the calculations and validates the employed sub-models. The described test cases and other experiences with CFD modelling stress the advantages over a purely field data study, such as the ability to quickly and cheaply analyse a variety of design options without actually modifying the object and the availability of significantly more data to interpret the results.

  19. Recent advances in creep-resistant steels for power plant applications

    Indian Academy of Sciences (India)

    P J Ennis; A Czyrska-Filemonowicz

    2003-06-01

    The higher steam temperatures and pressures required to achieve increase in thermal efficiency of fossil fuel-fired power-generation plants necessitate the use of steels with improved creep rupture strength. The 9% chromium steels developed during the last three decades are of great interest in such applications. In this report, the development of steels P91, P92 and E911 is described. It is shown that the martensitic transformation in these three steels produces high dislocation density that confers significant transient hardening. However, the dislocation density decreases during exposure at service temperatures due to recovery effects and for long-term creep strength the sub-grain structure produced under different conditions is most important. The changes in the microstructure mean that great care is needed in the extrapolation of experimental data to obtain design values. Only data from tests with rupture times above 3,000 h provide reasonable extrapolated values. It is further shown that for the 9% chromium steels, oxidation resistance in steam is not sufficiently high for their use as thin-walled components at temperatures of 600°C and above. The potential for the development of steels of higher chromium contents (above 11%) to give an improvement in steam oxidation resistance whilst maintaining creep resistance to the 9% chromium steels is discussed.

  20. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    Science.gov (United States)

    Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.

    Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.

  1. Edge roughness characterization of advanced patterning processes using power spectral density analysis (PSD)

    Science.gov (United States)

    Levi, Shimon; Schwarzband, Ishai; Kris, Roman; Adan, Ofer; Shi, Elly; Zhang, Ying; Zhou, Kevin

    2016-03-01

    Self-Aligned Quadruple Patterning (SAQP) is targeted to support the sub 10nm technology nodes. It is consisted of several process steps starting with lithography and Etch to define the pattern backbone. Followed by additional set of processes based on thin-films deposition and etch that quadruple the number of patterns, shrinking pattern and pitch sizes. Pattern roughness is derived from the physical and chemical characteristics of these process steps. It is changing with each of the SAQP process steps, based on material stack and the etch process characteristics. Relative to a sub 10 nm pattern sizes pattern, edge roughness can significantly impact pattern physical dimensions. Unless controlled it can increase the variability of device electrical performance, and reduce yield. In this paper we present the SAQP process steps and roughness characterization, performed with Power Spectral Density (PSD) methodology. Experimental results demonstrates the ability of PSD analysis to sensitively reflect detailed characterization of process roughness, guiding process development improvements, and enabling roughness monitoring for production.

  2. The development of advanced robotics for the nuclear industry -The development of robotic system for the nuclear power plants-

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Kim, Kee Hoh; Lee, Jae Kyung; Lee, Yung Kwang; Suh, Yong Chil; Lee, Yong Bum; Kim, Woong Kee; Park, Soon Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The Advanced Robotics Department of the Korea Atomic Energy Research Institute (KAERI) is developing a Dexterous Manipulation System (DMS) and a teleoperated mobile robot, identified as KAEROT/ml, for use in nuclear power plants. The DMS is being developed for performing tasks such as the opening and closing of nozzle dam inside water chamber of steam generator. The DMS has two major subsystems; a master-slave 6 degrees of freedom (dof) manipulator and a support device. The master-slave arms are designed dissimilar kinematically and dynamically, and their functions are performed by a bilateral force-reflecting force control. The slave is a hydraulically powered arm with a 3 dof end effector, and is mounted on the top of the support device for nozzle dam operation. The support device guides the slave arm into the water chamber and supports it during its operation. The DMS can be operated either in teleoperated or supervisory control modes. The KAEROT/ml is designed to be used in emergency response applications such as monitoring and mapping radiation areas, handling radioactive materials and performing decontamination tasks. The KAEROT/ml equipped with four-omnidirectional planetary wheels has a 6 dof joint-controlled arm and is capable of ascending and descending stairs and navigating flat surface with zero turning radius. This report describes the mechanical design, features, modeling and control system of both the DMS and the KAEROT/ml. 209 figs, 49 pix, 69 tabs, 62 refs. (Author).

  3. Commercial Demonstration of Oxy-Coal Combustion Clean Power Technology

    Energy Technology Data Exchange (ETDEWEB)

    K.J. McCauley; K.C. Alexander; D.K. McDonald; N. Perrin; J.-P. Tranier [Babcock & Wilcox Power Generation Group (United Kingdom)

    2009-07-01

    Oxy-Coal Combustion is an advanced clean coal-based power generation technology with carbon capture and storage that will be Near Zero Emissions (NZEP), will capture and safely store CO{sub 2} in a geologic formation, and generate clean power for sale. This sustainable technology will utilize natural resources and support energy security goals. The unique benefits of oxy-coal combustion allow for near zero emissions of coal combustion products. The emissions of particulate matter, sulfur dioxide, nitrogen oxides and mercury will not only be below regulated levels, but all will be within the uncertainty of current industry measurement methods, essentially zero. This advanced technology will demonstrate all these reduced levels and will lead to commercially available NZEP plants for power generation. Since 1991, with the support of the US-DOE, Babcock & Wilcox Power Generation Group, Inc. (B&W PGG) and Air Liquide (AL) have worked to bring an advanced technology to the market for Carbon Capture and Storage (CCS) for coal-fired electric power generation plants. Oxy-coal combustion is now ready for at-scale demonstration leading directly to full scale commercialization and availability in the power generation marketplace. This paper will discuss the follow up of the results of the 30 MWth large pilot test program completed in December, 2008. This oxy-coal combustion technology has been through small lab pilot testing, large pilot testing, and a rigorous bottom-up integration and optimization analysis. Our paper will describe incorporating the best technological thinking for the integration of a modern PC-fired boiler, environmental control equipment, air separation unit (ASU) and compression purification unit (CPU). 5 refs., 3 figs.

  4. Parameter Identification with the Random Perturbation Particle Swarm Optimization Method and Sensitivity Analysis of an Advanced Pressurized Water Reactor Nuclear Power Plant Model for Power Systems

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-02-01

    Full Text Available The ability to obtain appropriate parameters for an advanced pressurized water reactor (PWR unit model is of great significance for power system analysis. The attributes of that ability include the following: nonlinear relationships, long transition time, intercoupled parameters and difficult obtainment from practical test, posed complexity and difficult parameter identification. In this paper, a model and a parameter identification method for the PWR primary loop system were investigated. A parameter identification process was proposed, using a particle swarm optimization (PSO algorithm that is based on random perturbation (RP-PSO. The identification process included model variable initialization based on the differential equations of each sub-module and program setting method, parameter obtainment through sub-module identification in the Matlab/Simulink Software (Math Works Inc., Natick, MA, USA as well as adaptation analysis for an integrated model. A lot of parameter identification work was carried out, the results of which verified the effectiveness of the method. It was found that the change of some parameters, like the fuel temperature and coolant temperature feedback coefficients, changed the model gain, of which the trajectory sensitivities were not zero. Thus, obtaining their appropriate values had significant effects on the simulation results. The trajectory sensitivities of some parameters in the core neutron dynamic module were interrelated, causing the parameters to be difficult to identify. The model parameter sensitivity could be different, which would be influenced by the model input conditions, reflecting the parameter identifiability difficulty degree for various input conditions.

  5. On the Path to SunShot. Advancing Concentrating Solar Power Technology, Performance, and Dispatchability

    Energy Technology Data Exchange (ETDEWEB)

    Mehos, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This report examines the remaining challenges to achieving the competitive concentrating solar power (CSP) costs and large-scale deployment envisioned under the U.S. Department of Energy's SunShot Initiative. Although CSP costs continue to decline toward SunShot targets, CSP acceptance and deployment have been hindered by inexpensive photovoltaics (PV). However, a recent analysis found that thermal energy storage (TES) could increase CSP's value--based on combined operational and capacity benefits--by up to 6 cents/kWh compared to variable-generation PV, under a 40% renewable portfolio standard in California. Thus, the high grid value of CSP-TES must be considered when evaluating renewable energy options. An assessment of net system cost accounts for the difference between the costs of adding new generation and the avoided cost from displacing other resources providing the same level of energy and reliability. The net system costs of several CSP configurations are compared with the net system costs of conventional natural-gas-fired combustion-turbine (CT) and combined-cycle plants. At today's low natural gas prices and carbon emission costs, the economics suggest a peaking configuration for CSP. However, with high natural gas prices and emission costs, each of the CSP configurations compares favorably against the conventional alternatives, and systems with intermediate to high capacity factors become the preferred alternatives. Another analysis compares net system costs for three configurations of CSP versus PV with batteries and PV with CTs. Under current technology costs, the least-expensive option is a combination of PV and CTs. However, under future cost assumptions, the optimal configuration of CSP becomes the most cost-effective option.

  6. A physical description of fission product behavior fuels for advanced power reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.

    2007-10-18

    The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.

  7. Neuroradiological advances detect abnormal neuroanatomy underlying neuropsychological impairments: the power of PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hayempour, Benjamin Jacob; Alavi, Abass [Hospital of the University of Pennsylvania, Institute of Neurological Sciences, Department of Radiology, Division of Nuclear Medicine, Philadelphia, PA (United States)

    2013-09-15

    Medical imaging has made a major contribution to cerebral dysfunction due to inherited diseases, as well as injuries sustained with modern living, such as car accidents, falling down, and work-related injuries. These injuries, up until the introduction of sensitive techniques such as positron emission tomography (PET), were overlooked because of heavy reliance on structural imaging techniques such as MRI and CT. These techniques are extremely insensitive for dysfunction caused by such underlying disorders. We believe that the use of these highly powerful functional neuroimaging technologies, such as PET, has substantially improved our ability to assess these patients properly in the clinical setting, to determine their natural course, and to assess the efficacy of various interventional detections. As such the contribution from the evolution of PET technology has substantially improved our knowledge and ability over the past 3 decades to help patients who are the victims of serious deficiencies due to these injuries. In particular, in recent years the use of PET/CT and soon PET/MRI will provide the best option for a structure-function relationship in these patients. We are of the belief that the clinical effectiveness of PET in managing these patients can be translated to the use of this important approach in bringing justice to the victims of many patients who are otherwise uncompensated for disorders that they have suffered without any justification. Therefore, legally opposing views about the relevance of PET in the court system by some research groups may not be justifiable. This has proven to be the case in many court cases, where such imaging techniques have been employed either for criminal or financial compensation purposes in the past 2 decades. (orig.)

  8. Treatment of IGCC power station effluents by physico-chemical and advanced oxidation processes.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; Sanmartín, I; García-Peña, F; Coca, P

    2009-03-01

    The aim of this work was to improve the quality of aqueous effluents coming from the Gasification Unit in an Integrated Gasification Combined Cycle (IGCC) Thermoelectric Power Station, with the purpose of fulfilling the future more demanding normative. To this end, an integral wastewater treatment including coagulation, flocculation, neutralization, photocatalytic oxidation, and ion-exchange has been studied. A final scheme has been proposed to remove pollutants. All the parameters of the treated wastewater are below pouring specifications. In the first stage, the wastewater was treated with CaCl2 (optimal dose=11 g CaCl2/g F-) as coagulant and a commercial anionic polyelectrolyte (optimal dose=0.02 g/g F-) as flocculant to remove fluoride ions (99%) and suspended solids (92%). The water was then neutralized, improving the degree of transmission of ultraviolet light, allowing the faster photo-degradation of pollutants. The photochemical study included different systems (H2O2, UV/H2O2, Fenton, Fenton-like, UV/Fenton, UV/Fenton-like and UV/H2O2/O2). In the Fenton-like system, the influence of two parameters (initial concentration of H2O2 and amount of Cu(II)) on the degradation of cyanide and formate (taken as the reference of the process) was studied. Experimental results were fit using neural networks (NNs). Results showed that the photocatalytic process was effective for total cyanide destruction after 60 min, while 180 min was needed to remove 80% of formates. However, a more simple system with UV/H2O2/O2 yields similar results and is preferred for industrial application due to fewer complications. Finally, an ion-exchange process with Amberlite IRA-420 was proposed to remove the excess of chlorides added as a consequence of the initial coagulation process.

  9. Developments in ITM oxygen technology and applications in electric power generation

    Energy Technology Data Exchange (ETDEWEB)

    Richards, R.E.; Stein, V.E.; Bose, A.C.

    2000-07-01

    In partnership with the US Department of Energy (DOE), an Air Products-led team is developing a new technology for air separation--Ion Transport Membrane Oxygen--based on the use of mixed-conducting ceramic membranes that operate at high temperature, typically 800 to 900 C. Integration of ITM Oxygen technology with advanced coal-based electric power generation offers the benefits of further improving system efficiency and oxygen economics, resulting in better environmental performance and lower costs. The ITM Oxygen development project will proceed in three phases. Phase 1, which commended under a DOE Cooperative Agreement in October 1998, is a 3-year effort focusing on construction of a technology development unit (TDU) for process concept validation tests at a capacity of up to 0.1 ton-per-day (TPD) oxygen. After at least one intermediate scaleup, Phase 2 and 3 activities will culminate with scaleup to a 25- to 50-TPD pre-commercial demonstration unit.

  10. Recent Advances in the Development and Application of Power Plate Transducers in Dense Gas Extraction and Aerosol Agglomeration Processes

    Science.gov (United States)

    Riera, E.; Cardoni, A.; Gallego-Juárez, J. A.; Acosta, V. M.; Blanco, A.; Rodríguez, G.; Blasco, M.; Herranz, L. E.

    Power ultrasound (PU) is an emerging, innovative, energy saving and environmental friendly technology that is generating a great interest in sectors such as food and pharmaceutical industries, green chemistry, environmental pollution, and other processes, where sustainable and energy efficient methods are required to improve and/or produce specific effects. Two typical effects of PU are the enhancement of mass transfer in gases and liquids, and the induction of particle agglomeration in aerosols. These effects are activated by a variety of mechanisms associated to the nonlinear propagation of high amplitude ultrasonic waves such as diffusion, agitation, entrainment, turbulence, etc. During the last years a great effort has been jointly made by the Spanish National Research Council (CSIC) and the company Pusonics towards introducing novel processes into the market based on airborne ultrasonic plate transducers. This technology was specifically developed for the treatment of gas and multiphasic media characterized by low specific acoustic impedance and high acoustic absorption. Different strategies have been developed to mitigate the effects of the nonlinear dynamic behavior of such ultrasonic piezoelectric transducers in order to enhance and stabilize their response at operational power conditions. This work deals with the latter advances in the mitigation of nonlinear problems found in power transducers; besides it describes two applications assisted by ultrasound developed at semi-industrial and laboratory scales and consisting in extraction via dense gases and particle agglomeration. Dense Gas Extraction (DGE) assisted by PU is a new process with a potential to enhance the extraction kinetics with supercritical CO2. Acoustic agglomeration of fine aerosol particles has a great potential for the treatment of air pollution problems generated by particulate materials. Experimental and numerical results in both processes will be shown and discussed.

  11. NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  12. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  13. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Tim [Southwest Research Inst., San Antonio, TX (United States); Beck, Griffin [Southwest Research Inst., San Antonio, TX (United States); Bennett, Jeffrey [Southwest Research Inst., San Antonio, TX (United States); Hoopes, Kevin [Southwest Research Inst., San Antonio, TX (United States); Miller, Larry [Southwest Research Inst., San Antonio, TX (United States)

    2016-06-29

    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and test new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long

  14. Advanced Micro Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and Power Quality at DoD Installations

    Science.gov (United States)

    2016-10-28

    Voltage Reduction (CVR) techniques . The first 2 years of efforts focused on advancing the IVVC technology. The later years of the project focused on...methods to reduce peak electric power and electric energy consumption through Conservation Voltage Reduction (CVR) techniques , specifically, through the...Voltage Regulators (EVRs), leveraged from an adjacent market (voltage support to buildings in poor power quality sites). PERFORMANCE AND COST

  15. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States); Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States)

    2014-07-31

    the method of moments, called Finite size domain Complete set of trial functions Method Of Moments (FCMOM) was used to solve the population balance equations. The PBE model was implemented in a commercial CFD code, Ansys Fluent 13.0. The code was used to test the model in some simple cases and the results were verified against available analytical solution in the literature. Furthermore, the code was used to simulate CO2 capture in a packed-bed and the results were in excellent agreement with the experimental data obtained in the packed bed. The National Energy Laboratory (NETL) Carbon Capture Unit (C2U) design was used in simulate of the hydrodynamics of the cold flow gas/solid system (Clark et al.58). The results indicate that the pressure drop predicted by the model is in good agreement with the experimental data. Furthermore, the model was shown to be able to predict chugging behavior, which was observed during the experiment. The model was used as a base-case for simulations of reactive flow at elevated pressure and temperatures. The results indicate that by controlling the solid circulation rate, up to 70% CO2 removal can be achieved and that the solid hold up in the riser is one of the main factors controlling the extent of CO2 removal. The CFD/PBE simulation model indicates that by using a simulated syngas with a composition of 20% CO2, 20% H2O, 30% CO, and 30% H2, the composition (wet basis) in the reactor outlet corresponded to about 60% CO2 capture with and exit gas containing 65% H2. A preliminary base-case-design was developed for a regenerative MgO-based pre-combustion carbon capture process for a 500 MW IGCC power plant. To minimize the external energy requirement, an extensive heat integration network was developed in Aspen/HYSYS® to produce the steam required in the regenerator and heat integration. In this process, liquid CO2 produced at 50 atm can easily be pumped and sequestered or stored. The preliminary economic analyses indicate that the

  16. The development of coal-based technologies for Department of Defense Facilities. Interim report, March 27, 1993--July 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Sharifi, R. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1993-09-24

    The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first phase of the program is underway. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and precombustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash, high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phase I are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package.

  17. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Bartley, D.A.; Hatcher, P. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

  18. Advanced 700{degree}C pf power plant (AD700): start of phase 2 of the European project

    Energy Technology Data Exchange (ETDEWEB)

    Bregani, F.; Bugge, J.; Klauke, F.; Kjaer, S.; Vanstone, R.; Wieghart, K. [Cesi, Milan (Italy)

    2002-07-01

    A large European group of manufacturers, utilities and institutes are co-operating in a phased long-term project dealing with 'Advanced 700{degree}C PF Power Plant'. The overall objective is the development of an economically viable and sustainable, coal-fired power plant technology with a net efficiency of more than 50%, which can ensure a future strategic important role for coal in Europe. These targets can be reached through development of a super-critical steam cycle operating at maximum steam temperatures in the range of 700 C. The demonstration programme will leave the possibility of any plant output between 400 and 1,000 MW. The phase 1 of the project started in January 1998 based on a grant from the Commission's Thermie programme under the 4th Framework Programme. Work to date has already demonstrated the economic viability of this concept and design concepts have been developed without encountering any significant technical obstacles. The phase 2 of the project started in January 2002 on another grant from the Commission's Energy programme under the 5th Framework Programme. 35 partners from 10 European countries are involved. This phase will focus on fabricability of new super-alloys, welding of thick walled super-alloys, dissimilar weldings and on testing, in operating boilers, of materials for super heaters in the range of 700{degree}C and for furnace walls. Potential for cost reductions will be addressed through boiler and turbine design work to minimise the use of expensive super-alloys. The second phase also deals with a dissemination programme and the financial and operational conditions for a separate demonstration facility and demonstration programme which will be applied for later as phase 3 of the project. Finally business plan for the full-scale demonstration plant to be applied for as phase 4 has been included. 7 figs., tabs.

  19. Advanced power cycles and configurations for solar towers: Modeling and optimization of the decoupled solar combined cycle concept

    Science.gov (United States)

    García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier

    2017-06-01

    CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different

  20. Development of experimental apparatus for evaluating corrosion resistance of cladding materials applied for advanced power reactor. 1

    Energy Technology Data Exchange (ETDEWEB)

    Inohara, Yasuto; Ioka, Ikuo; Fukaya, Kiyoshi; Tachibana, Katsumi; Suzuki, Tomio; Kiuchi, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kuroda, Yuji; Miyamoto, Satoshi [Japan Atomic Power Co., Tokyo (Japan)

    2001-03-01

    On the development of cladding materials for advanced power reactors, it is important to clarify long performance and to control the compatibility to high temperature water at heat conducting surfaces under heavy irradiation. On the present study, the high temperature water loop with an autoclave was made for examining the corrosion behavior up to the super critical water range and for developing the simulation testing technique under irradiation in the hot cell. The loop is applicable to immersion tests in the temperature and pressure ranges up to 450degC and 25 MPa that are covered the surface temperature range of fuel claddings. One of the characteristics of this apparatus is a pair of sapphire windows of autoclave for in-situ observations, and a phase transition from water to super critical water conditions was clearly verified through these windows. In this apparatus, it is possible to control the temperature, pressure and Dissolved Oxygen (DO) within a fluctuations of few % on three phases, namely, water, steam and super critical water. (author)

  1. 军用无人机电源技术进展%Advance of power supply for military UAV

    Institute of Scientific and Technical Information of China (English)

    石治国

    2012-01-01

    军用无人机在续航方面的需求不断增加,而动力紧缺会限制其执行某些特殊的任务.为了解决这个问题,科学家正致力于克服现有电池的局限性.目前比较成熟的无人机电池技术主要有燃料电池、太阳电池和锂离子电池等.综述了以上电池技术及其混合技术的进展,并对其未来发展方向进行了展望.%The demands for the endurance of military UAV is increasing, and the lack of power may limit its ability toimplement some special mission. The scientists commit themselves to overcome the limits of battery. The currentmature technologies of batteries for UAV include fuel cell, solar cell, lithium ion battery and etc. The advance of theabove technologies of batteries and its hybrid technologies were reviewed, and their development trend wasproposed.

  2. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  3. Power Systems Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  4. Advanced power analysis methodology targeted to the optimization of a digital pixel readout chip design and its critical serial powering system

    Science.gov (United States)

    Marconi, S.; Orfanelli, S.; Karagounis, M.; Hemperek, T.; Christiansen, J.; Placidi, P.

    2017-02-01

    A dedicated power analysis methodology, based on modern digital design tools and integrated with the VEPIX53 simulation framework developed within RD53 collaboration, is being used to guide vital choices for the design and optimization of the next generation ATLAS and CMS pixel chips and their critical serial powering circuit (shunt-LDO). Power consumption is studied at different stages of the design flow under different operating conditions. Significant effort is put into extensive investigations of dynamic power variations in relation with the decoupling seen by the powering network. Shunt-LDO simulations are also reported to prove the reliability at the system level.

  5. Interagency Advanced Power Group, Joint Electrical and Nuclear Working Group, meeting minutes, November 16--17, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Reports on soldier power R&D review, N-MCT power electronic building blocks, silicon carbide power semiconductor work, and ground based radar were made to the Power Conditioning Panel. An introduction to high temperature electronics needs, research and development was made to the High Temperature Electronics Subcommittee. The Pulse Power Panel received reports on the navy ETC gun, and army pulse power. The Superconductivity Panel received reports on high-tc superconducting wires, superconducting magnetic energy storage, and superconducting applications. The Nuclear Working Group received presentations on the Topaz nuclear power program, and space nuclear work in the Department of Energy.

  6. Modeling and simulation of tube-shell reactor for dimethyl-ether synthesis from coal-based synthesis gas

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-sheng; ZHANG Hai-tao; YING Wei-yong; FANG Ding-ye

    2011-01-01

    Mathematical simulation was performed on tube-shell reactor for dimethyl ether (DME) synthesis from coal-based syngas. The model was established based on kinetics of dimethyl-ether synthesis from syngas over a bifunctional catalyst,which is mixed by methanol synthesis catalyst and dehydration catalyst as 1:1 mass ratio. Methanol synthesis from CO and CO2 and methanol dehydration were selected as three-independent reactions, CO, CO2, and DME as key components to establish the one-dimensional mathematical model of the reactor. The gas concentration and temperature profiles inside the reactor tubes were obtained. The operating conditions affecting DME synthesis were also discussed based on the model. The simulations indicate that higher pressure and lower temperature at the inlet and rich hydrogen in the reactant are favorable in direct DME synthesis in fixed-bed process, and the temperature of boiling water affect the reactor performance seriously.

  7. Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon.

    Science.gov (United States)

    Li, Wei-Guang; Gong, Xu-Jin; Wang, Ke; Zhang, Xin-Ran; Fan, Wen-Biao

    2014-08-01

    An innovative coal-based mesoporous activated carbon (NCPAC) was prepared by re-agglomeration, oxidation and two-step activation using coal-blending as precursor. Adsorption capacities of As(III) and As(V) ions (contents (15.26%). The adsorption capacities of NCPAC for As(III) and As(V) were found to be strongly dependent on pH and contact time. The optimal pH value was 6. The equilibrium time was 60min for adsorption of As(III) and As(V) by NCPAC. The Langmuir model fitted the experimental data well for both As(III) (R(2)=0.9980) and As(V) (R(2)=0.9988). Maximum adsorption capacities of As(III) and As(V) (C0=0.50mg/L) by NCPAC were 1.491 and 1.760mg/g, respectively.

  8. Changing the adsorption capacity of coal-based honeycomb monoliths for pollutant removal from liquid streams by controlling their porosity

    Energy Technology Data Exchange (ETDEWEB)

    Gatica, Jose M.; Harti, Sanae [Departamento C.M., I.M. y Quimica Inorganica, Universidad de Cadiz, Puerto Real 11510 (Spain); Vidal, Hilario, E-mail: hilario.vidal@uca.es [Departamento C.M., I.M. y Quimica Inorganica, Universidad de Cadiz, Puerto Real 11510 (Spain)

    2010-09-15

    Coal-based honeycomb monoliths extruded using methods developed for ceramic materials have been used to retain methylene blue and p-nitrophenol from aqueous solutions. The influence of the filters' thermal treatment on their textural properties and performance as adsorbents was examined. Characterization by N{sub 2} physisorption, mercury porosimetry and scanning electron microscopy along with adsorption tests under dynamic conditions suggest that, depending on the pollutant and its initial concentration, it can be more convenient to previously submit the monoliths to a simple carbonization or to an additional activation, with or without preoxidation, as a consequence of their different resulting pore structures. Infrared spectroscopy indicates that their different adsorption behaviour seems not to be related to differences in their surface chemical groups. In addition, axial crushing tests show that the monoliths have an acceptable mechanical resistance for the application investigated.

  9. Processing of solid solution, mixed uranium/refractory metal carbides for advanced space nuclear power and propulsion systems

    Science.gov (United States)

    Knight, Travis Warren

    Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC

  10. Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants

    Science.gov (United States)

    Hussain, T.; Dudziak, T.; Simms, N. J.; Nicholls, J. R.

    2013-06-01

    This article presents a systematic evaluation of coatings for advanced fossil fuel plants and addresses fireside corrosion in coal/biomass-derived flue gases. A selection of four candidate coatings: alloy 625, NiCr, FeCrAl and NiCrAlY were deposited onto superheaters/reheaters alloy (T91) using high-velocity oxy-fuel (HVOF) and plasma spraying. A series of laboratory-based fireside corrosion exposures were carried out on these coated samples in furnaces under controlled atmosphere for 1000 h at 650 °C. The tests were carried out using the "deposit-recoat" test method to simulate the environment that was anticipated from air-firing 20 wt.% cereal co-product mixed with a UK coal. The exposures were carried out using a deposit containing Na2SO4, K2SO4, and Fe2O3 to produce alkali-iron tri-sulfates, which had been identified as the principal cause of fireside corrosion on superheaters/reheaters in pulverized coal-fired power plants. The exposed samples were examined in an ESEM with EDX analysis to characterize the damage. Pre- and post-exposure dimensional metrologies were used to quantify the metal damage in terms of metal loss distributions. The thermally sprayed coatings suffered significant corrosion attack from a combination of aggressive combustion gases and deposit mixtures. In this study, all the four plasma-sprayed coatings studied performed better than the HVOF-sprayed coatings because of a lower level of porosity. NiCr was found to be the best performing coating material with a median metal loss of ~87 μm (HVOF sprayed) and ~13 μm (plasma sprayed). In general, the median metal damage for coatings had the following ranking (in the descending order: most to the least damage): NiCrAlY > alloy 625 > FeCrAl > NiCr.

  11. Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation DECISION POINT 1 UNDER PHASE 3

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lori

    2013-08-01

    Air Products and the DOE have partnered over a number of years in the development of ITM Oxygen technology in support of gasification technology. Throughout this process, studies of application of the technology to IGCC and oxy-coal combustion have shown significant reduction in capital and operating costs compared to similar systems using conventional cryogenic air separation. Phase 3, the current phase of the program, focuses on the design, construction and operation of a 30- to 100-TPD pilot facility, the Intermediate Scale Test Unit (ISTU). Execution of this phase to date has resulted in significant advances in a number of areas including ceramic membrane material development, module design and production, ceramic-to-metal seal design, process control strategies, and engineering development of process cycles. Phase 3 will be complete upon successful operation of the ISTU in a series of tests making oxygen from ceramic membrane modules and producing power from a hot gas expander. Phase 3 work has extended beyond the planned schedule due to a delay in delivery of equipment from vendors. Air Products is currently managing the equipment delay by close involvement with the vendor to redesign the problematic equipment and oversee its fabrication. The result of these unforeseen challenges is that the ISTU project completion date has been delayed. Tight cost controls have been implemented both by DOE program management and APCI to meet budget constraints despite increased costs due to budget delays. Total project costs have increased in several areas. Increased costs in the ISTU project include purchased equipment, instruments, construction, and contractor engineering. Increased costs for other tasks include additional work in support of module production by Ceramatec, Inc, and increased Air Products labor for component testing. Air Products plans to complete testing as outlined in the SOPO and successfully complete all project objectives by the end of FY14.

  12. Greener power generation technologies. Solutions for carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Reimuth, Oliver; Kremer, Hermann; Vortmeyer, Nicolas [Siemens AG, Erlangen (Germany)

    2011-07-01

    Fossil-based power generation will continue to account for a dominant share of over 50 % in the future energy mix. In order to meet the requirements of climate protection, a combination of highly-efficient, flexible combined cycle power plants and the use of CCS in coal-based power generation will be necessary. In addition to funding of the first demonstration projects comprehensive statutory framework and public acceptance are necessary for launching CCS technology. (orig.)

  13. Facing coal : changing conceptions of South African coal-based pollution, with special reference to the Witbank coalfield, 1906-1978

    NARCIS (Netherlands)

    Singer, M.

    2011-01-01

    Facing coal provides an environmental history of changing ideas around South African coal-based pollution, focusing on Witbank, where the scars of mining are etched deep into the land. The essence of this book is its link between local and global repercussions of past and present reliance on fossil

  14. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

    Science.gov (United States)

    Yang, Song-tao; Zhou, Mi; Jiang, Tao; Guan, Shan-fei; Zhang, Wei-jun; Xue, Xiang-xin

    2016-12-01

    A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V-Ti-Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio ( η), S removal ratio ( R S), and P removal ratio ( R P) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved the η, R S, and R P in the coal-based reduction of V-Ti-Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70 μm at 1350°C, which is substantially larger than the minimum particle size required (20 μm) for magnetic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V-Ti-Cr iron ore followed by magnetic separation.

  15. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

    Institute of Scientific and Technical Information of China (English)

    Song-tao Yang; Mi Zhou; Tao Jiang; Shan-fei Guan; Wei-jun Zhang; and Xiang-xin Xue

    2016-01-01

    A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V–Ti–Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio (η), S removal ratio (RS), and P removal ratio (RP) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved theη,RS, and RP in the coal-based reduction of V–Ti–Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70μm at 1350°C, which is substantially larger than the minimum particle size required (20μm) for mag-netic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V–Ti–Cr iron ore followed by magnetic separation.

  16. Facing coal : changing conceptions of South African coal-based pollution, with special reference to the Witbank coalfield, 1906-1978

    NARCIS (Netherlands)

    Singer, M.

    2011-01-01

    Facing coal provides an environmental history of changing ideas around South African coal-based pollution, focusing on Witbank, where the scars of mining are etched deep into the land. The essence of this book is its link between local and global repercussions of past and present reliance on fossil

  17. Advanced communications technology satellite high burst rate link evaluation terminal power control and rain fade software test plan, version 1.0

    Science.gov (United States)

    Reinhart, Richard C.

    1993-01-01

    The Power Control and Rain Fade Software was developed at the NASA Lewis Research Center to support the Advanced Communications Technology Satellite High Burst Rate Link Evaluation Terminal (ACTS HBR-LET). The HBR-LET is an experimenters terminal to communicate with the ACTS for various experiments by government, university, and industry agencies. The Power Control and Rain Fade Software is one segment of the Control and Performance Monitor (C&PM) Software system of the HBR-LET. The Power Control and Rain Fade Software automatically controls the LET uplink power to compensate for signal fades. Besides power augmentation, the C&PM Software system is also responsible for instrument control during HBR-LET experiments, control of the Intermediate Frequency Switch Matrix on board the ACTS to yield a desired path through the spacecraft payload, and data display. The Power Control and Rain Fade Software User's Guide, Version 1.0 outlines the commands and procedures to install and operate the Power Control and Rain Fade Software. The Power Control and Rain Fade Software Maintenance Manual, Version 1.0 is a programmer's guide to the Power Control and Rain Fade Software. This manual details the current implementation of the software from a technical perspective. Included is an overview of the Power Control and Rain Fade Software, computer algorithms, format representations, and computer hardware configuration. The Power Control and Rain Fade Test Plan provides a step-by-step procedure to verify the operation of the software using a predetermined signal fade event. The Test Plan also provides a means to demonstrate the capability of the software.

  18. Analysis, control and optimal operations in hybrid power systems advanced techniques and applications for linear and nonlinear systems

    CERN Document Server

    Bizon, Nicu; Mahdavi Tabatabaei, Naser

    2014-01-01

    This book explains and analyzes the dynamic performance of linear and nonlinear systems, particularly for Power Systems including Hybrid Power Sources. Offers a detailed description of system stability using state space energy conservation principle, and more.

  19. Establishment of a proximate analysis of coal based on the use of a thermobalance

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, S.; Watanuki, O.

    1986-01-01

    Studies are reported aimed at the establishment of a new method for the proximate analysis of coal. The results obtained are expected to clear the way for the introduction of this thermogravimetric method. Firstly, in order to achieve a repeatability as good as that of the JIS method and such that operating problems do not result at power plants, measurement procedures were standardized on the basis of an analysis of the factors affecting repeatability. Secondly, a regression analysis was carried out to check the correspondence between the JIS method and the thermogravimetric method over a practical operating range and for all the types of coal presently received at power plants. This analysis confirmed the linearity of the relations between the two sets of results. 2 references, 4 figures.

  20. Advance: research project on aging electrical wiring in nuclear power plants; Advance: proyecto de investigacion de envejecimiento en cableado electrico en centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Cano, J. C.; Ruiz, S.

    2013-07-01

    As Nuclear Power Plants get older it is more important to know the real condition of low voltage, instrumentation, power and control cables. Additionally, as new plants are being built, the election of cables and the use of in-situ monitoring techniques to get reliable aging indicators, can be very useful during the plant life. The goal of this Project is to adapt, optimize and asses Condition Monitoring techniques for Nuclear Power Plants cables. These techniques, together with the appropriate acceptance criteria, would allow specialists to know the state of the cable over its entire length and estimate its residual life. In the Project, accelerated ageing is used in cables installed in European NPPs in order to evaluate different techniques to detect local and global ageing. Results are compared with accepted tests to validate its use for the estimation of cables residual life. This paper describes the main stages of the Project and some results. (Author)