WorldWideScience

Sample records for advanced coal liquefaction

  1. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. (Auburn Univ., AL (United States)); Gutterman, C. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Chander, S. (Pennsylvania State Univ., University Park, PA (United States))

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  2. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  3. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  4. Coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-07-01

    Coal liquefaction is an emerging technology receiving great attention as a possible liquid fuel source. Currently, four general methods of converting coal to liquid fuel are under active development: direct hydrogenation; pyrolysis/hydrocarbonization; solvent extraction; and indirect liquefaction. This work is being conducted at the pilot plant stage, usually with a coal feed rate of several tons per day. Several conceptual design studies have been published recently for large (measured in tens of thousands of tons per day coal feed rate) commercial liquefaction plants, and these reports form the data base for this evaluation. Products from a liquefaction facility depend on the particular method and plant design selected, and these products range from synthetic crude oils up through the lighter hydrocarbon gases, and, in some cases, electricity. Various processes are evaluated with respect to product compositions, thermal efficiency, environmental effects, operating and maintenance requirements, and cost. Because of the large plant capacities of current conceptual designs, it is not clear as to how, and on what scale, coal liquefaction may be considered appropriate as an energy source for Integrated Community Energy Systems (CES). Development work, both currently under way and planned for the future, should help to clarify and quantify the question of applicability.

  5. Prospect of coal liquefaction in Indonesia

    International Nuclear Information System (INIS)

    With the current known oil reserves of about 11 billion barrel and annual production of approximately 500 million barrel, the country's oil reserves will be depleted by 2010, and Indonesia would have become net oil importer if no major oil fields be found somewhere in the archipelago. Under such circumstances the development of new sources of liquid fuel becomes a must, and coal liquefaction can be one possible solution for the future energy problem in Indonesia, particularly in the transportation sector due to the availability of coal in huge amount. This paper present the prospect of coal liquefaction in Indonesia and look at the possibility of integrating the process with HTR as a heat supplier. Evaluation of liquidability of several low grade Indonesian coals will also be presented. Coal from South Banko-Tanjung Enim is found to be one of the most suitable coal for liquefaction. Several studies show that an advanced coal liquefaction technology recently developed has the potential to reduce not only the environmental impact but also the production cost. The price of oil produced in the year 2000 is expected to reach US $ 17.5 ∼ 19.2/barrel and this will compete with the current oil price. Not much conclusion can be drawn from the idea of integrating HTR with coal liquefaction plant due to limited information available. (author). 7 figs, 3 tabs

  6. Reaction engineering in direct coal liquefaction

    Science.gov (United States)

    Shah, Y. T.

    Processes for direct coal liquefaction by solvent extraction are considered along with the structure and properties of coal and the mechanism of coal liquefaction, heteroatom removal during liquefaction, kinetic models for donor-solvent coal liquefaction, the design of coal liquefaction reactors, and the refining of coal liquids. Attention is given to the catalytic hydrogenation of coal in the presence of a solvent, the origin and character of coal, laboratory reactors for rate measurements, reaction networks based on lumped fractions, free-radical reaction models, reactor types, the compatibility of coal-derived liquids and petroleum fuels, the stability of coal liquids, thermal cracking, catalytic hydrotreating, catalytic cracking, and catalytic reforming.

  7. Cooperative research in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  8. Hydrogeologic investigation of the Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, F.G.; Kearl, P.M.; Mumby, M.E.; Rogers, S.

    1996-09-01

    This document describes the geology and hydrogeology at the former Advanced Coal Liquefaction Research and Development (ACLR&D) facility in Wilsonville, Alabama. The work was conducted by personnel from the Oak Ridge National Laboratory Grand Junction office (ORNL/GJ) for the U.S. Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). Characterization information was requested by PETC to provide baseline environmental information for use in evaluating needs and in subsequent decision-making for further actions associated with the closeout of facility operations. The hydrogeologic conceptual model presented in this report provides significant insight regarding the potential for contaminant migration from the ACLR&D facility and may be useful during other characterization work in the region. The ACLR&D facility is no longer operational and has been dismantled. The site was characterized in three phases: the first two phases were an environmental assessment study and a sod sampling study (APCO 1991) and the third phase the hydraulic assessment. Currently, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation (RI) to address the presence of contaminants on the site is underway and will be documented in an RI report. This technical memorandum addresses the hydrogeologic model only.

  9. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Advanced coal liquefaction research. Quarterly technical progress report, July 1, 1983-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-04-01

    Work this quarter focused on staged liquefaction. The effect of residence time on conversion in single pass experiments was found to be quite different for the subbituminous Belle Ayr Mine and bituminous Illinois No. 6 coals studied. With bituminous coal, conversion to soluble material is quite high and the limit of conversion is approached in only a few minutes. With a subbituminous coal, however, conversion is much lower and the limit of conversion is approached much more slowly. Short contact time (SCT) dissolution of Belle Ayr coal was studied as a possible first stage in a two-stage process. Conversion, hydrocarbon gas yield and hydrogen consumption were increased as residence time or temperature were increased. Conversion was also significantly increased by partial slurry recycle. Pyrite was found to be the most effective slurry catalyst for increasing conversion, followed by ammonium molybdate emulsion and finally nickel-molybdenum on alumina. Illinois No. 6 coal was liquefied in two stages. Conditions in the first stage dissolution were varied to determine the effect on upgradability in the second stage. An SCT (6 minute) coal dissolution stage is preferred over one at 30 minutes because hydrocarbon gas yield was much lower while overall oil yields for the combined dissolution and upgrading stages were nearly the same. Use of a NiMo/Al/sub 2/O/sub 3/ catalyst in a trickle-bed second stage resulted in a higher oil yield and lower product heteroatom content than use of the same catalyst in the slurry phase. The total oil yield was lower with a pyrite slurry catalyst than with a NiMo/Al/sub 2/O/sub 3/ slurry catalyst. With Belle Ayr coal and added pyrite, there was no change in total oil yield, conversion or product quality brought about by adding an 8-minute first stage at 450/sup 0/C (842/sup 0/F) to a 2-hour second stage operated at 420/sup 0/C (788/sup 0/F). 39 figures, 12 tables.

  11. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  12. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  13. Progress in Coal Liquefaction Technologies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Worldwide primary energy consumption is entering an era of pluralism and high quality under the influence of rapid economic development, increasing energy shortage and strict environmental policies. Although renewable energy technology is developing rapidly, fossil fuels (coal, oil and gas) are still the dominant energy sources in the world. As a country rich in coal but short ofoil and gas, China's oil imports have soared in the past few years. Government, research organizations and enterprises in China are paying more and more attention to the processes of converting coal into clean liquid fuels. Direct and indirect coal liquefaction technologies are compared in this paper based on China's current energy status and technological progress not only in China itself but also in the world.

  14. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  15. Steam pretreatment for coal liquefaction

    Science.gov (United States)

    Ivanenko, Olga

    The objectives of this work are to test the application of steam pretreatment to direct coal liquefaction, to investigate the reaction of model compounds with water, and to explore the use of zeolites in these processes. Previous work demonstrated the effectiveness of steam pretreatment in a subsequent flash pyrolysis. Apparently, subcritical steam ruptures nearly all of the ether cross links, leaving a partially depolymerized structure. It was postulated that very rapid heating of the pretreated coal to liquefaction conditions would be required to preserve the effects of such treatment. Accordingly, a method was adopted in which coal slurry is injected into a hot autoclave containing solvent. Since oxygen is capable of destroying the pretreatment effect, precautions were taken for its rigorous exclusion. Tests were conducted with Illinois No. 6 coal steam treated at 340sp°C, 750 psia for 15 minutes. Both raw and pretreated samples were liquified in deoxygenated tetralin at high severity (400sp°C, 30 min.) and low severity (a: 350sp°C, 30 min., and b: 385sp°C, 15 min.) conditions under 1500 psia hydrogen. Substantial improvement in liquid product quality was obtained and the need for rapid heating and oxygen exclusion demonstrated. Under low severity conditions, the oil yield was more than doubled, going from 12.5 to 29 wt%. Also chemistry of the pretreatment process was studied using aromatic ethers as model compounds. alpha-Benzylnaphthyl ether (alpha-BNE), alpha-naphthylmethyl phenyl (alpha-NMPE), and 9-phenoxyphenanthrene were exposed to steam and inert gas at pretreatment conditions and in some cases to liquid water at 315sp°C. alpha-BNE and alpha-NMPE showed little difference in conversion in inert gas and in steam. Hence, these compounds are poor models for coal in steam pretreatment. Thermally stable 9-phenoxyphenanthrene, however, was completely converted in one hour by liquid water at 315sp°C. At pretreatment conditions mostly rearranged starting

  16. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  17. Cooperative Research Program in coal liquefaction. Technical report, May 1, 1994--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Progress reports are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts.

  18. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  19. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.; Robbins, G.A.; Burke, F.P.

    1991-11-01

    Consol R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-field: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  20. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  1. Coal liquefaction process research quarterly report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, T.C.; Curlee, R.M.; Granoff, B.; Stohl, F.V.; Thomas, M.G.

    1980-03-01

    This quarterly report summarizes the activities of Sandia's continuing program in coal liquefaction process research. The overall objectives are to: (1) provide a fundamental understanding of the chemistry of coal liquefaction; (2) determine the role of catalysts in coal liquefaction; and (3) determine the mechanism(s) of catalyst deactivation. The program is composed of three major projects: short-contact-time coal liquefaction, mineral effects, and catalyst studies. These projects are interdependent and overlap significantly.

  2. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Free-radical kinetics of coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.; Smith, J.M.; McCoy, B.J.

    1994-07-16

    A rate expression with first- and second-order terms in the concentration of extractable compounds in solid coal particles is derived from a fundamental free-radical mechanism. The expression was suggested empirically by prior experiments for coal liquefaction in the presence of a hydrogen-donor solvent. Radical reactions are considered to occur in both coal and in solvent. The long-chain approximation justifies the neglect of initiation, hydrogen abstraction, and termination rates as quantitatively insignificant relative to propagation reaction rates.

  4. Technical and economic aspects of brown coal gasification and liquefaction

    International Nuclear Information System (INIS)

    A number of gasification and liquefaction processes for Rhenish brown coal are investigated along with the technical and economic aspects of coal beneficiation. The status of coal beneficiation and the major R + D activities are reviewed. (orig.)

  5. Mongolian coal liquefaction test; Mongorutan no ekika tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Kubo, H. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Tsedevsuren, T. [National Research Center of Chemistry and Technology of Coal in Mongoria (Mongolia)

    1996-10-28

    This paper describes the results of liquefaction tests of Mongolian coals using an autoclave and a flow micro reactor. Uvdughudag coal, Hootiinhonhor coal, and Shivee-Ovoo coal were used for liquefaction tests with an autoclave. Oil yields of Uvdughudag and Hootiinhonhor coals were 55.56 wt% and 55.29 wt%, respectively, which were similar to that of Wyoming coal. Similar results were obtained, as to produced gas and water yields. These coals were found to be suitable for coal liquefaction. Lower oil yield, 42.55 wt% was obtained for Shivee-Ovoo coal, which was not suitable for liquefaction. Liquefaction tests were conducted for Uvdughudag coal with a flow micro reactor. The oil yield was 55.7 wt%, which was also similar to that of Wyoming coal, 56.1 wt%. Hydrogen consumption of Uvdughudag coal was also similar to that of Wyoming coal. From these, Uvdughudag coal can be a prospective coal for liquefaction. From the distillation distribution of oil, distillate fraction yield below 350{degree}C of Uvdughudag coal was 50.7 wt%, which was much higher than that of Wyoming coal, 35.6 wt%. Uvdughudag coal is a coal with high light oil fraction yield. 2 figs., 5 tabs.

  6. Co-liquefaction of micro algae with coal using coal liquefaction catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ikenaga, N.; Ueda, C.; Matsui, T.; Ohtsuki, M.; Suzuki, T. [Kansai University, Osaka (Japan). Dept. of Chemical Engineering, Faculty of Engineering

    2001-04-01

    Co-liquefaction of micro algae (Chlorella, Spirulina and Littorale) with coal (Australian Yallourn brown coal and Illinois No. 6 coal) was carried out under pressurized H{sub 2} in 1-methylnaphthalene at 350-400{degree}C for 60 min with various catalysts. Co-liquefaction of Chlorella with Yallourn coal was successfully achieved with excess sulfur to iron (S/Fe = 4), where sufficient amount of Fe{sub 1-x}S, which is believed to be the active species in the coal liquefaction, was produced. The conversion and the yield of the hexane-soluble fraction were close to the values calculated from the additivity of the product yields of the respective homo-reactions. In the reaction with a one-to-one mixture of Chlorella and Yallourn coal, 99.8% of conversion and 65.5% of hexane-soluble fraction were obtained at 400{degree}C with Fe (CO){sub 5} at S/Fe = 4. When Littorale and Spirulina were used as micro algae, a similar tendency was observed with the iron catalyst. On the other hand, in the co-liquefaction with Illinois No. 6 coal, which is known to contain a large amount of sulfur in the form of catalytically active pyrite, the oil yield in the co-liquefaction was close to the additivity of the respective reaction with Fe(CO){sub 5}-S, even at SFe = 2. Ru{sub 3}(CO){sub 12} was also effective for the co-liquefaction of micro algae with coal. 26 refs., 12 figs., 1 tab.

  7. Iodine-catalyzed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, J.T.; Duffield, J.E.; Davidson, M.G. (Amoco Oil Company, Naperville, IL (USA). Research and Development Dept.)

    Coals of two different ranks were liquefied in high yields using catalytic quantities of elemental iodine or iodine compounds. Iodine monochloride was found to be especially effective for enhancing both coal conversion and product quality. It appears that enhancement in coal conversion is due to the unique ability of iodine to catalyze radical-induced bond scission and hydrogen addition to the coal macromolecule or coal-derived free radicals. The starting iodine can be fully accounted for in the reaction products as both organic-bound and water-soluble forms. Unconverted coal and the heavy product fractions contain the majority of the organic-bound iodine. The results of iodine-catalyzed coal reactions emphasize the need for efficient hydrogen atom transfer along with bond scission to achieve high conversion and product quality. 22 refs., 12 tabs.

  8. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1998-11-30

    The report presents a summary the work performed under DOE Contract No. DE-AC22-95PC95050. Investigations performed under Task 4--Integrated Flow Sheet Testing are detailed. In this program, a novel direct coal liquefaction technology was investigated by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Approaches to reduce costs for a conceptual commercial plant were recommended at the conclusion of Task 3. These approaches were investigated in Task 4. The economic analysis of the process as it was defined at the conclusion of Task 4, indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies.

  9. Coal liquefaction. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    Progress on seventeen projects related to coal liquefaction or the upgrading of coal liquids and supported by US DOE is reported with emphasis on funding, brief process description history and current progress. (LTN)

  10. Corrosion studies in coal liquefaction plants

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J.R.; Olsen, A.R.

    1983-01-01

    During the past few years, four direct coal liquefaction pilot plants have been operated in the United States in order to evaluate several liquefaction processes. Oak Ridge National Laboratory has provided assistance to pilot plant operators in assessing materials performance through supply and examination of corrosion samples, on-site examination of equipment, and analysis of failed pilot plant components in our laboratory. This paper describes these examinations which have revealed chloride and polythionic acid stress corrosion cracking, water-side pitting, sulfidation, and a chloride-related acid attack. The results of these analyses have helped identify corrosion problems and make proper material selections or design changes, and the results have provided designers of demonstration and commercial plants with information useful in selecting materials for the proposed plants.

  11. Metallography for coal liquefaction pilot plants

    International Nuclear Information System (INIS)

    During the past few years, four direct coal liquefaction pilot plants have been operated in the United States to evaluate several liquefaction processes. Oak Ridge National Laboratory has assisted pilot plant operators by assessing materials performance through supply and examination of corrosion samples, on-site examination of equipment, and analysis of failed pilot plant components in our laboratory. This paper describes these examinations, which have revealed chloride and polythionic acid stress corrosion cracking, water-side pitting, sulfidation, and a chloride-related acid attack. The results of these analyses have helped identify corrosion problems and make proper material selections or design changes, and the results have provided designers of demonstration and commercial plants with information useful in selecting materials for the proposed plants

  12. Chemical aspects of coal liquefaction by oxygen in alkaline slurries

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, R.; Caprio, V.; Insola, A.

    1988-03-01

    Coal liquefaction by oxygen in alkaline slurries is reviewed from the chemical point of view. Available information is considered in the light of questions relating to coal liquefaction. A lack of chemical knowledge in this area is noted, especially on model compounds. 72 refs.

  13. Subtask 3.9 - Direct Coal Liquefaction Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Aulich, Ted; Sharma, Ramesh

    2012-07-01

    The Energy and Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from ExxonMobil, undertook Subtask 3.9 to design, build, and preliminarily operate a bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. Fabrication and installation of the DCL system and an accompanying distillation system for off-line fractionation of raw coal liquids into 1) a naphtha middle distillate stream for upgrading and 2) a recycle stream was completed in May 2012. Shakedown of the system was initiated in July 2012. In addition to completing fabrication of the DCL system, the project also produced a 500-milliliter sample of jet fuel derived in part from direct liquefaction of Illinois No. 6 coal, and submitted the sample to the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with all U.S. Air Force-prescribed alternative aviation fuel initial screening criteria.

  14. Advances in Seabed Liquefaction and its Implications for Marine Structures

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2013-01-01

    A review is presented of recent advances in seabed liquefaction and its implications for marine structures. The review is organized in seven sections: Residual liquefaction, including the sequence of liquefaction, mathematical modelling, centrifuge modelling and comparison with standard wave......-flume results; Momentary liquefaction; Floatation of buried pipelines; Sinking of pipelines and marine objects; Liquefaction at gravity structures; Stability of rock berms in liquefied soils; and Impact of seismic-induced liquefaction....

  15. Hydrotreating of distillates from Spanish coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.M.; Martinez, M.T.; Cebolla, V.; Fernandez, I.; Miranda, J.L. (Inst. de Carboquimica, CSIC, Zaragoza (Spain))

    1993-02-01

    Distillates obtained from a first-stage Spanish coal liquefaction process have been catalytically hydrotreated in microreactor in two steps. A commercially available Harshaw HT-400 E (Co-Mo/Al[sub 2]O[sub 3]) catalyst, 10 MPa hydrogen pressure and two temperatures (400 and 425deg C) have been used. The results have been evaluated for heteroatoms removal, oils yield, boiling point distribution and aromaticity by several techniques (GC, FT-i.r., [sup 1]H n.m.r., ultrasonic extraction and liquid chromatography). At the first step of hydrotreating, preasphaltenes rather than asphaltenes have been hydrocracked to produce smaller-size polar compounds in the oil fraction but aromaticity has not varied significatively. In the second step, heteroatoms content have been considerably reduced and the product meets refinery specifications for nitrogen but does not meet sulphur refinery specifications for feedstocks. (orig.).

  16. Coal liquefaction. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of coal liquefaction pilot plants supported by US DOE is reviewed under the following headings: company involved, location, contract, funding, process name, process description, flowsheet, history and progress during the July-September 1979 quarter. Supporting projects such as test facilities, refining and upgrading coal liquids, catalyst development, and gasification of residues from coal gasification plants are discussed similarly. (LTN)

  17. Coal liquefaction. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Current ERDA work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly. (LTN)

  18. Two-stage liquefaction of a Spanish subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.T.; Fernandez, I.; Benito, A.M.; Cebolla, V.; Miranda, J.L.; Oelert, H.H. (Instituto de Carboquimica, Zaragoza (Spain))

    1993-05-01

    A Spanish subbituminous coal has been processed in two-stage liquefaction in a non-integrated process. The first-stage coal liquefaction has been carried out in a continuous pilot plant in Germany at Clausthal Technical University at 400[degree]C, 20 MPa hydrogen pressure and anthracene oil as solvent. The second-stage coal liquefaction has been performed in continuous operation in a hydroprocessing unit at the Instituto de Carboquimica at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The total conversion for the first-stage coal liquefaction was 75.41 wt% (coal d.a.f.), being 3.79 wt% gases, 2.58 wt% primary condensate and 69.04 wt% heavy liquids. The heteroatoms removal for the second-stage liquefaction was 97-99 wt% of S, 85-87 wt% of N and 93-100 wt% of O. The hydroprocessed liquids have about 70% of compounds with boiling point below 350[degree]C, and meet the sulphur and nitrogen specifications for refinery feedstocks. Liquids from two-stage coal liquefaction have been distilled, and the naphtha, kerosene and diesel fractions obtained have been characterized. 39 refs., 3 figs., 8 tabs.

  19. U.S. DOE indirect coal liquefaction program: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R. [Dept. of Energy, Germantown, MD (United States); Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  20. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  1. Advanced direct liquefaction concepts for PETC generic units. [Mainly, the effect of preteatment of coal with carbon monoxide and steam

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    CAER/UK: Detail coal and starting solvents from Wilsonville were analyzed to develop the data necessary to conduct process studies in the CO Pretreatment and Catalyst Evaluation segment of this program. A comparison of the solvent separation analysis with the distillation/separation used at Wilsonville showed that the residual solvent components contained a large amount of residual pentane soluble products. The ashy resid contained 3% iron and 400 ppM molybdenum. Although the iron content in the distillate and deashed resid was much less, namely about 200 ppM., the molybdenum concentrations in these fractions were not significantly reduced over the concentration in the ashy resid, i.e., 200 ppM in each. The pretreatment of coal with CO/H{sub 2}O in the presence of NaOH and Na{sub 2}CO{sub 3} has been shown to give a product which is lower in oxygen content and higher in hydrogen content compared to the raw coal. The atomic H/C ratios of the H{sub 2}O-insolubles, THF insolubles and the PA+A fractions of the products-together with the hydrogen consumption data suggested that the raw coal has been substantially depolymerized and hydrogenated via the WGS reaction during the pretreatment process. The extensive amount of molecular reconstruction that has occurred in the solid product was evident from the ease of solubilization of the product into pyridine. The result of the pretreatment process is a product which is highly reactive under hydroliquefaction conditions at 400{degrees}C. Reaction rates seem to be much faster than the raw coal, especially at shorter reaction times, providing the opportunity for major reductions in plant vessel sizes, and preliminary data has led us to believe that better efficiency in hydrogen utilization is achieved.

  2. Case studies on direct liquefaction of low rank Wyoming coal

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.; Kramer, S.J.; Poddar, S.K. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  3. Low-rank coal research: Volume 1, Control technology, liquefaction, and gasification: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G.F.; Collings, M.E.; Schelkoph, G.L.; Steadman, E.N.; Moretti, C.J.; Henke, K.R.; Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1987-04-01

    Volume I contains articles on SO/sub x//NO/sub x/ control, waste management, low-rank direct liquefaction, hydrogen production from low-rank coals, and advanced wastewater treatment. These articles have been entered individually into EDB and ERA. (LTN)

  4. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  5. Cooperative research in coal liquefaction. Final report, May 1, 1990-- April 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1992-02-15

    The Consortium for Fossil Fuel Liquefaction Science (CFFLS) is currently engaged in a three year contract with the US Department of Energy investigating a range of research topics dealing with direct coal liquefaction. This report summarizes the results of this program in its second year, from May 1, 1990 to April 30, 1991. Accomplishments for this period are presented for the following tasks: Iron-based catalysts for coal liquefaction, exploratory research on coal conversion, novel coal liquefaction concepts, and novel catalysts for coal liquefaction.

  6. Transport fuels from two-stage coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.; Cebolla, V.; Fernandez, I.; Martinez, M.T.; Miranda, J.L.; Oelert, H.; Prado, J.G. (Instituto de Carboquimica CSIC, Zaragoza (Spain))

    1994-03-01

    Four Spanish lignites and their vitrinite concentrates were evaluated for coal liquefaction. Correlationships between the content of vitrinite and conversion in direct liquefaction were observed for the lignites but not for the vitrinite concentrates. The most reactive of the four coals was processed in two-stage liquefaction at a higher scale. First-stage coal liquefaction was carried out in a continuous unit at Clausthal University at a temperature of 400[degree]C at 20 MPa hydrogen pressure and with anthracene oil as a solvent. The coal conversion obtained was 75.41% being 3.79% gases, 2.58% primary condensate and 69.04% heavy liquids. A hydroprocessing unit was built at the Instituto de Carboquimica for the second-stage coal liquefaction. Whole and deasphalted liquids from the first-stage liquefaction were processed at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The effects of liquid hourly space velocity (LHSV), temperature, gas/liquid ratio and catalyst on the heteroatom liquids, and levels of 5 ppm of nitrogen and 52 ppm of sulphur were reached at 450[degree]C, 10 MPa hydrogen pressure, 0.08 kg H[sub 2]/kg feedstock and with Harshaw HT-500E catalyst. The liquids obtained were hydroprocessed again at 420[degree]C, 10 MPa hydrogen pressure and 0.06 kg H[sub 2]/kg feedstock to hydrogenate the aromatic structures. In these conditions, the aromaticity was reduced considerably, and 39% of naphthas and 35% of kerosene fractions were obtained. 18 refs., 4 figs., 4 tabs.

  7. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1994-10-01

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  8. Coal liquefaction. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Office of Fossil Energy of the Energy Research and Development Administration (ERDA) is conducting a research and development program to provide technology that will permit rapid commercialization of processes for converting coal to synthetic liquid and gaseous fuels and for improved direct combustion of coal. These fuels must be storable and suitable for power generation, transportation, and residential and industrial uses. ERDA's program for the conversion of coal to liquid fuels was begun by two of ERDA's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, U.S. Department of the Interior, in the 1930's. Current work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly

  9. Japan`s sunshine project. 17.. 1992 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report describes the achievement of coal liquefaction and gasification technology development in the Sunshine Project for FY 1992. It presents the research and development of coal liquefaction which includes studies on reaction mechanism of coal liquefaction and catalysts for coal liquefaction, the research and development of coal gasification technologies which includes studies on gasification characteristics of various coals and improvement of coal gasification efficiency, the development of bituminous coal liquefaction which includes engineering, construction and operation of a bituminous coal liquefaction pilot plant and research by a process supporting unit (PSU), the development of brown coal liquefaction which includes research on brown coal liquefaction with a pilot plant and development of techniques for upgrading coal oil from brown coal, the development of common base technologies which includes development of slurry letdown valves and study on upgrading technology of coal-derived distillates, the development of coal-based hydrogen production technology with a pilot plant, the development of technology for entrained flow coal gasification, the assessment of coal hydrogasification, and the international co-operation. 4 refs., 125 figs., 39 tabs.

  10. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  11. Fine particle clay catalysts for coal liquefaction. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, E.S.

    1995-08-01

    In an effort to develop new disposable catalysts for direct coal liquefaction, several types of clay-supported pyrrhotite catalysts were prepared and tested. These included iron-pillared montmorillonite, mixed iron/alumina-pillared montmorillonite, iron-impregnated montmorillonite, and iron oxometallate-impregnated montmorillonite.

  12. SLURRY PHASE IRON CATALYSTS FOR INDIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya K. Datye

    1998-11-19

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, they have studied the attrition behavior of iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for converting coal based syngas into liquid fuels.

  13. Corrosion problems and their countermeasures in coal liquefaction plants

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Takeo

    1988-06-05

    Problems in materials of coal liquefaction plants are described with emphasis placed on research results in U.S. The paper further describes the stress corrosion cracking (S.C.C.) of stainless steel and countermeasures against it taking an example from research carried out on the oil refinery plants, in similar environment. The operation of coal liquefaction plant is grouped to 6 processes: Coal preparation, slurry preheating, reaction column, gas separation column, pressure reduction, solids separation and distillation and each of the processes is investigated regarding sulfurization, erosion, erosion/corrosion, SCC (CI, polythionic acid), hydrogen erosion and organic acid corrosion. Examples of cases are given for SCC of stainless steel in each process and on-site tests are conducted with new materials. SCC occurred less frequently on the overlay welded portion, when it contained an adequate portion of delta-ferrite. (7 figs, 3 tabs, 54 refs)

  14. Rationale for continuing R&D in indirect coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.; Tomlinson, G. [MITRE Corp., McLean, VA (United States)

    1995-12-31

    The objective of this analysis is to use the world energy demand/supply model developed at MITRE to examine future liquid fuels supply scenarios both for the world and for the United States. This analysis has determined the probable extent of future oil resource shortages and the likely time frame in which the shortages will occur. The role that coal liquefaction could play in helping to alleviate this liquid fuels shortfall is also examined. The importance of continuing R&D to improve process performance and reduce the costs of coal-derived transportation fuel is quantified in terms of reducing the time when coal liquids will become competitive with petroleum.

  15. Efficient direct coal liquefaction of a premium brown coal catalyzed by cobalt-promoted fumed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Trautmann, M.; Loewe, A.; Traa, Y. [Stuttgart Univ. (Germany). Inst. of Chemical Technology

    2013-11-01

    The search for alternatives in the fuel sector is an important technological challenge. An interim solution could be provided by direct coal liquefaction. Hydrogen economy and the lack of an efficient catalyst are the main obstacles for this process. We used a premium German brown coal with a high H/C molar ratio of 1.25 and nanostructured cobalt catalysts to improve the efficiency of direct coal liquefaction. We were able to recover and recycle the catalyst efficiently and reached good brown coal conversions and oil yields with single-stage coal liquefaction. The oil quality observed almost reached that of a conventional crude oil considering higher heating value (HHV), H/C molar ratio and aliphatic content. (orig.)

  16. Coal liquefaction. Quarterly report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and ERDA. The Bureau of Mines, US Department of the Interior, had started work in the 1930's. Current work is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. Each of these processes are described briefly.

  17. Coal liquefaction. Quarterly report, January-March 1979. [US DOE supported

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Progress in DOE-supported coal liquefaction pilot plant projects is reported: company, location, contract, funding, process description, history and progress in the current quarter. Related projects discussed are: coking and gasification of liquefaction plant residues, filtration of coal liquids and refining of coal liquids by hydrogenation. (LTN)

  18. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  19. Coal liquefaction. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    ERDA's program for the conversion of coal to liquid fuels is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids also have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Responsibility for the design, construction, and operation of these facilities is given and progress in the quarter is summarized. Several supporting or complementary projects are described similarly. (LTN)

  20. The current status of coal liquefaction technologies - Panorama 2008

    International Nuclear Information System (INIS)

    In 2008, a first coal liquefaction unit to produce motor fuel (20,000 BPSD) will come on-stream in Shenhua, China (in the Ercos region of Inner Mongolia). Other, more ambitious projects have been announced in China for between now and 2020. Since oil production is expected to peak in the medium term, this technology may develop regionally in the next 20 years to cover ever-increasing demand for motor fuel

  1. A Characterization and Evaluation of Coal Liquefaction Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    An updated assessment of the physico-chemical analytical methodology applicable to coal-liquefaction product streams and a review of the literature dealing with the modeling of fossil-fuel resid conversion to product oils are presented in this document. In addition, a summary is provided for the University of Delaware program conducted under this contract to develop an empirical test to determine relative resid reactivity and to construct a computer model to describe resid structure and predict reactivity.

  2. Chemistry and morphology of coal liquefaction. Annual report, October 1, 1980-September 20, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1981-09-01

    Six tasks are reported: selective synthesis of gasoline range components from synthesis gas; electron microscopic studies of coal during hydrogenation; catalyzed low-temperature hydrogenation of coal; selective hydrogenation, hydrogenolysis, and alkylation of coal and coal liquids by organometallic systems; chemistry of coal solubilization and liquefaction; and coal conversion catalyst deactivation. (DLC)

  3. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  4. Coal liquefaction policy in China: Explaining the policy reversal since 2006

    International Nuclear Information System (INIS)

    China has emerged as a leader in coal liquefaction. While the country's abundant coal resources and acute concerns about oil security help explain China's interest in liquefaction, the driving forces for this industry are complicated and policy has been inconsistent. Since 2006 Beijing has tried to slow down the development of liquefaction; even as China has become more dependent on imported oil, the central government has been wary about the large impact of liquefaction technologies on scarce resources such as water. However, local government officials in coal rich areas have strong incentives to pour investment into the technology, which helps explain the uneven development and policy. The future of coal liquefaction will depend on how these forces unfold along with major Beijing-led reforms in the Chinese coal industry, which is closing smaller mines and favoring the emergence of larger coal producing firms. Those reforms will have mixed effects on liquefaction. They temporarily contribute to higher prices for coal while over the longer term creating coal companies that have much greater financial and technical skills needed to deploy technologies such as coal liquefaction at a scale needed if this energy pathway is to be competitive with conventional sources of liquid fuel. - Highlights: ► We explain swings in Chinese policy on coal liquefaction, a possible substitute for imported oil. ► Since 2006 Beijing's support has waned due to fears about environmental impacts and cost of liquefaction. ► Local governments in some coal rich regions remain strongly supportive. ► Volatile oil prices and rising coal prices make this industry more risky than previously thought. ► Consolidation of the coal industry will have mixed effects on viability of liquefaction projects.

  5. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, R.F.; Coless, L.A.; Davis, S.M. [and others

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  6. The Dual Role of Oxygen Functions in Coal Pretreatment and Liquefaction: Crosslinking and Cleavage Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Michael Serio; Erik Kroo; Sylvie Charpenay; Peter Solomon

    1993-09-30

    The overall objective of this project was to elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project was an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectively modified coals in order to provide specific information relevant to the reactions of real coals. The investigations included liquefaction experiments in microautoclave reactors, along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts were made to incorporate the results of experiments on the different systems into a liquefaction model.

  7. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Sendlein, L.V.A.

    1987-06-29

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  8. Co-liquefaction of Enriched Coal Maceral Constituents and Sawdust

    Institute of Scientific and Technical Information of China (English)

    王炀; 李庭琛; 任铮伟; 颜涌捷

    2002-01-01

    Co-liquefaction of coal and sawdust was studied in the presence of hydrogen-donor solvent, tetralin. Coal samples were prepared through floatation of the Xinwen coal, followed by enrichment of maceral constituents. Sample I was rich in vitrinite and Sample II fusinite. Effects of reaction temperature, time and initial cold H2 pressure were studied on conversion, yield, especially oil yield, through comparison between these two samples. Because it is more difficult to be liquefied, Sample II, is greatly affected by changes in temperature and time. However, it is almost independent of change in initial cold H2 pressure, owing to the role of tetralin as hydrogen vehicle. Certain product(s) formed from thermolysis of sawdust can help hydrogenation of the intermediate (asphaltene and preasphaltene) in further forming oil products.

  9. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  10. Characteristics estimation of coal liquefaction residue; Sekitan ekika zansa seijo no suisan ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Itonaga, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Okada, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    The paper studied a possibility of estimating characteristics of coal liquefaction residue from liquefaction conditions in the case of fixing coal kind in the NEDOL process coal liquefaction PSU. Wyoming coal was used for the study, and the already proposed simplified liquefaction reaction models were used. Among material balances explained by the models, those of asphaltene, preasphaltene, THF insoluble matters are concerned with residue composition. Ash content is separately calculated from ash balance. Reaction velocity constants of simplified liquefaction reaction models which influence the residue composition were obtained by the multiple regression method from experimental results in the past. The estimation expression of residue viscosity was introduced from residue ash/composition. When the residue composition is estimated by the model from liquefaction conditions, and the residue viscosity is obtained using it, the higher the liquefaction temperature is, the higher the residue viscosity is. The result obtained well agreed the measuring result. The simplified liquefaction model of a certain coal kind has been established, and characteristics of residue can be estimated even at liquefaction conditions which have never been experienced before if there is a certain amount of the accumulated data on residue composition/characteristics. 4 refs., 4 figs., 4 tabs.

  11. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.; Saini, A.K.; Burgess, C.; Hatcher, P.G.; Schobert, H.H.

    1992-12-01

    During this quarterly period progress has been made in the following three subjects related to the effects of low-temperature thermal and catalytic pretreatments on coal structure and reactivity in liquefaction. First, the liquefaction behavior of three bituminous coals with a carbon content ranging from 77% to 85% was evaluated spectroscopically by [sup 13]C NMR and pyrolysis/gas chromatography/mass spectrometry to delineate the structural changes that occur in the coal during liquefaction. Complementary data includes ultimate and proximate analysis, along with optical microscopy for maceral determinations. Even though these are all bituminous coals they exhibit quite different physical and chemical characteristics. The coals vary in rank, ranging from HvC b to HvA b, in petrographic composition, different maceral percentages, and in chemical nature, percent of carbon and of volatiles. It is these variations that govern the products, their distribution, and conversion percentages. Some of the products formed can be traced to a specific maceral group. Second, pyrolysis-GC-MS and FTIR techniques were used to characterize Wyodak coal before and after drying in vacuum and in air and the residues from its thermal and catalytic liquefactions. The analysis of the air-dried coal shows a decrease in the phenolic type structures in the coal network and increase in the carbonyl structures as the oxidative drying proceeds. An enhanced decrease in the carbonyl structure is observed in the liquefaction residues from the raw coal as compared to that of the vacuum dried coal. The analyses of the liquefaction residues of the air-dried coal show an increase in the ether linkages which may have a negative impact on liquefaction. The extent of the solvent adduction also increases during liquefaction with the extent of oxidation of the coal. Finally, the effects of reaction conditions were investigated on conversion of low-rank coals using a Texas subbituminous coal.

  12. Effect of microwave pretreatment on liquefaction of low-rank Mukah Balingian Malaysian coal

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Azlan Mohd Ishak; Khudzir Ismail; Mohd Fauzi Abdullah; Nur Nasulhah Kasim [University Technology MARA, Perlis (Malaysia). Fuel Combustion Research Laboratory

    2007-07-01

    The effect of microwave pretreatment on low-rank Malaysian coal towards coal conversion and oil+gas yield during direct liquefaction was investigated. The pretreatment on coal was carried out prior to liquefaction using a conventional variable power microwave oven at 150, 300 and 600 W for a period of 1 to 15 min. Liquefaction processes were carried out in a 1-liter high-pressure high-temperature batch-wise reactor with tetralin as a hydrogen-donor solvent, at temperature of 420{sup o}C and at 4 MPa nitrogen pressure. The DTG results of the pyrolysed microwave-treated samples via thermogravimetric analysis (TGA) showed the increased in coal reactivity in comparison to the untreated sample. The coal conversion and oil+gas yield obtained from the liquefaction of the pretreated coal under various pretreatment conditions showed an increase of up to 3 - 7 and 9 - 22 %, respectively. The significant increased of oil+gas yield at less severe liquefaction temperature on the microwave-irradiated samples might be due to the cracks and fissures formed as shown by Scanning Electron Microscope (SEM), and the weaken coal structure (C-C bonds) that probably occurred during the microwave pretreatment to facilitate the diffusion of solvent into the coal structure. Thus, this new and effective pretreatment on coal could be a promising approach in enhancing coal conversion and oil+gas yield that utilises a less severe temperature for coal liquefaction. 22 refs., 4 figs., 5 tabs.

  13. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  14. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, July 1--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.; Robbins, G.A.; Burke, F.P.

    1991-11-01

    Consol R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-field: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  15. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan, Song; Kirby, S.; Schmidt, E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  16. Japan`s New Sunshine Project. 20. 1995 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The paper described a summary of the 1995 study on coal liquefaction and gasification under the New Sunshine Project. As for coal liquefaction, a study was made of liquefaction characteristics and catalysts of various coals. Also studied were liquefaction conditions for quality improvement of liquefaction products, an evaluation method of quality of coal liquid, and a utilization method of coal liquid. In order to prevent carbonization and realize effective liquefaction, a study was conducted for elucidation of the reaction mechanism of high pressure hydrogenation. In a 150t/d pilot plant using hydrogen transfer hydrogenation solvents, the NEDOL method was studied using various catalysts and kinds of coals. This is a step prior to data acquisition for engineering, actual construction of equipment and operation. A 1t/d process supporting unit is a unit to support it. The unit conducts studies on slurry letdown valves and synthetic iron sulfide catalysts, screening of Chinese coals, etc. As to coal gasification, the paper added to the basic research the combined cycle power generation using entrained flow coal gasification for improvement of thermal efficiency and environmental acceptability and the HYCOL method for hydrogen production. 68 refs., 40 figs.

  17. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  18. A characterization and evaluation of coal liquefaction process streams. The kinetics of coal liquefaction distillation resid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Calkins, W.H.; Huang, H.; Wang, S.; Campbell, D.

    1998-03-01

    Under subcontract from CONSOL Inc., the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. The program at Delaware was conducted between August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivity toward hydrocracking of coal-derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An introduction and Summary of the project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here.

  19. Subtask 3.3 - Feasibility of Direct Coal Liquefaction in the Modern Economic Climate

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Oster; Joshua Strege; Marc Kurz; Anthony Snyder; Melanie Jensen

    2009-06-15

    Coal liquefaction provides an alternative to petroleum for the production of liquid hydrocarbon-based fuels. There are two main processes to liquefy coal: direct coal liquefaction (DCL) and indirect coal liquefaction (ICL). Because ICL has been demonstrated to a greater extent than DCL, ICL may be viewed as the lower-risk option when it comes to building a coal liquefaction facility. However, a closer look, based on conversion efficiencies and economics, is necessary to determine the optimal technology. This report summarizes historical DCL efforts in the United States, describes the technical challenges facing DCL, overviews Shenhua's current DCL project in China, provides a DCL conceptual cost estimate based on a literature review, and compares the carbon dioxide emissions from a DCL facility to those from an ICL facility.

  20. Effect of Recycle Solvent Hydrotreatment on Oil Yield of Direct Coal Liquefaction

    OpenAIRE

    Shansong Gao; Dexiang Zhang; Kejian Li

    2015-01-01

    Effects of the recycle solvent hydrotreatment on oil yield of direct coal liquefaction were carried out in the 0.18 t/day direct coal liquefaction bench support unit of National Engineering Laboratory for Direct Coal Liquefaction (China). Results showed that the hydrogen-donating ability of the hydrogenated recycle solvent improved and the hydrogen consumption of solvent hydrotreatment was increased by decreasing liquid hourly space velocity (LHSV) from 1.5 to 1.0 h −1 and increasing reacti...

  1. Correlation of coal liquefaction reactivity with coal properties

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Durfee, S.L.; Voorhees, K.J.

    1983-01-01

    A narrow suite of bituminous coals chosen from the DOE/Penn State sample bank has been hydrogenated in a batch stirred autoclave. Rates of conversion to THF-solubles have been measured, and the data modeled using a pseudo-second order rate expression. Extent of conversion and rate of conversion of the coals in the suite have been correlated to coal compositional parameters and structural features. Recent data on reactivity correlations with information from pyrolysis/mass spectrometry and C-NMR are presented. (2 tables, 5 figs., 17 refs.)

  2. Correlation of coal liquefaction reactivity with coal properties

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Durfee, S.L.; Voorhees, K.J.

    1983-01-01

    A narrow suite of bituminous coals chosen from the DOE/Penn State sample bank has been hydrogenated in a batch stirred autoclave. Rates of conversion to THF solubles have been measured, and the data modeled using a pseudo-second order rate expression. Extent of conversion and rate of conversion of the coals in the suite have been correlated to coal compositional parameters and structural features. Recent data on reactivity correlations with information from pyrolysis/mass spectrometry and C-NMR are presented.

  3. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A. [and others

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.

  4. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  5. Low Severity Coal Liquefaction Promoted by Cyclic Olefins

    Energy Technology Data Exchange (ETDEWEB)

    Christine W. Curtis

    1998-04-09

    The development of the donor solvent technology for coal liquefaction has drawn a good deal of attention over the last three decades. The search for better hydrogen donors led investigators to a class of compounds known as cyclic olefins. Cyclic olefins are analogues of the conventional hydroaromatic donor species but do not contain aromatic rings. The cyclic olefins are highly reactive compounds which readily release their hydrogen at temperatures of 200 C or higher. Considerable effort has been o expended toward understanding the process of hydrogen donation. Most of this work was conducted in bomb reactors, with product analysis being carried out after the reaction was complete. Efforts directed towards fundamental studies of these reactions in situ are rare. The current work employs a high temperature and high pressure infrared cell to monitor in situ the concentrations of reactants and products during hydrogen release from hydrogen donor compounds.

  6. Corrosion and stress corrosion cracking in coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, V. B.; Keiser, J. R.

    1980-01-01

    The liquefaction of coal to produce clean-burning synthetic fuels has been demonstrated at the pilot plant level. However, some significant materials problems must be solved before scale-up to commercial levels of production can be completed. Failures due to inadequate materials performance have been reported in many plant areas: in particular, stress corrosion cracking has been found in austenitic stainless steels in the reaction and separation areas and several corrosion has been observed in fractionation components. In order to screen candidate materials of construction, racks of U-bend specimens in welded and as-wrought conditions and unstressed surveillance coupons were exposed in pilot plant vessels and evaluated. Failed components were analyzed on-site and by subsequent laboratory work. Laboratory tests were also performed. From these studies alloys have been identified that are suitable for critical plant locations. 19 figures, 7 tables.

  7. Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1980-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

  8. Study on the mechanism of coal liquefaction reaction and a new process concept

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-dong; LI Wen-bo; WANG Yong; GUO Zhi; LI Ke-jian

    2008-01-01

    The coal hydrogenation reaction process is simply considered as three steps. In the first step, the smaller molecules associated with coal structure units are released as some gases and water in the condition of solvent and heating. In this step, some weaker bonds of the coal structure units are ruptured to form free radicals. The radicals are stabi-lized by hydrogen atoms from donor solvent and/or H2. In the second step, chain reaction occurs quickly. In the process of chain reaction, the covalent bonds of coal structure units are attacked by the radicals to form some asphaltenes. In the third step, asphaltenes are hydrogenated form more liquids and some gases. In coal liquefaction, the second step of coal hydrogenation reaction should be controlled to avoid integration of radicals, and the third step of coal hydrogenation should be accelerated to increase the coal conversion and the oil yield. A new concept of coal liquefaction process named as China direct coal lique-faction (CDCL) process is presented based on the mechanism study of coal liquefaction.

  9. Coal liquefaction and gas conversion: Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume II contains papers presented at the following sessions: Indirect Liquefaction (oxygenated fuels); and Indirect Liquefaction (Fischer-Tropsch technology). Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  10. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  11. Stress corrosion studies in solvent refined coal liquefaction pilot plants

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, V.B.; Keiser, J.R.; Allen, M.D.; Lawrence, E.J.

    1980-12-01

    Coal liquefaction plants with 6000 ton/d capacity are currently being planned by DOE as a step toward commercial production of synthetic fossil fuels. These plants will demonstrate the large-scale viability of the Solvent Refined Coal (SRC) process, which has been used since 1974 in two operating pilot plants: a 50-ton/d unit at Fort Lewis, Washington, and a 6-ton/d plant in Wilsonville, Alabama. Experience in these plants has shown that austenitic stainless steels are susceptible to stress corrosion cracking associated with residual stresses from cold working or welding. The corrodents responsible for the cracking have not yet been positively identified but are suspected to include polythionic acids and chlorides. To screen candidate materials of construction for resistance to stress corrosion cracking, racks of stressed U-bend specimens in welded and as-wrought conditions have been exposed at the Wilsonville and Fort Lewis SRC pilot plants. These studies have identified alloys that are suitable for critical plant applications.

  12. Stress-corrosion cracking studies in coal-liquefaction systems

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, V.B.; Keiser, J.R.

    1981-01-01

    Coal liquefaction plants with 6000 ton/d capacity are currently being planned by DOE as a step toward commercial production of synthetic fossil fuels. These plants will demonstrate the large-scale viability of the Solvent Refined Coal (SRC) process, which has been used since 1974 in two operating pilot plants: a 50-ton/d unit at Fort Lewis, Washington, and a 6-ton/d plant in Wilsonville, Alabama. Experience in these plants has shown that austenitic stainless steels are susceptible to stress corrosion cracking associated with residual stresses from cold working or welding. The corrodants responsible for the cracking have not yet been positively identified but are suspected to include polythionic acids and chlorides. To screen candidate materials of construction for resistance to stress corrosion cracking, racks of stressed U-bend specimens in welded and as-wrought conditions have been exposed at the Wilsonville and Fort Lewis SRC pilot plants. These studies have identified alloys that are suitable for critical plant applications.

  13. Coal liquefaction process streams characterization and evaluation. Volume 1, Base program activities

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstrate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process development, and in so doing, provide a bridge between process design, and development, and operation and analytical chemistry. To achieve this objective, novel analytical methods were evaluated for application to direct coal liquefaction-derived materials. CONSOL teamed with 24 research groups in the program. Well-defined and characterized samples of coal liquefaction process-derived materials were provided to each group. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  14. Kinetics assisted design of catalysts for coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Foley, H.C.; Calkins, W.H.; Scouten, C.

    1998-02-01

    The thermal and catalytic reactions of 4-(1-naphthylmethyl)bibenzyl (NBBM), a resid and coal model compound, were examined. Catalytic reaction of NBBM was carried out at 400 C under hydrogen with a series of transition metal-based catalytic materials including Fe(CO){sub 4}PPh{sub 3}, Fe(CO){sub 3}(PPh{sub 3}){sub 2}, Fe(CO){sub 2}(PPh{sub 3}){sub 2}CS{sub 2}, Fe(CO){sub 5}, Mo(CO){sub 6}, Mn{sub 2}(CO){sub 10}, Fe{sub 2}O{sub 3} and MoS{sub 2}. Experimental findings and derived mechanistic insights were organized into molecular-level reaction models for NBBM pyrolysis and catalysis. Hydropyrolysis and catalysis reaction families occurring during NBBM hydropyrolysis at 420 C were summarized in the form of reaction matrices which, upon exhaustive application to the components of the reacting system, yielded the mechanistic reaction model. Each reaction family also had an associated linear free energy relationship (LFER) which provided an estimate of the rate constant k{sub i} given a structural property of species i or its reaction. Including the catalytic reaction matrices with those for the pyrolysis model provided a comprehensive NBBM catalytic reaction model and allowed regression of fundamental LFER parameters for the catalytic reaction families. The model also allowed specification of the property of an optimal catalyst. Iron, molybdenum and palladium were predicted to be most effective for model compound consumption. Due to the low costs associated with iron and its disposal, it is a good choice for coal liquefaction catalysis and the challenge remains to synthesize small particles able to access the full surface area of the coal macromolecule.

  15. Cooperative Research Program in Coal-Waste Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Huffman

    2000-03-31

    The results of a feasibility study for a demonstration plant for the liquefaction of waste plastic and tires and the coprocessing of these waste polymers with coal are presented. The study was conducted by a committee that included nine representatives from the CFFS, six from the U.S. Department of Energy - Federal Energy Technology Center (FETC), and four from Burns and Roe, Inc. The study included: (1) An assessment of current recycling practices, particularly feedstock recycling in Germany; (2) A review of pertinent research, and a survey of feedstock availability for various types of waste polymers; and (3) A conceptual design for a demonstration plant was developed and an economic analysis for various feedstock mixes. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case with oil priced at $20 per barrel, the return on investment (ROI) was found to range from 9% to 20%, using tipping fees for waste plastic and tires typical of those existing in the U.S. The most profitable feedstock appeared to waste plastic alone, with a plant processing 300 t/d of plastic yielding ROI's from 13 to 27 %, depending on the tipping fees for waste plastic. Feedstock recycling of tires was highly dependent on the price that could be obtained for recovered carbon. Addition of even relatively small amounts (20 t/d) of coal to waste plastic and/or coal feeds lowered the ROI's substantially. It should also be noted that increasing the size of the plant significantly improved all ROI's. For example, increasing plant size from 300 t/d to1200 t/d approximately doubles the estimated ROI's for a waste plastic feedstock.

  16. Co-liquefaction of micro algae with coal. 2; Bisai sorui to sekitan no kyoekika hanno. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, C.; Matsui, T.; Otsuki, M.; Ikenaga, N.; Suzuki, T. [Kansai University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    For the removal and recycle of CO2, a global warming gas, utilization of photosynthesis by micro algae is investigated. Formed micro algae are decomposed into CO2, H2O and CH4 again, which does not result in the permanent fixation. For the effective utilization of these micro algae, creation of petroleum alternate energy was tried through the co-liquefaction of micro algae with coal. Were investigated influences of the reaction temperature during the co-liquefaction and influences of catalysts, such as Fe(CO)5-S, Ru(CO)12, and Mo(CO)6-S, which are effective for the coal liquefaction. Micro algae, such as chlorella, spirulina, and littorale, and Yallourn brown coal were tested. It was found that co-liquefaction of micro algae with coal can be successfully proceeded under the same conditions as the liquefaction of coal. The oil yield obtained from the co-liquefaction in the presence of Fe(CO)5-S, an effective catalyst for coal liquefaction, agreed appropriately with the arithmetical mean value from separate liquefaction of coal and micro algae. It was suggested that pyrrhotite, an active species for coal liquefaction, was sufficiently formed by increasing the addition of sulfur. 2 refs., 7 figs., 1 tab.

  17. 3rd international conference on coal gasification and liquefaction, University of Pittsburgh

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-01

    The third annual international conference on ''Coal Gasification and Liquefaction: What Needs to be Done Now'' was held at the University of Pittsburgh, Pittsburgh, PA on August 3-5, 1976. The majority of the papers dealt with coal gasification and liquefaction (often on the basis of process pilot plant experience) and on flue gas desulfurization by a variety of processes; fewer papers involved fluidized bed combustion, combined cycle power plants, coal desulfurization, government policy on environmental effects and on synthetic fuels, etc. Twenty-eight papers have been entered individually into EDB and ERA. (LTN)

  18. Chemistry and morphology of coal liquefaction. Quarterly report, April 1, 1984-June 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1984-06-01

    This report involves the effects of catalysts in the synthesis of gasoline-range hydrocarbons from synthesis gas, in the hydrogenation of model coal compounds (quinoline), in the carbon-water reaction and in the chemistry of coal dissolution and liquefaction. (LTN)

  19. Elucidation of coal liquefaction mechanism by the use of tritium and 35S tracer methods. Effects of pyrrhotite and sulfur on hydrogen transfer in coal liquefaction

    International Nuclear Information System (INIS)

    Effects of addition of the catalyst (pyrrhotite) and sulfur on hydrogen transfer in liquefaction of Taiheiyo coal were investigated using tritium and 35S. The coal liquefaction was performed at the initial pressure of 5.9 MPa and at 400degC for 30 min with tetralin solvent and tritium-labelled hydrogen, with or without the synthesized pyrrhotite catalyst and sulfur (or 35S-labelled sulfur). The specific activities of tritium and 35S in the reaction products were measured with a liquid scintillation counter. Amounts of exchanged and transferred hydrogens between the gas phase and coal/solvent, were calculated from the distributions of tritium and changes in the composition of products. In the reaction with tritiated hydrogen and solvent, the dehydrogenation of tetralin to produce naphthalene and the hydrogen exchange reaction between gas phase and solvent were promoted by added catalyst and sulfur. Added sulfur produced hydrogen sulfide mainly with hydrogen of solvent. A part of added sulfur participated in the sulfur exchange reaction with the pyrrhotite catalyst. In the reaction with tritiated hydrogen, solvent and coal, the hydrogen addition and exchange to coal and liquefaction products increased with the addition of catalyst and sulfur. It was suggested the sulfur promoted the formation of tetralyl radical in the hydrogen transfer from solvent to coal. (author)

  20. Exploratory Research on Novel Coal Liquefaction Concept - Task 2: Evaluation of Process Steps.

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1997-05-01

    A novel direct coal liquefaction technology is being investigated in a program being conducted by CONSOL Inc. with the University of Kentucky, Center for Applied Energy Research and LDP Associates under DOE Contract DE-AC22-95PC95050. The novel concept consists of a new approach to coal liquefaction chemistry which avoids some of the inherent limitations of current high-temperature thermal liquefaction processes. The chemistry employed is based on hydride ion donation to solubilize coal at temperatures (350-400{degrees}C) significantly lower than those typically used in conventional coal liquefaction. The process concept being explored consists of two reaction stages. In the first stage, the coal is solubilized by hydride ion donation. In the second, the products are catalytically upgraded to acceptable refinery feedstocks. The program explores not only the initial solubilization step, but integration of the subsequent processing steps, including an interstage solids-separation step, to produce distillate products. A unique feature of the process concept is that many of the individual reaction steps can be decoupled, because little recycle around the liquefaction system is expected. This allows for considerable latitude in the process design. Furthermore, this has allowed for each key element in the process to be explored independently in laboratory work conducted under Task 2 of the program.

  1. Research into materials for coal liquefaction equipment (II): corrosion resistance of 310-type stainless steels for high-temperature parts of coal liquefaction plant

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, N.; Yuki, H.; Sawaragi, Y.; Ogawa, K.; Shida, Y.; Kudoh, T.; Fujikawa, H.

    1985-01-01

    The development is reported of a 310-type stainless steel for use in the high-temperature parts of a coal liquefaction plant. Studies were made of the following items: 1) the stress- corrosion cracking susceptibility of a variety of materials in high-temperature H/sub 2/S-Cl/sup -/ and polythionic acids, 2) their corrosion resistance in liquefaction slurries, and 3) their weldability and high-temperature strength. The new 310-type steel which has been developed (low C content, N additions, grain size number of at least 5) gives good performance in respect of all these characteristics. 1 reference.

  2. Characteristics and Thermal Behaviour of Low Rank Malaysian Coals towards Liquefaction Performance via Thermogravimetric Analysis

    Science.gov (United States)

    Ishak, M. A. M.; Ismail, K.; Nawawi, W. I.; Jawad, A. H.; Abdullah, M. F.; Kasim, M. N.; Ani, A. Y.

    2016-07-01

    In this study, thermal behaviour of two low-rank Malaysian coals namely Mukah Balingian (MB) and Batu Arang (BA) were obtained under pyrolysis conditions via Thermogravimetric analysis (TGA) at a heating rate of 20°C min-1. The thermal characteristics of the coals were investigated prior to direct liquefaction in order to determine the liquefaction performance, i.e. coal conversion and oil yield. The differential weight loss (DTG) results for both coals showed that there are three main stages evolved which consists of moisture, volatile matter and heavier hydrocarbons that correspond to temperature range of 150, 200-500 and 550-800°C, respectively. Apparently, the DTG curves of BA coal reveals a similar pattern of thermal evolution profile in comparison to that of the MB coal. However, the calculated mean reactivity of BA coal is higher than that of MB, which implied that BA would probably enhance coal conversion and oil yield in comparison to MB coal. Interestingly, results showed that under the same liquefaction conditions (i.e. at 4MPa pressure and 420°C), conversion and oil yield of both coals were well correlated with their reactivity and petrofactor value obtained.

  3. ENVIRONMENTAL AND ECONOMIC ASPECTS OF INDIRECT COAL LIQUEFACTION PROCESSES: A REPORT EMPHASIZING THE RELATIONSHIP BETWEEN PRODUCT MIX AND EFFICIENCY

    Science.gov (United States)

    This report covers environmental and economic aspects of three indirect liquefaction processes. Specifically, the following are addressed: U.S. coal resources; the Lurgi/Methanol, Lurgi/Methanol/Mobil M, and the Lurgi/Fischer-Tropsch indirect coal liquefaction processes; and envi...

  4. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-02-01

    Reported here are the results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC9104O during the period October 1, 1996 to December 31, 1996. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOI+ Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work invoives the introduction into the basic two stage liquefaction process several novel concepts which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing.

  5. Improving performance of direct coal liquefaction through swelling with solvent under the radiation of ultrasonic wave

    Institute of Scientific and Technical Information of China (English)

    NI Xian-zhi; LI Ke-jian; WANG Li

    2004-01-01

    Three kinds of lower rank bituminous coals from Yanzhou mine and Tengxian mine from Shandong Province were treated and hydrogenated in the study. The test results show that the performance of hydrogenation liquefaction of the pretreated coals is improved markedly. Under the test condition of H2 initial pressure 8.2 MPa, addition of the oil yield of pretreated YZ1 coal is 69.76% compared with 62.53% of oil yield of untreated YZ1. Seminally the oil yield of pretreated YZ2 coal is 55.43% compared with20.88% of untreated YZ2 coal. The results of tests also prove that the improving degree of hydrogenation liquefaction of the pretreated coals is related with radiation duration when the radiation frequency and radiation power of ultrasonic wave are fixed.

  6. Characterization of the impregnated iron based catalyst for direct coal liquefaction by EXAFS

    Institute of Scientific and Technical Information of China (English)

    JianliYang; JishengZhun; 等

    2001-01-01

    Catalyst plays an important role in direct cola liquefaction(DCL)[1],Due to relatively high activity,low cost and environmentally benign for disposal,iron catalysts are regarded as the most attractive catalysts for DCL.To maximize catalytic effect and minimize catalyst usage,ultra-fine size catalysts are preferred.The most effective catalysts are found to be those impregnated onto coal because of their high dispersion on coal surface and intimate contact with coal particles.

  7. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-09-01

    Reported here are the results of Laboratory and Bench- Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE- AC22- 91PC91040 during the period April 1, 1997 to June 30, 1997. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two stage liquefaction process several novel concepts which includes dispersed lower- cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This report includes a data analysis of the ALC- 2 run which was the second continuous run in which Wyodak Black Thunder coal was fed to a two kg/ h bench- scale unit. One of the objectives of that run was to determine the relative activity of several Mo- based coal impregnated catalyst precursors. The precursors included ammonium heptamolybdate (100 mg Mo/ kg dry coal), which was used alone as well as in combination with ferrous sulfate (1% Fe/ dry coal) and nickel sulfate (50 mg Ni/ kg dry coal). The fourth precursor that was tested was phosphomolybdic acid which was used at a level of 100 mg Mo/ kg dry coal. Because of difficulties in effectively separating solids from the product stream, considerable variation in the feed stream occurred. Although the coal feed rate was nearly constant, the amount of recycle solvent varied which resulted in wide variations of resid, unconverted coal and mineral matter in the feed stream. Unfortunately, steady state was not achieved in any of the four conditions that were run. Earlier it was reported that Ni- Mo catalyst appeared to give the best results based upon speculative steady- state yields that were developed.

  8. Status of health and environmental research relative to direct coal liquefaction: 1976 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R.H.; Cowser, K.E. (eds.)

    1982-06-01

    This document describes the status of health and environmental research efforts, supported by the US Department of Energy (DOE), to assist in the development of environmentally acceptable coal liquefaction processes. Four major direct coal liquefaction processes are currently in (or have been investigated at) the pilot plant stage of development. Two solvent refined coal processes (SRC-I and -II), H-coal (a catalytic liquefaction process) and Exxon donor solvent (EDS). The Pacific Northwest Laboratory was assigned responsibility for evaluating SRC process materials and prepared comprehensive health and environmental effects research program plans for SRC-I and -II. A similar program plan was prepared for H-coal process materials by the Oak Ridge National Laboratory. A program has been developed for EDS process materials by Exxon Research and Engineering Co. The program includes short-term screening of coal-derived materials for potential health and ecological effects. Longer-term assays are used to evaluate materials considered most representative of potential commercial practice and with greatest potential for human exposure or release to the environment. Effects of process modification, control technologies and changing operational conditions on potential health and ecological effects are also being evaluated. These assessments are being conducted to assist in formulating cost-effective environmental research programs and to estimate health and environmental risks associated with a large-scale coal liquefaction industry. Significant results of DOE's health and environmental research efforts relative to coal liquefaction include the following: chemical characterization, health effects, ecological fate and effects, amelioration and risk assessment.

  9. [A Quick Quantitative Analysis for Group Composition of Coal Liquefaction Oil by Ultraviolet Spectroscopy].

    Science.gov (United States)

    Fan, Wen-jun; Wu, Mei-xiang; Hao, Jian-shu; Feng, Jie; Li, Wen-ying

    2015-07-01

    Gas chromatography is now the primary analysis method for the coal liquefaction oil. However, a simple and rapid quantification/qualification of the coal liquefaction oil can hardly be realized, because the coal liquefaction oil is in a heterogeneous state with a long boiling range. The aim of this study was to establish a rapid and accurate method for the quantification of phenolic compounds, aromatics and aliphatic hydrocarbons in coal liquefaction oil. A representative composition of coal liquefaction light oil, i.e., the distillate fractions of the boiling point range 180-200 degrees C, was chosen as the investigated object. The characteristic absorption peaks of the samples in the UV spectra (200-400 nm) were examined, using three kinds of solvents, cyclohexane, ethanol, 50 Wt% NaOH/ethanol mixture. Among them, the mixture solvent provided the best performance, where the aromatics interfered minimally with the quantification of phenolic compounds by avoiding the peak overlapping problem. By comparison of the UV absorption standard curves between the standard compounds (phenol, m-cresol, p-cresol and o-cresol) and the phenolic mixtures in coal liquefaction oil, m-cresol was selected for the quantification of phenolic compounds in coal liquefaction oil. The content of phenolic compounds was determined to be 32.14% according to the calibration curve of m-cresol at 290 nm, and this result is largely consistent with that determined by weighing after separation. Based on UV and GC analysis of the dephenolized oil, the standard curve of tetrahydronaphthalene at 266 nm was used for the quantification of aromatic hydrocarbons in coal liquefaction oil. The contents of aromatic and aliphatic hydrocarbons were determined to be 44.91% and 22.95%, respectively. To verify the accuracy of the method, recovery of added standards in the oil samples was determined and found to be 104.3%-110.75% and 84.3%-91.75% for phenolic compounds and aromatics, respectively. These results

  10. Coal liquefaction process streams characterization and evaluation. Volume 2, Participants program final summary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process develpment, and in so doing, provide a bridge between process design, development, and operation and analytical chemistry. To achieve this direct coal liquefaction-derived materials. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  11. Coal liquefaction: A research and development needs assessment: Final report, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, H.D.; Burke, F.P.; Chao, K.C.; Davis, B.H.; Gorbaty, M.L.; Klier, K.; Kruse, C.W.; Larsen, J.W.; Lumpkin, R.E.; McIlwain, M.E.; Wender, I.; Stewart, N.

    1989-03-01

    Volume II of this report on an assessment of research needs for coal liquefaction contains reviews of the five liquefaction technologies---direct, indirect, pyrolysis, coprocessing, and bioconversion. These reviews are not meant to be encyclopedic; several outstanding reviews of liquefaction have appeared in recent years and the reader is referred to these whenever applicable. Instead, these chapters contain reviews of selected topics that serve to support the panel's recommendations or to illustrate recent accomplishments, work in progress, or areas of major research interest. At the beginning of each of these chapters is a brief introduction and a summary of the most important research recommendations brought out during the panel discussions and supported by the material presented in the review. A review of liquefaction developments outside the US is included. 594 refs., 100 figs., 60 tabs.

  12. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  13. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  14. Mild coal pretreatment to improve liquefaction reactivity. Final technical report, September 1990--February 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Shams, K.G.

    1994-07-01

    Recent research efforts in direct coal liquefaction are focused on lowering the level of reaction severity, identification and determination of the causes of retrogressive reactions, and improving the economics of the process. Ambient pretreatment of coals using methanol and a trace amount of hydrochloric acid was extensively studied in connection with low severity coal liquefaction. Ambient pretreatment of eight Argonne coals using methanol/HCl improved THF-soluble conversions 24.5 wt % (maf basis) for Wyodak subbituminous coal and 28.4 wt % for Beulah-Zap lignite with an average increase of 14.9 wt % for the eight Argonne coals at 623 K (350{degrees}C) reaction temperature and 30 minutes reaction time. Optimal pretreatment conditions were determined using Wyodak and Illinois No. 6 coals. Acid concentration was the most important pretreatment variable studied; liquefaction reactivity increased with increasing acid concentration up to 2 vol %. The FTIR spectra of treated and untreated Wyodak coal samples demonstrated formation of carboxylic functional groups during pretreatment, a result of divalent (Ca, Mg) cationic bridge destruction. The extent of liquefaction reactivity directly correlated with the amount of calcium removed during pretreatment, and results from calcium ``addback`` experiments supported the observation that calcium adversely affected coal reactivity at low severity reaction conditions. Model compound studies using benzyl phenyl ether demonstrated that calcium cations catalyzed retrogressive reactions, inhibited hydrogenation reactions at low severity reaction conditions, and were more active at higher reaction temperatures. Based on kinetic data, mechanisms for hydrogenation-based inhibition and base-catalyzed retrogressive reactions are proposed. The base-catalyzed retrogressive reactions are shown to occur via a hydrogen abstraction mechanism where hydrogenation inhibition reactions are shown to take place via a surface quenching mechanism.

  15. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  16. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  17. Japan`s New Sunshine Project. 1996 Annual Summary of Coal Liquefaction and Gasification; 1996 nendo new sunshine keikaku seika hokokusho gaiyoshu. Sekitan no ekika gasuka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    In reference to the results of the research and development under the fiscal 1996 New Sunshine Project, a report was summed up on coal liquefaction and coal gasification. As to the R and D of coal liquefaction technology, researches were conducted on liquefaction characteristics and engineering properties by coal kind, catalysts for coal liquefaction, liquefaction reaction of coal and reformation utilization of the liquefied products, liquefaction reaction mechanism and coking mechanism, solubility of coal in solvent and catalytic reaction mechanism, solvent reaction mechanism by hydrogen donor solvent, etc. Concerning the R and D of coal gasification technology, made were the basic study of eco-technology adaptable gasification technology and the study of coal gasification enhancing technology. Further, as to the development of bituminous coal liquefaction technology, carried out were the study in pilot plants and the support study of pilot plants. Additionally, R and D were done of the basic technology of coal liquefaction such as upgrading technology and environmentally acceptable coal liquefaction technology, and of coal hydrogasification technology. 3 refs., 81 figs., 25 tabs.

  18. Coal liquefaction. Quarterly report, January--March 1978. [Brief summary of 15 pilot plant projects supported by US DOE

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is sponsoring the development of several conversion processes currently in the pilot plant stage. Fifteen coal liquefaction projects supported by US DOE are described briefly, with flowsheets, funding, history and progress during the quarter. (LTN)

  19. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)] [and others

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  20. Rocketdyne's advanced coal slurry pumping program

    Science.gov (United States)

    Davis, D. E.; Wong, G. S.; Gilman, H. H.

    1977-01-01

    The Rocketdyne Division of Rockwell International Corporation is conducting a program for the engineering, fabrication, and testing of an experimental/prototype high-capacity, high-pressure centrifugal slurry feed pump for coal liquefaction purposes. The abrasion problems in a centrifugal slurry pump are primarily due to the manner in which the hard, solid particles contained in the slurry are transported through the hydraulic flow passages within the pump. The abrasive particles can create scraping, grinding, cutting, and sandblasting effects on the various exposed parts of the pump. These critical areas involving abrasion and impact erosion wear problems in a centrifugal pump are being addressed by Rocketdyne. The mechanisms of abrasion and erosion are being studied through hydrodynamic analysis, materials evaluation, and advanced design concepts.

  1. Coal liquefaction in an inorganic-organic medium. [DOE patent application

    Science.gov (United States)

    Vermeulen, T.; Grens, E.A. II; Holten, R.R.

    Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl/sub 2/ catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S, or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl/sub 2/ and is a hydroaromatic hydrocarbon selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

  2. Development of liquefaction process of coal and biomass in supercritical water; Chorinkaisui wo mochiita sekitan biomass doji ekika process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, H.; Matsumura, Y.; Tsutsumi, A.; Yoshida, K. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Masuno, Y.; Inaba, A. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Liquefaction of coal and biomass in supercritical water has been investigated, in which strong solubilization force of supercritical water against hydrocarbons is utilized. Free radicals are formed through the cleavage of covalent bonds in coal under the heating condition at around 400{degree}C during coal liquefaction. It is important to stabilize these unstable intermediate products by hydrogen transfer. On the other hand, hydrogen is not required for the liquefaction of biomass having higher H/C atomic ratio and oxygen content than those of coal. Co-liquefaction of coal and biomass was conducted using supercritical water, in which excess hydrogen from the liquefaction of biomass would be transferred to coal, resulting in the effective liquefaction of coal. Mixture of coal and cellulose was liquefied in supercritical water at 390{degree}C under the pressure of 25 MPa using a semi-continuous reactor, and the results were compared with those from the separate liquefaction of them. The co-liquefaction of coal and cellulose did not show any difference in the residue yield from the separate liquefaction of these, but led to the increased production of compounds with lower molecular weight. The liquefaction was completed in 15 minutes. 5 refs., 3 figs., 3 tabs.

  3. Catalytic coal liquefaction with treated solvent and SRC recycle

    Science.gov (United States)

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1986-01-01

    A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

  4. Geological occurrence response to trace elemental migration in coal liquefaction based on SPSS: take no. 11 coalbed in Antaibao mine for example

    Science.gov (United States)

    Xia, Xiaohong; Qin, Yong; Yang, Weifeng

    2013-03-01

    Coal liquefaction is an adoptable method to transfer the solid fossil energy into liquid oil in large scale, but the dirty material in which will migrate to different step of liquefaction. The migration rule of some trace elements is response to the react activity of macerals in coal and the geological occurrence of the element nature of itself. In this paper, from the SPSS data correlation analysis and hierarchical clustering dendrogram about the trace elements with macerals respond to coal liquefaction yield, it shows the trace elements in No.11 Antaibao coal seam originated from some of lithophile and sulphophle elements. Correlation coefficient between liquefaction yield of three organic macerals and migration of the elements in liquefaction residue indicated that the lithophile are easy to transfer to residue, while sulphophle are apt to in the liquid products. The activated macerals are response to sulphophle trace elements. The conclusion is useful to the coal blending and environmental effects on coal direct liquefaction.

  5. Studies on characteristics of fluid dynamics in the coal liquefaction reactor; Sekitan ekika hanno tonai no ryudo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sakawaki, K.; Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Tachikawa, N.; Moki, T.; Ishikawa, I. [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1996-10-28

    To design the coal liquefaction reactor of large scale plant in future, it is important to understand characteristics of fluid dynamics within the coal liquefaction reactor. In this study, to measure the fluid dynamics of liquid phase within the coal liquefaction reactor operated under high temperature and high pressure coal liquefaction condition, neutron attenuating tracer (NAT) technique, one of the tracer test methods, was applied using 1 t/d coal treating PSU. The residence time of liquid phase within the reactor can be measured by utilizing property of neutron of being absorbed by materials. The tracer was injected at the inlets of first and third reactors, and the neutron was counted at each outlet. The concentration of tracer was derived from the discrete value, to determine the residence time distribution of liquid phase. The mean residence time of liquid phase in the single first reactor and in the total three reactors were prolonged under the severe operation conditions of liquefaction. The more severe the liquefaction operation condition was, the more active the mixing of liquid phase was in the first reactor. It was found that the progress of reaction was accelerated. 2 refs., 5 figs., 1 tab.

  6. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, January 1, through March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Accomplishments for this quarter are described.

  7. Effect of in-situ solvent soaking and heating pre-treatment on coal conversion and oil yield during liquefaction of demineralized low-rank Malaysian coal

    Energy Technology Data Exchange (ETDEWEB)

    M.A.M. Ishak; M.F. Abdullah; K. Ismail; M.O.A. Kadir; A.R. Mohamed [University Technology MARA, Perlis (Malaysia). Fuel Combustion Research Laboratory, Faculty of Applied Sciences

    2005-07-01

    The effect of in-situ solvent soaking and heating (SSH) pre-treatment on demineralized low-rank Malaysian coal towards coal conversion and oil yield during direct liquefaction was investigated. Demineralization of coal was carried out by leaching with strong protic acids such as HCl, HF and HNO{sub 3} whereby more than 95 % of mineral content in the coal was reduced. Apparently, the mineral matter that was removed by the HCl treatment (i.e. cationics) exhibits more catalytic effect during the liquefaction process. The reduction in the mineral content increased the coal porosity that enabled the solvent to penetrate into the coal macropores during the SSH pre-treatment process. The results of liquefaction on the pre-treated SSH demineralized coal at 420{sup o}C and at 4 MPa, however show comparable amount of coal conversion with slightly lower amount of oil yield being obtained with comparison to the raw and SSH-raw coals. Thus, besides the in-situ solvent soaking and heating pre-treatment, the presence of mineral matters in coal prove to be beneficial during coal liquefaction process.

  8. Study of the products of liquefaction of some American and British coals

    Energy Technology Data Exchange (ETDEWEB)

    Mudamburi, Z.

    1983-01-01

    The value of products of liquefying coals depends on their composition. Accordingly, this work sought to determine key compositional features of products from coal liquefaction and to relate them to the characteristics of the feedstock coals. A set of bituminous coals which included six rich in vitrinite, two rich (>50%) in algal remains (boghead coals), and nine maceral concentrates from British coals was studied. The samples were characterized by FTIR and aromaticities determined by /sup 13/C NMR. The coals were liquefied in tetraline under hydrogen (1400 psi) at 400/sup 0/C for 1 hour. The hexane-soluble products were separated by chromatogrphy into fractions: 1) alkanes, 2) aromatic hydrocarbons, 3) neutral heteroatomic compounds, 4) bases and conjugated ketones, and 5) phenols, which were analyzed by GC/MS, with much reliance on regeneration of single ion chromatograms. The hexane-soluble products were qualitatively similar but differed in quantitative distributions. Homologs of biphenyl, diphenyl-methane, naphthalene, and polycyclic structures were common, but extensive homologous series of long-chain alkyl-naphthalenes dominated the aromatic distribution from several coals. The results shed light on current ideas of coal structure, which consider coal to consist of an immobile macromolecular network and a mobile phase of small trapped molecules.

  9. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States))

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  10. Studies of the effect of selected nondonor solvents on coal liquefaction yields

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R. L.; Rodgers, B. R.; Benjamin, B. M.; Poutsma, M. L.; Douglas, E. C.; McWhirter, D. A.

    1983-09-01

    The objective of this research program was to evaluate the effectiveness of selected nondonor solvents (i.e., solvents that are not generally considered to have hydrogen available for hydrogenolysis reactions) for the solubilization of coals. Principal criteria for selection of candidate solvents were that the compound should be representative of a major chemical class, should be present in reasonable concentration in coal liquid products, and should have the potential to participate in hydrogen redistribution reactions. Naphthalene, phenanthrene, pyrene, carbazole, phenanthridine, quinoline, 1-naphthol, and diphenyl ether were evaluated to determine their effect on coal liquefaction yields and were compared with phenol and two high-quality process solvents, Wilsonville SRC-I recycle solvent and Lummus ITSL heavy oil solvent. The high conversion efficacy of 1-naphthol may be attributed to its condensation to binaphthol and the consequent availability of hydrogen. The effectiveness of both the nitrogen heterocycles and the polycyclic aromatic hydrocarbon (PAH) compounds may be due to their polycyclic aromatic nature (i.e., possible hydrogen shuttling or transfer agents) and their physical solvent properties. The relative effectiveness for coal conversion of the Lummus ITSL heavy oil solvent as compared with the Wilsonville SRC-I process solvent may be attributed to the much higher concentration of 3-, 4-, and 5-ring PAH and hydroaromatic constituents in Lummus solvent. The chemistry of coal liquefaction and the development of recycle, hydrogen donor, and nondonor solvents are reviewed. The experimental methodology for tubing-bomb tests is outlined, and experimental problem areas are discussed.

  11. Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1996-03-01

    Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

  12. Cooperative research in coal liquefaction. Final report, May 1, 1991--April 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1996-03-01

    Extensive research continued on catalysts based on novel anion-treated (mainly sulfated) oxides and oxyhydroxides of iron [Fe{sub x}O{sub y}/SO{sub 4}]. In addition, sulfated oxides of tin as well as molybdenum promoted iron oxides were used. Incorporation of small amounts of sulfate, molybdate, or tungstate anions by wet precipitation/impregnation methods was found to increase the surface acidic character of iron oxides; more importantly, it reduced the grain sizes significantly with corresponding increases in specific surface areas. These anion-treated iron and tin oxides were more active for direct coal liquefaction and coal-heavy oil coprocessing than their untreated counterparts. With these catalyst systems, higher conversion levels are obtained as compared to the soluble precursors of iron and molybdenum at the same catalyst metalloading (3500 ppm iron and 50 ppm molybdenum with respect to coal). Sulfated iron oxides and oxyhydroxides were equally active as coal liquefaction catalysts. The sulfate, molybdate, and tungstate anions were found to have similar promotional effects on the properties and activities of iron oxides. One step in the synthesis of anion-treated iron and tin oxides is precipitation as hydroxides using either urea or ammonium hydroxide. The catalysts prepared using urea as a precipitation agent were more reproducible than those using ammonium, hydroxide in terms of activities and properties. These catalysts/catalyst precursors were characterized by several techniques to determine their physical (size and structure related) and chemical (acidity) properties. Sulfated and molybdated iron oxides were found to have grain sizes as small as 10-20 nm. An attempt was made to correlate the physicochemical properties of these catalysts with their activity for coal liquefaction.

  13. Energy and Entropy Fluxes in Coal Gasification and Liquefaction Processes

    OpenAIRE

    H. Voigt

    1980-01-01

    In the long-term studies on energy systems performed at IIASA, scenarios that provide for substitutes for fossil oil and gas are considered. In the future coal is expected to contribute to energy supplies to a greatly increasing extent only if it is converted to liquid or gaseous fuels or electricity. Coal conversion systems are rather complex, not only internally but also with respect to their exchanges with the environment; some use auxiliary energy, others yield byproducts. Therefore, the ...

  14. Behavior of catalyst and mineral matter in coal liquefaction; Sekitan ekika hannochu no kobusshitsu to shokubai no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, K.; Wang, J.; Tomita, A. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    Mineral matter in coals is important in various senses for coal liquefaction. It is possible that the catalytic activity is affected by the interaction between catalyst and mineral matter. Iron-based catalyst forms pyrrhotite in the process of liquefaction, but the interaction between it and mineral matter is not known in detail. In this study, the interaction between mineral matter and catalyst and the selective reaction between them were investigated. Tanito Harum coal was used for this study. This coal contains a slight amount of siderite and jarosite besides pyrite as iron compounds. Liquefaction samples were obtained from the 1 t/d NEDOL process PSU. The solid deposits in the reactor mainly contained pyrrhotite and quartz. A slight amount of kaolinite was observed, and pyrite was little remained. It was found that the catalyst (pyrrhotite) often coexisted with quartz, clay and calcite. 8 figs., 2 tabs.

  15. Steam pretreatment for coal liquefaction. Fourth quarterly report, 1 July 1991--30 September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Graff, R.A.; Balogh-Nair, V.

    1992-06-18

    Steam pretreatment is the reaction of coal with steam at temperatures well below those usually used for solubilization. The objective of the proposed work is to test the application of steam pretreatment to coal liquefaction. A 300 ml stirred autoclave for liquefaction tests is being installed. Pretreatment and extraction tests were made with Blind Canyon coal alone, mixed with Illinois No. 6 coal, impregnated with iron, and impregnated with iron and sulfided using phenyl disulfide. Measurements show an increase in volatiles yield and a decrease in extraction yield with catalyst addition. These results are not yet definitive, because both yields may be artificially decreased by insoluble residue from phenyl disulfide. About one ram of purified {alpha}-naphthylmethyl phenyl ether was prepared and an additional 0. 8 gram were synthesized. Steam pretreatment of the model compound {alpha}-benzylnaphthyl ether was repeated with a Pyrex liner for the reactor tube. No differences have yet appeared as a result of using this liner (compared to bare stainless steel), evidence against any catalytic wall effect.

  16. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  17. Benefit-cost analysis of selected DOE/OHER investments in coal liquefaction.

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, J.M.; Fillo, J.P.; Gray, R.H.; Felix, W.D.; Mahlum, D.D.

    1982-09-01

    Based in large part of the lack of specific information about the nature and magnitude of health impacts that could occur from commercialization of a coal liquefaction industry, DOE initiated a broad-based program to study the potential health and environmental fate and effects of process streams from several coal liquefaction process options. Responsibility for this research was assigned to OHER. Specific results of this research program that are important for the purpose of this analysis include findings that: the toxicity and teratogenic potential of coal liquids boiling below 450/sup 0/F is small; mutagenic and carcinogenic activity is typically expressed in coal liquids boiling above 750/sup 0/F; and mutagenic and carcinogenic activity increases markedly in coal liquids boiling above 800/sup 0/F. Based on the above findings, OHER funded research to evaluate the effect of various hydrotreatment levels on the biological activity of coal-derived liquids. Studies using the Ames assay or mammalian cell transformation assays indicated that hydrotreatment was effective in reducing biological activity of coal-derived liquids. Skin-painting studies demonstrated that carcinogenicity was also reduced by hydrotreatment. Studies in progress are evaluating the effects of hydrotreatment severity on biological activity. However, it appears reasonably clear that health risks can be reduced by hydrotreating only materials that boil above 750/sup 0/F. Materials boiling below 750/sup 0/ could be marketed directly without significant risk to individuals exposed to these products. The benefit-cost analysis presented is based on the premise that the cost differential between full and partial hydrotreatment provides the basis for approximating the potential benefits associated with the relevant OHER research investments.

  18. Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Knorr, D.; Lukas, J.; Schoen, P.

    2013-11-01

    This report provides detailed reactor designs and capital costs, and operating cost estimates for the hydrothermal liquefaction reactor system, used for biomass-to-biofuels conversion, under development at Pacific Northwest National Laboratory. Five cases were developed and the costs associated with all cases ranged from $22 MM/year - $47 MM/year.

  19. Analysis of the relationship between the coal properties and their liquefaction characteristics by using the coal data base; Tanshu data base ni yoru tanshitsu to ekika tokusei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kanbayashi, Y.; Okada, K. [Coal Mining Research Center, Tokyo (Japan)

    1996-10-28

    The relationship between coal properties and liquefaction or gasification characteristics was analyzed by using the analysis and test results and liquefaction characteristics in the coal data base. On liquefaction reaction, the close relation between an oil yield and coal constituent composition or a coal rank is well-known. Various multivariable regression analyses were conducted by using 6 factors as variables such as calorific value, volatile component, O/C and H/C atomic ratios, exinite+vitrinite content and vitrinite reflectance, and liquefaction characteristics as variate. On liquefaction characteristics, the oil yield of dehydrated and deashed coals, asphaltene yield, hydrogen consumption, produced water and gas quantities, and oil+asphaltene yield were predicted. The theoretical gasification efficiency of each specimen was calculated to evaluate the liquefaction reaction obtained. As a result, the oil yield increased with H/C atomic ratio, while the theoretical gasification efficiency increased with O/C atomic ratio. 5 figs., 1 tab.

  20. Suitability of UK bituminous and Spanish lignitious coals and their blends of two stage liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Flatman-Fairs, D.P.; Harrison, G. [Staffordshire University, Stoke-on-Trent (United Kingdom). School of Sciences

    1999-11-01

    Liquefaction experiments were carried out in spinning/falling basket autoclaves using samples of Kellingly (UK) and Samca (Spain) coals, and a process derived recycle solvent (PDRS). Hydrocracking experiments were carried out in a bomb type autoclave using sulphided NiMo catalyst. For the dissolution, experiments with the individual coals, the influence of temperature 380, 400 and 420{degree}C, and time 1 or 2 h was considered. For hydrocracking, preliminary experiments were carried out with a Kellingly coal liquid to establish appropriate reaction conditions for the hydrocracking of Kellingly and Samca coal liquid blends. There was some evidence of synergistic activity for conversion to dichloromethane (DCM) soluble material and antagonistic behaviour for conversion to tetrahydrofuran soluble/DCM insoluble material for dissolution of the coal blends, but hydrocracking of the coal liquid blends resulted in additive behaviour. For each of the coals, the extent of dissolution correlated with the extent of desulphurisation. The sulphur contents of the solid residues from dissolution tended to increase with the temperature of dissolution, but their H:C ratios decreased and their calorific values were independent. 12 refs., 7 figs., 3 tabs.

  1. An Advanced Wet Expansion Turbine for Hydrogen Liquefaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to NASA SBIR Topic X10.01, specifically, the need for efficient small- to medium-scale hydrogen liquefaction technologies, including...

  2. An Advanced Wet Expansion Turbine for Hydrogen Liquefaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to NASA SBIR Topic X10.01, specifically, the need for efficient small- to medium-scale hydrogen liquefaction technologies including...

  3. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  4. Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Pyrolysis behavior of direct coal liquefaction residue (DCLR) and its four fractions were investigated. • The inorganic components in DCLR have catalytic effects on both pyrolysis and gasification. • The pyrolysis activation energy of DCLR obtained from DAEM is in the range of 68.4–142.9 kJ/mol. - Abstract: The objective of this work is to comprehensively investigate the pyrolysis characteristics of the direct coal liquefaction residue (DCLR) from China Shenhua industrial direct coal liquefaction plant. The pyrolysis experiments were conducted with TGA under four kinds of atmospheres (N2, 10% H2, CO2, and air) and a fixed bed reactor in N2. Two obvious mass loss peaks at 470 °C and 770 °C, are mainly attributed to decomposition of the organic matrix and inorganic compounds in DCLR, respectively. The four fractions extracted from DCLR (hexane soluble fraction (HS), asphaltene fraction (A), preasphaltene (PA), and tetrahydrofuran insoluble (THFIS)) were studied separately by TG-FTIR, and the results show that the interaction among the fractions is unfavorable for the evolution of volatile matter. In addition, the inorganic compounds in DCLR exhibit catalysis behaviors on both pyrolysis under N2 and gasification under CO2. Moreover, the properties of DCLR pyrolysis products obtained from the fixed bed reactor were analyzed by GC–MS, SEM, and FTIR. Finally, a kinetic analysis of DCLR pyrolysis was performed using the distributed activation energy model (DAEM). The activation energy distribution of DCLR follows an approximate Gaussian distribution with a mean activation energy of 87.6 kJ/mol

  5. The current status of coal liquefaction technologies - Panorama 2008; La liquefaction du charbon: ou en est-on aujourd'hui? - Panorama 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    In 2008, a first coal liquefaction unit to produce motor fuel (20,000 BPSD) will come on-stream in Shenhua, China (in the Ercos region of Inner Mongolia). Other, more ambitious projects have been announced in China for between now and 2020. Since oil production is expected to peak in the medium term, this technology may develop regionally in the next 20 years to cover ever-increasing demand for motor fuel.

  6. Studies of initial stage in coal liquefaction. Effect of decomposition of oxygen-functional groups on coal liquefaction; Ekika hanno no shoki katei ni kansuru kenkyu. 3. Gansanso kannoki no bunkai kyodo to ekika hanno eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Komeiji, A.; Kaneko, T.; Shimazaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    Pretreatment of brown coal in oil was conducted using 1-methyl naphthalene or mixture of tetralin and 1-methyl naphthalene as solvent at temperatures ranging from 300 to 430{degree}C under nitrogen atmosphere. Effects of the solvent properties on the structural change of oxygen-functional groups (OFG) and coal liquefaction were investigated by means of quantitative analysis of OFG and solid state {sup 13}C-NMR measurement. When hydrogen transfer from solvent was insufficient, it was suggested that brown coal molecules loose their hydrogen to be aromatized. While, at lower temperatures ranging from 300 to 350{degree}C, hydrogen contained in brown coal molecules was consumed for the stabilization of pyrolytic radicals, and the deterioration of liquefaction was not observed. When hydrogen transfer from solvent was insufficient at higher temperatures above 400{degree}C in nitrogen atmosphere during pretreatment in oil, crosslinking like benzofuran type was formed by dehydration condensation of hydroxyl group in brown coal, to deteriorate the liquefaction, remarkably. The addition of donor solvent like tetralin decreased the formation of crosslinking like benzofuran type, which suppressed the deterioration of liquefaction. 8 refs., 5 figs.

  7. The use of mixed pyrrhotite/pyrite catalysts for co-liquefaction of coal and waste rubber tires

    Energy Technology Data Exchange (ETDEWEB)

    Dadyburjor, D.B.; Zondlo, J.W.; Sharma, R.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The overall objective of this research program is to determine the optimum processing conditions for tire/coal co-liquefaction. The catalysts used will be a ferric-sulfide-based materials, as well as promising catalysts from other consortium laboratories. The intent here is to achieve the maximum coal+tire conversion at the mildest conditions of temperature and pressure. Specific objectives include an investigation of the effects of time, temperature, pressure, catalyst and co-solvent on the conversion and product slate of the co-liquefaction. Accomplishments and conclusions are discussed.

  8. Study for Development of the Coal Liquefaction Process by 150t/d Coal Liquefaction Pilot Plant 3. Properties of coal liquefaction products and their toxicological assessment; 150t/d sekitan ekika pairottorpuranto ni yoru kaihatu kenkyu 3. PP sekitan ekika seiseibutu no seijo oyobi anzensei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Aramaki, Toshihiro.; Oi, Shoichi.; Hayashi, Takashi.; Yoshimura, Yasuji.; Oneyama, Minoru.; Kouzu, Masato.; Koyama, Kazuhide.; Sato, Eizo.; Ueda, Shigeru.; Kobayashi, Masatoshi. [Nippon Coal Oil Co., Ltd., Ibaraki (Japan); Yoshida, Haruhiko.; Yamagiwa, Hisashi. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1999-02-20

    150t/d Coal liquefaction pilot plant (PP) supported by New Energy and Industrial Technology Development Organization (NEDO) was successfully operated without any serious trouble throughout five runs operated till 1998. The most important object in this project is to develop Demonstration Plant or Commerical Plant, or to take a varieties of engineering data including performance test of each equipment. Additionally, it is very important tto establish commercial acceptability of coal liquefaction products by means of clearing their chemical component and toxicological properties. The works reported here are those which relate to characteristic properties of coal liquefaction products and their toxicological properties. Also we are going to mention our planning concerning the toxicological assessment to be done. (author)

  9. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, August 1992--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.; Saini, A.K.; Burgess, C.; Hatcher, P.G.; Schobert, H.H.

    1992-12-01

    During this quarterly period progress has been made in the following three subjects related to the effects of low-temperature thermal and catalytic pretreatments on coal structure and reactivity in liquefaction. First, the liquefaction behavior of three bituminous coals with a carbon content ranging from 77% to 85% was evaluated spectroscopically by {sup 13}C NMR and pyrolysis/gas chromatography/mass spectrometry to delineate the structural changes that occur in the coal during liquefaction. Complementary data includes ultimate and proximate analysis, along with optical microscopy for maceral determinations. Even though these are all bituminous coals they exhibit quite different physical and chemical characteristics. The coals vary in rank, ranging from HvC b to HvA b, in petrographic composition, different maceral percentages, and in chemical nature, percent of carbon and of volatiles. It is these variations that govern the products, their distribution, and conversion percentages. Some of the products formed can be traced to a specific maceral group. Second, pyrolysis-GC-MS and FTIR techniques were used to characterize Wyodak coal before and after drying in vacuum and in air and the residues from its thermal and catalytic liquefactions. The analysis of the air-dried coal shows a decrease in the phenolic type structures in the coal network and increase in the carbonyl structures as the oxidative drying proceeds. An enhanced decrease in the carbonyl structure is observed in the liquefaction residues from the raw coal as compared to that of the vacuum dried coal. The analyses of the liquefaction residues of the air-dried coal show an increase in the ether linkages which may have a negative impact on liquefaction. The extent of the solvent adduction also increases during liquefaction with the extent of oxidation of the coal. Finally, the effects of reaction conditions were investigated on conversion of low-rank coals using a Texas subbituminous coal.

  10. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.; Song, C.; Schobert, H.H.

    1994-01-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. The primary objective of this research is to explore novel bimetallic dispersed catalysts from heterometallic molecular precursors, that can be used in low concentrations but exhibit high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. This quarterly report describes the preparation of two precursors. The first is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule synthesized. The second is a thiocubane type cluster consisting of iron and sulfur.

  11. Chemistry and morphology of coal liquefaction. Quarterly report, October 1-December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1981-12-01

    Progress reports are presented for the following six tasks: (1) selective synthesis of gasoline range components from synthesis gas; (2) electron microscopy studies of coal during hydrogenation; (3) catalysed low temperature hydrogenation of coal; (4) selctive hydrogenation, hydrogenolysis and alkylation of coal and coal liquids by organo-metallic systems; (5) chemistry of coal solubilization and liquefaction; (6) coal conversion catalysts-deactivation studies. Highlights are as follows: (1) In the presence of hydrogen and the absence of base, using the catalyst RuCl/sub 2/ (CO)/sub 2/ (phi/sub 3/ P)/sub 2/ excellent yields of reduced polynuclear heteroaromatic nitrogen compound were produced with 100% selectivity for the N-containing ring. (2) A careful gas chromatographic analysis of Fischer-Tropsch products has shown that major peaks, previously thought to be single compounds are composites of two or more compounds. Resolution of these peaks will enable one to establish a rational grouping of n/i and paraffin/olefin ratios. (3) Addition of iron or rhodium to potassium impregnated graphite did not result in the production of heavier hydrocarbons than methane from the graphite-steam reaction at low temperature. However, small amounts of iron enhanced the methane production. (ATT)

  12. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1993-07-01

    The combination of some of these methods could further improve low severity conversion. It seems logical that a combination of a proven pretreatment technique with a good dissolution catalyst or a good hydrogen donor would increase reactivity. The importance of surface chemistry with yield and nature of reactions shown in early research indicates the physical importance of pretreatment. Swelling of the coal with an organic solvent improves the contact. This good contact is also important to slowing retrogressive reactions. The best conversions come when the initial products of liquefaction are preserved. In addition to the physical importance of pretreatment, there is a chemical advantage. Shams saw not only the effect of minimization of organic oxygen coupling reactions, but with his process there also seemed to be a demineralization. The minerals removed the catalysts for retrogressive reactions. The chemistry of liquefaction is still not well understood. Stansberry`s attempt to determine whether catalysts liberate species or just further decomposition was largely inconclusive. There was improvement in conversion so the catalysts seemingly assisted in bond breakage. These good catalytic effects were also seen in the work involving coprocessing. The most compelling factor in each of these procedures, is the ability of the coal to receive the hydrogen that it needs to be liquefied. Bedell and Curtis (1991) found that cyclic olefins gave their hydrogen up much more readily than did hydroaromatics. The coal conversion was a significantly improved. The combination of retrogressive reaction suppression and good hydrogen donability should provide for good coal conversion. It was this reasoning that influenced the decision to investigate a combination of the HCl/methanol pretreatment and the usage of cyclic olefins as hydrogen donors. The increased reactivity of the pretreated coal should enhance the effect of the hydrogen donability of the cyclic olefins.

  13. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The aims of this research program are to advance to bench-scale testing, concepts that have the potential for making net reductions in direct coal liquefaction process costs. The research involves a teaming arrangement between the University of Kentucky Center for Applied Energy Research (CAER), Consolidation Coal Company (CONSOL), Sandia National Laboratories (SNL), and LDP Associates. Progress reports are presented for: Task 2.1.1 development of a catalyst screening test (UK/CAER); Task 2.1.2 activation of impregnated catalysts (UK/CAER); Task 2.2 laboratory support (CONSOL); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.) and; Task 4.4 conceptual design, preliminary technical assessment (LDP Associates).

  14. Research, development, demonstration, and early deployment policies for advanced-coal technology in China

    International Nuclear Information System (INIS)

    Advanced-coal technologies will increasingly play a significant role in addressing China's multiple energy challenges. This paper introduces the current status of energy in China, evaluates the research, development, and demonstration policies for advanced-coal technologies during the Tenth Five-Year Plan, and gives policy prospects for advanced-coal technologies in the Eleventh Five-Year Plan. Early deployment policies for advanced-coal technologies are discussed and some recommendations are put forward. China has made great progress in the development of advanced-coal technologies. In terms of research, development, and demonstration of advanced-coal technologies, China has achieved breakthroughs in developing and demonstrating advanced-coal gasification, direct and indirect coal liquefaction, and key technologies of Integrated Gasification Combined Cycle (IGCC) and co-production systems. Progress on actual deployment of advanced-coal technologies has been more limited, in part due to insufficient supporting policies. Recently, industry chose Ultra Super Critical (USC) Pulverized Coal (PC) and Super Critical (SC) PC for new capacity coupled with pollution-control technology, and 300 MW Circulating Fluidized Bed (CFB) as a supplement

  15. Microbial recovery of metals from spent coal liquefaction catalysts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sperl, P.L.; Sperl, G.T.

    1995-07-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types were the subject of the contract. The first was a Ni-No catalyst support on alumina (Shell 324), the catalyst used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. The second material was an unsupported ammonium molybdate catalyst used in a pilot process by the Department of Energy at the Pittsburgh Energy Technology Center. This material was obtained in late February 1990 but has not been pursued since the Mo content of this particular sample was too low for the current studies and the studies at the Pittsburgh Energy Technology Center have been discontinued. The object of the contract was to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans , but also other Thiobacillus spp. and possibly Sulfolobus and other potential microorganisms, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which could be readily recovered by conventional techniques.

  16. Exploratory research on solvent refined coal liquefaction. Quarterly technical progress report, April 1-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburgh and Midway Coal Mining Company's Merriam Laboratory for the period April 1, 1979 through June 30, 1979. Experimental work included a number of short residence time runs, but discussion of that work has been delayed until a later report. Experimental work reported focuses on an investigation of the decline in solvent quality experienced by the Wilsonville Pilot Plant during runs in support of the SRC I Demonstration Plant. A four run series was initiated with Wilsonville solvent; both the coal used at Wilsonville (Kentucky 6/11 - Pyro Mine) and Kentucky 9/14 coal from the Colonial Mine were used. The effect of pyrite addition to the Pyro Mine coal was investigated. No solvent quality or coking problems were experienced in the Merriam runs. Significant changes in solvent composition were apparent and equilibrated solvent samples were returned to Wilsonville for solvent quality testing.

  17. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  18. Structural effects of sample ageing in hydrocracked coal liquefaction extracts

    Energy Technology Data Exchange (ETDEWEB)

    Begon, V.; Suelves, I.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [Imperial College, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    2000-10-01

    A sample of Point of Ayr coal extract has been hydrocracked in a microbomb reactor with NiMo on alumina catalyst in tetralin as solvent and hydrogen donor and under hydrogen pressure. The product was separated from solvent and catalyst and then split into equal parts and stored either under nitrogen atmosphere in a freezer or in air at room temperature. Samples of the products were examined at 2 h frequencies for a day, then daily for a week, then at less frequent intervals for a year. Methods used for examination were size exclusion chromatography (SEC) and UV fluorescence spectroscopy (UV-F), both using 1-methyl-2-pyrrolidinone as solvent. Aging was assessed in terms of shifts to shorter elution times in SEC and parallel changes in UV-F spectra. Both stored products showed significant structural evidence of aging over the first week of storage. After that time, changes observed were within the range of variability of the chromatography method based on polystyrene standards. The aging was attributed to the presence of low-reactivity free radicals species, which underwent recombination reactions during storage. These changes are likely to affect the viscosity and combustion characteristics of the hydrocracked product. 30 refs., 6 figs., 1 tab.

  19. Advanced direct liquefaction concepts for PETC generic units: Phase 2. Quarterly technical progress report, July--September, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Advanced Direct Liquefaction Concepts Program sponsored by the DOE Pittsburgh Energy Technology Center was initiated in 1991 with the objective of promoting the development of new and emerging technology that has the potential for reducing the cost of producing liquid fuels by direct coal liquefaction. The laboratory research program (Phase I) was completed in 1995 by UK/CAER, CONSOL, Sandia National Laboratories and LDP Associates. A three year extension was subsequently awarded in October 1995 to further develop several promising concepts derived from the laboratory program. During Phase II, four continuous bench scale runs will be conducted at Hydrocarbon Technologies, Inc. using a 2 kg/hr continuous bench scale unit located at their facility in Lawrenceville, NJ. The first run in this program (ALC-1), conducted between April 19 and May 14, 1996, consisted of five test conditions to evaluate the affect of coal cleaning and recycle solvent modification. A detailed discussion of this run is included in Section Two of this report. Results obtained during this reporting period for all participants in this program are summarized.

  20. Two-stage, close coupled catalytic liquefaction of coal. Eleventh quarterly report, 1 April 1991--30 June 1991

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Panvelker, S.V.; Popper, G.A.; Stalzer, R.H.

    1991-10-01

    The overall purpose of the program is to achieve higher yields of better quality transportation and turbine fuels and to lower the capital and production costs in order to make the products from direct coal liquefaction competitive with other fossil fuel products.

  1. Two-stage, close coupled catalytic liquefaction of coal. [Catalysts: FeOOH and NiMo

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Panvelker, S.V.; Popper, G.A.; Stalzer, R.H.

    1991-10-01

    The overall purpose of the program is to achieve higher yields of better quality transportation and turbine fuels and to lower the capital and production costs in order to make the products from direct coal liquefaction competitive with other fossil fuel products.

  2. Results of u-bend stress-corrosion-cracking specimen exposures in coal-liquefaction pilot plants

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, V.B.; Keiser, J.R.; Allen, M.D.; Howell, M.; Newsome, J.F.

    1982-04-01

    Pilot plants with capacities of up to 600 tons/d are currently demonstrating the engineering feasibility of several coal liquefaction processes including Solvent Refined Coal (SRC), Exxon Donor Solvent (EDS), and H-Coal. These plants are the first step toward commercial production of synthetic fuels. Among other factors, development of the technology depends on reliable materials performance. A concern is the application of those austenitic stainless steels necessary for general corrosion resistance, because they are susceptible to stress corrosion cracking. This cracking results from tensile stresses in combination with offensive agents such as polythionic acids, chlorides, and caustics. To screen candidate construction materials for resistance to stress corrosion cracking, we exposed racks of stressed U-bend specimens in welded and as-wrought conditions at four coal liquefaction pilot plants. Results from exposures through June 1980 were described in a previous report for exposures in the SRC plants. This report summarizes the on-site test results from June 1980 through October 1981 for the two SRC pilot plants and the H-Coal and Exxon coal liquefaction pilot plants.

  3. Analysis and prevention of metallurgical failures at a major direct coal liquefaction pilot plant

    International Nuclear Information System (INIS)

    The H-Coal Pilot Plant in Catlettsburg, KY was the largest-capacity direct coal liquefaction project operating in the United States. Since the start of operations, performance of its components was carefully monitored and occasional failures were examined and documented. The results of the examinations were used to develop remedial steps and improve the design of scale-up units. In this paper, the metallurgical aspects of the following incidents will be described: 1) stress corrosion cracking of martensitic stainless steel bolting on the waterside of a heat exchanger; 2) stress corrosion cracking of a superalloy seal ring; 3) brittle failure of a low alloy nut in a block valve body; 4) corrosion damage in the fractionator and side stripper; 5) erosion/corrosion of a coal liquid transfer line in the atmospheric fractionation area; 6) pitting corrosion in a deaerator carbon steel inlet pipe; 7) brittle failure of a martensitic stainless steel ball in a block valve handling coal liquids; and 8) cracking of cobalt-base alloy seat rings in block valve applications. In addition, remedial steps and preventive measures leading to successful performance after repair are briefly described

  4. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  5. An advanced extruder-feeder biomass liquefaction reactor system

    Science.gov (United States)

    White, Don H.; Wolf, D.; Davenport, G.; Mathews, S.; Porter, M.; Zhao, Y.

    1987-11-01

    A unique method of pumping concentrated, viscous biomass slurries that are characteristic of biomass direct liquefaction systems was developed. A modified single-screw extruder was shown to be capable of pumping solid slurries as high as 60 weight percent wood flour in wood oil derived vacuum bottoms, as compared to only 10 to 20 weight percent wood flour in wood oil in conventional systems. During the period August, 1985 to April, 1987, a total of 18 experimental continuous biomass liquefaction runs were made using white birch feedstock. Good operability with feed rates up to 30 lb/hr covering a range of carbon monoxide, sodium carbonate catalyst, pressures from 800 to 3000 psi and temperatures from 350 C to 430 C was achieved. Crude wood oils containing 6 to 10 weight percent residual oxygen were obtained. Other wood oil characteristics are reported.

  6. Recent Advances in Precombustion Coal Cleaning Processes

    Institute of Scientific and Technical Information of China (English)

    Shiao-HungChiang; DaxinHe

    1994-01-01

    The mineral matter in coal constitutes a major impediment to the direct use of coal in power plants.A concerted effort has been mounted to reduce the ash/sulfur contents in product coal to meet the ever more stringent environmental regulations.In recent years,significant advances have taken place in fine coal cleaning technologies.A review of recent developments in aveanced physical,chemical and biological processes for deep-cleaning of fine coal is presented.

  7. Chemical analysis and mutational assay of distilled oils from the H-coal direct liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Later, D.W.; Wright, C.W.; Stewart, D.L.

    1985-01-01

    Samples from the H-Coal process, a catalytic, single-stage, coal liquefaction technology, were chemically characterized and screened for microbial mutagenicity. For these investigations, a blend of light and heavy H-Coal process oils was fractionally distilled into 50/sup 0/F boiling point cuts. The chemical analyses and biological testing results presented in this status report deal primarily with the blended material and the distillate fractions boiling above 650/sup 0/F. Results from the microbial mutagenicity assays indicated that onset of biological activity in the crude materials occurred above 700/sup 0/F. Similar trends have been observed for Solvent Refined Coal (SRC) I, SRC II, Integrated Two-Stage Liquefaction (ITSL) and Exxon EDS process materials. After chemical class fractionation, the primary source of microbial mutagenicity of the crude boiling point cuts was the nitrogen-containing polycyclic aromatic compound (N-PAC) fractions. Amino polycyclic aromatic hydrocarbons (amino-PAH) were present at sufficient concentration levels in the N-PAC fractions to account for the observed mutagenic responses. In general, the chemical composition of the H-Coal materials studied was similar to that of other single-stage liquefaction materials. The degree of alkylation in these materials was determined to be greater than in the SRC and less than in the EDS process distillate cuts. 13 references, 8 figures, 11 tables.

  8. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1992-04-07

    The ultimate objective of this research has been to uncover novel reagents and experimental conditions for heteroatom removal and hydrogen transfer processes, which would be applicable to the liquefaction of coal under low-severity conditions. To this end, one phase of this research has investigated the cleavage of carbon-heteroatom bonds involving sulfur, oxygen, nitrogen and halogen by subvalent transition-metal complexes. A second phase of the study has assessed the capability of the same transition-metal complexes or of organoaluminum Lewis acids to catalyze the cleavage of carbon-hydrogen bonds in aromatics and hence to promote hydrogen shuttling. Finally, a third phase of our work has uncovered a remarkable synergistic effect of combinations of transition metals with organoaluminum Lewis acids on hydrogen shuttling between aromatics and hydroaromatics. (VC)

  9. Preparation of mesoporous activated carbons from coal liquefaction residue for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    Jianbo Zhang; Lijun Jin; Shengwei Zhu; Haoquan Hu

    2012-01-01

    Mesoporous activated carbons were prepared from direct coal liquefaction residue (CLR) by KOH activation method,and the experiments were carried out to investigate the effects of KOH/CLR ratio,solvent for mixing the CLR and KOH,and carbonization procedure on the resultant carbon texture and catalytic activity for catalytic methane decomposition (CMD).The results showed that optimal KOH/CLR ratio of 2 ∶ 1;solvent with higher solubility to KOH or the CLR,and an appropriate carbonization procedure are conductive to improving the carbon pore structure and catalytic activity for CMD.The resultant mesoporous carbons show higher and more stable activity than microporous carbons.Additionally,the relationship between the carbon textural properties and the catalytic activity for CMD was also discussed.

  10. Chemistry and morphology of coal liquefaction. Annual report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1980-09-01

    The present annual report summarizes quarterly reports and includes work performed during the last quarter of fiscal 1980. The first year of this project has just been completed and much of the time and effort has been concentrated on equipment building, assembling, testing, and on staffing. This, of course, has been more true in the areas of work with spectroscopic and high pressure equipment than in organic chemical reactions. More experimental results are therefore reported in the areas of hydrogen transfer mechanisms and catalysis and organo-metallic chemistry. A few of the significant results in these and other areas are the evidence for catalysis in hydrogen transfer from tetralin; a novel and possibly very important new synthesis of alkyl aromatics from benzene, carbon monoxide, and hydrogen; the study of coals in the transmission electron microscope identifying coal macerals, minerals and metals, and leading to the possibility of observing location of and catalytic influences on pyrolysis and hydrogenation at elevated temperatures; the finding that scales formed on deactivated cobalt-molybdena-alumina-hydrogenation catalysts contain not only metals from the liquid feedstocks, but also molybdenum sulfide which must derive from migration from the catalyst interior to and beyond the surface. Insights gained in mechanisms of pyrolysis, hydrogenation, hydrogen transfer, and indirect liquefaction of coal promise to lead to improving technology by defining problem areas and showing routes to by-pass problems.

  11. EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-02-01

    All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

  12. Relationships of coal characteristics to coal reactivity for direct hydrogenation liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Voorhees, K.J.; Durfee, S.L.

    1987-01-01

    Two suites of coals from the US have been liquefied in a batch stirred autoclave reactor under a set of standard conditions. Data from the reactor have permitted both the rate and extent of conversion to be measured. Rate of reaction and extent of conversion of coal have then been used as dependent variables for development of correlations for reactivity with basic coal chemical, geochemical, and structural properties. In general, use of a kinetic definition for reactivity has been shown to be superior in ranking relative reactivities among closely related coals, and for developing correlations with compositional parameters such as volatile matter, reactive macerals, and vitrinite reflectance. Carbon aromaticity as determined by /sup 13/C-NMR and structural parameters as determined by pyrolysis/mass spectrometry have also been found to be useful in providing insight into the relationship between coal structure and coal reactivity. 17 references.

  13. Coal Liquefaction characteristics and chemical structure of product oil; Sekitan ekika hanno tokusei to seiseibutsu no kagaku kozo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, H.; Sato, M.; Chiba, T.; Hattori, H. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology; Sasaki, M. [Hokkaido National Industrial Research Institute, Sapporo (Japan)

    1996-10-28

    Through the hydrogenolysis of Wandoan coal and Tanito Harum coal which are used for the NEDOL process, differences of liquefaction characteristics between them were found. The purpose of this study is to grasp these differences as differences of chemical structures of oil fractions. The compound type analysis was conducted for oil fractions obtained at varied reaction temperature for varied reaction time. Coal liquefaction characteristics of these coals were discussed by relating oil yields and chemical structures. For Tanito Harum coal, yields of gas and oil were considered to be lower than those for Wandoan coal, which reflected that the contents of partially hydrogenated hydroaromatics in oil fraction from the former were lower than those from the latter, and that the remarkable change of composition did not occur with the progress of the reaction. For both the coals, the remarkable changes in the average molecular weight of oil fraction were not observed with the progress of the reaction. While, the content of methane gradually increased with the progress of the reaction, which suggested that oil was gradually dealkylated. 5 figs.

  14. Second Advanced Coal Gasification Symposium: Introduction

    International Nuclear Information System (INIS)

    This introductory paper presents an energy picture in China, including the present situation and the future prospects, as well as measures to be taken. The paper first describes the energy resources and reserves of China. Energy consumption is: coal - 71%; petroleum - 22%; water power - 4%; and natural gas - 3%. A resource appraisal was performed to find the best ways of utilizing China's energy sources. Besides the four mentioned above, nuclear power, biogas, biomass liquefaction, and other renewable energy sources were appraised. The paper then discussed plans for resource exploitation, conversion, and utilization and plans for energy conservation in transportation sectors and waste energy utilization

  15. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1991--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  16. Chemistry and morphology of coal liquefaction. Quarterly report, January 1, 1984-March 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1984-04-01

    In task 1, selective synthesis of gasoline-range components from synthesis gas, rate expressions were developed for four different iron catalysts (promoted and unpromoted). Data for all four catalysts can be correlated by a semi-empirical expression. In task 2 catalyzed low temperature reactions of carbon and water, the catalytic activity for the production of hydrocarbons from graphite and water over KOH plus a co-catalyst was investigated for several first row transition metals. NiO showed the greatest activity. Several samples of /sup 13/CO, /sup 13/CO/sub 2/ and H/sub 2/O adsorbed on graphite and on catalyst-graphite systems after reaction with steam were prepared for NMR investigation. In task 3 chemistry of coal solubilization and liquefaction, rate studies of quinoline reduction to tetrahydroquinoline in the presence of the homogeneous catalysts (phi/sub 3/P)/sub 3/RhCl have provided definitive evidence that benzothiophene, indole, pyrrole, carbazole, thiophene, p-cresol and dibenzothiophene enhance the initial rate of hydrogenation of quinoline by a factor greater than 1.5. P-cresol was found to enhance the initial rate of hydrogenation of quinoline (1.6 to 2 fold) in a model coal liquid with polymer-supported (2% cross-linked) (phi/sub 3/P)/sub 3/ RhCl. 2 references, 6 figures.

  17. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Boakye, E.; Vittal, M.; Osseo-Asare, K. [and others

    1993-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of inverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effects of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined.

  18. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  19. Study of initial stage in coal liquefaction. Increase in oil yield with suppression of retrogressive reaction during initial stage; Ekika hanno no shoki katei ni kansuru kenkyu. 1.

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, K.; Kanaji, M.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    For the coal liquefaction, improvement of liquefaction conditions and increase of liquefied oil yield are expected by suppressing the recombination through rapid stabilization of pyrolytic radicals which are formed at the initial stage of liquefaction. Two-stage liquefaction combining prethermal treatment and liquefaction was performed under various conditions, to investigate the effects of reaction conditions on the yields and properties of products as well as to increase liquefied oil yield. Consequently, it was found that the catalyst contributes greatly to the hydrogen transfer to coal at the prethermal treatment. High yield of n-hexane soluble fraction with products having low condensation degree could be obtained by combining the prethermal treatment in the presence of hydrogen and catalyst with the concentration of slurry after the treatment. This was considered to be caused by the synergetic effect between the improvement of liquefaction by suppressing polymerization/condensation at the initial stage of reaction through the prethermal treatment and the effective hydrogen transfer accompanied with the improvement of contact efficiency of coal/catalyst by the concentration of slurry at the stage of liquefaction. 4 refs., 8 figs.

  20. Coal liquefaction in early stage of NEDOL process 1t/d PSU; 1t/d PSU ni okeru ekika shoki hanno ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Kawabata, M.; Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the behavior of coal liquefaction reaction in early stage as a part of studies on the coal liquefaction characteristics using NEDOL process 1 t/d process supporting unit (PSU), coal slurry sample was taken from the outlet of slurry preheater located in the upflow of liquefaction reactors, and was tested. Tanito Harum coal was used for liquefaction. Preheater was operated under the condition of pressure of 170 kg/cm{sup 2}, gas flow rate of 64 Nm{sup 3}/hr, and at temperature up to 410{degree}C at the outlet, in response to the standard test condition. The slurry sample was discharged into a high temperature separator with temperature of 250{degree}C. Liquefaction was not proceeded at the outlet of preheater. Solid residue yielded around 80%, and liquid yielded around 15%. Gases, CO and CO2, and water yielded also small amount around 3%. The solid sample contained much IOM fraction (tetrahydrofuran-insoluble and ash), and the liquid contained much heavy oil fraction. Hydrogenation was not proceeded, and the hydrogen consumption was very low showing below one-tenth of that at the usual operation. Hydrogen sulfide gas was formed at early stage, which suggested that the change of iron sulfide catalyst occur at early stage of liquefaction. 1 ref., 5 figs., 2 tabs.

  1. Effect of sulfur or hydrogen sulfide on initial stage of coal liquefaction in tetralin; Sekitan ekika shoki katei ni okeru io to ryuka suiso no hatasu yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, M. [Government Industrial Research Institute, Kyushu, Saga (Japan)

    1996-10-28

    It is well known that the solubilization of coal can be accelerated by adding sulfur or hydrogen sulfide during direct liquefaction of difficult coals. From the studies of authors on the coal liquefaction under the conditions at rather low temperatures between 300 and 400{degree}C, liquefaction products with high quality can be obtained by suppressing the aromatization of naphthene rings, but it was a problem that the reaction rate is slow. For improving this point, results obtained by changing solvents have been reported. In this study, to accelerate the liquefaction reaction, Illinois No.6 coal was liquefied in tetralin at temperature range from 300 to 400{degree}C by adding a given amount of sulfur or hydrogen sulfide at the initial stage of liquefaction. The addition of sulfur or hydrogen sulfide provided an acceleration effect of liquefaction reaction at temperature range between 300 and 400{degree}C. The addition of sulfur or hydrogen sulfide at 400{degree}C increased the oil products. At 370 and 400{degree}C, the liquid yield by adding sulfur was slightly higher than that by adding hydrogen sulfide, unexpectedly. The effects of sulfur and hydrogen sulfide were reversed when increasing the hydrogen pressure. 5 figs., 1 tab.

  2. Liquefaction studies of low-rank Malaysian coal using high-pressure high-temperature batch-wise reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Azlan Mohd Ishak; Khudzir Ismail; Mohd Fauzi Abdullah; Mohd Omar Abdul Kadir; Abdul Rahman Mohamed; Wan Hasiah Abdullah [University Technology MARA, Perlis (Malaysia). Fuel Combustion Research Laboratory, Faculty of Applied Sciences

    2005-12-01

    Direct liquefaction of low-rank Malaysian coal from the Mukah Balingian (MB) area was successfully carried out in a 1000 ml high-temperature (360-450{sup o}C) high-pressure (4-13 MPa) batch-wise reactor system using tetralin as hydrogen donor solvent. The results indicated that the percent coal conversion obtained were in the range of 31-90%. At optimum conditions of 450{sup o}C and 4 MPa, the oil + gas, asphaltene and preasphaltene of the coal extract were 80%, 7%, and 2%, respectively. It was observed that heat plays an important role in comparison to pressure in contributing to high coal conversion, oil yield, and organic properties of the residues. The high coal conversion and oil yield correlate well with the high content of reactive macerals, i.e., vitrinite and exinite, in the coal. Other parameters that were also investigated include the effect of reaction time (0-120 min) and coal-to-solvent ratio. A high yield of asphaltene and preasphaltene was obtained at the longest reaction time (i.e., 120 min). Coal conversion and oil yield increase with increasing in coal-to-solvent ratio, with the optimal ratio being 1:5.

  3. Sequential low-temperature depolymerization and liquefaction of US coal. Final report, January 1, 1987--January 1, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Shabtai, J.S.; Wiser, W.H.

    1992-05-01

    Based on the above described differences in the reactivity of intercluster linkages, an effective new procedure for low-temperature coal depolymerization-liquefaction was proposed and initially examined in our laboratory and then further developed in the framework of this project. The pre-extraction with THF removes most of the easily extractable material within the coal network, leaving the porous system of the coal more susceptible to catalyst impregnation. During subsequent impregnation, the FeCl{sub 3} catalyst becomes uniformly dispersed in the coal particles as recently demonstrated by electron probe microscopy. The partial depolymerization of the coal during the HT step involves preferential hydrogenolytic cleavage of alkylene (e.g. , methylene), benzyl etheric, cycloalkyl etheric, and some activated thioetheric linkages. The following BCD step completes the coal depolymerization by base-catalyzed hydrolysis (or alcoholysis) of diaryl etheric, aryl cycloalkyl etheric, diaryl thioetheric, and other bridging groups. Depolymerized coal samples obtained by the above sequential HT-BCD treatment consist of mixtures of low molecular weight products, composed primarily of monocluster compounds. In the final step, the depolymerized product undergoes exhaustive heteroatom removal, partial ring hydrogenation, and some C-C hydrogenolysis to yield a light hydrocarbon oil. As demonstrated in the present work this procedure has the advantages of very high overall coal conversion to low molecular weight hydrocarbon oils. It also provides very valuable structural information on the fundamental building units of the coal structure.

  4. Heavy recycle solvent studies in two-stage coal liquefaction. Final technical report, September 1, 1982-December 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Longanbach, J. R.

    1984-01-10

    The objective of this program has been to study the chemistry of the components with high boiling points in a direct coal liquefaction recycle solvent and to identify those components which lead to higher overall yields and improved product stability in the initial coal dissolution step of direct coal liquefaction processes. The major conclusions are: -454 C recycle solvent is primarily aromatic hydrocarbons (73%) and contains almost no asphaltenes; +454 C recycle solvent is primarily asphaltenes and aromatic hydrocarbons; recycle solvent also contains aliphatic hydrocarbons, N-containing aromatics and O-containing aromatics; heteroatoms in coal derived materials seem to be grouped by type, i.e. acidic O and basic N and sulfur occur together; under helium a small net amount of hydrogen and more CO and CO/sub 2/ are produced than under hydrogen; under hydrogen the amounts of H/sub 2/S and hydrocarbon gases are increased and a small amount of hydrogen gas is usually consumed; overall coal conversions to THF solubles are improved by adding more -454 C solvent but decreased by adding +454 C solvent; for added fractions of -454 C solvent the pecent conversion to THF solubles increases in the order aromatic hydrocarbons (+7.2) > aliphatic hydrocarbons (+0.8) > no added solvent (0.0) > N-containing aromatics (-0.9) > O-containing aromatics (-22.1); percent conversion to THF solubles using -454 C solvent with +454 C solvent fractions added decrease in the order aliphatics (+3.7) > aromatic hydrocarbons (+3.0) > no added solvent (0.0) > O-containing aromatics (-9.3) > N-containing aromatics (-13.3); of the +454 C solvent components, aromatic hydrocarbons and aliphatic hydrocarbons are beneficial but total only approx. 25% of the +454 C recycle solvent; and steric effects may be important in determining the effectiveness of the heavier solvent components as liquefaction solvents. 28 references, 25 figures, 31 tables.

  5. 德国IGOR煤液化工艺及云南先锋褐煤液化%IGOR PROCESS OF DIRECT COAL LIQUEFACTION AND XIANFENG BROWN COAL LIQUEFACTION IN IT

    Institute of Scientific and Technical Information of China (English)

    李克健; 史士东; 李文博

    2001-01-01

    In this paper, IGOR process of direct coal liquefaction in Germany and experimental results of Xianfeng brown coal in 200 kg/d PDU of IGOR process in Germany are introduced. Compared with other direct coal liquefaction processes, IGOR process is characterized with higher throughout of coal hydrogenation reactor, higher integration degree and higher quality of oils. The results of Xianfeng coal tested in 200 kg/d PDU of IGOR process in Germany showed IGOR process marched Xianfeng brown coal well with 53% of oil yield, 2 mg/kg and 17 mg/kg of N and S contents. Qualified 0# diesel oil can be produced from Xianfeng coal oil with simple distillation and qualified 90# lead free gasoline can be produced from it with reforming step.%介绍了德国IGOR煤直接液化工艺和云南先锋褐煤在IGOR工艺200 kg/d的PDU装置的试验结果. 与其它煤直接液化工艺相比, IGOR工艺具有煤直接液化反应器的空速高、系统集成度高和油品质量好的特点. 云南先锋褐煤在IGOR工艺200 kg/d的PDU装置上的试验结果表明, 先锋褐煤是适宜IGOR煤液化的煤种, 得到的油收率为53%, 油品中氮和硫的含量分别为2 mg/kg和17 mg/kg.煤液化油经过简单蒸馏可得到合格的0#柴油,经过重整可得到合格的90#无铅汽油.

  6. Low-severity catalytic two-stage liquefaction process: Illinois coal conceptual commercial plant design and economics

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, L.M.; Comolli, A.G.; Popper, G.A.; Wang, C.; Wilson, G.

    1988-09-01

    Hydrocarbon Research, Inc. (HRI) is conducting a program for the United States Department of Energy (DOE) to evaluate a Catalytic Two-Stage Liquefaction (CTSL) Process. This program which runs through 1987, is a continuation of an earlier DOE sponsored program (1983--1985) at HRI to develop a new technology concept for CTSL. The earlier program included bench-scale testing of improved operating conditions for the CTSL Process on Illinois No. 6 bituminous coal and Wyoming sub-bituminous coal, and engineering screening studies to identify the economic incentive for CTSL over the single-stage H-Coal/reg sign/ Process for Illinois No. 6 coal. In the current program these engineering screening studies are extended to deep-cleaned Illinois coal and use of heavy recycle. The results from this comparison will be used as a guide for future experiments with respect to selection of coal feedstocks and areas for further process optimization. A preliminary design for CTSL of Illinois deep-cleaned coal was developed based on demonstrated bench-scale performance in Run No. 227-47(I-27), and from HRI's design experience on the Breckinridge Project and H-Coal/reg sign/ Process pilot plant operations at Catlettsburg. Complete conceptual commercial plant designs were developed for a grassroots facility using HRI's Process Planning Model. Product costs were calculated and economic sensitivities analyzed. 14 refs., 11 figs., 49 tabs.

  7. EDS coal liquefaction process development, Phase V. Engineering design study of an EDS Illinois bottoms fired hybrid boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-04-01

    This interim report documents work carried out by Combustion Engineering, Inc. under a contract to Exxon Research and Engineering Company and was prepared by Combustion Engineering, Inc. This report is the second of two reports by Combustion Engineering, Inc. on the predevelopment phase of the Hybrid Boiler program and covers the results of an engineering design study of a Hybrid Boiler firing the vacuum distillation residue (vacuum bottoms) derived from processing Illinois No. 6 coal in the EDS Coal Liquefaction Process. The function of the Hybrid Boiler is to heat the coal slurry feed for an EDS coal liquefaction plant by a process coil in the convection section and to generate high pressure steam in the radiant section. The Hybrid Boiler design developed in this phase of the program is based on the results of a laboratory characterization program (reported in EDS Interim Report FE-2893-112), on Combustion Engineering, Inc.'s extensive experience as a designer and supplier of steam generating equipment, and on Exxon Research and Engineering Co.'s experience with the design and operation of process heaters.

  8. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  9. Coal conversion rate in 1t/d PSU liquefaction reactor; 1t/d PSU ekika hannoto ni okeru sekitan tenka sokudo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the coal liquefaction characteristics, coal slurry samples were taken from the outlets of the reactors and slurry preheater of NEDOL process 1 t/d process supporting unit (PSU), and were analyzed. Tanito Harum coal was used for liquefaction, and the slurry was prepared with recycle solvent. Liquefaction was performed using synthetic iron sulfide catalyst at reaction temperatures, 450 and 465{degree}C. Solubility of various solid samples was examined against n-hexane, toluene, and tetrahydrofuran (THF). When considering the decrease of IMO (THF-insoluble and ash) as a characteristic of coal conversion reaction, around 20% at the outlet of the slurry preheater, around 70% within the first reactor, and several percents within the successive second and third reactors were converted against supplied coal. Increase of reaction temperature led to the increase of evaporation of oil fraction, which resulted in the decrease of actual slurry flow rate and in the increase of residence time. Thus, the conversion of coal was accelerated by the synergetic effect of temperature and time. Reaction rate constant of the coal liquefaction was around 2{times}10{sup -1} [min{sup -1}], which increased slightly with increasing the reaction temperature from 450 to 465{degree}C. 3 refs., 5 figs., 1 tab.

  10. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  11. Japan`s Sunshine Project. 1991 annual summary of coal liquefaction and gasification; 1991 nendo sunshine keikaku seika hokokusho gaiyoshu. Sekitan no ekika gas ka

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    Out of the research and development on the 1991 Sunshine Project, the results of coal liquefaction/gasification are reported. The basic research of coal liquefaction/gasification is conducted. The research plan for a 150 ton/day scale pilot plant (PP) is worked out for the development of bituminous coal liquefaction technology by NEDOL process. Data of PSU (Process Support Units) operation, especially, are studied. Concerning the data obtained through dismantling of the 50 ton/day PP in Australia which uses Australian Victoria coal due to completion of its operation and also obtained from its support research, they are reflected in the design of a demonstration plant, and the results are arranged for study. Research and development on refining technology of coal-derived liquid such as Illinois coal liquid and on application technology of its products are made. For the development of coal-use hydrogen production technology, conducted is the research of a high temperature gasification PP by entrained flow bed process which is the core of the coal gasification technology. Elementary study with a 2 ton/day furnace is made for the development of the entrained flow bed coal gasification combined cycle power generation system. Also conducted are PP construction, adjusting operation and the overall research operation.

  12. Solvent tailoring in coal liquefaction. Quarterly report, May 1982-August 1982. [Comparison of subcritical and supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A.R.; Guin, J.A.; Curtis, C.W.; Williams, D.C.

    1982-01-01

    The initial objective of this work was to study the phase distribution of donor solvents and solvent mixtures during the liquefaction of coal, to investigate the effects of phase distribution on coal conversion, and to determine the advantages, if any, of operating at subcritical and/or supercritical conditions. Computer simulations were used to predict the phase distribution, for various binary systems, as a function of temperature. The FLASH program was used to theoretically predict phase distribution for various model systems. Due to limitations in the computer program, success was achieved only in a few cases. Even in these cases, the existence of two-phase regions was observed only at temperatures and pressures far below normal liquefaction conditions. An extensive review of the literature was carried out in order to survey methods of experimentally studying vapor-liquid equilibria. Finally, some preliminary laboratory studies were carried out with the use of benzothiophene-dodecane as the model reaction system. It was felt that the study of the effect of reactor configuration on conversion would provide insight into whether phase distribution or mass transfer was the limiting consideration for coal conversion. However, no conclusive results were obtained from these studies.

  13. Characterization of selected Ohio coals to predict their conversion behavior relative to 104 North American Coals. [Factors correlating with liquefaction behavior

    Energy Technology Data Exchange (ETDEWEB)

    Whitacre, T. P.; Hunt, T. J.; Kneller, W. A.

    1982-02-01

    Twenty-six coal samples from Ohio were collected as washed and seam samples, and lithobodies within the seams. Characterization of these samples included determination of % maceral, % anti R/sub max/, LTA, chlorine content and proximate/ultimate and qualitative mineral analyses. These data were compared to data from a similar project by Yarzab, R.F., et al., 1980 completed at Pennsylvania State University using tetralin as the hydrogen donor solvent. The characteristics of these coals were correlated with liquefaction conversion and other data accrued on 104 North American coals by statistical analyses. Utilizing percent carbon, sulfur, volatile matter, reflectance, vitrinite and total reactive macerals, Q-mode cluster analysis demonstrated that Ohio coals are more similar to the coals of the Interior province than to those of the Appalachian province. Linear multiple regression analysis for the 104 North American coals provided a prediction equation for conversion (R = .96). The predicted conversion values for the samples range from 58.8 to 79.6%, with the Lower Kittanning (No. 5) and the Middle Kittanning (No. 6) coal seams showing the highest predicted percent conversion (respectively, 73.4 and 72.2%). The moderately low FSI values for the No. 5 and No. 6 coals (respectively, 2.5 and 3) and their moderately high alkaline earth content (respectively, 0.69 and 0.74%) suggest that these coals possess the best overall properties for conversion. Stepwise regression has indicated that the most important coal characteristics affecting conversion are, in decreasing order of importance: % volatile matter, % vitrinite and % total sulfur. Conversion processes can be expected to produce higher yields with Ohio coals due to the presence of such mineral catalysts as pyrite and kaolinite. It is believed that the presence of these disposable catalysts increases the marketability of Ohio coals.

  14. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

    1990-08-15

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  15. Valves - current operating experience of slurry valves (block and letdown) in coal liquefaction processes. Third quarter report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This paper summarizes the recent letdown and block valve experience in the liquefaction pilot plants. Also included is a brief description of the research and development activities on valves which are conducted in supporting laboratories. The purpose of the summary is to concentrate on critical component problems common to all liquefaction plants, to avoid duplication of efforts, and to help provide timely solutions to the valve problems. The main source of information used in this paper is the Minutes of the Critical Component and Materials Meeting which is sponsored by the Office of Coal Processing, Fossil Energy, Department of Energy. Other sources of information such as the technical progress reports are also included based on availability and relevance to topics covered in this paper. It is intended that this report will be followed by updates as pertinent information concerning valves becomes available. In the subsequent sections of this paper a brief outline of past valve studies is given as background material followed by a summary of the most recent valve operating experience at the liquefaction plants.

  16. Effect of intermolecular cohesion on coal liquefaction. 3. Reactivity of oxygen methylated coal; Sekitan teibunshika hanno ni okeru bunshikan gyoshuryoku no koka. 3. O-methyl ka tan no hanno tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, M.; Nagaishi, H.; Yoshida, T. [Hokkaido National Industrial Research Institute, Sapporo (Japan)

    1996-10-28

    The reactivity of oxygen methylated coal was studied to control hydrogen bond in bituminous coal liquefaction and intermolecular cohesion such as van der Waals force. In experiment, crushed and dried Illinois coal of 100mesh or less was used as specimen, and oxygen methylated coal was prepared by Liotta`s method using tetrabutylammonium halide. Coal liquefaction was conducted in an electromagnetic agitation autoclave using tetralin solvent under initial hydrogen pressure of 100kg/cm{sup 2} while heating. The molecular weight distribution of the products obtained was measured by gel permeation chromatography (GPC) analysis. The experimental results are as follows. The effect of intermolecular cohesion in bituminous coal on the reactivity is mainly derived from decomposing reaction from preasphaltene to oil. Yields of oil fraction by methylation increase corresponding to release of intermolecular cohesion. Since the thermal release is promoted with temperature rise, the difference in yield due to different treatments decreases. 5 refs., 3 figs., 1 tab.

  17. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  18. Coal liquefaction technology. 1979-March, 1980 (citations from the American Petroleum Institute data base). Report for 1979-Mar 80. [318 abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-06-01

    Techniques and processes for the conversion of coal to liquid chemicals and fuels are cited in this bibliography covering world-wide literature. Included are studies covering in-situ combustion, process equipment, design, and performance. Coal desulfurization, cleaning, or preparation which does not directly involve the liquefaction process are not covered. (This updated bibliography contains 318 abstracts, all of which are new entries to the previous edition.)

  19. Coal liquefaction technology. 1978-1979 (citations from the American Petroleum Institute data base). Report for 1978-79. [188 abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-06-01

    Techniques and processes for the conversion of coal to liquid chemicals and fuels are cited in this bibliography covering world-wide literature. Included are studies covering in-situ combustion, process equipment, design, and performance. Coal desulfurization, cleaning, or preparation which does not directly involve the liquefaction process are not covered. (This updated bibliography contains 188 abstracts, none of which are new entries to the previous edition.)

  20. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Lili Huang; Schobert, H.H.; Chunshan Song

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  1. Advanced clean coal utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moritomi, Hiroshi [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  2. Advanced Coal Wind Hybrid: Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW

  3. Coal liquefaction process solvent characterization and evaluation: Technical progress report, July 1, 1986 through September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1987-03-01

    Conoco Coal Research Division is characterizing samples of direct coal liquefaction process oils based on a variety of analytical techniques to provide a detailed description of the chemical composition of the oils, to more fully understand the interrelationship of process oil composition and process operations, to aid in plant operation, and to lead to process improvements. The approach taken is to obtain analyses of a large number of well-defined process oils taken during periods of known operating conditions and known process performance. Close cooperation is maintained with the process developers and with DOE in order to maximize the benefits of the work. Analytical methods used are based on their ability to provide quantitatively valid measures of process oil composition. Particular use is made of methods which provide chemical/molecular information of proven relevance to process performance. In addition, all samples are treated using conventional methods of analysis and preparation so that unit performance parameters, such as conversions and yields, can be independently determined to assure sample validity and correlation of analytical results among various plant operations. 10 refs., 3 figs., 20 tabs.

  4. Chemistry and morphology of coal liquefaction. Annual report, October 1, 1981-September 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1982-10-01

    Experiments are reported on the hydrogenation, hydrogenolysis and alkylation of coal and coal liquids, usually with catalysts such as transition metals and alkali metal compounds. One experiment involved electron microscopy as graphite was reacted with water vapor of hydrogen or mixtures of these. Other experiments involved Fischer-Tropsch synthesis with iron catalysts on different supports and the product distribution. Finally, the deactivation of coal conversion catalysts, such as vanadyl naphthenate was studied. (LTN)

  5. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.K.; Huang, L.; Schobert, H.H.; Hatcher, P.G.

    1994-01-01

    In this quarter, progress has been made in the following two aspects: (1) spectroscopic and chemical reaction studies on the effects of drying and mild oxidation of a Wyodak subbituminous coal on its structure and pretreatment/liquefaction at 350{degrees}C; and (2) effects of dispersed catalyst and solvent on conversion and structural changes of a North Dakota lignite. Drying and oxidation of Wyodak subbituminous coal at 100-150{degrees}C have been shown to have significant effects on its structure and on its catalytic and non-catalytic low-severity liquefaction at 350{degrees}C for 30 min under 6.9 MPa H{sub 2}. Spectroscopic analyses using solid-state {sup 13}C NMR, Pyrolysis-GC-MS, and FT-IR revealed that oxidative drying at 100-150{degrees}C causes the transformation of phenolics and catechol into other related structures (presumably via condensation) and high-severity air drying at 150{degrees}C for 20 h leads to disappearance of catechol-like structure. Increasing air drying time or temperature increases oxidation to form more oxygen functional groups at the expense of aliphatic carbons. Such a clearly negative impact of severe oxidation is considered to arise from significantly increased oxygen functionality which enhances the cross-link formation in the early stage of coal liquefaction. Physical, chemical, and surface physicochemical aspects of drying and oxidation and the role of water are also discussed. A North Dakota lignite (DECS-1) coal was studied for its behaviors in non-catalytic and catalytic liquefaction. Reactions were carried out at temperatures between 250 and 450{degrees}C. Regardless the reaction solvents and the catalyst being used, the optimum temperature was found to be 400{degrees}C. The donor solvent has a significant effect over the conversion especially at temperatures higher than 350{degrees}C.

  6. Coal

    International Nuclear Information System (INIS)

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  7. Coal and coal-bearing strata: recent advances and future prospects

    OpenAIRE

    Scott, Andrew C.

    1987-01-01

    Recent advances in coal geology are highlighted. The increase in our knowledge of peat formation is emphasized and the application of hydrological models of mire systems to coal-bearing strata is advocated. The importance of coalification studies to the geological community as a whole should not be underestimated, Consideration of the original peat-forming vegetation by coal geologists is advocated. Both conceptual and technical advances in coal geology are reviewed. Integration of different ...

  8. Direct coal liquefaction using iron-titanium hydride as a hydrogen distribution and catalytic material. Yearly report No. 1, September 1, 1984-August 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.E. Jr.

    1985-09-29

    During this year the experimental apparatus was completed after substantial delays by the manufacturer and eight direct coal liquefaction experiments were accomplished. These experiments have produced conversion and selectivity data on samples of Utah coal slurried in tetralin and catalyzed using iron-titanium hydride. Hydrogen loading of the alloy, catalyst particle size, catalyst concentration, coal particle size, operating temperatures for alloy addition and liquefaction without the catalysts present, have all been studied during these experiments. Conversions as high as 61% DAF in 30 min have been recorded at 500/sup 0/F and 500 psia. Product selectivities favor the oil fraction during the initial phase of the reaction, but as the reaction proceeds the heavier fractions are observed to increase at the expense of the oil fraction. We are currently working on a kinetic model in an effort to predict these results. Additionally, proton NMR, fractional distillation, and chromatographic analyses are currently being performed on the recovered product. We have completed the study of Utah coal and are moving on to samples of Kentucky and Alabama coals after a minor modification of the experimental apparatus is completed. Equipment manufacture, delivery, and installation delays, totaling over 6 months, greatly reduced the time available for research, making a 6 month no cost extension necessary. The extended time will permit completion of the proposed research tasks. 10 figs., 8 tabs.

  9. Coal gasification and liquefaction as substitutes for petroleum and natural gas - possibilities and limitations

    International Nuclear Information System (INIS)

    There are four processes by which coal can be converted into a marketable secondary energy source: 1. Coking: Most of the coke produced is used in the steel-producing industry. 2. Electric power generation, mainly for base load power supply. Here, coal must be supplemented by nuclear power to an increasing extent. 3. Hydrogenation: Heating oil and motor fuels can be produced. Coal-derived motor fuel has a higher cost of 80 Pf/l as compared with petroleum-derived fuel. This means that even with financial aid by the state, hydrogenation will not be competitive for a long time to come. 4. Gasification: There are different fields of application. Syngas from brown coal has almost reached competitiveness; while SNG is still twice as expensive as natural gas and is not expected to become competitive within the next decade. Considerable improvements are expected of the HTR reactor, although the date of the commercial introduction is still uncertain. In view of the fact that coal will account for 30% of the future energy supply and in consideration of the enormous investments required, all economic, ecological, and technical aspects should be considered in order to optimize coal utilisation. Efficiency in utilisation must be assigned first priority in view of the increasing shortage of coal resources. (orig./EF)

  10. Long Term Environment and Economic Impacts of Coal Liquefaction in China

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Jerald [West Virginia Univ., Morgantown, WV (United States)

    2014-03-31

    The project currently is composed of six specific tasks – three research tasks, two outreach and training tasks, and one project management and communications task. Task 1 addresses project management and communication. Research activities focused on Task 2 (Describe and Quantify the Economic Impacts and Implications of the Development and Deployment of Coal-to-Liquid Facilities in China), Task 3 (Development of Alternative Coal Gasification Database), and Task 4 (Geologic Carbon Management Options). There also were significant activities related to Task 5 (US-China Communication, Collaboration, and Training on Clean Coal Technologies) as well as planning activity performed in support of Task 6 (Training Programs).

  11. Pyrolysis-mass spectrometric prediction of liquefaction reactivity and structural analysis of coals

    Energy Technology Data Exchange (ETDEWEB)

    Durfee, S.L.; Voorhees, K.J.

    1985-10-01

    Forty-seven PSOC coals were pyrolyzed with eight replicates each in a Curie point pyrolysis mass spectrometer. This large data set was normalized and then analyzed using principal component analysis. From the reduced data set, equations were developed by using stepwise linear regression which modeled reactivity of the coal in tubing bombs and in the Gulf continuous flow reactor. Through the use of factor and loading spectra, structural components of the coal which were correlated with reactivity were identified. 33 references, 9 figures, 1 table.

  12. Dependence of liquefaction behavior on coal characteristics. Part VI. Relationship of liquefaction behavior of a set of high sulfur coals to chemical structural characteristics. Final technical report, March 1981 to February 1984

    Energy Technology Data Exchange (ETDEWEB)

    Neill, P. H.; Given, P. H.

    1984-09-01

    The initial aim of this research was to use empirical mathematical relationships to formulate a better understanding of the processes involved in the liquefaction of a set of medium rank high sulfur coals. In all, just over 50 structural parameters and yields of product classes were determined. In order to gain a more complete understanding of the empirical relationships between the various properties, a number of relatively complex statistical procedures and tests were applied to the data, mostly selected from the field of multivariate analysis. These can be broken down into two groups. The first group included grouping techniques such as non-linear mapping, hierarchical and tree clustering, and linear discriminant analyses. These techniques were utilized in determining if more than one statistical population was present in the data set; it was concluded that there was not. The second group of techniques included factor analysis and stepwise multivariate linear regressions. Linear discriminant analyses were able to show that five distinct groups of coals were represented in the data set. However only seven of the properties seemed to follow this trend. The chemical property that appeared to follow the trend most closely was the aromaticity, where a series of five parallel straight lines was observed for a plot of f/sub a/ versus carbon content. The factor patterns for each of the product classes indicated that although each of the individual product classes tended to load on factors defined by specific chemical properties, the yields of the broader product classes, such as total conversion to liquids + gases and conversion to asphaltenes, tended to load largely on factors defined by rank. The variance explained and the communalities tended to be relatively low. Evidently important sources of variance have still to be found.

  13. The direct liquefaction proof of concept program

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H. [New York & Puritan Avenues, Lawrenceville, NJ (United States)

    1995-12-31

    The goal of the Proof of Concept (POC) Program is to develop Direct Coal Liquefaction and associated transitional technologies towards commercial readiness for economically producing premium liquid fuels from coal in an environmentally acceptable manner. The program focuses on developing the two-stage liquefaction (TSL) process by utilizing geographically strategic feedstocks, commercially feasible catalysts, new prototype equipment, and testing co-processing or alternate feedstocks and improved process configurations. Other high priority objectives include dispersed catalyst studies, demonstrating low rank coal liquefaction without solids deposition, improving distillate yields on a unit reactor volume basis, demonstrating ebullated bed operations while obtaining scale-up data, demonstrating optimum catalyst consumption using new concepts (e.g. regeneration, cascading), producing premium products through on-line hydrotreating, demonstrating improved hydrogen utilization for low rank coals using novel heteroatom removal methods, defining and demonstrating two-stage product properties for upgrading; demonstrating efficient and economic solid separation methods, examining the merits of integrated coal cleaning, demonstrating co-processing, studying interactions between the preheater and first and second-stage reactors, improving process operability by testing and incorporating advanced equipment and instrumentation, and demonstrating operation with alternate coal feedstocks. During the past two years major PDU Proof of Concept runs were completed. POC-1 with Illinois No. 6 coal and POC-2 with Black Thunder sub-bituminous coal. Results from these operations are continuing under review and the products are being further refined and upgraded. This paper will update the results from these operations and discuss future plans for the POC program.

  14. Effect of properties of iron compounds on the catalytic activity in direct coal liquefaction; Tetsu kagobutsu no keitai to sekitan ekika kassei

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Tazawa, K. [Mitsubishi Chemical Corp., Tokyo (Japan); Shimasaki, K. [Kobe Steel Ltd. (Japan)

    1998-08-20

    When considering merchandising scale of the coal liquefaction process, it is a preliminary condition that metal used for its catalyst is rich in resource volume, cheap in production cost, without pollution, and so forth, and application of cheap iron ore and ferrous compounds to disposable catalyst is desired. As liquefaction activity of the iron ore was hitherto improved by its micro crushing, its mechanical crush had a limit of about 2 {mu}m in mean particle diameter. However, together with recent crushing technique, crushers with high performance were developed, and then micro crushing by sub-micron became possible industri8ally even for iron ore. In this study, three kinds of Australian iron ores such as limonite of ferric hydroxide type iron ore, pyrite of ferrous sulfide type, and hematite of ferric oxide type were micro crushed to examine coal liquefaction activity and hydrogenation reaction activity of 1-methyl naphthalene (1-MN) and also relationship between properties and activity of catalyst for the latter before and after reaction. 11 refs., 8 figs., 5 tabs.

  15. EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China

    Directory of Open Access Journals (Sweden)

    Zhaoyang Kong

    2015-01-01

    Full Text Available Currently, there are considerable discrepancies between China’s central government and some local governments in attitudes towards coal to liquids (CTL technology. Energy return on investment (EROI analysis of CTL could provide new insights that may help solve this dilemma. Unfortunately, there has been little research on this topic; this paper therefore analyses the EROI of China’s Shenhua Group Direct Coal Liquefaction (DCL project, currently the only DCL commercial project in the world. The inclusion or omission of internal energy and by-products is controversial. The results show that the EROIstnd without by-product and with internal energy is 0.68–0.81; the EROIstnd (the standard EROI without by-product and without internal energy is 3.70–5.53; the EROIstnd with by-product and with internal energy is 0.76–0.90; the EROIstnd with by-product and without internal energy is 4.13–6.14. Furthermore, it is necessary to consider carbon capture and storage (CCS as a means to control the CO2 emissions. Considering the added energy inputs of CCS at the plant level, the EROIs decrease to 0.65–0.77, 2.87–3.97, 0.72–0.85, and 3.20–4.40, respectively. The extremely low, even negative, net energy, which may be due to high investments in infrastructure and low conversion efficiency, suggests CTL is not a good choice to replace conventional energy sources, and thus, Chinese government should be prudent when developing it.

  16. Coal liquefaction by base-catalyzed hydrolysis with CO.sub.2 capture

    Science.gov (United States)

    Xiao, Xin

    2014-03-18

    The one-step hydrolysis of diverse biomaterials including coal, cellulose materials such as lumber and forestry waste, non-food crop waste, lignin, vegetable oils, animal fats and other source materials used for biofuels under mild processing conditions which results in the formation of a liquid fuel product along with the recovery of a high purity CO.sub.2 product is provided.

  17. MAGNETO-CHEMICAL CHARACTER STUDIES OF NOVEL Fe CATALYSTS FOR COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Murty A. Akundi; Jian H. Zhang; A.N. Murty; S.V. Naidu

    2002-04-01

    The objectives of the present study are: (1) To synthesize iron catalysts: Fe/MoO{sub 3}, and Fe/Co/MoO{sub 3} employing two distinct techniques: Pyrolysis with organic precursors and Co-precipitation of metal nitrates; (2) To investigate the magnetic character of the catalysts before and after exposure to CO and CO+H{sub 2} by (a) Mossbauer study of Iron (b) Zerofield Nuclear Magnetic Resonance study of Cobalt, and (c) Magnetic character of the catalyst composite; (3) To study the IR active surface species of the catalyst while stimulating (CO--Metal, (CO+H{sub 2})--Metal) interactions, by FTIR Spectroscopy; and (4) To analyze the catalytic character (conversion efficiency and product distribution) in both direct and indirect liquefaction Process and (5) To examine the correlations between the magnetic and chemical characteristics. This report presents the results of our investigation on (a) the effect of metal loading (b) the effect of intermetallic ratio and (c) the effect of catalyst preparation procedure on (i) the magnetic character of the catalyst composite (ii) the IR active surface species of the catalyst and (iii) the catalytic yields for three different metal loadings: 5%, 15%, and 25% (nominal) for three distinct intermetallic ratios (Fe/Co = 0.3, 1.5, 3.0).

  18. Advanced Coal-Fueled Gas Turbine Program

    Energy Technology Data Exchange (ETDEWEB)

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  19. Chemistry and morphology of coal liquefaction. Quarterly report, October 1-December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1984-12-01

    The reactions of model coal nitrogen compounds with metal clusters to determine bonding and hopefully gain insight into the cleavage of carbon-nitrogen bonds were initiated. In addition, studies were begun involving the reaction of a saturated nitrogen heterocyclic compound, 1,2,3,4-tetrahydroquinoline, with bulk metal catalysts in order to determine whether carbon-nitrogen bonds could be cleaved in this model coal compound under conditios of very varied temperatures and low pressures of hydrogen gas. It has been demonstrated during the report period that quinoline will react with triruthenium dodecacarbonyl to form a compound with ruthenium carbonyls bound to the nitrogen. The compound has been identified. A similar but more complex structure is formed from tetrahydroquinoline. These compounds will be subjected to secondary reactions in attempts to split the nitrogen-carbon bond. Early attempts to cause nitrogen-carbon bond breaking in model compounds using metal catalysts have not been successful.

  20. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  1. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.-H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Venkatadri, R.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Perez, L.

    1990-01-01

    The progress achieved in leading to effective surface control for selective agglomeration processes was summarized. Several analytical techniques developed in Task 3 were utilized during this quarter to characterize coal samples obtained from agglomeration tests. Surface and near surface (1 {mu}m depth) functional groups were analyzed using Diffuse Reflectance Infrared Fourier Transform spectroscopy. Surface composition analyses were conducted using Laser Microprobe Mass Analyzer. The results of these analysis are being used to relate the agglomeration results with surface modifications to the properties of coal samples. The development of a method a for direct determination of pyrite using X-ray diffraction was continued. The sample preparation technique was improved in order to increase the reproducibility of the analysis. The contact angle of n-heptane droplets on coal pellets immersed in water were measured. The results of these measurements suggest that high shear mixing is necessary for wetting coal surfaces with n-heptane. Agglomeration tests using n-heptane as agglomerant were carried out this quarter. For Pittsburgh {number sign}8 coal, better performance was obtained using n-heptane than using n-pentane. For Upper Freeport coal, however, lower pyritic sulfur rejection was obtained with n-heptane. A n-heptane to coal ratio between 1.25 and 1.5 was found to produce the best performance results for Illinois {number sign}6 coal. A study of the effect of agglomeration time on the agglomeration process performance for Illinois {number sign}6 coal using n-pentane and n-heptane as agglomerants indicates that no significant gains in performance are possible using agglomeration times longer than 60 seconds. The addition of tall oil as a binding agent after the high shear agglomeration step resulted in a large increase in overall coal yield and energy recovery for Illinois {number sign}6 coal. 27 figs., 13 tabs.

  2. Chemistry and morphology of coal liquefaction. Annual report, October 1, 1983-September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1984-10-01

    Work is reported as follows: (1) effect of various factors on the product distribution and kinetics of Fischer-Tropsch synthesis over iron catalysts in a fixed bed reactor; (2) the kinetics and selectivity of hydrocarbon synthesis with unpromoted bulk iron-based catalysts in a well-stirred slurry reactor free of temperature and concentration gradients; (3) low temperature reactions between graphite and water catalyzed by KOH; and (4) the catalytic hydrogenation of structural models of coal. (LTN)

  3. Low-rank coal research. Quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  4. Chemistry and morphology of coal liquefaction. Annual report, October 1, 1984-September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.; Fish, R.H.

    1985-09-01

    The removal of nitrogen from complex matrices such as coal liquids is an extremely important area to study. We recently discovered that polynuclear heteroaromatic nitrogen compounds can be selectively reduced only in the nitrogen containing ring. We now wish to focus on the aspects of carbon-nitrogen cleavage in the saturated nitrogen heterocyclic ring of model coal compounds in order to better understand how nitrogen can be removed without additional substantial use of hydrogen gas for that reaction to occur. A duel approach will be followed that will provide fundamental information on the cleavage of carbon-nitrogen bonds using metal complexes of rhenium, iridium and ruthenium. The important coordination of metal complexes to saturated nitrogen compounds followed by oxidative addition to a methylene group alpha to the nitrogen atom will allow formation of metalla-azacyclopropanes and dimetalla-azacyclobutenes. These compounds will be reacted with nucleophiles to hopefully afford carbon-nitrogen bond cleavage. The compounds will also be reacted under hydrogenation conditions to provide a similar carbon-nitrogen bond cleavage reaction. The second approach, carried out simultaneously, will use various bulk metals such as nickel, rhodium and ruthenium supported on silica and alumina with 1,2,3,4-tetrahydroquinoline as the substrate and at temperatures of approx.300/sup 0/C and 1 atm H/sub 2/ gas to provide HDN chemistry under mild experimental conditions.

  5. Effect of hydrogen pressure on free radicals in direct coal liquefaction/coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Seehra, M.S.; Ibrahim, M.M. [West Virginia Univ., Morgantown, WV (United States)

    1995-12-31

    The objective of this study was to investigate the coprocessing of coal with waste tires and commingled plastics and to characterize the relevant catalysts, using high pressure/high temperature in-situ ESR (Electron Spin Resonance) spectroscopy. The recent results from high pressure ESR spectroscopy are emphasized. During this period, considerable progress was made in developing the high pressure capabilities in in-situ ESR spectroscopy and new results carried out in 1000 psi of H{sub 2}gas are presented. In these experiments, sapphire tubes were used to contain the high pressures at temperatures up to 500{degrees}C. Results of the experiments carried out under 1000 psi of H{sub 2} are compared with those under 1000 psi of non-interacting argon and with the earlier experiments in flowing H{sub 2} gas where the volatiles are removed by the flowing gas. In these experiments, the free radical density N of the Blind Canyon coal was measured at each temperature and pressure by double integration of the ESR signal and calibrating it against a standard. The details of the experimental apparatus and procedures have been described in earlier publications.

  6. AN ADVANCED COAL DESULFURIZATION PROCESS——SELECTIVE FLOCCULATION

    Institute of Scientific and Technical Information of China (English)

    蔡璋; 刘红缨; 吴军; 陈彩茶

    1997-01-01

    Selective flocculation is an idea separation method to separate ultrafine pyrite from coal. A number of selective flocculation separation tests under different conditions have been done and the results are very encouraging. The results also show that desulfurization and deashing can be finished simultaneously in selective flocculation process. It is an advanced coal desulfurization process.

  7. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  8. Influence of catalytic activity and reaction conditions on the product distribution in coal liquefaction; Sekitan ekikayu no seiseibutsu bunpu ni taisuru shokubai kassei oyobi hanno joken no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hasuo, H.; Sakanishi, K.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    The NiMo sulfide supported on Ketjen Black (KB) was more effective and yielded lighter oil products containing light fractions with their boiling point below 300{degree}C during the two stage liquefaction combining low temperature and high temperature hydrogenation the conventional NiMo/alumina catalyst and FeS2 catalyst. Although the NiMo/alumina yielded increased oil products during the two stage liquefaction, the lighter oil fractions did not increase and the heavier fractions increased mainly. This suggests that the hydrogenation of aromatic rings and successive cleavage of the rings are necessary for producing the light oil, which is derived from the sufficient hydrogenation of aromatic rings using catalysts. For the two stage reaction with NiMo/KB catalyst, it was considered that sufficient hydrogen was directly transferred to coal molecules at the first stage of the low temperature reaction, which promoted the solubilization of coal and the successive hydrogenation at the high temperature reaction. Thus, high activity of the catalyst must be obtained. It is expected that further high quality distillates can be produced through the optimization of catalysts and solvents at the two stage reaction. 1 ref., 4 figs., 1 tab.

  9. Chemistry and morphology of coal liquefaction. Quarterly report, April 1-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1981-06-01

    In studying product distribution of a Fischer-Tropsch reaction over copper- and potassium-promoted iron catalysts as a function of CO conversion, it was found that relative methane formation declines with increasing conversion. The potassium catalysed reaction of graphite and steam to produce methane and CO/sub 2/ at low temperatures (250/sup 0/C) was further investigated and activation energies were determined. It was shown that potassium as KOH and as K/sub 2/CO/sub 3/, is catalytically effective and that impregnation of the graphite is as effective as surface deposition of K. Other alkali oxides are being investigated. It is hoped that this work may eventually lead to production of higher hydrocarbons. Electron microscope investigations of the potassium-promoted graphite, used in the conversion to methane described clearly show the progressive gasification of the carbon along the graphite-potassium interface. Reaction of hetero-atom containing aromatic model compounds with hydrogen in the presence of homogeneous ruthenium catalysts and a base gave quantitative hydrogenation of the hetero-atom containing ring, without hydrogenation of other rings. Similar results were obtained with homogeneous manganese catalysts and with synthesis gas or with the water-gas shift reaction. If further confirmed, this can be of major importance in reducing the hydrogen requirements of coal liquid hydrocracking.

  10. Chemistry and morphology of coal liquefaction. Quarterly report, January 1-March 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1981-03-01

    In the course of observing by means of Auger spectroscopy graphite gasification reactions catalyzed by metals, it has been found that in the presence of hydrogen, nickel appears to diffuse from the surface into the bulk of the graphite. When potassium is deposited on graphite, it is volatilized above 400/sup 0/C. Surprisingly the production of methane and carbon dioxide from the reaction of graphite and steam was catalyzed by potassium at as low a temperature as 250/sup 0/C. It has been shown that literature on the alkylation of benzene with synthesis gas is erroneous and that the products reported are due to Lewis acid catalyzed cracking of benzene. A novel cobalt mediated, reversible cleavage of a vinyl-hydrogen bond has been discovered. All products from the thermal decomposition of tetralin have been identified. The stereochemistry of cis-1, 2 dihydrotetralin was determined. In the utilization of the water gas shift reaction as a reducing agent for model coal compounds it has been found that tributylphosphine ligands increase the life of transition metal hydride catalysts. Rates of demetallation of high metal content gas oils over cobalt-molybdena-alumina catalysts were measured for vanadium and iron. Kinetic analysis is under way. It is clearly shown that pore plugging of the catalyst occurs early and results in deposition of the metals on the external catalyst surface.

  11. Safety analysis of the 1000 lb/day coal-liquefaction PDU

    Energy Technology Data Exchange (ETDEWEB)

    Hulburt, D.A.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the 1000 lb/day PDU located in Building 83 at the Pittsburgh Energy Technology Center. Risks to personnel from potential process hazards are largely controlled by installation of a major portion of the unit within a hot cell. This segregates and isolates personnel from a majority of potential equipment rupture and fire/explosion hazards. Equipment within the cell is subject to potential risks associated with overpressurization or excessively high temperature, and fire/explosion due to ignition of leaking flammable gas (i.e. H/sub 2/). There are some existing safeguards designed to protect against overpressure or high temperature. Additional safeguards are offered to minimize these risks. The hot cell is provided with general dilution ventilation and hydrogen monitoring. However, confinement effects and potential ignition sources are such that avoidance of formation and ignition of flammable mixtures cannot be assured. Potential health hazards relate to contact with coal-derived liquids or inhalation of irritant or toxic gases, vapors, or dusts, associated with slurry preparation, sampling, draw down of catch-pots, or cleaning of centrifuge bowls. No particularly serious workplace safety hazards were identified, and environmental concerns are largely limited by the relatively low throughput for the unit. A number of Category I hazards with Remote likelihood, and Category II hazards with May Occur likelihood, were identified. Recommendations were developed for these hazards. Implementation of these recommendations will materially reduce the overall risk level of the operation. The Safety Analysis was based on a site visit, process flow diagrams, material balance, equipment data, and operating procedures provided to Hercules, or as represented to Hercules, by the Pittsburgh Energy Technology Center. A detailed listing of the data and information package is documented in Appendix A.

  12. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  13. DIRECT LIQUEFACTION PROOF-OF-CONCEPT PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Comolli; T.L.K. Lee; J. Hu; G. Popper; M.D. Elwell; J. Miller; D. Parfitt; P. Zhou

    1999-12-30

    This report presents the results of the bench-scale work, Bench Run PB-09, HTI Run Number 227-106, conducted under the DOE Proof-of-Concept Option Program indirect coal liquefaction at Hydrocarbon Technologies Inc. in Lawrenceville, New Jersey. Bench Run PB-09 was conducted using two types of Chinese coal, Shenhua No.2 and Shenhua No.3, and had several goals. One goal was to study the liquefaction performance of Shenhua No.2 and Shenhua No.3 with respect to coal conversion and distillate production. Another goal of Bench Run PB-09 was to study the effect of different GelCatw formulations and loadings. At the same time, the space velocity and the temperature of the fmt reactor, K-1, were varied to optimize the liquefaction of the two Chinese coals. The promoter-modified HTI GelCat{trademark} catalyst was very effective in the direct liquefaction of coal with nearly 92% maf coal conversion with Shenhua No.3 and 93% maf coal conversion with 9 Shenhua No.2. Distillate yields (CQ-524 C)varied from 52-68% maf for Shenhua No.3 coal to 54-63% maf for Shenhua No.2 coal. The primary conclusion from Bench Run PB-09 is that Shenhua No.3 coal is superior to Shenhua No.2 coal in direct liquefaction due to its greater distillate production, although coal conversion is slightly lower and C{sub 1}-C{sub 3} light gas production is higher for Shenhua No.3. The new promoter modified GelCat{trademark} proved successful in converting the two 9 Chinese coals and, under some conditions, producing good distillate yields for a coal-only bench run. Run PB-09 demonstrated significantly better performance of China Shenhua coal using HTI's coal direct liquefaction technology and GelCat{trademark} catalyst than that obtained at China Coal Research Institute (CCRI, coal conversion 88% and distillate yield 61%).

  14. Advanced coal based power plants for the next millennium

    Energy Technology Data Exchange (ETDEWEB)

    Liere, J. van; Burgt, M.J. van der [KEMA, Arnhem (Netherlands)

    1997-12-31

    The global electric power generation demand from the year 2000 to 2015 is estimated to approach 1700 GWe. The global market share of coal is projected to be 38% - a significant market to penetrate for new clean coal technologies. Coal-based power generation has shown continued and steady growth during recent decades, despite drastic changes in political and general economic conditions. This is due to the abundance of global coal resources, their geographical dispersion and a comparatively low price for extraction, transportation and conversion. Demands for reduction of the environmental impact of power generation have so far been met by appropriate technological development, and efforts are made to face the latest challenge - the reduction of CO{sub 2} - emissions. This report presents a utility view on various advanced coal-based technologies for the next millennium: the pulverized coal-fired plant with advanced steam data (PF-USC), the integrated coal gasification/combined cycle plant (IGCC), and the pressurized fluid-bed combustion combined cycle plant (PFBC-CC). Furthermore, the longer-term perspectives of new coal-based technologies are addressed. Key topics are: energy efficiency, economy and ecology. 14 refs., 5 figs., 4 tabs.

  15. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  16. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  17. A moving baseline for evaluation of advanced coal extraction systems

    Science.gov (United States)

    Bickerton, C. R.; Westerfield, M. D.

    1981-01-01

    Results from the initial effort to establish baseline economic performance comparators for a program whose intent is to define, develop, and demonstrate advanced systems suitable for coal resource extraction beyond the year 2000 are reported. Systems used were selected from contemporary coal mining technology and from conservation conjectures of year 2000 technology. The analysis was also based on a seam thickness of 6 ft. Therefore, the results are specific to the study systems and the selected seam extended to other seam thicknesses.

  18. Monitoring the formation of asphaltene and pre-asphaltene through solvent soaking during liquefaction of Mukah Malingian Malaysian coal via semi-continuous solvent flow high-pressure reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Khudzir Ismail; Nur Nasulhah Kasim; Mohd Azlan Mohd Ishak; Mohd Fauzi Abdullah [University Technology MARA Perlis, Perlis (Malaysia). Fuel Combustion Research Laboratory

    2007-07-01

    One of the problems that could affect the production of high percentage of oil + gas yield during liquefaction of low-rank coal is the production of high amount of asphaltene, pre-asphaltene and coke through de-polymerisation and re-polymerisation of the radical species within the coal carbon matrix at high temperature regime. Hence, one solution is to suppress the re-polymerisation reaction by supplying sufficient amount of fresh donor solvent at the appropriate liquefaction temperature to instantaneously cap the reactive radical species. In this work, the effect of solvent flow rates and solvent soaking time at selective isothermal temperatures on the formation of asphaltene and preasphaltene during liquefaction of Mukah Balingian low-rank Malaysian coal via semi-continuous solvent flow high-pressure reactor system were studied. The liquefaction processes were carried out at 4 MPa with three different solvent flow rates i.e. at 2, 7, and 10 ml/min, and at temperature ranging from 300 to 450{sup o}C by using tetralin as hydrogen donor solvent. Initial findings showed that asphaltene and pre-asphaltene begin to form at liquefaction temperature range of 300-350{sup o}C, with the percent yields tend to increase with increasing in the solvent flow rate and solvent soaking time. At above 400{sup o}C, the percent of asphaltene and pre-asphaltene seem to decrease slightly probably due to conversion of these components to oil + gas. The slight reduction in the percentage of asphaltene and pre-asphaltene suggest that sufficient amount of hydrogen donors were present during the soaking condition to cap the small radical species, thus preventing the re-polymerisation reaction and promoting the formation of oil+gas. Apparently, the percentages of coal conversion and oil + gas yield were almost similar regardless whether the solvent soaking was applied at 400 or 420{sup o}C. 18 refs., 4 figs., 4 tabs.

  19. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction. Final technical report, September 1, 1988--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1992-04-07

    The ultimate objective of this research has been to uncover novel reagents and experimental conditions for heteroatom removal and hydrogen transfer processes, which would be applicable to the liquefaction of coal under low-severity conditions. To this end, one phase of this research has investigated the cleavage of carbon-heteroatom bonds involving sulfur, oxygen, nitrogen and halogen by subvalent transition-metal complexes. A second phase of the study has assessed the capability of the same transition-metal complexes or of organoaluminum Lewis acids to catalyze the cleavage of carbon-hydrogen bonds in aromatics and hence to promote hydrogen shuttling. Finally, a third phase of our work has uncovered a remarkable synergistic effect of combinations of transition metals with organoaluminum Lewis acids on hydrogen shuttling between aromatics and hydroaromatics. (VC)

  20. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ particle generation by rapid expansion of supercritical fluid solutions. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The research conducted by Textron Defense Systems (TDS) represents a potential new and innovative concept for dispersed coal liquefaction. The technical approach is generation of ultra-fine catalyst particles from supercritical solutions by rapid expansion of either catalyst only, or mixtures of catalyst and coal material in supersaturated solvents. The process of rapid expansion of supercritical fluid solutions was developed at Battelle`s Pacific Northwest Laboratories for the intended purpose of providing a new analytical technique for characterizing supercritical fluids. The concept forming the basis of this research is that ultra-fine particles can be generated from supercritical solutions by rapid expansion of either catalyst or catalyst/coal-material mixtures in supersaturated solvents, such as carbon dioxide or water. The focal point of this technique is the rapid transfer of low vapor pressure solute (i.e., catalyst), dissolved in the supercritical fluid solvent, to the gas phase as the solution is expanded through an orifice. The expansion process is characterized by highly nonequilibrium conditions which cause the solute to undergo extremely rapid supersaturation with respect to the solvent, leading to nucleation and particle growth resulting in nanometer size catalyst particles. A supercritical expansion system was designed and built by TDS at their Haverhill facility.

  1. 21st Century Coal: Advanced Technology and Global Energy Solution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Coal currently supplies with more than 40% of the world electricity consumption and it essential input of around 70% of world steel production, representing around 30% of the world primary energy supply. This is because coal is cheap, abundant, accessible, widely distributed and easy energy to transport, store and use. For these features, coal is projected to be intensively used in the future. Production and use of coal present a series of issues throughout the whole value chain. While existing technology allows addressing most of them (safety at work, land restoration, mercury, NOx and sulphur emissions avoidance, etc.), CO2 emissions continues to be the biggest challenge for coal use in the future. This report focuses on the technology path to near-zero emissions including useful insights in advanced coal power generation technologies and Carbon Capture, Utilisation and Storage, a promising technology with a large potential which can push Carbon Capture and Storage competitiveness. In addition, the report shows the features of the new generation of coal-fired power plants in terms of flexibility for dynamic operation and grid stability, requirements increasingly needed to operate on grids with significant wind and solar generation.

  2. Advanced coal-fueled industrial cogeneration gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  3. Studies of initial stage in coal liquefaction. Effect of prethermal treatment condition with process solvent to increase oil yields; Ekika hanno no shoki katei ni kansuru kenkyu. Sekitan no maeshori joken to yozai koka

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, T.; Komatsu, N.; Kishimoto, M.; Okui, T.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. ltd., Tokyo (Japan)

    1996-10-28

    Process solvent was hydrogenated in the brown coal liquefaction, to investigate the influence of it on the prethermal treatment and liquefaction. Consequently, it was found that the n-hexane soluble (HS) yield was improved. In this study, capacity of hydrogen transfer from solvent during prethermal treatment and effects of catalyst were investigated. Since prethermal treatment in oil was effective for improving the oil yield in the presence of hydrogen/catalyst or high hydrogen-donor solvent, influence of hydrogen-donor performance of solvent or addition of catalyst on the hydrogenation behavior of coal and the characteristics of products during prethermal treatment were investigated in relation to successive liquefaction results. As a result, it was found that the increase of HS yield was due to the acceleration of conversion of THF-insoluble using high hydrogen-donor solvent and/or by adding catalyst. It was also found that the use of high hydrogen-donor solvent and highly active catalyst at the stage of prethermal treatment before the successive liquefaction was effective for improving the HS yield, i.e., liquefied oil yield. 2 refs., 5 figs., 1 tab.

  4. High quality coal extraction and environmental remediation of fine coal refuse ponds using advanced cleaning technologies

    International Nuclear Information System (INIS)

    A vast number of coal refuse ponds represent a significant economical resource base that are also considered to be environmentally harmful. Significant amounts of cleanable fine coal generally exist in the refuse ponds due to the inability of conventional technologies to effectively separate the fine coal from the associated gangue particles. In addition, acid generation, generally a result of pyrite oxidation, has potential to adversely affect the surrounding environment. An integrated processing strategy of simultaneously recovering high quality coal and pyrite-rich products from the treatment of a coal refuse pond slurry has been successfully evaluated using an advanced physical cleaning circuit. A clean coal product having ash and pyritic sulfur contents of 10.1% and 0.41% was recovered with a mass yield of nearly 49%. In addition, a pyrite-rich product containing nearly 83% of the coal pyrite particles present in the refuse pond material was generated for neutralization purposes for the environmental remediation of the slurry pond. 4 refs

  5. A new method for the co-liquefaction of coal and waste tyre rubber into useful products using microwave metal interaction pyrolysis

    International Nuclear Information System (INIS)

    A mixture of waste rubber of tyre and Makarwal coal of Pakistan was converted into oil using microwave metal interaction pyrolysis. The reactions were carried out in reactor containing copper coil which supported in high temperature microwave-assisted pyrolysis. The high temperature is generated by the interaction of microwaves with copper coil, coal and the bake clay reactor. Copper is used as antenna for the microwaves and it is believed that this antenna may also catalyze the pyrolysis process and affect the nature of products. This faster method of liquefaction gives 12% aqueous liquid, 58% oily liquid, 3% benzene soluble tar, 2 % gases and 25% residues. The liquid products were collected using cold traps and the amount of gas was obtained by taking difference. The mixture of tarry and oily liquid product was analyzed using GC/MS and found that it contains aliphatic and aromatic compounds. It was investigated by the chemical tests that the gases contain hydrogen sulfide and acetylene in addition to other fuel gases. The range of products and product formation is also discussed in this communication. (author)

  6. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, April 1992--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    CAER/UK: Detail coal and starting solvents from Wilsonville were analyzed to develop the data necessary to conduct process studies in the CO Pretreatment and Catalyst Evaluation segment of this program. A comparison of the solvent separation analysis with the distillation/separation used at Wilsonville showed that the residual solvent components contained a large amount of residual pentane soluble products. The ashy resid contained 3% iron and 400 ppM molybdenum. Although the iron content in the distillate and deashed resid was much less, namely about 200 ppM., the molybdenum concentrations in these fractions were not significantly reduced over the concentration in the ashy resid, i.e., 200 ppM in each. The pretreatment of coal with CO/H{sub 2}O in the presence of NaOH and Na{sub 2}CO{sub 3} has been shown to give a product which is lower in oxygen content and higher in hydrogen content compared to the raw coal. The atomic H/C ratios of the H{sub 2}O-insolubles, THF insolubles and the PA+A fractions of the products-together with the hydrogen consumption data suggested that the raw coal has been substantially depolymerized and hydrogenated via the WGS reaction during the pretreatment process. The extensive amount of molecular reconstruction that has occurred in the solid product was evident from the ease of solubilization of the product into pyridine. The result of the pretreatment process is a product which is highly reactive under hydroliquefaction conditions at 400{degrees}C. Reaction rates seem to be much faster than the raw coal, especially at shorter reaction times, providing the opportunity for major reductions in plant vessel sizes, and preliminary data has led us to believe that better efficiency in hydrogen utilization is achieved.

  7. Low-Rank Coal and Advanced Technologies for Power Generation

    Science.gov (United States)

    Zhang', Dong-ke; Jackson, Peter J.; Vuthaluru, Hari B.

    Fluidised-bed based advanced power generation technologies offer higher efficiencies than conventional pulverised fuel fired power plants and better prospects in reducing ash-related problems associated with low-rank coal in such plants. However, bed material agglomeration and bed defluidisation present significant operational difficulties for the utilisation of the low-rank coal in fluidised-bed processes. Alkali and alkaline-earth elements and sulphur compounds, often found in low-rank coals, form low melting point eutectics at typical fluidised-bed combustion and gasification operating temperatures. These low melting-point materials are subsequently transferred onto the bed material particle surfaces, and the ash-coated particles then become adhesive and agglomerate. Defluidisation can occur either as an extension of agglomeration as a rate process gradually leading to defluidisation or as an instantaneous event without agglomeration. A critical thickness of the ash coating layer on the particle surface exists, above which defluidisation occurs. This critical thickness decreases with an increase in bed temperature. Several mineral additives, alternative bed materials and pretreatment of coal have been shown to suppress, to different extents, particle agglomeration and bed defluidisation when burning a high sodium, high sulphur low-rank coal in a spouted fluidised-bed combustor. Sillimanite as an alternative bed material is found to be most effective for defluidisation control. Alternative advanced technologies such as low-temperature pyrolysis and co-production are proposed for future investigation.

  8. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  9. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    Science.gov (United States)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  10. Survey study of the efficiency and economics of hydrogen liquefaction

    Science.gov (United States)

    1975-01-01

    The production of liquid hydrogen, with coal as the starting material, is reported. The minimum practicable energy and cost for liquefaction of gaseous hydrogen in the 1985-2000 time period is presented to investigate the possible benefits of the integration of coal gasification processes with the liquefaction process.

  11. Low-rank coal research semiannual report, January 1992--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This semiannual report is a compilation of seventeen reports on ongoing coal research at the University of North Dakota. The following research areas are covered: control technology and coal preparation; advanced research and technology development; combustion; liquefaction and gasification. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  12. Studies of initial stage in coal liquefaction. 4. Radical formation and structural change with thermal decomposition of coal; Ekika hanno no shoki katei ni kansuru kenkyu. 4. Netsubunkai ni tomonau radical seisei kyodo to kozo henka

    Energy Technology Data Exchange (ETDEWEB)

    Kanaji, M.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan); Kumagai, H.; Chiba, T. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology

    1996-10-28

    In relation to coal liquefaction reaction, the effect of the coexistence of transferable hydrogen (TH) from process solvent on reduction of radical concentration and the effect of pre-heat treatment on average structure of coals were studied. In experiment, change in radical concentration with temperature rise was measured using the system composed of Yallourn coal and process solvent. The results are as follows. Process solvent with a wide boiling point range of 180-420{degree}C is effective in suppressing an increase in radical concentration even at higher temperature. The effect of hydrogen-donating solvent increases with TH. It was also suggested that high-boiling point constituents in solvent stabilize radicals even over 400{degree}C by vapor phase hydrogenation. The experimental results of pre-heat treatment are as follows. Although the conversion improvement effect of TH is equivalent to that of the model solvent, TH tends to produce soluble products with smaller ring numbers. It was thus suggested that pre-heat treatment in process solvent is effective to inhibit retrogressive reactions. 6 refs., 5 figs., 1 tab.

  13. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  14. Eleventh annual international Pittsburgh coal conference proceedings: Volume 1

    International Nuclear Information System (INIS)

    The technical program featured over 300 papers in 39 separate sessions. These presentations are grouped into five topical areas: the technologies in pre- and post-utilization of coal, research and development in coal conversion, advanced coal combustion, environmental control technologies, and environmental policy issues related to coal use. The program has expanded its coverage in non-fuel use of coal. This is reflected in the three sessions on use of coal in the steel industry and a session on carbon products and non-fuel coal applications. Volume 1 contains two of these sessions as well as sessions on the following: coal resource characterization; coal by-products, properties, and utilization; indirect liquefaction of coal; combustion strategies to meet the Clean Air Act; cleanup technologies for advanced power systems; coal utilization--energy and environmental policy developments; fluidized bed combustion; petrochemicals from syngas; combustion models and bench scale combustion techniques; meeting emission requirements and improving combustion efficiencies; effect of coal chlorine content level on utility combustion performance; the effects of Clean Air Act amendments on by-product utilization; direct liquefaction; instrumentation and control of conventional coal boilers; hazardous air pollutants; legislative issues in the coal industry; pre-utilization/post-utilization processing; conversion technologies; and combustion systems. All papers have been processed separately for inclusion on the data base

  15. Liquefaction of coal by Polyporus versicolor and Poria monticola. Final report, 1 September 1984-31 August 1986

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M.S.

    1986-01-01

    Polyporus versicolor (ATCC 12679), obtained from the American Type Culture Collection, Rockville, MD, has been demonstrated to degrade leonardite, lignite, and subbituminous coals to a black liquid product which is called the bioextract. The process of solubilizing the coal has been termed liquification. Fungi were routinely maintained in both solid Sabouraud maltose agar (6%) and in Sabouraud maltose broth cultures. All cultures were incubated at 30/sup 0/C, 84 to 98% relative humidity, and pH = 5.8. All materials which came into contact with the fungi were sterilized before use. Experimental cultures were incubated as described for stock cultures. Cultures were incubated for approximately 12 days to produce a mature fungal mat across a glass petri dish. Coal pieces (approximately 5 mm/sup 3/) were placed directly on the hyphal mat. Liquified coal (the bioextract) was removed from the top of the mycelium and/or coal pieces and either stored for analyses at 4/sup 0/C or else freeze-dried and stored dessicated at room temperature. The bioextract has been produced in sufficient quantity to permit various methods of analysis including high performance liquid chromatography, UV-visible spectrophotometry, titrimetry, electrophoresis, proton nmr spectroscopy, and calorimetry. The solubility of the bioextract in different solvents has also been determined. 6 refs., 26 figs., 3 tabs.

  16. Burnout prediction using advance image analysis coal characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Edward Lester; Dave Watts; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering

    2003-07-01

    The link between petrographic composition and burnout has been investigated previously by the authors. However, these predictions were based on 'bulk' properties of the coal, including the proportion of each maceral or the reflectance of the macerals in the whole sample. Combustion studies relating burnout with microlithotype analysis, or similar, remain less common partly because the technique is more complex than maceral analysis. Despite this, it is likely that any burnout prediction based on petrographic characteristics will become more accurate if it includes information about the maceral associations and the size of each particle. Chars from 13 coals, 106-125 micron size fractions, were prepared using a Drop Tube Furnace (DTF) at 1300{degree}C and 200 millisecond and 1% Oxygen. These chars were then refired in the DTF at 1300{degree}C 5% oxygen and residence times of 200, 400 and 600 milliseconds. The progressive burnout of each char was compared with the characteristics of the initial coals. This paper presents an extension of previous studies in that it relates combustion behaviour to coals that have been characterized on a particle by particle basis using advanced image analysis techniques. 13 refs., 7 figs.

  17. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1992-01-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO[sub x]-NO[sub x] submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  18. Reaction mechanism of coal liquefaction. 2. ; Hydrogenolysis of model compound using synthetic pyrite as catalyst. Sekitan ekika hanno kiko. 2. ; Gosei ryukatetsu shokubai wo mochiita model kagobutsu no hanno

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Takei, N.; Makabe, M.; Yoneda, N. (Hokkaido University, Sapporo (Japan). Faculty of Engineering)

    1992-11-05

    Discussions were made using model compounds to identify hydrogen transfer and liquefaction mechanism in coal liquefaction reactions. The test specimen is behzylphenyl ether (BPE), and the binary solvents are prepared from naphthalene, tetralin and decalin. The BPE was hydrocracked under the presence of synthetic pyrite catalyst. This catalyst has low hydrocracking resolution, producing very little hydrogenated decomposition products, but a considerably large amount of condensation products consisted of decomposition products and those consisted of decomposition products and the solvents. In a system with presence of tetralin or naphthalene, the higher the aromaticity of the solvents, the more decomposition products, particularly phenol, were produced, and the less dibenzyl phenol: a condensation product consisted of the decomposition products. However, increase was observed in benzyl tetralin or benzyl naphthalene which is a condensation product consisted of the solvent tetralin or naphthalene and benzyl group. Production of benzyl phenol was less in a solvent system with high aromaticity. 3 refs., 3 figs.

  19. Development of an advanced high efficiency coal combustor for boiler retrofit

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  20. Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  1. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  2. Further studies on developing technology for indirect liquefaction

    Science.gov (United States)

    Gray, D.; Neuworth, M. B.; Tomlinson, G.

    1982-03-01

    Our investigations have resulted in the conclusion that fluidized gasifiers, such as Westinghouse or entrained flow gasifiers such as Texaco and Shell-Koppers offer significant advantages over the BGC Lurgi gasifier when Illinois No. 6 coal is employed as the feedstock. Dry-ash Lurgi gasification has additional disadvantages which appear to make it unsuitable for applications with mildly caking coal such as Illinois No. 6. The results of our analyses of Illinois No. 6 coal do not alter our prior conclusions regarding the use of advanced gasification systems for indirect liquefaction. BGC/Lurgi, Westinghouse, Texaco and Shell-Koppers gasifiers offer significant advantages over dry-ash Lurgi and should be given detailed consideration for a US liquefaction facility. The final decision will probably be driven by the relative state of development at the time a decision is required, process license and guarantees which could be negotiated, the market value of an SNG co-product, and the specific characteristics of the coal feedstock to be used.

  3. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  4. Chemistry and morphology of coal liquefaction. Quarterly report, January 1, 1985-March 31, 1985. [1,2,3,4-tetrahydroquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1985-03-01

    In the previous quarterly report, we provided evidence for the reactivity of the nitrogen-carbon bond in model coal compounds with ruthenium clusters and we were in the process of doing a survey of heterogeneous metal catalysts in order to gain insight into the cleavage of the carbon-nitrogen bond under hydrodenitrogenation (HDN) reaction conditions with tetrahydroquinoline (THQ) as the model coal compound. We have continued to survey metal catalysts and in this quarterly report we discuss the results of this survey with copper, chromia, nickel and 5% rhodium on silica with THQ as the HDN model compound. At 300/sup 0/C in the presence of 5% rhodium on silica catalyst and hydrogen gas some HDN chemistry prevails with THQ being converted to quinoline and other as yet not fully identified products containing propylbenzene, 2-propylaniline as well as ammonia. The identified products are presently being analyzed by GC-MS analysis. 1 tab.

  5. Chemistry and catalysis of coal liquefaction: catalytic and thermal upgrading of coal liquid and hydrogenation of CO to produce fuels. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.

    1980-08-01

    Analysis of a group of coal liquids produced by catalytic hydrogenation of Utah coals with ZnCl/sub 2/ catalyst was begun. Carbon-13 nuclear magnetic resonance and liquid chromatography techniques will be used to correlate chemical properties with hydrogenation reactivity. Equipment previously used for downflow measurements of heat and momentum transfer in a gas-coal suspension was modified for upflow measurements. The catalytic hydrodeoxygenation of methyl benzoate has been studied to elucidate the reactions of ester during upgrading of coal-derived liquids. The kinetics of hydrogenation of phenanthrene have also been determined. The catalytic cracking mechanism of octahydroanthracene is reported in detail. Studies of the hydrodesulfurization of thiophene indicate that some thiophene is strongly adsorbed as a hydrogen-deficient polymer on cobalt-molybdate catalyst. Part of the polymer can be desorbed as thiophene by hydrogenation. Poisoning of the catalyst inhibits the hydrosulfurization activity to a greater degree than the hydrogenation activity. Iron-manganese catalysts for carbon monoxide hydrogenation is studied to determine the role of iron carbide formation on selectivity. Pure iron catalyst forms a Hagg iron carbide phase under reaction conditions.

  6. Markets for small-scale, advanced coal-combustion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Placet, M.; Kenkeremath, L.D.; Streets, D.G.; Dials, G.E.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1988-12-01

    This report examines the potential of using US-developed advanced coal technologies (ACTs) for small combustors in foreign markets; in particular, the market potentials of the member countries of the Organization of Economic Co-operation and Development (OECD) were determined. First, the United States and those OECD countries with very low energy demands were eliminated. The remaining 15 countries were characterized on the basis of eight factors that would influence their decision to use US ACTs: energy plan and situation, dependence on oil and gas imports, experience with coal, residential/commercial energy demand, industrial energy demand, trade relationship with the United States, level of domestic competition with US ACT manufacturers, and environmental pressure to use advanced technology. Each country was rated high, medium-high, low-medium, or low on each factor, based on statistical and other data. The ratings were then used to group the countries in terms of their relative market potential (good, good but with impediments, or limited). The best potential markets appear to be Spain, Italy, turkey, Greece, and Canada. 25 refs., 1 fig., 37 tabs.

  7. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, May-July 1981

    Energy Technology Data Exchange (ETDEWEB)

    Guin, J. A.; Curtis, C. W.; Tarrer, A. R.

    1981-01-01

    This report discusses a kinetic investigation of the Fe-S-H/sub 2/ system conducted as an outgrowth of current research in the SRC-I (solvent refined coal) process to better understand the effects of naturally occurring iron sulfides in coal hydrogenation and hydrodesulfurization. A total of twelve closed system reactions were carried out in which 48 to 60 mesh pyrite, in the presence of hydrogen gas, underwent transformation to 1C hexagonal pyrrhotite. Reaction temperatures were 350/sup 0/C and 400/sup 0/C with four sample runs at temperature. Initial pressure of hydrogen gas was 1250 psig (8617 KPa). A comparison of the results for each reaction series was evaluated with time and temperature as variables. The transformation rate of pyrite to pyrrhotite was found to increase over the range of reaction temperatures with the 400/sup 0/C samples showing the greatest amount of transformation per unit time. For the 375/sup 0/C and 400/sup 0/C runs pyrrhotite formation decreased after approximately 15 minutes of reaction time due to (1) reduced availability of pyrite, and (2) resistance to diffusion in the topochemical product layer.

  8. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    International Nuclear Information System (INIS)

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO2 emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  9. Biological testing and chemical analysis of process materials from an integrated two stage coal liquefaction: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Buhl, P.; Moroni, E.C.

    1983-07-01

    Samples for chemical characterization and biological testing were obtained from ITSL runs 3LCF7, 3LCF8 and 3LCF9. Chemical analysis of these materials showed that SCT products were composed of fewer compounds than analogous materials from Solvent Refined Coal (SRC) processes. Major components in the SCT materials were three-, four-, five- and six-ring neutral polycyclic aromatic hydrocarbons (PAH). Methyl(C/sub 1/) and C/sub 2/ homologs of these compounds were present in relatively low concentrations, compared to their non-alkylated homologs. Organic nitrogen was primarily in the form of tertiary polycyclic aromatic nitrogen heterocycles and carbazoles. Little or no amino PAH (APAH) or cyano PAH were detected in samples taken during normal PDU operations, however, mutagenic APAH were produced during off-normal operation. Microbial mutagenicity appeared to be due mainly to the presence of APAH which were probably formed in the LC finer due to failure of the catalyst to promote deamination following carbon-nitrogen bond scission of nitrogen-containing hydroaromatics. This failure was observed for the off-normal runs where it was likely that the catalyst had been deactivated. Carcinogenic activity of ITSL materials as assessed by (tumors per animal) in the initiation/promotion mouse skin painting assay was slightly reduced for materials produced with good catalyst under normal operation compared to those collected during recycle of the LC Finer feed. Initiation activity of the latter samples did not appear to be significantly different from that of other coal derived materials with comparable boiling ranges. The observed initiation activity was not unexpected, considering analytical data which showed the presence of four-, five- and six-ring PAH in ITSL materials.

  10. A Quick Quantitative Analysis for Group Composition of Coal Liquefaction Oil by Ultraviolet Spectroscopy%紫外光谱法分析煤直接液化油族组成

    Institute of Scientific and Technical Information of China (English)

    樊文俊; 吴美香; 郝建树; 冯杰; 李文英

    2015-01-01

    煤液化油组成的测定方法以色谱法为主,但由于样品沸程长,组分性质不均一,色谱法无法实现简便快速地对液化油族组分进行定性/定量。为建立一种快速准确定量煤液化油中的酚类化合物、芳烃、脂肪烃的分析方法,本文选取具有代表性组成的煤液化油180~200℃馏分为研究对象,筛选了环己烷、乙醇、氢氧化钠‐乙醇(50 W t%,简称碱醇溶剂)三种分离溶剂。通过对煤液化油样品在200~400 nm波长间的特征吸收峰分析,发现碱醇溶剂可使芳烃化合物对酚类化合物的干扰减少到最小,可以有效避免吸收峰重叠问题。在此基础上,进一步对比分析了苯酚,间甲酚,邻甲酚,对甲酚等标准化合物与液化油酚类混合物在碱醇溶液中紫外吸收的标准曲线,以定量样品组成。选择间甲酚为标准化合物,根据其在290 nm处的标准曲线,得到煤液化油中酚类化合物的总量为32.14%,测定结果与宏量样品分离、称重、物料平衡后结果基本一致。在得到酚类化合物含量之后,以四氢萘为标准物,获得液化油中芳烃的总量为44.91%,脂肪烃的含量为22.95%。为确定方法的准确性,油样分别加入不同量的间甲酚和四氢萘标准物,酚的加标回收率为104.3~110.75%,芳香烃的加标回收率在84.3~91.75%。综上表明:利用紫外光谱法,以碱醇溶剂排除芳烃对酚吸收的影响,能够快速测定煤液化油中酚类和芳香烃的含量,脂肪烃的含量可差减得到。%Gas chromatography is now the primary analysis method for the coal liquefaction oil .However ,a simple and rapid quantification/qualification of the coal liquefaction oil can hardly be realized ,because the coal liquefaction oil is in a heterogeneous state with a long boiling range .The aim of this study was to establish a rapid and accurate method for the quantification of

  11. Advanced coal gasifier-fuel cell power plant systems design

    Science.gov (United States)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  12. Advanced Coal-Fueled Gas Turbine Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  13. Performance of a high efficiency advanced coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the primary act,'' and three further annuli for the supply of the secondary air.'' The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  14. POC-scale testing of an advanced fine coal dewatering equipment/technique

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  15. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  16. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  17. Clean electricity through advanced coal technologies handbook of pollution prevention and cleaner production

    CERN Document Server

    Cheremisinoff, Nicholas P

    2012-01-01

    Coal power is a major cause of air pollution and global warming and has resulted in the release of toxic heavy metals and radionuclides, which place communities at risk for long-term health problems. However, coal-fired power plants also currently fuel 41% of global electricity. Clean Electricity Through Advanced Coal Technologies discusses the environmental issues caused by coal power, such as air pollution, greenhouse gas emissions and toxic solid wastes. This volume focuses on increasingly prevalent newer generation technologies with smaller environmental footprints than the existing c

  18. Recovery of metal values from spent CoMo/Al/sub 2/O/sub 3/ petroleum hydrodesulfurization and coal liquefaction catalysts: laboratory-scale process and preliminary economics

    Energy Technology Data Exchange (ETDEWEB)

    Sebenik, R.F.; Ference, R.A.

    1982-01-01

    Recovery of metal values from spent CoMo/Al/sub 2/O/sub 3/ catalysts from petroleum hydrodesulfurization (HDS) processes containing appreciable amounts of V, Ni, S, coke, and heavy hydrocarbons is described. The recovery process involves accepted chemical techniques. A slightly modified process was used for coal liquefaction catalysts which are not poisoned by Ni and V, as are the HDS catalysts, but which contain Ca, Fe, and Ti as the major contaminants. Preliminary estimates (+-30%) of capital and operating costs for the process based on recovery of the latter type of catalyst only are tabulated. Flow diagrams for both processes are included. Results to determine the effects of Ca, Fe, Si, and Ti impurities on the Mo recovery are not yet complete. It is emphasized that the recovery process has been tested only on a laboratory scale and has not been applied to pilot plant recovery as yet. (BLM)

  19. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  20. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  1. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    International Nuclear Information System (INIS)

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project

  2. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  3. Systems Analysis Of Advanced Coal-Based Power Plants

    Science.gov (United States)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  4. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  5. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  6. Catalytic multi-stage liquefaction (CMSL)

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Ganguli, P.; Karolkiewicz, W.F.; Lee, T.L.K.; Pradhan, V.R.; Popper, G.A.; Smith, T.; Stalzer, R.

    1996-11-01

    Under contract with the U.S. Department of Energy, Hydrocarbon Technologies, Inc. has conducted a series of eleven catalytic, multi-stage, liquefaction (CMSL) bench scale runs between February, 1991, and September, 1995. The purpose of these runs was to investigate novel approaches to liquefaction relating to feedstocks, hydrogen source, improved catalysts as well as processing variables, all of which are designed to lower the cost of producing coal-derived liquid products. This report summarizes the technical assessment of these runs, and in particular the evaluation of the economic impact of the results.

  7. Field study of disposed solid wastes from advanced coal processes

    International Nuclear Information System (INIS)

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells

  8. Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

  9. Measurement and modeling of advanced coal conversion processes, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  10. Co-liquefaction of the Elbistan Lignite and Poplar Sawdust. Part I: The Effect of the Liquefaction Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, H.; Acar, M.; Yilmaz, M.; Keklik, I. [Inonu University, Malatya (Turkey). Faculty of Engineering

    2009-07-01

    In this study, the liquefaction of Elbistan lignite and poplar sawdust, and the co-liquefaction of the Elbistan lignite and the poplar sawdust in an inert atmosphere and in non-catalytic conditions have been examined. Also, the effects of solvent/coal ratio and stirring speed on the total conversion derived as the result of the liquefaction process was attempted to be determined. Based on the results, although the effects of the solvent/coal ratio and the stirring speed on total conversion are similar for both the Elbistan lignite and the poplar sawdust, it was also noted that, under similar conditions, the conversion for the poplar sawdust was higher, as compared to the conversion of the Elbistan lignite. As the result of the liquefaction of Elbistan lignite and poplar sawdust under inert atmospheric conditions, the total conversion was increased partially, depending on both solvent/coal ratio and the speed of stirring. However, it was also noted that the total conversion did not change to a significant extent in high solvent/coal ratios and in stirring speed. As the result of the co-liquefaction of the Elbistan lignite and poplar sawdust under inert atmospheric conditions, total conversion was increased, based on the solvent/coal ratio. However, as in the case of the liquefaction of Elbistan lignite and poplar sawdust, it was noted that the high solvent/coal ratios (i.e., solvent/coal ratios of higher than 2/1) did not have a significant effect on the total conversion that was derived as the result of the co-liquefaction of the Elbistan lignite and poplar sawdust.

  11. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  12. Advanced coal-fueled gas turbine systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The configuration of the subscale combustor has evolved during the six years of this program from a system using only an impact separator to remove particulates to a system which also included a slagging cyclone separator before the lean-quench combustor. The system also now includes active slag tapping after the impact separator rather than a bucket to collect the slag. The subscale 12 MM Btu/hr (higher heating value, HHV) slagging combustor has demonstrated excellent coal-fired operation at 6 atm. The combustor has fired both coal-water mixtures (CWM) and pulverized coal (PC). Three Wyoming subbituminous coals and two bituminous coals have been successfully fired in the TVC. As a result of this active testing, the following conclusions may be drawn: (1) it was possible to achieve the full design thermal capacity of 12 MM Btu/hr with the subscale slagging combustor, while burning 100% pulverized coal and operating at the design pressure of 6 atm; (2) because of the separate-chamber, rich-lean design of the subscale slagging combustor, NO{sub x} emissions that easily meet the New Source Performance Standards (NSPS) limits were achieved; (3) carbon burnout efficiency was in excess of 99% when 100% coal-fired; (4) ninety percent of the ash can be separated as slag in the impact separator, and a total 98 to 99% removed with the addition of the slagging cyclone separator; (5) Objectives for third-stage exit temperature (1850{degrees}F), and exit temperature pattern factor (14%) were readily achieved; (6) overall pressure loss is currently an acceptable 5 to 6% without cyclone separator and 7 to 9% with the cyclone; and (7) feeding pulverized coal or sorbent into the combustor against 6 atm pressure is achievable.

  13. Turning Coal Into Oil

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    China's coal liquefaction industry is developing rapidly, but still needs improvement In its effort to become more self-sufficient in energy, China is turning to other countries, notably South Africa, to establish joint ventures in turning coal into oil. To China's Shenhua Group Corp. Ltd., one of the world's largest coal-producing companies, the government's 11th Five-Year

  14. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    a study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This document is the eighth quarterly report prepared in accordance with the project reporting requirements covering the period from July 1,1990 to September 30, 1990. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. The data from the basic research on coal surfaces, bench scale testing and proof-of-concept scale testing will be utilized to design a final conceptual flowsheet. The economics of the flowsheet will be determined to enable industry to assess the feasibility of incorporating the advanced fine coal cleaning technology into the production of clean coal for generating electricity. 22 figs., 11 tabs.

  15. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  16. Measurement and modeling of advanced coal conversion processes, Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others

    1993-08-01

    A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

  17. Advanced coal conversion process demonstration. Technical progress report, April 1--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high moisture, low rank coals to a high quality, low sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep bed stratifier cleaning process to separate the pyrite rich ash from the coal. The SynCoal process enhances low rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 Btu/lb, by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45 ton per hour unit is located adjacent to a unit train load out facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. During this report period the primary focus has been to continue the operation of the demonstration facility. Production has been going to area power plants. Modifications and maintenance work was also performed this quarter.

  18. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  19. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  20. The new knowledge on the application of the advanced clean coal technology

    Directory of Open Access Journals (Sweden)

    Turèániová ¼udmila

    1998-09-01

    Full Text Available The results of the project ID 031 - 95 " Slovak brown coal" are presented in the paper. From the scientific knowledge point of view, the mechanic-chemical alkaline leaching, the clarification of mechanism of accompanying phenomena of MCL procedures and the influence of the radiation pre-treatment represent the priority. The study of the surface and adhesive properties will contribute to a broadening the knowledge on microbial adhesion in coal treatment. The advanced treatment procedures are not suitable for the Slovak brown coal treatment. From the physical pre-treatment procedures, the gravitation treatment in hydrocyclones without the heavy material (hydrocyclone "only" water is perspective under condition of the innovation of coal mining aims.

  1. Liquefaction of solid carbonaceous material with catalyst recycle

    Science.gov (United States)

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  2. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  3. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.

    2002-09-19

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  4. 78 FR 49061 - Valuation of Federal Coal for Advance Royalty Purposes and Information Collection Applicable to...

    Science.gov (United States)

    2013-08-12

    ... name such as ``Korea,'' ``China,'' ``United Kingdom,'' etc. for foreign destination point(s). Coal... logical mining unit (LMU) during the immediately preceding production royalty payment period (2) the... proposed rulemaking titled ``Lease Modifications, Lease and Logical Mining Unit Diligence, Advance...

  5. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    International Nuclear Information System (INIS)

    Bechtel, together with Amax Research and Development Center (Amax R ampersand D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications, (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at

  6. 煤直接液化生成油沸腾床加氢处理催化剂的研发%Research and Development of Fluidized Bed Hydroprocessing Catalyst in Generating Oil by Direct Coal Liquefaction

    Institute of Scientific and Technical Information of China (English)

    袁明

    2012-01-01

    A kind of ebullated-bedreactor catalyst for hydrotreating heavier distillate from direct coal liquefaction productswas developed. The catalyst hasthe advantages of strength, abrasion resistance,activities of hydrodesulphurization, hydrodenitrogenation, hydrodearomatics and stability by adding 3-8w% of alumina-fibre.%为了进一步完善煤直接液化技术,研究开发了适用于煤直接液化生成油沸腾床加氢处理的催化剂。本催化剂的特点是在常规加氢催化剂中引入了氧化铝纤维组分,氧化铝纤维组分在催化剂中的含量为3w%。8w%。本催化剂具有好的机械强度和抗磨性能,并且其加氢脱硫、脱氮、芳烃饱和活性高,是一种较好的煤直接液化生成油沸腾床加氢处理催化剂。

  7. Development of bituminous coal liquefaction technology. ; Study using a small device (study on synthetic iron sulfide catalyst). Rekiseitan ekika gijutsu no kaihatsu. ; Kogata sochi ni yoru kenkyu (gosei ryukatetsu shokubai no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, S. (New Energy and Industrial Technology Development Organization, Tokyo (Japan))

    1993-09-01

    This paper reports the execution of device procurement and building construction of small equipment to manufacture synthetic iron sulfide for catalysts used in the NEDOL bituminous coal liquefaction process, carried out in the fiscal year 1992. To study synthetic iron sulfide catalysts manufactured by the dry manufacturing method, it has been planned to install small equipment with a catalyst manufacturing capacity of 10 kg/hr in a process supporting unit (PSU) plant. Major devices and electric measuring instruments have been procured. The construction work included civil engineering and building constructions for part of buildings to accommodate the whole equipment used in the sintering process and an electric room adjoining thereto. Because this small equipment serves also as a PSU exhaust gas treatment facility to treat exhaust gas containing SO2 produced as a sub-product in the sintering process, the PSU exhaust gas treatment process was modified, and the trial operation was carried out in September 1992. Technical standards and operation methods were discussed on each of the sintering process and the exhaust gas treatment process in the small equipment. A process instruction document, and an operation standard for steady operation, start-up and shutdown were prepared.

  8. Advanced CFB for clean and efficient coal power

    Energy Technology Data Exchange (ETDEWEB)

    H. Nevalainen; J. Saastamoinen; M. Jegoroff (and others) [VTT, Jyvaskyla (Finland)

    2009-07-01

    The European Union's Clefco project (2004-06) aimed to promote the development of once through steam cycle (OTSC) CFB technology. This was carried out by increasing the process knowledge that is essential for successful boiler design and demonstration of the multi-fuel flexibility of the process. To fulfil the development needs of OTSC CFB technology, a comprehensive understanding of CFB combustion processes needed to be achieved. Intensive research in laboratory, pilot and full-scale combustors was required to fulfil the abovementioned objectives. In the project, each partner worked in its own field of research. Cooperation between partners enabled the best-possible understanding of the process. In order to study different process characteristics and verify measurements and simulations, experiments were carried out with different size reactors - VTT's laboratory scale CFB reactor, VTT's 50 kW pilot CFB reactor, Chalmers' 12 MW CFB boiler, cold rig and several commercial boilers. To find out possibilities for end-use of ash, national legislations and standards were studied. Knowledge was applied to ash management possibilities for coal combustion and co-combustion of coal and biomass. The studies were based on the ash characterisation, which was carried out for ash samples collected during the projects' combustion tests. 52 refs., 122 figs., 42 tabs.

  9. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  10. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  11. Design manual for management of solid by-products from advanced coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  12. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction. In......This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During the...... hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed by...

  13. Coal conversion. 1977 technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The status and progress in US DOE's projects in coal gasification, liquefaction, and fluidized-bed combustion are reviewed with financing, flowsheets, history, progress and status of each (57 projects). (LTN)

  14. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  15. Repowering flexibility of coal-based advanced power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bajura, R.A.; Bechtel, T.F.; Schmidt, D.K.; Wimer, J.G.

    1995-03-01

    The Department of Energy`s (DOE`s) Morgantown Energy Technology Center (METC) helps enhance the economic competitiveness, environmental quality, and national well-being of the U.S. by developing advanced power-generation systems. The potential market for advanced power-generation systems is large. In the U.S., electric demand is estimated to grow at about 1 percent per year through the year 2010. The total power generation market also includes new-capacity as well as replacement of existing power plants as they age. Thus, the market for power systems over the next 15 years is estimated to be about 279,000 megawatts (MW), but could range from as much as 484,000 MW to as little as 153,000 MW. These predictions are summarized. Over the next 15 years, the replacement market is potentially much larger than the expansion market because of the large base of aging power plants in the U.S.

  16. Engineering development of advance physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Smit, F.J.; Shields, G.L. [AMAX R& D Center/ENTECH Global Inc., Golden, CO (United States)

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  17. Direct liquefaction proof-of-concept program. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R. [and others

    1996-12-01

    This report presents the results of work conducted under the DOE Proof-of-Concept Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey, from February 1994 through April 1995. The work includes modifications to HRI`s existing 3 ton per day Process Development Unit (PDU) and completion of the second PDU run (POC Run 2) under the Program. The 45-day POC Run 2 demonstrated scale up of the Catalytic Two-Stage Liquefaction (CTSL Process) for a subbituminous Wyoming Black Thunder Mine coal to produce distillate liquid products at a rate of up to 4 barrels per ton of moisture-ash-free coal. The combined processing of organic hydrocarbon wastes, such as waste plastics and used tire rubber, with coal was also successfully demonstrated during the last nine days of operations of Run POC-02. Prior to the first PDU run (POC-01) in this program, a major effort was made to modify the PDU to improve reliability and to provide the flexibility to operate in several alternative modes. The Kerr McGee Rose-SR{sup SM} unit from Wilsonville, Alabama, was redesigned and installed next to the U.S. Filter installation to allow a comparison of the two solids removal systems. The 45-day CTSL Wyoming Black Thunder Mine coal demonstration run achieved several milestones in the effort to further reduce the cost of liquid fuels from coal. The primary objective of PDU Run POC-02 was to scale-up the CTSL extinction recycle process for subbituminous coal to produce a total distillate product using an in-line fixed-bed hydrotreater. Of major concern was whether calcium-carbon deposits would occur in the system as has happened in other low rank coal conversion processes. An additional objective of major importance was to study the co-liquefaction of plastics with coal and waste tire rubber with coal.

  18. Liquefaction for cataract extraction

    Science.gov (United States)

    Labiris, Georgios; Toli, Aspasia; Polychroni, Damaskini; Gkika, Maria; Angelonias, Dimitrios; Kozobolis, Vassilios P.

    2016-01-01

    A systematic review of the recent literature regarding the implementation of the liquefaction in cataract surgery and its short-term and long-term outcomes in various parameters that affect the quality of patients' life, including visual rehabilitation and possible complications was performed based on the PubMed, Medline, Nature and the American Academy of Ophthalmology databases in November 2013 and data from 14 comparative studies were included in this narrative review. Liquefaction is an innovative technology for cataract extraction that uses micropulses of balanced salt solution to liquefy the lens nucleus. Most studies reported that liquefaction is a reliable technology for mild to moderate cataracts, while fragmentation difficulties may be encountered with harder nuclei. PMID:26949656

  19. Direct liquefaction proof-of-concept facility

    Energy Technology Data Exchange (ETDEWEB)

    Alfred G. Comolli; Peizheng Zhou; HTI Staff

    2000-01-01

    The main objective of the U.S. DOE, Office of Fossil Energy, is to ensure the US a secure energy supply at an affordable price. An integral part of this program was the demonstration of fully developed coal liquefaction processes that could be implemented if market and supply considerations so required, Demonstration of the technology, even if not commercialized, provides a security factor for the country if it is known that the coal to liquid processes are proven and readily available. Direct liquefaction breaks down and rearranges complex hydrocarbon molecules from coal, adds hydrogen, and cracks the large molecules to those in the fuel range, removes hetero-atoms and gives the liquids characteristics comparable to petroleum derived fuels. The current processes being scaled and demonstrated are based on two reactor stages that increase conversion efficiency and improve quality by providing the flexibility to adjust process conditions to accommodate favorable reactions. The first stage conditions promote hydrogenation and some oxygen, sulfur and nitrogen removal. The second stage hydrocracks and speeds the conversion to liquids while removing the remaining sulfur and nitrogen. A third hydrotreatment stage can be used to upgrade the liquids to clean specification fuels.

  20. Engineering development of advanced coal-fired low-emission boiler system

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-26

    The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems'' Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO[sub x] emissions not greater than one-third NSPS; SO[sub x] emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

  1. 铁基催化剂对将军庙煤低压直接液化性能影响%Effect of Iron-based Catalysts on Direct Liquefaction Performance of Coal From Jiangjunmiao, Xinjiang

    Institute of Scientific and Technical Information of China (English)

    王海龙; 廖玲

    2015-01-01

    以将军庙煤为研究对象,催化剂用量按活性金属元素计为3%(wtCoaldaf)、反应温度T=420℃、反应时间τ=75 min、溶煤比S/C=2/1和氢初压PH2=6.5 MPa条件下,首先,以油产率为目标,Fe2O3为主催化剂,S为助催化剂,通过考察S/Fe对煤样直接液化性能的影响,确定了最佳S/Fe=1/1。其次,在S/Fe为1/1和上述反应条件下,考察了一系列铁基催化剂对煤样液化性能的影响。结果表明,以油产率为目标,其活性由高到低为:Fe2O3/S>油溶性Fe3O4/S >油溶性Fe3O4(中试)/S >飞灰/S >纳米Fe3O4/S>黄铁矿/Fe2O3>油酸铁/S > FeSO4/S> Fe(NO3)3/S>β-FeOOH/S >FeCl3/S >还原铁粉/S >FeS。最后,将Fe2O3/S与MoO3/S、FeSO4/S与NiSO4/S和CoSO4/S分别进行了比较。结果表明:Fe2O3/S比MoO3/S更能促进沥青质向油的转化;FeSO4/S与NiSO4/S和CoSO4/S三者油产率相差甚小,均约67%。故此,Fe2O3/S的催化活性最好。%The research objectwasthe coal from Jiangjunmiao. First of all,takingoil yield as the target and Fe2O3as the maincatalyst and S as the sub-catalyst, the best S/Fe=1∶1wasconfirmedby investigating the effect of S/Fe on direct liquefaction performanceof coal sample under the reaction conditions of catalysts 3%( wt), 420℃,reaction time 75 min, solvent/coal=2/1 and H2initial pressure 6.5 MPa. Theneffect of a series of iron-based catalysts on liquefaction performanceof coal sample under S/Fe=1/1andotheraboveconditionswas investigated. The results showthat:the rank ordering of the activity of catalysts according to the oil yield is Fe2O3/S>oil-soluble Fe3O4/S > oil-soluble(pilot plant) Fe3O4/S >fly ash/S >nanometer Fe3O4/S>pyrite/Fe2O3>oleic acid iron/S > FeSO4/S> Fe(NO3)3/S > β-FeOOH/S>FeCl3/S >iron powder/S >FeS. At last,Fe2O3/S and MoO3/S, FeSO4/S and NiSO4/S and CoSO4/Swererespectively compared. Theresults show that:Fe2O3/S can more promote theconversionof asphaltene to oil than MoO3/S;thegap of the oil yieldsamong FeSO4/S

  2. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  3. Solvent recyclability in a multistep direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Hetland, M.D.; Rindt, J.R. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31

    Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken to produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.

  4. Rate of coal hydroliquefaction: correlation to coal structure. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Voorhees, K.J.; Durfee, S.L.

    1985-05-01

    This report summarizes the research carried out on DOE grant No. FG22-83PC60784. The work was divided into two phases. The first phase consisted of a series of coal liquefaction rate measurements on seven different coals from the Exxon sample bank, followed by correlation with parent coal properties. The second phase involved characterization of the coals by pyrolysis/mass spectrometry and subsequent correlations of the Py/MS patterns with various liquefaction reactivity parameters. The hydroliquefaction reactivities for a suite of 7 bituminous and subbituminous coals were determined on a kinetic basis. These reactivities were correlated fairly successfully with the following parent coal properties: volatile matter, H/C and O/C ratios, vitrinite reflectance, and calorific value. The total surface areas of the coals were experimentally determined. Reactivity was shown to be independent of surface area. Following completion of the batch reactor experiments, the seven coals investigated were analyzed by pyrolysis/mass spectrometry. The pyrolysis spectra were then submitted to factor analysis in order to extract significant features of the coal for use in correlational efforts. These factors were then related to a variety of liquefaction reactivity definitions, including both rate and extent of liquefaction to solvent solubility classifications (oils, asphaltenes, preasphaltenes, etc.). In general, extent of reaction was found to correlate best with the Py/MS data. 37 refs., 25 figs., 11 tabs.

  5. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  6. Liquefaction of uranium tailings

    International Nuclear Information System (INIS)

    Numerical methods for assessing the liquefaction potential of soils are reviewed with a view to their application to uranium tailings. The method can be divided into two categories: total stress analysis, where changes in pore pressure are not considered in the soil model, and effective stress analysis, where changes in pore pressure are included in the soil model. Effective stress analysis is more realistic, but few computer programs exist for such analysis in two or three dimensions. A simple linearized, two-dimensional, finite element effective stress analysis which incorporates volumetric compaction due to shear motion is described and implemented. The new program is applied to the assessment of liquefaction potential of tailings in the Quirke Mine tailings area near Elliot Lake, Ontario. The results are compared with those of a total stress analysis. Both analyses indicate liquefaction would occur if a magnitude 6.0 earthquake were to occur near the area. However, the extent of liquefaction predicted by the effective stress analysis is much less than that predicted by the total stress analysis. The results of both methods are sensitive to assumed material properties and to the method used to determine the cyclic shear strength of the tailings. Further analysis, incorporating more in situ and/or laboratory data, is recommended before conclusions can be made concerning the dynamic stability of these tailings

  7. Advanced pulverized-coal power plants: A U.S. export opportunity

    International Nuclear Information System (INIS)

    This paper provides an overview of Low Emission Boiler System (LEBS) power generation systems and its potential for generating power worldwide. Based on the fuel availability, power requirements, and environmental regulations, countries have been identified that need to build advanced, clean, efficient, and economical power generation, systems. It is predicted that ''more electrical generation capacity will be built over the next 25 years than was built in the previous century''. For example, China and India alone, with less than 10% of today's demand, plan to build what would amount to a quarter of the world's new capacity. For the near- to mid-term, the LEBS program of Combustion 2000 has the promise to fill some of the needs of the international coal-fired power generation market. The high efficiency of LEBS, coupled with the use of advanced, proven technologies and low emissions, make it a strong candidate for export to those areas whose need for additional power is greatest. LEBS is a highly advanced version of conventional coal-based power plants that have been utilized throughout the world for decades. LEBS employs proven technologies and doesn't require gasification and/or an unconventional combustion environment (e.g., fluidized bed). LEBS is viewed by the utility industry as technically acceptable and commercially feasible

  8. The use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Quarterly report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, D.A.; Mitzel, J.

    1993-08-01

    One area for improvement in the economics of coal liquefaction is coal drying, particularly for the lower rank coals. however, there is considerable evidence to show that drying has a detrimental effect on the liquefaction behavior of coals. Regarding the liquefaction of coal, there does not appear to have been any systematic study of the methods of coal drying on coal structure and the role water plays in enhancing or lessening coal reactivity toward liquefaction. In part, this may have been the result of not having the techniques that are now available, such as solid-state nuclear magnetic resonance (NMR) spectroscopy. The results of NMR examination of several coals dried by thermal, microwave, and chemical methods are given.

  9. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  10. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  11. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    International Nuclear Information System (INIS)

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts

  12. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  13. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  14. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  15. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-28

    This thirteenth quarterly report describes work done during the thirteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  16. Cavitation-wear Coupling Research on the Hydraulic Control Valve in Coal Liquefaction High Temperature and Pressure Separator%煤液化热高分液控阀空蚀磨损耦合研究

    Institute of Scientific and Technical Information of China (English)

    王黎; 郑智剑; 肖定浩; 偶国富

    2013-01-01

    采用煤液化热高分液控阀的实际操作条件、工艺介质和结构特性,基于两相空化流动方程、Lagrangian固体颗粒控制方程和RNG k-ε湍流模型,开展空蚀和磨损的耦合计算。计算结果表明:在阀芯的出口处,由于流速降低导致的分离现象,会出现回流区和空化带;在阀芯和阀座的间隙处,由于局部压力降低至液相的饱和蒸汽压以下,阀芯壁面存在明显的空化区域,易发生空蚀;阀座的近壁面存在高速固体颗粒的团聚现象,易发生磨损。实际失效案例与数值计算的结果基本一致,验证了数值计算的可靠性。%According to the actual operating conditions ,process medium and structural properties of hydraulic control valve in coal liquefaction high temperature and pressure separator ,the cavitation-wear coupling calculation was carried out based on the two-phase cavitating flowing equation ,lagrangian solid particles control equation and RNG k -ε turbulence model .The results showed that:the recirculation and cavitation region was formed in the outlet of the valve piston because of the flowing separation induced by the decreasing of flow rate;In the gap between the valve seat and piston ,due to the local pressure is reduced to lower than the saturation vapor pressure of the liquid ,the obvious cavitation region appeared in the wall of the valve piston and the cavi-tation erosion is prone to occur;the wear is also prone to happen for the agglomeration phenomenon of the high speed solid parti -cles near the wall of the valve seat .The actual failure case is basically in accordance with the numerical simulation results ,the re-liability of the calculation is verified .

  17. The advanced pulverized coal-fired power plant - status and future

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, S. [ELSAMPROJEKT A/S, Fredericia (Denmark). Boiler and Turbine Dept.

    1997-12-31

    Construction work on two seawater-cooled 400 MW pulverized coal-fired and gas-fired power plants with advanced design parameters for operation in 1997 and 1998 has been initiated by the Danish power utility ELSAM. Main steam pressure at the turbine inlet will be 285 bar (4130 psia) and main steam temperature will be 580{degree}C (1076{degree}F). Double reheat is expected to be 580{degree}C (1076{degree}F) and final feedwater temperature will be 300{degree}C (572{degree}F). Net efficiency will be 47% for coal and 49% for gas. Detailed information on the design of the sliding pressure-controlled once-through tower boilers designed by Danish Burmeister and Wain Energy (BWE) and the five casing turbo groups from MAN-Energie and GEC/Alsthom are presented. ELSAM`s investigations into further improvements of the conversion from coal to electricity up to an efficiency of approx. 50% are also presented. 7 refs., 7 figs.

  18. Measurement and modeling of advanced coal conversion processes, Volume I, Part 1. Final report, September 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1995-09-01

    The objective of this program was the development of a predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. The foundation to describe coal specific conversion behavior was AFR`s Functional Group and Devolatilization, Vaporization and Crosslinking (DVC) models, which had been previously developed. The combined FG-DVC model was integrated with BYU`s comprehensive two-dimensional reactor model for combustion and coal gasification, PCGC-2, and a one-dimensional model for fixed-bed gasifiers, FBED-1. Progress utilizing these models is described.

  19. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  20. Minimizing corrosion in coal liquid distillation

    Science.gov (United States)

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  1. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  2. Overall requirements for an advanced underground coal extraction system. [environment effects, miner health and safety, production cost, and coal conservation

    Science.gov (United States)

    Goldsmith, M.; Lavin, M. L.

    1980-01-01

    Underground mining systems suitable for coal seams expoitable in the year 2000 are examined with particular relevance to the resources of Central Appalachia. Requirements for such systems may be summarized as follows: (1) production cost; (2)miner safety; (3) miner health; (4) environmental impact; and (5) coal conservation. No significant trade offs between production cost and other performance indices were found.

  3. Magnetic refrigerator for hydrogen liquefaction

    OpenAIRE

    Matsumoto, Koichi; Kondo, T.; Yoshioka, S; Kamiya, K.; Numazawa, T.

    2009-01-01

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle s...

  4. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. This report describes leach tests and groundwater monitoring.

  5. Cryogenic hydrogen-induced air liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  6. SUMMARY REPORT OF THE DOE DIRECT LIQUEFACTION PROCESS DEVELOPMENT CAMPAIGN OF THE LATE TWENTIETH CENTURY

    Energy Technology Data Exchange (ETDEWEB)

    F.P. Burke; S.D. Brandes; D.C. McCoy; R.A. Winschel; D. Gray; G. Tomlinson

    2001-07-01

    Following the petroleum price and supply disruptions of 1973, the U.S. government began a substantial program to fund the development of alternative fuels. Direct coal liquefaction was one of the potential routes to alternative fuels. The direct coal liquefaction program was funded at substantial levels through 1982, and at much lower levels thereafter. Those processes that were of most interest during this period were designed to produce primarily distillate fuels. By 1999, U.S. government funding for the development of direct coal liquefaction ended. Now that the end of this campaign has arrived, it is appropriate to summarize the process learnings derived from it. This report is a summary of the process learnings derived from the DOE direct coal liquefaction process development campaign of the late twentieth century. The report concentrates on those process development programs that were designed to produce primarily distillate fuels and were largely funded by DOE and its predecessors in response to the petroleum supply and price disruptions of the 1970s. The report is structured as chapters written by different authors on most of the major individual DOE-funded process development programs. The focus of the report is process learnings, as opposed to, say, fundamental coal liquefaction science or equipment design. As detailed in the overview (Chapter 2), DOE's direct coal liquefaction campaign made substantial progress in improving the process yields and the quality of the distillate product. Much of the progress was made after termination by 1983 of the major demonstration programs of the ''first generation'' (SRC-II, H-Coal, EDS) processes.

  7. SUMMARY REPORT OF THE DOE DIRECT LIQUEFACTION PROCESS DEVELOPMENT CAMPAIGN OF THE LATE TWENTIETH CENTURY; FINAL

    International Nuclear Information System (INIS)

    Following the petroleum price and supply disruptions of 1973, the U.S. government began a substantial program to fund the development of alternative fuels. Direct coal liquefaction was one of the potential routes to alternative fuels. The direct coal liquefaction program was funded at substantial levels through 1982, and at much lower levels thereafter. Those processes that were of most interest during this period were designed to produce primarily distillate fuels. By 1999, U.S. government funding for the development of direct coal liquefaction ended. Now that the end of this campaign has arrived, it is appropriate to summarize the process learnings derived from it. This report is a summary of the process learnings derived from the DOE direct coal liquefaction process development campaign of the late twentieth century. The report concentrates on those process development programs that were designed to produce primarily distillate fuels and were largely funded by DOE and its predecessors in response to the petroleum supply and price disruptions of the 1970s. The report is structured as chapters written by different authors on most of the major individual DOE-funded process development programs. The focus of the report is process learnings, as opposed to, say, fundamental coal liquefaction science or equipment design. As detailed in the overview (Chapter 2), DOE's direct coal liquefaction campaign made substantial progress in improving the process yields and the quality of the distillate product. Much of the progress was made after termination by 1983 of the major demonstration programs of the ''first generation'' (SRC-II, H-Coal, EDS) processes

  8. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica;

    2014-01-01

    can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed by dehy-dration or decarboxylation. The chemical properties of the product are mostly de-pendent of the biomass substrate composition. Biomass consists of various com-ponents such as......Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided into...... biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass into...

  9. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  10. Fluidization of extremely large and widely sized coal particles as well as its application in an advanced chain grate boiler

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.H.; Xu, G.W.; Gao, S.Q. [Chinese Academy of Sciences, Beijing (China)

    2008-12-02

    A pyrolysis combustion technology (PCT) was developed for high-efficiency and environment-friendly chain grate boilers (CGBs). The realization of the PCT in a CGB requires that extremely large and widely sized coal particles should be first pyrolyzed in a semi-fluidized state before being transported into the combustion chamber of the boiler. This article was devoted first to investigating the fluidization of 0-40 mm coal particles in order to demonstrate the technical feasibility of the PCT. In succession, through mixing 0-10 mm and 10-20 mm coal particles in different proportions, multiple pseudo binary mixtures were prepared and then fluidized to clarify the effect of particle size distribution. With raw steam coal used as the feedstock, the superficial gas velocity of about 2.0 m/s may be suitable for stable operation of the fluidized-bed pyrolyzer in the CGB with the PCT. In the fluidization of widely sized coal particles, approximately half of the coal mass is segregated into the bottom section of the bed, though about 15% of 10-20 turn large particles are broken into 0-10 mm small particles because of particle attrition. The experimental results illustrate that an advanced CGB with the PCT has a high adaptability for various coals with different size distributions.

  11. Nuclear/coal synergy early in the 21st century with advanced bi-modal MHR

    International Nuclear Information System (INIS)

    To provide a secure energy supply, and avoid large trade deficits, the U.S. must become more reliant on indigenous resources, namely coal and uranium that are in abundant supply. In this paper an advanced high-temperature modular helium reactor (MHR) plant concept would fully utilize these two resources, and with bi-modal operation would have the capability of generating electricity and producing synthetic fuels. Operating at a high level of reactor outlet temperature, the power generation would come from a direct cycle helium gas turbine with an efficiency on the order of 50%. In the high temperature process heat mode, with a coal feedstock, the plant would produce clean burning fuels primarily to meet transportation needs, namely methanol, synthetic natural gas or hydrogen. The enabling technologies necessary to make such a hybrid plant a reality are well understood, and in many cases have been partially demonstrated, and a perspective of these is discussed, with the projection that the realization of such a plant is possible early in the next century

  12. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    Science.gov (United States)

    Robson, F. L.

    1981-03-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  13. Update of progress for Phase II of B&W`s advanced coal-fired low-emission boiler system

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.K. [Babcock & Wilcox, Barberton, OH (United States); Madden, D.A.; Rodgers, L.W. [Babcock & Wilcox, Alliance, OH (United States)] [and others

    1995-11-01

    Over the past five years, advances in emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements in steam turbine and cycle design have significantly altered the governing criteria by which advanced technologies have been compared. With these advances, it is clear that pulverized coal technology will continue to be competitive in both cost and performance with other advanced technologies such as Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBC) technologies for at least the next decade. In the early 1990`s it appeared that if IGCC and PFBC could achieve costs comparable to conventional pulverized coal plants, their significantly reduced NO{sub x} and SO{sub 2} emissions would make them more attractive. A comparison of current emission control capabilities shows that all three technologies can already achieve similarly low emissions levels.

  14. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...... wave height. Recommendations are made as to how to assess liquefaction potential in standing waves. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE)....

  15. Exploratory research on novel coal liquefaction concept

    International Nuclear Information System (INIS)

    All first-stage experimental tests were completed for Task 4 (and the Contract). The first-stage one-liter autoclave tests that were made were duplicates of Run 41-LA. The conditions used were chosen last quarter to reduce the cost of the first-stage of the process from those used at the conclusion of Task 3. Filtration and second-stage tests were made using the products of the first-stage tests. Post-second-stage filtration, tested as an alternative to interstage (pre-second- stage) filtration, resulted in low filtration rates. Different catalyst loadings and type and residence time for second-stage hydrotreating were explored. Longer residence times did not result in significantly more resid conversion. Higher catalyst loadings were more effective in converting the resid at the same residence time. The material and elemental balances for the first-stage were completed. The material and elemental balances for the second-stage were initiated

  16. Elucidation of hydrogen mobility in tetralin under coal liquefaction conditions using a tritium tracer method. Effects of the addition of H2S and H2O; Tritium tracer ho wo mochiita sekitan ekika hanno jokenka deno tetralin no suiso idosei hyoka. Ryuka suiso oyobi mizu no tenka koka

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, M.; Saito, M.; Ishihara, A.; Kabe, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-28

    It was previously reported that the tritium tracer method is useful for the quantitative consideration of hydrogen behavior in coal during coal liquefaction reaction. Tetralin is excellent hydrogen donating solvent, and is considered as one of the model compounds of coal. In this study, effects of H2S and H2O on the hydrogen exchange reaction between tetralin and gaseous hydrogen labeled by tritium were investigated. It was suggested that the conversion of tetralin and the hydrogen exchange reaction between gaseous hydrogen and tetralin proceed through the radical reaction mechanism with a tetralyl radical as an intermediate product. When H2S existed in this reaction, the hydrogen exchange yield increased drastically without changing the conversion yield. This suggested that the hydrogen exchange reaction proceeds even in the reaction where radical does not give any effect. In the case of H2O addition, the conversion yield and hydrogen exchange rate decreased into a half or one-third. It was suggested that H2O inhibited the formation process of tetralyl radical. 6 refs., 4 figs.

  17. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [General Electric Global Research, Niskayuna, NY (United States)

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  18. Liquefaction reactivity correlations using pyrolysis/mass spectrometry/pattern recognition procedures

    Energy Technology Data Exchange (ETDEWEB)

    Voorhees, K.J.; Durfee, S.L.; Baldwin, R.M.

    1981-01-01

    In the reported experiments, eleven samples of eastern U.S. coals, have been investigated by pyrolysis/mass spectrometry (Py-MS) pattern recognition procedures to evaluate the feasibility of correlating the observed liquefaction reactivities with the pyrolysis mass spectra. The pyrolyses were conducted in vacuum using a Curie-point pyrolyzer (610/degree/C) coupled directly to the ion source of an Extranuclear SpectrEL mass spectrometer. It is demonstrated by evaluating experimental data that the pyrolysis mass spectra (coal structure parameter) can be correlated with conversion data. This suggests that the structure is the dominant factor in controlling liquefaction properties. 4 refs.

  19. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  20. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  1. Liquefaction of crop residues for polyol production

    OpenAIRE

    C Wan; Wang, T.; Zhang, L.; Zang, L.; Li, Y.; Mao, Z.; L. Liang

    2006-01-01

    The liquefaction of crop residues in the presence of ethylene glycol, ethylene carbonate, or polyethylene glycol using sulfuric acid as a catalyst was studied. For all experiments, the liquefaction was conducted at 160C and atmospheric pressure. The mass ratio of feedstock to liquefaction solvents used in all the experiments was 30:100. The results show that the acid catalyzed liquefaction process fit a pseudo-first-order kinetics model. Liquefaction yields of 80, 74, and 60% were obtained i...

  2. Algae liquefaction / Hope Baloyi

    OpenAIRE

    Baloyi, Hope

    2012-01-01

    The liquefaction of algae for the recovery of bio–oil was studied. Algae oil is a non–edible feedstock and has minimal impact on food security and food prices; furthermore, it has been identified as a favourable feedstock for the production of biodiesel and this is attributed to its high oil yield per hectare. Algae oil can be potentially used for fuel blending for conventional diesel. The recovery step for algae oil for the production of biodiesel is costly and demands a lot of energy due to...

  3. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  4. The Coal-Seq III Consortium. Advancing the Science of CO2 Sequestration in Coal Seam and Gas Shale Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Koperna, George [Advanced Resources International Inc., Arlington, VA (United States)

    2014-03-14

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3 expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was applied to

  5. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  6. Study of catalytic effects of mineral matter level on coal reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, Nestor J.; Klunder, Edgar B.; Krastman, Donald

    1981-03-01

    Coal liquefaction experiments using a 400-lb/day bubble-column reactor tested the catalytic effects of added mineral matter level on coal conversion, desulfurization, and distillate yields in continuous operation under recycle conditions, with specific emphasis on the use of a disposable pyrite catalyst indigenous to the feed coal. Western Kentucky No. 11 run-of-mine (ROM) and washed coals were used as feedstocks to determine the effects of levels of mineral matter, specifically iron compounds. Liquefaction reactivity as characterized by total distillate yield was lower for washed coal, which contained less mineral matter. Liquefaction reactivity was regained when pyrite concentrate was added as a disposable catalyst to the washed coal feed in sufficient quantity to match the feed iron concentration of the run-of-mine coal liquefaction test run.

  7. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  8. Engineering development of advanced coal-fired low emission boiler systems. Fourth quarterly technical progress report, July 1993--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The LEBS plant design will be based on a high-sulfur Illinois No. 6 coal. This coal meets program selection requirements of extensive reserves and production, sulfur content, and representativeness. Two alternate test coals have been selected to examine fuel effects, and to broaden the range of application of the technology being developed. The alternate coals are a medium sulfur, Pittsburgh No. 8 bituminous, and a Wyoming subbituminous coal. The efficiency goals for the LEBS are challenging, particularly with the demands environmental controls are likely to place on auxiliary power. Table 1 shows estimates of overall plant efficiencies for three steam cycles: (1) a 2400 psi subcritical single reheat cycle typical of current plants; (2) a 3500 psi supercritical single reheat cycle; and (3) an advanced 4500 psi double reheat cycle. The plant heat rates are based on maximum boiler efficiency and minimum auxiliary power requirements consistent with conventional plant design for the design and alternate coals. The aggressive efficiency goals clearly require advanced steam conditions, as well as careful management of any added auxiliary power requirements for environmental controls. The EPRI SOAPP (State-of-the-Art Power Plant) project has selected the 4500 psi cycle as maximizing plant efficiency while minimizing generating costs for a commercial plant to be constructed by the year 2000. This program will incorporate the SOAPP base case cycle. The LESS design will incorporate a high-efficiency, once-through boiler design known as the Benson. Significant improvements in availability and operating flexibility have made this boiler design the system of choice for European power generation over the last fifteen years.

  9. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K; Kondo, T [Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Yoshioka, S; Kamiya, K; Numazawa, T [Tsukuba Magnet Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan)], E-mail: kmatsu@kenroku.kanazawa-u.ac.jp

    2009-02-01

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle succeeded in liquefying hydrogen at 20K. Above liquefaction temperature, a regenerative refrigeration cycle should be necessary to precool hydrogen gas, because adiabatic temperature change of magnetic material is reduced due to a large lattice specific heat of magnetic materials. We have tested an AMR device as the precooling stage. It was confirmed for the first time that AMR cycle worked around 20 K.

  10. Magnetic refrigerator for hydrogen liquefaction

    International Nuclear Information System (INIS)

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle succeeded in liquefying hydrogen at 20K. Above liquefaction temperature, a regenerative refrigeration cycle should be necessary to precool hydrogen gas, because adiabatic temperature change of magnetic material is reduced due to a large lattice specific heat of magnetic materials. We have tested an AMR device as the precooling stage. It was confirmed for the first time that AMR cycle worked around 20 K.

  11. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  12. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  13. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper demonstrates capabilities of low-field nuclear magnetic resonance (NMR) and microfocus X-ray computed tomography (μCT) in advanced, nondestructive, and quantitative characterization of pore types, producible porosity, pore structure, and spatial disposition of pore-fractures in coals. Results show that the NMR transverse relaxation time (T2) at 0.5–2.5, 20–50, and >100 ms correspond to pores of <0.1 μm, >0.1 μm, and fractures, respectively. A much higher T2 spectrum peak reflects a much better development of pores (or fractures) corresponding to the T2, and vice versa. Three basic components in coals, i.e., the pores (or fractures), coal matrix, and minerals have their distinctive range of CT numbers. Among these, the CT number of pores is commonly less than 600 HU. The producible porosity, which is a determination of permeability, can be calculated by T2 cutoff value (T2C) of coal NMR. The coal pore structure can be efficiently estimated by the newly proposed "T2C based model". Finally, μCT scan was proven capable of modeling and spatial visualization of pores and fractures.

  14. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  15. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  16. Magnetic refrigerator for hydrogen liquefaction

    International Nuclear Information System (INIS)

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  17. Electricity and fluid fuels from biomass and coal using advanced technologies: a cost comparison for developing country applications

    International Nuclear Information System (INIS)

    Recent analyses of alternative global energy supply strategies, such as the forthcoming report of the Intergovernmental Panel on Climate Change (IPCC), to be published in 1996, have drawn attention to the possibility that biomass modernized with advanced technologies could play an important role in meeting global energy needs in the next century. This paper discusses two promising classes of advanced technologies that offer the potential for providing modem energy carriers (electricity and fluid fuels) from biomass at competitive costs within one or two decades. These technologies offer significantly more efficient use of land than currently commercial technologies for producing electricity and fluid fuels from biomass, as well as substantially improved energy balances. Electricity is Rely to be the first large market for modernized biomass, but the potential market for fluid fuel production is likely to be much larger. As coal is likely to present a more serious competitive challenge to biomass in the long run, we present an economic comparison with coal-based electricity and fluid fuels. A meaningful economic comparison between coal and biomass is possible because these feedstocks are sufficiently alike in their physical characteristics that similar conversion technologies may well be used for producing electricity and fluid fuels from them. When similar conversion technologies are used for both feedstocks, the relative costs of electricity or fluid fuels will be determined by the distinguishing technical characteristics of the feedstocks (sulphur content, moisture content and reactivity) and by the relative feedstock prices. Electric power generation from biomass and coal are compared here using an advanced integrated gasifier/gas turbine cycle that offers the potential for achieving high efficiency, low unit capital cost and low local pollutant emissions: the steam-injected gas turbine coupled to an air-blown gasifier. For both feedstocks, generation costs are

  18. An investigation of the role of water on retrograde/condensation reactions and enhanced liquefaction yields. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, F.P.; Netzel, D.A.; Wallace, J.C. Jr.; Butcher, C.H.; Mitzel, J.M.; Turner, T.F.

    1995-02-01

    While great strides have been made in developing the technology of coal liquefaction processes in recent years, many unsolved problems still remain before a viable and economical process can be achieved. The technological problems that still exist can be solved through a more fundamental understanding of the chemistry associated with each stage of the coal liquefaction process, starting with any pretreatment steps that may be carried out on the coal itself. Western Research Institute, under the a contract from the US Department of Energy, has conducted a study of different methods of coal drying as pretreatment steps before liquefaction. The results of that study are the subject of this report. Coals that were dried or partially dried thermally and with microwaves had lower liquefaction conversions than coals containing equilibrium moisture contents. However, chemically dried coals had conversions equal to or greater than the premoisturized coals. The conversion behavior is consistent with changes in the physical structure and cross linking reactions because of drying. Thermal and microwave drying appear to cause a collapse in the pore structure, thus preventing donor solvents such as tetralin from contacting reactive sites inside the coals. Chemical dehydration does not appear to collapse the pore structure. From the study of the kinetics of the chemical dehydration of coals, it was possible to quantify the amount of water on the surface, the amount readily accessible in pores, and the amount more strongly bonded in the internal structure of the coals. The results indicate that high-rank coals have proportionally less surface and easily accessible water than the lower rank coals.

  19. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Pickrell, Gary [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2012-03-31

    This report summarizes technical progress on the program Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  20. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  1. Microbial liquefaction of peat for the production of synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekaran, M.

    1988-01-01

    Objectives of this study were: to evaluate the potential of using various microorganisms to hydrolyse and liquify peat; to determine the optimal conditions for peat hydrolysis and liquefaction; to study the co-metabolizable substances; to separate the compounds present in liquified peat by alumina and silica acid chromatography and capillary gas chromatography; and to identify the compounds in liquified peat by capillary GC-Mass spectrometry. Organisms used in the study include: Coprinus comatus, Coriolus hirsutus, Ganoderma lucidum, Lentinus edodes, Lenzites trabea, Phanerochaete chrysosporium, Pleurotus ostreatus, P. sapidus, Polyporus adjustus, Neurospora sitophila, Rhizophus arrhizus, Bacillus subtilis, Acinetobacter sp. and Alcaligenes sp. The fungi were maintained and cultivated in potato dextrose agar at 30 C. The bacteria were maintained in nutrient agar at 30 C. We have also initiated work on coal solubilization in addition to the studies on peat liquefaction. A relatively new substratum or semi-solid base for culture media called Pluronic F-127, or Polyol (BASF, New Jersey). Objectives of this study were: (1) to study the growth patterns of Candida ML 13 on pluronic as substratum; (2) to determine the rate of microbial coal solubilization on pluronic F-127 amended in different growth media; (3) to separate the mycelial mat of Candida ML 13 from unsolubilized coal particles and solubilized coal products from pluronic F-127; (4) to determine the effects of pH on microbial coal solubilization in pluronic F-127 media; (5) the effect of concentration of pluronic F-127 in media on coal solubilization; and, (6) to study the role of extracellular factors secreted by Candida ML 13 on coal solubilization in pluronic F-127 media. Results are discussed. 4 refs.

  2. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  3. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    International Nuclear Information System (INIS)

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  4. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri,; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-11-30

    This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grinding and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.

  5. CHEMICAL AND BIOLOGICAL CHARACTERIZATION OF LEACHATES FROM COAL SOLID WASTES

    Science.gov (United States)

    The report gives results of the chemical and mineralogical characterization of coal solid wastes. The wastes included three Lurgi gasification ashes, mineral residues from the SRC-1 and H-Coal liquefaction processes, two chars, two coal-cleaning residues, and a fly-ash-and-water-...

  6. Use of advanced chemical fingerprinting in PAH source identification and allocation at a coal tar processing site

    International Nuclear Information System (INIS)

    Advanced chemical fingerprinting analyses were used to determine source allocation at a former coal tar processing facility which had been converted to a petroleum recycling site. Soil samples from the site had high petroleum hydrocarbon concentrations and elevated levels of polynuclear aromatic hydrocarbons (PAH). Comparisons of PAH distributions were used to differentiate the coal tar hydrocarbons from the petroleum hydrocarbons in soil samples. A more specific technique was needed to accurately allocate the contribution of the two sources to the observed PAH contamination in the soil. Petroleum biomarkers (steranes and triterpanes) which are present in crude oils and many refined petroleum products but are absent in coal tar were used to quantitatively allocate the source of the PAH contamination based on the relative ratio of the PAH to the biomarkers in soil samples. Using the resulting coal tar/petroleum source ratio the contribution of petroleum to the overall PAH contamination at the site was calculated. A multivariate statistical technique (principal component analysis or PCA) was used to provide an independent validation of the source allocation. The results of the source allocation provided a foundation for the site clean-up and remediation costs

  7. Measurement and modeling of advanced coal conversion processes. Twenty-second quarterly report, January 2, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. [Brigham Young Univ., Provo, UT (United States)

    1992-12-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO{sub x}-NO{sub x} submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  8. Coal demonstration plants. Quarterly report, January-March 1979. [US DOE-supported

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Progress in US DOE-supported demonstration plants for the gasification and liquefaction of coal is reported: company, contract number, process description and flowsheet, history and progress in the current quarter. Related projects involve coal feeders, lock hoppers, values, etc. for feeding coal into high pressure systems, coal grinding equipment and measuring and process control instrumentation. (LTN)

  9. Low-rank coal study. Volume 5. RD and D program evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    A national program is recommended for research, development, and demonstration (RD and D) of improved technologies for the enviromentally acceptable use of low-rank coals. RD and D project recommendations are outlined in all applicable technology areas, including extraction, transportation, preparation, handling and storage, conventional combustion and environmental control technology, fluidized bed combustion, gasification, liquefaction, and pyrolysis. Basic research topics are identified separately, as well as a series of crosscutting research activities addressing environmental, economic, and regulatory issues. The recommended RD and D activities are classified into Priority I and Priority II categories, reflecting their relative urgency and potential impact on the advancement of low-rank coal development. Summaries of ongoing research projects on low-rank coals in the US are presented in an Appendix, and the relationships of these ongoing efforts to the recommended RD and D program are discussed.

  10. Coal conversion. 1979 technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

  11. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  12. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  13. Decarbonised coal energy system advancement through CO2 utilisation and polygeneration

    OpenAIRE

    Ng, KS; Zhang, N.; Sadhukhan, J

    2012-01-01

    Development of clean coal technology is highly envisaged to mitigate the CO2 emission level whilst meeting the rising global energy demands which require highly efficient and economically compelling technology. Integrated gasification combined cycle (IGCC) with carbon capture and storage (CCS) system is highly efficient and cleaner compared to the conventional coal-fired power plant. In this study, an alternative process scheme for IGCC system has been proposed, which encompasses the reuse of...

  14. Ground Penetrating Radar Signal Processing Algorithm in Advance Detection of Coal Seam

    OpenAIRE

    Wang Shuqi; Wang Zhen

    2013-01-01

    According to the electromagnetic propagation characteristics of Ground Penetrating Radar (GPR) in the medium, how to identify the target in coal seam using the relative permittivity of the dielectric object is studied, the identification algorithm of dielectric object based on electromagnetic echo field intensity with propagation loss and reflection loss are analyzed. The simulation results show that coal seam attenuation coefficient has extremely weak infl...

  15. Analysis of engineering cycles power, refrigerating and gas liquefaction plant

    CERN Document Server

    Haywood, R W

    1991-01-01

    Extensively revised, updated and expanded, the fourth edition of this popular text provides a rigorous analytical treatment of modern energy conversion plant. Notable for both its theoretical and practical treatment of conventional and nuclear power plant, and its studies of refrigerating and gas-liquefaction plant. This fourth edition now includes material on topics of increasing concern in the fields of energy 'saving' and reduction of environmental pollution. This increased coverage deals specifically with the following areas: CHP (cogeneration) plant, studies of both gas and coal burning p

  16. Exploratory Research on Novel Coal

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.

    1998-05-01

    The report presents the findings of work performed under DOE Contract No. DE-AC22 -95PC95050, Task 3 - Flow Sheet Development. A novel direct coal liquefaction technology was investigated in a program being conducted by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Parameters were established for a low-cost, low-severity first-stage reaction system. A hydride ion reagent system was used to effect high coal conversions of Black Thunder Mine Wyoming subbituminous coal. An integrated first-stage and filtration step was successfully demonstrated and used to produce product filtrates with extremely low solids contents. High filtration rates previously measured off-line in Task 2 studies were obtained in the integrated system. Resid conversions of first-stage products in the second stage were found to be consistently greater than for conventional two-stage liquefaction resids. In Task 5, elementally balanced material balance data were derived from experimental results and an integrated liquefaction system balance was completed. The economic analysis indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies. However, several approaches to reduce costs for the conceptual commercial plant were recommended. These approaches will be investigated in the next task (Task 4) of the program.

  17. Catalyst dispersion and activity under conditions of temperature- staged liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1991-09-01

    The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of the catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation. Liquefaction experiments of solvent-treated and untreated Blind Canyon (DECS-6) and Texas lignite (DECS-1) have been performed using ammonium tetrathiomolybdate (ATTM) and bis (dicarbonylcyclopentadienyl) iron (CPI) as catalyst precursors using temperature-staged conditions (275{degrees}C, 30 min; 425{degrees}C, 30 min). Solid state {sup 13}C NMR analysis was carried out for each coal and for selected residues. 12 refs., 14 figs., 9 tabs.

  18. Reaction mechanism of coal liquefaction: hydrogenolysis of model compound using synthetic pyrite as catalysts. 7. Property change of synthetic pyrite catalyst with the time after production; Sekitan ekika hanno kiko (model kagobutsu no hanno). 7. Gosei ryukatetsu shokubai no keiji henka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Meno, H.; Uemaki, O.; Shibata, T.; Tsuji, T. [Hokkaido University, Sapporo (Japan)

    1996-10-28

    Reactions of various model compounds were investigated using synthetic pyrites for coal liquefaction. In this study, successive changes of the catalysts were investigated from the reactions of model compounds by using three different synthetic pyrites with the lapse of time after production. Benzyl phenyl ether, dibenzyl, and n-octylbenzene were used as model compounds. Reactions were conducted in an autoclave, into which sample, catalyst, decalin as solvent, and initial hydrogen pressure 10 MPa were charged. The autoclave was held at 450 or 475{degree}C of reaction temperature for 1 hour. The catalyst with a shorter lapse of time after production acted to hydrogen transfer, and inhibited the formation of condensation products due to the stabilization of decomposed fragment. It also acted to isomerization of materials by cutting alkyl side chains. When adding sulfur to the catalyst with longer lapse of time after production under these reaction conditions, it inhibited the formation of condensation products for the reaction of benzyl phenyl ether. However, it did not provide the effect for the reaction of n-octylbenzene. 5 refs., 3 figs.

  19. Microstructural evolution in advanced boiler materials for ultra-supercritical coal power plants

    Science.gov (United States)

    Wu, Quanyan

    The goal of improving the efficiency of pulverized coal powerplants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam temperatures approaching 760°C under a stress of 35 MPa. The long-term creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other conventional alloys. As part of a large DOE-funded consortium, new and existing materials based on advanced austenitic stainless steels and nickel base superalloys are being evaluated for these very demanding applications. In the present work, the nickel base superalloys of Inconel 617, CCA617, Haynes 230 and Inconel 740, and austenitic alloys Super 304H and HR6W, were evaluated on their microstructural properties over elevated temperature ageing and creep rupture conditions. The materials were aged for different lengths of time at temperatures relevant to USC applications, i.e., in the range from 700 to 800°C. The precipitation behaviors, namely of the gamma', carbides and eta phase in some conditions in nickel base superalloys, carbides in Haynes 230, Cu-rich precipitates in Super 304H and Laves phase particles in HR6W, were studied in detail using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and related analytical techniques. Particular attention has been given on the structure, morphology and compositional distinctiveness of various phases (including gamma, gamma', carbides, secondary phase precipitates, and other types of particles) and their nature, dislocation structures and other types of defects. The results were presented and discussed in light of associated changes in microhardness in the cases of aged samples, and in close reference to mechanical testing (including tensile and creep rupture tests) wherever available. Several mechanical strengthening

  20. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 15, April--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-07-25

    Goal is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Scope includes laboratory research and bench-scale testing on 6 coals to optimize these processes, followed by design/construction/operation of a 2-t/hr PDU. During this quarter, parametric testing of the 30-in. Microcel{trademark} flotation column at the Lady Dunn plant was completed and clean coal samples submitted for briquetting. A study of a novel hydrophobic dewatering process continued at Virginia Tech. Benefits of slurry PSD (particle size distribution) modification and pH adjustment were evaluated for the Taggart and Hiawatha coals; they were found to be small. Agglomeration bench-scale test results were positive, meeting product ash specifications. PDU Flotation Module operations continued; work was performed with Taggart coal to determine scaleup similitude between the 12-in. and 6-ft Microcel{trademark} columns. Construction of the PDU selective agglomeration module continued.

  1. Coal technology

    International Nuclear Information System (INIS)

    The coal- and gas-fueled cogeneration plants develop rapidly and according to all the scenarios will continue to grow with ever improving power generation effect in counterpressure mode. As there is no 'cooling water waste', a greater percentage of houses should be heated electrically. The coal combustion technologies mentioned here will probably converge around 53-55% coefficient of performance. Emission requirements can be fulfilled by use of modern coal technologies. Coal will stay as a competitive fuel for cogeneration as other more advanced technologies are often yet at the demonstration stage. (EG)

  2. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

    1999-08-01

    Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

  3. World market: A survey of opportunities for advanced coal-fired systems

    Energy Technology Data Exchange (ETDEWEB)

    Holt, N.A.H.

    1995-06-01

    Although there is a wide range of forecasts for the future of World energy demand and consumption over the next 25 years, all forecasts show marked increases being required for all forms of fossil fuels even when optimistic projections are made for the future adoption of Nuclear and Renewable energy. It is also generally expected that coal usage will in this period experience its greatest growth (a doubling) in the Asia-Pacific region dominated demographically by China and India. In this paper, energy projections and the extent and nature of the coal reserves available worldwide are examined. While most coal technologies can handle a variety of feedstocks, there are often economic factors that will determine the preferred selection. The matching of technology to coal type and other factors is examined with particular reference to the Asia Pacific region. Oil usage is similarly forecast to experience a comparable growth in this region. Over 70% of the World`s oil reserves are heavy oils and refinery crudes are increasing in gravity and sulfur content. The clean coal technologies of gasification and fluid bed combustion can also use low value petroleum residuals as feedstocks. There is therefore a nearer term market opportunity to incorporate such technologies into cogeneration and coproduction schemes adjacent to refineries resulting in extremely efficient use of these resources.

  4. Recent advances in remote coal mining machine sensing, guidance, and teleoperation

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, J.C.; Hainsworth, D.W.; Reid, D.C.; Anderson, D.L.; McPhee, R.J. [CSIRO Exploration & Minerals, Kenmore, Qld. (Australia)

    2001-10-01

    Some recent applications of sensing, guidance and telerobotic technology in the coal mining industry are presented. Of special interest is the development of semi or fully autonomous systems to provide remote guidance and communications for coal mining equipment. The use of radar and inertial based sensors are considered in an attempt to solve the horizontal and lateral guidance problems associated with mining equipment automation. Also described is a novel teleoperated robot vehicle with unique communications capabilities, called the Numbat, which is used in underground mine safety and reconnaissance missions.

  5. Assessment of Research Needs for Coal Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1983-08-01

    The Coal Combustion and Applications Working Group (CCAWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on coal combustion and utilization. The important topical areas of coal gasification and coal liquefaction have been deliberately excluded because R and D needs for these technologies were reviewed previously by the DOE Fossil Energy Research Working Group. The CCAWG studies were performed in order to provide an independent assessment of research areas that affect prospects for augmented coal utilization. In this report, we summarize the findings and research recommendations of CCAWG.

  6. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. PMID:25936898

  7. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  8. Current and advanced NO/sub x/-control technology for coal-fired industrial boilers

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A NOx-control-technology assessment study of coal-fired industrial boilers was conducted to examine the effectiveness of combustion-modification methods, including low excess air, staged combustion, and burner modifications. Boiler types considered included overfed and underfed stokers, spreader stokers, pulverized-coal and coal-fired cyclone units. Significant variations in NOx emissions occur with boiler type, firing method, and coal type; a relative comparison of emission-control performance, cost, and operational considerations is presented for each method. Baseline (as-found) emissions from grate-fired stokers were shown to be in the range of 200 to 300 ppM. Similarly, as-found emissions from suspension-fired units were quite low (350 to 600 ppM) as compared to comparably designed utility-sized units. Low excess air was shown to be the most effective method on existing units, reducing emissions by approximately 10%. Evaluation of staged combustion and burner modification, however, were limited due to current boiler designs. Major hardware modification/design and implementation are necessary before the potential of these techniques can be fully evaluated. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion-modification program, including energy considerations, incremental capital and operating costs, corrosion, secondary pollutants, and retrofit potential.

  9. Engineering design and analysis of advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-20

    Research continued on coal cleaning technologies. The work plan for this period called for the completion of the suite of gravity separation models (seven in total). Two items concerning these models were to be investigated further: (1) incorporating an Aspen Plus algorithm for converging the estimated dp of separation on the user selected dp value, and (2) evaluating methods other than interpolation by cubic spline methods for estimating Ep from a set of composite partition numbers. The water-only cyclone, fine coal jig, and concentrating spiral models were to be transferred from ICF KE to AspenTech for incorporation as system models by the end of the reporting period. Model discrimination analysis for selecting the appropriate form of an equation for generating interval partition values was slated for completion. Coding and testing of several dewatering algorithms were scheduled to take place during the work period. Models for fine coal vacuum filters, coarse and fine coal centrifuges, thickeners, and thermal dryers were to be completed during the work period. Additionally, work was expected to continue in the areas of classification, comminution, and froth flotation modeling.

  10. Refining and end use study of coal liquids I - pilot plant studies

    Energy Technology Data Exchange (ETDEWEB)

    Erwin, J.; Moulton, D.S.

    1995-12-31

    The Office of Fossil Energy, Pittsburgh Energy Technology Center is examining the ways in which coal liquids may best be integrated into the refinery of the 2000-2015 time frame and what performance and emission properties will prevail among the slate of fuels produced. The study consists of a Basic Program administered by Bechtel Group, Inc. to build a linear programming refinery model and provide processing and fuel properties data through subcontractors Southwest Research Institute, Amoco Oil R&D, and M.W. Kellogg Company. The model will be used in an Option 1 to devise a slate of test fuels meeting advanced specifications, which will be produced and tested for physical ASTM-type properties, engine performance, and vehicle emissions. Three coal liquids will be included: a direct liquid from bituminous coal, another from subbituminous, and a Fischer-Tropsch indirect liquefaction product. This paper reports the work to date on fractions of the first direct liquid including naphtha hydrotreating, heavy distillate hydrotreating, FCC of the heavy distillate hydrotreater products. Also reported are the first stages of work on the indirect liquefaction wax including feed preparation and FCC tests of blends with petroleum FCC feed.

  11. A genetic algorithm approach for assessing soil liquefaction potential based on reliability method

    Indian Academy of Sciences (India)

    M H Bagheripour; I Shooshpasha; M Afzalirad

    2012-02-01

    Deterministic approaches are unable to account for the variations in soil’s strength properties, earthquake loads, as well as source of errors in evaluations of liquefaction potential in sandy soils which make them questionable against other reliability concepts. Furthermore, deterministic approaches are incapable of precisely relating the probability of liquefaction and the factor of safety (FS). Therefore, the use of probabilistic approaches and especially, reliability analysis is considered since a complementary solution is needed to reach better engineering decisions. In this study, Advanced First-Order Second-Moment (AFOSM) technique associated with genetic algorithm (GA) and its corresponding sophisticated optimization techniques have been used to calculate the reliability index and the probability of liquefaction. The use of GA provides a reliable mechanism suitable for computer programming and fast convergence. A new relation is developed here, by which the liquefaction potential can be directly calculated based on the estimated probability of liquefaction (), cyclic stress ratio (CSR) and normalized standard penetration test (SPT) blow counts while containing a mean error of less than 10% from the observational data. The validity of the proposed concept is examined through comparison of the results obtained by the new relation and those predicted by other investigators. A further advantage of the proposed relation is that it relates and FS and hence it provides possibility of decision making based on the liquefaction risk and the use of deterministic approaches. This could be beneficial to geotechnical engineers who use the common methods of FS for evaluation of liquefaction. As an application, the city of Babolsar which is located on the southern coasts of Caspian Sea is investigated for liquefaction potential. The investigation is based primarily on in situ tests in which the results of SPT are analysed.

  12. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.` Jha, M.C.

    1997-09-29

    The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a

  13. Earthquake Risk - MO 2013 Liquefaction Potential (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Soil liquefaction potential was determined using existing geologic and alluvium maps. Quaternary, Tertiary, and Cretaceous-age sediments, and alluvium deposits are...

  14. Cryogenic hydrogen-induced air-liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  15. Development of advanced, dry, SO{sub x}/NO{sub x} emission control technologies for high-sulfur coal. Final report, April 1, 1993--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Amrhein, G.T.

    1994-12-23

    Dry Scrubbing is a common commercial process that has been limited to low- and medium-sulfur coal applications because high-sulfur coal requires more reagent than can be efficiently injected into the process. Babcock & Wilcox has made several advances that extend dry scrubbing technologies to higher sulfur coals by allowing deposit-free operation at low scrubber exit temperatures. This not only increases the amount of reagent that can be injected into the scrubber, but also increases SO{sub 2} removal efficiency and sorbent utilization. The objectives of this project were to demonstrate, at pilot scale, that advanced, dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} and NO{sub x} emissions while burning high-sulfur coal, and that these technologies are economically competitive with wet scrubber systems. The use of these technologies by utilities in and around Ohio, on new or retrofit applications, will ensure the future of markets for high-sulfur coal by creating cost effective options to coal switching.

  16. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  17. Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants

    Science.gov (United States)

    Hussain, T.; Dudziak, T.; Simms, N. J.; Nicholls, J. R.

    2013-06-01

    This article presents a systematic evaluation of coatings for advanced fossil fuel plants and addresses fireside corrosion in coal/biomass-derived flue gases. A selection of four candidate coatings: alloy 625, NiCr, FeCrAl and NiCrAlY were deposited onto superheaters/reheaters alloy (T91) using high-velocity oxy-fuel (HVOF) and plasma spraying. A series of laboratory-based fireside corrosion exposures were carried out on these coated samples in furnaces under controlled atmosphere for 1000 h at 650 °C. The tests were carried out using the "deposit-recoat" test method to simulate the environment that was anticipated from air-firing 20 wt.% cereal co-product mixed with a UK coal. The exposures were carried out using a deposit containing Na2SO4, K2SO4, and Fe2O3 to produce alkali-iron tri-sulfates, which had been identified as the principal cause of fireside corrosion on superheaters/reheaters in pulverized coal-fired power plants. The exposed samples were examined in an ESEM with EDX analysis to characterize the damage. Pre- and post-exposure dimensional metrologies were used to quantify the metal damage in terms of metal loss distributions. The thermally sprayed coatings suffered significant corrosion attack from a combination of aggressive combustion gases and deposit mixtures. In this study, all the four plasma-sprayed coatings studied performed better than the HVOF-sprayed coatings because of a lower level of porosity. NiCr was found to be the best performing coating material with a median metal loss of ~87 μm (HVOF sprayed) and ~13 μm (plasma sprayed). In general, the median metal damage for coatings had the following ranking (in the descending order: most to the least damage): NiCrAlY > alloy 625 > FeCrAl > NiCr.

  18. SHENHUA PLANS EIGHT COAL-TO-OIL PROJECTS IN NORTH CHINA

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ China's biggest coal producer, Shenhua Group, plans to convert coal into 30 million tons ofoil by the year 2020 in four northern provinces. Three of eight projects planned will be completed by 2010, Zhang Yuzhuo, in charge of Shenhua's coal liquefaction business, told an energy forum hosted by the China Energy Research Society in Beijing on June 15.

  19. The use of NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, D.A.; Miknis, F.P.; Wallace, J.C. Jr.; Butcher, C.H.; Mitzel, J.M.; Turner, T.F.; Hurtubise, R.J.

    1995-02-01

    Western Research Institute has conducted a study of different methods of coal drying as pretreatment steps before liquefaction. The objectives of this study were to develop a combined chemical dehydration/nuclear magnetic resonance (NMR) method for measuring the moisture content of coal, to measure the changes in coal structure that occur during drying, and to determine the effects of different drying methods on liquefaction reactivity of coals. Different methods of drying were investigated to determine whether coal drying can be accomplished without reducing the reactivity of coals toward liquefaction. Drying methods included thermal, microwave, and chemical dehydration. Coals of rank lignite to high volatile bituminous were studied. Coals that were dried or partially dried thermally and with microwaves had lower liquefaction conversions than coals containing equilibrium moisture contents. However, chemically dried coals had conversions equal to or greater than the premoisturized coals. The conversion behavior is consistent with changes in the physical structure and cross linking reactions because of drying. Thermal and microwave drying appear to cause a collapse in the pore structure, thus preventing donor solvents such as tetralin from contacting reactive sites inside the coals. Chemical dehydration does not appear to collapse the pore structure. These results are supported by the solvent swelling measurements in which the swelling ratios of thermally dried and microwave-dried coals were lower than those of premoisturized coals, indicating a greater degree of cross linking in the dried coals. The swelling ratios of the chemically dried coals were greater than those of the premoisturized coals because the pore structure remaining unchanged or increased when water was removed. These results are consistent with the NMR results, which did not show significant changes in coal chemical structure.

  20. Engineering development of advanced coal-fired low-emission boiler system. Technical progress report No. 1, August--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-26

    The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO{sub x} emissions not greater than one-third NSPS; SO{sub x} emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

  1. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.; Menzies, W.R.; Smouse, S.M.; Stallings, J.W.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  2. Recording-based identification of site liquefaction

    Institute of Scientific and Technical Information of China (English)

    Hu Yuxian; Zhang Yushan; Liang Jianwen; Ray Ruichong Zhang

    2005-01-01

    Reconnaissance reports and pertinent research on seismic hazards show that liquefaction is one of the key sources of damage to geotechnical and structural engineering systems. Therefore, identifying site liquefaction conditions plays an important role in seismic hazard mitigation. One of the widely used approaches for detecting liquefaction is based on the time-frequency analysis of ground motion recordings, in which short-time Fourier transform is typically used. It is known that recordings at a site with liquefaction are the result of nonlinear responses of seismic waves propagating in the liquefied layers underneath the site. Moreover, Fourier transform is not effective in characterizing such dynamic features as time-dependent frequency of the recordings rooted in nonlinear responses. Therefore, the aforementioned approach may not be intrinsically effective in detecting liquefaction. An alternative to the Fourier-based approach is presented in this study,which proposes time-frequency analysis of earthquake ground motion recordings with the aid of the Hilbert-Huang transform (HHT), and offers justification for the HHT in addressing the liquefaction features shown in the recordings. The paper then defines the predominant instantaneous frequency (PIF) and introduces the PIF-related motion features to identify liquefaction conditions at a given site. Analysis of 29 recorded data sets at different site conditions shows that the proposed approach is effective in detecting site liquefaction in comparison with other methods.

  3. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  4. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction is increa...

  5. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wesnor, J.D.; Bakke, E. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J.; Kaminski, R.S. [Raytheon Engineers and Constructors, Inc., Philadelphia, PA (United States)

    1995-12-31

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  6. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    Energy Technology Data Exchange (ETDEWEB)

    Geiling, D.W. [ed.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  7. Performance prediction in advanced coal fired boilers - fluctuations in combustion systems - Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Malmgren, Alf; Nilsson, Torbjoern; Tao Lixin [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    Turbulence, unstable flow conditions or resonance phenomena can all cause fluctuations in combustion systems. The molecules of gas and fuel particles travel trough a combustion system along a large number of trajectories causing a residence time distribution characteristic for each configuration. The result of the fluctuations and residence time distribution is that the temperature, chemical composition of the gas, etc. in one point varies with time and can also be described by a distribution curve. Computer codes for the calculation of the residence time distribution curves, the dampening of fluctuations in combustion systems and the combustion of coal particles in a combustion chamber has been developed. The codes can be used to calculate the distribution curves for residence time, temperature and gas composition in different positions. The calculations are verified against measurements of residence time distributions and fluctuations of gas temperature in a coal flame in the IFRF furnace no 1. Measurements and calculations show good agreement. The frequency where the amplitude of fluctuations is halved during the passage of the investigated flame is calculated to 0.047 Hz (a period of 21 seconds) which agree with observations. The rapid dampening of fluctuations in this type of systems will not allow them to survive long enough to travel through the flame.

  8. Advanced atomization concept for CWF (coal-water fuel) burning in small combustors

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Heaton, H.L.; Lippold, J.H. Jr.

    1989-09-01

    Atlantic Research has undertaken a program to design, fabricate and test this new concept in coal-water fuel atomizers. The device employs two diametrically opposed jets of CWF which impinge on each other at high velocity. An air blast is directed at the impact zone of the two jets and the resulting high energy collision of all streams serves to break up the slurry fuel into fine droplets which are then directed by the air blast into the combustion zone. Prototypes of this atomizer have been built and tested under cold flow conditions using both water and CWF sprays. Based on the cold flow result with the prototypes, an atomizer has been fabricated for installation in a 1 MMBTU/H research tunnel-type'' furnace. A comprehensive testing program was conducted to evaluate the atomizer under firing conditions. The parameters covered in the test plan included CWF firing rate, atomizing air pressure, secondary air preheat temperature, secondary air diffuser design, CWF viscosity and solid content, CWF preheat temperature, and coal type. The effects of these parameters on combustion efficiency have been determined. 3 refs., 20 figs., 26 tabs.

  9. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  10. Reactivity of coal fractions as a probe of coal structure

    International Nuclear Information System (INIS)

    Brown coal has been fractionated by two different methods. Firstly, extraction of the coal with decalin at 320 deg C to separate loosely bound guest material from the macromolecular matrix and secondly, the extraction with 1% caustic soda at 80 deg C to separate humic acid from the insoluble residue of the coal (humin). The various fractions have been reacted under CO and H2 in the presence of promoters previously used in coal liquefaction experiments. The products have been analyzed by a range of techniques, principally proton nuclear magnetic resonance and gas cromatography-mass spectrometry and the results used to gain further insight into brown coal structure. 8 refs., 3 figs., 4 tabs

  11. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  12. Multisensor and Multispectral Approach in Documenting and Analyzing Liquefaction Hazard using Remote Sensing

    Science.gov (United States)

    Oommen, T.; Baise, L. G.; Gens, R.; Prakash, A.; Gupta, R. P.

    2008-12-01

    Seismic liquefaction is the loss of strength of soil due to shaking that leads to various ground failures such as lateral spreading, settlements, tilting, and sand boils. It is important to document these failures after earthquakes to advance our study of when and where liquefaction occurs. The current approach of mapping these failures by field investigation teams suffers due to the inaccessibility to some of the sites immediately after the event, short life of some of these failures, difficulties in mapping the aerial extent of the failure, incomplete coverage etc. After the 2001 Bhuj earthquake (India), researchers, using the Indian remote sensing satellite, illustrated that satellite remote sensing can provide a synoptic view of the terrain and offer unbiased estimates of liquefaction failures. However, a multisensor (data from different sensors onboard of the same or different satellites) and multispectral (data collected in different spectral regions) approach is needed to efficiently document liquefaction incidences and/or its potential of occurrence due to the possibility of a particular satellite being located inappropriately to image an area shortly after an earthquake. The use of SAR satellite imagery ensures the acquisition of data in all weather conditions at day and night as well as information complimentary to the optical data sets. In this study, we analyze the applicability of the various satellites (Landsat, RADARSAT, Terra-MISR, IRS-1C, IRS-1D) in mapping liquefaction failures after the 2001 Bhuj earthquake using Support Vector Data Description (SVDD). The SVDD is a kernel based nonparametric outlier detection algorithm inspired by the Support Vector Machines (SVMs), which is a new generation learning algorithm based on the statistical learning theory. We present the applicability of SVDD for unsupervised change-detection studies (i.e. to identify post-earthquake liquefaction failures). The liquefaction occurrences identified from the different

  13. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  14. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  15. Liquefaction of crop residues for polyol production

    Directory of Open Access Journals (Sweden)

    Wan, C.

    2006-11-01

    Full Text Available The liquefaction of crop residues in the presence of ethylene glycol, ethylene carbonate, or polyethylene glycol using sulfuric acid as a catalyst was studied. For all experiments, the liquefaction was conducted at 160C and atmospheric pressure. The mass ratio of feedstock to liquefaction solvents used in all the experiments was 30:100. The results show that the acid catalyzed liquefaction process fit a pseudo-first-order kinetics model. Liquefaction yields of 80, 74, and 60% were obtained in 60 minutes of reaction when corn stover was liquefied with ethylene glycol, a mixture of polyethylene glycol and glycerol (9:1, w/w, and ethylene carbonate, respectively. When ethylene carbonate was used as solvent, the liquefaction yields of rice straw and wheat straw were 67% and 73%, respectively, which is lower than that of corn stover (80%. When a mixture of ethylene carbonate and ethylene glycol (8:2, w/w was used as solvent, the liquefaction yields for corn stover, rice straw and wheat straw were 78, 68, and 70%, respectively.

  16. Earthquake-induced liquefaction in Ferland, Quebec

    International Nuclear Information System (INIS)

    Detailed geological investigations are under way at a number of liquefaction sites in the Ferland-Boilleau valley, Quebec, where sand boils, ground cracks and liquefaction-related damages to homes were documented immediately following the Ms=6.0, Mblg=6.5 Saguenay earthquake of November 25, 1988. To date, results obtained from these subsurface investigations of sand boils at two sites in Ferland, located about 26 km from the epicentre, indicate that: the Saguenay earthquake induced liquefaction in late-Pleistocene and Holocene sediments which was recorded as sand dikes, sills and vents in near-surface sediments and soils; earthquake-induced liquefaction and ground failure have occurred in this area at least three times in the past 10,000 years; and, the size and morphology of liquefaction features and the liquefaction susceptibility of source layers of the features may be indicative of the intensity of ground shaking. These preliminary results are very promising and suggest that with continued research liquefaction features will become a useful tool in glaciated terrains, such as northeastern North America, for determining not only the timing and location but also the size of past earthquakes

  17. Effects of carbon capture on the performance of an advanced coal-based integrated gasification fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Rao, A.D.; Brouwer, J.; Samuelsen, G.S. [University of California Irvine, Irvine, CA (United States)

    2011-07-01

    Integrated gasification fuel cell (IGFC) power plants combining gasification and solid oxide fuel cell (SOFC) technologies are very promising for highly efficient and environmentally friendly power generation from coal. IGFC plant amenability to carbon capture for sequestration makes the technology more attractive given the increasing concern over global climate change caused by greenhouse gas emissions. With the support of the US Department of Energy and the National Energy Technology Laboratory, the Advanced Power and Energy Program has conducted a study to identify promising conceptual designs for IGFC plants. The most promising IGFC concept identified so far is a system with catalytic hydro-gasification, a pressurized (operating pressure of 10 bar) SOFC followed by a turbo-expander and a steam cycle. The design requirement for recycling de-carbonized anode exhaust back to the gasifier for hydro-gasification not only produces a synergistic integration of SOFC and gasification subsystems, but also makes carbon separation a natural result. The current analyses of this system show an efficiency of 58.4 per cent (coal higher heating value basis) while capturing 94 per cent of the CO{sub 2}. Using this system as a baseline case, this work investigates the sensitivity of IGFC system performance on the extent of carbon capture. It is shown that the proposed IGFC system can achieve ultra-high carbon capture ({gt} 99 per cent) at small system efficiency expense while reducing carbon capture to below 90 per cent actually diminishes the system efficiency because less fuel is converted in the SOFC.

  18. Advanced CO{sub 2} Capture Technology for Low Rank Coal IGCC System

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan

    2013-09-30

    The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with SelexolTM to capture CO{sub 2}. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent to catalyst ratio used in the combined WGS and CO{sub 2} capture

  19. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  20. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Task 6 -- Selective agglomeration laboratory research and engineering development for premium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Jha, M.C.

    1997-06-27

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and benchscale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report represents the findings of Subtask 6.5 Selective Agglomeration Bench-Scale Testing and Process Scale-up. During this work, six project coals, namely Winifrede, Elkhorn No. 3, Sunnyside, Taggart, Indiana VII, and Hiawatha were processed in a 25 lb/hr continuous selective agglomeration bench-scale test unit.

  1. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  2. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  3. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Scaroni; David C. Glick

    1998-08-01

    This project provides coal samples and accompanying analytical data for research by DOE contractors and others. All 56 samples have been purged with argon before storage, and the 33 samples in the DECS series are heat-sealed in foil laminate bags and stored under refrigeration. Eleven DECS samples have been collected under the current contract. Basic characterization, standardized liquefaction analyses and organic geochemical analyses have been completed. Distribution of samples and data is continuing, with processing of samples being performed as needed. Nineteen samples, 90 data printouts, and individual data items from 416 samples were distributed during the quarter. Trends and relationships observed in liquefaction and organic geochemical analyses performed under the contract are summarized in this report. Liquefaction results using tetralin were similar to those using 1-methylnaphthalene under the same run conditions. Properties of individual coals, such as maceral composition and corresponding organic chemical components, were important in explaining liquefaction behavior. NMR and py/gc/ms results illustrated trends based on coal rank, and revealed outliers which might be of special interest, for example low-phenolic coals which limit retrogressive reactions and permit greater liquefaction conversion.

  4. Geotechnical Trainspotting: Early Observations From the New Seattle Liquefaction Array

    Science.gov (United States)

    Bodin, P.; Yelin, T.; Weaver, C. S.; Steidl, J. H.; Steller, R. A.; Gomberg, J. S.

    2012-12-01

    The Seattle Liquefaction Array (SLA) is a geotechnical monitoring array established by the US Geological Survey earlier this year in industrialized Seattle, Washington. Funding for the array was provided by the Advanced National Seismic System, at the behest of the Pacific Northwest Seismic Network's regional advisory committee. The SLA aims to further the understanding of earthquake-induced liquefaction, particularly the processes associated with repeatedly liquefied soils and the liquefaction of deeply buried deposits. The SLA occupies a site at which shaking-induced liquefaction was observed during earthquakes in 1949, 1965, and 2001. The SLA site is seismically noisy but important as it is similar to sites that host many structures in Seattle. The site is comprised chiefly by loose-to-dense interbedded coastal and river outwash sands. Instrumentation at the site includes four 3-component accelerometers at the surface and at depths of 5.4, 44.9, and 56.4 meters, a surface barometer, and six piezometers at depths of 6.9, 22.9, 28.9, 43.1, 46.9, and 51.9 meters. Emplacement depths were selected to sample a variety of liquefaction susceptibilities. Continuous data from all sensors are sampled at 200 samples per second, and are available from the IRIS DMC archive, with a buffer of data stored on site in the event of telemetry failure. To date, only a handful of earthquakes have produced shaking strong enough at the SLA to be observed within the high levels of background noise. However, the noise itself provides data useful to constrain the low-strain seismic and pressure response of the site. Notably, the array is within a few meters of a set of busy railroad tracks. Passing and parked trains expose the site to a broad bandwidth of deformations, including seismic frequencies, albeit with a source at the surface. Many times each day the site experiences both high levels of shaking, and step changes in the pressure field of a variety of amplitudes that may last from

  5. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Miller, R.L.

    1991-12-01

    The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

  6. Economics of hydrogen production and liquefaction updated to 1980

    Science.gov (United States)

    Baker, C. R.

    1979-01-01

    Revised costs for generating and liquefying hydrogen in mid-1980 are presented. Plant investments were treated as straight-forward escalations resulting from inflation. Operating costs, however, were derived in terms of the unit cost of coal, fuel gas and electrical energy to permit the determination of the influence of these parameters on the cost of liquid hydrogen. Inflationary influence was recognized by requiring a 15% discounted rate of return on investment for Discounted Cash Flow financing analysis, up from 12% previously. Utility financing was revised to require an 11% interest rate on debt. The scope of operation of the hydrogen plant was revised from previous studies to include only the hydrogen generation and liquefaction facilities. On-site fuel gas and power generation, originally a part of the plant complex, was eliminated. Fuel gas and power are now treated as purchased utilities. Costs for on-site generation of fuel gas however, are included.

  7. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 11, April--June, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-07-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 tons of each of three project coals, by each process. During Quarter 11 (April--June, 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant with the installation and calibration of a refurbished 30-inch diameter column. The evaluation of toxic trace element data for column flotation samples continued, with preliminary analysis indicating that reasonably good mass balances were achieved for most elements, and that significant reductions in the concentration of many elements were observed from raw coal, to flotation feed, to flotation product samples. Significant progress was made on Subtask 6.5 selective agglomeration bench-scale testing. Data from this work indicates that project ash specifications can be met for all coals evaluated, and that the bulk of the bridging liquid (heptane) can be removed from the product for recycle to the process. The detailed design of the 2 t/hr selective agglomeration module progressed this quarter with the completion of several revisions of both the process flow, and the process piping and instrument diagrams. Procurement of coal for PDU operation began with the purchase of 800 tons of Taggart coal. Construction of the 2 t/hr PDU continued through this reporting quarter and is currently approximately 60% complete.

  8. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  9. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant model and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.

  10. Desulfurization of coal and petroleum. 1978-June, 1980 (citations from the NTIS data base). Report for 1978-Jun 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-06-01

    The two part bibliography covers aspects of coal and petroleum fuel desulfurization relating to coal preparation, coal liquids, the gasification of coal, and crude oil preparation, where the processes specifically accomplish desulfurization before combustion of the fuel. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (This updated bibliography contains 173 abstracts, 54 of which are new entries to the previous edition.)

  11. Proceedings of the Joint Meeting of The Fuel Society of Japan (1991). 28th Coal Science Conference/91st Coke Meeting; (Sha) nenryo kyokai godo taikai happyo ronbunshu (1991). Dai 28 kai sekitan kagaku kaigi dai 91 kai cokes tokubetsukai

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-07

    Relating to coke, studies are made on the rapid coke production method, oven investigation during carbonization, and operational management/control. As to coal science, studies are mainly on the brown coal two-stage liquefaction (BCL) method, and data on the pilot plant and PSU are reported. Concerning bituminous coal liquefaction, PSU data mostly including the NEDOL process, and characteristics of liquefaction residue and its effective utilization by thermal decomposition are reported. Regarding the liquefaction mechanism, an experimentally extensive study on catalyst, solvent and reaction conditions is made using model materials and coal itself on the bench scale and also in the pilot plant. Engineering subjects on residue, solvent deashing, scale attachment and coprocessing are also reported. Relations of decomposition process to coal chemical structure changes and reaction conditions are investigated. As to coal gasification, studies, which are not many, are conducted on material balance, heat balance, and image characteristics of char for gasification and factors controlling reactivity.

  12. REVIEW OF NATURAL GAS LIQUEFACTION PROCESSES

    OpenAIRE

    2009-01-01

    High pressure pipelines are the most common way of natural gas transport from a gas field to a processing plant and further to consumers. In case when the distance between natural gas production and consumption regions is more than 4000 kilometers, and due to necessity of natural gas supply diversification, gas liquefaction and its transport by ships is being applied. The final choice of liquefaction process depends on the project variables, the development level of new or upgrading of alread...

  13. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Placet, M.; Gerry, P.A.; Kenski, D.M.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1989-09-01

    This report discusses the examination of potential overseas markets for using small-scale, US-developed, advanced coal-combustion technologies (ACTs). In previous work, member countries of the Organization for Economic Cooperation and Development (OECD) were rated on their potential for using ACTs through a comprehensive screening methodology. The three most promising OECD markets were found to be Spain, Italy, and Turkey. This report provides in-depth analyses of these three selected countries. First, it addresses changes in the European Community with particular reference to the 1992 restructuring and its potential effect on the energy situation in Europe, specifically in the three subject countries. It presents individual country studies that examine demographics, economics, building infrastructures, and energy-related factors. Potential niches for ACTs are explored for each country through regional analyses. Marketing channels, strategies, and the trading environments in each country are also discussed. The information gathered indicates that Turkey is a most promising market, Spain is a fairly promising market, and Italy appears to be a somewhat limited market for US ACTs. 76 refs., 16 figs., 14 tabs.

  14. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 15, April 15 1996--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-19

    The Pittsburgh Energy Technology center of the US Department of Energy (DOE) has contracted with Combustion Engineering; Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quote} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis.

  15. AGAPUTE - Advanced gas purification technologies for co-gasification of coal, refinery by-products, biomass & waste, targeted to clean power produced from gas & steam turbine generator sets and fuel cells. FINAL REPORT

    OpenAIRE

    Di Donato, Antonello; Puigjaner Corbella, Lluís; Velo García, Enrique; Nougués, José María; Pérez Fortes, María del Mar; Bojarski, Aarón David

    2010-01-01

    Informe Final del Projecte ECSC RFC-CR-04006: AGAPUTE - Advanced gas purification technologies for co-gasification of coal, refinery by-products, biomass & waste, targeted to clean power produced from gas & steam turbine generator sets and fuel cells

  16. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J. McCarthy; Dean G. Grier

    2001-01-01

    Prior to the initiation of this study, understanding of the long-term behavior of environmentally-exposed Coal Combustion By-Products (CCBs) was lacking in (among others) two primary areas addressed in this work. First, no method had been successfully applied to achieve full quantitative analysis of the partitioning of chemical constituents into reactive or passive crystalline or noncrystalline compounds. Rather, only semi-quantitative methods were available, with large associated errors. Second, our understanding of the long-term behavior of various CCBs in contact with the natural environment was based on a relatively limited set of study materials. This study addressed these areas with two objectives, producing (1) a set of protocols for fully quantitative phase analysis using the Rietveld Quantitative X-ray Diffraction (RQXRD) method and (2) greater understanding of the hydrologic and geochemical nature of the long-term behavior of disposed and utilized CCBs. The RQXRD technique was initially tested using (1) mixtures of National Institute of Standards and Technology (NIST) crystalline standards, and (2) mixtures of synthetic reagents simulating various CCBs, to determine accuracy and precision of the method, and to determine the most favorable protocols to follow in order to efficiently quantify multi-phase mixtures. Four sets of borehole samples of disposed or utilized CCBs were retrieved and analyzed by RQXRD according to the protocols developed under the first objective. The first set of samples, from a Class F ash settling pond in Kentucky disposed for up to 20 years, showed little mineralogical alteration, as expected. The second set of samples, from an embankment in Indiana containing a mixture of chain-grate (stoker) furnace ash and fluidized bed combustion (FBC) residues, showed formation of the mineral thaumasite, as observed in previously studied exposed FBC materials. Two high-calcium CCBs studied, including a dry-process flue gas desulfurization

  17. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2009-06-30

    The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i

  18. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  19. Trends in Global Demonstrations of Carbon Management Technologies to Advance Coal- Based Power Generation With Carbon Capture and Storage

    Science.gov (United States)

    Cohen, K. K.; Plasynski, S.; Feeley, T. J.

    2008-05-01

    conditions with geophysics. Borehole-based technologies include a novel geochemical two-phase reservoir sampler deployed at Otway, and thermal-based measurements at CO2SINK for coupled hydrologic-geochemical reservoir analyses. Seismic, geomechanical, hydrologic, geochemical, and core studies are used in a multidisciplinary approach to assess CO2 trapping and reservoir integrity at In Salah. With estimated lifetime storage of 17 MtCO2 at In Salah, this and other CCS demonstrations provide opportunities to gain commercial experience for advancing coal-based power generation-CCS for carbon management.

  20. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Miller, R.L.

    1990-01-01

    The objectives of the project are to investigate various coal pretreatment techniques and to determine the effect of these pretreatment procedures on the reactivity of the coal. Reactivity enhancement will be evaluated under both direct hydroliquefaction and co-processing conditions. Coal conversion utilizing low rank coals and low severity conditions (reaction temperatures generally less than 350{degrees}C) are the primary focus of the liquefaction experiments, as it is expected that the effect of pretreatment conditions and the attendant reactivity enhancement will be greatest for these coals and at these conditions. This document presents a comprehensive report summarizing the findings on the effect of mild alkylation pretreatment on coal reactivity under both direct hydroliquefaction and liquefaction co-processing conditions. Results of experiments using a dispersed catalyst system (chlorine) are also presented for purposes of comparison. IN general, mild alkylation has been found to be an effective pretreatment method for altering the reactivity of coal. Selective (oxygen) methylation was found to be more effective for high oxygen (subbituminous) coals compared to coals of higher rank. This reactivity enhancement was evidenced under both low and high severity liquefaction conditions, and for both direct hydroliquefaction and liquefaction co-processing reaction environments. Non-selective alkylation (methylation) was also effective, although the enhancement was less pronounced than found for coal activated by O-alkylation. The degree of reactivity enhancement was found to vary with both liquefaction and/or co-processing conditions and coal type, with the greatest positive effect found for subbituminous coal which had been selectively O-methylated and subsequently liquefied at low severity reaction conditions. 5 refs., 18 figs., 9 tabs.

  1. Catalyst dispersion and activity under conditions of temperature- staged liquefaction. Technical progress report, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1992-07-01

    Two coals, a Texas subbituminous C and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling and catalyst impregnation on liquefaction conversion behavior in temperature staged reactions for 30 minutes each at 275{degree} and 425{degree}C in H{sub 2} and 95:5 H{sub 2}:H{sub 2}S atmospheres. Methanol, pyridine, tetrahydrofuran, and tetrabutylammonium hydroxide were used as swelling agents. Molybdenum-based catalyst precursors were ammonium tetrathiomolybdate, molybdenum trisulfide, molybdenum hexacarbonyl, and bis(tricarbonylcyclopentadienyl-molybdenum). Ferrous sulfate and bis(dicarbonylcyclo-pentadienyliron) served as iron-based catalyst precursors. In addition, ion exchange was used for loading iron onto the subbituminous coal. For most experiments, liquefaction in H{sub 2}:H{sub 2}S was superior to that in H{sub 2}, regardless of the catalyst precursor. The benefit of the H{sub 2}S was greater for the subbituminous, presumably because of its higher iron content relative to the hvab coal. Tetrabutylammonium hydroxide was the only swelling agent to enhance conversion of the hvab coal significantly; it also caused a remarkable increase in conversion of the subbituminous coal. The combined application of solvent swelling and catalyst impregnation also improves liquefaction, mainly through increased oil yields from the hvab coal and increased asphaltenes from the subbituminous. A remarkable effect from use of ammonium tetrathiomolybdate as a catalyst precursor is substantial increase in pristane and phytane yields. Our findings suggest that these compounds are, at least in part, bound to the coal matrix.

  2. Measurement and modeling of advanced coal conversion processes. Twenty-first quarterly report, October 1, 1991--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. [Brigham Young Univ., Provo, UT (United States)

    1991-12-31

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  3. Measurement and modeling of advanced coal conversion processes. 19th quarterly report, April 1, 1991--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. [Brigham Young Univ., Provo, UT (United States)

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  4. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  5. Preventive measures against liquefaction in consideration of peripheral environment. Example of SAVE (Silent, Advanced Vibration-Erasing) composer method; Shuhen kankyo ni hairyoshita ekijoka taisaku koho. Seiteki shimekatame sunakui (SAVE composer) koho no sekorei

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Takahashi, Y.; Fukada, H. [Fudo Construction Co. Ltd., Tokyo (Japan)

    1998-09-25

    This paper presents the working machine, method and example of the newly developed SAVE composer method. The working machine of the SAVE composer method adopts a forced elevating equipment and rotating penetration equipment equipped with an auger motor for hydraulic forced penetration and elevation of a casing. The process of the SAVE composer method is composed of setting a casing at a proper position. charging material from a hopper to a casing, penetrating a casing up to a proper depth by the auger motor of the rotating penetration equipment, discharging material by extracting a casing, and re-penetrating a casing for compaction of discharged material. This method is free from noise and vibration because of no use of an excitor. This method was used for preventive measures against liquefaction at the coastal levee of Tsu-Matsuzaka harbor, Mie prefecture. As a result, nearly the same improvement effect as conventional SCP method, and considerable vibration reduction were confirmed. 3 refs., 12 figs., 1 tab.

  6. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino; Bratton, Robert; Dohm, Erich

    2014-06-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO{sub x}, CO{sub 2}, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  7. Estimation of sand liquefaction based on support vector machines

    Institute of Scientific and Technical Information of China (English)

    苏永华; 马宁; 胡检; 杨小礼

    2008-01-01

    The origin and influence factors of sand liquefaction were analyzed, and the relation between liquefaction and its influence factors was founded. A model based on support vector machines (SVM) was established whose input parameters were selected as following influence factors of sand liquefaction: magnitude (M), the value of SPT, effective pressure of superstratum, the content of clay and the average of grain diameter. Sand was divided into two classes: liquefaction and non-liquefaction, and the class label was treated as output parameter of the model. Then the model was used to estimate sand samples, 20 support vectors and 17 borderline support vectors were gotten, then the parameters were optimized, 14 support vectors and 6 borderline support vectors were gotten, and the prediction precision reaches 100%. In order to verify the generalization of the SVM method, two other practical samples’ data from two cities, Tangshan of Hebei province and Sanshui of Guangdong province, were dealt with by another more intricate model for polytomies, which also considered some influence factors of sand liquefaction as the input parameters and divided sand into four liquefaction grades: serious liquefaction, medium liquefaction, slight liquefaction and non-liquefaction as the output parameters. The simulation results show that the latter model has a very high precision, and using SVM model to estimate sand liquefaction is completely feasible.

  8. Proceedings of the papers of the 33rd Coal Science Conference (1996); Dai 33 kai sekitan kagaku kaigi happyo ronbunshu (1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-28

    This is a proceedings of the papers made public in the 33rd (fiscal 1996) Coal Science Conference held by the Japan Institute of Energy. The number of the papers included is 82. The processes such as coal liquefaction, coal gasification and pyrolysis are largely influenced by reaction of the carbon compound in coal. However, coal, which is different in reaction characteristics depending on its producing area, is a comprehensive compound. Therefore, the trial has been made for clarifying the molecular structure and skeleton. In the sense, the following papers are taken notice of: Suzuki and others` Estimation for origin of coals by biomaker analysis; Sugimoto and others` Change of unit skeletons during the artificial coalification; Hirado and others` Study on the correlation between chemical and mineral composition of coal ashes; Okawa and others` Coal structure construction system with construction knowledge and partial energy evaluation; Kanbayashi and others` Analysis of the relationship between coal properties and liquefaction characteristics by using the coal database.

  9. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Miller, R.L.

    1991-12-01

    The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

  10. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  11. Test and survey on a next generation coal liquefying catalyst. Coal molecule scientific test and survey as the base for commercializing the coal liquefying technology; Jisedai sekitan ekika shokubai shiken chosa. Sekitan ekika gijutsu shogyoka kiban to shite no sekitan bunshi kagaku shiken chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The test and survey on a next generation coal liquefying catalyst present a new proposal to raise catalytic activity in coal liquefaction, and perform demonstration experiments in a laboratory scale to search for possibility of developing a new coal liquefying catalyst from various viewpoints. To explain, discussions were given on the catalyst to perform the followings: liquefaction under extremely mild conditions by using ultra strong acids not limited only to metals; ion exchange method and swell carrying method to raise catalyst dispersion very highly, enhance the catalytic activity, and reduce the amount of catalyst to be used; mechanism of producing catalyst activating species to further enhance the activity of iron catalysts; and pursuit of morphological change in the activating species. The coal molecule scientific test and survey as the base for commercializing the coal liquefying technology performed the studies on the following items: pretreatment of coal that can realize reduction of coal liquefaction cost; configuration of the liquefaction reaction, liquefying catalysts, hydrocarbon gas generating mechanism, status of catalysts after liquefaction reaction, and reduction in gas purification cost by using gas separating membranes. Future possibilities were further searched through frank and constructive opinion exchanges among the committee members. (NEDO)

  12. Coal and public perceptions

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE) clean coal outreach efforts are described. The reason why clean coal technology outreach must be an integral part of coal's future is discussed. It is important that we understand the significance of these advances in coal utilization not just in terms of of hardware but in terms of public perception. Four basic premises in the use of coal are presented. These are: (1) that coal is fundamentally important to this nation's future; (2) that, despite premise number 1, coal's future is by no means assured and that for the last 10 years, coal has been losing ground; (3) that coal's future hinges on the public understanding of the benefits of the public's acceptance of advanced clean coal technology; and (4) hat public acceptance of clean coal technology is not going to be achieved through a nationwide advertising program run by the Federal government or even by the private sector. It is going to be gained at the grassroots level one community at a time, one plant at a time, and one referendum at a time. The Federal government has neither the resources, the staff, nor the mandate to lead the charge in those debates. What is important is that the private sector step up to the plate as individual companies and an individual citizens working one-one-one at the community level, one customer, one civic club, and one town meeting at a time

  13. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-21

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

  14. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-21

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

  15. Biomass Indirect Liquefaction Strategy Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-07-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop. The workshop, held March 20–21, 2014, in Golden, Colorado, discussed and detailed the research and development needs for biomass indirect liquefaction. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols or acids) and further synthesize those intermediates to liquid hydrocarbons that are compatible as either a refinery feed or neat fuel.

  16. Isotopic and chemical characterization of coal in Pakistan

    International Nuclear Information System (INIS)

    Stable carbon isotope ratios (delta/sup 13/C PDB) and toxic/trace element concentration levels are determined for Tertiary coal samples collected from seven coal fields in Pakistan. No systematic isotope effects are found in the process of coal liquefaction from peat to Tertiary lignites and sub bituminous coal. Similarly, no age effects are observed during the Tertiary regime. The observed variations in the carbon isotopic composition of coal obtained from 'Sharigh coal field' and the 'Sor-Range/Degari coal field' in Baluchistan are attributed to the depositional environments. More sampling of stable carbon isotope analysis are required to validate these observations. Significant concentrations of toxic elements such as S, Cr, Cd and Pb in Makarwal coal may pose environmental and engineering/operational problems for thermal power plants. (author)

  17. Coal liquefaction. Quarterly report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. Each of these processes is described briefly and information given as to contractor, contract, funding, site and current progress. Several support projects are treated similarly. (LTN)

  18. Synthesis of model compounds for coal liquefaction research

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Asaro, M.; Bottaro, J.

    1990-11-02

    The objectives of this project are to develop feasible synthetic routes to produce (1) 4(4'-hydroxy-5',6',7',8'-tetrahydro-l'-naphthylmethyl)-6-methyldibenzothiophene, and (2) a 1-hydroxynaphthalene-benzothiophene polymer. Our experimental work during this quarter concentrated on. As several possible synthetic routes to the target molecule, 4(4'-hydroxy-5',6',7',8'-tetrahydro-l'-naphthylmethyl)-6-methyldibenzothiophene. We tried synthesizing the intermediates for our first method, in which we couple a metalated 4-methyldibenzothiophene with 4-formyl-5,6,7,8-tetrahydro-1-naphthol. We found that we could easily metalate dibenzothiophene, and then add a methyl group to the 4-position to give 4-methyldibenzothiophene in greater than 80% yield by using t-butyllithium in tetrahydropyran followed by dimethylsulfate. However, adding the second metal to the desired 4' position using the same method was more difficult, and instead the reaction occurred on the methyl group. Therefore, we will investigate an alternative method, in which a hydroxy group is added in order to help direct the second metalation step to the 4' position on 4-methyldibenzothiophene.

  19. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1979-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. The asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. These coal-derived asphaltene and preashpaltene fractions will then be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions.The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  20. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  1. Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Zhao, Y.; Pines, D.; Buggeln, R.C.; Shamroth, S.J.

    1993-11-01

    Significant improvements in efficiency for the conversion of coal into electricity can be achieved by cycles which employ a high temperature gas turbine topping cycle. The objective of this project is the development of an externally fired gas turbine system. The project computationally tested a new concept for a High Temperature Advanced Furnace (HITAF) and high temperature heat exchanger with a proprietary design to reduce the problems associated with the harsh coal environment. The program addressed two key technology issues: (1) the HITAF/heat exchanger heat transfer through a 2-D computer analysis of the HITAF configuration; (2) 3-D Computational Fluid Dynamics (CFD) model application to simulate the exclusion of particles and corrosive gases from the heat exchanger surface. The basic concept of this new combustor design was verified through the 2D and 3D modeling. It demonstrated that the corrosion and erosion of the exchanger material caused by coal and ash particles can be largely reduced by employing a specially designed firing scheme. It also suggested that a proper combustion geometry design is necessary to maximize the cleaning effect.

  2. Residual liquefaction of seabed under standing waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2013-01-01

    This paper presents the results of an experimental study of the seabed liquefaction beneath standing waves. Silt (with d50 =0.070mm) was used in the experiments. Two kinds of measurements were carried out: pore water pressure measurements and water surface elevation measurements. These measuremen...

  3. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  4. Clean coal technologies

    International Nuclear Information System (INIS)

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  5. Assessment of coal liquids as refinery feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  6. Assessment of coal liquids as refinery feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  7. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 9, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C. [AMAX Research and Development Center, Golden, CO (United States)

    1995-01-25

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by March, 1997. During Quarter 9 (October--December, 1995), parametric and optimization testing was completed for the Taggart, Sunnyside, and Indiana VII coal using a 12-inch Microcel{trademark} flotation column. The detailed design of the 2-t/hr PDU grinding, flotation, and dewatering circuits neared completion with the specification of the major pieces of capital equipment to be purchased for these areas. Selective agglomeration test work investigated the properties of various industrial grades of heptane for use during bench- and PDU-scale testing. It was decided to use a hydrotreated grade of commercial heptane due to its low cost and low concentration of aromatic compounds. The final Subtask 6.4 CWF Formulation Studies Test Plan was issued. A draft version of the Subtask 6.5 Preliminary Design and Test Plan Report was also issued, discussing the progress made in the design of the bench-scale selective agglomeration unit. PDU construction work moved forward through the issuing of 26 request for quotations and 21 award packages for capital equipment.

  8. Experimental research on influencing factors of wet removal of NO from coal-fired flue gas by UV/H2O2 advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Wet removal of NO from coal-fired flue gas by UV/H2O2 Advanced Oxidation Process (AOP) were investigated in a self-designed UV-bubble reactor. Several main influencing factors (UV intensity, H2O2 initial concentration, initial pH value, solution temperature, NO initial concentration, liquid-gas ratio and O2 percentage content) on the NO removal efficiency were studied. The results showed that UV intensity, H2O2 initial concentration, NO initial concentration and liquid-gas ratio are the main influencing factors. In the best conditions, the highest NO removal efficiency by UV/H2O2 advanced oxidation process could reach 82.9%. Based on the experimental study, the influencing mechanism of the relevant influencing factors were discussed in depth.

  9. Research and Development of Coal Conversion Technologies on the New Sunshine Program; Nyusanshain keikaku ni okeru sekitan tenkan gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Akira.; Kurosawa, Shigeru.; Yasuda, Hajime.; Hatori, Hiroaki.; Sugiura, Takashi.; Saito, Kazufumi. [Agency of Industrial Science and Technology, Tokyo (Japan)

    1999-02-20

    Agency of Industrial Science and Technolgy (AIST) has been conduction R and D on coal conversion technologies in Japan. New energy and Industrial Technology Development Organization (NEDO) has been carrying out some R and D projects on soal liquefaction and gasification as a part of (New Sunshine Program) lead by AIST. Coal liquefaction and gasification are mejor concern for NEDO and the overview od the R and D projects up-dated is presented in this paper. In additition, new concept and ambition of R and D on coal aonversion technologies are also outlined. (author)

  10. Engineering development of advanced coal-fired low-emission boiler systems: Technical progress report No. 16, July-September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Barcikowski, G.F.; Borio, R.W.; Bozzuto, C.R.; Burr, D.H.; Cellilli, L.; Fox, J.D.; Gibbons, T.B.; Hargrove, M.J.; Jukkola, G.D.; King, A.M.

    1996-11-27

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The Project is under budget and generally on schedule. The current status is shown in the Milestone Schedule Status Report included as Appendix A. Under Task 7--Component development and optimization, the CeraMem filter testing was completed. Due to an unacceptably high flue gas draft loss, which will not be resolved in the POCTF timeframe, a decision was made to change the design of the flue gas cleaning system from Hot SNO{sub x}{sup {trademark}} to an advanced dry scrubber called New Integrated Desulfurization (NID). However, it is recognized that the CeraMem filter still has the potential to be viable in pulverized coal systems. In Task 8-- Preliminary POCTF design, integrating and optimizing the performance and design of the boiler, turbine/generator and heat exchangers of the Kalina cycle as well as the balance of plant design were completed. Licensing activities continued. A NID system was substituted for the SNO{sub x} Hot Process.

  11. Biotransformation of Spanish coals by microorganisms; Biotransformacion de Carbones Espanoles por Microorganismos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    some newly isolated microorganisms could solubilized different kinds of Spanish coals (hard coal, subbituminous coal and lignite). Certain fungi and bacteria could solubilized lignite when growing in a mineral medium. However, to solubilized higher rank coals (hard coal and subbituminous coal) microorganisms require a complete medium. Microorganisms, which showed higher capacity to solubilized coal, were incubated in the presence of coal (hard coal, subbituminous coal and lignite) at the optimal conditions to get coal liquefaction/solubilization. The resultant products were analysed by IR and UV/visible spectrometry. No major differences among the original coal, solubilized/liquefied coal and residual coal were detected. However, an increase in metallic carboxylate and a decrease in OH'- carboxylic groups were observed in the liquefied lignite. Humic acids derived from original lignite residual lignite and liquefied/solubilized lignite by microorganisms were analysed. Several differences were observed in the humic acids extracted from the liquefied lignite, such as an increase in the total acidity and in the proportion of the phenolic groups. Differences on the humic acid molecular weight were observed too. Several fungal and bacterial strains were able to grow using humic acids as sole carbon source. Microorganisms growing in humic acid were observed by Scanning Electron Microscopy. Besides, the coal solubilization capacity of several fungal strains (M2, m$ and AGI) growing in different culture media was assayed. In order to get some insight into the mechanisms of the liquefaction/solubilization of Spanish coals (hard coal, subbituminous coal and lignite) by these microorganisms, some features in the culture supernatants were studied: pH values; extracellular specific proteins; enzyme activities possibly related with coal solubilization and the presence of oxalate. M2 and M4 fungal strains grown in the presence of coal produced some specific extracellular

  12. Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.L.; Thornock, D.E.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1998-03-01

    Economics and/or political intervention may one day dictate the conversion from oil or natural gas to coal in boilers that were originally designed to burn oil or gas. In recognition of this future possibility the US Department of Energy, Federal Energy Technical Center (DOE-FETC) supported a program led by ABB Power Plant Laboratories with support from the Energy and Fuels Research Center of Penn State University with the goal of demonstrating the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of the overall goal the following specific objectives were targeted: develop a coal handling/preparation system that can meet the technical and operational requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; maintain boiler thermal performance in accordance with specifications when burning oil or natural gas; maintain NOx emissions at or below 0.6 lb NO{sub 2} per million Btu; achieve combustion efficiencies of 98% or higher; and determine economic payback periods as a function of key variables.

  13. Measurement and modeling of advanced coal conversion processes, Volume I, Part 2. Final report, September 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1995-09-01

    This report describes work pertaining to the development of models for coal gasification and combustion processes. This volume, volume 1, part 2, contains research progress in the areas of large particle oxidation at high temperatures, large particle, thick-bed submodels, sulfur oxide/nitrogen oxides submodels, and comprehensive model development and evaluation.

  14. Task 4.4 - development of supercritical fluid extraction methods for the quantitation of sulfur forms in coal

    Energy Technology Data Exchange (ETDEWEB)

    Timpe, R.C.

    1995-04-01

    Development of advanced fuel forms depends on having reliable quantitative methods for their analysis. Determination of the true chemical forms of sulfur in coal is necessary to develop more effective methods to reduce sulfur content. Past work at the Energy & Environmental Research Center (EERC) indicates that sulfur chemistry has broad implications in combustion, gasification, pyrolysis, liquefaction, and coal-cleaning processes. Current analytical methods are inadequate for accurately measuring sulfur forms in coal. This task was concerned with developing methods to quantitate and identify major sulfur forms in coal based on direct measurement (as opposed to present techniques based on indirect measurement and difference values). The focus was on the forms that were least understood and for which the analytical methods have been the poorest, i.e., organic and elemental sulfur. Improved measurement techniques for sulfatic and pyritic sulfur also need to be developed. A secondary goal was to understand the interconversion of sulfur forms in coal during thermal processing. EERC has developed the first reliable analytical method for extracting and quantitating elemental sulfur from coal (1). This method has demonstrated that elemental sulfur can account for very little or as much as one-third of the so-called organic sulfur fraction. This method has disproved the generally accepted idea that elemental sulfur is associated with the organic fraction. A paper reporting the results obtained on this subject entitled {open_quote}Determination of Elemental Sulfur in Coal by Supercritical Fluid Extraction and Gas Chromatography with Atomic Emission Detection{close_quote} was published in Fuel (A).

  15. Coal geopolitics

    International Nuclear Information System (INIS)

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs

  16. LIQUEFACTION AND DISPLACEMENT OF SATURATED SAND UNDER VERTICAL VIBRATION LOADING

    Institute of Scientific and Technical Information of China (English)

    LU Xiaobing; TAN Qingming; CHENG C.M.; YU Shanbing; CUI Peng

    2004-01-01

    In order to investigate the influence of the vertical vibration loading on the liquefaction of saturated sand, one dimensional model for the saturated sand with a vertical vibration is presented based on the two phase continuous media theory. The development of the liquefaction and the liquefaction region are analyzed. It is shown that the vertical vibration loading could induce liquefaction.The rate of the liquefaction increases with the increase of the initial limit strain or initial porosity or amplitude and frequency of loading, and increases with the decrease of the permeability or initial modulus. It is shown also that there is a phase lag in the sand column. When the sand permeability distribution is non-uniform, the pore pressure and the strain will rise sharply where the permeability is the smallest, and fracture might be induced. With the development of liquefaction, the strength of the soil foundation becomes smaller and smaller. In the limiting case, landslides or debris flows could occur.

  17. Demonstration of advanced combustion NO(sub X) control techniques for a wall-fired boiler. Project performance summary, Clean Coal Technology Demonstration Program

    International Nuclear Information System (INIS)

    The project represents a landmark assessment of the potential of low-NO(sub x) burners, advanced overtire air, and neural-network control systems to reduce NO(sub x) emissions within the bounds of acceptable dry-bottom, wall-fired boiler performance. Such boilers were targeted under the Clean Air Act Amendments of 1990 (CAAA). Testing provided valuable input to the Environmental Protection Agency ruling issued in March 1994, which set NO(sub x) emission limits for ''Group 1'' wall-fired boilers at 0.5 lb/10(sup 6) Btu to be met by January 1996. The resultant comprehensive database served to assist utilities in effectively implementing CAAA compliance. The project is part of the U.S. Department of Energy's Clean Coal Technology Demonstration Program established to address energy and environmental concerns related to coal use. Five nationally competed solicitations sought cost-shared partnerships with industry to accelerate commercialization of the most advanced coal-based power generation and pollution control technologies. The Program, valued at over$5 billion, has leveraged federal funding twofold through the resultant partnerships encompassing utilities, technology developers, state governments, and research organizations. This project was one of 16 selected in May 1988 from 55 proposals submitted in response to the Program's second solicitation. Southern Company Services, Inc. (SCS) conducted a comprehensive evaluation of the effects of Foster Wheeler Energy Corporation's (FWEC) advanced overfire air (AOFA), low-NO(sub x) burners (LNB), and LNB/AOFA on wall-fired boiler NO(sub x) emissions and other combustion parameters. SCS also evaluated the effectiveness of an advanced on-line optimization system, the Generic NO(sub x) Control Intelligent System (GNOCIS). Over a six-year period, SCS carried out testing at Georgia Power Company's 500-MWe Plant Hammond Unit 4 in Coosa, Georgia. Tests proceeded in a logical sequence using rigorous statistical analyses to

  18. Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion

    International Nuclear Information System (INIS)

    Highlights: • Integration of CO2/O2 based UCG, CLC and CCS for clean coal utilization. • Incorporation of CLC system reduces the ASU load of the power plant. • Use of CO enriched UCG gas in Ni based CLC reduces the difficulty of heat balance. • Coupling of the proposed UCG with IGCC and IGST for the efficient power generation. • Demonstration of reduced CCS energy penalty in the advanced coupled system. - Abstract: Underground coal gasification (UCG) is a clean coal technology to utilize deep coal resources effectively. In-situ CO2-oxy coal gasification may eliminate the operational difficulty of the steam gasification process and utilize CO2 (greenhouse gas) effectively. Furthermore, it is necessary to convert the clean gasified energy from the UCG into clean combustion energy for an end-use. In order to achieve efficient clean power production, the present work investigates the thermodynamic feasibility of integration of CO2 based UCG with power generating systems operating in a chemical looping combustion (CLC) of product gas. The use of CO enriched syngas from O2/CO2 based UCG reduces the difficulty of the heat balance between a fuel reactor and an air reactor in a nickel oxygen-carrier based CLC system. Thermodynamic analyses have been made for various routes of power generation systems such as subcritical, supercritical and ultra-supercritical boiler based steam turbines and gas turbines for the UCG integrated system. It is shown, based on mass and energy balance analysis, that the integration of CO2 based UCG with the CLC system reduces the energy penalty of carbon capture and storage (CCS) significantly. A net thermal efficiency of 29.42% is estimated for the CCS incorporated system, which operates in a subcritical condition based steam turbine power plant. Furthermore, it is found that the efficiency of the proposed steam turbine system increases to 35.40% for an ultra-supercritical operating condition. The effect of operating temperature of the

  19. Earthquake Risk - MO 2013 Liquefaction Potential St. Louis Area (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Soil liquefaction potential was determined using existing surficial materials and floodplain alluvium maps. Alluvium deposits and artificial deposits are generally...

  20. Analysis and Evaluation of the Liquefaction on Layered Soil

    International Nuclear Information System (INIS)

    Liquefaction potential on the specific site of nuclear power plant is analyzed and reviewed. The layered site for this study consists of silt and sand. Based on the limited available soil data, maximum shear strength at critical locations using Seed and Idriss method and computer program SHAKE is calculated, and liquefaction potential is reviewed. As seismic input motion used for the assessment of liquefaction, the artificial time history compatible with the US NRC Regulatory Guide 1.60 is used. Assessment results of the liquefaction are validated by analyzing to the other typical soil foundations which can show the effects on the foundation depth and soil data. (authors)