WorldWideScience

Sample records for advanced cluster analysis

  1. Advanced Heat Map and Clustering Analysis Using Heatmap3

    OpenAIRE

    Shilin Zhao; Yan Guo; Quanhu Sheng; Yu Shyr

    2014-01-01

    Heat maps and clustering are used frequently in expression analysis studies for data visualization and quality control. Simple clustering and heat maps can be produced from the “heatmap” function in R. However, the “heatmap” function lacks certain functionalities and customizability, preventing it from generating advanced heat maps and dendrograms. To tackle the limitations of the “heatmap” function, we have developed an R package “heatmap3” which significantly improves the original “heatmap”...

  2. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  3. Graph partitioning advance clustering technique

    CERN Document Server

    Madhulatha, T Soni

    2012-01-01

    Clustering is a common technique for statistical data analysis, Clustering is the process of grouping the data into classes or clusters so that objects within a cluster have high similarity in comparison to one another, but are very dissimilar to objects in other clusters. Dissimilarities are assessed based on the attribute values describing the objects. Often, distance measures are used. Clustering is an unsupervised learning technique, where interesting patterns and structures can be found directly from very large data sets with little or none of the background knowledge. This paper also considers the partitioning of m-dimensional lattice graphs using Fiedler's approach, which requires the determination of the eigenvector belonging to the second smallest Eigenvalue of the Laplacian with K-means partitioning algorithm.

  4. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R

    1973-01-01

    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  5. Use of advanced cluster analysis to characterize fish consumption patterns and methylmercury dietary exposures from fish and other sea foods among pregnant women

    DEFF Research Database (Denmark)

    Pouzaud, Francois; Ibbou, Assia; Blanchemanche, Sandrine;

    2010-01-01

    % of the women reached the recommended intake of 500 mg/day n-3 PUFA. Cluster analysis of the fish consumption showed that they could be grouped in five major clusters that are largely predictable of the intake of both MeHg and n-3 PUFA. This study shows that a global increase in seafood consumption could lead......On account of the interspecies variability in contamination and nutrient contents, consumers must balance the risks and benefits of fish consumption through their choice of species, meal size and frequency. The objectives of this study were to better characterize the risk of methylmercury (Me......Hg) exposure in a sample of 161 French pregnant women consuming sea food, including fish, molluscs and crustaceans, and to explore the use of unsupervised statistical learning as an advanced type of cluster analysis to identify patterns of fish consumption that could predict exposure to MeHg and the coverage...

  6. Fusion and fission of atomic clusters: recent advances

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2005-01-01

    We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....

  7. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research. PMID:24640781

  8. Advanced Low Energy Adaptive Clustering Hierarchy

    Directory of Open Access Journals (Sweden)

    Ezzati Abdellah,

    2010-10-01

    Full Text Available The use of Wireless Sensor Networks (WSNs is anticipated to bring enormous changes in data gathering, processing and dissemination for different environments and applications. However, a WSN is a power constrained system, since nodes run on limited power batteries which shorten its lifespan. Prolonging the network lifetime depends on efficient management of sensing node energy resource. Hierarchicalrouting protocols are best known in regard to energy efficiency. By using a clustering technique hierarchical routing protocols greatly minimize energy consumed in collecting and disseminating data. Low Energy Adaptive Clustering Hierarchy (LEACH is one of the undamental protocols in this class. In this paper we propose Advanced LEACH (A-LEACH, a heterogeneous-energy protocol to decrease probability of failure nodes and to prolong the time interval before the death of the first node (we refer to as stability period and increasing the lifetime in heterogeneous WSNs, which is crucial for many applications.

  9. Clustering analysis using Swarm Intelligence

    OpenAIRE

    Farmani, Mohammad Reza

    2016-01-01

    This thesis is concerned with the application of the swarm intelligence methods in clustering analysis of datasets. The main objectives of the thesis are ∙ Take the advantage of a novel evolutionary algorithm, called artificial bee colony, to improve the capability of K-means in finding global optimum clusters in nonlinear partitional clustering problems. ∙ Consider partitional clustering as an optimization problem and an improved antbased algorithm, named Opposition-Based A...

  10. Integrative cluster analysis in bioinformatics

    CERN Document Server

    Abu-Jamous, Basel; Nandi, Asoke K

    2015-01-01

    Clustering techniques are increasingly being put to use in the analysis of high-throughput biological datasets. Novel computational techniques to analyse high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. This book details the complete pathway of cluster analysis, from the basics of molecular biology to the generation of biological knowledge. The book also presents the latest clustering methods and clustering validation, thereby offering the reader a comprehensive review o

  11. Pair-Wise Cluster Analysis

    CERN Document Server

    Hardoon, David R

    2010-01-01

    This paper studies the problem of learning clusters which are consistently present in different (continuously valued) representations of observed data. Our setup differs slightly from the standard approach of (co-) clustering as we use the fact that some form of `labeling' becomes available in this setup: a cluster is only interesting if it has a counterpart in the alternative representation. The contribution of this paper is twofold: (i) the problem setting is explored and an analysis in terms of the PAC-Bayesian theorem is presented, (ii) a practical kernel-based algorithm is derived exploiting the inherent relation to Canonical Correlation Analysis (CCA), as well as its extension to multiple views. A content based information retrieval (CBIR) case study is presented on the multi-lingual aligned Europal document dataset which supports the above findings.

  12. Advances in Significance Testing for Cluster Detection

    Science.gov (United States)

    Coleman, Deidra Andrea

    Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic

  13. Tools for Advanced Hadoop Cluster Control

    OpenAIRE

    Cimerman, Gregor

    2013-01-01

    Hadoop is a platform for storing and processing big data. This kind of platform that stretches over multiple servers is difficult to manage. Traditional management systems for computer grids do not allow complete management over Hadoop services because the dynamic and elastic properties. Because the complexity of Hadoop services, the combination of management systems are necessary for complete management. In this thesis we describe this combination of tools for Hadoop cluster management. We d...

  14. Globular Clusters as Cradles of Life and Advanced Civilizations

    Science.gov (United States)

    Di Stefano, R.; Ray, A.

    2016-08-01

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions can destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.

  15. EM Clustering Analysis of Diabetes Patients Basic Diagnosis Index

    OpenAIRE

    Wu, Cai; Steinbauer, Jeffrey R.; Kuo, Grace M

    2005-01-01

    Cluster analysis can group similar instances into same group. Partitioning cluster assigns classes to samples without known the classes in advance. Most common algorithms are K-means and Expectation Maximization (EM). EM clustering algorithm can find number of distributions of generating data and build “mixture models”. It identifies groups that are either overlapping or varying sizes and shapes. In this project, by using EM in Machine Learning Algorithm in JAVA (WEKA) syste...

  16. Advanced Analysis Environments - Summary

    International Nuclear Information System (INIS)

    This is a summary of the panel discussion on Advanced Analysis Environments. Rene Brun, Tony Johnson, and Lassi Tuura shared their insights about the trends and challenges in analysis environments. This paper contains the initial questions, a summary of the speakers' presentation, and the questions asked by the audience

  17. Nonlinear analysis of EAS clusters

    CERN Document Server

    Zotov, M Yu; Fomin, Y A; Fomin, Yu. A.

    2002-01-01

    We apply certain methods of nonlinear time series analysis to the extensive air shower clusters found earlier in the data set obtained with the EAS-1000 Prototype array. In particular, we use the Grassberger-Procaccia algorithm to compute the correlation dimension of samples in the vicinity of the clusters. The validity of the results is checked by surrogate data tests and some additional quantities. We compare our conclusions with the results of similar investigations performed by the EAS-TOP and LAAS groups.

  18. Recent advances in coupled-cluster methods

    CERN Document Server

    Bartlett, Rodney J

    1997-01-01

    Today, coupled-cluster (CC) theory has emerged as the most accurate, widely applicable approach for the correlation problem in molecules. Furthermore, the correct scaling of the energy and wavefunction with size (i.e. extensivity) recommends it for studies of polymers and crystals as well as molecules. CC methods have also paid dividends for nuclei, and for certain strongly correlated systems of interest in field theory.In order for CC methods to have achieved this distinction, it has been necessary to formulate new, theoretical approaches for the treatment of a variety of essential quantities

  19. Globular Clusters as Cradles of Life and Advanced Civilizations

    Science.gov (United States)

    Di Stefano, Rosanne; Ray, Alak

    2016-01-01

    Globular clusters are bound groups of about a million stars and stellar remnants. They are old, largely isolated, and very dense. We consider what each of these special features can mean for the development of life, the evolution of intelligent life, and the long-term survival of technological civilizations. We find that, if they house planets, globular clusters provide ideal environments for advanced civilizations that can survive over long times. We therefore propose methods to search for planets in globular clusters. If planets are found and if our arguments are correct, searches for intelligent life are most likely to succeed when directed toward globular clusters. Globular clusters may be the first places in which distant life is identified in our own or in external galaxies.

  20. Advances in molecular vibrations and collision dynamics molecular clusters

    CERN Document Server

    Bacic, Zatko

    1998-01-01

    This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...

  1. Globular Clusters as Cradles of Life and Advanced Civilizations

    CERN Document Server

    Di Stefano, R

    2016-01-01

    Globular clusters are ancient stellar populations with no star formation or core-collapse supernovae. Several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk. The relative proximity would facilitate interstellar communication and travel. However, the very proximity that promotes interstellar travel also brings danger, since stellar interactions can destroy planetary systems. However, by modeling globular clusters and their stellar populations, we find that large regions of many globular clusters can be thought of as "sweet spots" where habitable-zone planetary orbits can be stable for long times. We also compute the ambient densities and fluxes in the regions within which habitable-zone planets can survive. Globular clusters are among the best targets for searches for extraterrestrial intellig...

  2. Survey and Analysis of University Clustering

    Directory of Open Access Journals (Sweden)

    Srinatha Karur

    2013-07-01

    Full Text Available This paper gives on Clustering of Universities in the world with respect to their country policies OR local polices OR continent level polices with sub aims. So clustering method can generally apply when objective is specifically mentioned. For general objectives clusters are available in the form of logical or physical groups without networks. In this paper we emphasis on only University Clusters directly or University Clusters with some other clusters. Data miming methods are used for useful for Sampling Analysis and Clustering of Universities and Colleges with respect to local clusters [1] pp 1.

  3. Advances in theory and applications of fuzzy clustering

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The summarization and evaluation of the advances in fuzzy clustering theory are made in the aspects including the criterion functions, algorithm implementations, validity measurements and applications. Several important directions for a further study and the application prospects are also pointed out.

  4. The SMART CLUSTER METHOD - adaptive earthquake cluster analysis and declustering

    Science.gov (United States)

    Schaefer, Andreas; Daniell, James; Wenzel, Friedemann

    2016-04-01

    Earthquake declustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity with usual applications comprising of probabilistic seismic hazard assessments (PSHAs) and earthquake prediction methods. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation. Various methods have been developed to address this issue from other researchers. These have differing ranges of complexity ranging from rather simple statistical window methods to complex epidemic models. This study introduces the smart cluster method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal identification. Hereby, an adaptive search algorithm for data point clusters is adopted. It uses the earthquake density in the spatio-temporal neighbourhood of each event to adjust the search properties. The identified clusters are subsequently analysed to determine directional anisotropy, focussing on a strong correlation along the rupture plane and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010/2011 Darfield-Christchurch events, an adaptive classification procedure is applied to disassemble subsequent ruptures which may have been grouped into an individual cluster using near-field searches, support vector machines and temporal splitting. The steering parameters of the search behaviour are linked to local earthquake properties like magnitude of completeness, earthquake density and Gutenberg-Richter parameters. The method is capable of identifying and classifying earthquake clusters in space and time. It is tested and validated using earthquake data from California and New Zealand. As a result of the cluster identification process, each event in

  5. Comparative analysis of genomic signal processing for microarray data clustering.

    Science.gov (United States)

    Istepanian, Robert S H; Sungoor, Ala; Nebel, Jean-Christophe

    2011-12-01

    Genomic signal processing is a new area of research that combines advanced digital signal processing methodologies for enhanced genetic data analysis. It has many promising applications in bioinformatics and next generation of healthcare systems, in particular, in the field of microarray data clustering. In this paper we present a comparative performance analysis of enhanced digital spectral analysis methods for robust clustering of gene expression across multiple microarray data samples. Three digital signal processing methods: linear predictive coding, wavelet decomposition, and fractal dimension are studied to provide a comparative evaluation of the clustering performance of these methods on several microarray datasets. The results of this study show that the fractal approach provides the best clustering accuracy compared to other digital signal processing and well known statistical methods.

  6. Digital Fourier analysis advanced techniques

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to advanced digital Fourier analysis for advanced undergraduate and graduate students. Assuming knowledge of the Fast Fourier Transform, this book covers advanced topics including the Hilbert transform, cepstrum analysis, and the two-dimensional Fourier transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Advanced Techniques" includes practice problems and thorough Appendices. As a central feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. The applet source code in Visual Basic is provided online, enabling advanced students to tweak and change the programs for more sophisticated results. A complete, intuitive guide, "Digital Fourier Analysis - Advanced Techniques" is an essential reference for students in science and engineering.

  7. ASteCA - Automated Stellar Cluster Analysis

    CERN Document Server

    Perren, Gabriel I; Piatti, Andrés E

    2014-01-01

    We present ASteCA (Automated Stellar Cluster Analysis), a suit of tools designed to fully automatize the standard tests applied on stellar clusters to determine their basic parameters. The set of functions included in the code make use of positional and photometric data to obtain precise and objective values for a given cluster's center coordinates, radius, luminosity function and integrated color magnitude, as well as characterizing through a statistical estimator its probability of being a true physical cluster rather than a random overdensity of field stars. ASteCA incorporates a Bayesian field star decontamination algorithm capable of assigning membership probabilities using photometric data alone. An isochrone fitting process based on the generation of synthetic clusters from theoretical isochrones and selection of the best fit through a genetic algorithm is also present, which allows ASteCA to provide accurate estimates for a cluster's metallicity, age, extinction and distance values along with its unce...

  8. Cluster Analysis of Adolescent Blogs

    Science.gov (United States)

    Liu, Eric Zhi-Feng; Lin, Chun-Hung; Chen, Feng-Yi; Peng, Ping-Chuan

    2012-01-01

    Emerging web applications and networking systems such as blogs have become popular, and they offer unique opportunities and environments for learners, especially for adolescent learners. This study attempts to explore the writing styles and genres used by adolescents in their blogs by employing content, factor, and cluster analyses. Factor…

  9. Broadband PLC for Clustered Advanced Metering Infrastructure (AMI Architecture

    Directory of Open Access Journals (Sweden)

    Augustine Ikpehai

    2016-07-01

    Full Text Available Advanced metering infrastructure (AMI subsystems monitor and control energy distribution through exchange of information between smart meters and utility networks. A key challenge is how to select a cost-effective communication system without compromising the performance of the applications. Current communication technologies were developed for conventional data networks with different requirements. It is therefore necessary to investigate how much of existing communication technologies can be retrofitted into the new energy infrastructure to cost-effectively deliver acceptable level of service. This paper investigates broadband power line communications (BPLC as a backhaul solution in AMI. By applying the disparate traffic characteristics of selected AMI applications, the network performance is evaluated. This study also examines the communication network response to changes in application configurations in terms of packet sizes. In each case, the network is stress-tested and performance is assessed against acceptable thresholds documented in the literature. Results show that, like every other communication technology, BPLC has certain limitations; however, with some modifications in the network topology, it indeed can fulfill most AMI traffic requirements for flexible and time-bounded applications. These opportunities, if tapped, can significantly improve fiscal and operational efficiencies in AMI services. Simulation results also reveal that BPLC as a backhaul can support flat and clustered AMI structures with cluster size ranging from 1 to 150 smart meters.

  10. A Geometric Analysis of Subspace Clustering with Outliers

    CERN Document Server

    Soltanolkotabi, Mahdi

    2011-01-01

    This paper considers the problem of clustering a collection of unlabeled data points assumed to lie near a union of lower dimensional planes. As is common in computer vision or unsupervised learning applications, we do not know in advance how many subspaces there are nor do we have any information about their dimensions. We develop a novel geometric analysis of an algorithm named {\\em sparse subspace clustering} (SSC) \\cite{Elhamifar09}, which significantly broadens the range of problems where it is provably effective. For instance, we show that SSC can recover multiple subspaces, each of dimension comparable to the ambient dimension. We also prove that SSC can correctly cluster data points even when the subspaces of interest intersect. Further, we develop an extension of SSC that succeeds when the data set is corrupted with possibly overwhelmingly many outliers. Underlying our analysis are clear geometric insights, which may bear on other sparse recovery problems. A numerical study complements our theoretica...

  11. Clustering analysis of telecommunication customers

    Institute of Scientific and Technical Information of China (English)

    REN Hong; ZHENG Yan; WU Ye-rong

    2009-01-01

    In this article, a clustering method based on genetic algorithm (GA) for telecommunication customer subdivision is presented. First, the features of telecommunication customers (such as the calling behavior and consuming behavior) are extracted. Second, the similarities between the multidimensional feature vectors of telecommunication customers are computed and mapped as the distance between samples on a two-dimensional plane. Finally, the distances are adjusted to approximate the similarities gradually by GA. One advantage of this method is the independent distribution of the sample space. The experiments demonstrate the feasibility of the proposed method.

  12. ASteCA: Automated Stellar Cluster Analysis

    Science.gov (United States)

    Perren, G. I.; Vázquez, R. A.; Piatti, A. E.

    2015-04-01

    We present the Automated Stellar Cluster Analysis package (ASteCA), a suit of tools designed to fully automate the standard tests applied on stellar clusters to determine their basic parameters. The set of functions included in the code make use of positional and photometric data to obtain precise and objective values for a given cluster's center coordinates, radius, luminosity function and integrated color magnitude, as well as characterizing through a statistical estimator its probability of being a true physical cluster rather than a random overdensity of field stars. ASteCA incorporates a Bayesian field star decontamination algorithm capable of assigning membership probabilities using photometric data alone. An isochrone fitting process based on the generation of synthetic clusters from theoretical isochrones and selection of the best fit through a genetic algorithm is also present, which allows ASteCA to provide accurate estimates for a cluster's metallicity, age, extinction and distance values along with its uncertainties. To validate the code we applied it on a large set of over 400 synthetic MASSCLEAN clusters with varying degrees of field star contamination as well as a smaller set of 20 observed Milky Way open clusters (Berkeley 7, Bochum 11, Czernik 26, Czernik 30, Haffner 11, Haffner 19, NGC 133, NGC 2236, NGC 2264, NGC 2324, NGC 2421, NGC 2627, NGC 6231, NGC 6383, NGC 6705, Ruprecht 1, Tombaugh 1, Trumpler 1, Trumpler 5 and Trumpler 14) studied in the literature. The results show that ASteCA is able to recover cluster parameters with an acceptable precision even for those clusters affected by substantial field star contamination. ASteCA is written in Python and is made available as an open source code which can be downloaded ready to be used from its official site.

  13. Advanced defect detection algorithm using clustering in ultrasonic NDE

    Science.gov (United States)

    Gongzhang, Rui; Gachagan, Anthony

    2016-02-01

    A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.

  14. Filtering Genes for Cluster and Network Analysis

    Directory of Open Access Journals (Sweden)

    Parkhomenko Elena

    2009-06-01

    Full Text Available Abstract Background Prior to cluster analysis or genetic network analysis it is customary to filter, or remove genes considered to be irrelevant from the set of genes to be analyzed. Often genes whose variation across samples is less than an arbitrary threshold value are deleted. This can improve interpretability and reduce bias. Results This paper introduces modular models for representing network structure in order to study the relative effects of different filtering methods. We show that cluster analysis and principal components are strongly affected by filtering. Filtering methods intended specifically for cluster and network analysis are introduced and compared by simulating modular networks with known statistical properties. To study more realistic situations, we analyze simulated "real" data based on well-characterized E. coli and S. cerevisiae regulatory networks. Conclusion The methods introduced apply very generally, to any similarity matrix describing gene expression. One of the proposed methods, SUMCOV, performed well for all models simulated.

  15. Advanced Analysis of Nontraditional Machining

    CERN Document Server

    Tsai, Hung-Yin

    2013-01-01

    Nontraditional machining utilizes thermal, chemical, electrical, mechanical and optical sources of energy to form and cut materials. Advanced Analysis of Nontraditional Machining explains in-depth how each of these advanced machining processes work, their machining system components, and process variables and industrial applications, thereby offering advanced knowledge and scientific insight. This book also documents the latest and frequently cited research results of a few key nonconventional machining processes for the most concerned topics in industrial applications, such as laser machining, electrical discharge machining, electropolishing of die and mold, and wafer processing for integrated circuit manufacturing. This book also: Fills the gap of the advanced knowledge of nonconventional machining between industry and research Documents latest and frequently cited research of key nonconventional machining processes for the most sought after topics in industrial applications Demonstrates advanced multidisci...

  16. Clustering analysis of seismicity and aftershock identification.

    Science.gov (United States)

    Zaliapin, Ilya; Gabrielov, Andrei; Keilis-Borok, Vladimir; Wong, Henry

    2008-07-01

    We introduce a statistical methodology for clustering analysis of seismicity in the time-space-energy domain and use it to establish the existence of two statistically distinct populations of earthquakes: clustered and nonclustered. This result can be used, in particular, for nonparametric aftershock identification. The proposed approach expands the analysis of Baiesi and Paczuski [Phys. Rev. E 69, 066106 (2004)10.1103/PhysRevE.69.066106] based on the space-time-magnitude nearest-neighbor distance eta between earthquakes. We show that for a homogeneous Poisson marked point field with exponential marks, the distance eta has the Weibull distribution, which bridges our results with classical correlation analysis for point fields. The joint 2D distribution of spatial and temporal components of eta is used to identify the clustered part of a point field. The proposed technique is applied to several seismicity models and to the observed seismicity of southern California.

  17. Advanced Economic Analysis

    Science.gov (United States)

    Greenberg, Marc W.; Laing, William

    2013-01-01

    An Economic Analysis (EA) is a systematic approach to the problem of choosing the best method of allocating scarce resources to achieve a given objective. An EA helps guide decisions on the "worth" of pursuing an action that departs from status quo ... an EA is the crux of decision-support.

  18. Advanced biomedical image analysis

    CERN Document Server

    Haidekker, Mark A

    2010-01-01

    "This book covers the four major areas of image processing: Image enhancement and restoration, image segmentation, image quantification and classification, and image visualization. Image registration, storage, and compression are also covered. The text focuses on recently developed image processing and analysis operators and covers topical research"--Provided by publisher.

  19. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis.

    Directory of Open Access Journals (Sweden)

    Nan Lin

    Full Text Available Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis.

  20. Hierarchical genetic clusters for phenotypic analysis

    Directory of Open Access Journals (Sweden)

    Luiza Barbosa da Matta

    2015-10-01

    Full Text Available Methods to obtain phenotypic information were evaluated to help breeders choosing the best methodology for analysis of genetic diversity in backcross populations. Phenotypes were simulated for 13 characteristics generated in 10 populations with 100 individuals each. Genotypic information was generated from 100 loci of which 20 were taken at random to determine the characteristics expressing two alleles. Dissimilarity measures were calculated, and genetic diversity was analyzed through hierarchical clustering and graphic projection of the distances. A backcross was performed from the two most divergent populations. A set of characteristics with variable heritability was taken into account. The environmental effect was simulated assuming . For hierarchical clusters, the following methods were used: Gower Method, average linkage within the cluster, average linkage among clusters, the furthest neighbor method, the nearest neighbor method, Ward’s method, and the median method. The environmental effect and heritability of the analyzed variables had an influence on the pattern of hierarchical clustering populations according to the backcrossed generations. The nearest neighbor method was the most efficient in reconstructing the system of backcrossing, and it presented the highest cophenetic correlation. The efficiency of the nearest neighbor method was the highest when the analysis involved characteristics of high heritability.

  1. Cluster and constraint analysis in tetrahedron packings.

    Science.gov (United States)

    Jin, Weiwei; Lu, Peng; Liu, Lufeng; Li, Shuixiang

    2015-04-01

    The disordered packings of tetrahedra often show no obvious macroscopic orientational or positional order for a wide range of packing densities, and it has been found that the local order in particle clusters is the main order form of tetrahedron packings. Therefore, a cluster analysis is carried out to investigate the local structures and properties of tetrahedron packings in this work. We obtain a cluster distribution of differently sized clusters, and peaks are observed at two special clusters, i.e., dimer and wagon wheel. We then calculate the amounts of dimers and wagon wheels, which are observed to have linear or approximate linear correlations with packing density. Following our previous work, the amount of particles participating in dimers is used as an order metric to evaluate the order degree of the hierarchical packing structure of tetrahedra, and an order map is consequently depicted. Furthermore, a constraint analysis is performed to determine the isostatic or hyperstatic region in the order map. We employ a Monte Carlo algorithm to test jamming and then suggest a new maximally random jammed packing of hard tetrahedra from the order map with a packing density of 0.6337.

  2. Clustering

    Directory of Open Access Journals (Sweden)

    Jinfei Liu

    2013-04-01

    Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..

  3. Handbook of Advanced Multilevel Analysis

    CERN Document Server

    Hox, Joop

    2010-01-01

    This new handbook is the definitive resource on advanced topics related to multilevel analysis. The editors have assembled the top minds in the field to address the latest applications of multilevel modeling as well as the specific difficulties and methodological problems that are becoming more common as more complicated models are developed.

  4. MANNER OF STOCKS SORTING USING CLUSTER ANALYSIS METHODS

    Directory of Open Access Journals (Sweden)

    Jana Halčinová

    2014-06-01

    Full Text Available The aim of the present article is to show the possibility of using the methods of cluster analysis in classification of stocks of finished products. Cluster analysis creates groups (clusters of finished products according to similarity in demand i.e. customer requirements for each product. Manner stocks sorting of finished products by clusters is described a practical example. The resultants clusters are incorporated into the draft layout of the distribution warehouse.

  5. Intelligent Pattern Mining and Data Clustering for Pattern Cluster Analysis using Cancer Data

    Directory of Open Access Journals (Sweden)

    G.Raj Kumar

    2010-12-01

    Full Text Available Data mining techniques are used for the knowledge discovery process under the large data set environment. Clustering techniques are used to group up the relevant data sets. Hierarchical and partitioned clustering techniques are used for the clustering process. The clustering process is the complex task with high process time. The pattern extraction scheme is applied to find frequent item sets. Association rule mining techniques are applied to carry out the pattern extraction process. The pattern extraction scheme and the clustering scheme are integrated in the simultaneous pattern extraction and clustering scheme. The clustering process is improved with pattern comparison and transaction transfer process. The simultaneous clustering scheme is implemented to analyze the cancer patient diagnosis reports. The system is implemented as four major modules data set management, pattern extraction, clustering process and performance analysis. The data sets are preprocessed before the pattern extraction process. The patterns are used in the simultaneous clustering process. The performance analysis is done with the comparison of the data clustering scheme and pattern clustering schemes. The process time and memory factors are used in the performance analysis process. The cluster accuracy is represented using the fitness values. The system is enhanced with the K-means clustering algorithm.

  6. ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network.

    Science.gov (United States)

    Wang, Jianxin; Zhong, Jiancheng; Chen, Gang; Li, Min; Wu, Fang-xiang; Pan, Yi

    2015-01-01

    Cluster analysis of biological networks is one of the most important approaches for identifying functional modules and predicting protein functions. Furthermore, visualization of clustering results is crucial to uncover the structure of biological networks. In this paper, ClusterViz, an APP of Cytoscape 3 for cluster analysis and visualization, has been developed. In order to reduce complexity and enable extendibility for ClusterViz, we designed the architecture of ClusterViz based on the framework of Open Services Gateway Initiative. According to the architecture, the implementation of ClusterViz is partitioned into three modules including interface of ClusterViz, clustering algorithms and visualization and export. ClusterViz fascinates the comparison of the results of different algorithms to do further related analysis. Three commonly used clustering algorithms, FAG-EC, EAGLE and MCODE, are included in the current version. Due to adopting the abstract interface of algorithms in module of the clustering algorithms, more clustering algorithms can be included for the future use. To illustrate usability of ClusterViz, we provided three examples with detailed steps from the important scientific articles, which show that our tool has helped several research teams do their research work on the mechanism of the biological networks. PMID:26357321

  7. Mapping Cigarettes Similarities using Cluster Analysis Methods

    Directory of Open Access Journals (Sweden)

    Lorentz Jäntschi

    2007-09-01

    Full Text Available The aim of the research was to investigate the relationship and/or occurrences in and between chemical composition information (tar, nicotine, carbon monoxide, market information (brand, manufacturer, price, and public health information (class, health warning as well as clustering of a sample of cigarette data. A number of thirty cigarette brands have been analyzed. Six categorical (cigarette brand, manufacturer, health warnings, class and four continuous (tar, nicotine, carbon monoxide concentrations and package price variables were collected for investigation of chemical composition, market information and public health information. Multiple linear regression and two clusterization techniques have been applied. The study revealed interesting remarks. The carbon monoxide concentration proved to be linked with tar and nicotine concentration. The applied clusterization methods identified groups of cigarette brands that shown similar characteristics. The tar and carbon monoxide concentrations were the main criteria used in clusterization. An analysis of a largest sample could reveal more relevant and useful information regarding the similarities between cigarette brands.

  8. Advances in Bayesian Model Based Clustering Using Particle Learning

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D M

    2009-11-19

    implementation of Carvalho et al that allow us to retain the computational advantages of particle learning while improving the suitability of the methodology to the analysis of streaming data and simultaneously facilitating the real time discovery of latent cluster structures. Section 4 demonstrates our methodological enhancements in the context of several simulated and classical data sets, showcasing the use of particle learning methods for online anomaly detection, label generation, drift detection, and semi-supervised classification, none of which would be achievable through a standard MCMC approach. Section 5 concludes with a discussion of future directions for research.

  9. Secure and Faster Clustering Environment for Advanced Image Compression

    Directory of Open Access Journals (Sweden)

    D.Kesavaraja

    2010-11-01

    Full Text Available Cloud computing provides ample opportunity in many areas such as fastest image transmission, secure and efficient imaging as a service. In general users needs faster and secure service. Usually Image Compression Algorithms are not working faster. In spite of several ongoing researches, Conventional Compression and its Algorithms might not be able to run faster. So, we perform comparative study of three image compression algorithm and their variety of features and factors to choose best among them for cluster processing. After choosing a best one it can be applied for a cluster computing environment to run parallel image compression for faster processing. This paper is the real time implementation of a Distributed Image Compression in Clustering of Nodes. In cluster computing, security is also more important factor. So, we propose a Distributed Intrusion Detection System to monitors all the nodes in cluster . If an intrusion occur in node processing then take an prevention step based on RIC (Robust Intrusion Control Method. We demonstrate the effectiveness and feasibility of our method on a set of satellite images for defense forces. The efficiency ratio of this computation process is 91.20.

  10. A Review on Clustering and Outlier Analysis Techniques in Datamining

    Directory of Open Access Journals (Sweden)

    S. Koteeswaran

    2012-01-01

    Full Text Available Problem statement: The modern world is based on using physical, biological and social systems more effectively using advanced computerized techniques. A great amount of data being generated by such systems; it leads to a paradigm shift from classical modeling and analyses based on basic principles to developing models and the corresponding analyses directly from data. The ability to extract useful hidden knowledge in these data and to act on that knowledge is becoming increasingly important in today's competitive world. Approach: The entire process of applying a computer-based methodology, including new techniques, for discovering knowledge from data is called data mining. There are two primary goals in the data mining which are prediction and classification. The larger data involved in the data mining requires clustering and outlier analysis for reducing as well as collecting only useful data set. Results: This study is focusing the review of implementation techniques, recent research on clustering and outlier analysis. Conclusion: The study aims for providing the review of clustering and outlier analysis technique and the discussion on the study will guide the researcher for improving their research direction.

  11. Chaotic map clustering algorithm for EEG analysis

    Science.gov (United States)

    Bellotti, R.; De Carlo, F.; Stramaglia, S.

    2004-03-01

    The non-parametric chaotic map clustering algorithm has been applied to the analysis of electroencephalographic signals, in order to recognize the Huntington's disease, one of the most dangerous pathologies of the central nervous system. The performance of the method has been compared with those obtained through parametric algorithms, as K-means and deterministic annealing, and supervised multi-layer perceptron. While supervised neural networks need a training phase, performed by means of data tagged by the genetic test, and the parametric methods require a prior choice of the number of classes to find, the chaotic map clustering gives a natural evidence of the pathological class, without any training or supervision, thus providing a new efficient methodology for the recognition of patterns affected by the Huntington's disease.

  12. Data Clustering Analysis Based on Wavelet Feature Extraction

    Institute of Scientific and Technical Information of China (English)

    QIANYuntao; TANGYuanyan

    2003-01-01

    A novel wavelet-based data clustering method is presented in this paper, which includes wavelet feature extraction and cluster growing algorithm. Wavelet transform can provide rich and diversified information for representing the global and local inherent structures of dataset. therefore, it is a very powerful tool for clustering feature extraction. As an unsupervised classification, the target of clustering analysis is dependent on the specific clustering criteria. Several criteria that should be con-sidered for general-purpose clustering algorithm are pro-posed. And the cluster growing algorithm is also con-structed to connect clustering criteria with wavelet fea-tures. Compared with other popular clustering methods,our clustering approach provides multi-resolution cluster-ing results,needs few prior parameters, correctly deals with irregularly shaped clusters, and is insensitive to noises and outliers. As this wavelet-based clustering method isaimed at solving two-dimensional data clustering prob-lem, for high-dimensional datasets, self-organizing mapand U-matrlx method are applied to transform them intotwo-dimensional Euclidean space, so that high-dimensional data clustering analysis,Results on some sim-ulated data and standard test data are reported to illus-trate the power of our method.

  13. Constructing storyboards based on hierarchical clustering analysis

    Science.gov (United States)

    Hasebe, Satoshi; Sami, Mustafa M.; Muramatsu, Shogo; Kikuchi, Hisakazu

    2005-07-01

    There are growing needs for quick preview of video contents for the purpose of improving accessibility of video archives as well as reducing network traffics. In this paper, a storyboard that contains a user-specified number of keyframes is produced from a given video sequence. It is based on hierarchical cluster analysis of feature vectors that are derived from wavelet coefficients of video frames. Consistent use of extracted feature vectors is the key to avoid a repetition of computationally-intensive parsing of the same video sequence. Experimental results suggest that a significant reduction in computational time is gained by this strategy.

  14. Estimating the number of clusters via system evolution for cluster analysis of gene expression data.

    Science.gov (United States)

    Wang, Kaijun; Zheng, Jie; Zhang, Junying; Dong, Jiyang

    2009-09-01

    The estimation of the number of clusters (NC) is one of crucial problems in the cluster analysis of gene expression data. Most approaches available give their answers without the intuitive information about separable degrees between clusters. However, this information is useful for understanding cluster structures. To provide this information, we propose system evolution (SE) method to estimate NC based on partitioning around medoids (PAM) clustering algorithm. SE analyzes cluster structures of a dataset from the viewpoint of a pseudothermodynamics system. The system will go to its stable equilibrium state, at which the optimal NC is found, via its partitioning process and merging process. The experimental results on simulated and real gene expression data demonstrate that the SE works well on the data with well-separated clusters and the one with slightly overlapping clusters. PMID:19527960

  15. Adaptive Fuzzy Consensus Clustering Framework for Clustering Analysis of Cancer Data.

    Science.gov (United States)

    Yu, Zhiwen; Chen, Hantao; You, Jane; Liu, Jiming; Wong, Hau-San; Han, Guoqiang; Li, Le

    2015-01-01

    Performing clustering analysis is one of the important research topics in cancer discovery using gene expression profiles, which is crucial in facilitating the successful diagnosis and treatment of cancer. While there are quite a number of research works which perform tumor clustering, few of them considers how to incorporate fuzzy theory together with an optimization process into a consensus clustering framework to improve the performance of clustering analysis. In this paper, we first propose a random double clustering based cluster ensemble framework (RDCCE) to perform tumor clustering based on gene expression data. Specifically, RDCCE generates a set of representative features using a randomly selected clustering algorithm in the ensemble, and then assigns samples to their corresponding clusters based on the grouping results. In addition, we also introduce the random double clustering based fuzzy cluster ensemble framework (RDCFCE), which is designed to improve the performance of RDCCE by integrating the newly proposed fuzzy extension model into the ensemble framework. RDCFCE adopts the normalized cut algorithm as the consensus function to summarize the fuzzy matrices generated by the fuzzy extension models, partition the consensus matrix, and obtain the final result. Finally, adaptive RDCFCE (A-RDCFCE) is proposed to optimize RDCFCE and improve the performance of RDCFCE further by adopting a self-evolutionary process (SEPP) for the parameter set. Experiments on real cancer gene expression profiles indicate that RDCFCE and A-RDCFCE works well on these data sets, and outperform most of the state-of-the-art tumor clustering algorithms. PMID:26357330

  16. Effects of a stepwise multidisciplinary intervention for challenging behavior in advanced dementia: a cluster randomized controlled trial.

    NARCIS (Netherlands)

    Pieper, M.J.C.; Francke, A.L.; Steen, J.T. van der; Scherder, E.J.A.; Twisk, J.W.R.; Kovach, C.R.; Achterberg, W.P.

    2016-01-01

    Objectives: To assess whether implementation of a stepwise multicomponent intervention (STA OP!) is effective in reducing challenging behavior and depression in nursing home residents with advanced dementia. Design: Cluster randomized controlled trial. Setting: Twenty-one clusters (single independe

  17. Uplink multi-cluster scheduling with MU-MIMO for LTE-advanced with carrier aggregation

    DEFF Research Database (Denmark)

    Wang, Hua; Nguyen, Hung Tuan; Rosa, Claudio;

    2012-01-01

    LTE-Advanced is the evolutionary path from LTE Release 8. It is designed to significantly enhance the performance of LTE Release 8 in terms of higher peak data rates, improved system capacity and coverage, and lower latency. These enhancements allow LTE-Advanced to meet or exceed the IMT-Advanced...... requirements and are being considered as part of LTE Release 10. In this paper, some of the physical layer enhancement techniques for LTE-Advanced have been studied including carrier aggregation (CA), uplink multi-cluster scheduling, and uplink multi-user multiple-input multiple-output (MU-MIMO) transmission...

  18. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale

    CERN Document Server

    Emmons, Scott; Gallant, Mike; Börner, Katy

    2016-01-01

    Notions of community quality underlie network clustering. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms -- Blondel, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 o...

  19. Cluster analysis of word frequency dynamics

    International Nuclear Information System (INIS)

    This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations

  20. Lung scintigraphy clustering by texture analysis

    International Nuclear Information System (INIS)

    The efficiency of texture analysis parameters, describing the organization of grey level variations of an image, was studied for lung scintigraphic data classification. Twenty one patients received a99mTC-MAA perfusion scan and 81mKr and 127Xe ventilation scans. Scans were scaled to 64 grey levels and 100 k events for inter subject comparison. The texture index was the average of the absolute difference between a pixel and its neighbors. Energy, entropy, correlation, local homogeneity and inertia were computed using co-occurrence matrices. A principal component analysis was carried out on each parameter for each type of scan and the first principal components were selected as clustering indices. Validation was achieved by simulating 2 series of 20 increasingly heterogenous perfusion and ventilation scans. For most of the texture parameters, one principal component could summarize the patients data since it corresponded to the relative variances of 67%-88% for perfusion scans, 53%-99% for 81mKr scans and 38%-97% for 127Xe scans. The simulated series demonstrated a linear relationship between the heterogeneity and the first principal component for texture index, energy, entropy and inertia. This was not the case for correlation and local Homogeneity. We conclude that heterogeneity of lung scans may be quantified by texture analysis. The texture index is the easiest to compute and provides the most efficient results for clinical purpose. (orig.)

  1. Advance care planning - a multi-centre cluster randomised clinical trial

    DEFF Research Database (Denmark)

    Rietjens, Judith A C; Korfage, Ida J; Dunleavy, Lesley;

    2016-01-01

    BACKGROUND: Awareness of preferences regarding medical care should be a central component of the care of patients with advanced cancer. Open communication can facilitate this but can occur in an ad hoc or variable manner. Advance care planning (ACP) is a formalized process of communication between......, and improve their quality of life. METHODS/DESIGN: We will study the effects of the ACP program Respecting Choices on the quality of life of patients with advanced lung or colorectal cancer. In a phase III multicenter cluster randomised controlled trial, 22 hospitals in 6 countries will be randomised...

  2. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    Science.gov (United States)

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments. PMID:26274407

  3. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    Science.gov (United States)

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  4. Smartness and Italian Cities. A Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Flavio Boscacci

    2014-05-01

    Full Text Available Smart cities have been recently recognized as the most pleasing and attractive places to live in; due to this, both scholars and policy-makers pay close attention to this topic. Specifically, urban “smartness” has been identified by plenty of characteristics that can be grouped into six dimensions (Giffinger et al. 2007: smart Economy (competitiveness, smart People (social and human capital, smart Governance (participation, smart Mobility (both ICTs and transport, smart Environment (natural resources, and smart Living (quality of life. According to this analytical framework, in the present paper the relation between urban attractiveness and the “smart” characteristics has been investigated in the 103 Italian NUTS3 province capitals in the year 2011. To this aim, a descriptive statistics has been followed by a regression analysis (OLS, where the dependent variable measuring the urban attractiveness has been proxied by housing market prices. Besides, a Cluster Analysis (CA has been developed in order to find differences and commonalities among the province capitals.The OLS results indicate that living, people and economy are the key drivers for achieving a better urban attractiveness. Environment, instead, keeps on playing a minor role. Besides, the CA groups the province capitals a

  5. Using Cluster Analysis for Data Mining in Educational Technology Research

    Science.gov (United States)

    Antonenko, Pavlo D.; Toy, Serkan; Niederhauser, Dale S.

    2012-01-01

    Cluster analysis is a group of statistical methods that has great potential for analyzing the vast amounts of web server-log data to understand student learning from hyperlinked information resources. In this methodological paper we provide an introduction to cluster analysis for educational technology researchers and illustrate its use through…

  6. Advanced Multi-Component Defect Cluster Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The advantages of using ceramic thermal barrier coatings in gas turbine engine hot sections include increased fuel efficiency and improved engine reliability. However, current thermal barrier coatings will not have the low thermal conductivity and necessary sintering resistance under higher operating temperatures and thermal gradients required by future advanced ultra efficient and low emission aircraft engines. In this paper, a novel oxide defect cluster design approach is described for achieving low thermal conductivity and excellent thermal stability of the thermal barrier coating systems. This approach utilizes multi-component rare earth and other metal cluster oxide dopants that are incorporated in the zirconia-yttna based systems, thus significantly reducing coating thermal conductivity and sintering resistance by effectively promoting the formation of thermodynamically stable, essentially immobile defect clusters and/or nanoscale phases. The performance of selected plasma-sprayed cluster oxide thermal barrier coating systems has been evaluated. The advanced multi-component thermal barrier coating systems were found to have significantly lower initial and long-term thermal conductivities, and better high temperature stability. The effect of oxide cluster dopants on coating thermal conductivity, sintering resistance, oxide grain growth behavior and durability will be discussed.

  7. Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

    2013-08-31

    Technical aspects of producing alternative fuels that may eventually supplement or replace conventional the petroleum-derived fuels that are presently used in vehicular transportation have been investigated. The work was centered around three projects: 1) deriving butanol as a fuel additive from bacterial action on sugars produced from decomposition of aqueous suspensions of wood cellulose under elevated temperature and pressure; 2) using highly ordered, openly structured molecules known as metal-organic framework (MOF) compounds as adsorbents for gas separations in fuel processing operations; and 3) developing a photocatalytic membrane for solar-driven water decomposition to generate pure hydrogen fuel. Several departments within the STEM College at YSU contributed to the effort: Chemistry, Biology, and Chemical Engineering. In the butanol project, sawdust was blended with water at variable pH and temperature (150 – 250{degrees}C), and heated inside a pressure vessel for specified periods of time. Analysis of the extracts showed a wide variety of compounds, including simple sugars that bacteria are known to thrive upon. Samples of the cellulose hydrolysate were fed to colonies of Clostridium beijerinckii, which are known to convert sugars to a mixture of compounds, principally butanol. While the bacteria were active toward additions of pure sugar solutions, the cellulose extract appeared to inhibit butanol production, and furthermore encouraged the Clostridium to become dormant. Proteomic analysis showed that the bacteria had changed their genetic code to where it was becoming sporulated, i.e., the bacteria were trying to go dormant. This finding may be an opportunity, as it may be possible to genetically engineer bacteria that resist the butanol-driven triggering mechanism to stop further fuel production. Another way of handling the cellulosic hydrolysates was to simply add the enzymes responsible for butanol synthesis to the hydrolytic extract ex-vivo. These

  8. Clustering and Feature Selection using Sparse Principal Component Analysis

    OpenAIRE

    Luss, Ronny; d'Aspremont, Alexandre

    2007-01-01

    In this paper, we study the application of sparse principal component analysis (PCA) to clustering and feature selection problems. Sparse PCA seeks sparse factors, or linear combinations of the data variables, explaining a maximum amount of variance in the data while having only a limited number of nonzero coefficients. PCA is often used as a simple clustering technique and sparse factors allow us here to interpret the clusters in terms of a reduced set of variables. We begin with a brief int...

  9. Intelligent Hybrid Cluster Based Classification Algorithm for Social Network Analysis

    Directory of Open Access Journals (Sweden)

    S. Muthurajkumar

    2014-05-01

    Full Text Available In this paper, we propose an hybrid clustering based classification algorithm based on mean approach to effectively classify to mine the ordered sequences (paths from weblog data in order to perform social network analysis. In the system proposed in this work for social pattern analysis, the sequences of human activities are typically analyzed by switching behaviors, which are likely to produce overlapping clusters. In this proposed system, a robust Modified Boosting algorithm is proposed to hybrid clustering based classification for clustering the data. This work is useful to provide connection between the aggregated features from the network data and traditional indices used in social network analysis. Experimental results show that the proposed algorithm improves the decision results from data clustering when combined with the proposed classification algorithm and hence it is proved that of provides better classification accuracy when tested with Weblog dataset. In addition, this algorithm improves the predictive performance especially for multiclass datasets which can increases the accuracy.

  10. Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis

    OpenAIRE

    Cohen, Mitchell J; Grossman, Adam D; Morabito, Diane; Knudson, M. Margaret; Butte, Atul J; Manley, Geoffrey T.

    2010-01-01

    Introduction Advances in technology have made extensive monitoring of patient physiology the standard of care in intensive care units (ICUs). While many systems exist to compile these data, there has been no systematic multivariate analysis and categorization across patient physiological data. The sheer volume and complexity of these data make pattern recognition or identification of patient state difficult. Hierarchical cluster analysis allows visualization of high dimensional data and enabl...

  11. Hierarchical Cluster Analysis – Various Approaches to Data Preparation

    Directory of Open Access Journals (Sweden)

    Z. Pacáková

    2013-09-01

    Full Text Available The article deals with two various approaches to data preparation to avoid multicollinearity. The aim of the article is to find similarities among the e-communication level of EU states using hierarchical cluster analysis. The original set of fourteen indicators was first reduced on the basis of correlation analysis while in case of high correlation indicator of higher variability was included in further analysis. Secondly the data were transformed using principal component analysis while the principal components are poorly correlated. For further analysis five principal components explaining about 92% of variance were selected. Hierarchical cluster analysis was performed both based on the reduced data set and the principal component scores. Both times three clusters were assumed following Pseudo t-Squared and Pseudo F Statistic, but the final clusters were not identical. An important characteristic to compare the two results found was to look at the proportion of variance accounted for by the clusters which was about ten percent higher for the principal component scores (57.8% compared to 47%. Therefore it can be stated, that in case of using principal component scores as an input variables for cluster analysis with explained proportion high enough (about 92% for in our analysis, the loss of information is lower compared to data reduction on the basis of correlation analysis.

  12. Obstructive Sleep Apnea: A Cluster Analysis at Time of Diagnosis

    Science.gov (United States)

    Grillet, Yves; Richard, Philippe; Stach, Bruno; Vivodtzev, Isabelle; Timsit, Jean-Francois; Lévy, Patrick; Tamisier, Renaud; Pépin, Jean-Louis

    2016-01-01

    Background The classification of obstructive sleep apnea is on the basis of sleep study criteria that may not adequately capture disease heterogeneity. Improved phenotyping may improve prognosis prediction and help select therapeutic strategies. Objectives: This study used cluster analysis to investigate the clinical clusters of obstructive sleep apnea. Methods An ascending hierarchical cluster analysis was performed on baseline symptoms, physical examination, risk factor exposure and co-morbidities from 18,263 participants in the OSFP (French national registry of sleep apnea). The probability for criteria to be associated with a given cluster was assessed using odds ratios, determined by univariate logistic regression. Results: Six clusters were identified, in which patients varied considerably in age, sex, symptoms, obesity, co-morbidities and environmental risk factors. The main significant differences between clusters were minimally symptomatic versus sleepy obstructive sleep apnea patients, lean versus obese, and among obese patients different combinations of co-morbidities and environmental risk factors. Conclusions Our cluster analysis identified six distinct clusters of obstructive sleep apnea. Our findings underscore the high degree of heterogeneity that exists within obstructive sleep apnea patients regarding clinical presentation, risk factors and consequences. This may help in both research and clinical practice for validating new prevention programs, in diagnosis and in decisions regarding therapeutic strategies. PMID:27314230

  13. OCAAT: automated analysis of star cluster colour-magnitude diagrams for gauging the local distance scale

    Science.gov (United States)

    Perren, Gabriel I.; Vázquez, Ruben A.; Piatti, Andrés E.; Moitinho, André

    2014-05-01

    Star clusters are among the fundamental astrophysical objects used in setting the local distance scale. Despite its crucial importance, the accurate determination of the distances to the Magellanic Clouds (SMC/LMC) remains a fuzzy step in the cosmological distance ladder. The exquisite astrometry of the recently launched ESA Gaia mission is expected to deliver extremely accurate statistical parallaxes, and thus distances, to the SMC/LMC. However, an independent SMC/LMC distance determination via main sequence fitting of star clusters provides an important validation check point for the Gaia distances. This has been a valuable lesson learnt from the famous Hipparcos Pleiades distance discrepancy problem. Current observations will allow hundreds of LMC/SMC clusters to be analyzed in this light. Today, the most common approach for star cluster main sequence fitting is still by eye. The process is intrinsically subjective and affected by large uncertainties, especially when applied to poorly populated clusters. It is also, clearly, not an efficient route for addressing the analysis of hundreds, or thousands, of star clusters. These concerns, together with a new attitude towards advanced statistical techniques in astronomy and the availability of powerful computers, have led to the emergence of software packages designed for analyzing star cluster photometry. With a few rare exceptions, those packages are not publicly available. Here we present OCAAT (Open Cluster Automated Analysis Tool), a suite of publicly available open source tools that fully automatises cluster isochrone fitting. The code will be applied to a large set of hundreds of open clusters observed in the Washington system, located in the Milky Way and the Magellanic Clouds. This will allow us to generate an objective and homogeneous catalog of distances up to ~ 60 kpc along with its associated reddening, ages and metallicities and uncertainty estimates.

  14. Bayesian Analysis of Two Stellar Populations in Galactic Globular Clusters. II. NGC 5024, NGC 5272, and NGC 6352

    Science.gov (United States)

    Wagner-Kaiser, R.; Stenning, D. C.; Robinson, E.; von Hippel, T.; Sarajedini, A.; van Dyk, D. A.; Stein, N.; Jefferys, W. H.

    2016-07-01

    We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival Advanced Camera for Surveys Treasury observations of Galactic Globular Clusters to find and characterize two stellar populations in NGC 5024 (M53), NGC 5272 (M3), and NGC 6352. For these three clusters, both single and double-population analyses are used to determine a best fit isochrone(s). We employ a sophisticated Bayesian analysis technique to simultaneously fit the cluster parameters (age, distance, absorption, and metallicity) that characterize each cluster. For the two-population analysis, unique population level helium values are also fit to each distinct population of the cluster and the relative proportions of the populations are determined. We find differences in helium ranging from ∼0.05 to 0.11 for these three clusters. Model grids with solar α-element abundances ([α/Fe] = 0.0) and enhanced α-elements ([α/Fe] = 0.4) are adopted.

  15. Bayesian Analysis of Two Stellar Populations in Galactic Globular Clusters. II. NGC 5024, NGC 5272, and NGC 6352

    Science.gov (United States)

    Wagner-Kaiser, R.; Stenning, D. C.; Robinson, E.; von Hippel, T.; Sarajedini, A.; van Dyk, D. A.; Stein, N.; Jefferys, W. H.

    2016-07-01

    We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival Advanced Camera for Surveys Treasury observations of Galactic Globular Clusters to find and characterize two stellar populations in NGC 5024 (M53), NGC 5272 (M3), and NGC 6352. For these three clusters, both single and double-population analyses are used to determine a best fit isochrone(s). We employ a sophisticated Bayesian analysis technique to simultaneously fit the cluster parameters (age, distance, absorption, and metallicity) that characterize each cluster. For the two-population analysis, unique population level helium values are also fit to each distinct population of the cluster and the relative proportions of the populations are determined. We find differences in helium ranging from ˜0.05 to 0.11 for these three clusters. Model grids with solar α-element abundances ([α/Fe] = 0.0) and enhanced α-elements ([α/Fe] = 0.4) are adopted.

  16. Logistics Enterprise Evaluation Model Based On Fuzzy Clustering Analysis

    Science.gov (United States)

    Fu, Pei-hua; Yin, Hong-bo

    In this thesis, we introduced an evaluation model based on fuzzy cluster algorithm of logistics enterprises. First of all,we present the evaluation index system which contains basic information, management level, technical strength, transport capacity,informatization level, market competition and customer service. We decided the index weight according to the grades, and evaluated integrate ability of the logistics enterprises using fuzzy cluster analysis method. In this thesis, we introduced the system evaluation module and cluster analysis module in detail and described how we achieved these two modules. At last, we gave the result of the system.

  17. Advancing Water and Water-Energy-Food Cluster Activities within Future Earth

    Science.gov (United States)

    Lawford, R. G.; Bhaduri, A.; Pahl-Wostl, C.

    2014-12-01

    In building its emerging program, Future Earth has encouraged former Earth System Science Partnership (ESSP) projects to redefine their objectives, priorities and problem approaches so they are aligned with those of Future Earth. These new projects will be characterized by more integrated applications of natural and social sciences as well as dialogue and science integrated across disciplinary boundaries to address a wide range of environmental and social issues. The Global Water System Project (GWSP) has had a heritage of integrating natural and social sciences, and recently started to also look at issues within the Water-Energy-Food (WEF) cluster using similar integrated approaches. As part of the growth of the scientific elements of this cluster, GWSP has approached Future Earth opportunities by addressing the sustainability for Water, Energy, and Food through integrated water information and improved governance.In this presentation the approaches being considered for promoting integration in both water and the WEF cluster will be discussed. In particular, potential contributions of Future Earth to research related to the use and management of water and to issues and science underpinning the W-E-F nexus deliberations will be identified. In both cases the increasing ability to utilize Earth observations and big data will advance this research agenda. In addition, the better understanding of the implications of governance structures in addressing these issues and the options for harmonizing the use of scientific knowledge and technological advances will be explored. For example, insights gained from water management studies undertaken within the GWSP are helping to focus plans for a "sustainable water futures" project and a WEF cluster within Future Earth. The potential role of the Sustainable Development Goals in bringing together the monitoring and science capabilities, and understanding of governance approaches, will be discussed as a framework for facilitating

  18. Cancer incidence in men: a cluster analysis of spatial patterns

    Directory of Open Access Journals (Sweden)

    D'Alò Daniela

    2008-11-01

    Full Text Available Abstract Background Spatial clustering of different diseases has received much less attention than single disease mapping. Besides chance or artifact, clustering of different cancers in a given area may depend on exposure to a shared risk factor or to multiple correlated factors (e.g. cigarette smoking and obesity in a deprived area. Models developed so far to investigate co-occurrence of diseases are not well-suited for analyzing many cancers simultaneously. In this paper we propose a simple two-step exploratory method for screening clusters of different cancers in a population. Methods Cancer incidence data were derived from the regional cancer registry of Umbria, Italy. A cluster analysis was performed on smoothed and non-smoothed standardized incidence ratios (SIRs of the 13 most frequent cancers in males. The Besag, York and Mollie model (BYM and Poisson kriging were used to produce smoothed SIRs. Results Cluster analysis on non-smoothed SIRs was poorly informative in terms of clustering of different cancers, as only larynx and oral cavity were grouped, and of characteristic patterns of cancer incidence in specific geographical areas. On the other hand BYM and Poisson kriging gave similar results, showing cancers of the oral cavity, larynx, esophagus, stomach and liver formed a main cluster. Lung and urinary bladder cancers clustered together but not with the cancers mentioned above. Both methods, particularly the BYM model, identified distinct geographic clusters of adjacent areas. Conclusion As in single disease mapping, non-smoothed SIRs do not provide reliable estimates of cancer risks because of small area variability. The BYM model produces smooth risk surfaces which, when entered into a cluster analysis, identify well-defined geographical clusters of adjacent areas. It probably enhances or amplifies the signal arising from exposure of more areas (statistical units to shared risk factors that are associated with different cancers. In

  19. Analysis and comparison of very large metagenomes with fast clustering and functional annotation

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2009-10-01

    Full Text Available Abstract Background The remarkable advance of metagenomics presents significant new challenges in data analysis. Metagenomic datasets (metagenomes are large collections of sequencing reads from anonymous species within particular environments. Computational analyses for very large metagenomes are extremely time-consuming, and there are often many novel sequences in these metagenomes that are not fully utilized. The number of available metagenomes is rapidly increasing, so fast and efficient metagenome comparison methods are in great demand. Results The new metagenomic data analysis method Rapid Analysis of Multiple Metagenomes with a Clustering and Annotation Pipeline (RAMMCAP was developed using an ultra-fast sequence clustering algorithm, fast protein family annotation tools, and a novel statistical metagenome comparison method that employs a unique graphic interface. RAMMCAP processes extremely large datasets with only moderate computational effort. It identifies raw read clusters and protein clusters that may include novel gene families, and compares metagenomes using clusters or functional annotations calculated by RAMMCAP. In this study, RAMMCAP was applied to the two largest available metagenomic collections, the "Global Ocean Sampling" and the "Metagenomic Profiling of Nine Biomes". Conclusion RAMMCAP is a very fast method that can cluster and annotate one million metagenomic reads in only hundreds of CPU hours. It is available from http://tools.camera.calit2.net/camera/rammcap/.

  20. Cluster analysis for anomaly detection in accounting data : an audit approach

    OpenAIRE

    Thiprungsri, Sutapat; Vasarhelyi, Miklos A.

    2011-01-01

    This study examines the application of cluster analysis in the accounting domain, particularly discrepancy detection in audit. Cluster analysis groups data so that points within a single group or cluster are similar to one another and distinct from points in other clusters. Clustering has been shown to be a good candidate for anomaly detection. The purpose of this study is to examine the use of clustering technology to automate fraud filtering during an audit. We use cluster analysis to help ...

  1. Advances in digital terrain analysis

    CERN Document Server

    Zhou, Qiming; Tang, Guo-An

    2008-01-01

    Terrain analysis has been an active study field for years and attracted research studies from geographers, surveyors, engineers and computer scientists. With the rapid growth of Geographical Information System (GIS) technology, particularly the establishment of high resolution Digital Elevation Models (DEM) at national level, the challenge is now focused on delivering justifiable socio-economical and environmental benefits. The contributions in this book represent the state-of-the-art of terrain analysis methods and techniques in areas of digital representation, morphological and hydrological models, uncertainty and applications of terrain analysis.

  2. Advances in social media analysis

    CERN Document Server

    Cocea, Mihaela; Wiratunga, Nirmalie; Goker, Ayse

    2015-01-01

    This volume presents a collection of carefully selected contributions in the area of social media analysis. Each chapter opens up a number of research directions that have the potential to be taken on further in this rapidly growing area of research. The chapters are diverse enough to serve a number of directions of research with Sentiment Analysis as the dominant topic in the book. The authors have provided a broad range of research achievements from multimodal sentiment identification to emotion detection in a Chinese microblogging website. The book will be useful to research students, academics and practitioners in the area of social media analysis.  .

  3. Using cluster analysis to organize and explore regional GPS velocities

    Science.gov (United States)

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  4. Cluster Analysis of Gene Expression Data

    CERN Document Server

    Domany, E

    2002-01-01

    The expression levels of many thousands of genes can be measured simultaneously by DNA microarrays (chips). This novel experimental tool has revolutionized research in molecular biology and generated considerable excitement. A typical experiment uses a few tens of such chips, each dedicated to a single sample - such as tissue extracted from a particular tumor. The results of such an experiment contain several hundred thousand numbers, that come in the form of a table, of several thousand rows (one for each gene) and 50 - 100 columns (one for each sample). We developed a clustering methodology to mine such data. In this review I provide a very basic introduction to the subject, aimed at a physics audience with no prior knowledge of either gene expression or clustering methods. I explain what genes are, what is gene expression and how it is measured by DNA chips. Next I explain what is meant by "clustering" and how we analyze the massive amounts of data from such experiments, and present results obtained from a...

  5. Statistical fractal analysis of 25 young star clusters

    CERN Document Server

    Gregorio-Hetem, J; Santos-Silva, T; Fernandes, B

    2015-01-01

    A large sample of young stellar groups is analysed aiming to investigate their clustering properties and dynamical evolution. A comparison of the Q statistical parameter, measured for the clusters, with the fractal dimension estimated for the projected clouds shows that 52% of the sample has substructures and tends to follow the theoretically expected relation between clusters and clouds, according to calculations for artificial distribution of points. The fractal statistics was also compared to structural parameters revealing that clusters having radial density profile show a trend of parameter s increasing with mean surface stellar density. The core radius of the sample, as a function of age, follows a distribution similar to that observed in stellar groups of Milky Way and other galaxies. They also have dynamical age, indicated by their crossing time that is similar to unbound associations. The statistical analysis allowed us to separate the sample into two groups showing different clustering characteristi...

  6. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  7. Advanced analysis methods in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  8. Advanced Calculus An Introduction to Linear Analysis

    CERN Document Server

    Richardson, Leonard F

    2008-01-01

    Features an introduction to advanced calculus and highlights its inherent concepts from linear algebra. Advanced Calculus reflects the unifying role of linear algebra in an effort to smooth readers' transition to advanced mathematics. The book fosters the development of complete theorem-proving skills through abundant exercises while also promoting a sound approach to the study. The traditional theorems of elementary differential and integral calculus are rigorously established, presenting the foundations of calculus in a way that reorients thinking toward modern analysis. Following an introdu

  9. Advanced calculus a transition to analysis

    CERN Document Server

    Dence, Thomas P

    2010-01-01

    Designed for a one-semester advanced calculus course, Advanced Calculus explores the theory of calculus and highlights the connections between calculus and real analysis -- providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. Ancillary list: * Companion website, Ebook- http://www.elsevierdirect.com/product.jsp?isbn=9780123749550 * Student Solutions Manual- To come * Instructor

  10. Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer.

    Science.gov (United States)

    Mu, Zhaomei; Wang, Chun; Ye, Zhong; Austin, Laura; Civan, Jesse; Hyslop, Terry; Palazzo, Juan P; Jaslow, Rebecca; Li, Bingshan; Myers, Ronald E; Jiang, Juntao; Xing, Jinliang; Yang, Hushan; Cristofanilli, Massimo

    2015-12-01

    The enumeration of circulating tumor cells (CTCs) provides important prognostic values in patients with metastatic breast cancer. Recent studies indicate that individual CTCs form clusters and these CTC-clusters play an important role in tumor metastasis. We aimed to assess whether quantification of CTC-clusters provides additional prognostic value over quantification of individual CTCs alone. In 115 prospectively enrolled advanced-stage (III and IV) breast cancer patients, CTCs and CTC-clusters were counted in 7.5 ml whole blood using the CellSearch system at baseline before first-line therapy. The individual and joint effects of CTC and CTC cluster counts on patients' progression-free survival (PFS) were analyzed using Cox proportional hazards modeling. Of the 115 patients, 36 (31.3 %) had elevated baseline CTCs (≥5 CTCs/7.5 ml) and 20 (17.4 %) had CTC-clusters (≥2 CTCs/7.5 ml). Patients with elevated CTCs and CTC-clusters both had worse PFS with a hazard ratio (HR) of 2.76 [95 % confidence interval (CI) 1.57-4.86, P log-rank = 0.0005] and 2.83 (1.48-5.39, P log-rank = 0.001), respectively. In joint analysis, compared with patients with IBC), the most aggressive form of breast cancer with the poorest survival. Baseline counts of both individual CTCs and CTC-clusters were associated with PFS in advanced-stage breast cancer patients. CTC-clusters might provide additional prognostic value compared with CTC enumeration alone, in patients with elevated CTCs. PMID:26573830

  11. Cluster analysis of WIBS single particle bioaerosol data

    Directory of Open Access Journals (Sweden)

    N. H. Robinson

    2012-09-01

    Full Text Available Hierarchical agglomerative cluster analysis was performed on single-particle multi-spatial datasets comprising optical diameter, asymmetry and three different fluorescence measurements, gathered using two dual Waveband Integrated Bioaerosol Sensor (WIBS. The technique is demonstrated on measurements of various fluorescent and non-fluorescent polystyrene latex spheres (PSL before being applied to two separate contemporaneous ambient WIBS datasets recorded in a forest site in Colorado, USA as part of the BEACHON-RoMBAS project. Cluster analysis results between both datasets are consistent. Clusters are tentatively interpreted by comparison of concentration time series and cluster average measurement values to the published literature (of which there is a paucity to represent: non-fluorescent accumulation mode aerosol; bacterial agglomerates; and fungal spores. To our knowledge, this is the first time cluster analysis has been applied to long term online PBAP measurements. The novel application of this clustering technique provides a means for routinely reducing WIBS data to discrete concentration time series which are more easily interpretable, without the need for any a priori assumptions concerning the expected aerosol types. It can reduce the level of subjectivity compared to the more standard analysis approaches, which are typically performed by simple inspection of various ensemble data products. It also has the advantage of potentially resolving less populous or subtly different particle types. This technique is likely to become more robust in the future as fluorescence-based aerosol instrumentation measurement precision, dynamic range and the number of available metrics is improved.

  12. Cluster analysis of clinical data identifies fibromyalgia subgroups.

    Directory of Open Access Journals (Sweden)

    Elisa Docampo

    Full Text Available INTRODUCTION: Fibromyalgia (FM is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. MATERIAL AND METHODS: 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. RESULTS: VARIABLES CLUSTERED INTO THREE INDEPENDENT DIMENSIONS: "symptomatology", "comorbidities" and "clinical scales". Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1, high symptomatology and comorbidities (Cluster 2, and high symptomatology but low comorbidities (Cluster 3, showing differences in measures of disease severity. CONCLUSIONS: We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment.

  13. Cluster analysis of Southeastern U.S. climate stations

    Science.gov (United States)

    Stooksbury, D. E.; Michaels, P. J.

    1991-09-01

    A two-step cluster analysis of 449 Southeastern climate stations is used to objectively determine general climate clusters (groups of climate stations) for eight southeastern states. The purpose is objectively to define regions of climatic homogeneity that should perform more robustly in subsequent climatic impact models. This type of analysis has been successfully used in many related climate research problems including the determination of corn/climate districts in Iowa (Ortiz-Valdez, 1985) and the classification of synoptic climate types (Davis, 1988). These general climate clusters may be more appropriate for climate research than the standard climate divisions (CD) groupings of climate stations, which are modifications of the agro-economic United States Department of Agriculture crop reporting districts. Unlike the CD's, these objectively determined climate clusters are not restricted by state borders and thus have reduced multicollinearity which makes them more appropriate for the study of the impact of climate and climatic change.

  14. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    CERN Document Server

    Chandrasekhar, T; Elayaraja, E

    2011-01-01

    Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clus...

  15. Variable cluster analysis method for building neural network model

    Institute of Scientific and Technical Information of China (English)

    王海东; 刘元东

    2004-01-01

    To address the problems that input variables should be reduced as much as possible and explain output variables fully in building neural network model of complicated system, a variable selection method based on cluster analysis was investigated. Similarity coefficient which describes the mutual relation of variables was defined. The methods of the highest contribution rate, part replacing whole and variable replacement are put forwarded and deduced by information theory. The software of the neural network based on cluster analysis, which can provide many kinds of methods for defining variable similarity coefficient, clustering system variable and evaluating variable cluster, was developed and applied to build neural network forecast model of cement clinker quality. The results show that all the network scale, training time and prediction accuracy are perfect. The practical application demonstrates that the method of selecting variables for neural network is feasible and effective.

  16. Development of advanced PWR system analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Y. D.; Kim, S. O.; Jung, B. D.; Kim, Y. I.; Chang, M. H.; Lee, Y. J.; Yun, J. H.

    1997-12-31

    The scope of this project is to establish the basic analysis technologies for the advanced designed with the passive and inherent safety concepts. The scope is extended to the application of these technologies to the performance and safety analysis of the passive reactor. Since the different design concepts are applied depending on the reactor power, the study is conducted for the small and medium sized integral reactor as well as the large scale passive reactors by focusing on the analysis technology development for the passive components. The design concepts which can be applied for the safety enhancement of the domestic advanced reactor are developed through evaluating the technical information of the overseas advanced reactor concepts.

  17. Spatial Data Mining using Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Ch.N.Santhosh Kumar

    2012-09-01

    Full Text Available Data mining, which is refers to as Knowledge Discovery in Databases(KDD, means a process of nontrivialexaction of implicit, previously useful and unknown information such as knowledge rules, descriptions,regularities, and major trends from large databases. Data mining is evolved in a multidisciplinary field ,including database technology, machine learning, artificial intelligence, neural network, informationretrieval, and so on. In principle data mining should be applicable to the different kind of data and databasesused in many different applications, including relational databases, transactional databases, datawarehouses, object- oriented databases, and special application- oriented databases such as spatialdatabases, temporal databases, multimedia databases, and time- series databases. Spatial data mining, alsocalled spatial mining, is data mining as applied to the spatial data or spatial databases. Spatial data are thedata that have spatial or location component, and they show the information, which is more complex thanclassical data. A spatial database stores spatial data represents by spatial data types and spatialrelationships and among data. Spatial data mining encompasses various tasks. These include spatialclassification, spatial association rule mining, spatial clustering, characteristic rules, discriminant rules,trend detection. This paper presents how spatial data mining is achieved using clustering.

  18. Lecture notes for Advanced Time Series Analysis

    DEFF Research Database (Denmark)

    Madsen, Henrik; Holst, Jan

    1997-01-01

    A first version of this notes was used at the lectures in Grenoble, and they are now extended and improved (together with Jan Holst), and used in Ph.D. courses on Advanced Time Series Analysis at IMM and at the Department of Mathematical Statistics, University of Lund, 1994, 1997, ......A first version of this notes was used at the lectures in Grenoble, and they are now extended and improved (together with Jan Holst), and used in Ph.D. courses on Advanced Time Series Analysis at IMM and at the Department of Mathematical Statistics, University of Lund, 1994, 1997, ...

  19. Fuzzy clustering analysis to study geomagnetic coastal effects

    Directory of Open Access Journals (Sweden)

    M. Sridharan

    2005-06-01

    Full Text Available The utility of fuzzy set theory in cluster analysis and pattern recognition has been evolving since the mid 1960s, in conjunction with the emergence and evolution of computer technology. The classification of objects into categories is the subject of cluster analysis. The aim of this paper is to employ Fuzzy-clustering technique to examine the interrelationship of geomagnetic coastal and other effects at Indian observatories. Data from the observatories used for the present studies are from Alibag on the West Coast, Visakhapatnam and Pondicherry on the East Coast, Hyderabad and Nagpur as central inland stations which are located far from either of the coasts; all the above stations are free from the influence of the daytime equatorial electrojet. It has been found that Alibag and Pondicherry Observatories form a separate cluster showing anomalous variations in the vertical (Z-component. H- and D-components form different clusters. The results are compared with the graphical method. Analytical technique and the results of Fuzzy-clustering analysis are discussed here.

  20. Application of Subspace Clustering in DNA Sequence Analysis.

    Science.gov (United States)

    Wallace, Tim; Sekmen, Ali; Wang, Xiaofei

    2015-10-01

    Identification and clustering of orthologous genes plays an important role in developing evolutionary models such as validating convergent and divergent phylogeny and predicting functional proteins in newly sequenced species of unverified nucleotide protein mappings. Here, we introduce an application of subspace clustering as applied to orthologous gene sequences and discuss the initial results. The working hypothesis is based upon the concept that genetic changes between nucleotide sequences coding for proteins among selected species and groups may lie within a union of subspaces for clusters of the orthologous groups. Estimates for the subspace dimensions were computed for a small population sample. A series of experiments was performed to cluster randomly selected sequences. The experimental design allows for both false positives and false negatives, and estimates for the statistical significance are provided. The clustering results are consistent with the main hypothesis. A simple random mutation binary tree model is used to simulate speciation events that show the interdependence of the subspace rank versus time and mutation rates. The simple mutation model is found to be largely consistent with the observed subspace clustering singular value results. Our study indicates that the subspace clustering method may be applied in orthology analysis. PMID:26162018

  1. Cluster analysis of radionuclide concentrations in beach sand

    NARCIS (Netherlands)

    de Meijer, R.J.; James, I.; Jennings, P.J.; Keoyers, J.E.

    2001-01-01

    This paper presents a method in which natural radionuclide concentrations of beach sand minerals are traced along a stretch of coast by cluster analysis. This analysis yields two groups of mineral deposit with different origins. The method deviates from standard methods of following dispersal of rad

  2. Bayesian Analysis of Two Stellar Populations in Galactic Globular Clusters III: Analysis of 30 Clusters

    CERN Document Server

    Wagner-Kaiser, R; Sarajedini, A; von Hippel, T; van Dyk, D A; Robinson, E; Stein, N; Jefferys, W H

    2016-01-01

    We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of 30 Galactic Globular Clusters to characterize two distinct stellar populations. A sophisticated Bayesian technique is employed to simultaneously sample the joint posterior distribution of age, distance, and extinction for each cluster, as well as unique helium values for two populations within each cluster and the relative proportion of those populations. We find the helium differences among the two populations in the clusters fall in the range of ~0.04 to 0.11. Because adequate models varying in CNO are not presently available, we view these spreads as upper limits and present them with statistical rather than observational uncertainties. Evidence supports previous studies suggesting an increase in helium content concurrent with increasing mass of the cluster and also find that the proportion of the first population of stars increases with mass as well. Our results are examined in the context of proposed g...

  3. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    Directory of Open Access Journals (Sweden)

    T. Chandrasekhar

    2011-11-01

    Full Text Available Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clusters with perform well in terms of the Silhouette Coefficients cluster measure.

  4. Clustering and Feature Selection using Sparse Principal Component Analysis

    CERN Document Server

    Luss, Ronny

    2007-01-01

    In this paper, we use sparse principal component analysis (PCA) to solve clustering and feature selection problems. Sparse PCA seeks sparse factors, or linear combinations of the data variables, explaining a maximum amount of variance in the data while having only a limited number of nonzero coefficients. PCA is often used as a simple clustering technique and sparse factors allow us here to interpret the clusters in terms of a reduced set of variables. We begin with a brief introduction and motivation on sparse PCA and detail our implementation of the algorithm in d'Aspremont et al. (2005). We finish by describing the application of sparse PCA to clustering and by a brief description of DSPCA, the numerical package used in these experiments.

  5. Cognitive analysis of multiple sclerosis utilizing fuzzy cluster means

    Directory of Open Access Journals (Sweden)

    Imianvan Anthony Agboizebeta

    2012-01-01

    Full Text Available Multiple sclerosis, often called MS, is a disease that affects the central nervous system (the brain and spinal cord. Myelin provides insulation for nerve cells improves the conduction of impulses along the nerves and is important for maintaining the health of the nerves. In multiple sclerosis, inflammation causes the myelin to disappear. Genetic factors, environmental issues and viral infection may also play a role in developing the disease. Ms is characterized by life threatening symptoms such as; loss of balance, hearing problem and depression. The application of Fuzzy Cluster Means (FCM or Fuzzy CMean analysis to the diagnosis of different forms of multiple sclerosis is the focal point of this paper. Application of cluster analysis involves a sequence of methodological and analytical decision steps that enhances the quality and meaning of the clusters produced. Uncertainties associated with analysis of multiple sclerosis test data are eliminated by the system

  6. Advancing Family Business Research Through Narrative Analysis

    DEFF Research Database (Denmark)

    Dawson, Alexandra; Hjorth, Daniel

    2012-01-01

    Despite advances in family business research, the field would benefit from greater methodological rigor. However, rigor does not mean convergence of methodologies. In this article, the authors adopt a novel approach, based on narrative analysis, to address the succession process in a family...... business. This interpretive perspective is appropriate for family business studies, which address multifaceted and complex social constructs that are performed by different actors in multiple contexts. The analysis highlights five key themes centering on leadership style and succession, trust...

  7. NATO Advanced Study Institute on Advances in Microlocal Analysis

    CERN Document Server

    1986-01-01

    The 1985 Castel vecchio-Pas coli NATO Advanced Study Institute is aimed to complete the trilogy with the two former institutes I organized : "Boundary Value Problem for Evolution Partial Differential Operators", Liege, 1976 and "Singularities in Boundary Value Problems", Maratea, 1980. It was indeed necessary to record the considerable progress realized in the field of the propagation of singularities of Schwartz Distri­ butions which led recently to the birth of a new branch of Mathema­ tical Analysis called Microlocal Analysis. Most of this theory was mainly built to be applied to distribution solutions of linear partial differential problems. A large part of this institute still went in this direction. But, on the other hand, it was also time to explore the new trend to use microlocal analysis In non linear differential problems. I hope that the Castelvecchio NATO ASI reached its purposes with the help of the more famous authorities in the field. The meeting was held in Tuscany (Italy) at Castelvecchio-P...

  8. Traffic Accident, System Model and Cluster Analysis in GIS

    Directory of Open Access Journals (Sweden)

    Veronika Vlčková

    2015-07-01

    Full Text Available One of the many often frequented topics as normal journalism, so the professional public, is the problem of traffic accidents. This article illustrates the orientation of considerations to a less known context of accidents, with the help of constructive systems theory and its methods, cluster analysis and geoinformation engineering. Traffic accident is reframing the space-time, and therefore it can be to study with tools of technology of geographic information systems. The application of system approach enabling the formulation of the system model, grabbed by tools of geoinformation engineering and multicriterial and cluster analysis.

  9. Advanced Interval Management: A Benefit Analysis

    Science.gov (United States)

    Timer, Sebastian; Peters, Mark

    2016-01-01

    This document is the final report for the NASA Langley Research Center (LaRC)- sponsored task order 'Possible Benefits for Advanced Interval Management Operations.' Under this research project, Architecture Technology Corporation performed an analysis to determine the maximum potential benefit to be gained if specific Advanced Interval Management (AIM) operations were implemented in the National Airspace System (NAS). The motivation for this research is to guide NASA decision-making on which Interval Management (IM) applications offer the most potential benefit and warrant further research.

  10. Examination of European Union economic cohesion: A cluster analysis approach

    Directory of Open Access Journals (Sweden)

    Jiri Mazurek

    2014-01-01

    Full Text Available In the past years majority of EU members experienced the highest economic decline in their modern history, but impacts of the global financial crisis were not distributed homogeneously across the continent. The aim of the paper is to examine a cohesion of European Union (plus Norway and Iceland in terms of an economic development of its members from the 1st of January 2008 to the 31st of December 2012. For the study five economic indicators were selected: GDP growth, unemployment, inflation, labour productivity and government debt. Annual data from Eurostat databases were averaged over the whole period and then used as an input for a cluster analysis. It was found that EU countries were divided into six different clusters. The most populated cluster with 14 countries covered Central and West Europe and reflected relative homogeneity of this part of Europe. Countries of Southern Europe (Greece, Portugal and Spain shared their own cluster of the most affected countries by the recent crisis as well as the Baltics and the Balkans states in another cluster. On the other hand Slovakia and Poland, only two countries that escaped a recession, were classified in their own cluster of the most successful countries

  11. Advanced Excel for scientific data analysis

    CERN Document Server

    De Levie, Robert

    2004-01-01

    Excel is by far the most widely distributed data analysis software but few users are aware of its full powers. Advanced Excel For Scientific Data Analysis takes off from where most books dealing with scientific applications of Excel end. It focuses on three areas-least squares, Fourier transformation, and digital simulation-and illustrates these with extensive examples, often taken from the literature. It also includes and describes a number of sample macros and functions to facilitate common data analysis tasks. These macros and functions are provided in uncompiled, computer-readable, easily

  12. Recent Advances in Morphological Cell Image Analysis

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed.

  13. A Cluster Analysis of Personality Style in Adults with ADHD

    Science.gov (United States)

    Robin, Arthur L.; Tzelepis, Angela; Bedway, Marquita

    2008-01-01

    Objective: The purpose of this study was to use hierarchical linear cluster analysis to examine the normative personality styles of adults with ADHD. Method: A total of 311 adults with ADHD completed the Millon Index of Personality Styles, which consists of 24 scales assessing motivating aims, cognitive modes, and interpersonal behaviors. Results:…

  14. Frailty phenotypes in the elderly based on cluster analysis

    DEFF Research Database (Denmark)

    Dato, Serena; Montesanto, Alberto; Lagani, Vincenzo;

    2012-01-01

    genetic background on the frailty status is still questioned. We investigated the applicability of a cluster analysis approach based on specific geriatric parameters, previously set up and validated in a southern Italian population, to two large longitudinal Danish samples. In both cohorts, we identified...

  15. K-means cluster analysis and seismicity partitioning for Pakistan

    Science.gov (United States)

    Rehman, Khaista; Burton, Paul W.; Weatherill, Graeme A.

    2014-07-01

    Pakistan and the western Himalaya is a region of high seismic activity located at the triple junction between the Arabian, Eurasian and Indian plates. Four devastating earthquakes have resulted in significant numbers of fatalities in Pakistan and the surrounding region in the past century (Quetta, 1935; Makran, 1945; Pattan, 1974 and the recent 2005 Kashmir earthquake). It is therefore necessary to develop an understanding of the spatial distribution of seismicity and the potential seismogenic sources across the region. This forms an important basis for the calculation of seismic hazard; a crucial input in seismic design codes needed to begin to effectively mitigate the high earthquake risk in Pakistan. The development of seismogenic source zones for seismic hazard analysis is driven by both geological and seismotectonic inputs. Despite the many developments in seismic hazard in recent decades, the manner in which seismotectonic information feeds the definition of the seismic source can, in many parts of the world including Pakistan and the surrounding regions, remain a subjective process driven primarily by expert judgment. Whilst much research is ongoing to map and characterise active faults in Pakistan, knowledge of the seismogenic properties of the active faults is still incomplete in much of the region. Consequently, seismicity, both historical and instrumental, remains a primary guide to the seismogenic sources of Pakistan. This study utilises a cluster analysis approach for the purposes of identifying spatial differences in seismicity, which can be utilised to form a basis for delineating seismogenic source regions. An effort is made to examine seismicity partitioning for Pakistan with respect to earthquake database, seismic cluster analysis and seismic partitions in a seismic hazard context. A magnitude homogenous earthquake catalogue has been compiled using various available earthquake data. The earthquake catalogue covers a time span from 1930 to 2007 and

  16. Cluster analysis of movement patterns in multiarticular actions: a tutorial.

    Science.gov (United States)

    Rein, Robert; Button, Chris; Davids, Keith; Summers, Jeffery

    2010-04-01

    The present paper proposes a technical analysis method for extracting information about movement patterning in studies of motor control, based on a cluster analysis of movement kinematics. In a tutorial fashion, data from three different experiments are presented to exemplify and validate the technical method. When applied to three different basketball-shooting techniques, the method clearly distinguished between the different patterns. When applied to a cyclical wrist supination-pronation task, the cluster analysis provided the same results as an analysis using the conventional discrete relative phase measure. Finally, when analyzing throwing performance constrained by distance to target, the method grouped movement patterns together according to throwing distance. In conclusion, the proposed technical method provides a valuable tool to improve understanding of coordination and control in different movement models, including multiarticular actions. PMID:20484771

  17. Cognitive analysis of multiple sclerosis utilizing fuzzy cluster means

    Directory of Open Access Journals (Sweden)

    Imianvan Anthony Agboizebeta

    2012-02-01

    Full Text Available Multiple sclerosis, often called MS, is a disease that affects the central nervous system (the brain andspinal cord. Myelin provides insulation for nerve cells improves the conduction of impulses along thenerves and is important for maintaining the health of the nerves. In multiple sclerosis, inflammationcauses the myelin to disappear. Genetic factors, environmental issues and viral infection may alsoplay a role in developing the disease. Ms is characterized by life threatening symptoms such as; loss ofbalance, hearing problem and depression. The application of Fuzzy Cluster Means (FCM or Fuzzy CMeananalysis to the diagnosis of different forms of multiple sclerosis is the focal point of this paper.Application of cluster analysis involves a sequence of methodological and analytical decision stepsthat enhances the quality and meaning of the clusters produced. Uncertainties associated withanalysis of multiple sclerosis test data are eliminated by the system

  18. Advanced Fuel Cycle Economic Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  19. Advances in statistical models for data analysis

    CERN Document Server

    Minerva, Tommaso; Vichi, Maurizio

    2015-01-01

    This edited volume focuses on recent research results in classification, multivariate statistics and machine learning and highlights advances in statistical models for data analysis. The volume provides both methodological developments and contributions to a wide range of application areas such as economics, marketing, education, social sciences and environment. The papers in this volume were first presented at the 9th biannual meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in September 2013 at the University of Modena and Reggio Emilia, Italy.

  20. System Level Analysis of LTE-Advanced

    DEFF Research Database (Denmark)

    Wang, Yuanye

    This PhD thesis focuses on system level analysis of Multi-Component Carrier (CC) management for Long Term Evolution (LTE)-Advanced. Cases where multiple CCs are aggregated to form a larger bandwidth are studied. The analysis is performed for both local area and wide area networks. In local area......, Time Division Duplexing (TDD) is chosen as the duplexing mode in this study. The performance with different network time synchronization levels is compared, and it is observed that achieving time synchronization significantly improves the uplink performance without penalizing much of the downlink...

  1. Cosmological analysis of galaxy clusters surveys in X-rays

    International Nuclear Information System (INIS)

    Clusters of galaxies are the most massive objects in equilibrium in our Universe. Their study allows to test cosmological scenarios of structure formation with precision, bringing constraints complementary to those stemming from the cosmological background radiation, supernovae or galaxies. They are identified through the X-ray emission of their heated gas, thus facilitating their mapping at different epochs of the Universe. This report presents two surveys of galaxy clusters detected in X-rays and puts forward a method for their cosmological interpretation. Thanks to its multi-wavelength coverage extending over 10 sq. deg. and after one decade of expertise, the XMM-LSS allows a systematic census of clusters in a large volume of the Universe. In the framework of this survey, the first part of this report describes the techniques developed to the purpose of characterizing the detected objects. A particular emphasis is placed on the most distant ones (z ≥ 1) through the complementarity of observations in X-ray, optical and infrared bands. Then the X-CLASS survey is fully described. Based on XMM archival data, it provides a new catalogue of 800 clusters detected in X-rays. A cosmological analysis of this survey is performed thanks to 'CR-HR' diagrams. This new method self-consistently includes selection effects and scaling relations and provides a means to bypass the computation of individual cluster masses. Propositions are made for applying this method to future surveys as XMM-XXL and eRosita. (author)

  2. An Optical Analysis of the Merging Cluster Abell 3888

    CERN Document Server

    Shakouri, S; Dehghan, S

    2016-01-01

    In this paper we present new AAOmega spectroscopy of 254 galaxies within a 30' radius around Abell 3888. We combine these data with the existing redshifts measured in a one degree radius around the cluster and performed a substructure analysis. We confirm 71 member galaxies within the core of A3888 and determine a new average redshift and velocity dispersion for the cluster of 0.1535 +\\- 0.0009 and 1181 +\\- 197 km/s, respectively. The cluster is elongated along an East-West axis and we find the core is bimodal along this axis with two sub-groups of 26 and 41 members detected. Our results suggest that A3888 is a merging system putting to rest the previous conjecture about the morphological status of the cluster derived from X-ray observations. In addition to the results on A3888 we also present six newly detected galaxy over-densities in the field, three of which we classify as new galaxy clusters.

  3. DGA Clustering and Analysis: Mastering Modern, Evolving Threats, DGALab

    Directory of Open Access Journals (Sweden)

    Alexander Chailytko

    2016-05-01

    Full Text Available Domain Generation Algorithms (DGA is a basic building block used in almost all modern malware. Malware researchers have attempted to tackle the DGA problem with various tools and techniques, with varying degrees of success. We present a complex solution to populate DGA feed using reversed DGAs, third-party feeds, and a smart DGA extraction and clustering based on emulation of a large number of samples. Smart DGA extraction requires no reverse engineering and works regardless of the DGA type or initialization vector, while enabling a cluster-based analysis. Our method also automatically allows analysis of the whole malware family, specific campaign, etc. We present our system and demonstrate its abilities on more than 20 malware families. This includes showing connections between different campaigns, as well as comparing results. Most importantly, we discuss how to utilize the outcome of the analysis to create smarter protections against similar malware.

  4. Latent cluster analysis of ALS phenotypes identifies prognostically differing groups.

    Directory of Open Access Journals (Sweden)

    Jeban Ganesalingam

    Full Text Available BACKGROUND: Amyotrophic lateral sclerosis (ALS is a degenerative disease predominantly affecting motor neurons and manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased way to improve phenotyping for clinical and research purposes. METHODS: Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method. RESULTS: The best model generated five distinct phenotypic classes that strongly predicted survival (p<0.0001. Eight variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two variables: site of first symptoms (bulbar or limb and time from symptom onset to diagnosis (p<0.00001. CONCLUSION: The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and risk factor research.

  5. How frequently do clusters occur in hierarchical clustering analysis? A graph theoretical approach to studying ties in proximity

    OpenAIRE

    Leal, Wilmer; Llanos, Eugenio J.; RESTREPO Guillermo; Carlos F Suárez; Patarroyo, Manuel Elkin

    2016-01-01

    Background Hierarchical cluster analysis (HCA) is a widely used classificatory technique in many areas of scientific knowledge. Applications usually yield a dendrogram from an HCA run over a given data set, using a grouping algorithm and a similarity measure. However, even when such parameters are fixed, ties in proximity (i.e. two equidistant clusters from a third one) may produce several different dendrograms, having different possible clustering patterns (different classifications). This s...

  6. Advanced Power Plant Development and Analysis Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  7. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    Science.gov (United States)

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  8. Full text clustering and relationship network analysis of biomedical publications.

    Directory of Open Access Journals (Sweden)

    Renchu Guan

    Full Text Available Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  9. Kinematic gait patterns in healthy runners: A hierarchical cluster analysis.

    Science.gov (United States)

    Phinyomark, Angkoon; Osis, Sean; Hettinga, Blayne A; Ferber, Reed

    2015-11-01

    Previous studies have demonstrated distinct clusters of gait patterns in both healthy and pathological groups, suggesting that different movement strategies may be represented. However, these studies have used discrete time point variables and usually focused on only one specific joint and plane of motion. Therefore, the first purpose of this study was to determine if running gait patterns for healthy subjects could be classified into homogeneous subgroups using three-dimensional kinematic data from the ankle, knee, and hip joints. The second purpose was to identify differences in joint kinematics between these groups. The third purpose was to investigate the practical implications of clustering healthy subjects by comparing these kinematics with runners experiencing patellofemoral pain (PFP). A principal component analysis (PCA) was used to reduce the dimensionality of the entire gait waveform data and then a hierarchical cluster analysis (HCA) determined group sets of similar gait patterns and homogeneous clusters. The results show two distinct running gait patterns were found with the main between-group differences occurring in frontal and sagittal plane knee angles (Pgait strategies. These results suggest care must be taken when selecting samples of subjects in order to investigate the pathomechanics of injured runners.

  10. Going beyond clustering in MD trajectory analysis: an application to villin headpiece folding.

    Directory of Open Access Journals (Sweden)

    Aruna Rajan

    Full Text Available Recent advances in computing technology have enabled microsecond long all-atom molecular dynamics (MD simulations of biological systems. Methods that can distill the salient features of such large trajectories are now urgently needed. Conventional clustering methods used to analyze MD trajectories suffer from various setbacks, namely (i they are not data driven, (ii they are unstable to noise and changes in cut-off parameters such as cluster radius and cluster number, and (iii they do not reduce the dimensionality of the trajectories, and hence are unsuitable for finding collective coordinates. We advocate the application of principal component analysis (PCA and a non-metric multidimensional scaling (nMDS method to reduce MD trajectories and overcome the drawbacks of clustering. To illustrate the superiority of nMDS over other methods in reducing data and reproducing salient features, we analyze three complete villin headpiece folding trajectories. Our analysis suggests that the folding process of the villin headpiece is structurally heterogeneous.

  11. The Quantitative Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, Ethirajan

    2016-07-01

    Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

  12. The Quantitative Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, Ethirajan

    2016-05-01

    Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

  13. Bayesian Analysis of Multiple Populations in Galactic Globular Clusters

    Science.gov (United States)

    Wagner-Kaiser, Rachel A.; Sarajedini, Ata; von Hippel, Ted; Stenning, David; Piotto, Giampaolo; Milone, Antonino; van Dyk, David A.; Robinson, Elliot; Stein, Nathan

    2016-01-01

    We use GO 13297 Cycle 21 Hubble Space Telescope (HST) observations and archival GO 10775 Cycle 14 HST ACS Treasury observations of Galactic Globular Clusters to find and characterize multiple stellar populations. Determining how globular clusters are able to create and retain enriched material to produce several generations of stars is key to understanding how these objects formed and how they have affected the structural, kinematic, and chemical evolution of the Milky Way. We employ a sophisticated Bayesian technique with an adaptive MCMC algorithm to simultaneously fit the age, distance, absorption, and metallicity for each cluster. At the same time, we also fit unique helium values to two distinct populations of the cluster and determine the relative proportions of those populations. Our unique numerical approach allows objective and precise analysis of these complicated clusters, providing posterior distribution functions for each parameter of interest. We use these results to gain a better understanding of multiple populations in these clusters and their role in the history of the Milky Way.Support for this work was provided by NASA through grant numbers HST-GO-10775 and HST-GO-13297 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. This material is based upon work supported by the National Aeronautics and Space Administration under Grant NNX11AF34G issued through the Office of Space Science. This project was supported by the National Aeronautics & Space Administration through the University of Central Florida's NASA Florida Space Grant Consortium.

  14. Deep Advanced Camera for Surveys Imaging in the Globular Cluster NGC 6397: the Cluster Color-Magnitude Diagram and Luminosity Function

    Science.gov (United States)

    Richer, Harvey B.; Dotter, Aaron; Hurley, Jarrod; Anderson, Jay; King, Ivan; Davis, Saul; Fahlman, Gregory G.; Hansen, Brad M. S.; Kalirai, Jason; Paust, Nathaniel; Rich, R. Michael; Shara, Michael M.

    2008-06-01

    We present the color-magnitude diagram (CMD) from deep Hubble Space Telescope imaging in the globular cluster NGC 6397. The Advanced Camera for Surveys (ACS) was used for 126 orbits to image a single field in two colors (F814W, F606W) 5' SE of the cluster center. The field observed overlaps that of archival WFPC2 data from 1994 and 1997 which were used to proper motion (PM) clean the data. Applying the PM corrections produces a remarkably clean CMD which reveals a number of features never seen before in a globular cluster CMD. In our field, the main-sequence stars appeared to terminate close to the location in the CMD of the hydrogen-burning limit predicted by two independent sets of stellar evolution models. The faintest observed main-sequence stars are about a magnitude fainter than the least luminous metal-poor field halo stars known, suggesting that the lowest-luminosity halo stars still await discovery. At the bright end the data extend beyond the main-sequence turnoff to well up the giant branch. A populous white dwarf cooling sequence is also seen in the cluster CMD. The most dramatic features of the cooling sequence are its turn to the blue at faint magnitudes as well as an apparent truncation near F814W = 28. The cluster luminosity and mass functions were derived, stretching from the turnoff down to the hydrogen-burning limit. It was well modeled with either a very flat power-law or a lognormal function. In order to interpret these fits more fully we compared them with similar functions in the cluster core and with a full N-body model of NGC 6397 finding satisfactory agreement between the model predictions and the data. This exercise demonstrates the important role and the effect that dynamics has played in altering the cluster initial mass function.

  15. Applications of Cluster Analysis to the Creation of Perfectionism Profiles: A Comparison of two Clustering Approaches

    Directory of Open Access Journals (Sweden)

    Jocelyn H Bolin

    2014-04-01

    Full Text Available Although traditional clustering methods (e.g., K-means have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.

  16. Segment clustering methodology for unsupervised Holter recordings analysis

    Science.gov (United States)

    Rodríguez-Sotelo, Jose Luis; Peluffo-Ordoñez, Diego; Castellanos Dominguez, German

    2015-01-01

    Cardiac arrhythmia analysis on Holter recordings is an important issue in clinical settings, however such issue implicitly involves attending other problems related to the large amount of unlabelled data which means a high computational cost. In this work an unsupervised methodology based in a segment framework is presented, which consists of dividing the raw data into a balanced number of segments in order to identify fiducial points, characterize and cluster the heartbeats in each segment separately. The resulting clusters are merged or split according to an assumed criterion of homogeneity. This framework compensates the high computational cost employed in Holter analysis, being possible its implementation for further real time applications. The performance of the method is measure over the records from the MIT/BIH arrhythmia database and achieves high values of sensibility and specificity, taking advantage of database labels, for a broad kind of heartbeats types recommended by the AAMI.

  17. Data Preprocessing in Cluster Analysis of Gene Expression

    Institute of Scientific and Technical Information of China (English)

    杨春梅; 万柏坤; 高晓峰

    2003-01-01

    Considering that the DNA microarray technology has generated explosive gene expression data and that it is urgent to analyse and to visualize such massive datasets with efficient methods, we investigate the data preprocessing methods used in cluster analysis, normalization or logarithm of the matrix, by using hierarchical clustering, principal component analysis (PCA) and self-organizing maps (SOMs). The results illustrate that when using the Euclidean distance as measuring metrics, logarithm of relative expression level is the best preprocessing method, while data preprocessed by normalization cannot attain the expected results because the data structure is ruined. If there are only a few principal components, the PCA is an effective method to extract the frame structure, while SOMs are more suitable for a specific structure.

  18. Euro area structural convergence? A multi-criterion cluster analysis.

    OpenAIRE

    Irac, D.; Lopez, J.

    2013-01-01

    This paper proposes a classification of the old member countries of the euro area in a structural data rich environment and run a convergence analysis using the same framework. First, we use a clustering approach and identify two structurally distinct groups of countries that are not modified between 1995 and 2007: the South Countries Group (SCG) – composed of Greece, Italy, Portugal and Spain – and the Other Countries Group (OCG). Second, we propose a convergence metrics and reach three key ...

  19. Customer-Classified Algorithm Based onFuzzy Clustering Analysis

    Institute of Scientific and Technical Information of China (English)

    郭蕴华; 祖巧红; 陈定方

    2004-01-01

    A customer-classified evaluation system is described with the customization-supporting tree of evaluation indexes, in which users can determine any evaluation index independently. Based on this system, a customer-classified algorithm based on fuzzy clustering analysis is proposed to implement the customer-classified management. A numerical example is presented, which provides correct results,indicating that the algorithm can be used in the decision support system of CRM.

  20. Supercomputer and cluster performance modeling and analysis efforts:2004-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Sturtevant, Judith E.; Ganti, Anand; Meyer, Harold (Hal) Edward; Stevenson, Joel O.; Benner, Robert E., Jr. (.,; .); Goudy, Susan Phelps; Doerfler, Douglas W.; Domino, Stefan Paul; Taylor, Mark A.; Malins, Robert Joseph; Scott, Ryan T.; Barnette, Daniel Wayne; Rajan, Mahesh; Ang, James Alfred; Black, Amalia Rebecca; Laub, Thomas William; Vaughan, Courtenay Thomas; Franke, Brian Claude

    2007-02-01

    This report describes efforts by the Performance Modeling and Analysis Team to investigate performance characteristics of Sandia's engineering and scientific applications on the ASC capability and advanced architecture supercomputers, and Sandia's capacity Linux clusters. Efforts to model various aspects of these computers are also discussed. The goals of these efforts are to quantify and compare Sandia's supercomputer and cluster performance characteristics; to reveal strengths and weaknesses in such systems; and to predict performance characteristics of, and provide guidelines for, future acquisitions and follow-on systems. Described herein are the results obtained from running benchmarks and applications to extract performance characteristics and comparisons, as well as modeling efforts, obtained during the time period 2004-2006. The format of the report, with hypertext links to numerous additional documents, purposefully minimizes the document size needed to disseminate the extensive results from our research.

  1. Clustering analysis of ancient celadon based on SOM neural network

    Institute of Scientific and Technical Information of China (English)

    ZHOU ShaoHuai; FU Lue; LIANG BaoLiu

    2008-01-01

    In the study,chemical compositions of 48 fragments of ancient ceramics excavated in 4 archaeological kiln sites which were located in 3 cities (Hangzhou,Cixi and Longquan in Zhejiang Province,China) have been examined by energy-dispersive X-ray fluorescence (EDXRF) technique.Then the method of SOM was introduced into the clustering analysis based on the major and minor element compositions of the bodies,the results manifested that 48 samples could be perfectly distributed into 3 locations,Hangzhou,Cixi and Longquan.Because the major and minor ele-ment compositions of two Royal Kilns were similar to each other,the classification accuracy over them was merely 76.92%.In view of this,the authors have made a SOM clustering analysis again based on the trace element compositions of the bodies,the classification accuracy rose to 84.61%.These results indicated that discrepancies in the trace element compositions of the bodies of the ancient ce-ramics excavated in two Royal Kiln sites were more distinct than those in the major and minor element compositions,which was in accordance with the fact.We ar-gued that SOM could be employed in the clustering analysis of ancient ceramics.

  2. Clustering analysis of ancient celadon based on SOM neural network

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the study, chemical compositions of 48 fragments of ancient ceramics excavated in 4 archaeological kiln sites which were located in 3 cities (Hangzhou, Cixi and Longquan in Zhejiang Province, China) have been examined by energy-dispersive X-ray fluorescence (EDXRF) technique. Then the method of SOM was introduced into the clustering analysis based on the major and minor element compositions of the bodies, the results manifested that 48 samples could be perfectly distributed into 3 locations, Hangzhou, Cixi and Longquan. Because the major and minor element compositions of two Royal Kilns were similar to each other, the classification accuracy over them was merely 76.92%. In view of this, the authors have made a SOM clustering analysis again based on the trace element compositions of the bodies, the classification accuracy rose to 84.61%. These results indicated that discrepancies in the trace element compositions of the bodies of the ancient ceramics excavated in two Royal Kiln sites were more distinct than those in the major and minor element compositions, which was in accordance with the fact. We argued that SOM could be employed in the clustering analysis of ancient ceramics.

  3. Coupled Two-Way Clustering Analysis of Gene Microarray Data

    CERN Document Server

    Getz, G; Domany, E

    2000-01-01

    We present a novel coupled two-way clustering approach to gene microarray data analysis. The main idea is to identify subsets of the genes and samples, such that when one of these is used to cluster the other, stable and significant partitions emerge. The search for such subsets is a computationally complex task: we present an algorithm, based on iterative clustering, which performs such a search. This analysis is especially suitable for gene microarray data, where the contributions of a variety of biological mechanisms to the gene expression levels are entangled in a large body of experimental data. The method was applied to two gene microarray data sets, on colon cancer and leukemia. By identifying relevant subsets of the data and focusing on them we were able to discover partitions and correlations that were masked and hidden when the full dataset was used in the analysis. Some of these partitions have clear biological interpretation; others can serve to identify possible directions for future research.

  4. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  5. Diagnostics of subtropical plants functional state by cluster analysis

    Directory of Open Access Journals (Sweden)

    Oksana Belous

    2016-05-01

    Full Text Available The article presents an application example of statistical methods for data analysis on diagnosis of the adaptive capacity of subtropical plants varieties. We depicted selection indicators and basic physiological parameters that were defined as diagnostic. We used evaluation on a set of parameters of water regime, there are: determination of water deficit of the leaves, determining the fractional composition of water and detection parameters of the concentration of cell sap (CCS (for tea culture flushes. These settings are characterized by high liability and high responsiveness to the effects of many abiotic factors that determined the particular care in the selection of plant material for analysis and consideration of the impact on sustainability. On the basis of the experimental data calculated the coefficients of pair correlation between climatic factors and used physiological indicators. The result was a selection of physiological and biochemical indicators proposed to assess the adaptability and included in the basis of methodical recommendations on diagnostics of the functional state of the studied cultures. Analysis of complex studies involving a large number of indicators is quite difficult, especially does not allow to quickly identify the similarity of new varieties for their adaptive responses to adverse factors, and, therefore, to set general requirements to conditions of cultivation. Use of cluster analysis suggests that in the analysis of only quantitative data; define a set of variables used to assess varieties (and the more sampling, the more accurate the clustering will happen, be sure to ascertain the measure of similarity (or difference between objects. It is shown that the identification of diagnostic features, which are subjected to statistical processing, impact the accuracy of the varieties classification. Selection in result of the mono-clusters analysis (variety tea Kolhida; hazelnut Lombardsky red; variety kiwi Monty

  6. Genomic cluster and network analysis for predictive screening for hepatotoxicity.

    Science.gov (United States)

    Fukushima, Tamio; Kikkawa, Rie; Hamada, Yoshimasa; Horii, Ikuo

    2006-12-01

    The present study was undertaken to estimate the usefulness of genomic approaches to predict hepatotoxicity. Male rats were treated with acetaminophen (APAP), carbon tetrachloride (CCL), amiodarone (AD) or tetracycline (TC) at toxic doses. Their livers were extracted 6 or 24 hr after the dosings and were used for subsequent examinations. At 6 hr there were no histological changes noted in any of the groups except for the CCL group, but at 24 hr, such changes were noted in all but the AD group. Regarding genomic analysis, we performed hierarchical cluster analysis using S-plus software. The individual microarray data were clearly classified into 5 treatment-related clusters at 24 hr as well as at 6 hr, even though no morphological changes were noted at 6 hr. In the gene expression analysis using GeneSpring, transcription factor and oxidative stress- and lipid metabolism-related genes were markedly affected in all treatment groups at both time points when compared with the corresponding control values. Finally, we investigated gene networks in the above-affected genes by using Ingenuity Pathway Analysis software. Down-regulation of lipid metabolism-related genes regulated by SREBP1 was observed in all treatment groups at both time points, and up-regulation of oxidative stress-related genes regulated by Nrf2 was observed in the APAP and CCL treatment groups. From the above findings, for the application of genomic approaches to predict hepatotoxicity, we considered that cluster analysis for classification and early prediction of hepatotoxicity and network analysis for investigation of toxicological biomarkers would be useful. PMID:17202758

  7. Monitoring Customer Satisfaction in Service Industry: A Cluster Analysis Approach

    Directory of Open Access Journals (Sweden)

    Matúš Horváth

    2012-10-01

    Full Text Available One of the key performance indicators of quality management system of an organization is customer satisfaction. The process of monitoring customer satisfaction is therefore an important part of the measuring processes of the quality management system. This paper deals with new ways how to analyse and monitor customer satisfaction using the analysis of data containing how the customers use the organisation services and customer leaving rates. The article used cluster analysis in this process for segmentation of customers with the aim to increase the accuracy of the results and on these results based decisions. The aplication example was created as a part of bachelor thesis.

  8. Monitoring Customer Satisfaction in Service Industry: A Cluster Analysis Approach

    Directory of Open Access Journals (Sweden)

    Matúš Horváth

    2012-11-01

    Full Text Available One of the key performance indicators of quality management system of an organization is customer satisfaction. The process of monitoring customer satisfaction is therefore an important part of the measuring processes of the quality management system. This paper deals with new ways how to analyse and monitor customer satisfaction using the analysis of data containing how the customers use the organisation services and customer leaving rates. The article used cluster analysis in this process for segmentation of customers with the aim to increase the accuracy of the results and on these results based decisions. The aplication example was created as a part of bachelor thesis.

  9. Cluster Analysis and Fuzzy Query in Ship Maintenance and Design

    Science.gov (United States)

    Che, Jianhua; He, Qinming; Zhao, Yinggang; Qian, Feng; Chen, Qi

    Cluster analysis and fuzzy query win wide-spread applications in modern intelligent information processing. In allusion to the features of ship maintenance data, a variant of hypergraph-based clustering algorithm, i.e., Correlation Coefficient-based Minimal Spanning Tree(CC-MST), is proposed to analyze the bulky data rooting in ship maintenance process, discovery the unknown rules and help ship maintainers make a decision on various device fault causes. At the same time, revising or renewing an existed design of ship or device maybe necessary to eliminate those device faults. For the sake of offering ship designers some valuable hints, a fuzzy query mechanism is designed to retrieve the useful information from large-scale complicated and reluctant ship technical and testing data. Finally, two experiments based on a real ship device fault statistical dataset validate the flexibility and efficiency of the CC-MST algorithm. A fuzzy query prototype demonstrates the usability of our fuzzy query mechanism.

  10. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  11. Steady state subchannel analysis of AHWR fuel cluster

    International Nuclear Information System (INIS)

    Subchannel analysis is a technique used to predict the thermal hydraulic behavior of reactor fuel assemblies. The rod cluster is subdivided into a number of parallel interacting flow subchannels. The conservation equations are solved for each of these subchannels, taking into account subchannel interactions. Subchannel analysis of AHWR D-5 fuel cluster has been carried out to determine the variations in thermal hydraulic conditions of coolant and fuel temperatures along the length of the fuel bundle. The hottest regions within the AHWR fuel bundle have been identified. The effect of creep on the fuel performance has also been studied. MCHFR has been calculated using Jansen-Levy correlation. The calculations have been backed by sensitivity analysis for parameters whose values are not known accurately. The sensitivity analysis showed the calculations to have a very low sensitivity to these parameters. Apart from the analysis, the report also includes a brief introduction of a few subchannel codes. A brief description of the equations and solution methodology used in COBRA-IIIC and COBRA-IV-I is also given. (author)

  12. Analysis of breast cancer progression using principal component analysis and clustering

    Indian Academy of Sciences (India)

    G Alexe; G S Dalgin; S Ganesan; C DeLisi; G Bhanot

    2007-08-01

    We develop a new technique to analyse microarray data which uses a combination of principal components analysis and consensus ensemble -clustering to find robust clusters and gene markers in the data. We apply our method to a public microarray breast cancer dataset which has expression levels of genes in normal samples as well as in three pathological stages of disease; namely, atypical ductal hyperplasia or ADH, ductal carcinoma in situ or DCIS and invasive ductal carcinoma or IDC. Our method averages over clustering techniques and data perturbation to find stable, robust clusters and gene markers. We identify the clusters and their pathways with distinct subtypes of breast cancer (Luminal, Basal and Her2+). We confirm that the cancer phenotype develops early (in early hyperplasia or ADH stage) and find from our analysis that each subtype progresses from ADH to DCIS to IDC along its own specific pathway, as if each was a distinct disease.

  13. The Hubble Space Telescope advanced camera for surveys coma cluster survey. I. Survey objectives and design

    NARCIS (Netherlands)

    Carter, David; Goudfrooij, Paul; Mobasher, Bahram; Ferguson, Henry C.; Puzia, Thomas H.; Aguerri, Alfonso L.; Balcells, Marc; Batcheldor, Dan; Bridges, Terry J.; Davies, Jonathan I.; Erwin, Peter; Graham, Alister W.; Guzmán, Rafael; Hammer, Derek; Hornschemeier, Ann; Hoyos, Carlos; Hudson, Michael J.; Huxor, Avon; Jogee, Shardha; Komiyama, Yutaka; Lotz, Jennifer; Lucey, John R.; Marzke, Ronald O.; Merritt, David; Miller, Bryan W.; Miller, Neal A.; Mouhcine, Mustapha; Okamura, Sadanori; Peletier, Reynier F.; Phillipps, Steven; Poggianti, Bianca M.; Sharples, Ray M.; Smith, Russell J.; Trentham, Neil; Tully, R. Brent; Valentijn, Edwin; Verdoes Kleijn, Gijs

    2008-01-01

    We describe the HST ACS Coma Cluster Treasury survey, a deep two-passband imaging survey of one of the nearest rich clusters of galaxies, the Coma Cluster (Abell 1656). The survey was designed to cover an area of 740 arcmin2 in regions of different density of both galaxies and intergalactic medium w

  14. Advancing Behavior Analysis in Zoos and Aquariums.

    Science.gov (United States)

    Maple, Terry L; Segura, Valerie D

    2015-05-01

    Zoos, aquariums, and other captive animal facilities offer promising opportunities to advance the science and practice of behavior analysis. Zoos and aquariums are necessarily concerned with the health and well-being of their charges and are held to a high standard by their supporters (visitors, members, and donors), organized critics, and the media. Zoos and aquariums offer unique venues for teaching and research and a locus for expanding the footprint of behavior analysis. In North America, Europe, and the UK, formal agreements between zoos, aquariums, and university graduate departments have been operating successfully for decades. To expand on this model, it will be necessary to help zoo and aquarium managers throughout the world to recognize the value of behavior analysis in the delivery of essential animal health and welfare services. Academic institutions, administrators, and invested faculty should consider the utility of training students to meet the growing needs of applied behavior analysis in zoos and aquariums and other animal facilities such as primate research centers, sanctuaries, and rescue centers. PMID:27540508

  15. Modified K-means Algorithm for Clustering Analysis of Hainan Green Tangerine Peel

    OpenAIRE

    Luo, Ying; Fu, Haiyan

    2014-01-01

    Part 1: Digital Services International audience K-means is a classic, the division of the clustering algorithm, apply to the classification of the globular data. According to the initial clustering center, this paper comprehensive consideration the characteristics of various Hierarchical cluster algorithms and choose the appropriate Hierarchical cluster algorithm to improve K-means, and combined with Hainan Green Tangerine Peel cluster analysis of data which is compared experiments. The...

  16. Advanced SWOT Analysis of E-Commerce

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2012-03-01

    Full Text Available This research paper describes the invention and accessibility of internet connectivity and powerful online tools has resulted a new commerce era that is e-commerce, which has completely revolutionized the conventional concept of business. E-commerce deals with selling and purchasing of goods and services through internet and computer networks. E-commerce can enhance economic growth, increase business opportunities, competitiveness, better and profitable access to markets. E-Commerce is emerging as a new way of helping business enterprises to compete in the market and thus contributing to economic success. In this research paper we will discuss about advanced SWOT analysis of E-commerce which will comprise of strengths, weaknesses, opportunities and threats faced by e-commerce in current scenario.

  17. Clustered Numerical Data Analysis Using Markov Lie Monoid Based Networks

    Science.gov (United States)

    Johnson, Joseph

    2016-03-01

    We have designed and build an optimal numerical standardization algorithm that links numerical values with their associated units, error level, and defining metadata thus supporting automated data exchange and new levels of artificial intelligence (AI). The software manages all dimensional and error analysis and computational tracing. Tables of entities verses properties of these generalized numbers (called ``metanumbers'') support a transformation of each table into a network among the entities and another network among their properties where the network connection matrix is based upon a proximity metric between the two items. We previously proved that every network is isomorphic to the Lie algebra that generates continuous Markov transformations. We have also shown that the eigenvectors of these Markov matrices provide an agnostic clustering of the underlying patterns. We will present this methodology and show how our new work on conversion of scientific numerical data through this process can reveal underlying information clusters ordered by the eigenvalues. We will also show how the linking of clusters from different tables can be used to form a ``supernet'' of all numerical information supporting new initiatives in AI.

  18. Cyber Profiling Using Log Analysis And K-Means Clustering

    Directory of Open Access Journals (Sweden)

    Muhammad Zulfadhilah

    2016-07-01

    Full Text Available The Activities of Internet users are increasing from year to year and has had an impact on the behavior of the users themselves. Assessment of user behavior is often only based on interaction across the Internet without knowing any others activities. The log activity can be used as another way to study the behavior of the user. The Log Internet activity is one of the types of big data so that the use of data mining with K-Means technique can be used as a solution for the analysis of user behavior. This study has been carried out the process of clustering using K-Means algorithm is divided into three clusters, namely high, medium, and low. The results of the higher education institution show that each of these clusters produces websites that are frequented by the sequence: website search engine, social media, news, and information. This study also showed that the cyber profiling had been done strongly influenced by environmental factors and daily activities.

  19. Covariance analysis of differential drag-based satellite cluster flight

    Science.gov (United States)

    Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini

    2016-06-01

    One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.

  20. Dynamical analysis of galaxy cluster merger Abell 2146

    CERN Document Server

    White, J A; King, L J; Lee, B E; Russell, H R; Baum, S A; Clowe, D I; Coleman, J E; Donahue, M; Edge, A C; Fabian, A C; Johnstone, R M; McNamara, B R; ODea, C P; Sanders, J S

    2015-01-01

    We present a dynamical analysis of the merging galaxy cluster system Abell 2146 using spectroscopy obtained with the Gemini Multi-Object Spectrograph on the Gemini North telescope. As revealed by the Chandra X-ray Observatory, the system is undergoing a major merger and has a gas structure indicative of a recent first core passage. The system presents two large shock fronts, making it unique amongst these rare systems. The hot gas structure indicates that the merger axis must be close to the plane of the sky and that the two merging clusters are relatively close in mass, from the observation of two shock fronts. Using 63 spectroscopically determined cluster members, we apply various statistical tests to establish the presence of two distinct massive structures. With the caveat that the system has recently undergone a major merger, the virial mass estimate is M_vir = 8.5 +4.3 -4.7 x 10 ^14 M_sol for the whole system, consistent with the mass determination in a previous study using the Sunyaev-Zeldovich signal....

  1. Advanced Technology Lifecycle Analysis System (ATLAS)

    Science.gov (United States)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  2. Coupled Two-Way Clustering Analysis of Breast Cancer and Colon Cancer Gene Expression Data

    CERN Document Server

    Getz, G; Kela, I; Domany, E; Notterman, D A; Getz, Gad; Gal, Hilah; Kela, Itai; Domany, Eytan; Notterman, Dan A.

    2003-01-01

    We present and review Coupled Two Way Clustering, a method designed to mine gene expression data. The method identifies submatrices of the total expression matrix, whose clustering analysis reveals partitions of samples (and genes) into biologically relevant classes. We demonstrate, on data from colon and breast cancer, that we are able to identify partitions that elude standard clustering analysis.

  3. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Årup; Frutiger, Sally A.;

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel...... practice-related activity in a fronto-parieto-cerebellar network, in agreement with previous studies of motor learning. These voxels were separated from a group of voxels showing an unspecific time-effect and another group of voxels, whose activation was an artifact from smoothing. Hum. Brain Mapping 15...

  4. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Å; Futiger, Sally A;

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel...... practice-related activity in a fronto-parieto-cerebellar network, in agreement with previous studies of motor learning. These voxels were separated from a group of voxels showing an unspecific time-effect and another group of voxels, whose activation was an artifact from smoothing...

  5. Physicochemical properties of different corn varieties by principal components analysis and cluster analysis

    International Nuclear Information System (INIS)

    Principal components analysis and cluster analysis were used to investigate the properties of different corn varieties. The chemical compositions and some properties of corn flour which processed by drying milling were determined. The results showed that the chemical compositions and physicochemical properties were significantly different among twenty six corn varieties. The quality of corn flour was concerned with five principal components from principal component analysis and the contribution rate of starch pasting properties was important, which could account for 48.90%. Twenty six corn varieties could be classified into four groups by cluster analysis. The consistency between principal components analysis and cluster analysis indicated that multivariate analyses were feasible in the study of corn variety properties. (author)

  6. [Clustering analysis applied to near-infrared spectroscopy analysis of Chinese traditional medicine].

    Science.gov (United States)

    Liu, Mu-qing; Zhou, De-cheng; Xu, Xin-yuan; Sun, Yao-jie; Zhou, Xiao-li; Han, Lei

    2007-10-01

    The present article discusses the clustering analysis used in the near-infrared (NIR) spectroscopy analysis of Chinese traditional medicines, which provides a new method for the classification of Chinese traditional medicines. Samples selected purposely in the authors' research to measure their absorption spectra in seconds by a multi-channel NIR spectrometer developed in the authors' lab were safrole, eucalypt oil, laurel oil, turpentine, clove oil and three samples of costmary oil from different suppliers. The spectra in the range of 0.70-1.7 microm were measured with air as background and the results indicated that they are quite distinct. Qualitative mathematical model was set up and cluster analysis based on the spectra was carried out through different clustering methods for optimization, and came out the cluster correlation coefficient of 0.9742 in the authors' research. This indicated that cluster analysis of the group of samples is practicable. Also it is reasonable to get the result that the calculated classification of 8 samples was quite accorded with their characteristics, especially the three samples of costmary oil were in the closest classification of the clustering analysis. PMID:18306778

  7. Constraining AGN triggering mechanisms through the clustering analysis of active black holes

    Science.gov (United States)

    Gatti, M.; Shankar, F.; Bouillot, V.; Menci, N.; Lamastra, A.; Hirschmann, M.; Fiore, F.

    2016-02-01

    The triggering mechanisms for active galactic nuclei (AGN) are still debated. Some of the most popular ones include galaxy interactions (IT) and disc instabilities (DIs). Using an advanced semi-analytic model (SAM) of galaxy formation, coupled to accurate halo occupation distribution modelling, we investigate the imprint left by each separate triggering process on the clustering strength of AGN at small and large scales. Our main results are as follows: (i) DIs, irrespective of their exact implementation in the SAM, tend to fall short in triggering AGN activity in galaxies at the centre of haloes with Mh > 1013.5 h-1 M⊙. On the contrary, the IT scenario predicts abundance of active central galaxies that generally agrees well with observations at every halo mass. (ii) The relative number of satellite AGN in DIs at intermediate-to-low luminosities is always significantly higher than in IT models, especially in groups and clusters. The low AGN satellite fraction predicted for the IT scenario might suggest that different feeding modes could simultaneously contribute to the triggering of satellite AGN. (iii) Both scenarios are quite degenerate in matching large-scale clustering measurements, suggesting that the sole average bias might not be an effective observational constraint. (iv) Our analysis suggests the presence of both a mild luminosity and a more consistent redshift dependence in the AGN clustering, with AGN inhabiting progressively less massive dark matter haloes as the redshift increases. We also discuss the impact of different observational selection cuts in measuring AGN clustering, including possible discrepancies between optical and X-ray surveys.

  8. Clustering Analysis on E-commerce Transaction Based on K-means Clustering

    Directory of Open Access Journals (Sweden)

    Xuan HUANG

    2014-02-01

    Full Text Available Based on the density, increment and grid etc, shortcomings like the bad elasticity, weak handling ability of high-dimensional data, sensitive to time sequence of data, bad independence of parameters and weak handling ability of noise are usually existed in clustering algorithm when facing a large number of high-dimensional transaction data. Making experiments by sampling data samples of the 300 mobile phones of Taobao, the following conclusions can be obtained: compared with Single-pass clustering algorithm, the K-means clustering algorithm has a high intra-class dissimilarity and inter-class similarity when analyzing e-commerce transaction. In addition, the K-means clustering algorithm has very high efficiency and strong elasticity when dealing with a large number of data items. However, clustering effects of this algorithm are affected by clustering number and initial positions of clustering center. Therefore, it is easy to show the local optimization for clustering results. Therefore, how to determine clustering number and initial positions of the clustering center of this algorithm is still the important job to be researched in the future.

  9. Multivariate cluster analysis of forest fire events in Portugal

    Science.gov (United States)

    Tonini, Marj; Pereira, Mario; Vega Orozco, Carmen; Parente, Joana

    2015-04-01

    Portugal is one of the major fire-prone European countries, mainly due to its favourable climatic, topographic and vegetation conditions. Compared to the other Mediterranean countries, the number of events registered here from 1980 up to nowadays is the highest one; likewise, with respect to the burnt area, Portugal is the third most affected country. Portuguese mapped burnt areas are available from the website of the Institute for the Conservation of Nature and Forests (ICNF). This official geodatabase is the result of satellite measurements starting from the year 1990. The spatial information, delivered in shapefile format, provides a detailed description of the shape and the size of area burnt by each fire, while the date/time information relate to the ignition fire is restricted to the year of occurrence. In terms of a statistical formalism wildfires can be associated to a stochastic point process, where events are analysed as a set of geographical coordinates corresponding, for example, to the centroid of each burnt area. The spatio/temporal pattern of stochastic point processes, including the cluster analysis, is a basic procedure to discover predisposing factorsas well as for prevention and forecasting purposes. These kinds of studies are primarily focused on investigating the spatial cluster behaviour of environmental data sequences and/or mapping their distribution at different times. To include both the two dimensions (space and time) a comprehensive spatio-temporal analysis is needful. In the present study authors attempt to verify if, in the case of wildfires in Portugal, space and time act independently or if, conversely, neighbouring events are also closer in time. We present an application of the spatio-temporal K-function to a long dataset (1990-2012) of mapped burnt areas. Moreover, the multivariate K-function allowed checking for an eventual different distribution between small and large fires. The final objective is to elaborate a 3D

  10. Using Multilevel Factor Analysis with Clustered Data: Investigating the Factor Structure of the Positive Values Scale

    Science.gov (United States)

    Huang, Francis L.; Cornell, Dewey G.

    2016-01-01

    Advances in multilevel modeling techniques now make it possible to investigate the psychometric properties of instruments using clustered data. Factor models that overlook the clustering effect can lead to underestimated standard errors, incorrect parameter estimates, and model fit indices. In addition, factor structures may differ depending on…

  11. The cosmological analysis of X-ray cluster surveys; III. Bypassing cluster mass measurements

    CERN Document Server

    Pierre, M; Faccioli, L; Clerc, N; Gastaud, R; Koulouridis, E; Pacaud, F

    2016-01-01

    Despite strong theoretical arguments, the use of clusters as cosmological probes is, in practice, frequently questioned because of the many uncertainties impinging on cluster mass estimates. Our aim is to develop a fully self-consistent cosmological approach of X-ray cluster surveys, exclusively based on observable quantities, rather than masses. This procedure is justified given the possibility to directly derive the cluster properties via ab initio modelling, either analytically or by using hydrodynamical simulations. In this third paper, we evaluate the method on cluster toy-catalogues. We model the population of detected clusters in the count-rate -- hardness-ratio -- angular size -- redshift space and compare the corresponding 4-dimensional diagram with theoretical predictions. The best cosmology+physics parameter configuration is determined using a simple minimisation procedure; errors on the parameters are derived by scanning the likelihood hyper-surfaces with a wide range of starting values. The metho...

  12. Assessment of genetic divergence in tomato through agglomerative hierarchical clustering and principal component analysis

    International Nuclear Information System (INIS)

    For the improvement of qualitative and quantitative traits, existence of variability has prime importance in plant breeding. Data on different morphological and reproductive traits of 47 tomato genotypes were analyzed for correlation,agglomerative hierarchical clustering and principal component analysis (PCA) to select genotypes and traits for future breeding program. Correlation analysis revealed significant positive association between yield and yield components like fruit diameter, single fruit weight and number of fruits plant-1. Principal component (PC) analysis depicted first three PCs with Eigen-value higher than 1 contributing 81.72% of total variability for different traits. The PC-I showed positive factor loadings for all the traits except number of fruits plant-1. The contribution of single fruit weight and fruit diameter was highest in PC-1. Cluster analysis grouped all genotypes into five divergent clusters. The genotypes in cluster-II and cluster-V exhibited uniform maturity and higher yield. The D2 statistics confirmed highest distance between cluster- III and cluster-V while maximum similarity was observed in cluster-II and cluster-III. It is therefore suggested that crosses between genotypes of cluster-II and cluster-V with those of cluster-I and cluster-III may exhibit heterosis in F1 for hybrid breeding and for selection of superior genotypes in succeeding generations for cross breeding programme. (author)

  13. Reliability analysis of cluster-based ad-hoc networks

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jason L. [Quality Engineering and System Assurance, Armament Research Development Engineering Center, Picatinny Arsenal, NJ (United States); Ramirez-Marquez, Jose Emmanuel [School of Systems and Enterprises, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030 (United States)], E-mail: Jose.Ramirez-Marquez@stevens.edu

    2008-10-15

    The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks.

  14. Time series clustering analysis of health-promoting behavior

    Science.gov (United States)

    Yang, Chi-Ta; Hung, Yu-Shiang; Deng, Guang-Feng

    2013-10-01

    Health promotion must be emphasized to achieve the World Health Organization goal of health for all. Since the global population is aging rapidly, ComCare elder health-promoting service was developed by the Taiwan Institute for Information Industry in 2011. Based on the Pender health promotion model, ComCare service offers five categories of health-promoting functions to address the everyday needs of seniors: nutrition management, social support, exercise management, health responsibility, stress management. To assess the overall ComCare service and to improve understanding of the health-promoting behavior of elders, this study analyzed health-promoting behavioral data automatically collected by the ComCare monitoring system. In the 30638 session records collected for 249 elders from January, 2012 to March, 2013, behavior patterns were identified by fuzzy c-mean time series clustering algorithm combined with autocorrelation-based representation schemes. The analysis showed that time series data for elder health-promoting behavior can be classified into four different clusters. Each type reveals different health-promoting needs, frequencies, function numbers and behaviors. The data analysis result can assist policymakers, health-care providers, and experts in medicine, public health, nursing and psychology and has been provided to Taiwan National Health Insurance Administration to assess the elder health-promoting behavior.

  15. Debugging, Advanced Debugging and Runtime Analysis

    Directory of Open Access Journals (Sweden)

    Salim Istyaq

    2010-03-01

    Full Text Available This paper discusses debugging and runtime analysis of software and outlines its enormous benefits to software developers and testers. A debugger is usually quite helpful in tracking down many logic problems. However, even with the most advanced debugger at your disposal, it doesn't guarantee that it will be a straightforward task to rid your program of bugs. Debugging techniques might help you in your task of flushing errors out of your program. Some of these willdirectly involve the debugger but many of them won't. The hope is to add to your debugging repertoire in order to assist your personal debugging quests when things go strangely wrong. Testing is more than just debugging. Testing is not only used to locate defects and correct them.It is also used in validation, verification process, andreliability measurement. Testing is expensive. Automation is a good way to cut down cost and time.When we write software applications, we need to debug them.Software Testing provides an objective, independent view of the software to allow the business to appreciate and understand the risks at implementation of the software. Aprimary purpose for testing is to detect software failures so that defects may be uncovered and corrected. This is a non-trivial pursuit. Testing cannot establish that a product functions properly under all conditions but can only establish that it does not function properly under specific conditions. Program testing and fault detection can beaided significantly by testing tools and debuggers. Testing and debug tools include features such as program monitors, permitting full or partial monitoring of program code including instruction set simulator, permitting complete instruction level monitoring and trace facilities, program animation, permitting step-by-step execution and conditional breakpoint at source level or in machine code, code coverage reports, formatted dump or symbolic debugging tools allowing inspection of program

  16. Integrating PROOF Analysis in Cloud and Batch Clusters

    International Nuclear Information System (INIS)

    High Energy Physics (HEP) analysis are becoming more complex and demanding due to the large amount of data collected by the current experiments. The Parallel ROOT Facility (PROOF) provides researchers with an interactive tool to speed up the analysis of huge volumes of data by exploiting parallel processing on both multicore machines and computing clusters. The typical PROOF deployment scenario is a permanent set of cores configured to run the PROOF daemons. However, this approach is incapable of adapting to the dynamic nature of interactive usage. Several initiatives seek to improve the use of computing resources by integrating PROOF with a batch system, such as Proof on Demand (PoD) or PROOF Cluster. These solutions are currently in production at Universidad de Oviedo and IFCA and are positively evaluated by users. Although they are able to adapt to the computing needs of users, they must comply with the specific configuration, OS and software installed at the batch nodes. Furthermore, they share the machines with other workloads, which may cause disruptions in the interactive service for users. These limitations make PROOF a typical use-case for cloud computing. In this work we take profit from Cloud Infrastructure at IFCA in order to provide a dynamic PROOF environment where users can control the software configuration of the machines. The Proof Analysis Framework (PAF) facilitates the development of new analysis and offers a transparent access to PROOF resources. Several performance measurements are presented for the different scenarios (PoD, SGE and Cloud), showing a speed improvement closely correlated with the number of cores used.

  17. NATO Advanced Research Workshop on Physics and Chemistry of Finite Systems : from Clusters to Crystals

    CERN Document Server

    Khanna, S; Rao, B

    1992-01-01

    Recent innovations in experimental techniques such as molecular and cluster beam epitaxy, supersonic jet expansion, matrix isolation and chemical synthesis are increasingly enabling researchers to produce materials by design and with atomic dimension. These materials constrained by sire, shape, and symmetry range from clusters containing as few as two atoms to nanoscale materials consisting of thousands of atoms. They possess unique structuraI, electronic, magnetic and optical properties that depend strongly on their size and geometry. The availability of these materials raises many fundamental questions as weIl as technological possibilities. From the academic viewpoint, the most pertinent question concerns the evolution of the atomic and electronic structure of the system as it grows from micro clusters to crystals. At what stage, for example, does the cluster look as if it is a fragment of the corresponding crystal. How do electrons forming bonds in micro-clusters transform to bands in solids? How do the s...

  18. Selections of data preprocessing methods and similarity metrics for gene cluster analysis

    Institute of Scientific and Technical Information of China (English)

    YANG Chunmei; WAN Baikun; GAO Xiaofeng

    2006-01-01

    Clustering is one of the major exploratory techniques for gene expression data analysis. Only with suitable similarity metrics and when datasets are properly preprocessed, can results of high quality be obtained in cluster analysis. In this study, gene expression datasets with external evaluation criteria were preprocessed as normalization by line, normalization by column or logarithm transformation by base-2, and were subsequently clustered by hierarchical clustering, k-means clustering and self-organizing maps (SOMs) with Pearson correlation coefficient or Euclidean distance as similarity metric. Finally, the quality of clusters was evaluated by adjusted Rand index. The results illustrate that k-means clustering and SOMs have distinct advantages over hierarchical clustering in gene clustering, and SOMs are a bit better than k-means when randomly initialized. It also shows that hierarchical clustering prefers Pearson correlation coefficient as similarity metric and dataset normalized by line. Meanwhile, k-means clustering and SOMs can produce better clusters with Euclidean distance and logarithm transformed datasets. These results will afford valuable reference to the implementation of gene expression cluster analysis.

  19. Tokamak advanced pump limiter experiments and analysis

    International Nuclear Information System (INIS)

    Experiments with pump limiter modules on several operating tokamaks establish such limiters as efficient collectors of particles and has demonstrated the importance of ballistic scattering as predicted theoretically. Plasma interaction with recycling neutral gas appears to become important as the plasma density increases and the effective ionization mean free path within the module decreases. In limiters with particle collection but without active internal pumping, the neutral gas pressure is found to vary nonlinearly with the edge plasma density at the highest densities studies. Both experiments and theory indicate that the energy spectrum of gas atoms in the pump ducting is non-thermal, consistent with the results of Monte Carlo neutral atom transport calculations. The distribution of plasma power over the front surface of such modules has been measured and appears to be consistent with the predictions of simple theory. Initial results from the latest experiment on the ISX-B tokamak with an actively pumped limiter module demonstrates that the core plasma density can be controlled with a pump limiter and that the scrape-off layer plasma can partially screen the core plasma from gas injection. The results from module pump limiter experiments and from the theory and design analysis of advanced pump limiters for reactors are used to suggest the major features of a definitive, axisymmetric, toroidal belt pump limiter experiment

  20. CLUSTER ANALYSIS OF NATURAL DISASTER LOSSES IN POLISH AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Grzegorz STRUPCZEWSKI

    2015-04-01

    Full Text Available Agricultural production risk is of special nature due to a great number of hazards, relative weakness of production entities on the market and high ambiguity which is greater than in industrial production. Natural disasters occurring very frequently, at simultaneous low percentage of insured farmers, cause damage of such sizes that force the state to organise current financial aid (for instance in the form of preferential natural disaster loans. This aid is usually not sufficient. On the other hand, regional diversity of the risk level does not positively affect the development of insurance. From the perspective of insurance companies and policymakers it becomes highly important to investigate the spatial structure of losses in agriculture caused by natural disasters. The purpose of the research is to classify the 16 Polish voivodeships into clusters in order to show differences between them according to the criterion of level of damage in agricultural farms caused by natural disasters. On the basis of the cluster analysis it was demonstrated that 11 voivodeships form quite a homogeneous group in terms of size of damage in agriculture (the value of damage in cultivations and the acreage of destroyed cultivations are two most important factors determining affiliation to the cluster, however, the profile of loss occurring in other five voivodeships has a very individual course and requires separate handling in the actuarial sense. It was also proved that high value of losses in agriculture in the absolute sense in given voivodeships do not have to mean high vulnerability of agricultural farms from these voivodeships to natural risks.

  1. Maximum-entropy clustering algorithm and its global convergence analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Zhihua

    2001-01-01

    [1]Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithm. New York: Plenum, 1981.[2]Krishnapuram, R., Keller, J., A possibilistic approach to clustering, IEEE Trans. on Fuzzy Systems, 1993, 1(2): 98.[3]Yair, E., Zeger, K., Gersho, A., Competitive learning and soft competition for vector quantizer design, IEEE Trans on Signal Processing, 1992, 40(2): 294.[4]Pal, N. R., Bezdek, J. C., Tsao, E. C. K., Generalized clustering networks and Kohonen's self-organizing scheme, IEEE Trans on Neural Networks, 1993, 4(4): 549.[5]Karayiannis, N. B., Bezdek, J. C., Pal, N. R. et al., Repair to GLVQ: a new family of competitive learning schemes, IEEE Trans on Neural Networks, 1996, 7(5): 1062.[6]Karayiannis, N. B., Pai, P. I., Fuzzy algorithms for learning vector quantization, IEEE Trans. on Neural Networks, 1996, 7(5): 1196.[7]Karayiannis, N. B., A methodology for constructing fuzzy algorithms for learning vector quantization, IEEE Trans. on Neural Networks, 1997, 8(3): 505.[8]Karayiannis, N. B., Bezdek, J. C., An integrated approach to fuzzy learning vector quantization and fuzzy C-Means clustering, IEEE Trans. on Fuzzy Systems, 1997, 5(4): 622.[9]Li Xing-si, An efficient approach to nonlinear minimax problems, Chinese Science Bulletin? 1992, 37(10): 802.[10]Li Xing-si, An efficient approach to a class of non-smooth optimization problems, Science in China, Series A,1994, 37(3): 323.[11]. Zangwill, W., Non-linear Programming: A Unified Approach, Englewood Cliffs: Prentice-Hall, 1969.[12]. Fletcher, R., Practical Methods of Optimization,2nd ed., New York: John Wiley & Sons, 1987.[13]. Zhang Zhihua, Zheng Nanning, Wang Tianshu, Behavioral analysis and improving of generalized LVQ neural network, Acta Automatica Sinica, 1999, 25(5): 582.[14]. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., Optimization by simulated annealing, Science, 1983, 220(3): 671.[15]. Ross, K., Deterministic annealing for

  2. Advanced Materials and Solids Analysis Research Core (AMSARC)

    Science.gov (United States)

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  3. Advances in face detection and facial image analysis

    CERN Document Server

    Celebi, M; Smolka, Bogdan

    2016-01-01

    This book presents the state-of-the-art in face detection and analysis. It outlines new research directions, including in particular psychology-based facial dynamics recognition, aimed at various applications such as behavior analysis, deception detection, and diagnosis of various psychological disorders. Topics of interest include face and facial landmark detection, face recognition, facial expression and emotion analysis, facial dynamics analysis, face classification, identification, and clustering, and gaze direction and head pose estimation, as well as applications of face analysis.

  4. Ranking and clustering of search results: Analysis of Similarity graph

    OpenAIRE

    Shevchuk, Ksenia Alexander

    2008-01-01

    Evaluate the clustering of the similarity matrix and confirm that it is high. Compare the ranking results of the eigenvector ranking and the Link Popularity ranking and confirm for the high clustered graph the correlation between those is larger than for the low clustered graph.

  5. Maximum-entropy clustering algorithm and its global convergence analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.

  6. Optimum Metallic-Bond Scheme: A Quantitative Analysis of Mass Spectra of Sodium Clusters

    Institute of Scientific and Technical Information of China (English)

    苏长荣; 李家明

    2001-01-01

    Based on the results of the optimum metallic-bond scheme for sodium clusters, we present a quantitative analysis of the detailed features of the mass spectra of sodium clusters. We find that, in the generation of sodium clusters with various abundances, the quasi-steady processes through adding or losing a sodium atom dominate. The quasi-steady processes through adding or losing a sodium dimer are also important to understand the detailed features of mass spectra for small clusters.

  7. A COMPARISON BETWEEN SINGLE LINKAGE AND COMPLETE LINKAGE IN AGGLOMERATIVE HIERARCHICAL CLUSTER ANALYSIS FOR IDENTIFYING TOURISTS SEGMENTS

    OpenAIRE

    Noor Rashidah Rashid

    2012-01-01

    Cluster Analysis is a multivariate method in statistics. Agglomerative Hierarchical Cluster Analysis is one of approaches in Cluster Analysis. There are two linkage methods in Agglomerative Hierarchical Cluster Analysis which are Single Linkage and Complete Linkage. The purpose of this study is to compare between Single Linkage and Complete Linkage in Agglomerative Hierarchical Cluster Analysis. The comparison of performances between these linkage methods was shown by using Kruskal-Wallis tes...

  8. PIXE cluster analysis of ancient ceramics from North Syria

    Energy Technology Data Exchange (ETDEWEB)

    Kieft, I.E.; Jamieson, D.N. E-mail: dnj@physics.unimelb.edu.au; Rout, B.; Szymanski, R.; Jamieson, A.S

    2002-05-01

    Tell Ahmar is a place situated on the east bank of the Euphrates river, near the Turkish border. The site was well known as a major trade centre in the Iron Age. From the many potsherds excavated from the site, it is necessary to distinguish pottery imported from outside from that made locally. Therefore a sample of the Iron Age potsherds that were excavated from this site was analyzed with particle induced X-ray emission to identify the characteristic composition of the different sherds. Potsherds from four other places near Tell Ahmar were also analyzed. The samples were irradiated with a scanned 3 MeV proton beam in the Melbourne nuclear microprobe. The composition of all sherds measured by this method was similar. However, cluster analysis of the 12 most abundant elements, ranging from Mn to Ba, revealed that the samples known to be from Tell Ahmar could be distinguished from those known to be from elsewhere.

  9. Higgs pair production: choosing benchmarks with cluster analysis

    Science.gov (United States)

    Carvalho, Alexandra; Dall'Osso, Martino; Dorigo, Tommaso; Goertz, Florian; Gottardo, Carlo A.; Tosi, Mia

    2016-04-01

    New physics theories often depend on a large number of free parameters. The phenomenology they predict for fundamental physics processes is in some cases drastically affected by the precise value of those free parameters, while in other cases is left basically invariant at the level of detail experimentally accessible. When designing a strategy for the analysis of experimental data in the search for a signal predicted by a new physics model, it appears advantageous to categorize the parameter space describing the model according to the corresponding kinematical features of the final state. A multi-dimensional test statistic can be used to gauge the degree of similarity in the kinematics predicted by different models; a clustering algorithm using that metric may allow the division of the space into homogeneous regions, each of which can be successfully represented by a benchmark point. Searches targeting those benchmarks are then guaranteed to be sensitive to a large area of the parameter space.

  10. Challenges for Cluster Analysis in a Virtual Observatory

    CERN Document Server

    Djorgovski, S G; Mahabal, A A; Williams, R; Granat, R; Stolorz, P

    2002-01-01

    There has been an unprecedented and continuing growth in the volume, quality, and complexity of astronomical data sets over the past few years, mainly through large digital sky surveys. Virtual Observatory (VO) concept represents a scientific and technological framework needed to cope with this data flood. We review some of the applied statistics and computing challenges posed by the analysis of large and complex data sets expected in the VO-based research. The challenges are driven both by the size and the complexity of the data sets (billions of data vectors in parameter spaces of tens or hundreds of dimensions), by the heterogeneity of the data and measurement errors, the selection effects and censored data, and by the intrinsic clustering properties (functional form, topology) of the data distribution in the parameter space of observed attributes. Examples of scientific questions one may wish to address include: objective determination of the numbers of object classes present in the data, and the membersh...

  11. New analysis in the field of open cluster Collinder 223

    OpenAIRE

    Tadross, A. L.

    2003-01-01

    The present study of the open cluster Collinder 223 (Cr 223) has been mainly depended on the photoelectric data of Claria & Lapasset (1991; hereafter CL91). This data of CL91 has been used with the cluster's image of AAO-DSS in order to re-investigate and improve the main parameters of Cr 223. Stellar count has been achieved to determine the stellar density, the cluster's center and the cluster's diameter. In addition, the luminosity function, mass function, and the total mass of the cluster ...

  12. The ACS Virgo Cluster Survey IV: Data Reduction Procedures for Surface Brightness Fluctuation Measurements with the Advanced Camera for Surveys

    CERN Document Server

    Mei, S; Tonry, J L; Jordan, A; Peng, E W; Côté, P; Ferrarese, L; Merritt, D; Milosavljevic, M; West, M J; Mei, Simona; Blakeslee, John P.; Tonry, John L.; Jordan, Andres; Peng, Eric W.; Cote, Patrick; Ferrarese, Laura; Merritt, David; Milosavljevic, Milos; West, Michael J.

    2005-01-01

    The Advanced Camera for Surveys (ACS) Virgo Cluster Survey is a large program to image 100 early-type Virgo galaxies using the F475W and F850LP bandpasses of the Wide Field Channel of the ACS instrument on the Hubble Space Telescope (HST). The scientific goals of this survey include an exploration of the three-dimensional structure of the Virgo Cluster and a critical examination of the usefulness of the globular cluster luminosity function as a distance indicator. Both of these issues require accurate distances for the full sample of 100 program galaxies. In this paper, we describe our data reduction procedures and examine the feasibility of accurate distance measurements using the method of surface brightness fluctuations (SBF) applied to the ACS Virgo Cluster Survey F850LP imaging. The ACS exhibits significant geometrical distortions due to its off-axis location in the HST focal plane; correcting for these distortions by resampling the pixel values onto an undistorted frame results in pixel correlations tha...

  13. Characterizing Heterogeneity within Head and Neck Lesions Using Cluster Analysis of Multi-Parametric MRI Data.

    Directory of Open Access Journals (Sweden)

    Marco Borri

    Full Text Available To describe a methodology, based on cluster analysis, to partition multi-parametric functional imaging data into groups (or clusters of similar functional characteristics, with the aim of characterizing functional heterogeneity within head and neck tumour volumes. To evaluate the performance of the proposed approach on a set of longitudinal MRI data, analysing the evolution of the obtained sub-sets with treatment.The cluster analysis workflow was applied to a combination of dynamic contrast-enhanced and diffusion-weighted imaging MRI data from a cohort of squamous cell carcinoma of the head and neck patients. Cumulative distributions of voxels, containing pre and post-treatment data and including both primary tumours and lymph nodes, were partitioned into k clusters (k = 2, 3 or 4. Principal component analysis and cluster validation were employed to investigate data composition and to independently determine the optimal number of clusters. The evolution of the resulting sub-regions with induction chemotherapy treatment was assessed relative to the number of clusters.The clustering algorithm was able to separate clusters which significantly reduced in voxel number following induction chemotherapy from clusters with a non-significant reduction. Partitioning with the optimal number of clusters (k = 4, determined with cluster validation, produced the best separation between reducing and non-reducing clusters.The proposed methodology was able to identify tumour sub-regions with distinct functional properties, independently separating clusters which were affected differently by treatment. This work demonstrates that unsupervised cluster analysis, with no prior knowledge of the data, can be employed to provide a multi-parametric characterization of functional heterogeneity within tumour volumes.

  14. Clustered data analysis under miscategorized ordinal outcomes and missing covariates.

    Science.gov (United States)

    Roy, Surupa; Rana, Subrata; Das, Kalyan

    2016-08-15

    The primary objective in this article is to look into the analysis of clustered ordinal model where complete information on one or more covariates cease to occur. In addition, we also focus on the analysis of miscategorized data that occur in many situations as outcomes are often classified into a category that does not truly reflect its actual state. A general model structure is assumed to accommodate the information that is obtained via surrogate variables. The theoretical motivation actually developed while encountering an orthodontic data to investigate the effects of age, sex and food habit on the extent of plaque deposit. The model we propose is quite flexible and is capable of tackling those additional noises like miscategorization and missingness, which occur in the data most frequently. A new two-step approach has been proposed to estimate the parameters of model framed. A rigorous simulation study has also been carried out to justify the validity of the model taken up for analysis. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26215983

  15. Cluster analysis application in research on pork quality determinants

    Science.gov (United States)

    Przybylski, W.; Wasiewicz, P.; Zieliński, P.; Gromadzka-Ostrowska, J.; Olczak, E.; Jaworska, D.; Niemyjski, S.; Santé-Lhoutellier, V.

    2010-09-01

    In this paper data mining methods were applied to investigate features determining high quality pork meat. The aim of the study was analysis of conditionality of the pork meat quality defined in coherence with HDL and LDL cholesterol concentration, plasma leptin, triglycerides, plasma glucose and serum. The research was carried out on 54 pigs. originated from crossbreeding of Naima sows with P76-PenArLan boars hybrids line. Meat quality parameters were evaluated in samples derived from the Longissimus (LD) muscle taken behind the last rib on the basis: the pH value, meat colour, drip loss, the RTN, intramuscular fat and glycolytic potential. The results of this study were elaborated by using R environment and show that cluster and regression analysis can be a useful tool for in-depth analysis of the determinants of the quality of pig meat in homogeneous populations of pigs. However, the question of determinants of the level of glycogen and fat in meat requires further research.

  16. Classification of persons attempting suicide. A review of cluster analysis research

    Directory of Open Access Journals (Sweden)

    Wołodźko, Tymoteusz

    2014-08-01

    Full Text Available Aim: Review of conclusions from cluster analysis research on suicide risk factors published after the year 1993. Methods: Search and analysis of cluster analysis research papers on suicidal behaviour. Results: Following groups where distinguished: (1 persons with comorbid mental disorders or with severe symptoms, (2 persons without mental disorders or with mild symptoms, (3 persons with personality disorders and externalizing psychopathology, (4 socially withdrawn persons with a tendency to avoid social contacts, (5 depressive persons Conclusions: Analysis of studies on characteristics of suicide attempters, with the application of cluster analysis, has indicated the possibility of differentiation of several groups of persons with significantly increased risk of suicide attempt. The reviewed cluster analysis research had multiple methodological limitations. Studies employing cluster analysis on large, representative and homogeneous population are needed.

  17. Sodium content as a predictor of the advanced evolution of globular cluster stars.

    Science.gov (United States)

    Campbell, Simon W; D'Orazi, Valentina; Yong, David; Constantino, Thomas N; Lattanzio, John C; Stancliffe, Richard J; Angelou, George C; Wylie-de Boer, Elizabeth C; Grundahl, Frank

    2013-06-13

    The asymptotic giant branch (AGB) phase is the final stage of nuclear burning for low-mass stars. Although Milky Way globular clusters are now known to harbour (at least) two generations of stars, they still provide relatively homogeneous samples of stars that are used to constrain stellar evolution theory. It is predicted by stellar models that the majority of cluster stars with masses around the current turn-off mass (that is, the mass of the stars that are currently leaving the main sequence phase) will evolve through the AGB phase. Here we report that all of the second-generation stars in the globular cluster NGC 6752--70 per cent of the cluster population--fail to reach the AGB phase. Through spectroscopic abundance measurements, we found that every AGB star in our sample has a low sodium abundance, indicating that they are exclusively first-generation stars. This implies that many clusters cannot reliably be used for star counts to test stellar evolution timescales if the AGB population is included. We have no clear explanation for this observation.

  18. Profiles of exercise motivation, physical activity, exercise habit, and academic performance in Malaysian adolescents: A cluster analysis

    OpenAIRE

    Hairul Anuar Hashim; Freddy Golok; Rosmatunisah Ali

    2011-01-01

    Objectives: This study examined Malaysian adolescents’ profiles of exercise motivation, exercise habit strength, academic performance, and levels of physical activity (PA) using cluster analysis.Methods: The sample (n = 300) consisted of 65.6% males and 34.4% females with a mean age of 13.40 ± 0.49. Statistical analysis was performed using cluster analysis.Results: Cluster analysis revealed three distinct cluster groups. Cluster 1 is characterized by a moderate level of PA, relatively high in...

  19. Cluster analysis of indermediate deep events in the southeastern Aegean

    Science.gov (United States)

    Ruscic, Marija; Becker, Dirk; Brüstle, Andrea; Meier, Thomas

    2015-04-01

    The Hellenic subduction zone (HSZ) is the seismically most active region in Europe where the oceanic African litosphere is subducting beneath the continental Aegean plate. Although there are numerous studies of seismicity in the HSZ, very few focus on the eastern HSZ and the Wadati-Benioff-Zone of the subducting slab in that part of the HSZ. In order to gain a better understanding of the geodynamic processes in the region a dense local seismic network is required. From September 2005 to March 2007, the temporary seismic network EGELADOS has been deployed covering the entire HSZ. It consisted of 56 onshore and 23 offshore broadband stations with addition of 19 stations from GEOFON, NOA and MedNet to complete the network. Here, we focus on a cluster of intermediate deep seismicity recorded by the EGELADOS network within the subducting African slab in the region of the Nysiros volcano. The cluster consists of 159 events at 80 to 190 km depth with magnitudes between 0.2 and 4.1 that were located using nonlinear location tool NonLinLoc. A double-difference earthquake relocation using the HypoDD software is performed with both manual readings of onset times and differential traveltimes obtained by separate cross correlation of P- and S-waveforms. Single event locations are compared to relative relocations. The event hypocenters fall into a thin zone close to the top of the slab defining its geometry with an accuracy of a few kilometers. At intermediate depth the slab is dipping towards the NW at an angle of about 30°. That means it is dipping steeper than in the western part of the HSZ. The edge of the slab is clearly defined by an abrupt disappearance of intermediate depths seismicity towards the NE. It is found approximately beneath the Turkish coastline. Furthermore, results of a cluster analysis based on the cross correlation of three-component waveforms are shown as a function of frequency and the spatio-temporal migration of the seismic activity is analysed.

  20. AVES: A Computer Cluster System approach for INTEGRAL Scientific Analysis

    Science.gov (United States)

    Federici, M.; Martino, B. L.; Natalucci, L.; Umbertini, P.

    The AVES computing system, based on an "Cluster" architecture is a fully integrated, low cost computing facility dedicated to the archiving and analysis of the INTEGRAL data. AVES is a modular system that uses the software resource manager (SLURM) and allows almost unlimited expandibility (65,536 nodes and hundreds of thousands of processors); actually is composed by 30 Personal Computers with Quad-Cores CPU able to reach the computing power of 300 Giga Flops (300x10{9} Floating point Operations Per Second), with 120 GB of RAM and 7.5 Tera Bytes (TB) of storage memory in UFS configuration plus 6 TB for users area. AVES was designed and built to solve growing problems raised from the analysis of the large data amount accumulated by the INTEGRAL mission (actually about 9 TB) and due to increase every year. The used analysis software is the OSA package, distributed by the ISDC in Geneva. This is a very complex package consisting of dozens of programs that can not be converted to parallel computing. To overcome this limitation we developed a series of programs to distribute the workload analysis on the various nodes making AVES automatically divide the analysis in N jobs sent to N cores. This solution thus produces a result similar to that obtained by the parallel computing configuration. In support of this we have developed tools that allow a flexible use of the scientific software and quality control of on-line data storing. The AVES software package is constituted by about 50 specific programs. Thus the whole computing time, compared to that provided by a Personal Computer with single processor, has been enhanced up to a factor 70.

  1. Genome-scale analysis of positional clustering of mouse testis-specific genes

    Directory of Open Access Journals (Sweden)

    Lee Bernett TK

    2005-01-01

    Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

  2. A generalized analysis of hydrophobic and loop clusters within globular protein sequences

    OpenAIRE

    Mornon Jean-Paul; Delettré Jean; Le Tuan Khanh; Eudes Richard; Callebaut Isabelle

    2007-01-01

    Abstract Background Hydrophobic Cluster Analysis (HCA) is an efficient way to compare highly divergent sequences through the implicit secondary structure information directly derived from hydrophobic clusters. However, its efficiency and application are currently limited by the need of user expertise. In order to help the analysis of HCA plots, we report here the structural preferences of hydrophobic cluster species, which are frequently encountered in globular domains of proteins. These spec...

  3. A functional clustering algorithm for the analysis of neural relationships

    CERN Document Server

    Feldt, S; Hetrick, V L; Berke, J D; Zochowski, M

    2008-01-01

    We formulate a novel technique for the detection of functional clusters in neural data. In contrast to prior network clustering algorithms, our procedure progressively combines spike trains and derives the optimal clustering cutoff in a simple and intuitive manner. To demonstrate the power of this algorithm to detect changes in network dynamics and connectivity, we apply it to both simulated data and real neural data obtained from the mouse hippocampus during exploration and slow-wave sleep. We observe state-dependent clustering patterns consistent with known neurophysiological processes involved in memory consolidation.

  4. A substructure analysis of the A3558 cluster complex

    OpenAIRE

    Bardelli, S.; Pisani, A; Ramella, M.; Zucca, E.; Zamorani, G.

    1998-01-01

    The "algorithm driven by the density estimate for the identification of clusters" (DEDICA, Pisani 1993, 1996) is applied to the A3558 cluster complex in order to find substructures. This complex, located at the center of the Shapley Concentration supercluster, is a chain formed by the ACO clusters A3556, A3558 and A3562 and the two poor clusters SC 1327-312 and SC 1329-313. We find a large number of clumps, indicating that strong dynamical processes are active. In particular, it is necessary ...

  5. Stochastic analysis of the extra clustering model for animal grouping.

    Science.gov (United States)

    Drmota, Michael; Fuchs, Michael; Lee, Yi-Wen

    2016-07-01

    We consider the extra clustering model which was introduced by Durand et al. (J Theor Biol 249(2):262-270, 2007) in order to describe the grouping of social animals and to test whether genetic relatedness is the main driving force behind the group formation process. Durand and François (J Math Biol 60(3):451-468, 2010) provided a first stochastic analysis of this model by deriving (amongst other things) asymptotic expansions for the mean value of the number of groups. In this paper, we will give a much finer analysis of the number of groups. More precisely, we will derive asymptotic expansions for all higher moments and give a complete characterization of the possible limit laws. In the most interesting case (neutral model), we will prove a central limit theorem with a surprising normalization. In the remaining cases, the limit law will be either a mixture of a discrete and continuous law or a discrete law. Our results show that, except of in degenerate cases, strong concentration around the mean value takes place only for the neutral model, whereas in the remaining cases there is also mass concentration away from the mean. PMID:26520857

  6. Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    He, Li'ao; Wang, Qianqian; Zhao, Yu; Liu, Li; Peng, Zhong

    2016-06-01

    Supervised learning methods (eg. PLS-DA, SVM, etc.) have been widely used with laser-induced breakdown spectroscopy (LIBS) to classify materials; however, it may induce a low correct classification rate if a test sample type is not included in the training dataset. Unsupervised cluster analysis methods (hierarchical clustering analysis, K-means clustering analysis, and iterative self-organizing data analysis technique) are investigated in plastics classification based on the line intensities of LIBS emission in this paper. The results of hierarchical clustering analysis using four different similarity measuring methods (single linkage, complete linkage, unweighted pair-group average, and weighted pair-group average) are compared. In K-means clustering analysis, four kinds of choosing initial centers methods are applied in our case and their results are compared. The classification results of hierarchical clustering analysis, K-means clustering analysis, and ISODATA are analyzed. The experiment results demonstrated cluster analysis methods can be applied to plastics discrimination with LIBS. supported by Beijing Natural Science Foundation of China (No. 4132063)

  7. The Norma Cluster (ACO 3627): I. A Dynamical Analysis of the Most Massive Cluster in the Great Attractor

    CERN Document Server

    Woudt, P A; Lucey, J; Fairall, A P; Moore, S A W

    2007-01-01

    A detailed dynamical analysis of the nearby rich Norma cluster (ACO 3627) is presented. From radial velocities of 296 cluster members, we find a mean velocity of 4871 +/- 54 km/s and a velocity dispersion of 925 km/s. The mean velocity of the E/S0 population (4979 +/- 85 km/s) is offset with respect to that of the S/Irr population (4812 +/- 70 km/s) by `Delta' v = 164 km/s in the cluster rest frame. This offset increases towards the core of the cluster. The E/S0 population is free of any detectable substructure and appears relaxed. Its shape is clearly elongated with a position angle that is aligned along the dominant large-scale structures in this region, the so-called Norma wall. The central cD galaxy has a very large peculiar velocity of 561 km/s which is most probably related to an ongoing merger at the core of the cluster. The spiral/irregular galaxies reveal a large amount of substructure; two dynamically distinct subgroups within the overall spiral-population have been identified, located along the Nor...

  8. Leukaemia clusters in childhood: geographical analysis in Britain

    Energy Technology Data Exchange (ETDEWEB)

    Knox, E.G.

    1994-08-01

    Study objective - To validate previously demonstrated spatial clustering of childhood leukaemias by showing relative proximities of selected map features to cluster locations, compared with control locations. If clusters are real, then they are likely to be close to a determining hazard. Design -Cluster postcode loci and partially matched control postcodes were compared in terms of distances to railways, main roads, churches, surface water, woodland areas, and railside industrial installations. Further supporting comparisons between non-clustered cases and random postcode controls with those map features representable as single grid points were made. Setting -England, Wales, and Scotland 1966-83. Subjects - Grid referenced registrations of 9406 childhood leukaemias and non-Hodgkin`s lymphomas, including 264 pairs (or more) separated by <150 m, and grid references of random postcodes in equal numbers. Main results - the 264 clusters showed relative proximities (or the inverse) to several map features, of which the most powerful was an association with railways. The non-railway associations seemed to be statistically indirect. Some railside industrial installations, identified from a railway atlas, also showed relative proximities to leukaemia clusters, as well as to non-clustered cases, but did not ``explain`` the railway effect. These installations, with seemingly independent geographical associations, included oil refineries, petrochemical plants, oil storage and oil distribution depots, power stations, and steelworks. Conclusions - The previously shown childhood leukaemia clusters are confirmed to be non-random through their systematic associations with certain map features when compared with the control locations. The common patterns of close association of clustered and non-clustered cases imply a common aetiological component arising from a common environmental hazard - namely the use of fossil fuels, especially petroleum. (UK)

  9. [Advances in clustered regularly interspaced short palindromic repeats--a review].

    Science.gov (United States)

    Wang, Lili; He, Jin; Wang, Jieping

    2011-08-01

    The recently discovered Clustered Regularly Interspaced Short Palindromic Repeat (CRISPRs) can protect bacteria and archaea with adaptive and heritable defense systems against the invasion of phage- and plasmid- associated mobile genetic elements. Here, we review the structure, diversity, mechanism of interference and self versus non-self discrimination of CRISPR systems. We also discuss the potential applications of this novel interference system.

  10. Multidimensional cluster stability analysis from a Brazilian Bradyrhizobium sp. RFLP/PCR data set

    Science.gov (United States)

    Milagre, S. T.; Maciel, C. D.; Shinoda, A. A.; Hungria, M.; Almeida, J. R. B.

    2009-05-01

    The taxonomy of the N2-fixing bacteria belonging to the genus Bradyrhizobium is still poorly refined, mainly due to conflicting results obtained by the analysis of the phenotypic and genotypic properties. This paper presents an application of a method aiming at the identification of possible new clusters within a Brazilian collection of 119 Bradyrhizobium strains showing phenotypic characteristics of B. japonicum and B. elkanii. The stability was studied as a function of the number of restriction enzymes used in the RFLP-PCR analysis of three ribosomal regions with three restriction enzymes per region. The method proposed here uses clustering algorithms with distances calculated by average-linkage clustering. Introducing perturbations using sub-sampling techniques makes the stability analysis. The method showed efficacy in the grouping of the species B. japonicum and B. elkanii. Furthermore, two new clusters were clearly defined, indicating possible new species, and sub-clusters within each detected cluster.

  11. Mesoscopic analysis of networks: applications to exploratory analysis and data clustering

    CERN Document Server

    Granell, Clara; Arenas, Alex

    2011-01-01

    We investigate the adaptation and performance of modularity-based algorithms, designed in the scope of complex networks, to analyze the mesoscopic structure of correlation matrices. Using a multi-resolution analysis we are able to describe the structure of the data in terms of clusters at different topological levels. We demonstrate the applicability of our findings in two different scenarios: to analyze the neural connectivity of the nematode {\\em Caenorhabditis elegans}, and to automatically classify a typical benchmark of unsupervised clustering, the Iris data set, with considerable success.

  12. Sequential Combination Methods forData Clustering Analysis

    Institute of Scientific and Technical Information of China (English)

    钱 涛; Ching Y.Suen; 唐远炎

    2002-01-01

    This paper proposes the use of more than one clustering method to improve clustering performance. Clustering is an optimization procedure based on a specific clustering criterion. Clustering combination can be regardedasatechnique that constructs and processes multiple clusteringcriteria.Sincetheglobalandlocalclusteringcriteriaarecomplementary rather than competitive, combining these two types of clustering criteria may enhance theclustering performance. In our past work, a multi-objective programming based simultaneous clustering combination algorithmhasbeenproposed, which incorporates multiple criteria into an objective function by a weighting method, and solves this problem with constrained nonlinear optimization programming. But this algorithm has high computationalcomplexity.Hereasequential combination approach is investigated, which first uses the global criterion based clustering to produce an initial result, then uses the local criterion based information to improve the initial result with aprobabilisticrelaxation algorithm or linear additive model.Compared with the simultaneous combination method, sequential combination haslow computational complexity. Results on some simulated data and standard test data arereported.Itappearsthatclustering performance improvement can be achieved at low cost through sequential combination.

  13. Gennclus: New Models for General Nonhierarchical Clustering Analysis.

    Science.gov (United States)

    Desarbo, Wayne S.

    1982-01-01

    A general class of nonhierarchical clustering models and associated algorithms for fitting them are presented. These models generalize the Shepard-Arabie Additive clusters model. Two applications are given and extensions to three-way models, nonmetric analyses, and other model specifications are provided. (Author/JKS)

  14. Alternatives to Multilevel Modeling for the Analysis of Clustered Data

    Science.gov (United States)

    Huang, Francis L.

    2016-01-01

    Multilevel modeling has grown in use over the years as a way to deal with the nonindependent nature of observations found in clustered data. However, other alternatives to multilevel modeling are available that can account for observations nested within clusters, including the use of Taylor series linearization for variance estimation, the design…

  15. Multilevel Analysis Methods for Partially Nested Cluster Randomized Trials

    Science.gov (United States)

    Sanders, Elizabeth A.

    2011-01-01

    This paper explores multilevel modeling approaches for 2-group randomized experiments in which a treatment condition involving clusters of individuals is compared to a control condition involving only ungrouped individuals, otherwise known as partially nested cluster randomized designs (PNCRTs). Strategies for comparing groups from a PNCRT in the…

  16. MASSCLEAN - MASSive CLuster Evolution and ANalysis Package - Description and Tests

    CERN Document Server

    Popescu, Bogdan

    2008-01-01

    We present MASSCLEAN, a new, sophisticated and robust stellar cluster image and photometry simulation package. This package is able to create color-magnitude diagrams and standard FITS images in any of the traditional optical and near-infrared bands based on cluster characteristics input by the user, including but not limited to distance, age, mass, radius and extinction. At the limit of very distant, unresolved clusters, we have checked the integrated colors created in MASSCLEAN against those from other single stellar population models with consistent results. We have also tested models which provide a reasonable estimate of the field star contamination in images and color-magnitude diagrams. We demonstrate the package by simulating images and color-magnitude diagrams of well known massive Milky Way clusters and compare their appearance to real data. Because the algorithm populates the cluster with a discrete number of tenable stars, it can be used as part of a Monte Carlo Method to derive the probabilistic ...

  17. Application and research of fuzzy clustering analysis algorithm under “micro-lecture” English teaching mode

    Directory of Open Access Journals (Sweden)

    Shi Ying

    2016-01-01

    Full Text Available The fuzzy clustering algorithm is to classify the data or indicators with a greater degree of similarity based on the principle of the same type of individuals possessing a greater similarity, and different types of individuals possessing differences, establish clear category boundaries, form any shape of relationship clusters in the solving process, and input the research indicators at random, in order to accurately analyze the significance of the indicators in the algorithm. The evaluation value of the clustering analysis can be obtained by the establishment of the fuzzy factor set based on the membership analysis, and the evaluation result can be analyzed through reference to the evaluation indicators of the fuzzy clustering analysis. The “micro-lecture” English teaching mode can be estimated and the analysis indicators can be rationally established based on the fuzzy clustering analysis algorithm, with better algorithm applicability.

  18. Advanced Fingerprint Analysis Project Fingerprint Constituents

    Energy Technology Data Exchange (ETDEWEB)

    GM Mong; CE Petersen; TRW Clauss

    1999-10-29

    The work described in this report was focused on generating fundamental data on fingerprint components which will be used to develop advanced forensic techniques to enhance fluorescent detection, and visualization of latent fingerprints. Chemical components of sweat gland secretions are well documented in the medical literature and many chemical techniques are available to develop latent prints, but there have been no systematic forensic studies of fingerprint sweat components or of the chemical and physical changes these substances undergo over time.

  19. An Analysis of Particle Swarm Optimization with Data Clustering-Technique for Optimization in Data Mining

    Directory of Open Access Journals (Sweden)

    Amreen Khan,

    2010-07-01

    Full Text Available Data clustering is a popular approach for automatically finding classes, concepts, or groups of patterns. Clustering aims at representing large datasets by a fewer number of prototypes or clusters. It brings simplicity in modeling data and thus plays a central role in the process of knowledge discovery and data mining. Data mining tasks require fast and accurate partitioning of huge datasets, which may come with a variety of attributes or features. This imposes severe computational requirements on the relevant clustering techniques. A family of bio-inspired algorithms, well-known as Swarm Intelligence (SI has recently emerged that meets these requirements and has successfully been applied to a number ofreal world clustering problems. This paper looks into the use ofParticle Swarm Optimization for cluster analysis. The effectiveness of Fuzzy C-means clustering provides enhanced performance and maintains more diversity in the swarm and also allows the particles to be robust to trace the changing environment.

  20. RELIABILITY ANALYSIS OF RING, AGENT AND CLUSTER BASED DISTRIBUTED SYSTEMS

    Directory of Open Access Journals (Sweden)

    R.SEETHALAKSHMI

    2011-08-01

    Full Text Available The introduction of pervasive devices and mobile devices has led to immense growth of real time distributed processing. In such context reliability of the computing environment is very important. Reliability is the probability that the devices, links, processes, programs and files work efficiently for the specified period of time and in the specified condition. Distributed systems are available as conventional ring networks, clusters and agent based systems. Reliability of such systems is focused. These networks are heterogeneous and scalable in nature. There are several factors, which are to be considered for reliability estimation. These include the application related factors like algorithms, data-set sizes, memory usage pattern, input-output, communication patterns, task granularity and load-balancing. It also includes the hardware related factors like processor architecture, memory hierarchy, input-output configuration and network. The software related factors concerning reliability are operating systems, compiler, communication protocols, libraries and preprocessor performance. In estimating the reliability of a system, the performance estimation is an important aspect. Reliability analysis is approached using probability.

  1. Abundance analysis of the outer halo globular cluster Palomar 14

    CERN Document Server

    Caliskan, S; Grebel, K E

    2011-01-01

    We determine the elemental abundances of nine red giant stars belonging to Palomar 14 (Pal 14). Pal 14 is an outer halo globular cluster (GC) at a distance of \\sim 70 kpc. Our abundance analysis is based on high-resolution spectra and one-dimensional stellar model atmospheres.We derived the abundances for the iron peak elements Sc, V, Cr, Mn, Co, Ni, the {\\alpha}-elements O, Mg, Si, Ca, Ti, the light odd element Na, and the neutron-capture elements Y, Zr, Ba, La, Ce, Nd, Eu, Dy, and Cu. Our data do not permit us to investigate light element (i.e., O to Mg) abundance variations. The neutron-capture elements show an r-process signature. We compare our measurements with the abundance ratios of inner and other outer halo GCs, halo field stars, GCs of recognized extragalactic origin, and stars in dwarf spheroidal galaxies (dSphs). The abundance pattern of Pal 14 is almost identical to those of Pal 3 and Pal 4, the next distant members of the outer halo GC population after Pal 14. The abundance pattern of Pal 14 is...

  2. Cluster Computing For Real Time Seismic Array Analysis.

    Science.gov (United States)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by

  3. The Study about the Analysis of Responsiveness Pair Clustering to Social Network Bipartite Graph

    OpenAIRE

    Otsuki, Akira; Kawamura, Masayoshi

    2013-01-01

    In this study, regional (cities, towns and villages) data and tweet data are obtained from Twitter, and extract information of purchase information (Where and what bought) from the tweet data by morphological analysis and rule-based dependency analysis. Then, the "The regional information" and "The information of purchase history (Where and what bought information)" are captured as bipartite graph, and Responsiveness Pair Clustering analysis (a clustering using correspondence analysis as simi...

  4. Advanced Software Methods for Physics Analysis

    International Nuclear Information System (INIS)

    Unprecedented data analysis complexity is experienced in modern High Energy Physics experiments. The complexity arises from the growing size of recorded data samples, the large number of data analyses performed by different users in each single experiment, and the level of complexity of each single analysis. For this reason, the requirements on software for data analysis impose a very high level of reliability. We present two concrete examples: the former from BaBar experience with the migration to a new Analysis Model with the definition of a new model for the Event Data Store, the latter about a toolkit for multivariate statistical and parametric Monte Carlo analysis developed using generic programming

  5. DNA splice site sequences clustering method for conservativeness analysis

    Institute of Scientific and Technical Information of China (English)

    Quanwei Zhang; Qinke Peng; Tao Xu

    2009-01-01

    DNA sequences that are near to splice sites have remarkable conservativeness,and many researchers have contributed to the prediction of splice site.In order to mine the underlying biological knowledge,we analyze the conservativeness of DNA splice site adjacent sequences by clustering.Firstly,we propose a kind of DNA splice site sequences clustering method which is based on DBSCAN,and use four kinds of dissimilarity calculating methods.Then,we analyze the conservative feature of the clustering results and the experimental data set.

  6. Nonlinear analysis of nano-cluster doped fiber

    Institute of Scientific and Technical Information of China (English)

    LIU Gang; ZHANG Ru

    2007-01-01

    There are prominent nonlinear characteristics that we hope for the semiconductor nano-clusters doped fiber. Refractive index of fiber core can be effectively changed by adulteration. This technology can provide a new method for developing photons components. Because the semiconductor nano-cluster has quantum characteristics,Based on first-order perturbation theory and classical theory of fiber,we deduced refractive index expressions of fiber core,which was semiconductor nano-cluster doped fiber. Finally,third-order nonlinear coefficient equation was gained. Using this equation,we calculated SMF-28 fiber nonlinear coefficient. The equation shows that new third-order coefficient was greater.

  7. Cluster Analysis in Patients with GOLD 1 Chronic Obstructive Pulmonary Disease.

    Directory of Open Access Journals (Sweden)

    Philippe Gagnon

    Full Text Available We hypothesized that heterogeneity exists within the Global Initiative for Chronic Obstructive Lung Disease (GOLD 1 spirometric category and that different subgroups could be identified within this GOLD category.Pre-randomization study participants from two clinical trials were symptomatic/asymptomatic GOLD 1 chronic obstructive pulmonary disease (COPD patients and healthy controls. A hierarchical cluster analysis used pre-randomization demographics, symptom scores, lung function, peak exercise response and daily physical activity levels to derive population subgroups.Considerable heterogeneity existed for clinical variables among patients with GOLD 1 COPD. All parameters, except forced expiratory volume in 1 second (FEV1/forced vital capacity (FVC, had considerable overlap between GOLD 1 COPD and controls. Three-clusters were identified: cluster I (18 [15%] COPD patients; 105 [85%] controls; cluster II (45 [80%] COPD patients; 11 [20%] controls; and cluster III (22 [92%] COPD patients; 2 [8%] controls. Apart from reduced diffusion capacity and lower baseline dyspnea index versus controls, cluster I COPD patients had otherwise preserved lung volumes, exercise capacity and physical activity levels. Cluster II COPD patients had a higher smoking history and greater hyperinflation versus cluster I COPD patients. Cluster III COPD patients had reduced physical activity versus controls and clusters I and II COPD patients, and lower FEV1/FVC versus clusters I and II COPD patients.The results emphasize heterogeneity within GOLD 1 COPD, supporting an individualized therapeutic approach to patients.www.clinicaltrials.gov. NCT01360788 and NCT01072396.

  8. Identifying the Clusters within Nonmotor Manifestations in Early Parkinson's Disease by Using Unsupervised Cluster Analysis

    OpenAIRE

    Hui-Jun Yang; Young Eun Kim; Ji Young Yun; Han-Joon Kim; Beom Seok Jeon

    2014-01-01

    BACKGROUND: Classical and data-driven classifications of Parkinson's disease (PD) are based primarily on motor symptoms, with little attention being paid to the clustering of nonmotor manifestations. METHODS: Clinical data on demographic, motor and nonmotor features, including the Korean version of the sniffin' stick (KVSS) test results, and responses to the screening questionnaire of the nonmotor features were collected from 56 PD patients with disease onset within 3 years. Nonmotor subgroup...

  9. Cluster analysis of Wisconsin Breast Cancer dataset using self-organizing maps.

    Science.gov (United States)

    Pantazi, Stefan; Kagolovsky, Yuri; Moehr, Jochen R

    2002-01-01

    This work deals with multidimensional data analysis, precisely cluster analysis applied to a very well known dataset, the Wisconsin Breast Cancer dataset. After the introduction of the topics of the paper the cluster analysis concept is shortly explained and different methods of cluster analysis are compared. Further, the Kohonen model of self-organizing maps is briefly described together with an example and with explanations of how the cluster analysis can be performed using the maps. After describing the data set and the methodology used for the analysis we present the findings using textual as well as visual descriptions and conclude that the approach is a useful complement for assessing multidimensional data and that this dataset has been overused for automated decision benchmarking purposes, without a thorough analysis of the data it contains. PMID:15460731

  10. caBIG™ VISDA: Modeling, visualization, and discovery for cluster analysis of genomic data

    OpenAIRE

    Xuan Jianhua; Wang Zuyi; Miller David J; Li Huai; Zhu Yitan; Clarke Robert; Hoffman Eric P; Wang Yue

    2008-01-01

    Abstract Background The main limitations of most existing clustering methods used in genomic data analysis include heuristic or random algorithm initialization, the potential of finding poor local optima, the lack of cluster number detection, an inability to incorporate prior/expert knowledge, black-box and non-adaptive designs, in addition to the curse of dimensionality and the discernment of uninformative, uninteresting cluster structure associated with confounding variables. Results In an ...

  11. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms

    Science.gov (United States)

    Esplin, M Sean; Manuck, Tracy A.; Varner, Michael W.; Christensen, Bryce; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Huang, Hao; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M.; Ilekis, John

    2015-01-01

    Objective We sought to employ an innovative tool based on common biological pathways to identify specific phenotypes among women with spontaneous preterm birth (SPTB), in order to enhance investigators' ability to identify to highlight common mechanisms and underlying genetic factors responsible for SPTB. Study Design A secondary analysis of a prospective case-control multicenter study of SPTB. All cases delivered a preterm singleton at SPTB ≤34.0 weeks gestation. Each woman was assessed for the presence of underlying SPTB etiologies. A hierarchical cluster analysis was used to identify groups of women with homogeneous phenotypic profiles. One of the phenotypic clusters was selected for candidate gene association analysis using VEGAS software. Results 1028 women with SPTB were assigned phenotypes. Hierarchical clustering of the phenotypes revealed five major clusters. Cluster 1 (N=445) was characterized by maternal stress, cluster 2 (N=294) by premature membrane rupture, cluster 3 (N=120) by familial factors, and cluster 4 (N=63) by maternal comorbidities. Cluster 5 (N=106) was multifactorial, characterized by infection (INF), decidual hemorrhage (DH) and placental dysfunction (PD). These three phenotypes were highly correlated by Chi-square analysis [PD and DH (p<2.2e-6); PD and INF (p=6.2e-10); INF and DH (p=0.0036)]. Gene-based testing identified the INS (insulin) gene as significantly associated with cluster 3 of SPTB. Conclusion We identified 5 major clusters of SPTB based on a phenotype tool and hierarchal clustering. There was significant correlation between several of the phenotypes. The INS gene was associated with familial factors underlying SPTB. PMID:26070700

  12. First PPMXL photometric analysis of open cluster Ruprecht 15

    Institute of Scientific and Technical Information of China (English)

    Ashraf Latif Tadross

    2012-01-01

    We present the first in a series studying the astrophysical parameters of open clusters using the PPMXL* database whose data are applied to study Ruprecht 15.The astrophysical parameters of Ruprecht 15 have been estimated for the first time.

  13. Functional clustering algorithm for the analysis of dynamic network data

    OpenAIRE

    Feldt, S.; Waddell, J; Hetrick, V. L.; Berke, J. D.; Żochowski, M

    2009-01-01

    We formulate a technique for the detection of functional clusters in discrete event data. The advantage of this algorithm is that no prior knowledge of the number of functional groups is needed, as our procedure progressively combines data traces and derives the optimal clustering cutoff in a simple and intuitive manner through the use of surrogate data sets. In order to demonstrate the power of this algorithm to detect changes in network dynamics and connectivity, we apply it to both simulat...

  14. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome

    Energy Technology Data Exchange (ETDEWEB)

    Lalonde, Michel, E-mail: mlalonde15@rogers.com; Wassenaar, Richard [Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Wells, R. Glenn; Birnie, David; Ruddy, Terrence D. [Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7 (Canada)

    2014-07-15

    Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster

  15. Cluster analysis in severe emphysema subjects using phenotype and genotype data: an exploratory investigation

    Directory of Open Access Journals (Sweden)

    Martinez Fernando J

    2010-03-01

    Full Text Available Abstract Background Numerous studies have demonstrated associations between genetic markers and COPD, but results have been inconsistent. One reason may be heterogeneity in disease definition. Unsupervised learning approaches may assist in understanding disease heterogeneity. Methods We selected 31 phenotypic variables and 12 SNPs from five candidate genes in 308 subjects in the National Emphysema Treatment Trial (NETT Genetics Ancillary Study cohort. We used factor analysis to select a subset of phenotypic variables, and then used cluster analysis to identify subtypes of severe emphysema. We examined the phenotypic and genotypic characteristics of each cluster. Results We identified six factors accounting for 75% of the shared variability among our initial phenotypic variables. We selected four phenotypic variables from these factors for cluster analysis: 1 post-bronchodilator FEV1 percent predicted, 2 percent bronchodilator responsiveness, and quantitative CT measurements of 3 apical emphysema and 4 airway wall thickness. K-means cluster analysis revealed four clusters, though separation between clusters was modest: 1 emphysema predominant, 2 bronchodilator responsive, with higher FEV1; 3 discordant, with a lower FEV1 despite less severe emphysema and lower airway wall thickness, and 4 airway predominant. Of the genotypes examined, membership in cluster 1 (emphysema-predominant was associated with TGFB1 SNP rs1800470. Conclusions Cluster analysis may identify meaningful disease subtypes and/or groups of related phenotypic variables even in a highly selected group of severe emphysema subjects, and may be useful for genetic association studies.

  16. Assessment of Random Assignment in Training and Test Sets using Generalized Cluster Analysis Technique

    Directory of Open Access Journals (Sweden)

    Sorana D. BOLBOACĂ

    2011-06-01

    Full Text Available Aim: The properness of random assignment of compounds in training and validation sets was assessed using the generalized cluster technique. Material and Method: A quantitative Structure-Activity Relationship model using Molecular Descriptors Family on Vertices was evaluated in terms of assignment of carboquinone derivatives in training and test sets during the leave-many-out analysis. Assignment of compounds was investigated using five variables: observed anticancer activity and four structure descriptors. Generalized cluster analysis with K-means algorithm was applied in order to investigate if the assignment of compounds was or not proper. The Euclidian distance and maximization of the initial distance using a cross-validation with a v-fold of 10 was applied. Results: All five variables included in analysis proved to have statistically significant contribution in identification of clusters. Three clusters were identified, each of them containing both carboquinone derivatives belonging to training as well as to test sets. The observed activity of carboquinone derivatives proved to be normal distributed on every. The presence of training and test sets in all clusters identified using generalized cluster analysis with K-means algorithm and the distribution of observed activity within clusters sustain a proper assignment of compounds in training and test set. Conclusion: Generalized cluster analysis using the K-means algorithm proved to be a valid method in assessment of random assignment of carboquinone derivatives in training and test sets.

  17. A Spitzer Survey of Young Stellar Clusters within One Kiloparsec of the Sun: Cluster Core Extraction and Basic Structural Analysis

    CERN Document Server

    Gutermuth, R A; Myers, P C; Allen, L E; Pipher, J L; Fazio, G G

    2009-01-01

    We present a uniform mid-infrared imaging and photometric survey of 36 young, nearby, star-forming clusters and groups using {\\it Spitzer} IRAC and MIPS. We have confidently identified and classified 2548 young stellar objects using recently established mid-infrared color-based methods. We have devised and applied a new algorithm for the isolation of local surface density enhancements from point source distributions, enabling us to extract the overdense cores of the observed star forming regions for further analysis. We have compiled several basic structural measurements of these cluster cores from the data, such as mean surface densities of sources, cluster core radii, and aspect ratios, in order to characterize the ranges for these quantities. We find that a typical cluster core is 0.39 pc in radius, has 26 members with infrared excess in a ratio of Class II to Class I sources of 3.7, is embedded in a $A_K$=0.8 mag cloud clump, and has a surface density of 60 pc$^{-2}$. We examine the nearest neighbor dista...

  18. Marketing Mix Formulation for Higher Education: An Integrated Analysis Employing Analytic Hierarchy Process, Cluster Analysis and Correspondence Analysis

    Science.gov (United States)

    Ho, Hsuan-Fu; Hung, Chia-Chi

    2008-01-01

    Purpose: The purpose of this paper is to examine how a graduate institute at National Chiayi University (NCYU), by using a model that integrates analytic hierarchy process, cluster analysis and correspondence analysis, can develop effective marketing strategies. Design/methodology/approach: This is primarily a quantitative study aimed at…

  19. Evidence-Based Clustering of Reads and Taxonomic Analysis of Metagenomic Data

    Science.gov (United States)

    Folino, Gianluigi; Gori, Fabio; Jetten, Mike S. M.; Marchiori, Elena

    The rapidly emerging field of metagenomics seeks to examine the genomic content of communities of organisms to understand their roles and interactions in an ecosystem. In this paper we focus on clustering methods and their application to taxonomic analysis of metagenomic data. Clustering analysis for metagenomics amounts to group similar partial sequences, such as raw sequence reads, into clusters in order to discover information about the internal structure of the considered dataset, or the relative abundance of protein families. Different methods for clustering analysis of metagenomic datasets have been proposed. Here we focus on evidence-based methods for clustering that employ knowledge extracted from proteins identified by a BLASTx search (proxygenes). We consider two clustering algorithms introduced in previous works and a new one. We discuss advantages and drawbacks of the algorithms, and use them to perform taxonomic analysis of metagenomic data. To this aim, three real-life benchmark datasets used in previous work on metagenomic data analysis are used. Comparison of the results indicates satisfactory coherence of the taxonomies output by the three algorithms, with respect to phylogenetic content at the class level and taxonomic distribution at phylum level. In general, the experimental comparative analysis substantiates the effectiveness of evidence-based clustering methods for taxonomic analysis of metagenomic data.

  20. A clustering analysis of lipoprotein diameters in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Frazier-Wood Alexis C

    2011-12-01

    Full Text Available Abstract Background The presence of smaller low-density lipoproteins (LDL has been associated with atherosclerosis risk, and the insulin resistance (IR underlying the metabolic syndrome (MetS. In addition, some research has supported the association of very low-, low- and high-density lipoprotein (VLDL HDL particle diameters with components of the metabolic syndrome (MetS, although this has been the focus of less research. We aimed to explore the relationship of VLDL, LDL and HDL diameters to MetS and its features, and by clustering individuals by their diameters of VLDL, LDL and HDL particles, to capture information across all three fractions of lipoprotein into a unified phenotype. Methods We used nuclear magnetic resonance spectroscopy measurements on fasting plasma samples from a general population sample of 1,036 adults (mean ± SD, 48.8 ± 16.2 y of age. Using latent class analysis, the sample was grouped by the diameter of their fasting lipoproteins, and mixed effects models tested whether the distribution of MetS components varied across the groups. Results Eight discrete groups were identified. Two groups (N = 251 were enriched with individuals meeting criteria for the MetS, and were characterized by the smallest LDL/HDL diameters. One of those two groups, one was additionally distinguished by large VLDL, and had significantly higher blood pressure, fasting glucose, triglycerides, and waist circumference (WC; P Conclusions While small LDL diameters remain associated with IR and the MetS, the occurrence of these in conjunction with a shift to overall larger VLDL diameter may identify those with the highest fasting glucose, TG and WC within the MetS. If replicated, the association of this phenotype with more severe IR-features indicated that it may contribute to identifying of those most at risk for incident type II diabetes and cardiometabolic disease.

  1. Mass spectrometric analysis with cluster projectiles and coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B.D.

    1992-01-01

    Methods for maximizing the amount of secondary ion information, per primary projectile, are described. The method is based on time-of-flight mass spectrometry and event-by-event coincidence counting. The information obtained from coincidence counting time-of-flight mass spectrometry includes: (a) surface composition, (b) relative concentrations, and (c) degree of intermolecular mixing. The technique was applied to the study of an important new class of polymers: polymer blends. Secondary ion mass spectrometry, when applied to the analysis of synthetic polymers, induces backbone fragmentation which is characteristic of the homopolymer. The characteristic fingerprint peaks from polystyrene and poly(vinyl methyl ether) were used to identify the presence of these two polymers in a polymer blend. The percent coincidence between the characteristic secondary ions from each component of the blend were used to determine both the relative concentration and the degree of molecular mixing. Results indicate molecular segregation of the two polymers on the film surface. The largest degree of segregation was determined for the phase separated blends. The performance of this technique depends on the desorption efficiency of the primary projectiles. In practice one seeks primary ions which are surface sensitive, have controllable parameters such as size, velocity, and charge state, and generate high secondary ion yields. Focus was placed on the use of keV organic cluster projectiles to meet these criteria. Of interest to this study were C[sub 18] (chrysene), C[sub 24] (coronene), and C[sub 60] (buckminster-fulleren). Results indicate enhanced secondary ion yields for C[sub 60]. For example, when CsI is bombarded with 30 keV C[sub 60], the yields for I[sup [minus

  2. Identification and comparative analysis of the protocadherin cluster in a reptile, the green anole lizard.

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Jiang

    Full Text Available BACKGROUND: The vertebrate protocadherins are a subfamily of cell adhesion molecules that are predominantly expressed in the nervous system and are believed to play an important role in establishing the complex neural network during animal development. Genes encoding these molecules are organized into a cluster in the genome. Comparative analysis of the protocadherin subcluster organization and gene arrangements in different vertebrates has provided interesting insights into the history of vertebrate genome evolution. Among tetrapods, protocadherin clusters have been fully characterized only in mammals. In this study, we report the identification and comparative analysis of the protocadherin cluster in a reptile, the green anole lizard (Anolis carolinensis. METHODOLOGY/PRINCIPAL FINDINGS: We show that the anole protocadherin cluster spans over a megabase and encodes a total of 71 genes. The number of genes in the anole protocadherin cluster is significantly higher than that in the coelacanth (49 genes and mammalian (54-59 genes clusters. The anole protocadherin genes are organized into four subclusters: the delta, alpha, beta and gamma. This subcluster organization is identical to that of the coelacanth protocadherin cluster, but differs from the mammalian clusters which lack the delta subcluster. The gene number expansion in the anole protocadherin cluster is largely due to the extensive gene duplication in the gammab subgroup. Similar to coelacanth and elephant shark protocadherin genes, the anole protocadherin genes have experienced a low frequency of gene conversion. CONCLUSIONS/SIGNIFICANCE: Our results suggest that similar to the protocadherin clusters in other vertebrates, the evolution of anole protocadherin cluster is driven mainly by lineage-specific gene duplications and degeneration. Our analysis also shows that loss of the protocadherin delta subcluster in the mammalian lineage occurred after the divergence of mammals and reptiles

  3. Bohai crude oil identification by gas chromatogram fingerprinting quantitative analysis coupled with cluster analysis

    Institute of Scientific and Technical Information of China (English)

    SUN Peiyan; BAO Mutai; GAO Zhenhui; LI Mei; ZHAO Yuhui; WANG Xinping; ZHOU Qing; WANG Xiulin

    2006-01-01

    By gas chromatogram, six crude oils fingerprinting distributed in four oilfields and four oil platforms were analyzed and the corresponding normal paraffin hydrocarbon (including pristane and phytane) concentration was obtained by the internal standard method. The normal paraffin hydrocarbon distribution patterns of six crude oils were built and compared. The cluster analysis on the normal paraffin hydrocarbon concentration was conducted for classification and some ratios of oils were used for oils comparison. The results indicated: there was a clear difference within different crude oils in different oil fields and a small difference between the crude oils in the same oil platform. The normal paraffin hydrocarbon distribution pattern and ratios, as well as the cluster analysis on the normal paraffin hydrocarbon concentration can have a better differentiation result for the crude oils with small difference than the original gas chromatogram.

  4. Advanced transport systems analysis, modeling, and evaluation of performances

    CERN Document Server

    Janić, Milan

    2014-01-01

    This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...

  5. Two-dimensional ordered cluster analysis of component groups in self-organization

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-09-01

    Full Text Available An algorithm for two-dimensional cluster analysis of component groups, originally from Zhang et al., (2004, was introduced in this study. The algorithm composes of three procedures, i.e., calculation of distance measures, randomization statistic test, and ordered clustering of components.

  6. Social Learning Network Analysis Model to Identify Learning Patterns Using Ontology Clustering Techniques and Meaningful Learning

    Science.gov (United States)

    Firdausiah Mansur, Andi Besse; Yusof, Norazah

    2013-01-01

    Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…

  7. Competitiveness Analysis of Processing Industry Cluster of Livestock Products in Inner Mongolia Based on "Diamond Model"

    OpenAIRE

    Yang, Xing-long; Ren, Ya-tong

    2012-01-01

    Using Michael Porter's "diamond model", based on regional development characteristics, we conduct analysis of the competitiveness of processing industry cluster of livestock products in Inner Mongolia from six aspects (the factor conditions, demand conditions, corporate strategy, structure and competition, related and supporting industries, government and opportunities). And we put forward the following rational recommendations for improving the competitiveness of processing industry cluster ...

  8. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    Science.gov (United States)

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  9. Cluster analysis of European Y-chromosomal STR haplotypes using the discrete Laplace method

    DEFF Research Database (Denmark)

    Andersen, Mikkel Meyer; Eriksen, Poul Svante; Morling, Niels

    2014-01-01

    method can be used for cluster analysis to further validate the discrete Laplace method. A very important practical fact is that the calculations can be performed on a normal computer. We identified two sub-clusters of the Eastern and Western European Y-STR haplotypes similar to results of previous...

  10. The reflection of hierarchical cluster analysis of co-occurrence matrices in SPSS

    NARCIS (Netherlands)

    Q. Zhou; F. Leng; L. Leydesdorff

    2015-01-01

    Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the SPSS hierarchical clustering module for co-occurrence matrices in order to compare the

  11. Identification and structural analysis of a novel snoRNA gene cluster from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A Z2 snoRNA gene cluster,consisting of four antisense snoRNA genes, was identified from Arabidopsis thaliana. The sequence and structural analysis showed that the Z2 snoRNA gene cluster might be transcribed as a polycistronic precursor from an upstream promoter, and the intergenic spacers of the gene cluster encode the 'hairpin' structures similar to the processing recognition signals of yeast Saccharomyces cerevisiae polycistronic snoRNA precursor. The results also revealed that plant snoRNA gene with multiple copies is a characteristic in common, and provides a good system for further revealing the transcription and expression mechanism of plant snoRNA gene cluster.

  12. Analysis of cost data in a cluster-randomized, controlled trial: comparison of methods

    DEFF Research Database (Denmark)

    Sokolowski, Ineta; Ørnbøl, Eva; Rosendal, Marianne;

    in clusters of general practices.   There have been suggestions to apply different methods, e.g., the non-parametric bootstrap, to highly skewed data from pragmatic randomized trials without clusters, but there is very little information about how to analyse skewed data from cluster-randomized trials. Many...... studies have used non-valid analysis of skewed data. We propose two different methods to compare mean cost in two groups. Firstly, we use a non-parametric bootstrap method where the re-sampling takes place on two levels in order to take into account the cluster effect. Secondly, we proceed with a log...

  13. Computational intelligence for big data analysis frontier advances and applications

    CERN Document Server

    Dehuri, Satchidananda; Sanyal, Sugata

    2015-01-01

    The work presented in this book is a combination of theoretical advancements of big data analysis, cloud computing, and their potential applications in scientific computing. The theoretical advancements are supported with illustrative examples and its applications in handling real life problems. The applications are mostly undertaken from real life situations. The book discusses major issues pertaining to big data analysis using computational intelligence techniques and some issues of cloud computing. An elaborate bibliography is provided at the end of each chapter. The material in this book includes concepts, figures, graphs, and tables to guide researchers in the area of big data analysis and cloud computing.

  14. A scoping review of spatial cluster analysis techniques for point-event data

    Directory of Open Access Journals (Sweden)

    Charles E. Fritz

    2013-05-01

    Full Text Available Spatial cluster analysis is a uniquely interdisciplinary endeavour, and so it is important to communicate and disseminate ideas, innovations, best practices and challenges across practitioners, applied epidemiology researchers and spatial statisticians. In this research we conducted a scoping review to systematically search peer-reviewed journal databases for research that has employed spatial cluster analysis methods on individual-level, address location, or x and y coordinate derived data. To illustrate the thematic issues raised by our results, methods were tested using a dataset where known clusters existed. Point pattern methods, spatial clustering and cluster detection tests, and a locally weighted spatial regression model were most commonly used for individual-level, address location data (n = 29. The spatial scan statistic was the most popular method for address location data (n = 19. Six themes were identified relating to the application of spatial cluster analysis methods and subsequent analyses, which we recommend researchers to consider; exploratory analysis, visualization, spatial resolution, aetiology, scale and spatial weights. It is our intention that researchers seeking direction for using spatial cluster analysis methods, consider the caveats and strengths of each approach, but also explore the numerous other methods available for this type of analysis. Applied spatial epidemiology researchers and practitioners should give special consideration to applying multiple tests to a dataset. Future research should focus on developing frameworks for selecting appropriate methods and the corresponding spatial weighting schemes.

  15. A Bayesian Analysis of the Ages of Four Open Clusters

    CERN Document Server

    Jeffery, Elizabeth J; van Dyk, David A; Stenning, David C; Robinson, Elliot; Stein, Nathan; Jefferys, W H

    2016-01-01

    In this paper we apply a Bayesian technique to determine the best fit of stellar evolution models to find the main sequence turn off age and other cluster parameters of four intermediate-age open clusters: NGC 2360, NGC 2477, NGC 2660, and NGC 3960. Our algorithm utilizes a Markov chain Monte Carlo technique to fit these various parameters, objectively finding the best-fit isochrone for each cluster. The result is a high-precision isochrone fit. We compare these results with the those of traditional "by-eye" isochrone fitting methods. By applying this Bayesian technique to NGC 2360, NGC 2477, NGC 2660, and NGC 3960, we determine the ages of these clusters to be 1.35 +/- 0.05, 1.02 +/- 0.02, 1.64 +/- 0.04, and 0.860 +/- 0.04 Gyr, respectively. The results of this paper continue our effort to determine cluster ages to higher precision than that offered by these traditional methods of isochrone fitting.

  16. Galaxy cluster mass estimation from stacked spectroscopic analysis

    Science.gov (United States)

    Farahi, Arya; Evrard, August E.; Rozo, Eduardo; Rykoff, Eli S.; Wechsler, Risa H.

    2016-08-01

    We use simulated galaxy surveys to study: i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and ii) the accuracy of a mean dynamical cluster mass, $M_\\sigma(\\lambda)$, derived from stacked pairwise spectroscopy of clusters with richness $\\lambda$. Using $\\sim\\! 130,000$ galaxy pairs patterned after the SDSS redMaPPer cluster sample study of Rozo et al. (2015 RMIV), we show that the pairwise velocity PDF of central--satellite pairs with $m_i galaxy membership matching. We apply this approach, along with mis-centering and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at $z=0.2$ of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al. (2015), we find $\\langle \\ln(M_{200c})|\\lambda \\rangle = \\ln(M_{30}) + \\alpha_m \\ln(\\lambda/30)$ with $M_{30} = 1.56 \\pm 0.35 \\times 10^{14} M_\\odot$ and $\\alpha_m = 1.31 \\pm 0.06_{stat} \\pm 0.13_{sys}$. Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.

  17. Robust growing neural gas algorithm with application in cluster analysis.

    Science.gov (United States)

    Qin, A K; Suganthan, P N

    2004-01-01

    We propose a novel robust clustering algorithm within the Growing Neural Gas (GNG) framework, called Robust Growing Neural Gas (RGNG) network.The Matlab codes are available from . By incorporating several robust strategies, such as outlier resistant scheme, adaptive modulation of learning rates and cluster repulsion method into the traditional GNG framework, the proposed RGNG network possesses better robustness properties. The RGNG is insensitive to initialization, input sequence ordering and the presence of outliers. Furthermore, the RGNG network can automatically determine the optimal number of clusters by seeking the extreme value of the Minimum Description Length (MDL) measure during network growing process. The resulting center positions of the optimal number of clusters represented by prototype vectors are close to the actual ones irrespective of the existence of outliers. Topology relationships among these prototypes can also be established. Experimental results have shown the superior performance of our proposed method over the original GNG incorporating MDL method, called GNG-M, in static data clustering tasks on both artificial and UCI data sets. PMID:15555857

  18. Performance Analysis of Gender Clustering and Classification Algorithms

    Directory of Open Access Journals (Sweden)

    Dr.K.Meena

    2012-03-01

    Full Text Available In speech processing, gender clustering and classification plays a major role. In both gender clustering and classification, selecting the feature is an important process and the often utilized featurefor gender clustering and classification in speech processing is pitch. The pitch value of a male speech differs much from that of a female speech. Normally, there is a considerable frequency value difference between the male and female speech. But, in some cases the frequency of male is almost equal to female or frequency of female is equal to male. In such situation, it is difficult to identify the exact gender. By considering this drawback, here three features namely; energy entropy, zero crossing rate and short time energy are used for identifying the gender. Gender clustering and classification of speech signal are estimated using the aforementioned three features. Here, the gender clustering is computed using Euclidean distance, Mahalanobis distance, Manhattan distance & Bhattacharyya distance method and the gender classification method is computed using combined fuzzy logic and neural network, neuro fuzzy and support vector machine and its performance are analyzed.

  19. Some advances in tensor analysis and polynomial optimization

    OpenAIRE

    Li, Zhening; Ling, Chen; Wang, Yiju; Yang, Qingzhi

    2014-01-01

    Tensor analysis (also called as numerical multilinear algebra) mainly includes tensor decomposition, tensor eigenvalue theory and relevant algorithms. Polynomial optimization mainly includes theory and algorithms for solving optimization problems with polynomial objects functions under polynomial constrains. This survey covers the most of recent advances in these two fields. For tensor analysis, we introduce some properties and algorithms concerning the spectral radius of nonnegative tensors'...

  20. Advanced symbolic analysis for VLSI systems methods and applications

    CERN Document Server

    Shi, Guoyong; Tlelo Cuautle, Esteban

    2014-01-01

    This book provides comprehensive coverage of the recent advances in symbolic analysis techniques for design automation of nanometer VLSI systems. The presentation is organized in parts of fundamentals, basic implementation methods and applications for VLSI design. Topics emphasized include  statistical timing and crosstalk analysis, statistical and parallel analysis, performance bound analysis and behavioral modeling for analog integrated circuits . Among the recent advances, the Binary Decision Diagram (BDD) based approaches are studied in depth. The BDD-based hierarchical symbolic analysis approaches, have essentially broken the analog circuit size barrier. In particular, this book   • Provides an overview of classical symbolic analysis methods and a comprehensive presentation on the modern  BDD-based symbolic analysis techniques; • Describes detailed implementation strategies for BDD-based algorithms, including the principles of zero-suppression, variable ordering and canonical reduction; • Int...

  1. Advanced Color Image Processing and Analysis

    CERN Document Server

    2013-01-01

    This volume does much more than survey modern advanced color processing. Starting with a historical perspective on ways we have classified color, it sets out the latest numerical techniques for analyzing and processing colors, the leading edge in our search to accurately record and print what we see. The human eye perceives only a fraction of available light wavelengths, yet we live in a multicolor world of myriad shining hues. Colors rich in metaphorical associations make us “purple with rage” or “green with envy” and cause us to “see red.” Defining colors has been the work of centuries, culminating in today’s complex mathematical coding that nonetheless remains a work in progress: only recently have we possessed the computing capacity to process the algebraic matrices that reproduce color more accurately. With chapters on dihedral color and image spectrometers, this book provides technicians and researchers with the knowledge they need to grasp the intricacies of today’s color imaging.

  2. Theoretical Analysis of Structures of Ga4N4 Clusters

    Institute of Scientific and Technical Information of China (English)

    宋斌; 曹培林

    2003-01-01

    The structures and energies of a Ga4N4 cluster have been calculated using a full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO MD) method. We obtained twenty-four structures for a Ga4N4 cluster. The most stable structure we obtained is a Cs three-dimensional structure, the energy of which is lower than that of the C2v symmetry structure proposed by Kandalam et al. [J. Phys. Chem. B 106 (2002) 1945] The calculated results show that the isomer with an N3 subunit is preferred, supporting the previous result made by Kandalam et al.We found that the most stable structure of Ga4N4 clusters presented semiconductor-like properties through the calculation of the density of states.

  3. Fuzzy Meta Node Fuzzy Metagraph and its Cluster Analysis

    Directory of Open Access Journals (Sweden)

    D. Gaur

    2008-01-01

    Full Text Available Problem statement: In this study researchers propose a new fuzzy graph theoretic construct called fuzzy metagraph and a new method of clustering finding the similar fuzzy nodes in a fuzzy metagraph. Approach: We adopted T-norms (Triangular Norms functions and join two or more T-norms to cluster the fuzzy nodes. Fuzzy metagraph is the fuzzyfication of the crisp Metagraphs using fuzzy Generating sets and the fuzzy edge set. We could efficiently analyze the inexact information and investigate the fuzzy relation by applying the fuzzy graph theory. Results: In this study researchers suggesting a new method of clustering of a new graph theoretic structure i.e., fuzzy metagraph and investigated fuzzy metanode and fuzzy metagraph structure. Conclusion/Recommendations: Our future research will be to explore all its useful operations on fuzzy metagraph. We will give the more application based implementation of fuzzy metagraph.

  4. Electronic stress tensor analysis of hydrogenated palladium clusters

    CERN Document Server

    Ichikawa, Kazuhide; Szarek, Pawel; Zhou, Chenggang; Cheng, Hansong; Tachibana, Akitomo

    2011-01-01

    We study the chemical bonds of small palladium clusters Pd_n (n=2-9) saturated by hydrogen atoms using electronic stress tensor. Our calculation includes bond orders which are recently proposed based on the stress tensor. It is shown that our bond orders can classify the different types of chemical bonds in those clusters. In particular, we discuss Pd-H bonds associated with the H atoms with high coordination numbers and the difference of H-H bonds in the different Pd clusters from viewpoint of the electronic stress tensor. The notion of "pseudo-spindle structure" is proposed as the region between two atoms where the largest eigenvalue of the electronic stress tensor is negative and corresponding eigenvectors forming a pattern which connects them.

  5. Clustering analysis of malware behavior using Self Organizing Map

    DEFF Research Database (Denmark)

    Pirscoveanu, Radu-Stefan; Stevanovic, Matija; Pedersen, Jens Myrup

    2016-01-01

    For the time being, malware behavioral classification is performed by means of Anti-Virus (AV) generated labels. The paper investigates the inconsistencies associated with current practices by evaluating the identified differences between current vendors. In this paper we rely on Self Organizing ...... accurate results based on the clusters created by competitive and cooperative algorithms like Self Organizing Map that better describe the behavioral profile of malware.......For the time being, malware behavioral classification is performed by means of Anti-Virus (AV) generated labels. The paper investigates the inconsistencies associated with current practices by evaluating the identified differences between current vendors. In this paper we rely on Self Organizing...... Map, an unsupervised machine learning algorithm, for generating clusters that capture the similarities between malware behavior. A data set of approximately 270,000 samples was used to generate the behavioral profile of malicious types in order to compare the outcome of the proposed clustering...

  6. A Systematic Analysis of Caustic Methods for Galaxy Cluster Masses

    CERN Document Server

    Gifford, Daniel; Kern, Nicholas

    2013-01-01

    We quantify the expected observed statistical and systematic uncertainties of the escape velocity as a measure of the gravitational potential and total mass of galaxy clusters. We focus our attention on low redshift (z 25, the scatter in the escape velocity mass is dominated by projections along the line-of-sight. Algorithmic uncertainties from the determination of the projected escape velocity profile are negligible. We quantify how target selection based on magnitude, color, and projected radial separation can induce small additional biases into the escape velocity masses. Using N_gal = 150 (25), the caustic technique has a per cluster scatter in ln(M|M_200) of 0.3 (0.5) and bias 1+/-3% (16+/-5%) for clusters with masses > 10^14M_solar at z<0.15.

  7. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    International Nuclear Information System (INIS)

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (Hen, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He4 and He5 clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks

  8. Genetic Diversity among Parents of Hybrid Rice Based on Cluster Analysis of Morphological Traits and Simple Sequence Repeat Markers

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng-jun; LU Zuo-mei; WAN Jian-min

    2006-01-01

    The genetic diversity of 41 parental lines popularized in commercial hybrid rice production in China was studied by using cluster analysis of morphological traits and simple sequence repeat (SSR) markers. Forty-one entries were assigned into two clusters (I.e. Early or medium-maturing cluster; medium or late-maturing cluster) and further assigned into six sub-clusters based on morphological trait cluster analysis. The early or medium-maturing cluster was composed of 15 maintainer lines, four early-maturing restorer lines and two thermo-sensitive genic male sterile lines, and the medium or late-maturing cluster included 16 restorer lines and 4 medium or late-maturing maintainer lines. Moreover, the SSR cluster analysis classified 41 entries into two clusters (I.e. Maintainer line cluster and restorer line cluster) and seven sub-clusters. The maintainer line cluster consisted of all 19 maintainer lines, two thermo-sensitive genic male sterile lines, while the restorer line cluster was composed of all 20 restorer lines. The SSR analysis fitted better with the pedigree information. From the views on hybrid rice breeding, the results suggested that SSR analysis might be a better method to study the diversity of parental lines in indica hybrid rice.

  9. Modeling and analysis of advanced binary cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  10. The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO

    CERN Document Server

    Clesse, Sebastien

    2016-01-01

    The recent detection by Advanced LIGO of gravitational waves (GW) from the merging of a binary black hole system sets new limits on the merging rates of massive primordial black holes (PBH) that could be a significant fraction or even the totality of the dark matter in the Universe. aLIGO opens the way to the determination of the distribution and clustering of such massive PBH. If PBH clusters have a similar density to the one observed in ultra-faint dwarf galaxies, we find merging rates comparable to aLIGO expectations. Massive PBH dark matter predicts the existence of thousands of those dwarf galaxies where star formation is unlikely because of gas accretion onto PBH, which would possibly provide a solution to the missing satellite and too-big-to-fail problems. Finally, we study the possibility of using aLIGO and future GW antennas to measure the abundance and mass distribution of PBH in the range [5 - 200] Msun to 10\\% accuracy.

  11. caBIG™ VISDA: Modeling, visualization, and discovery for cluster analysis of genomic data

    Directory of Open Access Journals (Sweden)

    Xuan Jianhua

    2008-09-01

    Full Text Available Abstract Background The main limitations of most existing clustering methods used in genomic data analysis include heuristic or random algorithm initialization, the potential of finding poor local optima, the lack of cluster number detection, an inability to incorporate prior/expert knowledge, black-box and non-adaptive designs, in addition to the curse of dimensionality and the discernment of uninformative, uninteresting cluster structure associated with confounding variables. Results In an effort to partially address these limitations, we develop the VIsual Statistical Data Analyzer (VISDA for cluster modeling, visualization, and discovery in genomic data. VISDA performs progressive, coarse-to-fine (divisive hierarchical clustering and visualization, supported by hierarchical mixture modeling, supervised/unsupervised informative gene selection, supervised/unsupervised data visualization, and user/prior knowledge guidance, to discover hidden clusters within complex, high-dimensional genomic data. The hierarchical visualization and clustering scheme of VISDA uses multiple local visualization subspaces (one at each node of the hierarchy and consequent subspace data modeling to reveal both global and local cluster structures in a "divide and conquer" scenario. Multiple projection methods, each sensitive to a distinct type of clustering tendency, are used for data visualization, which increases the likelihood that cluster structures of interest are revealed. Initialization of the full dimensional model is based on first learning models with user/prior knowledge guidance on data projected into the low-dimensional visualization spaces. Model order selection for the high dimensional data is accomplished by Bayesian theoretic criteria and user justification applied via the hierarchy of low-dimensional visualization subspaces. Based on its complementary building blocks and flexible functionality, VISDA is generally applicable for gene clustering, sample

  12. PERFORMANCE ANALYSIS OF CLUSTERING BASED IMAGE SEGMENTATION AND OPTIMIZATION METHODS

    Directory of Open Access Journals (Sweden)

    Jaskirat kaur

    2012-05-01

    Full Text Available Partitioning of an image into several constituent components is called image segmentation. Myriad algorithms using different methods have been proposed for image segmentation. Many clustering algorithms and optimization techniques are also being used for segmentation of images. A major challenge in segmentation evaluation comes from the fundamental conflict between generality and objectivity. As there is a glut of image segmentation techniques available today, customer who is the real user of these techniques may get obfuscated. In this paper to address the above described problem some image segmentation techniques are evaluated based on their consistency in different applications. Based on the parameters used quantification of different clustering algorithms is done.

  13. Analysis of the Advantages of Creating Border Clusters

    Directory of Open Access Journals (Sweden)

    Liudmila Rosca-Sadurschi

    2015-08-01

    Full Text Available In a changing environment and rapid globalization, competitiveness of a country or region depends increasingly more effective in innovation. The main challenge for research and innovation is to facilitate the networking of companies and research laboratories. These networks can take the form of a highly integrated cross-border economic group, but may consist of action to facilitate business linkages and inter-laboratory, or cross-border clusters. The creation of these clusters requires performing several conditions but bring significant benefits to all stakeholders.

  14. Advances in technology for integrated route analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carey, N.T.; George, P.J.; Khamhawi, K. [SAGE Engineering Ltd., Bath (United Kingdom)

    1998-12-31

    Pipeline and cable routes are becoming ever complex with routes being chosen in increasingly remote and technically demanding areas. Clients now demand greater information and analysis from the surveys and interpretations. By utilising a range of leading edge equipment, greater information can be obtained, visualised and analysed than ever before. Three case studies are presented, indicating how such technology has been employed to provide the client with a greater understanding of complex engineering projects, and what additional technology could have been utilised to further enhance the project. Examples of data, systems and project management used on two major pipe routes and one major cable route are presented. Swath Bathymetry (ISIS), 3D visualisation (Fledermaus), cone penetrometer testing (SAGE Miniature CPT), GIS databases (INfoXProfessional), and the use of pipeline stress analysis, upheaval buckling and rock dump optimisation software (SAFE Profile) are all examined. (author)

  15. Advancing the diagnostic analysis of environmental problems

    OpenAIRE

    Michael Cox

    2011-01-01

    Social-ecological systems exhibit patterns across multiple levels along spatial, temporal, and functional scales. The outcomes that are produced in these systems result from complex, non-additive interactions between different types of social and biophysical components, some of which are common to many systems, and some of which are relatively unique to a particular system. These properties, along with the mostly non-experimental nature of the analysis, make it difficult to construct theories...

  16. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina;

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both the...... partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  17. Advancing the diagnostic analysis of environmental problems

    Directory of Open Access Journals (Sweden)

    Michael Cox

    2011-09-01

    Full Text Available Social-ecological systems exhibit patterns across multiple levels along spatial, temporal, and functional scales. The outcomes that are produced in these systems result from complex, non-additive interactions between different types of social and biophysical components, some of which are common to many systems, and some of which are relatively unique to a particular system. These properties, along with the mostly non-experimental nature of the analysis, make it difficult to construct theories regarding the sustainability of social-ecological systems. This paper builds on previous work that has initiated a diagnostic approach to the analysis of these systems. The process of diagnosis involves asking a series of questions of a system at increasing levels of specificity based on the answers to previous questions. The answer to each question further unpacks the complexity of a system, allowing an analyst to explore patterns of interactions that produce outcomes. An important feature of this approach is the use of multilevel analysis. This paper explores this concept and introduces another – multilevel causation – to further develop the diagnostic approach. It demonstrates that these concepts can be used to analyze a diversity of environmental problems.

  18. Segmentation of visitors to shopping centers based on their activities through factor analysis and cluster analysis

    Directory of Open Access Journals (Sweden)

    reza soleymani-damaneh

    2013-08-01

    Full Text Available Knowing customers of shopping centers contributes greatly to increase profits of these centers. Segmentation of the customers is one of the most effective means of knowing the customers. The purpose of this study was to present a segmentation of the customers based on their activities in the shopping centers. The participants were 157 visitors to Milad-e-Noor Shopping Center who were required to answer the questions in the questionnaire. Data were analyzed in three steps. Through the use of factor analysis, in the first step, the number of variables was reduced to the four factors of entertainment activities, planned shopping, shopping information gathering and unplanned shopping. These factors were then inserted into K-mean cluster analysis and, in the second step and the visitors were divided into 4 segments on the basis of their activity as following: traditionalists, shopping center enthusiasts, wandering customers, and entertainment seekers. In the third step, the demographic and behavioral variables were investigated in the identified clusters. Considering the variables of age, academic status and accompanying persons in shopping centers, these clusters were significantly different. In respect to variables of sex, marital status, the length of presence in the shopping centers, occupations and monthly salary they were recognized as homogenous, however.

  19. An Empirical Comparison of Variable Standardization Methods in Cluster Analysis.

    Science.gov (United States)

    Schaffer, Catherine M.; Green, Paul E.

    1996-01-01

    The common marketing research practice of standardizing the columns of a persons-by-variables data matrix prior to clustering the entities corresponding to the rows was evaluated with 10 large-scale data sets. Results indicate that the column standardization practice may be problematic for some kinds of data that marketing researchers used for…

  20. The XMM Cluster Survey: X-ray analysis methodology

    CERN Document Server

    Lloyd-Davies, E J; Hosmer, Mark; Mehrtens, Nicola; Davidson, Michael; Sabirli, Kivanc; Mann, Robert G; Hilton, Matt; Liddle, Andrew R; Viana, Pedro T P; Campbell, Heather C; Collins, Chris A; Dubois, E Naomi; Freeman, Peter; Hoyle, Ben; Kay, Scott T; Kuwertz, Emma; Miller, Christopher J; Nichol, Robert C; Sahlen, Martin; Stanford, S Adam; Stott, John P

    2010-01-01

    The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM- Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we describe the data processing methodology applied to the 5776 XMM observations used to construct the current XCS source catalogue. A total of 3669 > 4-{\\sigma} cluster candidates with >50 background-subtracted X-ray counts are extracted from a total non-overlapping area suitable for cluster searching of 410 deg^2 . Of these, 1022 candidates are detected with >300 X-ray counts, and we demonstrate that robust temperature measurements can be obtained down to this count limit. We describe in detail the automated pipelines used to perform the spectral and surface brightness fitting for these sources, as well as to estimate redshifts from the X-ray data alone. A total of 517 (126) X-ray temperatures to a typical accuracy of <40 (<10) per cent have ...

  1. Galaxy Cluster Mass Estimation from Stacked Spectroscopic Analysis

    CERN Document Server

    Farahi, Arya; Rozo, Eduardo; Rykoff, Eli S; Wechsler, Risa H

    2016-01-01

    We use simulated galaxy surveys to study: i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and ii) the accuracy of a mean dynamical cluster mass, $M_\\sigma(\\lambda)$, derived from stacked pairwise spectroscopy of clusters with richness $\\lambda$. Using $\\sim\\! 130,000$ galaxy pairs patterned after the SDSS redMaPPer cluster sample study of Rozo et al. (2015 RMIV), we show that the pairwise velocity PDF of central--satellite pairs with $m_i < 19$ in the simulation matches the form seen in RMIV. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes $\\sim 60\\%$ of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. (2008) to the velocity normalization matches, to within a few percent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with mis-centering and galaxy velocity bias...

  2. DESIGN AND ANALYSIS OF MULTI-MODE CLUSTER SAR

    Institute of Scientific and Technical Information of China (English)

    Fan Luhong; Pi Yiming; Hou Yinming

    2004-01-01

    Cluster Synthetic Aperture Radar (SAR) system is composed of a group of spaceborne SAR systems. With its agility of combination, this system can work in several different modes. In this letter, the basic configuration and the working mode of the system are presented.The special performance of the system compared with the conventional SAR system is indicated.

  3. Dynamical analysis of the cluster pair: A3407 + A3408

    CERN Document Server

    Nascimento, R S; Trevisan, M; Carrasco, E R; Plana, H; Dupke, R

    2016-01-01

    We carried out a dynamical study of the galaxy cluster pair A3407 \\& A3408 based on a spectroscopic survey obtained with the 4 meter Blanco telescope at the CTIO, plus 6dF data, and ROSAT All-Sky-Survey. The sample consists of 122 member galaxies brighter than $m_R=20$. Our main goal is to probe the galaxy dynamics in this field and verify if the sample constitutes a single galaxy system or corresponds to an ongoing merging process. Statistical tests were applied to clusters members showing that both the composite system A3407 + A3408 as well as each individual cluster have Gaussian velocity distribution. A velocity gradient of $\\sim 847\\pm 114$ $\\rm km\\;s^{-1}$ was identified around the principal axis of the projected distribution of galaxies, indicating that the global field may be rotating. Applying the KMM algorithm to the distribution of galaxies we found that the solution with two clusters is better than the single unit solution at the 99\\% c.l. This is consistent with the X-ray distribution around ...

  4. Advanced calculus an introduction to classical analysis

    CERN Document Server

    Brand, Louis

    2006-01-01

    A course in analysis that focuses on the functions of a real variable, this text is geared toward upper-level undergraduate students. It introduces the basic concepts in their simplest setting and illustrates its teachings with numerous examples, practical theorems, and coherent proofs.Starting with the structure of the system of real and complex numbers, the text deals at length with the convergence of sequences and series and explores the functions of a real variable and of several variables. Subsequent chapters offer a brief and self-contained introduction to vectors that covers important a

  5. Dynamical analysis of the cluster pair: A3407 + A3408

    Science.gov (United States)

    Nascimento, R. S.; Ribeiro, A. L. B.; Trevisan, M.; Carrasco, E. R.; Plana, H.; Dupke, R.

    2016-08-01

    We carried out a dynamical study of the galaxy cluster pair A3407 and A3408 based on a spectroscopic survey obtained with the 4 metre Blanco telescope at the Cerro Tololo Interamerican Observatory, plus 6dF data, and ROSAT All-Sky Survey. The sample consists of 122 member galaxies brighter than mR = 20. Our main goal is to probe the galaxy dynamics in this field and verify if the sample constitutes a single galaxy system or corresponds to an ongoing merging process. Statistical tests were applied to clusters members showing that both the composite system A3407 + A3408 as well as each individual cluster have Gaussian velocity distribution. A velocity gradient of ˜847 ± 114 km s- 1 was identified around the principal axis of the projected distribution of galaxies, indicating that the global field may be rotating. Applying the KMM algorithm to the distribution of galaxies, we found that the solution with two clusters is better than the single unit solution at the 99 per cent cl. This is consistent with the X-ray distribution around this field, which shows no common X-ray halo involving A3407 and A3408. We also estimated virial masses and applied a two-body model to probe the dynamics of the pair. The more likely scenario is that in which the pair is gravitationally bound and probably experiences a collapse phase, with the cluster cores crossing in less than ˜1 h-1 Gyr, a pre-merger scenario. The complex X-ray morphology, the gas temperature, and some signs of galaxy evolution in A3408 suggest a post-merger scenario, with cores having crossed each other ˜1.65 h-1 Gyr ago, as an alternative solution.

  6. Patterns of Brucellosis Infection Symptoms in Azerbaijan: A Latent Class Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Rita Ismayilova

    2014-01-01

    Full Text Available Brucellosis infection is a multisystem disease, with a broad spectrum of symptoms. We investigated the existence of clusters of infected patients according to their clinical presentation. Using national surveillance data from the Electronic-Integrated Disease Surveillance System, we applied a latent class cluster (LCC analysis on symptoms to determine clusters of brucellosis cases. A total of 454 cases reported between July 2011 and July 2013 were analyzed. LCC identified a two-cluster model and the Vuong-Lo-Mendell-Rubin likelihood ratio supported the cluster model. Brucellosis cases in the second cluster (19% reported higher percentages of poly-lymphadenopathy, hepatomegaly, arthritis, myositis, and neuritis and changes in liver function tests compared to cases of the first cluster. Patients in the second cluster had a severe brucellosis disease course and were associated with longer delay in seeking medical attention. Moreover, most of them were from Beylagan, a region focused on sheep and goat livestock production in south-central Azerbaijan. Patients in cluster 2 accounted for one-quarter of brucellosis cases and had a more severe clinical presentation. Delay in seeking medical care may explain severe illness. Future work needs to determine the factors that influence brucellosis case seeking and identify brucellosis species, particularly among cases from Beylagan.

  7. Log Analysis as a way to assist Opera mini cluster management decisions

    OpenAIRE

    2008-01-01

    This thesis considers ways that analysis of Opera mini logs can assist decisions related to global and local load balancing of Opera mini clusters. The analy- sis is aimed to determine the distribution of traffic with respect to country of origin and server within the cluster over the period of 2 weeks by creating a system for extraction and analysis of log data. Findings show that a large part of traffic originates in Russia with India and Indonesia being second and third. ...

  8. Functional Cluster Analysis of CT Perfusion Maps: A New Tool for Diagnosis of Acute Stroke?

    OpenAIRE

    Baumgartner, Christian; Gautsch, Kurt; Böhm, Christian; Felber, Stephan

    2005-01-01

    CT perfusion imaging constitutes an important contribution to the early diagnosis of acute stroke. Cerebral blood flow (CBF), cerebral blood volume (CBV) and time-to-peak (TTP) maps are used to estimate the severity of cerebral damage after acute ischemia. We introduce functional cluster analysis as a new tool to evaluate CT perfusion in order to identify normal brain, ischemic tissue and large vessels. CBF, CBV and TTP maps represent the basis for cluster analysis applying a partitioning (k-...

  9. Schedulability Analysis and Optimization for the Synthesis of Multi-Cluster Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2003-01-01

    We present an approach to schedulability analysis for the synthesis of multi-cluster distributed embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. We have also proposed a buffer size and worst case queuing delay analysis for the gateways......, responsible for routing inter-cluster traffic. Optimization heuristics for the priority assignment and synthesis of bus access parameters aimed at producing a schedulable system with minimal buffer needs have been proposed. Extensive experiments and a real-life example show the efficiency of our approaches....

  10. Schedulability Analysis and Optimization for the Synthesis of Multi-Cluster Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2003-01-01

    An approach to schedulability analysis for the synthesis of multi-cluster distributed embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways, is presented. A buffer size and worst case queuing delay analysis for the gateways, responsible for routing...... inter-cluster traffic, is also proposed. Optimisation heuristics for the priority assignment and synthesis of bus access parameters aimed at producing a schedulable system with minimal buffer needs have been proposed. Extensive experiments and a real-life example show the efficiency of the approaches....

  11. Value analysis for advanced technology products

    Science.gov (United States)

    Soulliere, Mark

    2011-03-01

    Technology by itself can be wondrous, but buyers of technology factor in the price they have to pay along with performance in their decisions. As a result, the ``best'' technology may not always win in the marketplace when ``good enough'' can be had at a lower price. Technology vendors often set pricing by ``cost plus margin,'' or by competitors' offerings. What if the product is new (or has yet to be invented)? Value pricing is a methodology to price products based on the value generated (e.g. money saved) by using one product vs. the next best technical alternative. Value analysis can often clarify what product attributes generate the most value. It can also assist in identifying market forces outside of the control of the technology vendor that also influence pricing. These principles are illustrated with examples.

  12. Linking advanced fracture models to structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, Matteo

    2001-07-01

    Shell structures with defects occur in many situations. The defects are usually introduced during the welding process necessary for joining different parts of the structure. Higher utilization of structural materials leads to a need for accurate numerical tools for reliable prediction of structural response. The direct discretization of the cracked shell structure with solid finite elements in order to perform an integrity assessment of the structure in question leads to large size problems, and makes such analysis infeasible in structural application. In this study a link between local material models and structural analysis is outlined. An ''ad hoc'' element formulation is used in order to connect complex material models to the finite element framework used for structural analysis. An improved elasto-plastic line spring finite element formulation, used in order to take cracks into account, is linked to shell elements which are further linked to beam elements. In this way one obtain a global model of the shell structure that also accounts for local flexibilities and fractures due to defects. An important advantage with such an approach is a direct fracture mechanics assessment e.g. via computed J-integral or CTOD. A recent development in this approach is the notion of two-parameter fracture assessment. This means that the crack tip stress tri-axiality (constraint) is employed in determining the corresponding fracture toughness, giving a much more realistic capacity of cracked structures. The present thesis is organized in six research articles and an introductory chapter that reviews important background literature related to this work. Paper I and II address the performance of shell and line spring finite elements as a cost effective tool for performing the numerical calculation needed to perform a fracture assessment. In Paper II a failure assessment, based on the testing of a constraint-corrected fracture mechanics specimen under tension, is

  13. Analysis of luminescence spectra of substrate-free icosahedral and crystalline clusters of argon

    CERN Document Server

    Doronin, Yu S; Kamarchuk, G V; Tkachenko, A A; Samovarov, V N

    2016-01-01

    We propose a new approach to analysis of cathodoluminescence spectra of substrate-free nanoclusters of argon produced in a supersonic jet expanding into a vacuum. It is employed to analyze intensities of the luminescence bands of neutral and charged excimer complexes (Ar2)* and (Ar4+)* measured for clusters with an average size of 500 to 8900 atoms per cluster and diameters ranging from 32 to 87 {\\AA}. Concentration of the jet substance condensed into clusters, which determines the absolute values of the integrated band intensities, is shown to be proportional to the logarithm of the average cluster size. Analysis of reduced intensities of the (Ar2)* and (Ar4+)* bands in the spectra of crystalline clusters with an fcc structure allows us to conclude that emission of the neutral molecules (Ar2)* comes from within the whole volume of the cluster, while the charged complexes (Ar4+)* radiate from its near-surface layers. We find the cluster size range in which the jet is dominated by quasicrystalline clusters wit...

  14. Multispectral laser imaging for advanced food analysis

    Science.gov (United States)

    Senni, L.; Burrascano, P.; Ricci, M.

    2016-07-01

    A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.

  15. Ranking and clustering countries and their products; a network analysis

    CERN Document Server

    Caldarelli, Guido; Gabrielli, Andrea; Pietronero, Luciano; Scala, Antonio; Tacchella, Andrea

    2011-01-01

    In this paper we analyze the network of countries and products from UN data on country production. We define the country-country and product-product networks and we introduce a novel method of community detection based on elements similarity. As a result we find that country clustering reveals unexpected socio-geographic links among the most competing countries. On the same footings the products clustering can be efficiently used for a bottom-up classification of produced goods. Furthermore we define a procedure to rank different countries and their products over the global market. These analyses are a good proxy of country GDP and therefore could be possibly used to determine the robustness of a country economy.

  16. Insights into quasar UV spectra using unsupervised clustering analysis

    Science.gov (United States)

    Tammour, A.; Gallagher, S. C.; Daley, M.; Richards, G. T.

    2016-06-01

    Machine learning techniques can provide powerful tools to detect patterns in multidimensional parameter space. We use K-means - a simple yet powerful unsupervised clustering algorithm which picks out structure in unlabelled data - to study a sample of quasar UV spectra from the Quasar Catalog of the 10th Data Release of the Sloan Digital Sky Survey (SDSS-DR10) of Paris et al. Detecting patterns in large data sets helps us gain insights into the physical conditions and processes giving rise to the observed properties of quasars. We use K-means to find clusters in the parameter space of the equivalent width (EW), the blue- and red-half-width at half-maximum (HWHM) of the Mg II 2800 Å line, the C IV 1549 Å line, and the C III] 1908 Å blend in samples of broad absorption line (BAL) and non-BAL quasars at redshift 1.6-2.1. Using this method, we successfully recover correlations well-known in the UV regime such as the anti-correlation between the EW and blueshift of the C IV emission line and the shape of the ionizing spectra energy distribution (SED) probed by the strength of He II and the Si III]/C III] ratio. We find this to be particularly evident when the properties of C III] are used to find the clusters, while those of Mg II proved to be less strongly correlated with the properties of the other lines in the spectra such as the width of C IV or the Si III]/C III] ratio. We conclude that unsupervised clustering methods (such as K-means) are powerful methods for finding `natural' binning boundaries in multidimensional data sets and discuss caveats and future work.

  17. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  18. Advanced computational tools for 3-D seismic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Glover, C.W.; Protopopescu, V.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  19. SSR Cluster and Fertility Loci Analysis of GC13

    Institute of Scientific and Technical Information of China (English)

    NONG Bao-xuan; XIA Xiu-zhong; LIANG Yao-mao; LU Gang; ZHANG Zong-qiong; LI Dan-ting

    2011-01-01

    [Objective] The research aimed to clarify the genetic mechanism of special wide compatibility of GC13.[Method] The clustering analyses of GC13,five indica,five japonica and five wide compatibility varieties were carried out by using 70 SSR primers.[Result] GC13 was clustered into japonica group and had far genetic relationship with indica and wide compatibility variety.Two fertility loci were detected in GC13,in which one closely linked to RM225 on chromosome 6.According to the position on the chromosome,it speculated that this locus was allelic to S5.GC13 carried the allelic gene S5-n at this locus.The other locus closely linked to RM408 on chromosome 8 and was provisionally designated as Sg(t).At this locus,GC13 carried Sg(t)-i allelic gene,which was consistent with IR36.The effect of S5 locus was stronger than that of Sg(t).[Conclusion] The research laid the good foundation for using the wide compatibility line GC13 to breed the hybrid between subspecies.%[Objective] The research aimed to clarify the genetic mechanism of special wide compatibility of GC13.[Method] The clustering analyses of GC13,five indica,five japonica and five wide compatibility varieties were carried out by using 70 SSR primers.[Result

  20. X-ray Analysis of Filaments in Galaxy Clusters

    CERN Document Server

    Walker, S A; Fabian, A C; Sanders, J S

    2015-01-01

    We perform a detailed X-ray study of the filaments surrounding the brightest cluster galaxies in a sample of nearby galaxy clusters using deep Chandra observations, namely the Perseus, Centaurus and Virgo clusters, and Abell 1795. We compare the X-ray properties and spectra of the filaments in all of these systems, and find that their Chandra X-ray spectra are all broadly consistent with an absorbed two temperature thermal model, with temperature components at 0.75 and 1.7 keV. We find that it is also possible to model the Chandra ACIS filament spectra with a charge exchange model provided a thermal component is also present, and the abundance of oxygen is suppressed relative to the abundance of Fe. In this model, charge exchange provides the dominant contribution to the spectrum in the 0.5-1.0 keV band. However, when we study the high spectral resolution RGS spectrum of the filamentary plume seen in X-rays in Centaurus, the opposite appears to be the case. The properties of the filaments in our sample of clu...

  1. LITERATURE SURVEY ON ENHANCING CLUSTER QUALITY

    Directory of Open Access Journals (Sweden)

    Mrs.S.THILAGAMANI

    2010-09-01

    Full Text Available In this paper, we extensively study about the important aspect of various Clustering techniques, the cluster quality. The goodness of clustering is measured in terms of cluster validity indices wherethe results of clustering are validated every time to give the maximum efficiency. The quality of clusters is measured in a decision-theoretic rough set oriented approach rather than the traditional geometry-based measures. Experiments are carried out with synthetic,standard and real world data for evaluating rough and crisp clustering. Also a new advancement in estimating the number of clusters in the analysis of gene expression data is studied. Here we follow a scheme called System Evolution to estimate the number of clusters based on Partitioning around medoids algorithm.

  2. How Teachers Use and Manage Their Blogs? A Cluster Analysis of Teachers' Blogs in Taiwan

    Science.gov (United States)

    Liu, Eric Zhi-Feng; Hou, Huei-Tse

    2013-01-01

    The development of Web 2.0 has ushered in a new set of web-based tools, including blogs. This study focused on how teachers use and manage their blogs. A sample of 165 teachers' blogs in Taiwan was analyzed by factor analysis, cluster analysis and qualitative content analysis. First, the teachers' blogs were analyzed according to six criteria…

  3. Abundance analysis of an extended sample of open clusters: A search for chemical inhomogeneities

    Science.gov (United States)

    Reddy, Arumalla B. S.; Giridhar, Sunetra; Lambert, David L.

    We have initiated a program to explore the presence of chemical inhomogeneities in the Galactic disk using the open clusters as ideal probes. We have analyzed high-dispersion echelle spectra (R ≥ 55,000) of red giant members for eleven open clusters to derive abundances for many elements. The membership to the cluster has been confirmed through their radial velocities and proper motions. The spread in temperatures and gravities being very small among the red giants, nearly the same stellar lines were employed thereby reducing the random errors. The errors of average abundance for the cluster were generally in 0.02 to 0.07 dex range. Our present sample covers galactocentric distances of 8.3 to 11.3 kpc and an age range of 0.2 to 4.3 Gyrs. Our earlier analysis of four open clusters (Reddy A.B.S. et al., 2012, MNRAS, 419,1350) indicate that abundances relative to Fe for elements from Na to Eu are equal within measurement uncertainties to published abundances for thin disk giants in the field. This supports the view that field stars come from disrupted open clusters. In the enlarged sample of eleven open clusters we find cluster to cluster abundance variations for some s- and r- process elements, with certain elements such as Zr and Ba showing large variation. These differences mark the signatures that these clusters had formed under different environmental conditions (Type II SN, Type Ia SN, AGB stars or a mixture of any of these) unique to the time and site of formation. These eleven clusters support the widely held impression that there is an abundance gradient such that the metallicity [Fe/H] at the solar galactocentric distance decreases outwards at about -0.1 dex per kpc.

  4. METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY

    Science.gov (United States)

    The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...

  5. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  6. Symptom Clusters in People Living with HIV Attending Five Palliative Care Facilities in Two Sub-Saharan African Countries: A Hierarchical Cluster Analysis.

    Directory of Open Access Journals (Sweden)

    Katrien Moens

    Full Text Available Symptom research across conditions has historically focused on single symptoms, and the burden of multiple symptoms and their interactions has been relatively neglected especially in people living with HIV. Symptom cluster studies are required to set priorities in treatment planning, and to lessen the total symptom burden. This study aimed to identify and compare symptom clusters among people living with HIV attending five palliative care facilities in two sub-Saharan African countries.Data from cross-sectional self-report of seven-day symptom prevalence on the 32-item Memorial Symptom Assessment Scale-Short Form were used. A hierarchical cluster analysis was conducted using Ward's method applying squared Euclidean Distance as the similarity measure to determine the clusters. Contingency tables, X2 tests and ANOVA were used to compare the clusters by patient specific characteristics and distress scores.Among the sample (N=217 the mean age was 36.5 (SD 9.0, 73.2% were female, and 49.1% were on antiretroviral therapy (ART. The cluster analysis produced five symptom clusters identified as: 1 dermatological; 2 generalised anxiety and elimination; 3 social and image; 4 persistently present; and 5 a gastrointestinal-related symptom cluster. The patients in the first three symptom clusters reported the highest physical and psychological distress scores. Patient characteristics varied significantly across the five clusters by functional status (worst functional physical status in cluster one, p<0.001; being on ART (highest proportions for clusters two and three, p=0.012; global distress (F=26.8, p<0.001, physical distress (F=36.3, p<0.001 and psychological distress subscale (F=21.8, p<0.001 (all subscales worst for cluster one, best for cluster four.The greatest burden is associated with cluster one, and should be prioritised in clinical management. Further symptom cluster research in people living with HIV with longitudinally collected symptom data to

  7. Heavy minerals clustering analysis in application of provenance analysis of Kong 2 Member in Kongnan area

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The main task of provenance analysis is to determine the source of sediments and the position of parent rocks. Provenance analysis may find out the relationship between erosion districts and sediment zone, between the uplift and the depression in the process of basin development. The authors use the method of heavy mineral clustering analysis and estimate the provenance direction of Huanghua Depression in the Paleogene Kong 2 Member. Research shows that there were five provenance areas of Kong 2 Member in Kongnan area.They are western (Shenusi), northwestern (Cangzhou), eastern (Ganhuatun), northeastern and southeastern. The main provenance areas were northwestern and western, while the southern provenance could not be ruled out. And these areas are consistent with the known provenance areas.

  8. Clinical heterogeneity in patients with early-stage Parkinson's disease: a cluster analysis

    Institute of Scientific and Technical Information of China (English)

    Ping LIU; Tao FENG; Yong-jun WANG; Xuan ZHANG; Biao CHEN

    2011-01-01

    The aim of this study was to investigate the clinical heterogeneity of Parkinson's disease (PD) among a cohort of Chinese patients in early stages.Clinical data on demographics,motor variables,motor phenotypes,disease progression,global cognitive function,depression,apathy,sleep quality,constipation,fatigue,and L-dopa complications were collected from 138 Chinese PD subjects in early stages (Hoehn and Yahr stages 1-3).The PD subject subtypes were classified using k-means cluster analysis according to the clinical data from five- to three-cluster consecutively.Kappa statistical analysis was performed to evaluate the consistency among different subtype solutions.The cluster analysis indicated four main subtypes:the non-tremor dominant subtype (NTD,n=28,20.3%),rapid disease progression subtype (RDP,n=7,5.1%),young-onset subtype (YO,n=50,36.2%),and tremor dominant subtype (TD,n=53,38.4%).Overall,78.3% (108/138) of subjects were always classified between the same three groups (52 always in TD,7 in RDP,and 49 in NTD),and 98.6% (136/138) between five- and four-cluster solutions.However,subjects classified as NTD in the four-cluster analysis were dispersed into different subtypes in the three-cluster analysis,with low concordance between four- and three-cluster solutions (kappa value=-0.139,P=0.001 ).This study defines clinical heterogeneity of PD patients in early stages using a data-driven approach.The subtypes generated by the four-cluster solution appear to exhibit ideal internal cohesion and external isolation.

  9. Cluster analysis of particulate matter (PM10) and black carbon (BC) concentrations

    Science.gov (United States)

    Žibert, Janez; Pražnikar, Jure

    2012-09-01

    The monitoring of air-pollution constituents like particulate matter (PM10) and black carbon (BC) can provide information about air quality and the dynamics of emissions. Air quality depends on natural and anthropogenic sources of emissions as well as the weather conditions. For a one-year period the diurnal concentrations of PM10 and BC in the Port of Koper were analysed by clustering days into similar groups according to the similarity of the BC and PM10 hourly derived day-profiles without any prior assumptions about working and non-working days, weather conditions or hot and cold seasons. The analysis was performed by using k-means clustering with the squared Euclidean distance as the similarity measure. The analysis showed that 10 clusters in the BC case produced 3 clusters with just one member day and 7 clusters that encompasses more than one day with similar BC profiles. Similar results were found in the PM10 case, where one cluster has a single-member day, while 7 clusters contain several member days. The clustering analysis revealed that the clusters with less pronounced bimodal patterns and low hourly and average daily concentrations for both types of measurements include the most days in the one-year analysis. A typical day profile of the BC measurements includes a bimodal pattern with morning and evening peaks, while the PM10 measurements reveal a less pronounced bimodality. There are also clusters with single-peak day-profiles. The BC data in such cases exhibit morning peaks, while the PM10 data consist of noon or afternoon single peaks. Single pronounced peaks can be explained by appropriate cluster wind speed profiles. The analysis also revealed some special day-profiles. The BC cluster with a high midnight peak at 30/04/2010 and the PM10 cluster with the highest observed concentration of PM10 at 01/05/2010 (208.0 μg m-3) coincide with 1 May, which is a national holiday in Slovenia and has very strong tradition of bonfire parties. The clustering of

  10. Functional cluster analysis of CT perfusion maps: a new tool for diagnosis of acute stroke?

    Science.gov (United States)

    Baumgartner, Christian; Gautsch, Kurt; Böhm, Christian; Felber, Stephan

    2005-09-01

    CT perfusion imaging constitutes an important contribution to the early diagnosis of acute stroke. Cerebral blood flow (CBF), cerebral blood volume (CBV) and time-to-peak (TTP) maps are used to estimate the severity of cerebral damage after acute ischemia. We introduce functional cluster analysis as a new tool to evaluate CT perfusion in order to identify normal brain, ischemic tissue and large vessels. CBF, CBV and TTP maps represent the basis for cluster analysis applying a partitioning (k-means) and density-based (density-based spatial clustering of applications with noise, DBSCAN) paradigm. In patients with transient ischemic attack and stroke, cluster analysis identified brain areas with distinct hemodynamic properties (gray and white matter) and segmented territorial ischemia. CBF, CBV and TTP values of each detected cluster were displayed. Our preliminary results indicate that functional cluster analysis of CT perfusion maps may become a helpful tool for the interpretation of perfusion maps and provide a rapid means for the segmentation of ischemic tissue. PMID:15827821

  11. MMPI-2: Cluster Analysis of Personality Profiles in Perinatal Depression—Preliminary Evidence

    Directory of Open Access Journals (Sweden)

    Valentina Meuti

    2014-01-01

    Full Text Available Background. To assess personality characteristics of women who develop perinatal depression. Methods. The study started with a screening of a sample of 453 women in their third trimester of pregnancy, to which was administered a survey data form, the Edinburgh Postnatal Depression Scale (EPDS and the Minnesota Multiphasic Personality Inventory 2 (MMPI-2. A clinical group of subjects with perinatal depression (PND, 55 subjects was selected; clinical and validity scales of MMPI-2 were used as predictors in hierarchical cluster analysis carried out. Results. The analysis identified three clusters of personality profile: two “clinical” clusters (1 and 3 and an “apparently common” one (cluster 2. The first cluster (39.5% collects structures of personality with prevalent obsessive or dependent functioning tending to develop a “psychasthenic” depression; the third cluster (13.95% includes women with prevalent borderline functioning tending to develop “dysphoric” depression; the second cluster (46.5% shows a normal profile with a “defensive” attitude, probably due to the presence of defense mechanisms or to the fear of stigma. Conclusion. Characteristics of personality have a key role in clinical manifestations of perinatal depression; it is important to detect them to identify mothers at risk and to plan targeted therapeutic interventions.

  12. Chaotic Artificial Bee Colony Used for Cluster Analysis

    Science.gov (United States)

    Zhang, Yudong; Wu, Lenan; Wang, Shuihua; Huo, Yuankai

    A new approach based on artificial bee colony (ABC) with chaotic theory was proposed to solve the partitional clustering problem. We first investigate the optimization model including both the encoding strategy and the variance ratio criterion (VRC). Second, a chaotic ABC algorithm was developed based on the Rossler attractor. Experiments on three types of artificial data of different degrees of overlapping all demonstrate the CABC is superior to both genetic algorithm (GA) and combinatorial particle swarm optimization (CPSO) in terms of robustness and computation time.

  13. Advances in independent component analysis and learning machines

    CERN Document Server

    Bingham, Ella; Laaksonen, Jorma; Lampinen, Jouko

    2015-01-01

    In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: A unifying probabilistic model for PCA and ICA Optimization methods for matrix decompositions Insights into the FastICA algorithmUnsupervised deep learning Machine vision and image retrieval A review of developments in the t

  14. Insights into Quasar UV Spectra Using Unsupervised Clustering Analysis

    CERN Document Server

    Tammour, Aycha; Daley, Mark; Richards, Gordon T

    2016-01-01

    Machine learning can provide powerful tools to detect patterns in multi-dimensional parameter space. We use K-means -a simple yet powerful unsupervised clustering algorithm which picks out structure in unlabeled data- to study a sample of quasar UV spectra from the Quasar Catalog of the 10th Data Release of the Sloan Digital Sky Survey of Paris et al. (2014). Detecting patterns in large datasets helps us gain insights into the physical conditions and processes giving rise to the observed properties of quasars. We use K-means to find clusters in the parameter space of the equivalent width (EW), the blue- and red-half-width at half-maximum (HWHM) of the Mg II 2800 A line, the C IV 1549 A line, and the C III] 1908 A blend in samples of Broad Absorption-Line (BAL) and non-BAL quasars at redshift 1.6-2.1. Using this method, we successfully recover correlations well-known in the UV regime such as the anti-correlation between the EW and blueshift of the C IV emission line and the shape of the ionizing Spectra Energy...

  15. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  16. A critical cluster analysis of 44 indicators of author-level performance

    DEFF Research Database (Denmark)

    Wildgaard, Lorna Elizabeth

    2015-01-01

    , followed by a risk analysis and ordinal logistic regression to explore cluster membership. Indicator scores were contextualized using the individual researcher's curriculum vitae. Four different clusters based on indicator scores ranked researchers as low, middle, high and extremely high performers...... useful in identifying disciplinary appropriate indicators providing the preliminary data preparation was thorough but needed to be supplemented by other analyses to validate the results. A general disconnection between the performance of the researcher on their curriculum vitae and the performance...

  17. Advanced PWR technology development -Development of advanced PWR system analysis technology-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Moon Heui; Hwang, Yung Dong; Kim, Sung Oh; Yoon, Joo Hyun; Jung, Bub Dong; Choi, Chul Jin; Lee, Yung Jin; Song, Jin Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The primary scope of this study is to establish the analysis technology for the advanced reactor designed on the basis of the passive and inherent safety concepts. This study is extended to the application of these technology to the safety analysis of the passive reactor. The study was performed for the small and medium sized reactor and the large sized reactor by focusing on the development of the analysis technology for the passive components. Among the identified concepts the once-through steam generator, the natural circulation of the integral reactor, heat pipe for containment cooling, and hydraulic valve were selected as the high priority items to be developed and the related studies are being performed for these items. For the large sized passive reactor, the study plans to extend the applicability of the best estimate computer code RELAP5/MOD3 which is widely used for the safety analyses of the reactor system. The improvement and supplementation study of the analysis modeling and the methodology is planned to be carried out for these purpose. The newly developed technologies are expected to be applied to the domestic advanced reactor design and analysis and these technologies will play a key role in extending the domestic nuclear base technology and consolidating self-reliance in the essential nuclear technology. 72 figs, 15 tabs, 124 refs. (Author).

  18. "ATLAS" Advanced Technology Life-cycle Analysis System

    Science.gov (United States)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  19. Somatosensory nociceptive characteristics differentiate subgroups in people with chronic low back pain: a cluster analysis.

    Science.gov (United States)

    Rabey, Martin; Slater, Helen; OʼSullivan, Peter; Beales, Darren; Smith, Anne

    2015-10-01

    The objectives of this study were to explore the existence of subgroups in a cohort with chronic low back pain (n = 294) based on the results of multimodal sensory testing and profile subgroups on demographic, psychological, lifestyle, and general health factors. Bedside (2-point discrimination, brush, vibration and pinprick perception, temporal summation on repeated monofilament stimulation) and laboratory (mechanical detection threshold, pressure, heat and cold pain thresholds, conditioned pain modulation) sensory testing were examined at wrist and lumbar sites. Data were entered into principal component analysis, and 5 component scores were entered into latent class analysis. Three clusters, with different sensory characteristics, were derived. Cluster 1 (31.9%) was characterised by average to high temperature and pressure pain sensitivity. Cluster 2 (52.0%) was characterised by average to high pressure pain sensitivity. Cluster 3 (16.0%) was characterised by low temperature and pressure pain sensitivity. Temporal summation occurred significantly more frequently in cluster 1. Subgroups were profiled on pain intensity, disability, depression, anxiety, stress, life events, fear avoidance, catastrophizing, perception of the low back region, comorbidities, body mass index, multiple pain sites, sleep, and activity levels. Clusters 1 and 2 had a significantly greater proportion of female participants and higher depression and sleep disturbance scores than cluster 3. The proportion of participants undertaking <300 minutes per week of moderate activity was significantly greater in cluster 1 than in clusters 2 and 3. Low back pain, therefore, does not appear to be homogeneous. Pain mechanisms relating to presentations of each subgroup were postulated. Future research may investigate prognoses and interventions tailored towards these subgroups. PMID:26020225

  20. The application of cluster analysis in the intercomparison of loop structures in RNA.

    Science.gov (United States)

    Huang, Hung-Chung; Nagaswamy, Uma; Fox, George E

    2005-04-01

    We have developed a computational approach for the comparison and classification of RNA loop structures. Hairpin or interior loops identified in atomic resolution RNA structures were intercompared by conformational matching. The root-mean-square deviation (RMSD) values between all pairs of RNA fragments of interest, even if from different molecules, are calculated. Subsequently, cluster analysis is performed on the resulting matrix of RMSD distances using the unweighted pair group method with arithmetic mean (UPGMA). The cluster analysis objectively reveals groups of folds that resemble one another. To demonstrate the utility of the approach, a comprehensive analysis of all the terminal hairpin tetraloops that have been observed in 15 RNA structures that have been determined by X-ray crystallography was undertaken. The method found major clusters corresponding to the well-known GNRA and UNCG types. In addition, two tetraloops with the unusual primary sequence UMAC (M is A or C) were successfully assigned to the GNRA cluster. Larger loop structures were also examined and the clustering results confirmed the occurrence of variations of the GNRA and UNCG tetraloops in these loops and provided a systematic means for locating them. Nineteen examples of larger loops that closely resemble either the GNRA or UNCG tetraloop were found in the large ribosomal RNAs. When the clustering approach was extended to include all structures in the SCOR database, novel relationships were detected including one between the ANYA motif and a less common folding of the GAAA tetraloop sequence.

  1. Evaluation of socio-economic patterns of SHG members in Kerala using clustering analysis

    Directory of Open Access Journals (Sweden)

    Sajeev B. U

    2012-03-01

    Full Text Available Abstracts In the matter of social development, though Kerala stands ahead of all other states in India, the pattern of distribution of social and economic opportunities within the state is highly inequitable among different social groups. Self help groups (SHG are vehicles for social, political and financial intermediation of the state. Clustering analysis is one of the main analytical methods in data mining; the method of clustering algorithm will influence the clustering results directly. K-means and Fuzzy C-Means Algorithms are popular methods in cluster analysis. In this paper we have evaluated the socioeconomic developments of SHG in various districts in Kerala state using cluster analysis. The data were collected by field survey and interviews. The parameters considered for the study include the regularity of the members in attending meetings and training, social and economic benefits gained by the members in personal level, cluster level and society level, rate of employment and earning members in the family and literacy and educational level of SHG members.

  2. Provenience study of medieval Bulgarian glasses by NAA and cluster analysis

    International Nuclear Information System (INIS)

    The neutron activation analysis results from 30 glass samples were subjected to cluster analysis. The reliable localization of part of the medieval glass finds from Preslav enabled the evaluation of the variety of the production of a medieval glass workshop (ninth-tenth century), allowing conclusions to be made about the technological level of glass-making in Bulgaria during the Middle Ages. The work proved that NAA followed by cluster analysis is a successful approach to finding the local and chronological features of the investigated glasses. (author)

  3. ANALYSIS OF RISING TUITION RATES IN THE UNITED STATES BASED ON CLUSTERING ANALYSIS AND REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Long Cheng

    2016-05-01

    Full Text Available Since higher education is one of the major driving forces for country development and social prosperity, and tuition plays a significant role in determining whether or not a person can afford to receive higher education, the rising tuition is a topic of big concern today. So it is essentially necessary to understand what factors affect the tuition and how they increase or decrease the tuition. Many existing studies on the rising tuition either lack large amounts of real data and proper quantitative models to support their conclusions, or are limited to focus on only a few factors that might affect the tuition, which fail to make a comprehensive analysis. In this paper, we explore a wide variety of factors that might affect the tuition growth rate by use of large amounts of authentic data and different quantitative methods such as clustering analysis and regression models.

  4. Displacement of Building Cluster Using Field Analysis Method

    Institute of Scientific and Technical Information of China (English)

    Al Tinghua

    2003-01-01

    This paper presents a field based method to deal with the displacement of building cluster,which is driven by the street widening. The compress of street boundary results in the force to push the building moving inside and the force propagation is a decay process. To describe the phenomenon above, the field theory is introduced with the representation model of isoline. On the basis of the skeleton of Delaunay triangulation,the displacement field is built in which the propagation force is related to the adjacency degree with respect to the street boundary. The study offers the computation of displacement direction and offset distance for the building displacement. The vector operation is performed on the basis of grade and other field concepts.

  5. Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant

    Directory of Open Access Journals (Sweden)

    George Tsatsaronis

    2012-06-01

    Full Text Available A conventional exergy analysis can highlight the main components having high thermodynamic inefficiencies, but cannot consider the interactions among components or the true potential for the improvement of each component. By splitting the exergy destruction into endogenous/exogenous and avoidable/unavoidable parts, the advanced exergy analysis is capable of providing additional information to conventional exergy analysis for improving the design and operation of energy conversion systems. This paper presents the application of both a conventional and an advanced exergy analysis to a supercritical coal-fired power plant. The results show that the ratio of exogenous exergy destruction differs quite a lot from component to component. In general, almost 90% of the total exergy destruction within turbines comes from their endogenous parts, while that of feedwater preheaters contributes more or less 70% to their total exergy destruction. Moreover, the boiler subsystem is proven to have a large amount of exergy destruction caused by the irreversibilities within the remaining components of the overall system. It is also found that the boiler subsystem still has the largest avoidable exergy destruction; however, the enhancement efforts should focus not only on its inherent irreversibilities but also on the inefficiencies within the remaining components. A large part of the avoidable exergy destruction within feedwater preheaters is exogenous; while that of the remaining components is mostly endogenous indicating that the improvements mainly depend on advances in design and operation of the component itself.

  6. Cluster analysis for the probability of DSB site induced by electron tracks

    International Nuclear Information System (INIS)

    To clarify the influence of bio-cells exposed to ionizing radiations, the densely populated pattern of the ionization in the cell nucleus is of importance because it governs the extent of DNA damage which may lead to cell lethality. In this study, we have conducted a cluster analysis of ionization and excitation events to estimate the number of double-strand breaks (DSBs) induced by electron tracks. A Monte Carlo simulation for electrons in liquid water was performed to determine the spatial location of the ionization and excitation events. The events were divided into clusters by using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The algorithm enables us to sort out the events into the groups (clusters) in which a minimum number of neighboring events are contained within a given radius. For evaluating the number of DSBs in the extracted clusters, we have introduced an aggregation index (AI). The computational results show that a sub-keV electron produces DSBs in a dense formation more effectively than higher energy electrons. The root-mean square radius (RMSR) of the cluster size is below 5 nm, which is smaller than the chromatin fiber thickness. It was found that this size of clustering events has a high possibility to cause lesions in DNA within the chromatin fiber site

  7. Mapping informative clusters in a hierarchical [corrected] framework of FMRI multivariate analysis.

    Directory of Open Access Journals (Sweden)

    Rui Xu

    Full Text Available Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies.

  8. Cluster analysis for the probability of DSB site induced by electron tracks

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Y. [Biological Research, Education and Instrumentation Center, Sapporo Medical University, Sapporo 060-8556 (Japan); Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Sasaki, K. [Faculty of Health Sciences, Hokkaido University of Science, Sapporo 006-8585 (Japan); Matsuya, Y. [Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Date, H., E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan)

    2015-05-01

    To clarify the influence of bio-cells exposed to ionizing radiations, the densely populated pattern of the ionization in the cell nucleus is of importance because it governs the extent of DNA damage which may lead to cell lethality. In this study, we have conducted a cluster analysis of ionization and excitation events to estimate the number of double-strand breaks (DSBs) induced by electron tracks. A Monte Carlo simulation for electrons in liquid water was performed to determine the spatial location of the ionization and excitation events. The events were divided into clusters by using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The algorithm enables us to sort out the events into the groups (clusters) in which a minimum number of neighboring events are contained within a given radius. For evaluating the number of DSBs in the extracted clusters, we have introduced an aggregation index (AI). The computational results show that a sub-keV electron produces DSBs in a dense formation more effectively than higher energy electrons. The root-mean square radius (RMSR) of the cluster size is below 5 nm, which is smaller than the chromatin fiber thickness. It was found that this size of clustering events has a high possibility to cause lesions in DNA within the chromatin fiber site.

  9. Profiling nurses' job satisfaction, acculturation, work environment, stress, cultural values and coping abilities: A cluster analysis.

    Science.gov (United States)

    Goh, Yong-Shian; Lee, Alice; Chan, Sally Wai-Chi; Chan, Moon Fai

    2015-08-01

    This study aimed to determine whether definable profiles existed in a cohort of nursing staff with regard to demographic characteristics, job satisfaction, acculturation, work environment, stress, cultural values and coping abilities. A survey was conducted in one hospital in Singapore from June to July 2012, and 814 full-time staff nurses completed a self-report questionnaire (89% response rate). Demographic characteristics, job satisfaction, acculturation, work environment, perceived stress, cultural values, ways of coping and intention to leave current workplace were assessed as outcomes. The two-step cluster analysis revealed three clusters. Nurses in cluster 1 (n = 222) had lower acculturation scores than nurses in cluster 3. Cluster 2 (n = 362) was a group of younger nurses who reported higher intention to leave (22.4%), stress level and job dissatisfaction than the other two clusters. Nurses in cluster 3 (n = 230) were mostly Singaporean and reported the lowest intention to leave (13.0%). Resources should be allocated to specifically address the needs of younger nurses and hopefully retain them in the profession. Management should focus their retention strategies on junior nurses and provide a work environment that helps to strengthen their intention to remain in nursing by increasing their job satisfaction. PMID:24754648

  10. Fatigue Feature Extraction Analysis based on a K-Means Clustering Approach

    Directory of Open Access Journals (Sweden)

    M.F.M. Yunoh

    2015-06-01

    Full Text Available This paper focuses on clustering analysis using a K-means approach for fatigue feature dataset extraction. The aim of this study is to group the dataset as closely as possible (homogeneity for the scattered dataset. Kurtosis, the wavelet-based energy coefficient and fatigue damage are calculated for all segments after the extraction process using wavelet transform. Kurtosis, the wavelet-based energy coefficient and fatigue damage are used as input data for the K-means clustering approach. K-means clustering calculates the average distance of each group from the centroid and gives the objective function values. Based on the results, maximum values of the objective function can be seen in the two centroid clusters, with a value of 11.58. The minimum objective function value is found at 8.06 for five centroid clusters. It can be seen that the objective function with the lowest value for the number of clusters is equal to five; which is therefore the best cluster for the dataset.

  11. Event-by-event cluster analysis of final states from heavy ion collisions

    OpenAIRE

    Fialkowski, K.; Wit, R.

    1999-01-01

    We present an event-by-event analysis of the cluster structure of final multihadron states resulting from heavy ion collisions. A comparison of experimental data with the states obtained from Monte Carlo generators is shown. The analysis of the first available experimental events suggests that the method is suitable for selecting some different types of events.

  12. Standardized Effect Size Measures for Mediation Analysis in Cluster-Randomized Trials

    Science.gov (United States)

    Stapleton, Laura M.; Pituch, Keenan A.; Dion, Eric

    2015-01-01

    This article presents 3 standardized effect size measures to use when sharing results of an analysis of mediation of treatment effects for cluster-randomized trials. The authors discuss 3 examples of mediation analysis (upper-level mediation, cross-level mediation, and cross-level mediation with a contextual effect) with demonstration of the…

  13. Cluster analysis of flow cytometric list mode data on a personal computer

    NARCIS (Netherlands)

    Bakker Schut, Tom C.; Grooth, de Bart G.; Greve, Jan

    1993-01-01

    A cluster analysis algorithm, dedicated to analysis of flow cytometric data is described. The algorithm is written in Pascal and implemented on an MS-DOS personal computer. It uses k-means, initialized with a large number of seed points, followed by a modified nearest neighbor technique to reduce th

  14. Development of the advanced PHWR technology -Design and analysis of CANDU advanced fuel-

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Hoh Chun; Shim, Kee Sub; Byun, Taek Sang; Park, Kwang Suk; Kang, Heui Yung; Kim, Bong Kee; Jung, Chang Joon; Lee, Yung Wook; Bae, Chang Joon; Kwon, Oh Sun; Oh, Duk Joo; Im, Hong Sik; Ohn, Myung Ryong; Lee, Kang Moon; Park, Joo Hwan; Lee, Eui Joon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This is the `94 annual report of the CANDU advanced fuel design and analysis project, and describes CANFLEX fuel design and mechanical integrity analysis, reactor physics analysis and safety analysis of the CANDU-6 with the CANFLEX-NU. The following is the R and D scope of this fiscal year : (1) Detail design of CANFLEX-NU and detail analysis on the fuel integrity, reactor physics and safety. (a) Detail design and mechanical integrity analysis of the bundle (b) CANDU-6 refueling simulation, and analysis on the Xe transients and adjuster system capability (c) Licensing strategy establishment and safety analysis for the CANFLEX-NU demonstration demonstration irradiation in a commercial CANDU-6. (2) Production and revision of CANFLEX-NU fuel design documents (a) Production and approval of CANFLEX-NU reference drawing, and revisions of fuel design manual and technical specifications (b) Production of draft physics design manual. (3) Basic research on CANFLEX-SEU fuel. 55 figs, 21 tabs, 45 refs. (Author).

  15. Identifying patterns in treatment response profiles in acute bipolar mania: a cluster analysis approach

    Directory of Open Access Journals (Sweden)

    Houston John P

    2008-07-01

    Full Text Available Abstract Background Patients with acute mania respond differentially to treatment and, in many cases, fail to obtain or sustain symptom remission. The objective of this exploratory analysis was to characterize response in bipolar disorder by identifying groups of patients with similar manic symptom response profiles. Methods Patients (n = 222 were selected from a randomized, double-blind study of treatment with olanzapine or divalproex in bipolar I disorder, manic or mixed episode, with or without psychotic features. Hierarchical clustering based on Ward's distance was used to identify groups of patients based on Young-Mania Rating Scale (YMRS total scores at each of 5 assessments over 7 weeks. Logistic regression was used to identify baseline predictors for clusters of interest. Results Four distinct clusters of patients were identified: Cluster 1 (n = 64: patients did not maintain a response (YMRS total scores ≤ 12; Cluster 2 (n = 92: patients responded rapidly (within less than a week and response was maintained; Cluster 3 (n = 36: patients responded rapidly but relapsed soon afterwards (YMRS ≥ 15; Cluster 4 (n = 30: patients responded slowly (≥ 2 weeks and response was maintained. Predictive models using baseline variables found YMRS Item 10 (Appearance, and psychosis to be significant predictors for Clusters 1 and 4 vs. Clusters 2 and 3, but none of the baseline characteristics allowed discriminating between Clusters 1 vs. 4. Experiencing a mixed episode at baseline predicted membership in Clusters 2 and 3 vs. Clusters 1 and 4. Treatment with divalproex, larger number of previous manic episodes, lack of disruptive-aggressive behavior, and more prominent depressive symptoms at baseline were predictors for Cluster 3 vs. 2. Conclusion Distinct treatment response profiles can be predicted by clinical features at baseline. The presence of these features as potential risk factors for relapse in patients who have responded to treatment

  16. Advances in Mid-Infrared Spectroscopy for Chemical Analysis

    Science.gov (United States)

    Haas, Julian; Mizaikoff, Boris

    2016-06-01

    Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

  17. Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study

    Directory of Open Access Journals (Sweden)

    Ma Jinhui

    2013-01-01

    Full Text Available Abstracts Background The objective of this simulation study is to compare the accuracy and efficiency of population-averaged (i.e. generalized estimating equations (GEE and cluster-specific (i.e. random-effects logistic regression (RELR models for analyzing data from cluster randomized trials (CRTs with missing binary responses. Methods In this simulation study, clustered responses were generated from a beta-binomial distribution. The number of clusters per trial arm, the number of subjects per cluster, intra-cluster correlation coefficient, and the percentage of missing data were allowed to vary. Under the assumption of covariate dependent missingness, missing outcomes were handled by complete case analysis, standard multiple imputation (MI and within-cluster MI strategies. Data were analyzed using GEE and RELR. Performance of the methods was assessed using standardized bias, empirical standard error, root mean squared error (RMSE, and coverage probability. Results GEE performs well on all four measures — provided the downward bias of the standard error (when the number of clusters per arm is small is adjusted appropriately — under the following scenarios: complete case analysis for CRTs with a small amount of missing data; standard MI for CRTs with variance inflation factor (VIF 50. RELR performs well only when a small amount of data was missing, and complete case analysis was applied. Conclusion GEE performs well as long as appropriate missing data strategies are adopted based on the design of CRTs and the percentage of missing data. In contrast, RELR does not perform well when either standard or within-cluster MI strategy is applied prior to the analysis.

  18. Fault detection of flywheel system based on clustering and principal component analysis

    Directory of Open Access Journals (Sweden)

    Wang Rixin

    2015-12-01

    Full Text Available Considering the nonlinear, multifunctional properties of double-flywheel with closed-loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of “integrated power and attitude control” system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the reachability-plot. Finally, the last step of proposed model is used to define the relationship of parameters in each operation through the principal component analysis (PCA method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.

  19. Fault detection of flywheel system based on clustering and principal component analysis

    Institute of Scientific and Technical Information of China (English)

    Wang Rixin; Gong Xuebing; Xu Minqiang; Li Yuqing

    2015-01-01

    Considering the nonlinear, multifunctional properties of double-flywheel with closed-loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of‘‘integrated power and attitude control”system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS) can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the reachability-plot. Finally, the last step of proposed model is used to define the rela-tionship of parameters in each operation through the principal component analysis (PCA) method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.

  20. A COMPARISON BETWEEN SINGLE LINKAGE AND COMPLETE LINKAGE IN AGGLOMERATIVE HIERARCHICAL CLUSTER ANALYSIS FOR IDENTIFYING TOURISTS SEGMENTS

    Directory of Open Access Journals (Sweden)

    Noor Rashidah Rashid

    2012-02-01

    Full Text Available Cluster Analysis is a multivariate method in statistics. Agglomerative Hierarchical Cluster Analysis is one of approaches in Cluster Analysis. There are two linkage methods in Agglomerative Hierarchical Cluster Analysis which are Single Linkage and Complete Linkage. The purpose of this study is to compare between Single Linkage and Complete Linkage in Agglomerative Hierarchical Cluster Analysis. The comparison of performances between these linkage methods was shown by using Kruskal-Wallis test. The result of the comparison used for segmenting tourists of Kapas Island. The statistical software SPSS has been applied to analyze data of this research. The result from Kruskal-Wallis test shows Complete Linkage is more useful in identifying tourists segments. Keywords : Agglomerative Hierarchical Cluster Analysis, Single Linkage, Complete Linkage, Kruskal-Wallis test, tourists

  1. Identification and structural analysis of a novel snoRNA gene cluster from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    周惠; 孟清; 屈良鹄

    2000-01-01

    A 22 snoRNA gene cluster, consisting of four antisense snoRNA genes, was identified from Arabidopsis thaliana. The sequence and structural analysis showed that the 22 snoRNA gene cluster might be transcribed as a polycistronic precursor from an upstream promoter, and the in-tergenic spacers of the gene cluster encode the ’hairpin’ structures similar to the processing recognition signals of yeast Saccharomyces cerevisiae polycistronic snoRNA precursor. The results also revealed that plant snoRNA gene with multiple copies is a characteristic in common, and provides a good system for further revealing the transcription and expression mechanism of plant snoRNA gene cluster.

  2. Design and Analysis of SD_DWCA - A Mobility Based Clustering of Homogeneous MANETs

    Directory of Open Access Journals (Sweden)

    T.N. Janakiraman

    2011-05-01

    Full Text Available This paper deals with the design and analysis of the distributed weighted clustering algorithm SD_DWCAproposed for homogeneous mobile ad hoc networks. It is a connectivity, mobility and energy based clustering algorithm which is suitable for scalable ad hoc networks. The algorithm uses a new graph parameter called strong degree defined based on the quality of neighbours of a node. The parameters are so chosen to ensure high connectivity, cluster stability and energy efficient communication among nodes of high dynamic nature. This paper also includes the experimental results of the algorithm implementedusing the network simulator NS2. The experimental results show that the algorithm is suitable for highspeed networks and generate stable clusters with less maintenance overhead.

  3. PERFORMANCE EVALUATION OF CLUSTERING IN WEB-LOG ANALYSIS BASED ON AGENT

    Directory of Open Access Journals (Sweden)

    Himani

    2012-06-01

    Full Text Available Web mining is the use of data mining Technique toautomatically discover & extract information from webdocuments. When user searches for goods the managementagent receives order from graphical user interface.Management agent receives information, update agentinformation store house and feedback the mining result touser. Intelligent agent can help making computer systemeasier to use, enable finding & filtering information. Themining agent is the analytical center of whole agentsystem.It mainly adopts two kind of analytical method:related rule mining and cluster analysis. Cluster of objectsare formed so that objects with in a cluster have highsimilarity. The aim of this paper is to analyze the web logdata .To achieve this clustering tool is used. It performs intwo phases. First it captures the web-log data. Then itanalyzes the data& discovers the hidden pattern. Agentrequires an agent communication language to describe &process agent request. The future internet will use PERL toencode information with meaningful structure & semantics.

  4. Functional Interference Clusters in Cancer Patients With Bone Metastases: A Secondary Analysis of RTOG 9714

    International Nuclear Information System (INIS)

    Purpose: To explore the relationships (clusters) among the functional interference items in the Brief Pain Inventory (BPI) in patients with bone metastases. Methods: Patients enrolled in the Radiation Therapy Oncology Group (RTOG) 9714 bone metastases study were eligible. Patients were assessed at baseline and 4, 8, and 12 weeks after randomization for the palliative radiotherapy with the BPI, which consists of seven functional items: general activity, mood, walking ability, normal work, relations with others, sleep, and enjoyment of life. Principal component analysis with varimax rotation was used to determine the clusters between the functional items at baseline and the follow-up. Cronbach's alpha was used to determine the consistency and reliability of each cluster at baseline and follow-up. Results: There were 448 male and 461 female patients, with a median age of 67 years. There were two functional interference clusters at baseline, which accounted for 71% of the total variance. The first cluster (physical interference) included normal work and walking ability, which accounted for 58% of the total variance. The second cluster (psychosocial interference) included relations with others and sleep, which accounted for 13% of the total variance. The Cronbach's alpha statistics were 0.83 and 0.80, respectively. The functional clusters changed at week 12 in responders but persisted through week 12 in nonresponders. Conclusion: Palliative radiotherapy is effective in reducing bone pain. Functional interference component clusters exist in patients treated for bone metastases. These clusters changed over time in this study, possibly attributable to treatment. Further research is needed to examine these effects.

  5. Advanced Techniques in Pulmonary Function Test Analysis Interpretation and Diagnosis

    OpenAIRE

    Gildea, T.J.; Bell, C. William

    1980-01-01

    The Pulmonary Functions Analysis and Diagnostic System is an advanced clinical processing system developed for use at the Pulmonary Division, Department of Medicine at the University of Nebraska Medical Center. The system generates comparative results and diagnostic impressions for a variety of routine and specialized pulmonary functions test data. Routine evaluation deals with static lung volumes, breathing mechanics, diffusing capacity, and blood gases while specialized tests include lung c...

  6. Advances in oriental document analysis and recognition techniques

    CERN Document Server

    Lee, Seong-Whan

    1999-01-01

    In recent years, rapid progress has been made in computer processing of oriental languages, and the research developments in this area have resulted in tremendous changes in handwriting processing, printed oriental character recognition, document analysis and recognition, automatic input methodologies for oriental languages, etc. Advances in computer processing of oriental languages can also be seen in multimedia computing and the World Wide Web. Many of the results in those domains are presented in this book.

  7. Vertical Migrating and Cluster Analysis of Soil Mesofauna at Dongying Halophytes Garden in Yellow River Delta

    Institute of Scientific and Technical Information of China (English)

    He Fu-xia; Xie Tong-yin; Xie Gui-lin; Fu Rong-shu

    2014-01-01

    For the first time, we used Tullgren method made a study on vertical migrating and cluster analysis of the soil mesofauna in Dongying Halophytes Garden in the Yellow River Delta (YRD), Shandong Province. The results showed that the soil mesofauna tended to gather on soil surface in most samples at most times, but the vertical migrating greatly varied in different seasons or environment conditions. Acari was the dominant group. The index of diversity of the soil fauna was correlated with the index of evenness. The Acari's number of individuals infected other species and numbers. Dominant group-Acari made greater contribution to the result of cluster analysis, and there were significant differences between communities in different habitats by cluster analysis with both Bray-Curtis and Jaccard similarity coefficient.

  8. Preliminary Cluster Analysis For Several Representatives Of Genus Kerivoula (Chiroptera: Vespertilionidae) in Borneo

    Science.gov (United States)

    Hasan, Noor Haliza; Abdullah, M. T.

    2008-01-01

    The aim of the study is to use cluster analysis on morphometric parameters within the genus Kerivoula to produce a dendrogram and to determine the suitability of this method to describe the relationship among species within this genus. A total of 15 adult male individuals from genus Kerivoula taken from sampling trips around Borneo and specimens kept at the zoological museum of Universiti Malaysia Sarawak were examined. A total of 27 characters using dental, skull and external body measurements were recorded. Clustering analysis illustrated the grouping and morphometric relationships between the species of this genus. It has clearly separated each species from each other despite the overlapping of measurements of some species within the genus. Cluster analysis provides an alternative approach to make a preliminary identification of a species.

  9. Application of cluster analysis to preventive maintenance scheme design of pavement

    Institute of Scientific and Technical Information of China (English)

    ZENG Feng; ZHANG Xiao-ning

    2009-01-01

    To quantitatively identify the maintenance demand for each highway segments in the pavement main-tenance scheme design, a mathematical model of uniform segment division was established and an approach of applying cluster analysis theory to the uniform segment division and evaluation of pavement maintenance demand was proposed.The actual maintenance project of a highway carried out in Guangdong province was cited as an example to demonstrate the validity of the proposed method.It is proved that the cluster analysis can eliminate human factors in classification without being constrained by the quantities of samples, considering muhiple pavement distress indexes and the continuity of samples.Thus it is evident that cluster analysis is an efficient analytical tool in uniform segment division and evaluation of maintenance demand.

  10. Parallelization and scheduling of data intensive particle physics analysis jobs on clusters of PCs

    CERN Document Server

    Ponce, S

    2004-01-01

    Summary form only given. Scheduling policies are proposed for parallelizing data intensive particle physics analysis applications on computer clusters. Particle physics analysis jobs require the analysis of tens of thousands of particle collision events, each event requiring typically 200ms processing time and 600KB of data. Many jobs are launched concurrently by a large number of physicists. At a first view, particle physics jobs seem to be easy to parallelize, since particle collision events can be processed independently one from another. However, since large amounts of data need to be accessed, the real challenge resides in making an efficient use of the underlying computing resources. We propose several job parallelization and scheduling policies aiming at reducing job processing times and at increasing the sustainable load of a cluster server. Since particle collision events are usually reused by several jobs, cache based job splitting strategies considerably increase cluster utilization and reduce job ...

  11. Fuzzy C-means clustering for chromatographic fingerprints analysis: A gas chromatography-mass spectrometry case study.

    Science.gov (United States)

    Parastar, Hadi; Bazrafshan, Alisina

    2016-03-18

    Fuzzy C-means clustering (FCM) is proposed as a promising method for the clustering of chromatographic fingerprints of complex samples, such as essential oils. As an example, secondary metabolites of 14 citrus leaves samples are extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The obtained chromatographic fingerprints are divided to desired number of chromatographic regions. Owing to the fact that chromatographic problems, such as elution time shift and peak overlap can significantly affect the clustering results, therefore, each chromatographic region is analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) to address these problems. Then, the resolved elution profiles are used to make a new data matrix based on peak areas of pure components to cluster by FCM. The FCM clustering parameters (i.e., fuzziness coefficient and number of cluster) are optimized by two different methods of partial least squares (PLS) as a conventional method and minimization of FCM objective function as our new idea. The results showed that minimization of FCM objective function is an easier and better way to optimize FCM clustering parameters. Then, the optimized FCM clustering algorithm is used to cluster samples and variables to figure out the similarities and dissimilarities among samples and to find discriminant secondary metabolites in each cluster (chemotype). Finally, the FCM clustering results are compared with those of principal component analysis (PCA), hierarchical cluster analysis (HCA) and Kohonon maps. The results confirmed the outperformance of FCM over the frequently used clustering algorithms.

  12. CLUSTER ANALYSIS UNTUK MEMPREDIKSI TALENTA PEMAIN BASKET MENGGUNAKAN JARINGAN SARAF TIRUAN SELF ORGANIZING MAPS (SOM

    Directory of Open Access Journals (Sweden)

    Gregorius Satia Budhi

    2008-01-01

    Full Text Available Basketball World has grown rapidly as the time goes on. This is signed by many competition and game all over the world. With the result there are many basketball players with their different playing characteristics. Demand for a coach or scout to look for or search great players to make a solid team as a coach requirement. With this application, a coach or scout will be helped in analyzing in decision making. This application uses Self Organizing Maps algorithm (SOM for Cluster Analysis. The real NBA player data is used for competitive learning or training process and real player data from Indonesian or Petra Christian University Basketball Players is used for testing process. The NBA Player data is prepared through cleaning process and then is transformed into a form that can be processed by SOM Algorithm. After that, the data is clustered with the SOM algorithm. The result of that clusters is displayed into a form that is easy to view and analyze. This result can be saved into a text file. By using the output / result of this application, that are the clusters of NBA player, the user can see the statistics of each cluster. With these cluster statistics coach or scout can predict the statistic and the position of a testing player who is in the same cluster. This information can give a support for the coach or scout to make a decision. Abstract in Bahasa Indonesia : Dunia bola basket telah berkembang dengan pesat seiring dengan berjalannya waktu. Hal ini ditandai dengan munculnya berbagai macam dan jenis kompetisi dan pertandingan baik dunia maupun dalam negeri. Sehingga makin banyak dilahirkannya pemain berbakat dengan berbagai karakteristik permainan yang berbeda. Tuntutan bagi seorang pelatih/pemandu bakat, untuk dapat melihat secara jeli dalam memenuhi kebutuhan tim untuk membentuk tim yang solid. Dengan dibuatnya aplikasi ini, maka akan membantu proses analisis dan pengambilan keputusan bagi pelatih maupun pemandu bakat Aplikasi ini

  13. Differentiating Procrastinators from Each Other: A Cluster Analysis.

    Science.gov (United States)

    Rozental, Alexander; Forsell, Erik; Svensson, Andreas; Forsström, David; Andersson, Gerhard; Carlbring, Per

    2015-01-01

    Procrastination refers to the tendency to postpone the initiation and completion of a given course of action. Approximately one-fifth of the adult population and half of the student population perceive themselves as being severe and chronic procrastinators. Albeit not a psychiatric diagnosis, procrastination has been shown to be associated with increased stress and anxiety, exacerbation of illness, and poorer performance in school and work. However, despite being severely debilitating, little is known about the population of procrastinators in terms of possible subgroups, and previous research has mainly investigated procrastination among university students. The current study examined data from a screening process recruiting participants to a randomized controlled trial of Internet-based cognitive behavior therapy for procrastination (Rozental et al., in press). In total, 710 treatment-seeking individuals completed self-report measures of procrastination, depression, anxiety, and quality of life. The results suggest that there might exist five separate subgroups, or clusters, of procrastinators: "Mild procrastinators" (24.93%), "Average procrastinators" (27.89%), "Well-adjusted procrastinators" (13.94%), "Severe procrastinators" (21.69%), and "Primarily depressed" (11.55%). Hence, there seems to be marked differences among procrastinators in terms of levels of severity, as well as a possible subgroup for which procrastinatory problems are primarily related to depression. Tailoring the treatment interventions to the specific procrastination profile of the individual could thus become important, as well as screening for comorbid psychiatric diagnoses in order to target difficulties associated with, for instance, depression. PMID:26178164

  14. Analysis of cardiac tissue by gold cluster ion bombardment

    Science.gov (United States)

    Aranyosiova, M.; Chorvatova, A.; Chorvat, D.; Biro, Cs.; Velic, D.

    2006-07-01

    Specific molecules in cardiac tissue of spontaneously hypertensive rats are studied by using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The investigation determines phospholipids, cholesterol, fatty acids and their fragments in the cardiac tissue, with special focus on cardiolipin. Cardiolipin is a unique phospholipid typical for cardiomyocyte mitochondrial membrane and its decrease is involved in pathologic conditions. In the positive polarity, the fragments of phosphatydilcholine are observed in the mass region of 700-850 u. Peaks over mass 1400 u correspond to intact and cationized molecules of cardiolipin. In animal tissue, cardiolipin contains of almost exclusively 18 carbon fatty acids, mostly linoleic acid. Linoleic acid at 279 u, other fatty acids, and phosphatidylglycerol fragments, as precursors of cardiolipin synthesis, are identified in the negative polarity. These data demonstrate that SIMS technique along with Au 3+ cluster primary ion beam is a good tool for detection of higher mass biomolecules providing approximately 10 times higher yield in comparison with Au +.

  15. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    Energy Technology Data Exchange (ETDEWEB)

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  16. The Swift X-ray Telescope Cluster Survey II. X-ray spectral analysis

    OpenAIRE

    P. TozziINAF, Osservatorio Astrofisico di Firenze; A. Moretti(Fermilab, Batavia, IL, USA); Tundo, E.; Liu, T.; Rosati, P.; Borgani, S.; Tagliaferri, G.; S. Campana; Fugazza, D.; Avanzo, P. D.

    2014-01-01

    (Abridged) We present a spectral analysis of a new, flux-limited sample of 72 X-ray selected clusters of galaxies identified with the X-ray Telescope (XRT) on board the Swift satellite down to a flux limit of ~10-14 erg/s/cm2 (SWXCS, Tundo et al. 2012). We carry out a detailed X-ray spectral analysis with the twofold aim of measuring redshifts and characterizing the properties of the Intra-Cluster Medium (ICM). Optical counterparts and spectroscopic or photometric redshifts ...

  17. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    Science.gov (United States)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  18. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  19. Windows forensic analysis toolkit advanced analysis techniques for Windows 7

    CERN Document Server

    Carvey, Harlan

    2012-01-01

    Now in its third edition, Harlan Carvey has updated "Windows Forensic Analysis Toolkit" to cover Windows 7 systems. The primary focus of this edition is on analyzing Windows 7 systems and on processes using free and open-source tools. The book covers live response, file analysis, malware detection, timeline, and much more. The author presents real-life experiences from the trenches, making the material realistic and showing the why behind the how. New to this edition, the companion and toolkit materials are now hosted online. This material consists of electronic printable checklists, cheat sheets, free custom tools, and walk-through demos. This edition complements "Windows Forensic Analysis Toolkit, 2nd Edition", (ISBN: 9781597494229), which focuses primarily on XP. It includes complete coverage and examples on Windows 7 systems. It contains Lessons from the Field, Case Studies, and War Stories. It features companion online material, including electronic printable checklists, cheat sheets, free custom tools, ...

  20. Comprehensive behavioral analysis of cluster of differentiation 47 knockout mice.

    Directory of Open Access Journals (Sweden)

    Hisatsugu Koshimizu

    Full Text Available Cluster of differentiation 47 (CD47 is a member of the immunoglobulin superfamily which functions as a ligand for the extracellular region of signal regulatory protein α (SIRPα, a protein which is abundantly expressed in the brain. Previous studies, including ours, have demonstrated that both CD47 and SIRPα fulfill various functions in the central nervous system (CNS, such as the modulation of synaptic transmission and neuronal cell survival. We previously reported that CD47 is involved in the regulation of depression-like behavior of mice in the forced swim test through its modulation of tyrosine phosphorylation of SIRPα. However, other potential behavioral functions of CD47 remain largely unknown. In this study, in an effort to further investigate functional roles of CD47 in the CNS, CD47 knockout (KO mice and their wild-type littermates were subjected to a battery of behavioral tests. CD47 KO mice displayed decreased prepulse inhibition, while the startle response did not differ between genotypes. The mutants exhibited slightly but significantly decreased sociability and social novelty preference in Crawley's three-chamber social approach test, whereas in social interaction tests in which experimental and stimulus mice have direct contact with each other in a freely moving setting in a novel environment or home cage, there were no significant differences between the genotypes. While previous studies suggested that CD47 regulates fear memory in the inhibitory avoidance test in rodents, our CD47 KO mice exhibited normal fear and spatial memory in the fear conditioning and the Barnes maze tests, respectively. These findings suggest that CD47 is potentially involved in the regulation of sensorimotor gating and social behavior in mice.

  1. Analyzing Developing Country Market Integration with Incomplete Price Data Using Cluster Analysis

    OpenAIRE

    Ansah, I.G.; Gardebroek, C.; Ihle, R.; Jaletac, M.

    2014-01-01

    Recent global food price developments have spurred renewed interest in analyzing integration of local markets to global markets. A popular approach to quantify market integration is cointegration analysis. However, local market price data often has missing values, outliers, or short and incomplete series, making cointegration analysis impossible. Instead of imputing missing data, this paper proposes cluster analysis as an alternative methodological approach for analyzing market integration. I...

  2. Arabic Text Summarization Based on Latent Semantic Analysis to Enhance Arabic Documents Clustering

    Directory of Open Access Journals (Sweden)

    Hanane Froud

    2013-02-01

    Full Text Available Arabic Documents Clustering is an important task for obtaining good results with the traditional Information Retrieval (IR systems especially with the rapid growth of the number of online documents present in Arabic language. Documents clustering aim to automatically group similar documents in one cluster using different similarity/distance measures. This task is often affected by the documents length, useful information on the documents is often accompanied by a large amount of noise, and therefore it is necessary to eliminate this noise while keeping useful information to boost the performance of Documents clustering. In this paper, we propose to evaluate the impact of text summarization using the Latent Semantic Analysis Model on Arabic Documents Clustering in order to solve problems cited above, using five similarity/distance measures: Euclidean Distance, Cosine Similarity, Jaccard Coefficient, PearsonCorrelation Coefficient and Averaged Kullback-Leibler Divergence, for two times: without and with stemming. Our experimental results indicate that our proposed approach effectively solves the problems of noisy information and documents length, and thus significantly improve the clustering performance.

  3. ARABIC TEXT SUMMARIZATION BASED ON LATENT SEMANTIC ANALYSIS TO ENHANCE ARABIC DOCUMENTS CLUSTERING

    Directory of Open Access Journals (Sweden)

    Hanane Froud

    2013-01-01

    Full Text Available Arabic Documents Clustering is an important task for obtaining good results with the traditional Information Retrieval (IR systems especially with the rapid growth of the number of online documents present in Arabic language. Documents clustering aim to automatically group similar documents in one cluster using different similarity/distance measures. This task is often affected by the documents length, useful information on the documents is often accompanied by a large amount of noise, and therefore it is necessary to eliminate this noise while keeping useful information to boost the performance of Documents clustering. In this paper, we propose to evaluate the impact of text summarization using the Latent Semantic Analysis Model on Arabic Documents Clustering in order to solve problems cited above, using five similarity/distance measures: Euclidean Distance, Cosine Similarity, Jaccard Coefficient, Pearson Correlation Coefficient and Averaged Kullback-Leibler Divergence, for two times: without and with stemming. Our experimental results indicate that our proposed approach effectively solves the problems of noisy information and documents length, and thus significantly improve the clustering performance.

  4. Clustering of the Parameters of Rhythmographic Analysis of Man’s Electrocardiogram

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Filippova

    2014-12-01

    Full Text Available The article considers the clustering of the parameters of man’s heart rate variability. The technique of parameters calculation and diagrams of rhythmographic analysis construction are presented. The algorithm of conceptual clustering Cobweb, modified for quantitative data, is used for parameters clustering. The results of the experiments prove the efficiency of the division of the learning range of electrocardiograms into the groups similar in terms of rhythmographic parameters. The practical application of the offered method as a part of the software support of electrocardiograms analysis will enable to provide operational evaluation of the rhythmographic nature of heart function in the course of screening examinations or in the emergency medicine for diagnosing and prediction.

  5. Cluster analysis in kinetic modelling of the brain: A noninvasive alternative to arterial sampling

    DEFF Research Database (Denmark)

    Liptrot, Matthew George; Adams, K.H.; Martiny, L.;

    2004-01-01

    In emission tomography, quantification of brain tracer uptake, metabolism or binding requires knowledge of the cerebral input function. Traditionally, this is achieved with arterial blood sampling. We propose a noninvasive alternative via the use of a blood vessel time-activity curve (TAC......) extracted directly from dynamic positron emission tomography (PET) scans by cluster analysis. Five healthy subjects were injected with the 5HT2A- receptor ligand [18F]-altanserin and blood samples were subsequently taken from the radial artery and cubital vein. Eight regions-of-interest (ROI) TACs were...... by the 'within-variance' measure and by 3D visual inspection of the homogeneity of the determined clusters. The cluster-determined input curve was then used in Logan plot analysis and compared with the arterial and venous blood samples, and additionally with one of the currently used alternatives to arterial...

  6. Evaluation of Portland cement from X-ray diffraction associated with cluster analysis

    International Nuclear Information System (INIS)

    The Brazilian cement industry produced 64 million tons of cement in 2012, with noteworthy contribution of CP-II (slag), CP-III (blast furnace) and CP-IV (pozzolanic) cements. The industrial pole comprises about 80 factories that utilize raw materials of different origins and chemical compositions that require enhanced analytical technologies to optimize production in order to gain space in the growing consumer market in Brazil. This paper assesses the sensitivity of mineralogical analysis by X-ray diffraction associated with cluster analysis to distinguish different kinds of cements with different additions. This technique can be applied, for example, in the prospection of different types of limestone (calcitic, dolomitic and siliceous) as well as in the qualification of different clinkers. The cluster analysis does not require any specific knowledge of the mineralogical composition of the diffractograms to be clustered; rather, it is based on their similarity. The materials tested for addition have different origins: fly ashes from different power stations from South Brazil and slag from different steel plants in the Southeast. Cement with different additions of limestone and white Portland cement were also used. The Rietveld method of qualitative and quantitative analysis was used for measuring the results generated by the cluster analysis technique. (author)

  7. FEATURE-MODEL-BASED COMMONALITY AND VARIABILITY ANALYSIS FOR VIRTUAL CLUSTER DISK PROVISIONING

    Directory of Open Access Journals (Sweden)

    Nayun Cho

    2016-01-01

    Full Text Available The rapid growth of networking and storage capacity allows collecting and analyzing massive amount of data by relying increasingly on scalable, flexible, and on-demand provisioned largescale computing resources. Virtualization is one of the feasible solution to provide large amounts of computational power with dynamic provisioning of underlying computing resources. Typically, distributed scientific applications for analyzing data run on cluster nodes to perform the same task in parallel. However, on-demand virtual disk provisioning for a set of virtual machines, called virtual cluster, is not a trivial task. This paper presents a feature model-based commonality and variability analysis system for virtual cluster disk provisioning to categorize types of virtual disks that should be provisioned. Also, we present an applicable case study to analyze common and variant software features between two different subgroups of the big data processing virtual cluster. Consequently, by using the analysis system, it is possible to provide an ability to accelerate the virtual disk creation process by reducing duplicate software installation activities on a set of virtual disks that need to be provisioned in the same virtual cluster.

  8. Performance Analysis of a Cluster-Based MAC Protocol for Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jesús Alonso-Zárate

    2010-01-01

    Full Text Available An analytical model to evaluate the non-saturated performance of the Distributed Queuing Medium Access Control Protocol for Ad Hoc Networks (DQMANs in single-hop networks is presented in this paper. DQMAN is comprised of a spontaneous, temporary, and dynamic clustering mechanism integrated with a near-optimum distributed queuing Medium Access Control (MAC protocol. Clustering is executed in a distributed manner using a mechanism inspired by the Distributed Coordination Function (DCF of the IEEE 802.11. Once a station seizes the channel, it becomes the temporary clusterhead of a spontaneous cluster and it coordinates the peer-to-peer communications between the clustermembers. Within each cluster, a near-optimum distributed queuing MAC protocol is executed. The theoretical performance analysis of DQMAN in single-hop networks under non-saturation conditions is presented in this paper. The approach integrates the analysis of the clustering mechanism into the MAC layer model. Up to the knowledge of the authors, this approach is novel in the literature. In addition, the performance of an ad hoc network using DQMAN is compared to that obtained when using the DCF of the IEEE 802.11, as a benchmark reference.

  9. Profitability and efficiency of Italian utilities: cluster analysis of financial statement ratios

    International Nuclear Information System (INIS)

    The last ten years have witnessed conspicuous changes in European and Italian regulation of public utility services and in the strategies of the major players in these fields. In response to these changes Italian utilities have made a variety of choices regarding size, presence in more or less capital-intensive stages of different value chains, and diversification. These choices have been implemented both through internal growth and by means of mergers and acquisitions. In this context it is interesting to try to establish whether there is a nexus between these choices and the performance of Italian utilities in terms of profitability and efficiency. Therefore statistical multivariate analysis techniques (cluster analysis and factor analysis) have been applied to several ratios obtained from the 2005 financial statement of 34 utilities. First, a hierarchical cluster analysis method has been applied to financial statement data in order to identify homogeneous groups based on several indicators of the incidence of costs (external costs, personnel costs, depreciation and amortization), profitability (return on sales, return on assets, return on equity) and efficiency (in the utilization of personnel, of total assets, of property, plant and equipment). Five clusters have been found. Then the clusters have been characterized in terms of the aforementioned indicators, the presence in different stages of the energy value chains (electricity and gas) and other descriptive variables (such as turnover, number of employees, assets, percentage of property, plant and equipment on total assets, sales revenues from electricity, gas, water supply and sanitation, waste collection and treatment and other services). In a second round cluster analysis has been preceded by factor analysis, in order to find a smaller set of variables. This procedure has revealed three not directly observable factors that can be interpreted as follows: i) efficiency in ordinary and financial management

  10. Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2015-11-01

    Full Text Available In this paper we present improved methods for discriminating and quantifying primary biological aerosol particles (PBAPs by applying hierarchical agglomerative cluster analysis to multi-parameter ultraviolet-light-induced fluorescence (UV-LIF spectrometer data. The methods employed in this study can be applied to data sets in excess of 1 × 106 points on a desktop computer, allowing for each fluorescent particle in a data set to be explicitly clustered. This reduces the potential for misattribution found in subsampling and comparative attribution methods used in previous approaches, improving our capacity to discriminate and quantify PBAP meta-classes. We evaluate the performance of several hierarchical agglomerative cluster analysis linkages and data normalisation methods using laboratory samples of known particle types and an ambient data set. Fluorescent and non-fluorescent polystyrene latex spheres were sampled with a Wideband Integrated Bioaerosol Spectrometer (WIBS-4 where the optical size, asymmetry factor and fluorescent measurements were used as inputs to the analysis package. It was found that the Ward linkage with z-score or range normalisation performed best, correctly attributing 98 and 98.1 % of the data points respectively. The best-performing methods were applied to the BEACHON-RoMBAS (Bio–hydro–atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen–Rocky Mountain Biogenic Aerosol Study ambient data set, where it was found that the z-score and range normalisation methods yield similar results, with each method producing clusters representative of fungal spores and bacterial aerosol, consistent with previous results. The z-score result was compared to clusters generated with previous approaches (WIBS AnalysiS Program, WASP where we observe that the subsampling and comparative attribution method employed by WASP results in the overestimation of the fungal spore concentration by a factor of 1.5 and the

  11. Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol

    Science.gov (United States)

    Crawford, I.; Ruske, S.; Topping, D. O.; Gallagher, M. W.

    2015-11-01

    In this paper we present improved methods for discriminating and quantifying primary biological aerosol particles (PBAPs) by applying hierarchical agglomerative cluster analysis to multi-parameter ultraviolet-light-induced fluorescence (UV-LIF) spectrometer data. The methods employed in this study can be applied to data sets in excess of 1 × 106 points on a desktop computer, allowing for each fluorescent particle in a data set to be explicitly clustered. This reduces the potential for misattribution found in subsampling and comparative attribution methods used in previous approaches, improving our capacity to discriminate and quantify PBAP meta-classes. We evaluate the performance of several hierarchical agglomerative cluster analysis linkages and data normalisation methods using laboratory samples of known particle types and an ambient data set. Fluorescent and non-fluorescent polystyrene latex spheres were sampled with a Wideband Integrated Bioaerosol Spectrometer (WIBS-4) where the optical size, asymmetry factor and fluorescent measurements were used as inputs to the analysis package. It was found that the Ward linkage with z-score or range normalisation performed best, correctly attributing 98 and 98.1 % of the data points respectively. The best-performing methods were applied to the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-Rocky Mountain Biogenic Aerosol Study) ambient data set, where it was found that the z-score and range normalisation methods yield similar results, with each method producing clusters representative of fungal spores and bacterial aerosol, consistent with previous results. The z-score result was compared to clusters generated with previous approaches (WIBS AnalysiS Program, WASP) where we observe that the subsampling and comparative attribution method employed by WASP results in the overestimation of the fungal spore concentration by a factor of 1.5 and the underestimation of

  12. Improved Detection of Time Windows of Brain Responses in Fmri Using Modified Temporal Clustering Analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Temporal clustering analysis (TCA) has been proposed recently as a method to detect time windows of brain responses in functional MRI (fMRI) studies when the timing and location of the activation are completely unknown. Modifications to the TCA technique are introduced in this report to further improve the sensitivity in detecting brain activation.

  13. Exploring the Relationship between Autism Spectrum Disorder and Epilepsy Using Latent Class Cluster Analysis

    Science.gov (United States)

    Cuccaro, Michael L.; Tuchman, Roberto F.; Hamilton, Kara L.; Wright, Harry H.; Abramson, Ruth K.; Haines, Jonathan L.; Gilbert, John R.; Pericak-Vance, Margaret

    2012-01-01

    Epilepsy co-occurs frequently in autism spectrum disorders (ASD). Understanding this co-occurrence requires a better understanding of the ASD-epilepsy phenotype (or phenotypes). To address this, we conducted latent class cluster analysis (LCCA) on an ASD dataset (N = 577) which included 64 individuals with epilepsy. We identified a 5-cluster…

  14. Validation of an ANN Flow Prediction Model Using a Multt-Station Cluster Analysis

    NARCIS (Netherlands)

    Demirel, M.C.; Booij, M.J.; Kahya, E.

    2012-01-01

    The objective of this study is to validate a flow prediction model for a hydrometric station using a multistation criterion in addition to standard single-station performance criteria. In this contribution we used cluster analysis to identify the regional flow height, i.e., water-level patterns and

  15. Classification of shoulder complaints in general practice by means of cluster analysis

    NARCIS (Netherlands)

    Winters, JC; Groenier, KH; Sobel, JS; Arendzen, HH; Meyboom-de Jong, B

    1997-01-01

    Objective: To determine if a classification of shoulder complaints in general practice can be made with a cluster analysis of variables of medical history and physical examination. Method: One hundred one patients with shoulder complaints were examined upon inclusion (week 0) and after 2 weeks. Elev

  16. Spectral analysis of A and F dwarf members of the open cluster M6: preliminary results

    Science.gov (United States)

    Kılıçoǧlu, T.; Monier, R.; Fossati, L.

    2010-12-01

    We present the first abundance analysis of CD-32 13109 (NGC 6405 47), member of the M6 open cluster. The photospheric abundances of 14 chemical elements were determined by comparing synthetic spectra and observed spectra of the star. Findings show that this star should be an Am star.

  17. Cluster Analysis of Assessment in Anatomy and Physiology for Health Science Undergraduates

    Science.gov (United States)

    Brown, Stephen; White, Sue; Power, Nicola

    2016-01-01

    Academic content common to health science programs is often taught to a mixed group of students; however, content assessment may be consistent for each discipline. This study used a retrospective cluster analysis on such a group, first to identify high and low achieving students, and second, to determine the distribution of students within…

  18. Advanced spectral analysis of ionospheric waves observed with sparse arrays

    CERN Document Server

    Helmboldt, Joseph

    2014-01-01

    This paper presents a case study from a single, six-hour observing period to illustrate the application of techniques developed for interferometric radio telescopes to the spectral analysis of observations of ionospheric fluctuations with sparse arrays. We have adapted the deconvolution methods used for making high dynamic range images of cosmic sources with radio arrays to making comparably high dynamic range maps of spectral power of wavelike ionospheric phenomena. In the example presented here, we have used observations of the total electron content (TEC) gradient derived from Very Large Array (VLA) observations of synchrotron emission from two galaxy clusters at 330 MHz as well as GPS-based TEC measurements from a sparse array of 33 receivers located within New Mexico near the VLA. We show that these techniques provide a significant improvement in signal to noise (S/N) of detected wavelike structures by correcting for both measurement inaccuracies and wavefront distortions. This is especially true for the...

  19. Addressing preference heterogeneity in public health policy by combining Cluster Analysis and Multi-Criteria Decision Analysis

    DEFF Research Database (Denmark)

    Kaltoft, Mette Kjer; Turner, Robin; Cunich, Michelle;

    2015-01-01

    of the population in relation to the importance assigned to relevant criteria. It involves combining Cluster Analysis (CA), to generate the subgroup sets of preferences, with Multi-Criteria Decision Analysis (MCDA), to provide the policy framework into which the clustered preferences are entered. We employ three...... preferences as valid determinants of public policy, a transparent analytical procedure is needed. In this proof of method study we show how public preferences could be incorporated into policy decisions in a way that respects both the multi-criterial nature of those decisions, and the heterogeneity...

  20. Advanced spot quality analysis in two-colour microarray experiments

    Directory of Open Access Journals (Sweden)

    Vetter Guillaume

    2008-09-01

    Full Text Available Abstract Background Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information. Findings We evaluated the performance of two image analysis packages MAIA and GenePix (GP using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5% than GP with default spot filtering conditions. Conclusion Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions.

  1. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  2. Unraveling the dha cluster in Citrobacter werkmanii: comparative genomic analysis of bacterial 1,3-propanediol biosynthesis clusters.

    Science.gov (United States)

    Maervoet, Veerle E T; De Maeseneire, Sofie L; Soetaert, Wim K; De Mey, Marjan

    2014-04-01

    In natural 1,3-propanediol (PDO) producing microorganisms such as Klebsiella pneumoniae, Citrobacter freundii and Clostridium sp., the genes coding for PDO producing enzymes are grouped in a dha cluster. This article describes the dha cluster of a novel candidate for PDO production, Citrobacter werkmanii DSM17579 and compares the cluster to the currently known PDO clusters of Enterobacteriaceae and Clostridiaceae. Moreover, we attribute a putative function to two previously unannotated ORFs, OrfW and OrfY, both in C. freundii and in C. werkmanii: both proteins might form a complex and support the glycerol dehydratase by converting cob(I)alamin to the glycerol dehydratase cofactor coenzyme B12. Unraveling this biosynthesis cluster revealed high homology between the deduced amino acid sequence of the open reading frames of C. werkmanii DSM17579 and those of C. freundii DSM30040 and K. pneumoniae MGH78578, i.e., 96 and 87.5 % identity, respectively. On the other hand, major differences between the clusters have also been discovered. For example, only one dihydroxyacetone kinase (DHAK) is present in the dha cluster of C. werkmanii DSM17579, while two DHAK enzymes are present in the cluster of K. pneumoniae MGH78578 and Clostridium butyricum VPI1718.

  3. Fine analysis on advanced detection of transient electromagnetic method

    Institute of Scientific and Technical Information of China (English)

    Wang Bo; Liu Shengdong; Yang Zhen; Wang Zhijun; Huang Lanying

    2012-01-01

    Fault fracture zones and water-bearing bodies in front of the driving head are the main disasters in mine laneways,thus it is important to perform their advanced detection and prediction in advance in order to provide reliable technical support for the excavation.Based on the electromagnetic induction theory,we analyzed the characteristics of primary and secondary fields with a positive and negative wave form of current,proposed the fine processing of the advanced detection with variation rate of apparent resistivity and introduced in detail the computational formulae and procedures.The result of physical simulation experiments illustrate that the tectonic interface of modules can be judged by first-order rate of apparent resistivity with a boundary error of 5%,and the position of water body determined by the fine analysis method agrees well with the result of borehole drilling.This shows that in terms of distinguishing structure and aqueous anomalies,the first-order rate of apparent resistivity is more sensitive than the secondorder rate of apparent resistivity.However,some remaining problems are suggested for future solutions.

  4. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    Science.gov (United States)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  5. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  6. Cluster analysis of breeding values for milk yield and lactation persistency in Guzerá cattle

    OpenAIRE

    Diego Augusto Campos da Cruz; Rodrigo Pelicioni Savegnago; Annaíza Braga Bignardi Santana; Maria Gabriela Campolina Diniz Peixoto; Frank Angelo Tomita Bruneli; Lenira El Faro

    2016-01-01

    ABSTRACT: The aim of this study was to explore the pattern of genetic lactation curves of Guzerá cattle using cluster analysis. Test-day milk yields of 5,274 first-lactation Guzerá cows were recorded in a progeny test. A total of 34,193 monthly records were analyzed with a random regression animal model using Legendre polynomials to fit additive genetic and permanent environmental random effects and mean trends. Hierarchical and non-hierarchical cluster analyses were performed based on the EB...

  7. Independent Component Analysis to Detect Clustered Microcalcification Breast Cancers

    Directory of Open Access Journals (Sweden)

    R. Gallardo-Caballero

    2012-01-01

    current reproducible studies on the same mammogram set. This proposal is mainly based on the use of extracted image features obtained by independent component analysis, but we also study the inclusion of the patient’s age as a nonimage feature which requires no human expertise. Our system achieves an average of 2.55 false positives per image at a sensitivity of 81.8% and 4.45 at a sensitivity of 91.8% in diagnosing the BCRP_CALC_1 subset of DDSM.

  8. Identifying clinical course patterns in SMS data using cluster analysis

    DEFF Research Database (Denmark)

    Kent, Peter; Kongsted, Alice

    2012-01-01

    ABSTRACT: BACKGROUND: Recently, there has been interest in using the short message service (SMS or text messaging), to gather frequent information on the clinical course of individual patients. One possible role for identifying clinical course patterns is to assist in exploring clinically important...... clinically interpretable and different from those of the whole group. Similar patterns were obtained when the number of SMS time points was reduced to monthly. The advantages and disadvantages of this method were contrasted to that of first transforming SMS data by spline analysis. CONCLUSIONS: This study...

  9. Degradation Assessment and Fault Diagnosis for Roller Bearing Based on AR Model and Fuzzy Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Lingli Jiang

    2011-01-01

    Full Text Available This paper proposes a new approach combining autoregressive (AR model and fuzzy cluster analysis for bearing fault diagnosis and degradation assessment. AR model is an effective approach to extract the fault feature, and is generally applied to stationary signals. However, the fault vibration signals of a roller bearing are non-stationary and non-Gaussian. Aiming at this problem, the set of parameters of the AR model is estimated based on higher-order cumulants. Consequently, the AR parameters are taken as the feature vectors, and fuzzy cluster analysis is applied to perform classification and pattern recognition. Experiments analysis results show that the proposed method can be used to identify various types and severities of fault bearings. This study is significant for non-stationary and non-Gaussian signal analysis, fault diagnosis and degradation assessment.

  10. Hubble Frontier Fields: a high-precision strong-lensing analysis of galaxy cluster MACSJ0416.1-2403 using ˜200 multiple images

    Science.gov (United States)

    Jauzac, M.; Clément, B.; Limousin, M.; Richard, J.; Jullo, E.; Ebeling, H.; Atek, H.; Kneib, J.-P.; Knowles, K.; Natarajan, P.; Eckert, D.; Egami, E.; Massey, R.; Rexroth, M.

    2014-09-01

    We present a high-precision mass model of the galaxy cluster MACSJ0416.1-2403, based on a strong-gravitational-lensing analysis of the recently acquired Hubble Space Telescope Frontier Fields (HFF) imaging data. Taking advantage of the unprecedented depth provided by HST/Advanced Camera for Survey observations in three passbands, we identify 51 new multiply imaged galaxies, quadrupling the previous census and bringing the grand total to 68, comprising 194 individual lensed images. Having selected a subset of the 57 most securely identified multiply imaged galaxies, we use the LENSTOOL software package to constrain a lens model comprised of two cluster-scale dark-matter haloes and 98 galaxy-scale haloes. Our best-fitting model predicts image positions with an rms error of 0.68 arcsec, which constitutes an improvement of almost a factor of 2 over previous, pre-HFF models of this cluster. We find the total projected mass inside a 200 kpc aperture to be (1.60 ± 0.01) × 1014 M⊙, a measurement that offers a three-fold improvement in precision, reaching the per cent level for the first time in any cluster. Finally, we quantify the increase in precision of the derived gravitational magnification of high-redshift galaxies and find an improvement by a factor of ˜2.5 in the statistical uncertainty. Our findings impressively confirm that HFF imaging has indeed opened the domain of high-precision mass measurements for massive clusters of galaxies.

  11. Market segmentation for multiple option healthcare delivery systems--an application of cluster analysis.

    Science.gov (United States)

    Jarboe, G R; Gates, R H; McDaniel, C D

    1990-01-01

    Healthcare providers of multiple option plans may be confronted with special market segmentation problems. This study demonstrates how cluster analysis may be used for discovering distinct patterns of preference for multiple option plans. The availability of metric, as opposed to categorical or ordinal, data provides the ability to use sophisticated analysis techniques which may be superior to frequency distributions and cross-tabulations in revealing preference patterns.

  12. Consumer Acceptance of Genetically Modified Foods in South Korea: Factor and Cluster Analysis

    OpenAIRE

    Onyango, Benjamin M.; Govindasamy, Ramu; Hallman, William K.; Jang, Ho-Min; Puduri, Venkata S.

    2006-01-01

    This study extends biotechnology discourse to cover South Korea in the Asian sub-continent showing a marked difference in perceptions between traditional and GM foods. Factor analysis suggests South Koreans may treat foods that are locally produced and those with no artificial flavors or colorings preferentially to GM foods. Additionally, South Koreans have concerns about perceived risks related to biotechnology, and, given a choice, they may pay more to avoid GM foods. Cluster analysis resul...

  13. Fault Reactivation Analysis Using Microearthquake Clustering Based on Signal-to-Noise Weighted Waveform Similarity

    Science.gov (United States)

    Grund, Michael; Groos, Jörn C.; Ritter, Joachim R. R.

    2016-07-01

    The cluster formation of about 2000 induced microearthquakes (mostly M L correlation and a subsequent equivalence class approach. All events were detected within two separated but neighbouring seismic volumes close to the geothermal powerplants near Landau and Insheim in the Upper Rhine Graben, SW Germany between 2006 and 2013. Besides different sensors, sampling rates and individual data gaps, mainly low signal-to-noise ratios (SNR) of the recordings at most station sites provide a complication for the determination of a precise waveform similarity analysis of the microseismic events in this area. To include a large number of events for such an analysis, a newly developed weighting approach was implemented in the waveform similarity analysis which directly considers the individual SNRs across the whole seismic network. The application to both seismic volumes leads to event clusters with high waveform similarities within short (seconds to hours) and long (months to years) time periods covering two magnitude ranges. The estimated relative hypocenter locations are spatially concentrated for each single cluster and mirror the orientations of mapped faults as well as interpreted rupture planes determined from fault plane solutions. Depending on the waveform cross-correlation coefficient threshold, clusters can be resolved in space to as little as one dominant wavelength. The interpretation of these observations implies recurring fault reactivations by fluid injection with very similar faulting mechanisms during different time periods between 2006 and 2013.

  14. A novel PPGA-based clustering analysis method for business cycle indicator selection

    Institute of Scientific and Technical Information of China (English)

    Dabin ZHANG; Lean YU; Shouyang WANG; Yingwen SONG

    2009-01-01

    A new clustering analysis method based on the pseudo parallel genetic algorithm (PPGA) is proposed for business cycle indicator selection. In the proposed method,the category of each indicator is coded by real numbers,and some illegal chromosomes are repaired by the identi-fication arid restoration of empty class. Two mutation op-erators, namely the discrete random mutation operator andthe optimal direction mutation operator, are designed to bal-ance the local convergence speed and the global convergence performance, which are then combined with migration strat-egy and insertion strategy. For the purpose of verification and illustration, the proposed method is compared with the K-means clustering algorithm and the standard genetic algo-rithms via a numerical simulation experiment. The experi-mental result shows the feasibility and effectiveness of the new PPGA-based clustering analysis algorithm. Meanwhile,the proposed clustering analysis algorithm is also applied to select the business cycle indicators to examine the status of the macro economy. Empirical results demonstrate that the proposed method can effectively and correctly select some leading indicators, coincident indicators, and lagging indi-cators to reflect the business cycle, which is extremely op-erational for some macro economy administrative managers and business decision-makers.

  15. Competitiveness Analysis of Processing Industry Cluster of Livestock Products in Inner Mongolia Based on "Diamond Model"

    Institute of Scientific and Technical Information of China (English)

    YANG Xing-long; REN Ya-tong

    2012-01-01

    Using Michael Porter’s "diamond model", based on regional development characteristics, we conduct analysis of the competitiveness of processing industry cluster of livestock products in Inner Mongolia from six aspects (the factor conditions, demand conditions, corporate strategy, structure and competition, related and supporting industries, government and opportunities). And we put forward the following rational recommendations for improving the competitiveness of processing industry cluster of livestock products in Inner Mongolia: (i) The government should increase capital input, focus on supporting processing industry of livestock products, and give play to the guidance and aggregation effect of financial funds; (ii) In terms of enterprises, it is necessary to vigorously develop leading enterprises, to give full play to the cluster effect of the leading enterprises.

  16. External Defect classification of Citrus Fruit Images using Linear Discriminant Analysis Clustering and ANN classifiers

    Directory of Open Access Journals (Sweden)

    K.Vijayarekha

    2012-12-01

    Full Text Available Linear Discriminant Analysis (LDA is one technique for transforming raw data into a new feature space in which classification can be carried out more robustly. It is useful where the within-class frequencies are unequal. This method maximizes the ratio of between-class variance to the within-class variance in any particular data set and the maximal separability is guaranteed. LDA clustering models are used to classify object into different category. This study makes use of LDA for clustering the features obtained for the citrus fruit images taken in five different domains. Sub-windows of size 40x40 are cropped from the citrus fruit images having defects such as pitting, splitting and stem end rot. Features are extracted in four domains such as statistical features, fourier transform based features, discrete wavelet transform based features and stationary wavelet transform based features. The results of clustering and classification using LDA and ANN classifiers are reported

  17. Contour Cluster Shape Analysis for Building Damage Detection from Post-earthquake Airborne LiDAR

    Directory of Open Access Journals (Sweden)

    HE Meizhang

    2015-04-01

    Full Text Available Detection of the damaged building is the obligatory step prior to evaluate earthquake casualty and economic losses. It's very difficult to detect damaged buildings accurately based on the assumption that intact roofs appear in laser data as large planar segments whereas collapsed roofs are characterized by many small segments. This paper presents a contour cluster shape similarity analysis algorithm for reliable building damage detection from the post-earthquake airborne LiDAR point cloud. First we evaluate the entropies of shape similarities between all the combinations of two contour lines within a building cluster, which quantitatively describe the shape diversity. Then the maximum entropy model is employed to divide all the clusters into intact and damaged classes. The tests on the LiDAR data at El Mayor-Cucapah earthquake rupture prove the accuracy and reliability of the proposed method.

  18. Automation of Large-scale Computer Cluster Monitoring Information Analysis

    Science.gov (United States)

    Magradze, Erekle; Nadal, Jordi; Quadt, Arnulf; Kawamura, Gen; Musheghyan, Haykuhi

    2015-12-01

    High-throughput computing platforms consist of a complex infrastructure and provide a number of services apt to failures. To mitigate the impact of failures on the quality of the provided services, a constant monitoring and in time reaction is required, which is impossible without automation of the system administration processes. This paper introduces a way of automation of the process of monitoring information analysis to provide the long and short term predictions of the service response time (SRT) for a mass storage and batch systems and to identify the status of a service at a given time. The approach for the SRT predictions is based on Adaptive Neuro Fuzzy Inference System (ANFIS). An evaluation of the approaches is performed on real monitoring data from the WLCG Tier 2 center GoeGrid. Ten fold cross validation results demonstrate high efficiency of both approaches in comparison to known methods.

  19. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  20. Dynamical analysis of NGC 110: cluster of fainter stars or data fluctuation?

    CERN Document Server

    Joshi, Gireesh C

    2016-01-01

    The stellar enhancement of the cluster NGC 110 is investigated in various optical and infrared (IR) bands. The radial density profile of the IR region does not show a stellar enhancement in the central region of the cluster. This stellar deficiency may be occurring by undetected fainter stars due to the contamination effect of massive stars. Since, our analysis is not indicating the stellar enhancement below 16.5 mag of I band, therefore the cluster is assumed to be a group of fainter stars. The proposed magnitude scatter factor would be an excellent tool to understand the characteristic of colour-scattering of stars. The most probable members do not coincide with the model isochronic fitting in the optical bands due to poor data quality of P P MXL catalogue. The different values of the mean proper motions are found for the fainter stars of the cluster and field regions, whereas similar values are obtained for radial zones of the cluster. The symmetrical distribution of fainter stars of the core are found aro...

  1. Links between patterns of racial socialization and discrimination experiences and psychological adjustment: a cluster analysis.

    Science.gov (United States)

    Ajayi, Alex A; Syed, Moin

    2014-10-01

    This study used a person-oriented analytic approach to identify meaningful patterns of barriers-focused racial socialization and perceived racial discrimination experiences in a sample of 295 late adolescents. Using cluster analysis, three distinct groups were identified: Low Barrier Socialization-Low Discrimination, High Barrier Socialization-Low Discrimination, and High Barrier Socialization-High Discrimination clusters. These groups were substantively unique in terms of the frequency of racial socialization messages about bias preparation and out-group mistrust its members received and their actual perceived discrimination experiences. Further, individuals in the High Barrier Socialization-High Discrimination cluster reported significantly higher depressive symptoms than those in the Low Barrier Socialization-Low Discrimination and High Barrier Socialization-Low Discrimination clusters. However, no differences in adjustment were observed between the Low Barrier Socialization-Low Discrimination and High Barrier Socialization-Low Discrimination clusters. Overall, the findings highlight important individual differences in how young people of color experience their race and how these differences have significant implications on psychological adjustment. PMID:25124381

  2. Chemical abundance analysis of the old, rich open cluster Trumpler 20

    CERN Document Server

    Carraro, Giovanni; Monaco, Lorenzo; Beccari, Giacomo; Ahumada, Javier; Boffin, Henri

    2014-01-01

    Trumpler 20 is an open cluster located at low Galactic longitude, just beyond the great Carina spiral arm, and whose metallicity and fundamental parameters were very poorly known until now. As it is most likely a rare example of an old, rich open cluster -- possibly a twin of NGC 7789 -- it is useful to characterize it. To this end, we determine here the abundance of several elements and their ratios in a sample of stars in the clump of Trumpler 20. The primary goal is to measure Trumpler 20 metallicity, so far very poorly constrained, and revise the cluster's fundamental parameters. We present high-resolution spectroscopy of eight clump stars. Based on their radial velocities, we identify six bona fide cluster members, and for five of them (the sixth being a fast rotator) we perform a detailed abundance analysis. We find that Trumpler 20 is slightly more metal-rich than the Sun, having [Fe/H]=+0.09$\\pm$0.10. The abundance ratios of alpha-elements are generally solar. In line with recent studies of clusters a...

  3. A clustering analysis of eddies' spatial distribution in the South China Sea

    Directory of Open Access Journals (Sweden)

    J. Yi

    2012-11-01

    Full Text Available Spatial variation is important for studying the mesoscale eddies in the South China Sea (SCS. To investigate such spatial variations, this study made a clustering analysis on eddies' distribution using the K-means approach. Results showed that clustering tendency of anticyclonic eddies (AEs and cyclonic eddies (CEs were weak but not random, and the number of clusters were proved greater than four. Finer clustering results showed 10 regions where AEs densely populated and 6 regions for CEs in the SCS. Previous studies confirmed these partitions and possible generation mechanisms were related. Comparisons between AEs and CEs revealed that patterns of AE are relatively more aggregated than those of CE, and specific distinctions were summarized: (1 to the southwest of Luzon Island, AEs and CEs are generated spatially apart; AEs are likely located north of 14° N and closer to shore, while CEs are to the south and further offshore; (2 the Central SCS and Nansha Trough are mostly dominated by AEs; (3 along 112° E, clusters of AEs and CEs are located sequentially apart, and the pair off Vietnam represents the dipole eddies; (4 to the southwest of Dongsha Islands, AEs are concentrated to the east of CEs. Overlaps of AEs and CEs in the northeastern and Southern SCS were further examined considering seasonal variations. The northeastern overlap represented near-concentric distributions while the southern one was a mixed effect of seasonal variations, complex circulations and topography influences.

  4. A clustering analysis of eddies' spatial distribution in the South China Sea

    Directory of Open Access Journals (Sweden)

    J. Yi

    2013-02-01

    Full Text Available Spatial variation is important for studying the mesoscale eddies in the South China Sea (SCS. To investigate such spatial variations, this study made a clustering analysis on eddies' distribution using the K-means approach. Results showed that clustering tendency of anticyclonic eddies (AEs and cyclonic eddies (CEs were weak but not random, and the number of clusters were proved greater than four. Finer clustering results showed 10 regions where AEs densely populated and 6 regions for CEs in the SCS. Previous studies confirmed these partitions and possible generation mechanisms were related. Comparisons between AEs and CEs revealed that patterns of AE are relatively more aggregated than those of CE, and specific distinctions were summarized: (1 to the southwest of Luzon Island, AEs and CEs are generated spatially apart; AEs are likely located north of 14° N and closer to shore, while CEs are to the south and further offshore. (2 The central SCS and Nansha Trough are mostly dominated by AEs. (3 Along 112° E, clusters of AEs and CEs are located sequentially apart, and the pairs off Vietnam represent the dipole structures. (4 To the southwest of the Dongsha Islands, AEs are concentrated to the east of CEs. Overlaps of AEs and CEs in the northeastern and southern SCS were further examined considering seasonal variations. The northeastern overlap represented near-concentric distributions while the southern one was a mixed effect of seasonal variations, complex circulations and topography influences.

  5. Validation of hierarchical cluster analysis for identification of bacterial species using 42 bacterial isolates

    Science.gov (United States)

    Ghebremedhin, Meron; Yesupriya, Shubha; Luka, Janos; Crane, Nicole J.

    2015-03-01

    Recent studies have demonstrated the potential advantages of the use of Raman spectroscopy in the biomedical field due to its rapidity and noninvasive nature. In this study, Raman spectroscopy is applied as a method for differentiating between bacteria isolates for Gram status and Genus species. We created models for identifying 28 bacterial isolates using spectra collected with a 785 nm laser excitation Raman spectroscopic system. In order to investigate the groupings of these samples, partial least squares discriminant analysis (PLSDA) and hierarchical cluster analysis (HCA) was implemented. In addition, cluster analyses of the isolates were performed using various data types consisting of, biochemical tests, gene sequence alignment, high resolution melt (HRM) analysis and antimicrobial susceptibility tests of minimum inhibitory concentration (MIC) and degree of antimicrobial resistance (SIR). In order to evaluate the ability of these models to correctly classify bacterial isolates using solely Raman spectroscopic data, a set of 14 validation samples were tested using the PLSDA models and consequently the HCA models. External cluster evaluation criteria of purity and Rand index were calculated at different taxonomic levels to compare the performance of clustering using Raman spectra as well as the other datasets. Results showed that Raman spectra performed comparably, and in some cases better than, the other data types with Rand index and purity values up to 0.933 and 0.947, respectively. This study clearly demonstrates that the discrimination of bacterial species using Raman spectroscopic data and hierarchical cluster analysis is possible and has the potential to be a powerful point-of-care tool in clinical settings.

  6. Tool for Sizing Analysis of the Advanced Life Support System

    Science.gov (United States)

    Yeh, Hue-Hsie Jannivine; Brown, Cheryl B.; Jeng, Frank J.

    2005-01-01

    Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades.

  7. Imaging spectroscopic analysis at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  8. Imaging spectroscopic analysis at the Advanced Light Source

    International Nuclear Information System (INIS)

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications

  9. Advances In Burnup Credit Criticality Safety Analysis Methods And Applications

    International Nuclear Information System (INIS)

    An International Workshop on “Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition” organized by the Nuclear Safety Council of Spain (CSN) in cooperation with the International Atomic Energy Agency (IAEA) was held at Córdoba, Spain, on October 27– 30, 2009. The objectives of this workshop were to identify the benefits that accrue from recent improvements of the burnup credit (BUC) analysis methodologies, to analyze the implications of applying improved BUC methodologies, focusing on both the safety-related and operational aspects, and to foster the exchange of international experience in licensing and implementation of BUC applications. In the paper on hand the attention is focused on the improvements of BUC analysis methodologies. (author)

  10. Advanced aerostatic analysis of long-span suspension bridges

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    As the span length of suspension bridges increases, the diameter of cables and thus the wind load acting on them, the nonlinear wind-structure interaction and the wind speed spatial non-uniformity all increase consequently, which may have unnegligible influence on the aerostatic behavior of long-span suspension bridges. In this work, a method of advanced aerostatic analysis is presented firstly by considering the geometric nonlinearity, the nonlinear wind-structures and wind speed spatial non-uniformity. By taking the Runyang Bridge over the Yangtze River as example, effects of the nonlinear wind-structure interaction, wind speed spatial non-uniformity, and the cable's wind load on the aerostatic behavior of the bridge are investigated analytically. The results showed that these factors all have important influence on the aerostatic behavior, and should be considered in the aerostatic analysis of long and particularly super long-span suspension bridges.

  11. A web-based system for near real-time surveillance and space-time cluster analysis of foot-and-mouth disease and other animal diseases.

    Science.gov (United States)

    Perez, Andres M; Zeng, Daniel; Tseng, Chun-ju; Chen, Hsinchun; Whedbee, Zachary; Paton, David; Thurmond, Mark C

    2009-09-01

    Considerable attention has been given lately to the need for global systems for animal disease surveillance that support real-time assessment of changing temporal-spatial risks. Until recently, however, prospects for development of such systems have been limited by the lack of informatics tools and an overarching collaboration framework to enable real-time data capturing, sharing, analysis, and related decision-making. In this paper, we present some of the tools of the FMD BioPortal System (www.fmd.ucdavis.edu/bioportal), which is a web-based system that facilitates near real-time information sharing, visualization, and advanced space-time cluster analysis for foot-and-mouth disease (FMD). Using this system, FMD information that is collected and maintained at various data acquisition and management sites around the world can be submitted to a data repository using various mutually agreed upon Extensible Markup Language (XML) formats, including Health Level Seven (HL7). FMD BioPortal makes available a set of advanced space-time cluster analysis techniques, including scan statistic-based methods and machine learning-based clustering methods. These techniques are aimed at identifying local clusters of disease cases in relation to the background risk. Data and analysis results can be displayed using a novel visualization environment, which supports multiple views including GIS, timeline, and periodical patterns. All FMD BioPortal functionalities are accessible through the Web and data confidentiality can be secured through user access control and computer network security techniques such as Secure Sockets Layer (SSL). FMD BioPortal is currently operational with limited data routinely collected by the Office International des Epizooties, the GenBank, the FMD World Reference Laboratory in Pirbright, and by the FMD Laboratory at the University of California in Davis. Here we describe technical attributes and capabilities of FMD BioPortal and illustrate its functionality

  12. A web-based system for near real-time surveillance and space-time cluster analysis of foot-and-mouth disease and other animal diseases.

    Science.gov (United States)

    Perez, Andres M; Zeng, Daniel; Tseng, Chun-ju; Chen, Hsinchun; Whedbee, Zachary; Paton, David; Thurmond, Mark C

    2009-09-01

    Considerable attention has been given lately to the need for global systems for animal disease surveillance that support real-time assessment of changing temporal-spatial risks. Until recently, however, prospects for development of such systems have been limited by the lack of informatics tools and an overarching collaboration framework to enable real-time data capturing, sharing, analysis, and related decision-making. In this paper, we present some of the tools of the FMD BioPortal System (www.fmd.ucdavis.edu/bioportal), which is a web-based system that facilitates near real-time information sharing, visualization, and advanced space-time cluster analysis for foot-and-mouth disease (FMD). Using this system, FMD information that is collected and maintained at various data acquisition and management sites around the world can be submitted to a data repository using various mutually agreed upon Extensible Markup Language (XML) formats, including Health Level Seven (HL7). FMD BioPortal makes available a set of advanced space-time cluster analysis techniques, including scan statistic-based methods and machine learning-based clustering methods. These techniques are aimed at identifying local clusters of disease cases in relation to the background risk. Data and analysis results can be displayed using a novel visualization environment, which supports multiple views including GIS, timeline, and periodical patterns. All FMD BioPortal functionalities are accessible through the Web and data confidentiality can be secured through user access control and computer network security techniques such as Secure Sockets Layer (SSL). FMD BioPortal is currently operational with limited data routinely collected by the Office International des Epizooties, the GenBank, the FMD World Reference Laboratory in Pirbright, and by the FMD Laboratory at the University of California in Davis. Here we describe technical attributes and capabilities of FMD BioPortal and illustrate its functionality

  13. Identifying typical patterns of vulnerability: A 5-step approach based on cluster analysis

    Science.gov (United States)

    Sietz, Diana; Lüdeke, Matthias; Kok, Marcel; Lucas, Paul; Carsten, Walther; Janssen, Peter

    2013-04-01

    Specific processes that shape the vulnerability of socio-ecological systems to climate, market and other stresses derive from diverse background conditions. Within the multitude of vulnerability-creating mechanisms, distinct processes recur in various regions inspiring research on typical patterns of vulnerability. The vulnerability patterns display typical combinations of the natural and socio-economic properties that shape a systems' vulnerability to particular stresses. Based on the identification of a limited number of vulnerability patterns, pattern analysis provides an efficient approach to improving our understanding of vulnerability and decision-making for vulnerability reduction. However, current pattern analyses often miss explicit descriptions of their methods and pay insufficient attention to the validity of their groupings. Therefore, the question arises as to how do we identify typical vulnerability patterns in order to enhance our understanding of a systems' vulnerability to stresses? A cluster-based pattern recognition applied at global and local levels is scrutinised with a focus on an applicable methodology and practicable insights. Taking the example of drylands, this presentation demonstrates the conditions necessary to identify typical vulnerability patterns. They are summarised in five methodological steps comprising the elicitation of relevant cause-effect hypotheses and the quantitative indication of mechanisms as well as an evaluation of robustness, a validation and a ranking of the identified patterns. Reflecting scale-dependent opportunities, a global study is able to support decision-making with insights into the up-scaling of interventions when available funds are limited. In contrast, local investigations encourage an outcome-based validation. This constitutes a crucial step in establishing the credibility of the patterns and hence their suitability for informing extension services and individual decisions. In this respect, working at

  14. CLUSTERING ANALYSIS OF OFFICER'S BEHAVIOURS IN LONDON POLICE FOOT PATROL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    J. Shen

    2015-07-01

    Full Text Available In this small paper we aim at presenting a framework of conceptual representation and clustering analysis of police officers’ patrol pattern obtained from mining their raw movement trajectory data. This have been achieved by a model developed to accounts for the spatio-temporal dynamics human movements by incorporating both the behaviour features of the travellers and the semantic meaning of the environment they are moving in. Hence, the similarity metric of traveller behaviours is jointly defined according to the stay time allocation in each Spatio-temporal region of interests (ST-ROI to support clustering analysis of patrol behaviours. The proposed framework enables the analysis of behaviour and preferences on higher level based on raw moment trajectories. The model is firstly applied to police patrol data provided by the Metropolitan Police and will be tested by other type of dataset afterwards.

  15. Cluster analysis of midlatitude oceanic cloud regimes: mean properties and temperature sensitivity

    Directory of Open Access Journals (Sweden)

    N. D. Gordon

    2010-07-01

    Full Text Available Clouds play an important role in the climate system by reducing the amount of shortwave radiation reaching the surface and the amount of longwave radiation escaping to space. Accurate simulation of clouds in computer models remains elusive, however, pointing to a lack of understanding of the connection between large-scale dynamics and cloud properties. This study uses a k-means clustering algorithm to group 21 years of satellite cloud data over midlatitude oceans into seven clusters, and demonstrates that the cloud clusters are associated with distinct large-scale dynamical conditions. Three clusters correspond to low-level cloud regimes with different cloud fraction and cumuliform or stratiform characteristics, but all occur under large-scale descent and a relatively dry free troposphere. Three clusters correspond to vertically extensive cloud regimes with tops in the middle or upper troposphere, and they differ according to the strength of large-scale ascent and enhancement of tropospheric temperature and humidity. The final cluster is associated with a lower troposphere that is dry and an upper troposphere that is moist and experiencing weak ascent and horizontal moist advection.

    Since the present balance of reflection of shortwave and absorption of longwave radiation by clouds could change as the atmosphere warms from increasing anthropogenic greenhouse gases, we must also better understand how increasing temperature modifies cloud and radiative properties. We therefore undertake an observational analysis of how midlatitude oceanic clouds change with temperature when dynamical processes are held constant (i.e., partial derivative with respect to temperature. For each of the seven cloud regimes, we examine the difference in cloud and radiative properties between warm and cold subsets. To avoid misinterpreting a cloud response to large-scale dynamical forcing as a cloud response to temperature, we require horizontal and vertical

  16. Cluster analysis of European surface ozone observations for evaluation of MACC reanalysis data

    Science.gov (United States)

    Lyapina, Olga; Schultz, Martin G.; Hense, Andreas

    2016-06-01

    The high density of European surface ozone monitoring sites provides unique opportunities for the investigation of regional ozone representativeness and for the evaluation of chemistry climate models. The regional representativeness of European ozone measurements is examined through a cluster analysis (CA) of 4 years of 3-hourly ozone data from 1492 European surface monitoring stations in the Airbase database; the time resolution corresponds to the output frequency of the model that is compared to the data in this study. K-means clustering is implemented for seasonal-diurnal variations (i) in absolute mixing ratio units and (ii) normalized by the overall mean ozone mixing ratio at each site. Statistical tests suggest that each CA can distinguish between four and five different ozone pollution regimes. The individual clusters reveal differences in seasonal-diurnal cycles, showing typical patterns of the ozone behavior for more polluted stations or more rural background. The robustness of the clustering was tested with a series of k-means runs decreasing randomly the size of the initial data set or lengths of the time series. Except for the Po Valley, the clustering does not provide a regional differentiation, as the member stations within each cluster are generally distributed all over Europe. The typical seasonal, diurnal, and weekly cycles of each cluster are compared to the output of the multi-year global reanalysis produced within the Monitoring of Atmospheric Composition and Climate (MACC) project. While the MACC reanalysis generally captures the shape of the diurnal cycles and the diurnal amplitudes, it is not able to reproduce the seasonal cycles very well and it exhibits a high bias up to 12 nmol mol-1. The bias decreases from more polluted clusters to cleaner ones. Also, the seasonal and weekly cycles and frequency distributions of ozone mixing ratios are better described for clusters with relatively clean signatures. Due to relative sparsity of CO and NOx

  17. Galaxy Cluster Pressure Profiles as Determined by Sunyaev Zel'dovich Effect Observations with MUSTANG and Bolocam II: Joint Analysis of Fourteen Clusters

    CERN Document Server

    Romero, Charles; Sayers, Jack; Mroczkowski, Tony; Sarazin, Craig; Donahue, Megan; Baldi, Alessandro; Clarke, Tracy E; Young, Alexander; Sievers, Jonathan; Dicker, Simon; Reese, Erik; Czakon, Nicole; Devlin, Mark; Korngut, Phillip; Golwala, Sunil

    2016-01-01

    We present pressure profiles of galaxy clusters determined from high resolution Sunyaev-Zel'dovich (SZ) effect observations of fourteen clusters, which span the redshift range $ 0.25 < z < 0.89$. The procedure simultaneously fits spherical cluster models to MUSTANG and Bolocam data. In this analysis, we adopt the generalized NFW parameterization of pressure profiles to produce our models. Our constraints on ensemble-average pressure profile parameters, in this study $\\gamma$, $C_{500}$, and $P_0$, are consistent with those in previous studies, but for individual clusters we find discrepancies with the X-ray derived pressure profiles from the ACCEPT2 database. We investigate potential sources of these discrepancies, especially cluster geometry, electron temperature of the intracluster medium, and substructure. We find that the ensemble mean profile for all clusters in our sample is described by the parameters: $[\\gamma,C_{500},P_0] = [0.3_{-0.1}^{+0.1}, 1.3_{-0.1}^{+0.1}, 8.6_{-2.4}^{+2.4}]$, for cool co...

  18. Advanced probabilistic risk analysis using RAVEN and RELAP-7

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-06-01

    RAVEN, under the support of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program [1], is advancing its capability to perform statistical analyses of stochastic dynamic systems. This is aligned with its mission to provide the tools needed by the Risk Informed Safety Margin Characterization (RISMC) path-lead [2] under the Department Of Energy (DOE) Light Water Reactor Sustainability program [3]. In particular this task is focused on the synergetic development with the RELAP-7 [4] code to advance the state of the art on the safety analysis of nuclear power plants (NPP). The investigation of the probabilistic evolution of accident scenarios for a complex system such as a nuclear power plant is not a trivial challenge. The complexity of the system to be modeled leads to demanding computational requirements even to simulate one of the many possible evolutions of an accident scenario (tens of CPU/hour). At the same time, the probabilistic analysis requires thousands of runs to investigate outcomes characterized by low probability and severe consequence (tail problem). The milestone reported in June of 2013 [5] described the capability of RAVEN to implement complex control logic and provide an adequate support for the exploration of the probabilistic space using a Monte Carlo sampling strategy. Unfortunately the Monte Carlo approach is ineffective with a problem of this complexity. In the following year of development, the RAVEN code has been extended with more sophisticated sampling strategies (grids, Latin Hypercube, and adaptive sampling). This milestone report illustrates the effectiveness of those methodologies in performing the assessment of the probability of core damage following the onset of a Station Black Out (SBO) situation in a boiling water reactor (BWR). The first part of the report provides an overview of the available probabilistic analysis capabilities, ranging from the different types of distributions available, possible sampling

  19. A cluster analysis on students' perceived motivational climate. Implications on psycho-social variables.

    Science.gov (United States)

    Fernandez-Rio, Javier; Méndez-Giménez, Antonio; Cecchini Estrada, Jose A

    2014-01-01

    The aim of this study was to examine how students' perceptions of the class climate influence their basic psychological needs, motivational regulations, social goals and outcomes such as boredom, enjoyment, effort, and pressure/tension. 507 (267 males, 240 females) secondary education students agreed to participate. They completed a questionnaire that included the Spanish validated versions of Perceived Motivational Climate in Sport Questionnaire (PMCSQ-2), Basic Psychological Needs in Exercise (BPNES), Perceived Locus of Causality (PLOC), Social Goal Scale-Physical Education (SGS-PE), and several subscales of the IMI. A hierarchical cluster analysis uncovered four independent class climate profiles that were confirmed by a K-Means cluster analysis: "high ego", "low ego-task", "high ego-medium task", and "high task". Several MANOVAs were performed using these clusters as independent variables and the different outcomes as dependent variables (p responsibility and relationship, as well as low levels of amotivation, boredom and pressure/tension. Students' perceptions of a performance class climate made the positive scores decrease significantly. Cluster 3 revealed that a mastery oriented class structure undermines the negative behavioral and psychological effects of a performance class climate. This finding supports the buffering hypothesis of the achievement goal theory. PMID:25012581

  20. Bayesian Analysis of Two Stellar Populations in Galactic Globular Clusters II: NGC 5024, NGC 5272, and NGC 6352

    CERN Document Server

    Wagner-Kaiser, R; Robinson, E; von Hippel, T; Sarajedini, A; van Dyk, D A; Stein, N; Jefferys, W H

    2016-01-01

    We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of Galactic Globular Clusters to find and characterize two stellar populations in NGC 5024 (M53), NGC 5272 (M3), and NGC 6352. For these three clusters, both single and double-population analyses are used to determine a best fit isochrone(s). We employ a sophisticated Bayesian analysis technique to simultaneously fit the cluster parameters (age, distance, absorption, and metallicity) that characterize each cluster. For the two-population analysis, unique population level helium values are also fit to each distinct population of the cluster and the relative proportions of the populations are determined. We find differences in helium ranging from $\\sim$0.05 to 0.11 for these three clusters. Model grids with solar $\\alpha$-element abundances ([$\\alpha$/Fe] =0.0) and enhanced $\\alpha$-elements ([$\\alpha$/Fe]=0.4) are adopted.

  1. Characterization of Local Wind Patterns around the Kori Nuclear Power Plant using Cluster Analysis and WRF meteorological modeling

    International Nuclear Information System (INIS)

    To accurately predict the atmospheric diffusion of radioactive effluent, detailed analysis of local wind patterns nearby nuclear power plants are necessary. In this study, the characteristics of typical local winds around the Kori Nuclear Power Plant (Kori NPP) were investigated using the cluster analysis and Weather Research and Forecasting (WRF) meteorological modeling. In this study, the local wind characteristics around the Kori NPP were analyzed using cluster analysis and WRF meteorological modeling. As a result of the cluster analysis, four wind patterns around the Kori NPP were selected. The model study indicated the possibility that the local winds in the target area can largely contribute to the atmospheric diffusion of radioactive effluents

  2. Recent advances in (soil moisture) triple collocation analysis

    Science.gov (United States)

    Gruber, A.; Su, C.-H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W.

    2016-03-01

    To date, triple collocation (TC) analysis is one of the most important methods for the global-scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method. Different notations that are used to formulate the TC problem are shown to be mathematically identical. While many studies have investigated issues related to possible violations of the underlying assumptions, only few TC modifications have been proposed to mitigate the impact of these violations. Moreover, assumptions, which are often understood as a limitation that is unique to TC analysis are shown to be common also to other conventional performance metrics. Noteworthy advances in TC analysis have been made in the way error estimates are being presented by moving from the investigation of absolute error variance estimates to the investigation of signal-to-noise ratio (SNR) metrics. Here we review existing error presentations and propose the combined investigation of the SNR (expressed in logarithmic units), the unscaled error variances, and the soil moisture sensitivities of the data sets as an optimal strategy for the evaluation of remotely-sensed soil moisture data sets.

  3. Study and Analysis of K-Means Clustering Algorithm Using Rapidminer

    Directory of Open Access Journals (Sweden)

    Abhinn Pandey

    2014-12-01

    Full Text Available Institution is a place where teacher explains and student just understands and learns the lesson. Every student has his own definition for toughness and easiness and there isn’t any absolute scale for measuring knowledge but examination score indicate the performance of student. In this case study, knowledge of data mining is combined with educational strategies to improve students’ performance. Generally, data mining (sometimes called data or knowledge discovery is the process of analysing data from different perspectives and summarizing it into useful information. Data mining software is one of a number of analytical tools for data. It allows users to analyse data from many different dimensions or angles, categorize it, and summarize the relationships identified. Technically, data mining is the process of finding correlations or patterns among dozens of fields in large relational database. Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster are more similar (in some sense or another to each other than to those in other groups (clusters.This project describes the use of clustering data mining technique to improve the efficiency of academic performance in the educational institutions .In this project, a live experiment was conducted on students .By conducting an exam on students of computer science major using MOODLE(LMS and analysing that data generated using RapidMiner(Datamining Software and later by performing clustering on the data. This method helps to identify the students who need special advising or counselling by the teacher to give high quality of education.

  4. WHY DO SOME NATIONS SUCCEED AND OTHERS FAIL IN INTERNATIONAL COMPETITION? FACTOR ANALYSIS AND CLUSTER ANALYSIS AT EUROPEAN LEVEL

    Directory of Open Access Journals (Sweden)

    Popa Ion

    2015-07-01

    Full Text Available As stated by Michael Porter (1998: 57, 'this is perhaps the most frequently asked economic question of our times.' However, a widely accepted answer is still missing. The aim of this paper is not to provide the BIG answer for such a BIG question, but rather to provide a different perspective on the competitiveness at the national level. In this respect, we followed a two step procedure, called “tandem analysis”. (OECD, 2008. First we employed a Factor Analysis in order to reveal the underlying factors of the initial dataset followed by a Cluster Analysis which aims classifying the 35 countries according to the main characteristics of competitiveness resulting from Factor Analysis. The findings revealed that clustering the 35 states after the first two factors: Smart Growth and Market Development, which recovers almost 76% of common variability of the twelve original variables, are highlighted four clusters as well as a series of useful information in order to analyze the characteristics of the four clusters and discussions on them.

  5. Interactive Parallel Data Analysis within Data-Centric Cluster Facilities using the IPython Notebook

    Science.gov (United States)

    Pascoe, S.; Lansdowne, J.; Iwi, A.; Stephens, A.; Kershaw, P.

    2012-12-01

    The data deluge is making traditional analysis workflows for many researchers obsolete. Support for parallelism within popular tools such as matlab, IDL and NCO is not well developed and rarely used. However parallelism is necessary for processing modern data volumes on a timescale conducive to curiosity-driven analysis. Furthermore, for peta-scale datasets such as the CMIP5 archive, it is no longer practical to bring an entire dataset to a researcher's workstation for analysis, or even to their institutional cluster. Therefore, there is an increasing need to develop new analysis platforms which both enable processing at the point of data storage and which provides parallelism. Such an environment should, where possible, maintain the convenience and familiarity of our current analysis environments to encourage curiosity-driven research. We describe how we are combining the interactive python shell (IPython) with our JASMIN data-cluster infrastructure. IPython has been specifically designed to bridge the gap between the HPC-style parallel workflows and the opportunistic curiosity-driven analysis usually carried out using domain specific languages and scriptable tools. IPython offers a web-based interactive environment, the IPython notebook, and a cluster engine for parallelism all underpinned by the well-respected Python/Scipy scientific programming stack. JASMIN is designed to support the data analysis requirements of the UK and European climate and earth system modeling community. JASMIN, with its sister facility CEMS focusing the earth observation community, has 4.5 PB of fast parallel disk storage alongside over 370 computing cores provide local computation. Through the IPython interface to JASMIN, users can make efficient use of JASMIN's multi-core virtual machines to perform interactive analysis on all cores simultaneously or can configure IPython clusters across multiple VMs. Larger-scale clusters can be provisioned through JASMIN's batch scheduling system

  6. Recent advances in computational structural reliability analysis methods

    Science.gov (United States)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  7. Advanced Stress, Strain And Geometrical Analysis In Semiconductor Devices

    International Nuclear Information System (INIS)

    High stresses and defect densities increases the risk of semiconductor device failure. Reliability studies on potential failure sources have an impact on design and are essential to assure the long term functioning of the device. Related to the dramatically smaller volume of semiconductor devices and new bonding techniques on such devices, new methods in testing and qualification are needed. Reliability studies on potential failure sources have an impact on design and are essential to assure the long term functioning of the device. In this paper, the applications of advanced High Resolution X-ray Diffraction (HRXRD) methods in strain, defect and deformation analysis on semiconductor devices are discussed. HRXRD with Rocking Curves (RC's) and Reciprocal Space Maps (RSM's) is used as accurate, non-destructive experimental method to evaluate the crystalline quality, and more precisely for the given samples, the in-situ strain, defects and geometrical parameters such as tilt and bending of device. The combination with advanced FEM simulations gives the possibility to support efficiently semiconductor devices design.

  8. Conceptual study of advanced PWR core design. Development of advanced PWR core neutronics analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Kim, Seung Cho; Kim, Taek Kyum; Cho, Jin Young; Lee, Hyun Cheol; Lee, Jung Hun; Jung, Gu Young [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    The neutronics design system of the advanced PWR consists of (i) hexagonal cell and fuel assembly code for generation of homogenized few-group cross sections and (ii) global core neutronics analysis code for computations of steady-state pin-wise or assembly-wise core power distribution, core reactivity with fuel burnup, control rod worth and reactivity coefficients, transient core power, etc.. The major research target of the first year is to establish the numerical method and solution of multi-group diffusion equations for neutronics code development. Specifically, the following studies are planned; (i) Formulation of various numerical methods such as finite element method(FEM), analytical nodal method(ANM), analytic function expansion nodal(AFEN) method, polynomial expansion nodal(PEN) method that can be applicable for the hexagonal core geometry. (ii) Comparative evaluation of the numerical effectiveness of these methods based on numerical solutions to various hexagonal core neutronics benchmark problems. Results are follows: (i) Formulation of numerical solutions to multi-group diffusion equations based on numerical methods. (ii) Numerical computations by above methods for the hexagonal neutronics benchmark problems such as -VVER-1000 Problem Without Reflector -VVER-440 Problem I With Reflector -Modified IAEA PWR Problem Without Reflector -Modified IAEA PWR Problem With Reflector -ANL Large Heavy Water Reactor Problem -Small HTGR Problem -VVER-440 Problem II With Reactor (iii) Comparative evaluation on the numerical effectiveness of various numerical methods. (iv) Development of HEXFEM code, a multi-dimensional hexagonal core neutronics analysis code based on FEM. In the target year of this research, the spatial neutronics analysis code for hexagonal core geometry(called NEMSNAP-H temporarily) will be completed. Combination of NEMSNAP-H with hexagonal cell and assembly code will then equip us with hexagonal core neutronics design system. (Abstract Truncated)

  9. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan;

    2000-01-01

    -mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  10. Principal component cluster analysis of ECG time series based on Lyapunov exponent spectrum

    Institute of Scientific and Technical Information of China (English)

    WANG Nai; RUAN Jiong

    2004-01-01

    In this paper we propose an approach of principal component cluster analysis based on Lyapunov exponent spectrum (LES) to analyze the ECG time series. Analysis results of 22 sample-files of ECG from the MIT-BIH database confirmed the validity of our approach. Another technique named improved teacher selecting student (TSS) algorithm is presented to analyze unknown samples by means of some known ones, which is of better accuracy. This technique combines the advantages of both statistical and nonlinear dynamical methods and is shown to be significant to the analysis of nonlinear ECG time series.

  11. Analysis of Decision Trees in Context Clustering of Hidden Markov Model Based Thai Speech Synthesis

    Directory of Open Access Journals (Sweden)

    Suphattharachai Chomphan

    2011-01-01

    Full Text Available Problem statement: In Thai speech synthesis using Hidden Markov model (HMM based synthesis system, the tonal speech quality is degraded due to tone distortion. This major problem must be treated appropriately to preserve the tone characteristics of each syllable unit. Since tone brings about the intelligibility of the synthesized speech. It is needed to establish the tone questions and other phonetic questions in tree-based context clustering process accordingly. Approach: This study describes the analysis of questions in tree-based context clustering process of an HMM-based speech synthesis system for Thai language. In the system, spectrum, pitch or F0 and state duration are modeled simultaneously in a unified framework of HMM, their parameter distributions are clustered independently by using a decision-tree based context clustering technique. The contextual factors which affect spectrum, pitch and duration, i.e., part of speech, position and number of phones in a syllable, position and number of syllables in a word, position and number of words in a sentence, phone type and tone type, are taken into account for constructing the questions of the decision tree. All in all, thirteen sets of questions are analyzed in comparison. Results: In the experiment, we analyzed the decision trees by counting the number of questions in each node coming from those thirteen sets and by calculating the dominance score given to each question as the reciprocal of the distance from the root node to the question node. The highest number and dominance score are of the set of phonetic type, while the second, third highest ones are of the set of part of speech and tone type. Conclusion: By counting the number of questions in each node and calculating the dominance score, we can set the priority of each question set. All in all, the analysis results bring about further development of Thai speech synthesis with efficient context clustering process in

  12. Lifestyle health behaviors of Hong Kong Chinese: results of a cluster analysis.

    Science.gov (United States)

    Chan, Choi Wan; Leung, Sau Fong

    2015-04-01

    Sociodemographics affect health through pathways of lifestyle choices. Using data from a survey of 467 Hong Kong Chinese, this study aims to examine the prevalence of their lifestyle behaviors, identify profiles based on their sociodemographic and lifestyle variables, and compare differences among the profile groups. Two-step cluster analysis was used to identify natural profile groups within the data set: only 37% of the participants engaged in regular physical exercises, and less than 50% monitored their dietary intake carefully. The analysis yields 2 clusters, representing a "healthy" and a "less-healthy" lifestyle group. The "less-healthy" group was predominantly male, younger, employed, and had high-to-middle levels of education. The findings reveal the lifestyle behavior patterns and sociodemographic characteristics of a high-risk group, which are essential to provide knowledge for the planning of health promotion activities. PMID:25296668

  13. Joint Analysis of Galaxy-Galaxy Lensing and Galaxy Clustering: Methodology and Forecasts for DES

    CERN Document Server

    Park, Y; Dodelson, S; Jain, B; Amara, A; Becker, M R; Bridle, S L; Clampitt, J; Crocce, M; Fosalba, P; Gaztanaga, E; Honscheid, K; Rozo, E; Sobreira, F; Sánchez, C; Wechsler, R H; Abbott, T; Abdalla, F B; Allam, S; Benoit-Lévy, A; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Castander, F J; da Costa, L N; DePoy, D L; Desai, S; Dietrich, J P; Gerdes, D W; Gruen, D; Gruendl, R A; Gutierrez, G; James, D J; Kent, S; Kuehn, K; Kuropatkin, N; Lima, M; Maia, M A G; Marshall, J L; Melchior, P; Miller, C J; Sanchez, E; Scarpine, V; Schubnell, M; Sevilla-Noarbe, I; Soares-Santos, M; Suchyta, E; Swanson, M E C; Tarle, G; Thaler, J; Vikram, V; Walker, A R; Weller, J; Zuntz, J

    2015-01-01

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. This analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degen...

  14. Design of the optimum insulator gate bipolar transistor using response surface method with cluster analysis

    CERN Document Server

    Wang, Chi Ling; Huang Sy Ruen; Yeh Chao Yu

    2004-01-01

    In this paper, a statistical methodology that can be used for the optimization of the Insulator Gate Bipolar Transistor (IGBT) devices is proposed. This is achieved by integrating the response surface method (RSM) with cluster analysis, weighted composite method and genetic algorithm (GA). The device characteristic of IGBT was simulated based upon the fabrication simulator, ATHENA, and the device simulator, ATLAS. This methodology, yielded another way to investigate the IGBT device and to make a decision in the tradeoff between the breakdown voltage and the on-resistance. In this methodology, we also show how to use cluster analysis to determine the dominant factors that are not visible in the screening of all experiments. 20 Refs.

  15. Advanced functional network analysis in the geosciences: The pyunicorn package

    Science.gov (United States)

    Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen

    2013-04-01

    Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.

  16. Review on recent advances in the analysis of isolated organelles

    Energy Technology Data Exchange (ETDEWEB)

    Satori, Chad P. [Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 (United States); Kostal, Vratislav [Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 (United States); Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno 616 00 (Czech Republic); Arriaga, Edgar A., E-mail: arriaga@umn.edu [Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 (United States)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Advancements in organelle release. Black-Right-Pointing-Pointer New approaches to fractionate organelles. Black-Right-Pointing-Pointer Updates on new techniques to characterize isolated organelles. - Abstract: The analysis of isolated organelles is one of the pillars of modern bioanalytical chemistry. This review describes recent developments on the isolation and characterization of isolated organelles both from living organisms and cell cultures. Salient reports on methods to release organelles focused on reproducibility and yield, membrane isolation, and integrated devices for organelle release. New developments on organelle fractionation after their isolation were on the topics of centrifugation, immunocapture, free flow electrophoresis, flow field-flow fractionation, fluorescence activated organelle sorting, laser capture microdissection, and dielectrophoresis. New concepts on characterization of isolated organelles included atomic force microscopy, optical tweezers combined with Raman spectroscopy, organelle sensors, flow cytometry, capillary electrophoresis, and microfluidic devices.

  17. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  18. Thermodynamic analysis of the advanced zero emission power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-03-01

    Full Text Available The paper presents the structure and parameters of advanced zero emission power plant (AZEP. This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i oxygen separation from the air through the membrane, (ii combustion of the fuel, and (iii heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC through the main heat recovery steam generator (HRSG. Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  19. Thermodynamic analysis of the advanced zero emission power plant

    Science.gov (United States)

    Kotowicz, Janusz; Job, Marcin

    2016-03-01

    The paper presents the structure and parameters of advanced zero emission power plant (AZEP). This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i) oxygen separation from the air through the membrane, (ii) combustion of the fuel, and (iii) heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC) through the main heat recovery steam generator (HRSG). Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  20. Advanced analysis and design for fire safety of steel structures

    CERN Document Server

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  1. Emergent team roles in organizational meetings: Identifying communication patterns via cluster analysis.

    OpenAIRE

    Lehmann-Willenbrock, N.K.; Beck, S.J.; Kauffeld, S.

    2016-01-01

    Previous team role taxonomies have largely relied on self-report data, focused on functional roles, and described individual predispositions or personality traits. Instead, this study takes a communicative approach and proposes that team roles are produced, shaped, and sustained in communicative behaviors. To identify team roles communicatively, 59 regular organizational meetings were videotaped and analyzed. Cluster analysis revealed five emergent roles: the solution seeker, the problem anal...

  2. Network analysis identifies protein clusters of functional importance in juvenile idiopathic arthritis

    OpenAIRE

    Stevens, Adam; Meyer, Stefan; Hanson, Daniel; Clayton, Peter; Donn, Rachelle

    2014-01-01

    Introduction Our objective was to utilise network analysis to identify protein clusters of greatest potential functional relevance in the pathogenesis of oligoarticular and rheumatoid factor negative (RF-ve) polyarticular juvenile idiopathic arthritis (JIA). Methods JIA genetic association data were used to build an interactome network model in BioGRID 3.2.99. The top 10% of this protein:protein JIA Interactome was used to generate a minimal essential network (MEN). Reactome FI Cytoscape 2.83...

  3. The Distribution of Family-Friendly Benefits Policies across Higher Education Institutions: A Cluster Analysis

    OpenAIRE

    Schimpf, Corey T; Main, Joyce B.

    2014-01-01

    Cluster Analysis of Family-Related Benefits Policies across U.S. Academic Institutions Although the under-representation of women in science and engineering tenure-track faculty positions is often linked to the conflict between childcare responsibilities and the normative academic tenure-track pathway, previous studies have tended to focus on individual life choices,rather than the effects of institutional-level policies and structure. More recent research on work/life policies in higher educ...

  4. Bio-Inspired Prototype-Based Models and Applied Gompertzian Dynamics in Cluster Analysis

    OpenAIRE

    Pastorek, Lukáš

    2010-01-01

    The thesis deals with the analysis of the clustering and mapping techniques derived from the principles of the neural and statistical learning and growth theory. The selected branch of the unsupervised bio-inspired prototype-based models is described in terms of the proposed logical framework, which highlights the continuity of these methods with the classical "pure" statistical methods. Moreover, as those methods are broadly understood as the "black boxes" with the unpredictable, unclear and...

  5. Burnout prediction using advance image analysis coal characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Edward Lester; Dave Watts; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering

    2003-07-01

    The link between petrographic composition and burnout has been investigated previously by the authors. However, these predictions were based on 'bulk' properties of the coal, including the proportion of each maceral or the reflectance of the macerals in the whole sample. Combustion studies relating burnout with microlithotype analysis, or similar, remain less common partly because the technique is more complex than maceral analysis. Despite this, it is likely that any burnout prediction based on petrographic characteristics will become more accurate if it includes information about the maceral associations and the size of each particle. Chars from 13 coals, 106-125 micron size fractions, were prepared using a Drop Tube Furnace (DTF) at 1300{degree}C and 200 millisecond and 1% Oxygen. These chars were then refired in the DTF at 1300{degree}C 5% oxygen and residence times of 200, 400 and 600 milliseconds. The progressive burnout of each char was compared with the characteristics of the initial coals. This paper presents an extension of previous studies in that it relates combustion behaviour to coals that have been characterized on a particle by particle basis using advanced image analysis techniques. 13 refs., 7 figs.

  6. Seismic clusters analysis in North-Eastern Italy by the nearest-neighbor approach

    Science.gov (United States)

    Peresan, Antonella; Gentili, Stefania

    2016-04-01

    The main features of earthquake clusters in the Friuli Venezia Giulia Region (North Eastern Italy) are explored, with the aim to get some new insights on local scale patterns of seismicity in the area. The study is based on a systematic analysis of robustly and uniformly detected seismic clusters of small-to-medium magnitude events, as opposed to selected clusters analyzed in earlier studies. To characterize the features of seismicity for FVG, we take advantage of updated information from local OGS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics, Centre of Seismological Research, since 1977. A preliminary reappraisal of the earthquake bulletins is carried out, in order to identify possible missing events and to remove spurious records (e.g. duplicates and explosions). The area of sufficient completeness is outlined; for this purpose, different techniques are applied, including a comparative analysis with global ISC data, which are available in the region for large and moderate size earthquakes. Various techniques are considered to estimate the average parameters that characterize the earthquake occurrence in the region, including the b-value and the fractal dimension of epicenters distribution. Specifically, besides the classical Gutenberg-Richter Law, the Unified Scaling Law for Earthquakes, USLE, is applied. Using the updated and revised OGS data, a new formal method for detection of earthquake clusters, based on nearest-neighbor distances of events in space-time-energy domain, is applied. The bimodality of the distribution, which characterizes the earthquake nearest-neighbor distances, is used to decompose the seismic catalog into sequences of individual clusters and background seismicity. Accordingly, the method allows for a data-driven identification of main shocks (first event with the largest magnitude in the cluster), foreshocks and aftershocks. Average robust estimates of the USLE parameters (particularly, b

  7. Cluster analysis for identifying sub-groups and selecting potential discriminatory variables in human encephalitis

    Directory of Open Access Journals (Sweden)

    Crowcroft Natasha S

    2010-12-01

    Full Text Available Abstract Background Encephalitis is an acute clinical syndrome of the central nervous system (CNS, often associated with fatal outcome or permanent damage, including cognitive and behavioural impairment, affective disorders and epileptic seizures. Infection of the central nervous system is considered to be a major cause of encephalitis and more than 100 different pathogens have been recognized as causative agents. However, a large proportion of cases have unknown disease etiology. Methods We perform hierarchical cluster analysis on a multicenter England encephalitis data set with the aim of identifying sub-groups in human encephalitis. We use the simple matching similarity measure which is appropriate for binary data sets and performed variable selection using cluster heatmaps. We also use heatmaps to visually assess underlying patterns in the data, identify the main clinical and laboratory features and identify potential risk factors associated with encephalitis. Results Our results identified fever, personality and behavioural change, headache and lethargy as the main characteristics of encephalitis. Diagnostic variables such as brain scan and measurements from cerebrospinal fluids are also identified as main indicators of encephalitis. Our analysis revealed six major clusters in the England encephalitis data set. However, marked within-cluster heterogeneity is observed in some of the big clusters indicating possible sub-groups. Overall, the results show that patients are clustered according to symptom and diagnostic variables rather than causal agents. Exposure variables such as recent infection, sick person contact and animal contact have been identified as potential risk factors. Conclusions It is in general assumed and is a common practice to group encephalitis cases according to disease etiology. However, our results indicate that patients are clustered with respect to mainly symptom and diagnostic variables rather than causal agents

  8. A THREE-STEP SPATIAL-TEMPORAL-SEMANTIC CLUSTERING METHOD FOR HUMAN ACTIVITY PATTERN ANALYSIS

    Directory of Open Access Journals (Sweden)

    W. Huang

    2016-06-01

    Full Text Available How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time to four dimensions (space, time and semantics. More specifically, not only a location and time that people stay and spend are collected, but also what people “say” for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The

  9. a Three-Step Spatial-Temporal Clustering Method for Human Activity Pattern Analysis

    Science.gov (United States)

    Huang, W.; Li, S.; Xu, S.

    2016-06-01

    How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time) to four dimensions (space, time and semantics). More specifically, not only a location and time that people stay and spend are collected, but also what people "say" for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The results show that the

  10. gamma-rays from annihilating dark matter in galaxy clusters: stacking vs single source analysis

    CERN Document Server

    Nezri, E; Combet, C; Maurin, D; Pointecouteau, E; Hinton, J A

    2012-01-01

    Clusters of galaxies are potentially important targets for indirect searches for dark matter annihilation. Here, we reassess the detection prospects for annihilation in massive halos, based on a statistical investigation of 1743 clusters from the recent MCXC meta-catalogue. We derive a new data-driven limit for the extra-galactic DM annihilation background Jextra-gal>JGal/5 and consider a source-stacking approach. The number of clusters scales with their brightness (boosted by DM substructures) to the power of -2 for an integration angle 0.1deg. It suggests that stacking may provide a significant improvement over a single target analysis for gamma-ray observations at high-energies where the angular resolution achievable is comparable to this angle. In our study the mean angle containing 80% of the dark-matter signal for the entire sample (assuming an NFW DM profile) is 0.15deg. It indicates that instruments with this angular resolution or better would be optimal for a cluster annihilation search based on stac...

  11. Grouping of Cities In Terms Of Primary Health Indicators in Turkey: An Application of Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Bilgehan TEKİN

    2015-12-01

    Full Text Available It is thought that to determine the differences between cities that locate in Turkey is important in the context of primary health care indicators. The subject of this study is the classification of cities in Turkey in terms of health indicators. The cluster analysis method which is the one of the data mining and multivariate statistical methods is used for classification method. The main objective of the study is to examine the point of results of movement transformation in health in terms of basic health indicators on the basis of cities.. In this context, 81 cities, in Turkey are grouped with sixteen health indicators which is assumed to demonstrate the effectiveness of health care services, by the years of 2013. And also compared with the health and socio-economic development ranking in the previous studies. Providences are gathered in 21, 13, 11, 7 and 5 clusters. 11’s, 7’s and 5’s clusters are determined as the most significant clusters. As a result of the study the development gap between eastern and western provinces emerges in terms of the health variables.

  12. Cluster Analysis of the Wind Events and Seasonal Wind Circulation Patterns in the Mexico City Region

    Directory of Open Access Journals (Sweden)

    Susana Carreón-Sierra

    2015-07-01

    Full Text Available The residents of Mexico City face serious problems of air pollution. Identifying the most representative scenarios for the transport and dispersion of air pollutants requires the knowledge of the main wind circulation patterns. In this paper, a simple method to recognize and characterize the wind circulation patterns in a given region is proposed and applied to the Mexico City winds (2001–2006. This method uses a lattice wind approach to model the local wind events at the meso-β scale, and hierarchical cluster analysis to recognize their agglomerations in their phase space. Data of the meteorological network of Mexico City was used as input for the lattice wind model. The Ward’s clustering algorithm with Euclidean distance was applied to organize the model wind events in seasonal clusters for each year of the period. Comparison of the hourly population trends of these clusters permitted the recognition and detailed description of seven circulation patterns. These patterns resemble the qualitative descriptions of the Mexico City wind circulation modes reported by other authors. Our method, however, permitted also their quantitative characterization in terms of the wind attributes of velocity, divergence and vorticity, and an estimation of their seasonal and annual occurrence probabilities, which never before were quantified.

  13. Investigation of the pulse energy noise dynamics of IBR-2M using cluster analysis

    International Nuclear Information System (INIS)

    Highlights: • The power noise is successively divided into three to four stable clusters. • Main part of the reactor noise is caused by the vibrations of the movable reflector. • For 3 days of the amplitude at a frequency of 0.82 Hz increases from ∼0 to ∼30 kW. - Abstract: In this work we present the results of a study on pulse energy noise dynamics of the IBR-2M; the study employs statistical methods of time series (pulse energy) processing and hierarchical cluster analysis. It is shown that the power spectrum changes of the pulse energy fluctuations per cycle (∼11 days) has a transition region duration of ∼3 days that takes place after the reactor has reached the nominal power of 2 MW. The power noise is subsequently divided into four stable clusters, with three of which describe the noise transition region. The fourth cluster constitutes a stable structure that does not depend on noise level (amplitude of the power spectrum) or on reactor operation time. The noise transition region is formed by the vibration of the moving reflectors once the reactor has been reached

  14. Analysis of the Quiescent Low-Mass X-ray Binary Population in Galactic Globular Clusters

    CERN Document Server

    Heinke, C O; Lugger, P M; Cohn, H N; Edmonds, P D; Lloyd, D A; Cool, A M

    2003-01-01

    Quiescent low-mass X-ray binaries (qLMXBs) containing neutron stars have been identified in several globular clusters using Chandra or XMM X-ray observations, using their soft thermal spectra. We report a complete census of the qLMXB population in these clusters, identifying three additional probable qLMXBs in NGC 6440. We conduct several analyses of the qLMXB population, and compare it with the harder, primarily CV, population of low-luminosity X-ray sources with 10^31analysis reveals that no globular cluster qLMXBs, other than the transient in NGC 6440, require an additional hard power-law component as often observed in field qLMXBs. We identify an empirical lower luminosity limit of 10^32 ergs/s among globular cluster qLMXBs. The bolometric luminosity range of qLMXBs implies (in the deep crustal heating model of Bro...

  15. Advances in spectral analysis using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.; Vigneron, V.

    1995-12-31

    Artificial Neural networks (ANNs) have a powerful representational capacity and ability to handle with any multi-input multi-output mapping problem, e.g. in clustering, pattern recognition and identification areas, particularly when combined with some a priori knowledge and statistical point of view. They can be useful in spectrometry for the uranium enrichment methods by examples, where numerous approaches like models fitting or experts analysis are limited. These depends on the radiation measured: the methods most widely used developed over the past 20 years were based on the counting of the 185.7-keV peak with a sodium iodide scintillation detector or the 163.4-keV peak of {sup 235} U. But these methods depend critically of the source-detector geometry. A means of improving the above conventional methods is to reduce the region of interest: it is possible by focusing at the region called K{alpha}X where the three elementary components are present. The measurement of these components in mixtures leads to the isotope ratio {sup 235} U / ({sup 235} U + {sup 236} U + {sup 238} U). In this paper we explore statistical orientations and their consequences on `neural` parameters. We show this decisions are induced by a log-linear model, a special case of a GLIM (Generalized LInear Model) and correspond to a Maximum Likelihood Estimation problem. (authors). 15 refs., 7 figs., 2 tabs.

  16. Advances in spectral analysis using artificial neural networks

    International Nuclear Information System (INIS)

    Artificial Neural networks (ANNs) have a powerful representational capacity and ability to handle with any multi-input multi-output mapping problem, e.g. in clustering, pattern recognition and identification areas, particularly when combined with some a priori knowledge and statistical point of view. They can be useful in spectrometry for the uranium enrichment methods by examples, where numerous approaches like models fitting or experts analysis are limited. These depends on the radiation measured: the methods most widely used developed over the past 20 years were based on the counting of the 185.7-keV peak with a sodium iodide scintillation detector or the 163.4-keV peak of 235 U. But these methods depend critically of the source-detector geometry. A means of improving the above conventional methods is to reduce the region of interest: it is possible by focusing at the region called KαX where the three elementary components are present. The measurement of these components in mixtures leads to the isotope ratio 235 U / (235 U + 236 U + 238 U). In this paper we explore statistical orientations and their consequences on 'neural' parameters. We show this decisions are induced by a log-linear model, a special case of a GLIM (Generalized LInear Model) and correspond to a Maximum Likelihood Estimation problem. (authors). 15 refs., 7 figs., 2 tabs

  17. ENHANCING VOLUNTARY CORPORATE GOVERNANCE PRACTICES. A CLUSTER ANALYSIS OF THE COMPLY AND EXPLAIN APPROACH AT ROMANIAN LEVEL

    OpenAIRE

    Laura-Gabriela Constantin; Gheorghe Hurduzeu; Bogdan Cernat-Gruici

    2012-01-01

    Considering that the “comply and explain” model could enhance disclosure procedures and conduct to better corporate governance practices, the present paper aims to examine the current blueprint of compliance with the principles and respective recommendations of the Bucharest Stock Exchange Corporate Governance Code (BSE CGC) within the Romanian business environment. Therefore, by employing cluster analysis, mainly the hierarchical cluster analysis and the k-means analysis, the research explor...

  18. A spatial cluster analysis of tractor overturns in Kentucky from 1960 to 2002

    Science.gov (United States)

    Saman, D.M.; Cole, H.P.; Odoi, A.; Myers, M.L.; Carey, D.I.; Westneat, S.C.

    2012-01-01

    Background: Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns. Methods: A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns. Results: The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55) and 10 counties in eastern Kentucky (RR = 1.97). Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002) and a greater percent of total tractors with less than 40 horsepower by county (ptractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions) with the intention of reducing tractor overturns in the highest risk counties in Kentucky. ?? 2012 Saman et al.

  19. Radio morphology and spectral analysis of cD galaxies in rich and poor galaxy clusters

    CERN Document Server

    Giacintucci, S; Murgia, M; Dallacasa, D; Athreya, R; Bardelli, S; Mazzotta, P; Saikia, J D

    2007-01-01

    We present a radio morphological study and spectral analysis for a sample of 13 cD galaxies in rich and poor clusters of galaxies.} Our study is based on new high sensitivity Giant Metrewave Radio Telescope (GMRT) observations at 1.28 GHz, 610 MHz and 235 MHz, and on archival data. From a statistical sample of cluster cD galaxies we selected those sources with little information available in the literature and promising for the detection of aged radio emission. Beyond the high sensitivity images for all 13 radio galaxies, we present also a detailed spectral analysis for 7 of them. We found a variety of morphologies and linear sizes, as typical for radio galaxies in the radio power range sampled here (low to intermediate power radio galaxies). The spectral analysis shows that 10/13 radio galaxies have steep radio spectrum, with spectral index $\\alpha \\ge 1$. In general, the radiative ages and growth velocities are consistent with previous findings that the evolution of radio galaxies at the cluster centres is ...

  20. Time-clustering analysis of the 1978–2008 sub-crustal seismicity of Vrancea region

    Directory of Open Access Journals (Sweden)

    L. Telesca

    2011-08-01

    Full Text Available The analysis of time-clustering behaviour of the sub-crustal seismicity (depth larger than 60 km of the Vrancea region has been performed. The time span of the analyzed catalogue is from 1978 to 2008, and only the events with a magnitude of Mw ≥ 3 have been considered. The analysis, carried out on the full and aftershock-depleted catalogues, was performed using the Allan Factor (AF that allows the identificatiion and quantification of correlated temporal structures in temporal point processes. Our results, whose significance was analysed by means of two methods of generation of surrogate series, reveal the presence of time-clustering behaviour in the temporal distribution of seismicity data of the full catalogue. The analysis performed on the aftershock-depleted catalogue indicates that the time-clustering is associated mainly to the aftershocks generated by the two largest events occurred on 30 August 1986 (Mw = 7.1 and 30 May 1990 (Mw = 6.9.

  1. Combination of meta-analysis and graph clustering to identify prognostic markers of ESCC

    Directory of Open Access Journals (Sweden)

    Hongyun Gao

    2012-01-01

    Full Text Available Esophageal squamous cell carcinoma (ESCC is one of the most malignant gastrointestinal cancers and occurs at a high frequency rate in China and other Asian countries. Recently, several molecular markers were identified for predicting ESCC. Notwithstanding, additional prognostic markers, with a clear understanding of their underlying roles, are still required. Through bioinformatics, a graph-clustering method by DPClus was used to detect co-expressed modules. The aim was to identify a set of discriminating genes that could be used for predicting ESCC through graph-clustering and GO-term analysis. The results showed that CXCL12, CYP2C9, TGM3, MAL, S100A9, EMP-1 and SPRR3 were highly associated with ESCC development. In our study, all their predicted roles were in line with previous reports, whereby the assumption that a combination of meta-analysis, graph-clustering and GO-term analysis is effective for both identifying differentially expressed genes, and reflecting on their functions in ESCC.

  2. Combination of meta-analysis and graph clustering to identify prognostic markers of ESCC.

    Science.gov (United States)

    Gao, Hongyun; Wang, Lishan; Cui, Shitao; Wang, Mingsong

    2012-04-01

    Esophageal squamous cell carcinoma (ESCC) is one of the most malignant gastrointestinal cancers and occurs at a high frequency rate in China and other Asian countries. Recently, several molecular markers were identified for predicting ESCC. Notwithstanding, additional prognostic markers, with a clear understanding of their underlying roles, are still required. Through bioinformatics, a graph-clustering method by DPClus was used to detect co-expressed modules. The aim was to identify a set of discriminating genes that could be used for predicting ESCC through graph-clustering and GO-term analysis. The results showed that CXCL12, CYP2C9, TGM3, MAL, S100A9, EMP-1 and SPRR3 were highly associated with ESCC development. In our study, all their predicted roles were in line with previous reports, whereby the assumption that a combination of meta-analysis, graph-clustering and GO-term analysis is effective for both identifying differentially expressed genes, and reflecting on their functions in ESCC.

  3. Profiles of exercise motivation, physical activity, exercise habit, and academic performance in Malaysian adolescents: A cluster analysis

    Directory of Open Access Journals (Sweden)

    Hairul Anuar Hashim

    2011-06-01

    Full Text Available Objectives: This study examined Malaysian adolescents’ profiles of exercise motivation, exercise habit strength, academic performance, and levels of physical activity (PA using cluster analysis.Methods: The sample (n = 300 consisted of 65.6% males and 34.4% females with a mean age of 13.40 ± 0.49. Statistical analysis was performed using cluster analysis.Results: Cluster analysis revealed three distinct cluster groups. Cluster 1 is characterized by a moderate level of PA, relatively high in motivational indices and relative autonomy index (RAI, low in exercise habit, and moderate level of academic achievement. Cluster 2 has superior academic performance but is low in PA and all other measured variables. Cluster 3 is characterized by high levels of PA and all other variables but is lowest in academic performance. One way ANOVA revealed significant differences between cluster groups in total weekly MET, total minutes of weekly PA, academic performance, introjected regulation, and identified regulation.Conclusion: PA promotion with emphasis on external factors may be effective in instilling exercise habituation among adolescents in the present sample.

  4. Clustering Educational Digital Library Usage Data: A Comparison of Latent Class Analysis and K-Means Algorithms

    Science.gov (United States)

    Xu, Beijie; Recker, Mimi; Qi, Xiaojun; Flann, Nicholas; Ye, Lei

    2013-01-01

    This article examines clustering as an educational data mining method. In particular, two clustering algorithms, the widely used K-means and the model-based Latent Class Analysis, are compared, using usage data from an educational digital library service, the Instructional Architect (IA.usu.edu). Using a multi-faceted approach and multiple data…

  5. Analysis of dynamic cerebral contrast-enhanced perfusion MRI time-series based on unsupervised clustering methods

    Science.gov (United States)

    Lange, Oliver; Meyer-Baese, Anke; Wismuller, Axel; Hurdal, Monica

    2005-03-01

    We employ unsupervised clustering techniques for the analysis of dynamic contrast-enhanced perfusion MRI time-series in patients with and without stroke. "Neural gas" network, fuzzy clustering based on deterministic annealing, self-organizing maps, and fuzzy c-means clustering enable self-organized data-driven segmentation w.r.t.fine-grained differences of signal amplitude and dynamics, thus identifying asymmetries and local abnormalities of brain perfusion. We conclude that clustering is a useful extension to conventional perfusion parameter maps.

  6. A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data.

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Jackson R.; Kegelmeyer, W. Philip, Jr.; Wong, Matthew H.; Pebay, Philippe Pierre; Gentile, Ann C.; Thompson, David C.; Roe, Diana C.; De Sapio, Vincent; Brandt, James M.

    2010-08-01

    The monitoring and system analysis of high performance computing (HPC) clusters is of increasing importance to the HPC community. Analysis of HPC job data can be used to characterize system usage and diagnose and examine failure modes and their effects. This analysis is not straightforward, however, due to the complex relationships that exist between jobs. These relationships are based on a number of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based techniques represent an approach that is particularly well suited to this problem, and provide an effective technique for discovering important relationships in job queuing and execution data. The efficacy of these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users, and other relevant entities. This graph-based representation permits formal manipulation by a number of analysis algorithms. This report presents a methodology and software implementation that leverages semantic graph-based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing and execution data. Ontology development and graph synthesis is discussed with respect to the domain of HPC job data. The framework developed automates the synthesis of graphs from a database of job information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally, an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure prediction capabilities for HPC systems.

  7. Advanced Residuals Analysis for Determining the Number of PARAFAC Components in Dissolved Organic Matter.

    Science.gov (United States)

    Cuss, Chad W; Guéguen, Céline; Andersson, Per; Porcelli, Don; Maximov, Trofim; Kutscher, Liselott

    2016-02-01

    Parallel factor analysis (PARAFAC) has facilitated an explosion in research connecting the fluorescence properties of dissolved organic matter (DOM) to its functions and biogeochemical cycling in natural and engineered systems. However, the validation of robust PARAFAC models using split-half analysis requires an oft unrealistically large number (hundreds to thousands) of excitation-emission matrices (EEMs), and models with too few components may not adequately describe differences between DOM. This study used self-organizing maps (SOM) and comparing changes in residuals with the effects of adding components to estimate the number of PARAFAC components in DOM from two data sets: MS (110 EEMs from nine leaf leachates and headwaters) and LR (64 EEMs from the Lena River). Clustering by SOM demonstrated that peaks clearly persisted in model residuals after validation by split-half analysis. Plotting the changes to residuals was an effective method for visualizing the removal of fluorophore-like fluorescence caused by increasing the number of PARAFAC components. Extracting additional PARAFAC components via residuals analysis increased the proportion of correctly identified size-fractionated leaf leachates from 56.0 ± 0.8 to 75.2 ± 0.9%, and from 51.7 ± 1.4 to 92.9 ± 0.0% for whole leachates. Model overfitting was assessed by considering the correlations between components, and their distributions amongst samples. Advanced residuals analysis improved the ability of PARAFAC to resolve the variation in DOM fluorescence, and presents an enhanced validation approach for assessing the number of components that can be used to supplement the potentially misleading results of split-half analysis.

  8. Analysis of the project synthesis goal cluster orientation and inquiry emphasis of elementary science textbooks

    Science.gov (United States)

    Staver, John R.; Bay, Mary

    The purpose of this descriptive study was to examine selected units of commonly used elementary science texts, using the Project Synthesis goal clusters as a framework for part of the examination. An inquiry classification scheme was used for the remaining segment. Four questions were answered: (1) To what extent do elementary science textbooks focus on each Project Synthesis goal cluster? (2) In which part of the text is such information found? (3) To what extent are the activities and experiments merely verifications of information already introduced in the text? (4) If inquiry is present in an activity, then what is the level of such inquiry?Eleven science textbook series, which comprise approximately 90 percent of the national market, were selected for analysis. Two units, one primary (K-3) and one intermediate (4-6), were selected for analysis by first identifying units common to most series, then randomly selecting one primary and one intermediate unit for analysis.Each randomly selected unit was carefully read, using the sentence as the unit of analysis. Each declarative and interrogative sentence in the body of the text was classified as: (1) academic; (2) personal; (3) career; or (4) societal in its focus. Each illustration, except those used in evaluation items, was similarly classified. Each activity/experiment and each miscellaneous sentence in end-of-chapter segments labelled review, summary, evaluation, etc., were similarly classified. Finally, each activity/experiment, as a whole, was categorized according to a four-category inquiry scheme (confirmation, structured inquiry, guided inquiry, open inquiry).In general, results of the analysis are: (1) most text prose focuses on academic science; (2) most remaining text prose focuses on the personal goal cluster; (3) the career and societal goal clusters receive only minor attention; (4) text illustrations exhibit a pattern similar to text prose; (5) text activities/experiments are academic in orientation

  9. Development of Human Performance Analysis and Advanced HRA Methodology

    International Nuclear Information System (INIS)

    The purpose of this project is to build a systematic framework that can evaluate the effect of human factors related problems on the safety of nuclear power plants (NPPs) as well as develop a technology that can be used to enhance human performance. The research goal of this project is twofold: (1) the development of a human performance database and a framework to enhance human performance, and (2) the analysis of human error with constructing technical basis for human reliability analysis. There are three kinds of main results of this study. The first result is the development of a human performance database, called OPERA-I/II (Operator Performance and Reliability Analysis, Part I and Part II). In addition, a standard communication protocol was developed based on OPERA to reduce human error caused from communication error in the phase of event diagnosis. Task complexity (TACOM) measure and the methodology of optimizing diagnosis procedures were also finalized during this research phase. The second main result is the development of a software, K-HRA, which is to support the standard HRA method. Finally, an advanced HRA method named as AGAPE-ET was developed by combining methods MDTA (misdiagnosis tree analysis technique) and K-HRA, which can be used to analyze EOC (errors of commission) and EOO (errors of ommission). These research results, such as OPERA-I/II, TACOM, a standard communication protocol, K-HRA and AGAPE-ET methods will be used to improve the quality of HRA and to enhance human performance in nuclear power plants

  10. Advanced High Temperature Reactor Systems and Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience

  11. Lock Acquisition and Sensitivity Analysis of Advanced LIGO Interferometers

    Science.gov (United States)

    Martynov, Denis

    Laser interferometer gravitational wave observatory (LIGO) consists of two complex large-scale laser interferometers designed for direct detection of gravitational waves from distant astrophysical sources in the frequency range 10Hz - 5kHz. Direct detection of space-time ripples will support Einstein's general theory of relativity and provide invaluable information and new insight into physics of the Universe. The initial phase of LIGO started in 2002, and since then data was collected during the six science runs. Instrument sensitivity improved from run to run due to the effort of commissioning team. Initial LIGO has reached designed sensitivity during the last science run, which ended in October 2010. In parallel with commissioning and data analysis with the initial detector, LIGO group worked on research and development of the next generation of detectors. Major instrument upgrade from initial to advanced LIGO started in 2010 and lasted until 2014. This thesis describes results of commissioning work done at the LIGO Livingston site from 2013 until 2015 in parallel with and after the installation of the instrument. This thesis also discusses new techniques and tools developed at the 40m prototype including adaptive filtering, estimation of quantization noise in digital filters and design of isolation kits for ground seismometers. The first part of this thesis is devoted to the description of methods for bringing the interferometer into linear regime when collection of data becomes possible. States of longitudinal and angular controls of interferometer degrees of freedom during lock acquisition process and in low noise configuration are discussed in details. Once interferometer is locked and transitioned to low noise regime, instrument produces astrophysics data that should be calibrated to units of meters or strain. The second part of this thesis describes online calibration technique set up in both observatories to monitor the quality of the collected data in

  12. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.

    Science.gov (United States)

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  13. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.

    Science.gov (United States)

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S

    2016-05-16

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  14. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances

    Directory of Open Access Journals (Sweden)

    Abdulrahman Alarifi

    2016-05-01

    Full Text Available In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  15. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances

    Science.gov (United States)

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  16. Quantitative Computed Tomography and image analysis for advanced muscle assessment

    Directory of Open Access Journals (Sweden)

    Kyle Joseph Edmunds

    2016-06-01

    Full Text Available Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions. Herein, we detail the acquisition of spiral CT images and the use of advanced image analysis tools to characterize muscles in 2D and 3D. Results from these studies recapitulate changes in tissue composition within muscles, as visualized by the association of tissue types to specified Hounsfield Unit (HU values for fat, loose connective tissue or atrophic muscle, and normal muscle, including fascia and tendon. We show how results from these analyses can be presented as both average HU values and compositions with respect to total muscle volumes, demonstrating the reliability of these tools to monitor, assess and characterize muscle degeneration.

  17. A climatology of surface ozone in the extra tropics: cluster analysis of observations and model results

    Directory of Open Access Journals (Sweden)

    O. A. Tarasova

    2007-08-01

    Full Text Available Important aspects of the seasonal variations of surface ozone are discussed. The underlying analysis is based on the long-term (1990–2004 ozone records of Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP and the World Data Center of Greenhouse Gases which do have a strong Northern Hemisphere bias. Seasonal variations are pronounced at most of the 114 locations for any time of the day. Seasonal-diurnal variability classification using hierarchical agglomeration clustering reveals 5 distinct clusters: clean/rural, semi-polluted non-elevated, semi-polluted semi-elevated, elevated and polar/remote marine types. For the cluster "clean/rural" the seasonal maximum is observed in April, both for night and day. For those sites with a double maximum or a wide spring-summer maximum, the one in spring appears both for day and night, while the one in summer is more pronounced for daytime and hence can be attributed to photochemical processes. For the spring maximum photochemistry is a less plausible explanation as no dependence of the maximum timing is observed. More probably the spring maximum is caused by dynamical/transport processes. Using data from the 3-D atmospheric chemistry general circulation model ECHAM5/MESSy1 covering the period of 1998–2005 a comparison has been performed for the identified clusters. For the model data four distinct classes of variability are detected. The majority of cases are covered by the regimes with a spring seasonal maximum or with a broad spring-summer maximum (with prevailing summer. The regime with winter–early spring maximum is reproduced by the model for southern hemispheric locations. Background and semi-polluted sites appear in the model in the same cluster. The seasonality in this model cluster is characterized by a pronounced spring (May maximum. For the model cluster that covers partly semi-elevated semi-polluted sites the role of the

  18. A climatology of surface ozone in the extra tropics: cluster analysis of observations and model results

    Directory of Open Access Journals (Sweden)

    O. A. Tarasova

    2007-12-01

    Full Text Available Important aspects of the seasonal variations of surface ozone are discussed. The underlying analysis is based on the long-term (1990–2004 ozone records of the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP and the World Data Centre of Greenhouse Gases, which provide data mostly for the Northern Hemisphere. Seasonal variations are pronounced at most of the 114 locations at all times of the day. A seasonal-diurnal variations classification using hierarchical agglomeration clustering reveals 6 distinct clusters: clean background, rural, semi-polluted non-elevated, semi-polluted semi-elevated, elevated and polar/remote marine. For the "clean background" cluster the seasonal maximum is observed in March-April, both for night and day. For those sites with a double maximum or a wide spring-summer maximum, the spring maximum appears both for day and night, while the summer maximum is more pronounced for daytime and hence can be attributed to photochemical processes. The spring maximum is more likely caused by dynamical/transport processes than by photochemistry as it is observed in spring for all times of the day. We compare the identified clusters with corresponding data from the 3-D atmospheric chemistry general circulation model ECHAM5/MESSy1 covering the period of 1998–2005. For the model output as for the measurements 6 clusters are considered. The simulation shows at most of the sites a spring seasonal maximum or a broad spring-summer maximum (with higher summer mixing ratios. For southern hemispheric and polar remote locations the seasonal maximum in the simulation is shifted to spring, while the absolute mixing ratios are in good agreement with the measurements. The seasonality in the model cluster covering background locations is characterized by a pronounced spring (April–May maximum. For the model clusters which cover rural and semi-polluted sites the role of the

  19. AVES: A high performance computer cluster array for the INTEGRAL satellite scientific data analysis

    Science.gov (United States)

    Federici, Memmo; Martino, Bruno Luigi; Ubertini, Pietro

    2012-07-01

    In this paper we describe a new computing system array, designed, built and now used at the Space Astrophysics and Planetary Institute (IAPS) in Rome, Italy, for the INTEGRAL Space Observatory scientific data analysis. This new system has become necessary in order to reduce the processing time of the INTEGRAL data accumulated during the more than 9 years of in-orbit operation. In order to fulfill the scientific data analysis requirements with a moderately limited investment the starting approach has been to use a `cluster' array of commercial quad-CPU computers, featuring the extremely large scientific and calibration data archive on line.

  20. Diversity of Xiphinema americanum-group Species and Hierarchical Cluster Analysis of Morphometrics.

    Science.gov (United States)

    Lamberti, F; Ciancio, A

    1993-09-01

    Of the 39 species composing the Xiphinema americanum group, 14 were described originally from North America and two others have been reported from this region. Many species are very similar morphologically and can be distinguished only by a difficult comparison of various combinations of some morphometric characters. Study of morphometrics of 49 populations, including the type populations of the 39 species attributed to this group, by principal component analysis and hierarchical cluster analysis placed the populations into five subgroups, proposed here as the X. brevicolle subgroup (seven species), the X. americanum subgroup (17 species), the X. taylori subgroup (two species), the X. pachtaicum subgroup (eight species), and the X. lambertii subgroup (five species).

  1. The Detection of Fermi AGN above 100 GeV using Clustering Analysis

    CERN Document Server

    Armstrong, Thomas; Chadwick, Paula M; Nolan, S J

    2015-01-01

    The density-based clustering algorithm DBSCAN has been applied to the Fermi Large Area Telescope (LAT) dataset of $ E_{\\gamma} \\geqslant 100$~GeV events with $\\lvert b\\rvert>10^{\\circ}$, in order to search for new very high energy (VHE) $\\gamma$-ray sources. The clustering analysis returned 49 clusters, of which 21 correspond to already known VHE-emitting active galactic nuclei (AGN) within the TeVCat catalogue and a further 11 were found to be significant in a full Fermi analysis. Of these, 2 are previously detected Fermi VHE AGN, and 9 represent new VHE sources consisting of 6 BL Lac objects, one blazar of unknown type and 2 unassociated sources. Comparing these, along with the VHE AGN RBS 0679 and RBS 0970 previously detected with Fermi-LAT, to the current populations of AGN detected with ground-based instruments and Fermi suggests that the VHE-emitting AGN discovered in this study are very similar to the TeVCat AGN and therefore further observations with ground-based imaging atmospheric Cherenkov telescop...

  2. A Comprehensive Comparison of Different Clustering Methods for Reliability Analysis of Microarray Data

    Science.gov (United States)

    Kafieh, Rahele; Mehridehnavi, Alireza

    2013-01-01

    In this study, we considered some competitive learning methods including hard competitive learning and soft competitive learning with/without fixed network dimensionality for reliability analysis in microarrays. In order to have a more extensive view, and keeping in mind that competitive learning methods aim at error minimization or entropy maximization (different kinds of function optimization), we decided to investigate the abilities of mixture decomposition schemes. Therefore, we assert that this study covers the algorithms based on function optimization with particular insistence on different competitive learning methods. The destination is finding the most powerful method according to a pre-specified criterion determined with numerical methods and matrix similarity measures. Furthermore, we should provide an indication showing the intrinsic ability of the dataset to form clusters before we apply a clustering algorithm. Therefore, we proposed Hopkins statistic as a method for finding the intrinsic ability of a data to be clustered. The results show the remarkable ability of Rayleigh mixture model in comparison with other methods in reliability analysis task. PMID:24083134

  3. Comparison Analysis and Evaluation of Urban Competitiveness in Chinese Urban Clusters

    Directory of Open Access Journals (Sweden)

    Haixiang Guo

    2015-04-01

    Full Text Available With accelerating urbanization, urban competitiveness has become a worldwide academic focus. Previous studies always focused on economic factors but ignored social elements when measuring urban competitiveness. In this paper, a city was considered as a whole containing different units such as departments, individuals and economic activities, which interact with each other and affect its economic operation. Moreover, a city’s development was compared to an object’s movement, and the components were compared to different forces acting upon the object. With the analysis of the principle of object movement, this study has established a more scientific evaluation index system that involves 4 subsystems, 12 elements and 58 indexes. By using the TOPSIS method, the study has worked out the urban competitiveness of 141 cities from 28 Chinese urban clusters in 2009. According to the calculation results, these cities were divided into four levels: A, B, C, D. Furthermore, in order to analyze the competitiveness of cities and urban clusters, cities and urban clusters have been divided into four groups according to their distributive characteristics: the southeast, the northeast and Bohai Rim, the central region and the west. Suggestions and recommendations for each group are provided based on careful analysis.

  4. A comprehensive comparison of different clustering methods for reliability analysis of microarray data.

    Science.gov (United States)

    Kafieh, Rahele; Mehridehnavi, Alireza

    2013-01-01

    In this study, we considered some competitive learning methods including hard competitive learning and soft competitive learning with/without fixed network dimensionality for reliability analysis in microarrays. In order to have a more extensive view, and keeping in mind that competitive learning methods aim at error minimization or entropy maximization (different kinds of function optimization), we decided to investigate the abilities of mixture decomposition schemes. Therefore, we assert that this study covers the algorithms based on function optimization with particular insistence on different competitive learning methods. The destination is finding the most powerful method according to a pre-specified criterion determined with numerical methods and matrix similarity measures. Furthermore, we should provide an indication showing the intrinsic ability of the dataset to form clusters before we apply a clustering algorithm. Therefore, we proposed Hopkins statistic as a method for finding the intrinsic ability of a data to be clustered. The results show the remarkable ability of Rayleigh mixture model in comparison with other methods in reliability analysis task. PMID:24083134

  5. Weighted Clustering

    CERN Document Server

    Ackerman, Margareta; Branzei, Simina; Loker, David

    2011-01-01

    In this paper we investigate clustering in the weighted setting, in which every data point is assigned a real valued weight. We conduct a theoretical analysis on the influence of weighted data on standard clustering algorithms in each of the partitional and hierarchical settings, characterising the precise conditions under which such algorithms react to weights, and classifying clustering methods into three broad categories: weight-responsive, weight-considering, and weight-robust. Our analysis raises several interesting questions and can be directly mapped to the classical unweighted setting.

  6. Cluster Analysis of Physical and Cognitive Ageing Patterns in Older People from Shanghai

    Directory of Open Access Journals (Sweden)

    Stephan Bandelow

    2016-02-01

    Full Text Available This study investigated the relationship between education, cognitive and physical function in older age, and their respective impacts on activities of daily living (ADL. Data on 148 older participants from a community-based sample recruited in Shanghai, China, included the following measures: age, education, ADL, grip strength, balance, gait speed, global cognition and verbal memory. The majority of participants in the present cohort were cognitively and physically healthy and reported no problems with ADL. Twenty-eight percent of participants needed help with ADL, with the majority of this group being over 80 years of age. Significant predictors of reductions in functional independence included age, balance, global cognitive function (MMSE and the gait measures. Cluster analysis revealed a protective effect of education on cognitive function that did not appear to extend to physical function. Consistency of such phenotypes of ageing clusters in other cohort studies may provide helpful models for dementia and frailty prevention measures.

  7. Cluster Analysis of Physical and Cognitive Ageing Patterns in Older People from Shanghai.

    Science.gov (United States)

    Bandelow, Stephan; Xu, Xin; Xiao, Shifu; Hogervorst, Eef

    2016-01-01

    This study investigated the relationship between education, cognitive and physical function in older age, and their respective impacts on activities of daily living (ADL). Data on 148 older participants from a community-based sample recruited in Shanghai, China, included the following measures: age, education, ADL, grip strength, balance, gait speed, global cognition and verbal memory. The majority of participants in the present cohort were cognitively and physically healthy and reported no problems with ADL. Twenty-eight percent of participants needed help with ADL, with the majority of this group being over 80 years of age. Significant predictors of reductions in functional independence included age, balance, global cognitive function (MMSE) and the gait measures. Cluster analysis revealed a protective effect of education on cognitive function that did not appear to extend to physical function. Consistency of such phenotypes of ageing clusters in other cohort studies may provide helpful models for dementia and frailty prevention measures. PMID:26907351

  8. PARALLEL ANALYSIS OF COMBINED FINITE/DISCRETE ELEMENT SYSTEMS ON PC CLUSTER

    Institute of Scientific and Technical Information of China (English)

    WANG Fujun; Y.T.FENG; D.R.J.OWEN; ZHANG Jing; LIU Yang

    2004-01-01

    A computational strategy is presented for the nonlinear dynamic analysis of largescale combined finite/discrete element systems on a PC cluster. In this strategy, a dual-level domain decomposition scheme is adopted to implement the dynamic domain decomposition. The domain decomposition approach perfectly matches the requirement of reducing the memory size per processor of the calculation. To treat the contact between boundary elements in neighbouring subdomains, the elements in a subdomain are classified into internal, interfacial and external elements. In this way, all the contact detect algorithms developed for a sequential computation could be adopted directly in the parallel computation. Numerical examples show that this implementation is suitable for simulating large-scale problems. Two typical numerical examples are given to demonstrate the parallel efficiency and scalability on a PC cluster.

  9. Improving detection of differentially expressed gene sets by applying cluster enrichment analysis to Gene Ontology

    Directory of Open Access Journals (Sweden)

    Gu JianLei

    2009-08-01

    Full Text Available Abstract Background Gene set analysis based on Gene Ontology (GO can be a promising method for the analysis of differential expression patterns. However, current studies that focus on individual GO terms have limited analytical power, because the complex structure of GO introduces strong dependencies among the terms, and some genes that are annotated to a GO term cannot be found by statistically significant enrichment. Results We proposed a method for enriching clustered GO terms based on semantic similarity, namely cluster enrichment analysis based on GO (CeaGO, to extend the individual term analysis method. Using an Affymetrix HGU95aV2 chip dataset with simulated gene sets, we illustrated that CeaGO was sensitive enough to detect moderate expression changes. When compared to parent-based individual term analysis methods, the results showed that CeaGO may provide more accurate differentiation of gene expression results. When used with two acute leukemia (ALL and ALL/AML microarray expression datasets, CeaGO correctly identified specifically enriched GO groups that were overlooked by other individual test methods. Conclusion By applying CeaGO to both simulated and real microarray data, we showed that this approach could enhance the interpretation of microarray experiments. CeaGO is currently available at http://chgc.sh.cn/en/software/CeaGO/.

  10. Advancing sensitivity analysis to precisely characterize temporal parameter dominance

    Science.gov (United States)

    Guse, Björn; Pfannerstill, Matthias; Strauch, Michael; Reusser, Dominik; Lüdtke, Stefan; Volk, Martin; Gupta, Hoshin; Fohrer, Nicola

    2016-04-01

    Parameter sensitivity analysis is a strategy for detecting dominant model parameters. A temporal sensitivity analysis calculates daily sensitivities of model parameters. This allows a precise characterization of temporal patterns of parameter dominance and an identification of the related discharge conditions. To achieve this goal, the diagnostic information as derived from the temporal parameter sensitivity is advanced by including discharge information in three steps. In a first step, the temporal dynamics are analyzed by means of daily time series of parameter sensitivities. As sensitivity analysis method, we used the Fourier Amplitude Sensitivity Test (FAST) applied directly onto the modelled discharge. Next, the daily sensitivities are analyzed in combination with the flow duration curve (FDC). Through this step, we determine whether high sensitivities of model parameters are related to specific discharges. Finally, parameter sensitivities are separately analyzed for five segments of the FDC and presented as monthly averaged sensitivities. In this way, seasonal patterns of dominant model parameter are provided for each FDC segment. For this methodical approach, we used two contrasting catchments (upland and lowland catchment) to illustrate how parameter dominances change seasonally in different catchments. For all of the FDC segments, the groundwater parameters are dominant in the lowland catchment, while in the upland catchment the controlling parameters change seasonally between parameters from different runoff components. The three methodical steps lead to clear temporal patterns, which represent the typical characteristics of the study catchments. Our methodical approach thus provides a clear idea of how the hydrological dynamics are controlled by model parameters for certain discharge magnitudes during the year. Overall, these three methodical steps precisely characterize model parameters and improve the understanding of process dynamics in hydrological

  11. Stereoscopic motion analysis in densely packed clusters: 3D analysis of the shimmering behaviour in Giant honey bees

    OpenAIRE

    Hoetzl Thomas; Ruether Matthias; Weihmann Frank; Maurer Michael; Kastberger Gerald; Kranner Ilse; Bischof Horst

    2011-01-01

    Abstract Background The detailed interpretation of mass phenomena such as human escape panic or swarm behaviour in birds, fish and insects requires detailed analysis of the 3D movements of individual participants. Here, we describe the adaptation of a 3D stereoscopic imaging method to measure the positional coordinates of individual agents in densely packed clusters. The method was applied to study behavioural aspects of shimmering in Giant honeybees, a collective defence behaviour that deter...

  12. Constraining AGN triggering mechanisms through the clustering analysis of active black holes

    CERN Document Server

    Gatti, M; Bouillot, V; Menci, N; Lamastra, A; Hirschmann, M; Fiore, F

    2015-01-01

    The triggering mechanisms for Active Galactic Nuclei (AGN) are still debated. Some of the most popular ones include galaxy interactions (IT) and disk instabilities (DI). Using an advanced semi analytic model (SAM) of galaxy formation, coupled to accurate halo occupation distribution modeling, we investigate the imprint left by each separate triggering process on the clustering strength of AGN at small and large scales. Our main results are as follows: i) DIs, irrespective of their exact implementation in the SAM, tend to fall short in triggering AGN activity in galaxies at the center of halos with $M_h>10^{13.5} h^{-1}M_{\\odot}$. On the contrary, the IT scenario predicts abundance of active, central galaxies that generally agrees well with observations at every halo mass. ii) The relative number of satellite AGN in DIs at intermediate-to-low luminosities is always significantly higher than in IT models, especially in groups and clusters. The low AGN satellite fraction predicted for the IT scenario might sugge...

  13. Application of Cluster Analysis in hydrochemical composition classifications--case study of middle reaches of Yinma River

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chemical composition of groundwater reflects the historical evolvement of groundwater in an area. The Cluster Analysis method is introduced in this paper with descriptions of the principle for using this method, and introducing the classification process for chemical types of groundwater by using this method. The classification by cluster analysis indicated that the results considered all chemical components of groundwater, which, therefore, is a good effect.

  14. Clustering Methods Application for Customer Segmentation to Manage Advertisement Campaign

    OpenAIRE

    Maciej Kutera; Mirosława Lasek

    2010-01-01

    Clustering methods are recently so advanced elaborated algorithms for large collection data analysis that they have been already included today to data mining methods. Clustering methods are nowadays larger and larger group of methods, very quickly evolving and having more and more various applications. In the article, our research concerning usefulness of clustering methods in customer segmentation to manage advertisement campaign is presented. We introduce results obtained by using four sel...

  15. A critical evaluation of the use of cluster analysis to identify contaminated sediments in the Ria de Vigo

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, B; Nombela, M. A; Vilas, F [Departamento de Geociencias Marinas y Ordenacion del Territorio, Vigo, Espana (Spain)

    2001-06-01

    The indiscriminate use of cluster analysis to distinguish contaminated and non-contaminated sediments has led us to make a comparative evaluation of different cluster analysis procedures as applied to heavy metal concentrations in subtidal sediments from the Ria de Vigo, NW Spain. The use of different clusters algorithms and other transformations from the same departing set of data lead to the formation of different clusters with a clear inconclusive result about the contamination status of the sediments. The results show that this approach is better suited to identifying groups of samples differing in sedimentological characteristics, such as grain size, rather than in the degree of contamination. Our main aim is to call attention to these aspects in cluster analysis and to suggest that researches should be rigorous with this kind of analysis. Finally, the use of discriminate analysis allows us to find a discriminate function that separates the samples into two clearly differentiated groups, which should not be treated jointly. [Spanish] El uso indiscriminado del analisis cluster para distinguir sedimentos contaminados y no contaminados nos ha llevado a realizar una evaluacion comparativa entre los diferentes procedimientos de estos analisis aplicada a la concentracion de metales pesados en sedimentos submareales de la Ria de Vigo, NW de Espana. La utilizacion de distintos algoritmos de cluster, asi como otras transformaciones de la misma matriz de datos conduce a la formacion de diferentes clusters con un resultado inconcluso sobre el estado de contaminacion de los sedimentos. Los resultados muestran que esta aproximacion se ajusta mejor para identificar grupos de muestras que difieren en caracteristicas sedimentologicas, tal como el tamano de grano, mas que el grado de contaminacion. El principal objetivo es llamar la atencion sobre estos aspectos del analisis cluster y sugerir a los investigadores que sean rigurosos con este tipo de analisis. Finalmente el uso

  16. Advanced methods for BWR transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A.; Wehle, F.; Opel, S.; Velten, R. [AREVA, AREVA NP, Erlangen (Germany)

    2008-07-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  17. Safety Analysis of Soybean Processing for Advanced Life Support

    Science.gov (United States)

    Hentges, Dawn L.

    1999-01-01

    Soybeans (cv. Hoyt) is one of the crops planned for food production within the Advanced Life Support System Integration Testbed (ALSSIT), a proposed habitat simulation for long duration lunar/Mars missions. Soybeans may be processed into a variety of food products, including soymilk, tofu, and tempeh. Due to the closed environmental system and importance of crew health maintenance, food safety is a primary concern on long duration space missions. Identification of the food safety hazards and critical control points associated with the closed ALSSIT system is essential for the development of safe food processing techniques and equipment. A Hazard Analysis Critical Control Point (HACCP) model was developed to reflect proposed production and processing protocols for ALSSIT soybeans. Soybean processing was placed in the type III risk category. During the processing of ALSSIT-grown soybeans, critical control points were identified to control microbiological hazards, particularly mycotoxins, and chemical hazards from antinutrients. Critical limits were suggested at each CCP. Food safety recommendations regarding the hazards and risks associated with growing, harvesting, and processing soybeans; biomass management; and use of multifunctional equipment were made in consideration of the limitations and restraints of the closed ALSSIT.

  18. Containment integrity analysis for the (W) advanced AP900

    International Nuclear Information System (INIS)

    The consequences of accidents that occurred at Three Mile Island and Chernobyl and the lack of interest from utilities in committing to high powered, high maintenance light water reactor designs of the past have motivated the nuclear industry to develop smaller, lower powered, simplified designs. Simplified designs must employ more passive systems that require very low maintenance and rely on the basic laws of nature. These designs must not be limited only to the reactor, but must also include the containment building. The purpose of this paper is to discuss the design concepts and to verify the feasibility of the Westinghouse Passive Containment Cooling System (PCCS) design for a 900 MWe advanced passive reactor design (AP900) by presenting its response to a design basis large break Loss of Coolant Accident (LOCA). The mass and energy releases emanating from the design basis break were developed and a representative containment model was constructed. The COMPACT computer code, which is a multi-node program that solves the complete set of mass, energy and momentum equations, was used to determine the AP900 containment response. The PCCS design concept, the computer model, the analysis inputs, and the results of the study are discussed within this paper. (author). 2 refs., 9 figs

  19. Advanced methods for BWR transient and stability analysis

    International Nuclear Information System (INIS)

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  20. JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94131 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Babul, Arif; Bildfell, Chris [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Jeltema, Tesla [Santa Cruz Institute for Particle Physics, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Henry, J. Patrick [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-04-20

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% {+-} 6% intrinsic scatter at r{sub 500}{sup WL} (the pseudo-pressure Y{sub X} yields a consistent scatter of 22% {+-} 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (<10%) deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure Y{sub X} does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r{sub 500}{sup WL}; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r{sub 2500}{sup WL} and r{sub 500}{sup WL}, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.