WorldWideScience

Sample records for advanced chemiluminescence concepts

  1. Advanced nuclear propulsion concepts

    Energy Technology Data Exchange (ETDEWEB)

    Howe, S.D. [Los Alamos National Lab., NM (United States)

    1994-12-31

    A preliminary analysis has been carried out for two potential advanced nuclear propulsion systems: a contained pulsed nuclear propulsion engine and an antiproton initiated ICF system. The results of these studies indicate that both concepts have a high potential to help enable manned planetary exploration but require substantial development.

  2. Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    This conference proceedings represent the results of theThird Advanced Accelerator Concepts Workshop held in PortJefferson, New York. The workshop was sponsored by the U.S.Department of Energy, the Office of Navel Research and BrookhavenNational Laboratory. The purpose was to assess new techniques forproduction of ultra-high gradient acceleration and to addressengineering issues in achieving this goal. There are eighty-onepapers collected in the proceedings and all have been abstractedfor the database

  3. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  4. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  5. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  6. Advanced fusion concepts program

    International Nuclear Information System (INIS)

    While the prospects for the eventual development of a tokamak-based fusion reactor appear promising at the present time, the Department of Energy maintains a vigorous program in alternate magnetic fusion concepts. Several of the concepts presently supported include the toroidal reversed field pinch, Tormac, Elmo Bumpy Torus, and various linear options. Recent technical accomplishments and program evaluations indicate that the possibility now exists for undertaking the next development stage, a proof-of-principle experiment, for a few of the most promising alternate concepts

  7. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  8. Advanced tokamak concepts

    NARCIS (Netherlands)

    Oomens, A. A. M.

    1996-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e

  9. Advanced tokamak concepts

    NARCIS (Netherlands)

    Oomens, A. A. M.

    1998-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e

  10. Advanced Concepts. Chapter 21

    Science.gov (United States)

    Johnson, Les; Mulqueen, Jack

    2013-01-01

    Before there is a funded space mission, there must be a present need for the mission. Space science and exploration are expensive, and without a well-defined and justifiable need, no one is going to commit significant funding for any space endeavor. However, as discussed in Chapter 1, applications of space technology and many and broad, hence there are many ways to determine and establish a mission need. Robotic science missions are justified by their science return. To be selected for flight, questions like these must be addressed: What is the science question that needs answering, and will the proposed mission be the most cost-effective way to answer it? Why does answering the question require an expensive space flight, instead of some ground-based alternative? If the question can only be answered by flying in space, then why is this approach better than other potential approaches? How much will it cost? And is the technology required to answer the question in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? There are also many ways to justify human exploration missions, including science return, technology advancement, as well as intangible reasons, such as national pride. Nonetheless, many of the questions that need answering, are similar to those for robotic science missions: Where are the people going, why, and will the proposed mission be the most cost-effective way to get there? What is the safest method to achieve the goal? How much will it cost? And is the technology required to get there and keep the crew alive in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? Another reason for some groups sending spacecraft into space is for profit. Telecommunications, geospatial imaging, and tourism are examples of proven, market-driven space missions and applications. For this specific set of users, the

  11. Advanced fusion concepts project summaries

    International Nuclear Information System (INIS)

    The activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, DOE, are described. These descriptions are project summaries of each of the individual projects, and contain title, persons responsible, funding, purpose, approach, recent progress, future plans, planned milestones, graduate students and other staff, and recent publications

  12. Advanced concepts in quantum mechanics

    CERN Document Server

    Esposito, Giampiero; Miele, Gennaro; Sudarshan, George

    2015-01-01

    Introducing a geometric view of fundamental physics, starting from quantum mechanics and its experimental foundations, this book is ideal for advanced undergraduate and graduate students in quantum mechanics and mathematical physics. Focusing on structural issues and geometric ideas, this book guides readers from the concepts of classical mechanics to those of quantum mechanics. The book features an original presentation of classical mechanics, with the choice of topics motivated by the subsequent development of quantum mechanics, especially wave equations, Poisson brackets and harmonic oscillators. It also presents new treatments of waves and particles and the symmetries in quantum mechanics, as well as extensive coverage of the experimental foundations.

  13. Advanced fusion concepts: project summaries

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac

  14. Advanced fusion concepts: project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  15. Advances in the use of acidic potassium permanganate as a chemiluminescence reagent: A review

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, Jacqui L.; Barnett, Neil W.; Barrow, Colin J.; Francis, Paul S., E-mail: psf@deakin.edu.au

    2014-01-07

    Graphical abstract: -- Highlights: •Analytical applications of acidic potassium permanganate chemiluminescence. •Discussion of emitting species and light-producing reaction pathways. •Influence of enhancers such as polyphosphates, formaldehyde and sulfite. •Clinical, forensic, food science, agricultural and environmental applications. -- Abstract: We review the analytical applications of acidic potassium permanganate chemiluminescence published since our previous comprehensive review in mid-2007 to early 2013. This includes a critical evaluation of evidence for the emitting species, the influence of additives such as polyphosphates, formaldehyde, sulfite, thiosulfate, lanthanide complexes and nanoparticles, the development of a generalized reaction mechanism, and the use of this chemistry in pharmaceutical, clinical, forensic, food science, agricultural and environmental applications.

  16. Conception of VVER advanced projects

    International Nuclear Information System (INIS)

    The concept of a new generation of WWER-type nuclear plants was developed with a view to the requirements given in the Russian normative documentation, international requirements, and the 35 years' experience with the operation of reactors of this type. The safety level and efficiency of nuclear power plants developed in accordance with this concept should fully satisfy the needs of Russian and potential foreign customers for several decades after the year 2000

  17. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    Science.gov (United States)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  18. Advanced reactor concepts and safety

    International Nuclear Information System (INIS)

    The need for some consistency in the terms used to describe the evolution of methods for ensuring the safety of nuclear reactors has been identified by the IAEA. This is timely since there appears to be a danger that the precision of many valuable words is being diluted and that a new jargon may appear that will confuse rather than aid the communication of important but possibly diverse philosophies and concepts. Among the difficulties faced by the nuclear industry is promoting and gaining a widespread understanding of the risks actually posed by nuclear reactors. In view of the importance of communication to both the public and to the technical community generally, the starting point for the definition of terms must be with dictionary meanings and common technical usage. The nuclear engineering community should use such words in conformance with the whole technical world. This paper addresses many of the issues suggested in the invitation to meet and also poses some additional issues for consideration. Some examples are the role of the operator in either enhancing or degrading safety and how the meaning or interpretation of the word 'safety' can be expected to change during the next few decades. It is advantageous to use criteria against which technologies and ongoing operating performance can be judged provided that the criteria are generic and not specific to particular reactor concepts. Some thoughts are offered on the need to frame the criteria carefully so that innovative solutions and concepts are fostered, not stifled

  19. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  20. Advanced Accelerator Concepts Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di erences we might observe would revolutionize fundamental physics. This is the

  1. Advanced Fusion Concepts project summaries. FY 1983

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate studients, graduates, other professional staff, and recent publications. The individual project summaries are prepared by the principle investigators in collaboration with the Advanced Fusion Concepts (AFC) Branch. In addition to the project summaries, statements of branch objectives, and budget summaries are also provided

  2. Advanced fusion concepts project summaries: 1981

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  3. Advanced Fusion Concepts project summaries, FY 1982

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, U.S. Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  4. Advanced SFR Concept Design Studies at KAERI

    International Nuclear Information System (INIS)

    Advanced SFR design concepts have been developed which satisfy the Gen IV technology goals at KAERI. Two types of reactor core were developed for breakeven and TRU burner and both cores do not have blankets to enhance proliferation resistance. The Advanced SFR is a pool-type reactor that improves system safety through slow system transients. The heat transport system adopts two double wall tube Steam Generators and a passive Residual Heat Removal System PDRC. To secure the economic competitiveness of an SFR, the diameter of the reactor vessel of the Advanced SFR is designed to be 14.5 m, which is a very compact size compared to other designs. Also, various R and D activities have been performed in order to prepare some analysis tools and to support the development of design concepts. (author)

  5. Proposed research on advanced accelerator concepts

    International Nuclear Information System (INIS)

    This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas

  6. Research Opportunities in Advanced Aerospace Concepts

    Science.gov (United States)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  7. 2nd European Advanced Accelerator Concepts Workshop

    CERN Document Server

    Assmann, Ralph; Grebenyuk, Julia

    2015-01-01

    The European Advanced Accelerator Concepts Workshop has the mission to discuss and foster methods of beam acceleration with gradients beyond state of the art in operational facilities. The most cost effective and compact methods for generating high energy particle beams shall be reviewed and assessed. This includes diagnostics methods, timing technology, special need for injectors, beam matching, beam dynamics with advanced accelerators and development of adequate simulations. This workshop is organized in the context of the EU-funded European Network for Novel Accelerators (EuroNNAc2), that includes 52 Research Institutes and universities.

  8. Advanced fusion concepts project summaries, FY 1988

    International Nuclear Information System (INIS)

    This report summarizes all the projects supported by the Advanced Fusion Concepts Branch of the Applied Plasma Physics Division of the Office of Fusion Energy, US Department of Energy. Each project summary was written by the respective principal investigator using the format: title, principal investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. This report is organized into three sections: Section one contains five summaries describing work in the reversed-field pinch program being performed by a diversified group of contractors, these include a national laboratory, a private company, and several universities. Section two contains eight summaries of work from the compact toroid area which encompasses field-reversed configurations, spheromaks, and heating and formation experiments. Section three contains summaries from two other programs, a density Z-pinch experiment and high-beta Q machine experiment. The intent of this collection of project summaries is to help the contractors of the Advanced Fusion Concepts Branch understand their relationship with the rest of the branch's activities. It is also meant to provide background to those outside the program by showing the range of activities of interest of the Advanced Fusion Concepts Branch

  9. Advanced SFR concept design studies at KAERI

    International Nuclear Information System (INIS)

    Full text: Advanced SFR design concepts have been proposed and evaluated against the design requirements to satisfy the Gen IV technology goals. Two types of conceptual core designs, Breakeven and TRU burner cores were developed. Breakeven core is 1,200 MWe and does not have blankets to enhance the proliferation resistance. According to the current study, TRU burning rate increases linearly with the rated core powers from 600 MWe to 1,200 MWe. Considering 1) the realistic size of an SFR demonstration reactor for the long-term R and D plan with the goal of a demonstration SFR construction by 2028, and 2) the availability of a KALIMER-600 reactor system design that was developed in the last R and D phase, a TRU burner of 600 MWe was selected. The heat transport system of Advanced SFR was designed to be a pool type to enhance system safety through slow system transients, where primary sodium is contained in a reactor vessel. The heat transport system is composed of Primary Heat Transport System (PHTS), Intermediate Heat Transport System (IHTS), Steam Generating System (SGS) and Residual Heat Removal System (RHRS). The heat transport system was established through trade studies in order to enhance the safety and to improve the economics and performance of the KALIMER-600 design. Trade studies were performed for the number of IHTS loops, the number of PHTS pumps, Steam Generator (SG) design concepts, energy conversion system concepts, cover gas operation methods, and an improved concept of safety-graded passive decay heat removal system. From the study, the heat transport system of Advanced SFR has design features such as two IHTS loops, a Rankine cycle energy conversion system, two double-wall straight tube type SGs, and a passive decay heat removal system. In order to secure the economic competitiveness of an SFR, several concepts were implemented in the mechanical structural design without losing the reactor safety level. The material of reactor vessel and internal

  10. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  11. CLINICAL STATUS AND CHEMILUMINESCENT ACTIVITY OF NEUTROPHILS IN PATIENTS WITH ADVANCED PURULENT PERITONITIS IN THE DYNAMICS OF POSTOPERATIVE PERIOD

    Directory of Open Access Journals (Sweden)

    A. A. Savchenko

    2015-12-01

    Full Text Available The aim of this study was to evaluate the clinical condition and to study the chemiluminescent activity of granulocytes of patients with widespread purulent peritonitis in the dynamics of post-operative treatment. The severity of the patients was determined by the SAPS scale, the presence of systemic inflammatory response syndrome was assessed by the criteria of the ACCP/SCCM. Severity and prognosis of the disease was evaluated using the Mannheim peritonitis index and the index of abdominal cavity. The severity of multiple organ failure at admission to the hospital and in postoperative period dynamics were determined by the scale of the SOFA. The study of lucigenin- and luminal-dependent chemiluminescence of neutrophils in peritonitis were taken on admission to the hospital, and on the 7th, 14th and 24th day of the postoperative period. There were a variety of systemic complications (tertiary peritonitis, perforation of hollow organs, abscesses of the abdominal cavity and other in patients with widespread purulent peritonitis 2nd severity in 96,2% of cases. The mortality rate among patients amounted to 22.2%. It was found in the study of neutrophils chemiluminescent activity that intensity of the “respiratory burst” in pre- and postoperative periods in patients with peritonitis is defined mainly by the synthesis level of secondary reactive oxygen species. The level of synthesis of superoxide radicals by neutrophils in a state of relative dormancy, increased by 14 days after the operation and is reduced to the reference level to the 21st day. In the preoperative period and before the end of the observation level of synthesis of secondary reactive oxygen species by neutrophils of patients with peritonitis was increased, but is on the background of the slow activation of enzymes, providing a “respiratory burst”. Trend towards normalization of neutrophils chemiluminescent activity in the blood of patients with peritonitis by the end of the

  12. CONCEPT OF ADVANCED FLEXIBLE USE OF AIRSPACE

    Directory of Open Access Journals (Sweden)

    Oleksandr Luppo

    2016-06-01

    Full Text Available Purpose: Concept of Flexible Use of Airspace (FUA allows to eliminate many problems on the basis of civil-military coordination, but there are still a lot of areas for improvement. These improvements will be implemented in the Advanced Flexible Use of Airspace (AFUA concept. Methods: We examine the airspace structure in the frames of AFUA concept, which includes variable profile areas, temporary reserved and temporary segregated areas, danger or restricted areas. Mission Trajectory in AFUA which allows designing ad-hoc structures delineation at short notice is also examined. Regarding the performance enhancements of AFUA we compare these with FUA concept. Examination of AFUA structure gives us better view of the functions and opportunities of this concept. Result: AFUA concept provides many advantages for the civil aviation stakeholders and includes many other positive sides. Variable Profile Areas provide more flexibility, particularly in a high density traffic area and any combination of basic volume possible. Collaborative decision-making will increase the situational awareness of both parties and help to decrease the transit between airbases and training areas, allows military to use larger airspaces for missions on an absolute time-limited basis. As a result of mission trajectory implementation in AFUA concept general air traffic crossing are possible in all type of airspace structures, after coordination or under specific permanent agreements. The use of Centralized AFUA Services will allow the central collection, integration and provision of ASM data in support of continuous collaborative network processes, in such a way improving operational performance during the planning and execution phases (predictability, flexibility, better use of capacity, enhanced flight efficiency, real time sharing of information, better management of available airspace. Discussion: Given the important contribution that AFUA brings into air traffic management

  13. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  14. Goals and requirements for advanced reactor concepts

    International Nuclear Information System (INIS)

    Economic problems and public concerns about safety have lead to a reassessment of current nuclear power plant designs and the development of improved designs or new reactor concepts to better meet the needs of United States utilities. This paper presents a set of goals and requirements, developed by the Idaho National Engineering Laboratory (INEL), to provide a means for evaluating the relative merits of alternate advanced reactor concepts. This set of requirements and goals is intended to be independent of any particular reactor concept, and is predicated on the assumption that nuclear power cannot become viable option until the public is favorable to the use of nuclear power for electric power generation in the United States. Under this assumption, the top level requirements defined for new reactor concepts are (1) public acceptability, (2) acceptable investment risk, (3) competitive life cycle costs, and (4) early deployment. Each of these requirements is supported by several related lower level requirements and design goals that are necessary or desirable to meet the top level requirements

  15. Radar foundations for imaging and advanced concepts

    CERN Document Server

    Sullivan, Roger

    2004-01-01

    Through courses internally taught at IDA, Dr. Roger Sullivan has devised a book that brings readers fully up to speed on the most essential quantitave aspects of general radar in order to introduce study of the most exciting and relevant applications to radar imaging and advanced concepts: Synthetic Aperture Radar (4 chapters), Space-time Adaptive Processing, moving target indication (MTI), bistatic radar, low probability of intercept (LPI) radar, weather radar, and ground-penetrating radar. Whether you're a radar novice or experienced professional, this is an essential refer

  16. Relative safeguards risks of advanced reactor concepts

    International Nuclear Information System (INIS)

    The purpose of this report is to develop a procedure to quantitatively assess the risk to diversion of the nuclear material in the fuel cycle for seven advanced reactor design concepts (LWR-Pu, LMFBR, HTGR, GCFR, MSBR, LWBR, HWR). Each stage in each of the seven reactor fuel cycles is evaluated and the result of the evaluation is a comparison among the various fuel cycles. This method of evaluation is used to determine the stages in a nuclear reactor fuel cycle that are most susceptible to diversion; it also gives an indication of what factors contribute to that susceptibility

  17. Advances in tracking and trigger concepts

    International Nuclear Information System (INIS)

    Increasing beam intensities and input data rates require to rethink the traditional approaches in trigger concepts. At the same time the advanced many-core computer architectures providing new dimensions in programming require to rework the standard methods or to develop new methods of track reconstruction in order to efficiently use parallelism of the computer hardware. As a results a new tendency appears to replace the standard (usually implemented in FPGA) hardware triggers by clusters of computers running software reconstruction and selection algorithms. In addition that makes possible unification of the offline and on-line data processing and analysis in one software package running on a heterogeneous computer farm

  18. Advanced Gasifier Pilot Plant Concept Definition

    Energy Technology Data Exchange (ETDEWEB)

    Steve Fusselman; Alan Darby; Fred Widman

    2005-08-31

    This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

  19. ASME Material Challenges for Advanced Reactor Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  20. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  1. Advanced Nacelle Acoustic Lining Concepts Development

    Science.gov (United States)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  2. Imaging spectrometer - An advanced multispectral imaging concept

    Science.gov (United States)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P. N.; Salazar, R.

    1982-01-01

    The concept of an imaging spectrometer, which is being studied as a potential Space Shuttle experiment, is evaluated as a 'push-broom' imager that includes a spectrometer to disperse each line of imaging information into its spectral components. Using this instrument, the dispersed energy falls upon a two-dimensional focal plane array that detects both spatial and spectral information. As the line field of view is advanced over the earth by the motion of the spacecraft, the focal plane is read out constantly, which produces 'push-broom' images at multiple wavelengths. Ground instantaneous fields of view of 10 m in the visual and 20 m in the infrared are provided by the system, at a spectral resolution of 20 nm over the range from 0.4-2.5 microns. The system utilizes a triple-pass Schmidt optical system with a mosaic focal plane. A subset of the data stream is selected and encoded for transmission by the use of onboard processing.

  3. Towards chemiluminescence detection in micro-sequential injection lab-on-valve format: a proof of concept based on the reaction between Fe(II) and luminol in seawater.

    Science.gov (United States)

    Oliveira, Hugo M; Grand, Maxime M; Ruzicka, Jaromir; Measures, Christopher I

    2015-02-01

    Micro-sequential injection lab-on-valve (µSI-LOV) is a well-established analytical platform for absorbance and fluorescence based assays but its applicability to chemiluminescence detection remains largely unexplored. In this work, we describe a novel fluidic protocol and two distinct strategies for photon collection that enable chemiluminescence detection using µSI-LOV for the first time. To illustrate this proof of concept, we selected the reaction between Fe(II) and luminol and developed a preliminary protocol for Fe(II) determinations in acidified seawater. The optimized fluidic strategy consists of holding 100 µL of the luminol reagent in a confined zone of the LOV and then displacing it with 50 µL of sample while monitoring the chemiluminescent product. Detection is achieved using two strategies: one based on a bifurcated optical fiber and the other based on a customized detection window created by mounting a photomultiplier tube atop of the LOV device. We show that detection is possible using both strategies but that the window strategy yields significantly enhanced sensitivity (355×) due to the larger detection area. In our final experimental conditions and using window detection, it was possible to achieve a limit of detection (LOD) of 1 nmol L(-1) and to quantify Fe(II) in acidified seawater samples up to 20.00 nmol L(-1) with high precision (RSDanalysis of Fe(II). The intrinsic capacity of the LOV to operate at a low microliter level and to handle solid phases also opens up a new avenue for chemiluminescence applications. Moreover, this contribution shows that LOV can be a universal platform for optical detection, capable of absorbance, fluorescence and luminescence measurements in a single instrument setup. PMID:25435235

  4. Technical and economic evaluation of advanced air cargo system concepts

    Science.gov (United States)

    Whitehead, A. H., Jr.

    1977-01-01

    The paper reviews NASA air cargo market studies, reports on NASA and NASA-sponsored studies of advanced freighter concepts, and identifies the opportunities for the application of advanced technology. The air cargo market is studied to evaluate the timing for, and the potential market response to, advanced technology aircraft. The degree of elasticity in future air freight markets is also being investigated, since the demand for a new aircraft is most favorable in a price-sensitive environment. Aircraft design studies are considered with attention to mission and design requirements, incorporation of advanced technologies in transport aircraft, new cargo aircraft concepts, advanced freighter evaluation, and civil-military design commonality.

  5. Advanced sunflower antenna concept development. [stowable reflectors

    Science.gov (United States)

    Archer, J. S.

    1980-01-01

    The feasibility of stowing large solid antenna reflectors in the shuttle was demonstrated for applications with 40 foot apertures at frequencies of 100 GHz. Concepts allowing extension of the basic concept to 80-foot apertures operable at 60 GHz were identified.

  6. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  7. Nonproliferation characteristics of advanced fuel cycle concepts

    International Nuclear Information System (INIS)

    The purpose of this study is to comment on the proliferation characteristic profiles of some of the proposed fuel cycle alternatives to help ensure that nonproliferation concerns are introduced into the early stages of a fuel cycle concept development program, and to perhaps aid in the more effective implementation of the international nonproliferation regime initiatives and safeguards methods and systems. Alternative cycle concepts proposed by several countries involve the recycle of spent fuel without the separation of plutonium from uranium and fission products

  8. Low-temperature chemiluminescence

    International Nuclear Information System (INIS)

    The literary data on solid phase chemiluminescence reactions in cryogenic matrices of nitrogen and nobel gases in the 4.2-45 deg K temperature range as well as in hydrocarbon matrices at 77 deg K and higher are generalized. The mechanisms, kinetics and chemiluminescence of low-temperature chemical, radiation chemical and electrochemical reactions with the participation of uranium and xenon compounds in frozen sulfuric acid solutions, reactiong with the participation of NaBH4 and ruthenium complexes in frozen aqueous and organic solutions in 77-273 deg K are considered. the possibility of using low-temperature chemiluminescence to study the kinetics of heating and cooling is discussed

  9. Advanced tokamak concepts and reactor designs

    NARCIS (Netherlands)

    Oomens, A. A. M.

    2000-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described, some examples

  10. Advanced Interval Management (IM) Concepts of Operations

    Science.gov (United States)

    Barmore, Bryan E.; Ahmad, Nash'at N.; Underwood, Matthew C.

    2014-01-01

    This document provides a high-level description of several advanced IM operations that NASA is considering for future research and development. It covers two versions of IM-CSPO and IM with Wake Mitigation. These are preliminary descriptions to support an initial benefits analysis

  11. Workshop II: Nanotechnology and Advanced Cell Concepts

    Science.gov (United States)

    2007-01-01

    Workshop focused on few emerging concepts(beyond tandem cells): 1. Engineering incident sun spectrum and transparency losses a) Nano emitters (dot concentrator); b) Surface plasmonics; c) Up converters; d) Down converter. 2. Intermediate band solar cells a) Efficiency projections (detail energy balance projections); b) Inserting 0,1 and 2D semiconductor structures in solar cells 3. Polymer and hybrid cells a) Nanotubes/dot polymers; b) Exciton dissociation.

  12. Red Teaming of Advanced Information Assurance Concepts

    International Nuclear Information System (INIS)

    Red Teaming is an advanced form of assessment that can be used to identify weaknesses in a variety of cyber systems. it is especially beneficial when the target system is still in development when designers can readily affect improvements. This paper discusses the red team analysis process and the author's experiences applying this process to five selected Information Technology Office (ITO) projects. Some detail of the overall methodology, summary results from the five projects, and lessons learned are contained within this paper

  13. Test Concept for Advanced Oxidation Techniques

    DEFF Research Database (Denmark)

    Bennedsen, Lars Rønn; Søgaard, Erik Gydesen; Mortensen, Lars

    as establishing the applicability of the proposed technique, the treatability tests also provide essential site-specific design parameters required for the full scale system, namely; oxidant demand, delivery method, kinetics etc. Drawing up field studies and laboratory data, this poster will discus the importance...... advanced on-site oxidation tests. The remediation techniques included are electrochemical oxidation, photochemical/photocatalytic oxidation, ozone, hydrogen peroxide, permanganate, and persulfate among others. A versatile construction of the mobile test unit makes it possible to combine different...

  14. Advanced Optical Burst Switched Network Concepts

    Science.gov (United States)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network

  15. AREAL test facility for advanced accelerator and radiation source concepts

    Science.gov (United States)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  16. Preliminary design concepts of an advanced integral reactor

    International Nuclear Information System (INIS)

    An integral reactor on the basis of PWR technology is being conceptually developed at KAERI. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts of the reactor to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway for confirming the technical adoption of those concepts to the rector design. The power output of the reactor will be in the range of 100MWe to 600MWe which is relatively small compared to the existing loop type reactors. The detailed analysis to assure the design concepts is in progress. (author). 3 figs, 1 tab

  17. Preliminary design concept of an advanced integral reactor

    International Nuclear Information System (INIS)

    An integral reactor on the basis of PWR technology is being conceptually developed at KAERI. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts of the reactor to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway for confirming the technical adoption of those concepts to the reactor design. The power output of the reactor will be in the range of 100MWe to 600MWe which is relatively small compared to the existing loop type reactors. The detailed analysis to assure the design concepts is in progress. (author)

  18. Identification of improvements of advanced light water reactor concepts

    International Nuclear Information System (INIS)

    The scope of this report is to identify the improvement of reactor developments with respect to reactor safety. This includes the collection of non-proprietary information on the description of the advanced design characteristics, especially summary design descriptions and general publications. This documentation is not intended to include a safety evaluation of the advanced concepts; however, it is structured in such a way that it can serve as a basis for a future safety evaluation. This is taken into account in the structure of the information regarding the distinction of the various concepts with respect to their 'advancement' and the classification of design characteristics according to some basic safety aspects. The overall description concentrates on those features which are relevant to safety. Other aspects, such as economy, operational features, maintenance, the construction period, etc...are not considered explicitly in this report

  19. Advanced laser sensing receiver concepts based on FPA technology.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P. L. (Phillip L.); Petrin, R. R. (Roger R.); Jolin, J. L. (John L.); Foy, B. R. (Bernard R.); Lowrance, J. L.; Renda, G. (George)

    2002-01-01

    The ultimate performance of any remote sensor is ideally governed by the hardware signal-to-noise capability and allowed signal-averaging time. In real-world scenarios, this may not be realizable and the limiting factors may suggest the need for more advanced capabilities. Moving from passive to active remote sensors offers the advantage of control over the illumination source, the laser. Added capabilities may include polarization discrimination, instantaneous imaging, range resolution, simultaneous multi-spectral measurement, or coherent detection. However, most advanced detection technology has been engineered heavily towards the straightforward passive sensor requirements, measuring an integrated photon flux. The need for focal plane array technology designed specifically for laser sensing has been recognized for some time, but advances have only recently made the engineering possible. This paper will present a few concepts for laser sensing receiver architectures, the driving specifications behind those concepts, and test/modeling results of such designs.

  20. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  1. PNC`s proposal on the Advanced Fuel Recycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Masayoshi; Shinoda, Yoshihiko; Ojima, Hisao [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-03-01

    MOX fuel for FBR is allowed to contain impurities within several thousand ppm, which means less than 1000 of decontamination factor (DF) in reprocessing is enough for Pu and U recycle use. The Advanced Fuel Recycle proposed by PNC is on this basis. The concept consists of innovations on both MOX fuel fabrication and aqueous reprocessing technologies based on the Purex process and it is believed that successful optimization of fuel cycle interface condition is the key issue to realize the concept. The lower DF such as 1000 can be easily obtained by the simplified Purex flowsheet which has no purification steps. However, new subject arises in MOX fuel fabrication, that is, fabrication is conducted in the shielding cell using equipment which is maintained remotely. A simplified fabrication technology becomes essential to establish the remote maintenance system and is one of the critical path for achieving the Advanced Fuel Recycle. The PNC`s proposal on the advanced fuel recycle concept consists of modified PUREX process having single extraction cycle and crystallization, Remote fuel fabrication such as gelation and vibro-packing. In the Advanced Fuel Recycle concept, as it is low DF cycle system, all processes should be installed in remote maintenance cells. Then both reprocessing and fabrication facility would be able to be integrated into a same building. Integrated fuel cycle plant has several merits. No transportation of nuclear material between reprocessing and fabrication enhances non-proriferation aspect in addition to the low-DF concept. Cost performance is also improved because of optimization and rationalization of auxiliary equipment, and so on. (author)

  2. PNC's proposal on the Advanced Fuel Recycle concept

    International Nuclear Information System (INIS)

    MOX fuel for FBR is allowed to contain impurities within several thousand ppm, which means less than 1000 of decontamination factor (DF) in reprocessing is enough for Pu and U recycle use. The Advanced Fuel Recycle proposed by PNC is on this basis. The concept consists of innovations on both MOX fuel fabrication and aqueous reprocessing technologies based on the Purex process and it is believed that successful optimization of fuel cycle interface condition is the key issue to realize the concept. The lower DF such as 1000 can be easily obtained by the simplified Purex flowsheet which has no purification steps. However, new subject arises in MOX fuel fabrication, that is, fabrication is conducted in the shielding cell using equipment which is maintained remotely. A simplified fabrication technology becomes essential to establish the remote maintenance system and is one of the critical path for achieving the Advanced Fuel Recycle. The PNC's proposal on the advanced fuel recycle concept consists of modified PUREX process having single extraction cycle and crystallization, Remote fuel fabrication such as gelation and vibro-packing. In the Advanced Fuel Recycle concept, as it is low DF cycle system, all processes should be installed in remote maintenance cells. Then both reprocessing and fabrication facility would be able to be integrated into a same building. Integrated fuel cycle plant has several merits. No transportation of nuclear material between reprocessing and fabrication enhances non-proliferation aspect in addition to the low-DF concept. Cost performance is also improved because of optimization and rationalization of auxiliary equipment, and so on. (author)

  3. Development of environmentally advanced hydropower turbine system design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  4. Development of environmentally advanced hydropower turbine system design concepts

    International Nuclear Information System (INIS)

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower''s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable

  5. [Advanced Trauma Life Support. A training concept also for Europe].

    Science.gov (United States)

    Helm, M; Kulla, M; Lampl, L

    2007-11-01

    Advanced Trauma Life Support (ATLS) is a concept for rapid initial assessment and primary management of an injured patient, starting at the time of injury and continuing through initial assessment, lifesaving interventions, re-evaluation, stabilization and, when needed, transfer to a trauma centre. Despite some shortcomings, it is the only standardized concept for emergency room management, which is internationally accepted. Because of its simple and clear structure, it is flexible and can be universally integrated into existing emergency room algorithms under consideration of local, regional as well as national and international peculiarities in the sense of a "common language of trauma". Under these aspects ATLS also seems to be a valid concept for Europe. PMID:17726585

  6. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  7. Range of blanket concepts from near term solutions to advanced concepts

    International Nuclear Information System (INIS)

    Breeding blankets are key components of fusion power plants and determine to a large degree their attractiveness. There is a large range of possible blanket concepts, characterized by breeding material, structural material, coolant, and geometrical arrangement. On one extreme side there are concepts requiring only a modest extrapolation of the present technology, but with limited attractiveness. On the other side there are concepts with the potential for very attractive plants, but involving a considerable development risk. Therefore, the selection of blanket concepts depends on the overall strategy for fusion power plant development. To ensure sufficient support over the long development time, it has to be shown in a credible way, that (a) there are feasible blanket concepts for fusion power plants which can be developed with a high confidence of success, and (b) the final product will be an attractive power plant which can be operated safely, with minimum impact on the environment, and at an acceptable cost of electricity. This requires an evaluation of the entire range of blanket concepts, starting from near term solutions and reaching up to very advanced designs with a potential for exceptionally high performance. Typical examples of candidate blanket concepts are compared in this study. The blanket development strategy developed in the EU is described as an example

  8. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  9. New Developments in the Simulation of Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating and gt;10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ∼2,000 as compared to standard particle-in-cell.

  10. Advanced remotely maintainable force-reflecting servomanipulator concept

    International Nuclear Information System (INIS)

    A remotely maintainable force-reflecting servomanipulator concept is being developed at the Oak Ridge National Laboratory as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world. 10 references, 4 figures, 1 table

  11. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R and D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R and D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are

  12. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  13. Advanced steel body concepts for automotive lightweight design

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H.G. [DaimlerChrysler AG, Stuttgart (Germany). Research Body and Powertrain

    2005-07-01

    Lightweight design is a must for future vehicle concepts due to the self-commitment on the reduction of fleet consumption. Body concepts for mid- and high-volume vehicles demand smart lightweight solutions without increasing costs and without sacrificing the high level of safety (e.g. future passive safety standards). Furthermore, all lightweight activities have to comply with requirements in terms of reliability (no additional efforts for maintenance), NVH (no additional weight for e.g. damping) and future stricter recycling quotas. Successful lightweight design solutions are determined by the best relation between weight-saving and additional costs as a function of the annual production volume. Using advanced high-strength steels (TWIP-steels) seems to be a very promising approach for cost-optimized lightweight design of body structures. In addition, by applying bionic optimization, the weight of body-structures can be significantly reduced. As a consequence, only a holistic approach for lightweight design combining the three areas materials, design and manufacturing is needed in order to use the full potential of cost-optimized weight-reduction. (orig.)

  14. Chemiluminescence immunoassay for chloramphenicol

    International Nuclear Information System (INIS)

    A simple, solid-phase chemiluminescence immunoassay (CLIA) for the measurement of Chloramphenicol(CAP) in foodstuffs is described. A rabbit anti-CAP IgG is passively adsorbed onto the walls of polypropylene plates. The labeled conjugant is horseradish peroxidase(HRP) conjugate of CAP. Luminol solution is used as the substrate of HRP. The light yield is inversely proportional to the concentration of CAP. The method has a similar sensitivity (0.05 ng/mL), specificity, precision, and accuracy to a conventional enzyme immunoassay (EIA). The intra-assay and inter-assay CVs of ten samples were <8 and <20%, respectively, and the analytical recovery of the method was 87% 100%. The experimental correlation coefficient of dilution was found to be 0.999 using milk supernatant as buffer. The assay range for the method was 0.1-10 ng/mL, and it displayed good linearity. (authors)

  15. Chemiluminescence and bioluminescence microbe detection

    Science.gov (United States)

    Taylor, R. E.; Chappelle, E.; Picciolo, G. L.; Jeffers, E. L.; Thomas, R. R.

    1978-01-01

    Automated biosensors for online use with NASA Water Monitoring System employs bioluminescence and chemiluminescence techniques to rapidly measure microbe contamination of water samples. System eliminates standard laboratory procedures requiring time duration of 24 hours or longer.

  16. A New Chemiluminescent Triazine Reagent

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new chemiluminescent reagent 7-(4,6-dichloro-1,3,5-triazinylamino)-4-methyl-coumarin (DTMC) was synthesized by linking 7-amino-4-methylcoumarin to cyanuric chloride at 0-5 ° C, and with it a novel chemiluminescence method was developed for the determination of hydrogen peroxide. The selectivity of this method is high, and most of the transition metal ions have no effect on the determination of H2O2.

  17. Advanced concepts in ground thermal energy storage systems

    Science.gov (United States)

    Woods, Kevin David

    In recent years, ground thermal energy storage has become a topic of interest in the energy community for solar thermal energy storage systems, ground sourced heat pump systems, and data center thermal management systems due to an increase in the energy efficiency of such systems utilizing the ground as a thermal reservoir. The most common method for transferring thermal energy to the ground formation is the geothermal borehole. This dissertation presents the state of the art in geothermal borehole modeling and derives novel analytical functions to model advanced concepts concerning their operation. The novel solutions derived allow a geothermal borehole designer to better understand and design ground energy storage systems. The state of the art in geothermal borehole modeling is the stationary line source solution which is limited to boreholes operating without groundwater flow. Novel solutions for modeling a geothermal borehole with groundwater advection are presented through derivation of a transient moving line source solution as well as a transient moving cylindrical surface source solution. These solutions are applied to model a specific type of open loop geothermal borehole called a standing column well with groundwater advection and are compared to empirical and numerical data for validation. The dissertation then moves into derivation of a property determination method for geothermal boreholes with groundwater advection. The traditional property determination method used to obtain ground formation properties is based on the stationary transient line source method and fails in the presence of groundwater flow. The proposed novel property determination method calculates the thermal conductivity, thermal diffusivity, and superficial flow velocity of groundwater within a ground formation. These methods and solutions are novel tools allowing for geothermal borehole designers to grasp a better understanding of the systems they are designing as well as open other

  18. A concept for next step advanced tokamak fusion device

    International Nuclear Information System (INIS)

    A concept is introduced for initiating the design study of a special class of tokamak, which has a magnetic confinement configuration intermediate between contemporary advanced tokamak and the recently established spherical torus (ST, also well known by the name 'spherical tokamak'). The leading design parameter in the present proposal is a dimensionless geometrical parameter the machine aspect ratio A = R0/a0 = 2.0, where the parameters a0 and R0 denote, respectively, the plasma (equatorial)minor radius and the plasma major radius. The aim of this choice is to technologically and experimentally go beyond the aspect ratio frontier (R0/a0 ≅ 2.5) of present day tokamaks and enter a broad unexplored domain existing on the (a0, R0) parameter space in current international tokamak database, between the data region already moderately well covered by the advanced conventional tokamaks and the data region planned to be covered by STs. Plasma minor radius a0 has been chosen to be the second basic design parameter, and consequently, the plasma major radius R0 is regarded as a dependent design parameter. In the present concept, a nominal plasma minor radius a0 = 1.2 m is adopted to be the principal design value, and smaller values of a0 can be used for auxiliary design purposes, to establish extensive database linkage with existing tokamaks. Plasma minor radius can also be adjusted by mechanical and/or electromagnetic means to smaller values during experiments, for making suitable data linkages to existing machines with higher aspect ratios and smaller plasma minor radii. The basic design parameters proposed enable the adaptation of several confinement techniques recently developed by STs, and thereby a specially arranged central-bore region insider the envisioned tokamak torus, with retrieved space in the direction of plasma minor radius, will be available for technological adjustments and maneuvering to facilitate implementation of engineering instrumentation and real

  19. Advanced storage concepts for solar and low energy buildings, IEA-SHC Task 32. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.M.; Andersen, Elsa; Furbo, S.

    2008-01-15

    This report reports on the results of the activities carried through in connection with the Danish part of the IEA SHC Task 32 project: Advanced Storage Concepts for Solar and Low Energy Buildings. The Danish involvement has focused on Subtask C: Storage Concepts Based on Phase Change Materials and Subtask D: Storage Concepts Based on Advanced Water Tanks and Special Devices. The report describes activities concerning heat-of-fusion storage and advanced water storage. (BA)

  20. A New Concept for Advanced Heterogeneous Metal Catalysts

    Institute of Scientific and Technical Information of China (English)

    Xu Bo-Qing

    2004-01-01

    Oxide-supported metal catalysts, having always nano-sized structures in which the metal catalysts are prepared as highly dispersed nano-crystals (typically 1-20 nm) on support oxide particles that are often one to several orders of magnitude larger than the metal nano-particles, are an important class of heterogeneous metal catalysts that finds many applications in chemical/petrochemical industries, in environmental protection, in chemical sensors and in the manufacture of fine and special chemicals. It is believed that catalysis by supported metals is the oldest application of nanotechnology. The literature has been rich in nano-size effect of metal nanoparticles in the metal/oxide catalysts. However, it is until recently that the development of size-controlled synthesis of oxide nanoparticles has made it possible to study the nano-size effect of oxide-support particles. When the particle sizes of an oxide support are reduced to become comparable to the sizes of the active metal nanoparticles, the oxide could deviate dramatically from its function as a conventional support. Such metal/oxide catalysts consisting of comparably sized metal and oxide nanocrystals are better called metal/oxide nanocomposite catalysts or catalytic nanoarchitectures.In this presentation, several attempts with reducing the particle size of oxide supports (ZrO2, TiO2,MgO, Al2O3) to approach the metal/oxide nanocomposite concept will be discussed to emphasize the importance of the support size effect. Examples will be given on characteristics of nanocomposite Ni/oxide catalysts for the reforming of natural gas with CO2 and/or steam, and on Au/oxide catalysts for CO oxidation and hydrogenation of unsaturated organic compounds. It will be emphasized that systematic investigations into the size effects of both the metal and oxide nanoparticles approaching the metal/oxide nanocomposite concept can lead to advanced heterogeneous metal catalysts.Moreover, intensive practice of the nanocomposite

  1. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    Science.gov (United States)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  2. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Avramidis, K. A., E-mail: konstantinos.avramidis@kit.edu [Institute for Pulsed Power and Microwave Technologies, Karlsruhe Institute of Technology, Karlsruhe 76131 (Germany)

    2015-12-15

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  3. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  4. NASA Advanced Explorations Systems: Concepts for Logistics to Living

    Science.gov (United States)

    Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

    2012-01-01

    , Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

  5. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Richard Burnite [General Atomics; McLean, Harry M. [Lawrence Livermore National Laboratory; Theobald, Wolfgang [Laboratory for Laser Energetics; Akli, Kramer U. [The Ohio State University; Beg, Farhat N. [University of California, San Diego; Sentoku, Yasuhiko [University of Nevada, Reno; Schumacher, Douglass W. [The Ohio State University; Wei, Mingsheng [General Atomics

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  6. Advanced-power-reactor design concepts and performance characteristics

    Science.gov (United States)

    Davison, H. W.; Kirchgessner, T. A.; Springborn, R. H.; Yacobucci, H. G.

    1974-01-01

    Five reactor cooling concepts which allow continued reactor operation following a single rupture of the coolant system are presented for application with the APR. These concepts incorporate convective cooling, double containment, or heat pipes to ensure operation after a coolant line rupture. Based on an evaluation of several control system concepts, a molybdenum clad, beryllium oxide sliding reflector located outside the pressure vessel is recommended.

  7. O sistema quimiluminescente peróxi-oxalato The chemiluminescent peroxyoxalate system

    OpenAIRE

    Cassius Vinicius Stevani; Wilhelm Josef Baader

    1999-01-01

    The peroxyoxalate system is still one of the most efficient chemiluminescence reactions and the only one supposed to involve the "Chemically Initiated Electron Exchange Luminescence - CIEEL" mechanism, with proved high efficiency. Besides the academic interest in the elucidation of the mechanism of this complex reaction, the peroxyoxalate system has found a variety of applications in analytical chemistry. This review contains (i) a short introduction to basic concepts in chemiluminescence, (i...

  8. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    Science.gov (United States)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  9. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    Science.gov (United States)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  10. Concepts and recent advances in generalized information measures and statistics

    CERN Document Server

    Kowalski, Andres M

    2013-01-01

    Since the introduction of the information measure widely known as Shannon entropy, quantifiers based on information theory and concepts such as entropic forms and statistical complexities have proven to be useful in diverse scientific research fields. This book contains introductory tutorials suitable for the general reader, together with chapters dedicated to the basic concepts of the most frequently employed information measures or quantifiers and their recent applications to different areas, including physics, biology, medicine, economics, communication and social sciences. As these quantif

  11. Reference Operational Concepts for Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques Victor [Idaho National Lab. (INL), Idaho Falls, ID (United States); Farris, Ronald Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report represents the culmination of a four-year research project that was part of the Instrumentation and Control and Human Machine Interface subprogram of the DOE Advanced Reactor Technologies program.

  12. Concept Development for Advanced Spaceborne Synthetic Aperture Radar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The effort will focus on P-Band and L-band polarimetric radar architectures that employ advanced and innovative techniques to increase the science value of the...

  13. Advanced Turbine Systems Program industrial system concept development

    Energy Technology Data Exchange (ETDEWEB)

    Gates, S. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The objective of Phase II of the Advanced Turbine Systems Program is to develop conceptual designs of gas fired advanced turbine systems that can be adapted for operation on coal and biomass fuels. The technical, economic, and environmental performance operating on natural gas and in a coal fueled mode is to be assessed. Detailed designs and test work relating to critical components are to be completed and a market study is to be conducted.

  14. Report on the Lake Arrowhead workshop on advanced acceleration concepts

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C.

    1989-03-01

    We review the present status of the field of New Acceleration Concepts, as presented at the Lake Arrowhead workshop, held at the beginning of 1989. Many new and promising results have been obtained recently, and the field is actively developing. We discuss briefly some of the main results presented at the workshop. 43 refs., 2 tabs.

  15. CARA, new concept of advanced fuel element for HWR

    International Nuclear Information System (INIS)

    All Argentinean NPPs (2 in operation, 1 under construction), use heavy water as coolant and moderator. With very different reactor concepts (pressure Vessel and CANDU type designs), the fuel elements are completely different in its concepts too. Argentina produces both types of fuel elements at a manufacturing fuel element company, called CONUAR. The very different fuel element's designs produce a very complex economical behavior in this company, due to the low production scale. The competitiveness of the Argentinean electric system (Argentina has a market driven electric system) put another push towards to increase the economical competitiveness of the nuclear fuel cycle. At present, Argentina has a very active Slightly Enriched Uranium (SEU) Program for the pressure vessel HWR type, but without strong changes in the fuel concept itself. Then, the Atomic Energy Commission in Argentina (CNEA) has developed a new concept of fuel element, named CARA, trying to achieve very ambitious goals, and substantially improved the competitiveness of the nuclear option. The ambitious targets for CARA fuel element are compatibility (a single fuel element for all Argentinean's HWR) using a single diameter fuel rod, improve the security margins, increase the burnup and do not exceed the CANDU fabrication costs. In this paper, the CARA concept will be presented, in order to explained how to achieve all together these goals. The design attracted the interest of the nuclear power operator utility (NASA), and the fuel manufacturing company (CONUAR). Then a new Project is right now under planning with the cooperation of three parts (CNEA - NASA - CONUAR) in order to complete the whole development program in the shortest time, finishing in the commercial production of CARA fuel bundle. At the end of the this paper, future CARA development program will be described. (author)

  16. Fostering Visions for the Future: A Review of the NASA Institute for Advanced Concepts

    Science.gov (United States)

    2009-01-01

    The NASA Institute for Advanced Concepts (NIAC) was formed in 1998 to provide an independent source of advanced aeronautical and space concepts that could dramatically impact how NASA develops and conducts its missions. Until the program's termination in August 2007, NIAC provided an independent open forum, a high-level point of entry to NASA for an external community of innovators, and an external capability for analysis and definition of advanced aeronautics and space concepts to complement the advanced concept activities conducted within NASA. Throughout its 9-year existence, NIAC inspired an atmosphere for innovation that stretched the imagination and encouraged creativity. As requested by Congress, this volume reviews the effectiveness of NIAC and makes recommendations concerning the importance of such a program to NASA and to the nation as a whole, including the proper role of NASA and the federal government in fostering scientific innovation and creativity and in developing advanced concepts for future systems. Key findings and recommendations include that in order to achieve its mission, NASA must have, and is currently lacking, a mechanism to investigate visionary, far-reaching advanced concepts. Therefore, a NIAC-like entity should be reestablished to fill this gap.

  17. Advanced in the neutron feedback ICF reactor concept

    International Nuclear Information System (INIS)

    Results are reviewed and updated from an earlier design study of a novel nuclear-pumped flashlamp laser (NP-FL) inertial fusion energy (IFE) power reactor based on the neutron feedback concept for IFE. This concept includes nuclear pumping of the laser flashlamp, a D-T seeded D-3He target and magnetic protection of the first wall of the reactor chamber coupled with direct conversion of deflected charged particles. Advantages include an increased overall plant efficiency due to improved energy coupling via neutron feedback, increased thermal-to-electric energy conversion efficiency, and lower neutron activation and waste. These factors are reflected in a driver energy of 5 MJ and a target gain of only 50 for a 53 % efficient 1000-MWe power plant operating at 6 Hz, novel components involved. However, they require further technological development. Consequently, the NP-FL plant appears to provide a very attractive 'second-generation' IFE reactor. (authors)

  18. Advanced SFR Concept Based on PRISM and KALIMER

    International Nuclear Information System (INIS)

    The Sodium-cooled Fast Reactor has been recognized as one of the promising nuclear options for generating electricity with efficient uranium resource utilization and reduction of radioactive wastes from nuclear power plants. This paper compares design features, identifies differences between KALIMER-600 and S-PRISM sodium-cooled reactors, and derives R and D requirements in order to explore the possibility of developing a novel SFR concept. (author)

  19. Quality of experience advanced concepts, applications and methods

    CERN Document Server

    Raake, Alexander

    2014-01-01

    This pioneering book develops definitions and concepts related to Quality of Experience in the context of multimedia- and telecommunications-related applications, systems and services, and applies these to various fields of communication and media technologies. The editors bring together numerous key-protagonists of the new discipline “Quality of Experience” and combine the state-of-the-art knowledge in one single volume. 

  20. Evolving Concept of Small Vessel Disease through Advanced Brain Imaging.

    OpenAIRE

    Norrving, Bo

    2015-01-01

    Imaging plays a crucial role in studying and understanding cerebral small vessel disease. Several important findings have emerged from recent applications of advanced brain imaging methods. In patients with acute lacunar syndromes, diffusionweighted MRI studies have shown that the diagnostic precision of using clinical features alone or combined with CT scan findings to diagnose small vessel disease as the underlying cause is poor. Followup imaging studies on patients with acute infarcts rela...

  1. Advanced military concepts and organizations determined by technology requirements

    Directory of Open Access Journals (Sweden)

    Milinović Momčilo

    2015-01-01

    international and domestic concepts of collective defense. With newly proposed concept of organizing the army in the form of modular units it is possible to fulfill multipurpose future role of the army and at the same time meet the concepts of its flexible technological modernization. [Projekat Ministarstva nauke Republike Srbije, br. III 47029

  2. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-02-01

    Reported here are the results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC9104O during the period October 1, 1996 to December 31, 1996. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOI+ Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work invoives the introduction into the basic two stage liquefaction process several novel concepts which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing.

  3. The Assessment of Advanced HWR with Dual Moderator Concept

    International Nuclear Information System (INIS)

    The advantages of existing Candu-PHWR reactor over other types are, better safety performance because of the low excess reactivity by the use of natural U oxide, the separation of D2O as a moderator and as a coolant, and better neutron economy. The result in the long period power excursion behavior, cool moderator that can act as long term heat sink, and the flexibility in fuel option. The problem of positive feedback in the Candu design is to be overcome by the use of the so called dual moderator concept, in which two moderator systems are used, i.e. a main moderator system outside calandria tube and an annular moderator system inside annular space. The result of this calculation showed that, this concept can achieve not only a negative local power feedback but also promises a greater simplicity in the power regulating system by the possibility of elimination of adjuster rod and incorporation of more than one passive shutdown systems. The boiling of annular moderator can also be used as a power regulating system as well as a core excess reactivity compensation system

  4. Knowledge based systems advanced concepts, techniques and applications

    CERN Document Server

    1997-01-01

    The field of knowledge-based systems (KBS) has expanded enormously during the last years, and many important techniques and tools are currently available. Applications of KBS range from medicine to engineering and aerospace.This book provides a selected set of state-of-the-art contributions that present advanced techniques, tools and applications. These contributions have been prepared by a group of eminent researchers and professionals in the field.The theoretical topics covered include: knowledge acquisition, machine learning, genetic algorithms, knowledge management and processing under unc

  5. New virtual laboratories presenting advanced motion control concepts

    Science.gov (United States)

    Goubej, Martin; Krejčí, Alois; Reitinger, Jan

    2015-11-01

    The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.

  6. Cogeneration power plant concepts using advanced gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Huettenhofer, K.; Lezuo, A. [Siemens Power Generation, Erlangen (Germany)

    2001-07-01

    Cogeneration of heat and power (CHP) is undeniably the environmentally most favourable way of making efficient use of energy in the power generation industry. Cogeneration is also particularly appreciated by political decision makers because of its high yield from primary energy sources, and thus its contribution to the protection of the environment and the conservation of resources. Advanced gas turbines, along with an intelligent power plant design consisting of pre-engineered, modular power plant items, will help cogeneration to play an important role in future energy markets also from an economic point of view. (orig.)

  7. Proof-of-concept and advancement of the CellFlux concept

    Science.gov (United States)

    Odenthal, Christian; Steinmann, Wolf-Dieter

    2016-05-01

    The CellFlux storage system is a new concept for reducing the costs of medium to high temperature thermal energy storage. Initially designed for solar thermal power plants, the concept is suitable for industrial processes and power to heat applications as well. This paper gives first results of a new pilot scale plant set up at DLR in Stuttgart as a proof of concept. Experimental results are used for the validation of a simplified model. The model is apllied to calculate pareto optimal storage configurations in terms of necessary storage mass and exergetic efficiency, suitable for two types of solar thermal power plants. Particularly for applications having larger temperature differences, high exergetic efficiencies at low costs for the storage material can be achieved.

  8. Engine Concept Study for an Advanced Single-Aisle Transport

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  9. Advanced atomization concept for CWF burning in small combustors

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.; McHale, E.

    1991-01-01

    The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of an opposed-jet atomizer that met the goals of the first contract. Performance as a function of operating conditions was measured, and the technical feasibility of the device established in the Atlantic Research Atomization Test Facility employing a Malvern Particle Size Analyzer. Testing then proceeded to a combustion stage in a test furnace at a firing rate of 0.5 to 1.5 MMBtu/H.

  10. Advances in sliding mode control concept, theory and implementation

    CERN Document Server

    Janardhanan, S; Spurgeon, Sarah

    2013-01-01

    The sliding mode control paradigm has become a mature technique for the design of robust controllers for a wide class of systems including nonlinear, uncertain and time-delayed systems. This book is a collection of plenary and invited talks delivered at the 12th IEEE International Workshop on Variable Structure System held at the Indian Institute of Technology, Mumbai, India in January 2012. After the workshop, these researchers were invited to develop book chapters for this edited collection in order to reflect the latest results and open research questions in the area. The contributed chapters have been organized by the editors to reflect the various themes of sliding mode control which are the current areas of theoretical research and applications focus; namely articulation of the fundamental underpinning theory of the sliding mode design paradigm, sliding modes for decentralized system representations, control of time-delay systems, the higher order sliding mode concept, results applicable to nonlinear an...

  11. Advanced sulfur control concepts for hot-gas desulfurization technology

    International Nuclear Information System (INIS)

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a

  12. Prescriptive concepts for advanced nuclear materials control and accountability systems

    International Nuclear Information System (INIS)

    Networking- and distributed-processing hardware and software have the potential of greatly enhancing nuclear materials control and accountability (MC and A) systems, from both safeguards and process operations perspectives, while allowing timely integrated safeguards activities and enhanced computer security at reasonable cost. A hierarchical distributed system is proposed consisting of groups of terminal and instruments in plant production and support areas connected to microprocessors that are connected to either larger microprocessors or minicomputers. These micros and/or minis are connected to a main machine, which might be either a mainframe or a super minicomputer. Data acquisition, preliminary input data validation, and transaction processing occur at the lowest level. Transaction buffering, resource sharing, and selected data processing occur at the intermediate level. The host computer maintains overall control of the data base and provides routine safeguards and security reporting and special safeguards analyses. The research described outlines the distribution of MC and A system requirements in the hierarchical system and distributed processing applied to MC and A. Implications of integrated safeguards and computer security concepts for the distributed system design are discussed. 10 refs., 4 figs

  13. Advanced electric propulsion system concept for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  14. Advanced concept considerations for STOL short-haul systems

    Science.gov (United States)

    Sweet, H. S.; Renshaw, J. H.

    1975-01-01

    Design, performance, and economic tradeoffs for STOL short-haul systems are presented. The analyses showed that quiet, short-field aircraft can be economically viable and provide benefits to airport congestion and to community noise relief. The objective of the studies was to compare and evaluate propulsive-lift systems and low-wing-loading aircraft provided with ride quality control and gust load alleviation, and to determine fuel consumption and cost tradeoffs, along with recommendations for development of technology, noise criteria, and airport planning. In the low density arena, the optimum aircraft sized for less than 50 passengers have active controls for ride quality and gust alleviation; turboprop propulsion offers significant cost and fuel saving with no appreciable block time penalty for the short typical stage lengths (on the order of 150 miles). In the high density arena, high bypass-ratio fan-powered aircraft, with design cruise speed of 0.7 to 0.75M and range capability to 1500 miles, are considered to be optimum. Field performance of 3000 feet or better can be achieved by the hybrid over-the-wing/internally blown flap concept with viable economics and low fuel consumption. Mechanical flap aircraft with high bypass-ratio engines are indicated to be superior for field lengths of 3500 feet or more. Technology development of propulsive lift is required, and further definition of the best fan-powered engine for low noise and low fuel consumption is needed.

  15. Advanced Nuclear Power Concepts for Human Exploration Missions

    International Nuclear Information System (INIS)

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over ∼2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters

  16. Advances in nuclear fuel cycle materials and concepts. Vol. 1

    International Nuclear Information System (INIS)

    This presentation gives an overview of the new trends in the materials used in various steps of the nuclear fuel cycle. This will cover fuels for various types of reactors (PWRs, HTRs, ... etc.) cladding materials, control rod materials, reactor structural materials, as well as materials used in the back end of the fuel cycle. Problems associated with corrosion of fuel cladding materials as well as those in control rod materials (B4 C swelling...etc.), and approaches for combating these influences are reviewed. For the case of reactor pressure vessel materials issues related to the influences of alloy composition, design approaches including the use of more forged parts and minimizing, as for as possible, longitudinal welds especially in the central region, are discussed. Furthermore the application of techniques for recovery of pre-irradiation mechanical properties of PVS components is also covered. New candidate materials for the construction of high level waste containers including modified types of stainless steel (high Ni and high MO), nickel-base alloys and titanium alloys are also detailed. Finally, nuclear fuel cycle concepts involving plutonium and actinides recycling shall be reviewed. 28 figs., 6 tabs

  17. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    Science.gov (United States)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2003-01-01

    An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.

  18. Composite Fan Blade Design for Advanced Engine Concepts

    Science.gov (United States)

    Abumeri, Galib H.; Kuguoglu, Latife H.; Chamis, Christos C.

    2004-01-01

    The aerodynamic and structural viability of composite fan blades of the revolutionary Exo-Skeletal engine are assessed for an advanced subsonic mission using the NASA EST/BEST computational simulation system. The Exo-Skeletal Engine (ESE) calls for the elimination of the shafts and disks completely from the engine center and the attachment of the rotor blades in spanwise compression to a rotating casing. The fan rotor overall adiabatic efficiency obtained from aerodynamic analysis is estimated at 91.6 percent. The flow is supersonic near the blade leading edge but quickly transitions into a subsonic flow without any turbulent boundary layer separation on the blade. The structural evaluation of the composite fan blade indicates that the blade would buckle at a rotor speed that is 3.5 times the design speed of 2000 rpm. The progressive damage analysis of the composite fan blade shows that ply damage is initiated at a speed of 4870 rpm while blade fracture takes place at 7640 rpm. This paper describes and discusses the results for the composite blade that are obtained from aerodynamic, displacement, stress, buckling, modal, and progressive damage analyses. It will be demonstrated that a computational simulation capability is readily available to evaluate new and revolutionary technology such as the ESE.

  19. Advanced wet--dry cooling tower concept performance prediction

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, T.; Bentley, J.; Giebler, M.; Glicksman, L.R.; Rohsenow, W.M.

    1977-01-01

    The purpose of this year's work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity and flow measurement and performance has been measured under a variety of operating conditions. Tower Tests showed approximately 40 to 50% of the total energy transfer as taking place due to evaporation. This can be compared to approximately 80 to 85% for a conventional wet cooling tower. Comparison of the model tower test results with those of a computer simulation has demonstrated the validity of that simulation and its use as a design tool. Computer predictions have been made for a full-size tower system operating at several locations. Experience with this counterflow model tower has suggested that several design problems may be avoided by blowing the cooling air horizontally through the packing section. This crossflow concept was built from the previous counterflow apparatus and included the design and fabrication of new packing plates. Instrumentation and testing of the counterflow model produced data with an average experimental error of 10%. These results were compared to the predictions of a computer model written for the crossflow configuration. In 14 test runs the predicted total heat transfer differed from the measured total heat transfer by no more than 8% with most runs coming well within 5%. With the computer analogy's validity established, it may now be used to help predict the performance of fullscale wet-dry towers.

  20. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-09-01

    Reported here are the results of Laboratory and Bench- Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE- AC22- 91PC91040 during the period April 1, 1997 to June 30, 1997. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two stage liquefaction process several novel concepts which includes dispersed lower- cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This report includes a data analysis of the ALC- 2 run which was the second continuous run in which Wyodak Black Thunder coal was fed to a two kg/ h bench- scale unit. One of the objectives of that run was to determine the relative activity of several Mo- based coal impregnated catalyst precursors. The precursors included ammonium heptamolybdate (100 mg Mo/ kg dry coal), which was used alone as well as in combination with ferrous sulfate (1% Fe/ dry coal) and nickel sulfate (50 mg Ni/ kg dry coal). The fourth precursor that was tested was phosphomolybdic acid which was used at a level of 100 mg Mo/ kg dry coal. Because of difficulties in effectively separating solids from the product stream, considerable variation in the feed stream occurred. Although the coal feed rate was nearly constant, the amount of recycle solvent varied which resulted in wide variations of resid, unconverted coal and mineral matter in the feed stream. Unfortunately, steady state was not achieved in any of the four conditions that were run. Earlier it was reported that Ni- Mo catalyst appeared to give the best results based upon speculative steady- state yields that were developed.

  1. Earth's Critical Zone and hydropedology: concepts, characteristics, and advances

    Directory of Open Access Journals (Sweden)

    H. Lin

    2010-01-01

    Full Text Available The Critical Zone (CZ is a holistic framework for integrated studies of water with soil, rock, air, and biotic resources in the near-surface terrestrial environment. This most heterogeneous and complex region of the Earth ranges from the vegetation top to the aquifer bottom, with a highly variable thickness globally and a yet-to-be clearly defined lower boundary of active water cycle. Interfaces among different compartments in the CZ are critical, which provide fertile ground for interdisciplinary research. The reconciliation of coupled geological and biological cycles (vastly different in space and time scales is essential to understanding the complexity and evolution of the CZ. Irreversible evolution, coupled cycling, interactive layers, and hierarchical heterogeneity are the characteristics of the CZ, suggesting that forcing, coupling, interfacing, and scaling are grand challenges for advancing CZ science. Hydropedology – the science of the behaviour and distribution of soil-water interactions in contact with mineral and biological materials in the CZ – is an important contributor to CZ study. The pedosphere is the foundation of the CZ, which represents a geomembrance across which water and solutes, as well as energy, gases, solids, and organisms are actively exchanged with the atmosphere, biosphere, hydrosphere, and lithosphere, thereby creating a life-sustaining environment. Hydropedology emphasizes in situ soils in the landscape setting, where distinct pedogenic features and soil-landscape relationships are essential to understanding interactive pedologic and hydrologic processes. Both CZ science and hydropedology embrace an evolutionary and holistic worldview, which offers stimulating opportunities through steps such as integrated systems approach, evolutionary mapping-monitoring-modeling framework, and fostering a global alliance. Our capability to predict the behaviour and evolution of the CZ in response to changing environment can

  2. Concept of advanced spent fuel reprocessing based on ion exchange

    International Nuclear Information System (INIS)

    Reprocessing based on ion exchange separation is proposed as a safe, proliferation-resistant technology. Tertiary pyridine resin was developed for ion exchange reprocessing. Working medium of the separation system is not nitric acid but hydrochloric acid aqueous solution. The system does not involve strong oxidizing reagent, such as nitric acid but involve chloride ions which works as the week neutron absorbers. The system can be operated at ambient temperatures and pressure. Thus the HCl-ion-exchange reprocessing is regarded as an inherently safe technology. Another advantage of HCl ion-exchange reprocessing is the proliferation-resistant nature. Both U(VI) and Pu(IV) ions are adsorbed in the pyridine type anion exchange resin at relatively high HCl concentration of 6 M. At this condition, the adsorption distribution coefficient of Pu(IV) is smaller than that of U(VI). When uranium is eluted from the resin in the column, plutonium is simultaneously eluted from the column; Pu is recovered with uranium in the front part of uranium adsorption band. Pu(IV) can not be left in the resin after elution of uranium. The use of HCl in the ion-exchange reprocessing causes the problem of the plant materials. Sophisticated material technology is necessary to realize the ion exchange reprocessing using HCl. The technology is so sophisticated that only highly developed countries can hold the technology, thus the technology holding countries will be limited. The plant, therefore, cannot be built under hidden state. In addition, another merit of the process would be the simplicity in operation. One phase, i.e., ion exchange resin is immobile, and the aqueous solution is the only mobile phase. Plant operation is made by the control of one aqueous solution phase. The plant simplicity would ease the international safeguard inspection efforts to be applicable to this kind of reprocessing plant. The present work shows the basic concept of ion exchange reprocessing using HCl medium

  3. Advanced materials and concepts for energy storage devices

    Science.gov (United States)

    Teng, Shiang Jen

    Over the last decade, technological progress and advances in the miniaturization of electronic devices have increased demands for light-weight, high-efficiency, and carbon-free energy storage devices. These energy storage devices are expected to play important roles in automobiles, the military, power plants, and consumer electronics. Two main types of electrical energy storage systems studied in this research are Li ion batteries and supercapacitors. Several promising solid state electrolytes and supercapacitor electrode materials are investigated in this research. The first section of this dissertation is focused on the novel results on pulsed laser annealing of Li7La3Zr2O12 (LLZO). LLZO powders with a tetragonal structure were prepared by a sol-gel technique, then a pulsed laser annealing process was employed to convert the tetragonal powders to cubic LLZO without any loss of lithium. The second section of the dissertation reports on how Li5La 3Nb2O12 (LLNO) was successfully synthesized via a novel molten salt synthesis (MSS) method at the relatively low temperature of 900°C. The low sintering temperature prevented the loss of lithium that commonly occurs during synthesis using conventional solid state or wet chemical reactions. The second type of energy storage device studied is supercapacitors. Currently, research on supercapacitors is focused on increasing their energy densities and lowering their overall production costs by finding suitable electrode materials. The third section of this dissertation details how carbonized woods electrodes were used as supercapacitor electrode materials. A high energy density of 45.6 Wh/kg and a high power density of 2000 W/kg were obtained from the supercapacitor made from carbonized wood electrodes. The high performance of the supercapacitor was discovered to originate from the hierarchical porous structures of the carbonized wood. Finally, the fourth section of this dissertation is on the electrochemical effects of

  4. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  5. The Space Weather Observation Network (SWON) Concept - Inauguration of the DLR Advanced Study Group

    OpenAIRE

    Maiwald, Volker; Weiß, André; Quantius, Dominik; Schubert, Daniel; Jansen, Frank

    2011-01-01

    The DLR Advanced Study Group (ASG) is a team of engineers and scientists that investigates visionary or unusual aerospace concepts regarding their feasibility and applicability to scientific problems, in an attempt to erase the “fiction” from the “science fiction” of scientifically valid ideas and make them rigorous science. To achieve this, the ASG uses established processes and new approaches for concept analysis, like so called Concurrent Evaluation sessions. One of the first ideas investi...

  6. Advanced concept of reduced-moderation water reactor (RMWR) for plutonium multiple recycling

    International Nuclear Information System (INIS)

    An advanced water-cooled reactor concept named the Reduced-Moderation Water Reactor (RMWR) has been proposed to attain a high conversion ratio more than 1.0 and to achieve the negative void reactivity coefficient. At present, several types of design concepts satisfying both the design targets have been proposed based on the evaluation for the fuel without fission products and minor actinides. In this paper, the feasibility of the RMWR core is investigated for the plutonium multiple recycling under advanced reprocessing schemes with low decontamination factors as proposed for the FBR fuel cycle. (author)

  7. A Concept Plane using electric distributed propulsion Evaluation of advanced power architecture

    OpenAIRE

    Ridel, M.; Paluch, B.; Doll, C.; Donjat, D.; Hermetz, J.; Guigon, A.; Schmollgruber, P.; Atinault, O.; Choy, P.; Le Tallec, P.; Dessornes, O.; Lefebvre, T

    2015-01-01

    Starting from electrical distributed propulsion system concept, the ONERA’s engineers demonstrated the viability of an all electrical aircraft for a small business aircraft. This paper describes the advanced power architecture considering energy conversion and power distribution. The design of this advanced power architecture requires the multi-physic integration of different domains as flight performances, safety and environmental requirements (thermal, electric, electromagnetic). From this ...

  8. Quality Nursing Care for Hospitalized Patients with Advanced Illness: Concept Development

    OpenAIRE

    Izumi, Shigeko; Baggs, Judith G.; Knafl, Kathleen A.

    2010-01-01

    The quality of nursing care as perceived by hospitalized patients with advanced illness has not been examined. A concept of quality nursing care for this population was developed by integrating the literature on constructs defining quality nursing care with empirical findings from interviews of 16 patients with advanced illness. Quality nursing care was characterized as competence and personal caring supported by professionalism and delivered with an appropriate demeanor. Although the attribu...

  9. BASIC PRINCIPLES AND CONCEPTS UNDERLYING RECENT ADVANCES IN MRI OF THE DEVELOPING BRAIN

    OpenAIRE

    Panigrahy, Ashok; Borzage, Matthew; Blüml, Stefan

    2010-01-01

    Over the last decade, magnetic resonance imaging has become an essential tool in the evaluation of both in vivo human brain development and perinatal brain injury. Recent technology including MR compatible neonatal incubators, neonatal head coils, advanced MR pulse sequences and 3T field strength magnets allow high quality MR imaging studies to be performed on sick neonates. This article will review basic principles and concepts underlying recent advances in MR spectroscopy, diffusion, perfus...

  10. Chemiluminescence detection of hydrazine vapor.

    Science.gov (United States)

    Collins, G E; Latturner, S; Rose-Pehrsson, S L

    1995-04-01

    An efficient, real-time chemiluminescence detector for hydrazine vapor, N(2)H(4)(g), is described, capable of monitoring sub part-per-billion levels of hydrazine in air. The catalytic oxidation of hydrazine by colloidal platinum forms an intermediate, oxidizing agent (e.g. OH or OOH) which subsequently oxidizes luminol, generating a chemiluminescence signal that is proportional to the hydrazine concentration. Major components of the instrument include a photomultiplier tube (PMT), a short length of glass tubing coiled directly in front of the PMT cathode surface, a vacuum pump for sampling the air, and a peristaltic pump for circulating the liquid reagent. The liquid reagent, a basic solution (pH 13) of luminol and colloidal platinum, is continuously recycled. The detection sequence is initiated by pumping the hydrazine vapor through a short length of teflon tubing that is concurrently transporting the liquid reagent. The liquid is separated from the gas stream in an impinger and quickly pumped to the PMT. We have evaluated the effect of solution pH, luminol and platinum concentrations, and air and liquid flow rates on the analytical characteristics of this system. A linear, dynamic detection range for hydrazine has been obtained from 1 to 2000 ppb in air, with an instrument response that is fully reversible and achieves plateau response in less than 2 min. PMID:18966262

  11. Development of a metal-clad advanced composite shear web design concept

    Science.gov (United States)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  12. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    Science.gov (United States)

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  13. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial new technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.

  14. Modified-open fuel cycle performance with breed-and-burn advanced reactor concepts

    International Nuclear Information System (INIS)

    Recent advances in fast reactor designs enable significant increase in the uranium utilization in an advanced fuel cycle. The category of fast reactors, collectively termed breed-and-burn reactor concepts, can use a large amount of depleted uranium as fuel without requiring enrichment with the exception of the initial core critical loading. Among those advanced concepts, some are foreseen to operate within a once-through fuel cycle such as the Traveling Wave Reactor, CANDLE reactor or Ultra-Long Life Fast Reactor, while others are intended to operate within a modified-open fuel cycle, such as the Breed-and-Burn reactor and the Energy Multiplier Module. This study assesses and compares the performance of the latter category of breed-and-burn reactors at equilibrium state. It is found that the two reactor concepts operating within a modified-open fuel cycle can significantly improve the sustainability and security of the nuclear fuel cycle by decreasing the uranium resources and enrichment requirements even further than the breed-and-burn core concepts operating within the once-through fuel cycle. Their waste characteristics per unit of energy are also found to be favorable, compared to that of currently operating PWRs. However, a number of feasibility issues need to be addressed in order to enable deployment of these breed-and-burn reactor concepts. (author)

  15. Concept definition of an FRC/DD-3He advanced fusion reactor

    International Nuclear Information System (INIS)

    Posibilities of advanced fusion fuel cycle reactors are investigated. Characteristics of various D - D fusion fuel cycles are clarified and which magnetic confinement method can fit the most efficient advanced fuel cycle reactor is examined. A concept definition is considered for an advanced fusion reactor with DD - 3He fuel cycle in which the plasma is confined in a field-reversed configuration or field-reversed mirror. The concept definition is developed with emphasis on the feasibility of a steady-state self-ignited DD - 3He plasma with temperatures of 100 keV, the production method, the formation of ambipolar potential in the ambient plasma and the design of plasma energy direct convertor. (author)

  16. Design concepts and advanced manipulator development for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    In the Fuel Recycle Division, Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past seven years. The new remote technology under development is expected to significantly improve remote operations by extending the range of tasks accomplished by remote means and increasing the efficiency of remote work undertaken. The application of advanced manipulation is viewed as an essential part of a series of design directions whose sum describes a somewhat unique blend of old and new technology. A design direction based upon the Teletec concept is explained and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems is feasible through advanced technology. 14 refs., 14 figs

  17. Analytical Applications of Bioluminescence and Chemiluminescence

    Science.gov (United States)

    Chappelle, E. W. (Editor); Picciolo, G. L. (Editor)

    1975-01-01

    Bioluminescence and chemiluminescence studies were used to measure the amount of adenosine triphosphate and therefore the amount of energy available. Firefly luciferase - luciferin enzyme system was emphasized. Photometer designs are also considered.

  18. Down Selection of the Design Options for an Advanced Gen IV SFR Concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Lee, D. U.; Kim, Y. I.; Won, B. C.; Hahn, Do Hee

    2008-11-15

    Several design concepts for incorporating those concepts into a Generation IV SFR reactor concept were proposed, based on the KALIMER-600 design developed previously by KAERI. Those concepts were suggested to define capacity, conversion ratio, cladding material, number of loops for a heat transport system and turbine type. This report addresses the main results and progress achieved this year in each research and development work for specifying each concept finally next year. The capacity of a breakeven core was defined to be 1200 MWe taking into account a TRU inventory and a discharge burnup from the viewpoint of fuel utilization. For the breakeven core specification, an enrichment split core configuration having the advantage of better neutronic economics and simpler fuel fabrication, has been selected and its core design is being carried out. Total twenty specimens for the first and second candidate alloys were designed and manufactured to develop a new cladding alloy. For those alloy specimens, a mechanical performance was evaluated and a microscopic structure has been observed. A candidate for a new cladding alloy will finally be determined following the evaluation of the third candidate alloy next year. In terms of less component units per loop and a smaller installation space, a two-loop heat transport system was selected and its detailed configuration is being developed. For defining a steam generator concept, a double walled tube type was selected from the viewpoint of reliability, economics and manufacture capability of a steam generator. A steam generator type will finally be determined to be either a straight tube type or a helical tube type, judging advances achieved in future development of the steam generator concepts. A Rankine cycle concept established well was given preference as a reference concept for BOP. A S-CO{sub 2} Brayton cycle concept newly developed as an advanced concept needs a long-term R and D work and experimental verification to

  19. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    Science.gov (United States)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  20. Detection of autoantibodies using chemiluminescence technologies

    OpenAIRE

    Mahler, Michael; Bentow, Chelsea; Serra, Josep; Fritzler, Marvin J.

    2015-01-01

    Abstract Context: Although autoantibody detection methods such as indirect immunofluorescence (IIF) and enzyme-linked immunosorbent assays (ELISAs) have been available for many years and are still in use the innovation of fast, fully automated instruments using chemiluminescence technology in recent years has led to rapid adoption in autoimmune disease diagnostics. In 2009, BIO-FLASH, a fully automated, random access chemiluminescent analyzer, was introduced, proceeded by the development of t...

  1. Theoretical studies of the chemiluminescence reactions; luminol

    OpenAIRE

    Martínez Muñoz, Daniel

    2015-01-01

    The vast majority of chemical reactions occurs only in the ground state, however photochemical reactions like chemiluminescence take place in ground and excited states. In almost all chemiluminescence processes oxygen-oxygen bond breakage is involved. But, there is no general reason to explain why these processes occur via an oxygen-oxygen cleavage. These types of phenomena are usually highly exothermic. Computational chemistry has risen as a powerful tool to characterize and analyze chemical...

  2. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    Science.gov (United States)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  3. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  4. THE 13TH ADVANCED ACCELERATOR CONCEPTS WORKSHOP (AAC'8)

    Energy Technology Data Exchange (ETDEWEB)

    Leemans, Wim [UC Berkeley; Schroder, Carl B.; Esarey, Eric

    2008-07-15

    The Thirteenth Workshop on Advanced Accelerator Concepts (AAC) was held from July 27 to August 2, 2008 at the Chaminade Conference Center in Santa Cruz, California, USA, organized by the Lawrence Berkeley National Laboratory and the University of California at Berkeley. There were unprecedented levels of interest in the 2008 AAC Workshop, and participation was by invitation, with 215 workshop attendees, including 58 students. Reflecting the world-wide growth of the advanced accelerator community, there was significant international participation, with participants from twelve countries attending.

  5. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  6. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  7. Overview of CEA studies on advanced Plutonium fuelled PWR core concepts

    International Nuclear Information System (INIS)

    After a brief summary of the French experience of Plutonium recycle in PWRs and a review of the rationale for this strategy, a first part of the paper presents the plans for generalizing the recycling of 30% MOX in present generating facilities and the next generation reactors (EPR). A second part of the paper is dedicated to an overview of CEA studies on advanced 100% MOX PWR core concepts compatible with the EPR design and likely to improve the performances of the reference core design in terms of Plutonium consumption, and minor actinides production. The respective merits of these advanced 100% MOX PWR core concepts are briefly summarized, as well as their potential benefits to accommodate a wide variety of future options for the fuel cycle. (author) 3 figs., 6 tabs., 11 refs

  8. Advanced accelerator concepts: Progress report and summary of proposed second-year research

    International Nuclear Information System (INIS)

    This report summarizes technical progress during the first year of the three-year proposal supported by the Department of Energy under Contract No. FG02-88ER40465. Funds are requested to continue a vigorous theoretical program in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams and nonneutral plasmas. 52 refs

  9. Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

    Directory of Open Access Journals (Sweden)

    Yeong-il Kim

    2013-01-01

    Full Text Available Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.

  10. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    Science.gov (United States)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  11. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application.

  12. Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator

    CERN Document Server

    Alonso, J R; Bergevin, M; Bernstein, A; Bignell, L; Blucher, E; Calaprice, F; Conrad, J M; Descamps, F B; Diwan, M V; Dwyer, D A; Dye, S T; Elagin, A; Feng, P; Grant, C; Grullon, S; Hans, S; Jaffe, D E; Kettell, S H; Klein, J R; Lande, K; Learned, J G; Luk, K B; Maricic, J; Marleau, P; Mastbaum, A; McDonough, W F; Oberauer, L; Gann, G D Orebi; Rosero, R; Rountree, S D; Sanchez, M C; Shaevitz, M H; Shokair, T M; Smy, M B; Strait, M; Svoboda, R; Tolich, N; Vagins, M R; van Bibber, K A; Viren, B; Vogelaar, R B; Wetstein, M J; Winslow, L; Wonsak, B; Worcester, E T; Wurm, M; Yeh, M; Zhang, C

    2014-01-01

    The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diff?use supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon t...

  13. Optimization of an Advanced Hybrid Wing Body Concept Using HCDstruct Version 1.2

    Science.gov (United States)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Hybrid Wing Body (HWB) aircraft concepts continue to be promising candidates for achieving the simultaneous fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project. In order to evaluate the projected benefits, improvements in structural analysis at the conceptual design level were necessary; thus, NASA researchers developed the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) tool to perform aeroservoelastic structural optimizations of advanced HWB concepts. In this paper, the authors present substantial updates to the HCDstruct tool and related analysis, including: the addition of four inboard and eight outboard control surfaces and two all-movable tail/rudder assemblies, providing a full aeroservoelastic analysis capability; the implementation of asymmetric load cases for structural sizing applications; and a methodology for minimizing control surface actuation power using NASTRAN SOL 200 and HCDstruct's aeroservoelastic finite-element model (FEM).

  14. Work Domain Analysis Methodology for Development of Operational Concepts for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This report describes a methodology to conduct a Work Domain Analysis in preparation for the development of operational concepts for new plants. This method has been adapted from the classical method described in the literature in order to better deal with the uncertainty and incomplete information typical of first-of-a-kind designs. The report outlines the strategy for undertaking a Work Domain Analysis of a new nuclear power plant and the methods to be used in the development of the various phases of the analysis. Basic principles are described to the extent necessary to explain why and how the classical method was adapted to make it suitable as a tool for the preparation of operational concepts for a new nuclear power plant. Practical examples are provided of the systematic application of the method and the various presentation formats in the operational analysis of advanced reactors.

  15. BALANCED SCORECARD AS AN ADVANCED MANAGEMENT CONCEPT WITHIN THE INTEGRATED QUALITY MANAGEMENT MODEL

    Directory of Open Access Journals (Sweden)

    Stevan Zivojinovic

    2008-03-01

    Full Text Available The significance of >Integratedquality management< (IQM model, originating form St.Gallen-model, is reflected in the need for synergic application of new and advanced concepts of management theory and practise. Balanced score card (BSC within IQM model becomes a catalyst of business success for a modern organization by focusing on organizational variables-business strategy, organization structure and corporate culture. BSC is the leading system of performance tracking and strategy implementation, consistent with other management concepts and methods for managing process improvement. Through BSC, IQM processes' activities correlate with organization business results. BSC management processes enable integration of all decision-making levels, from institutional via strategic to operative, in the process starting from planing, i.e. formulating and implementation of strategy, to feed back by performance measurement and control.

  16. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; David Gertman

    2014-04-01

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.

  17. Development of Advanced Concept for Shortening Construction Period of ABWR Plant

    International Nuclear Information System (INIS)

    Construction of a nuclear power plant (NPP) requires a very long period because of large amount of construction materials and many issues for negotiation among multiple sections. Shortening the construction period advances the date of return on an investment, and can also result in reduced construction cost. Therefore, the study of this subject has a very high priority for utilities. We achieved a construction period of 37 months from the first concrete work to fuel loading (F/L) (51.5 months from the inspection of the foundation (I/F) to the start of commercial operation (C/O)) at the Kashiwazaki-Kariwa NPPs No. 6 and 7 (KK-6/7), which are the first ABWR plants in the world. At TEPCO's next plant, we think that a construction period of less than 36 months (45 months from I/F to C/O) can be realized based on conventional methods such as early start of equipment installation and blocking of equipment to be brought in advance. Furthermore, we are studying the feasibility of a 21.5-month construction period (30 months from I/F to C/O) with advanced ideas and methods. The important concepts for a 21.5-month construction period are adoption of a new building structure that is the steel plate reinforced concrete (SC) structure and promotion of extensive modularization of equipment and building structure. With introducing these new concepts, we are planning the master schedule (M/S) and finding solutions to conflicts in the schedule of area release from building construction work to equipment installation work (schedule-conflicts.) In this report, we present the shortest construction period and an effective method to put it into practice for the conventional general arrangement (GA) of ABWR. In the future, we will continue the study on the improvement of building configuration and arrangements, and make clear of the concept for large composite modules of building structures and equipment. (authors)

  18. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    Science.gov (United States)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  19. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  20. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    Science.gov (United States)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  1. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-08-01

    This report presents preliminary research results from the investigation into the development of new models and guidance for Concepts of Operations in advanced small modular reactor (AdvSMR) designs. AdvSMRs are nuclear power plants (NPPs), but unlike conventional large NPPs that are constructed on site, AdvSMRs systems and components will be fabricated in a factory and then assembled on site. AdvSMRs will also use advanced digital instrumentation and control systems, and make greater use of automation. Some AdvSMR designs also propose to be operated in a multi-unit configuration with a single central control room as a way to be more cost-competitive with existing NPPs. These differences from conventional NPPs not only pose technical and operational challenges, but they will undoubtedly also have regulatory compliance implications, especially with respect to staffing requirements and safety standards.

  2. Advanced concepts for waste management and nuclear energy production in the EURATOM fifth framework programme

    International Nuclear Information System (INIS)

    This paper summarises the objectives of the research projects on Partitioning and Transmutation (P and T) of long lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM Fifth Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing High Temperature Reactors (HTRs) commercially for energy production. Finally, the European Commission(tm)s proposal for a New Framework Programme (2002-2006) is briefly outlined. (author)

  3. Advanced concepts for waste management and nuclear energy production in the EURATOM 5. framework programme

    International Nuclear Information System (INIS)

    This paper summarises the objectives of the research projects on partitioning and transmutation (P and T) of long-lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM 5. Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long-lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing high-temperature reactors (HTRs) commercially for energy production. Finally, the European Commissions proposal fora New Framework Programme (2002-2006) is briefly outlined. (authors)

  4. A concept of an advanced inertia fusion reactor; TAKANAWA-I

    International Nuclear Information System (INIS)

    A concept of an advanced inertia fusion reactor: TAKANAWA-I is proposed. A pellet with DT ignitor and DD major fuel, Pb wet walls, C or SiC blocks for shielding, and SiC vessels in the water pool are employed. This reactor does not need blanckets for T breeding, since T is supplied through DD reaction, and has low induced radioactivities. These and a simple structure might give a hopeful prediction of economical and safe advantages and mitigate difficulties of reactor technologies, especially remote maintenance of the reactor. (author)

  5. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts

    Science.gov (United States)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined for this report. The tasks were: F-1A Restart Study, J-2S Restart Study, Propulsion Database Development, SSME Upper Stage Use, CERs for Liquid Propellant Rocket Engines, Advanced Low Cost Engines, and Tripropellant Comparison Study. The detailed study results, with the data to support the conclusions from various analyses, are being reported as a series of five separate Final Task Reports. Consequently, this volume only reports the required programmatic information concerning Computer Aided Design Documentation, and New Technology Reports. A detailed Executive Summary, covering all the tasks, is also available as Volume I of this report.

  6. Advanced automation concepts applied to Experimental Breeder Reactor-II startup

    International Nuclear Information System (INIS)

    The major objective of this work is to demonstrate through simulations that advanced liquid-metal reactor plants can be operated from low power by computer control. Development of an automatic control system with this objective will help resolve specific issues and provide proof through demonstration that automatic control for plant startup is feasible. This paper presents an advanced control system design for startup of the Experimental Breeder Reactor-2 (EBR-2) located at Idaho Falls, Idaho. The design incorporates recent methods in nonlinear control with advanced diagnostics techniques such as neural networks to form an integrated architecture. The preliminary evaluations are obtained in a simulated environment by a low-order, valid nonlinear model. Within the framework of phase 1 research, the design includes an inverse dynamics controller, a fuzzy controller, and an artificial neural network controller. These three nonlinear control modules are designed to follow the EBR-2 startup trajectories in a multi-input/output regime. They are coordinated by a supervisory routine to yield a fault-tolerant, parallel operation. The control system operates in three modes: manual, semiautomatic, and fully automatic control. The simulation results of the EBR-2 startup transients proved the effectiveness of the advanced concepts. The work presented in this paper is a preliminary feasibility analysis and does not constitute a final design of an automated startup control system for EBR-2. 14 refs., 43 figs

  7. Developing an advanced safety concept for an HLW repository in salt rock

    International Nuclear Information System (INIS)

    Preliminary Total Performance Assessments for HLW repositories in salt rock were performed within the framework of German R and D projects at the end of the 1980 and in the first half of the 1990's. In the meantime, several remarkable developments improved the basis for developing an advanced safety case. In view of these changes, DBE TECHNOLOGY GmbH, BGR and GRS are developing and testing an advanced safety concept within a joint R and D project in order to identify the major needs for further R and D work. Whilst former safety assessment approaches for HLW repositories in salt rock used a conservative, even hypothetical, release scenario in order to show the compliance with dose constraints, the recent safety concept focuses on proving the safe enclosure without radionuclide release if the repository evolution remains undisturbed. Release scenarios are considered in the case of disturbed evolution only. This approach is considered to be more appropriate for a salt rock repository and takes advantage of its specific properties. In this context, special attention is given to the proof of integrity (sufficient tightness) of the multi-barrier system, comprised mainly of the host rock as the main geological barrier and the engineered geotechnical barriers. The approach also focuses on appropriate scenario analyses that allow the identification and assessment of remaining radionuclide release scenarios which cannot be ruled out. (A.L.B.)

  8. Advanced LWR concept with hard neutron spectrum (FLWR) for realizing flexible plutonium management

    International Nuclear Information System (INIS)

    An advanced LWR concept with hard neutron spectrum (FLWR) has been proposed in order to ensure sustainable energy supply in the future based on the well-experienced LWR technologies. The FLWR is essentially a BWR-type reactor, in which the moderation of neutron in the core is reduced by use of the hexagonal-shaped fuel assemblies with the triangular-tight-lattice fuel rod configuration. The core design concept of FLWR is to realize effective and flexible utilization of uranium and plutonium resources by two stages, corresponding to the advancement of the fuel cycle technologies and related infrastructures. The core in the first stage of FLWR aims at intensive utilization and preservation of plutonium based on the experiences of the current LWR and MOX utilization, and the one in the second stage realizes sustainable multiple plutonium recycling with a high conversion ratio over 1.0. The key point is that the first stage core can proceed to the second stage in the same reactor system during the reactor operation period. The present paper summarizes the recent core design studies of FLWR. (author)

  9. Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future

    Energy Technology Data Exchange (ETDEWEB)

    Furey, M.J. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Kajdas, C. [Warsaw Univ. of Technology, Plock (Poland); Kaltenbach, K.W. [Triad Investors Corp., Baltimore, MD (United States)

    1997-12-31

    Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

  10. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-04-01

    This report presents preliminary research results from the investigation in to the development of new models and guidance for concepts of operations (ConOps) in advanced small modular reactor (aSMR) designs. In support of this objective, three important research areas were included: operating principles of multi-modular plants, functional allocation models and strategies that would affect the development of new, non-traditional concept of operations, and the requiremetns for human performance, based upon work domain analysis and current regulatory requirements. As part of the approach for this report, we outline potential functions, including the theoretical and operational foundations for the development of a new functional allocation model and the identification of specific regulatory requirements that will influence the development of future concept of operations. The report also highlights changes in research strategy prompted by confirmationof the importance of applying the work domain analysis methodology to a reference aSMR design. It is described how this methodology will enrich the findings from this phase of the project in the subsequent phases and help in identification of metrics and focused studies for the determination of human performance criteria that can be used to support the design process.

  11. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477

    International Nuclear Information System (INIS)

    A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE), Used Fuel Disposition campaign. Reference concepts are identified for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. These were analyzed for waste inventory cases representing a range of waste types that could be produced by advanced nuclear fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress. All of these disposal concepts are enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. Enclosed modes have less capacity to dissipate heat than open modes such as that proposed for a repository at Yucca Mountain. Thermal analysis has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature limits for different disposal concepts. For the crystalline rock and clay/shale repository concepts, a waste package surface temperature limit of 100 deg. C was assumed to prevent changes in clay-based buffer material or clay-rich host rock. Surface decay storage of 50 to 100 years is needed for disposal of high-burnup LWR SNF in 4-PWR packages, or disposal of HLW glass from reprocessing LWR uranium oxide (UOX) fuel. High-level waste (HLW) from reprocessing of metal fuel used in a fast reactor could be disposed after decay storage of 50 years or less. For disposal in salt the rock thermal conductivity is significantly greater, and higher temperatures (200 deg. C) can be tolerated at the waste package surface. Decay storage of 10 years or less is needed for high-burnup LWR SNF in 4-PWR

  12. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Laboratories, P.O. Box 5800 MS 0736, Albuquerque, NM 87185 (United States); Blink, James [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808 (United States); Carter, Joe [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Fratoni, Massimiliano; Greenberg, Harris; Sutton, Mark [Lawrence Livermore National Laboratory (United States); Howard, Robert [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

    2012-07-01

    A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE), Used Fuel Disposition campaign. Reference concepts are identified for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. These were analyzed for waste inventory cases representing a range of waste types that could be produced by advanced nuclear fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress. All of these disposal concepts are enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. Enclosed modes have less capacity to dissipate heat than open modes such as that proposed for a repository at Yucca Mountain. Thermal analysis has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature limits for different disposal concepts. For the crystalline rock and clay/shale repository concepts, a waste package surface temperature limit of 100 deg. C was assumed to prevent changes in clay-based buffer material or clay-rich host rock. Surface decay storage of 50 to 100 years is needed for disposal of high-burnup LWR SNF in 4-PWR packages, or disposal of HLW glass from reprocessing LWR uranium oxide (UOX) fuel. High-level waste (HLW) from reprocessing of metal fuel used in a fast reactor could be disposed after decay storage of 50 years or less. For disposal in salt the rock thermal conductivity is significantly greater, and higher temperatures (200 deg. C) can be tolerated at the waste package surface. Decay storage of 10 years or less is needed for high-burnup LWR SNF in 4-PWR

  13. Integral design concepts of advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    Under the sub-programme on non-electrical applications of advanced reactors, the International Atomic Energy Agency has been providing a worldwide forum for exchange of information on integral reactor concepts. Two Technical Committee meetings were held in 1994 and 1995 on the subject where state-of-the-art developments were presented. Efforts are continuing for the development of advanced nuclear reactors of both evolutionary and innovative design, for electricity, co-generation and heat applications. While single purpose reactors for electricity generation may require small and medium sizes under certain conditions, reactors for heat applications and co-generation would be necessary in the small and medium range and need to be located closer to the load centres. The integral design approach to the development of advanced light water reactors has received special attention over the past few years. Several designs are in the detailed design stage, some are under construction, one prototype is in operation. A need has been felt for guidance on a number of issues, ranging from design objectives to the assessment methodology needed to show how integral designs can meet these objectives, and also to identify their advantages and problem areas. The technical document addresses the current status of the design, safety and operational issues of integral reactors and recommends areas for future development

  14. Advanced payload concepts and system architecture for emerging services in Indian National Satellite Systems

    Science.gov (United States)

    Balasubramanian, E. P.; Rao, N. Prahlad; Sarkar, S.; Singh, D. K.

    2008-07-01

    Over the past two decades Indian Space Research Organization (ISRO) has developed and operationalized satellites to generate a large capacity of transponders for telecommunication service use in INSAT system. More powerful on-board transmitters are built to usher-in direct-to-home broadcast services. These have transformed the Satcom application scenario in the country. With the proliferation of satellite technology, a shift in the Indian market is witnessed today in terms of demand for new services like Broadband Internet, Interactive Multimedia, etc. While it is imperative to pay attention to market trends, ISRO is also committed towards taking the benefits of technological advancement to all round growth of our population, 70% of which dwell in rural areas. The initiatives already taken in space application related to telemedicine, tele-education and Village Resource Centres are required to be taken to a greater height of efficiency. These targets pose technological challenges to build a large capacity and cost-effective satellite system. This paper addresses advanced payload concepts and system architecture along with the trade-off analysis on design parameters in proposing a new generation satellite system capable of extending the reach of the Indian broadband structure to individual users, educational and medical institutions and enterprises for interactive services. This will be a strategic step in the evolution of INSAT system to employ advanced technology to touch every human face of our population.

  15. Improvement of environmental aspects of thermal power plant operation by advanced control concepts

    Directory of Open Access Journals (Sweden)

    Mikulandrić Robert

    2012-01-01

    Full Text Available The necessity of the reduction of greenhouse gas emissions, as formulated in the Kyoto Protocol, imposes the need for improving environmental aspects of existing thermal power plants operation. Improvements can be reached either by efficiency increment or by implementation of emission reduction measures. Investments in refurbishment of existing plant components or in plant upgrading by flue gas desulphurization, by primary and secondary measures of nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by modernisation of thermal power plant instrumentation and control system including sensors, equipment diagnostics and advanced controls. Impact of advanced control solutions implementation depends on technical characteristics and status of existing instrumentation and control systems as well as on design characteristics and actual conditions of installed plant components. Evaluation of adequacy of implementation of advanced control concepts is especially important in Western Balkan region where thermal power plants portfolio is rather diversified in terms of size, type and commissioning year and where generally poor maintenance and lack of investments in power generation sector resulted in high greenhouse gases emissions and low efficiency of plants in operation. This paper is intended to present possibilities of implementation of advanced control concepts, and particularly those based on artificial intelligence, in selected thermal power plants in order to increase plant efficiency and to lower pollutants emissions and to comply with environmental quality standards prescribed in large combustion plant directive. [Acknowledgements. This paper has been created within WBalkICT - Supporting Common RTD actions in WBCs for developing Low Cost and Low Risk ICT based solutions for TPPs Energy Efficiency increasing, SEE-ERA.NET plus project in cooperation among partners from IPA SA - Romania, University of Zagreb - Croatia and Vinca

  16. Development of a VOR/DME model for an advanced concepts simulator

    Science.gov (United States)

    Steinmetz, G. G.; Bowles, R. L.

    1984-01-01

    The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher.

  17. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  18. A program to develop advanced EBT [ELMO Bumpy Torus] concepts and international collaboration on the Bumpy Torus concept: Final report

    International Nuclear Information System (INIS)

    This project was undertaken to develop innovative concepts for improving the performance of ELMO Bumpy Torus devices in those aspects of plasma confinement that are particularly relevant to an eventual EBT reactor concept. These include effective magnetic utilization using Andreoletti coils, enhanced confinement using positive ambipolar potentials, and attractive divertor concepts that are compatible with formation and maintenance of ELMO rings. Each of the three major objectives was achieved and, except for the divertor studies, documented for publication and presentation at major scientific meetings. This report provides a brief recapitulation of the major results achieved in the form of a collection of those publications, together with this Introduction

  19. Novel chemiluminescent assay for staphylococcal enterotoxin B

    International Nuclear Information System (INIS)

    An enzyme-linked immunosorbent assay, a horseradish peroxidase-catalyzed fluorogenic reaction, and chemiluminescence (CL) analysis have been combined to develop a sandwich ELISA for Staphylococcal enterotoxin B (SEB) using monoclonal antibodies for different epitopes of SEB. The enzyme catalyzed reaction of 3-(4-hydroxyphenyl propionate) with the urea complex of hydrogen peroxide produced a fluorescent dimer which was detected by chemiluminescence analysis. The CL response to SEB is linear in the range from 6. 0 to 564 pg mL-1 (r = 0.9993), and the detection limit is 3.3 pg mL-1 (S/N = 3). Intra- and interassay coefficients of variation are -1). The method was applied to the analysis of SEB in serum, lake water and milk samples. The results compared well with those obtained by conventional ELISAs. (author)

  20. Affordable In-Space Transportation Phase 2: An Advanced Concepts Project

    Science.gov (United States)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (TTM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIN4 was managed by NASA-Marshall Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Mankins of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TIM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIN4 in a summary for-mat. It incorporates the response to the following basic issues of the TDVL which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? 3. What is the current technology readiness level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5 . What is the proposed implementation time

  1. Affordable In-Space Transportation. Phase 2; An Advanced Concepts Project

    Science.gov (United States)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (ITM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIM was managed by NASA-Mar-shaU Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Manidns of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIM in a summary format. It incorporates the response to the following basic issues of the TPA, which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? What is the current Technology Readiness Level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5. What is the proposed implementation time frame

  2. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    Science.gov (United States)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  3. Advanced concept proof-of-principle demonstration: Switchable radioactive neutron source

    International Nuclear Information System (INIS)

    An advanced concept proof-of-principle demonstration was successfully performed to show the feasibility of a practical switchable radioactive neutron source (SRNS) that can be switched on and off like an accelerator, but without requiring accelerator equipment such as high voltage supply, control unit, etc. This source concept would provide a highly portable neutron source for field radiation measurement applications. Such a source would require minimal, if any, shielding when not in use. The SRNS, previously patented by Argonne staff, provides a means of constructing the alpha-emitting and light-element components of a radioactive neutron source, in such a fashion that these two components can brought together to turn the source ''on'' and then be separated to turn the source ''off''. An SRNS could be used for such field applications as active neutron interrogation of objects to detect fissile materials or to measure their concentration; and to excite gamma-ray emission for detection of specific elements that indicate toxic chemicals, drugs, explosives, etc. The demonstration was performed using Pu-238 as the alpha emitter and Be as the light element, in an air-atmosphere glovebox having no atmosphere purification capability. A stable, thin film of Pu-238 oxide was deposited on a stainless steel planchet. The ''on'' output of the demonstration Pu-238 film was measured to be 2.5 x 106 neutrons/sec-gram of Pu-238. The measured ''off'' neutron rate was satisfactory, only about 5% of the ''on'' output, after two weeks of exposure to the glovebox atmosphere. After several weeks additional exposure, the ''off'' rate had increased to about 15%. This work demonstrates the feasibility of constructing practical, highly portable SRNS units with very low gamma-ray dose in the ''off'' position

  4. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    International Nuclear Information System (INIS)

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nuclear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks

  5. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, B. (ed.)

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  6. Organization of the 16th Advanced Accelerator Concepts (AAC) Workshop by Stanford University

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States); Hogan, Mark [Stanford Univ., CA (United States)

    2015-09-30

    Essentially all we know today and will learn in the future about the fundamental nature of matter is derived from probing it with directed beams of particles such as electrons, protons, neutrons, heavy ions, and photons. The resulting ability to “see” the building blocks of matter has had an immense impact on society and our standard of living. Over the last century, particle accelerators have changed the way we look at nature and the universe we live in and have become an integral part of the Nation’s technical infrastructure. Today, particle accelerators are essential tools of modern science and technology. The cost and capabilities of accelerators would be greatly enhanced by breakthroughs in acceleration methods and technology. For the last 32 years, the Advanced Accelerator Concepts (AAC) Workshop has acted as the focal point for discussion and development of the most promising acceleration physics and technology. It is a particularly effective forum where the discussion is leveraged and promoted by the unique and demanding feature of the AAC Workshop: the working group structure, in which participants are asked to consider their contributions in terms of even larger problems to be solved. The 16th Advanced Accelerator Concepts (AAC2014) Workshop was organized by Stanford University from July 13 - 18, 2014 at the Dolce Hays Mansion in San Jose, California. The conference had a record 282 attendees including 62 students. Attendees came from 11 countries representing 66 different institutions. The workshop format consisted of plenary sessions in the morning with topical leaders from around the world presenting the latest breakthroughs to the entire workshop. In the late morning and afternoons attendees broke out into eight different working groups for more detailed presentations and discussions that were summarized on the final day of the workshop. In addition, there were student tutorial presentations on two afternoons to provide in depth education and

  7. Parabolic Flight Investigation for Advanced Exercise Concept Hardware Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.

    2015-01-01

    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.

  8. A magnetically active microfluidic device for chemiluminescence bioassays

    OpenAIRE

    Zheng, Yi; Zhao, Shulin; Liu, Yi-Ming

    2011-01-01

    Highly active horseradish peroxidase functionalized magnetic nanoparticles were prepared and packed into a microfluidic channel, producing an in-line bioreactor that enabled a sensitive chemiluminescence assay of H2O2. The proposed magnetically active microfluidic device proved useful for chemiluminescence assays of biomedically interesting compounds.

  9. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Many evolving nuclear energy technologies use advanced predictive multi-scale, multi-physics modeling and simulation (MS) capabilities to reduce the cost and schedule of design and licensing. A new methodology is needed for the validation of these predictive tools. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification-steps similar to the components of the traditional US Nuclear Regulatory Commission (NRC) licensing approach, with the exception of the calibration step. An enhanced calibration concept is introduced here, and is accomplished through data assimilation. The goal of this methodology is to enable best-estimate prediction of system behaviors in both normal and safety-related environments. This goal requires the additional steps of estimating the domain of validation, and quantification of uncertainties, allowing for the extension of results to areas of the validation domain that are not directly tested with experiments. These might include the extension of the MS capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to existing for data, so that required new testing can be minimized, saving cost by demonstrating that further testing will not enhance the quality of the predictive tools. The proposed methodology is at a conceptual level. The document is an extended abstract

  10. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage

    Directory of Open Access Journals (Sweden)

    Cheng Ji

    2015-06-01

    Full Text Available Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.

  11. GTOC8: Results and Methods of ESA Advanced Concepts Team and JAXA-ISAS

    CERN Document Server

    Izzo, Dario; Märtens, Marcus; Getzner, Ingmar; Nowak, Krzysztof; Heffernan, Anna; Campagnola, Stefano; Yam, Chit Hong; Ozaki, Naoya; Sugimoto, Yoshihide

    2016-01-01

    We consider the interplanetary trajectory design problem posed by the 8th edition of the Global Trajectory Optimization Competition and present the end-to-end strategy developed by the team ACT-ISAS (a collaboration between the European Space Agency's Advanced Concepts Team and JAXA's Institute of Space and Astronautical Science). The resulting interplanetary trajectory won 1st place in the competition, achieving a final mission value of $J=146.33$ [Mkm]. Several new algorithms were developed in this context but have an interest that go beyond the particular problem considered, thus, they are discussed in some detail. These include the Moon-targeting technique, allowing one to target a Moon encounter from a low Earth orbit; the 1-$k$ and 2-$k$ fly-by targeting techniques, enabling one to design resonant fly-bys while ensuring a targeted future formation plane% is acquired at some point after the manoeuvre ; the distributed low-thrust targeting technique, admitting one to control the spacecraft formation plane...

  12. A review of design concepts for the Advanced Fluids Module (AFM) project

    Science.gov (United States)

    Hill, Myron E.; Tschen, Peter S.

    1993-01-01

    This paper reviews preliminary fluid module design concepts for the Advanced Fluids Module (AFM) project. The objective of this effort is to provide a facility that can handle a wide variety of fluids experiments. Sample science requirements were written and conceptual designs were subsequently generated during the last year. Experiments from the following fluid physics subject areas were used as conceptual design drivers: static and dynamic interfacial phenomena; bubble/droplet thermocapillary migration; surface tension convection and instabilities; thermal/solutal convection; pool boiling; and multiphase flow. After the conceptual designs were completed, the next phase attempted to combine experiments capabilities into a multipurpose, multiuser apparatus configured for the Space Station Freedom. It was found that all the fluid subject areas considered could be accommodated by three basic types of fluids modules. These modules are the Static Fluid Cell Module, the Dynamic Fluid Cell Module, and the Multiphase Flow Module. Descriptions of these preliminary modules designs and their particular sub-systems (e.g., fluid and thermal systems) are discussed. These designs will be refined as the nature of the flight program becomes clearer over the next six to twelve months.

  13. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  14. Predicted reliability of aerospace electronics: Application of two advanced probabilistic concepts

    Science.gov (United States)

    Suhir, E.

    Two advanced probabilistic design-for-reliability (PDfR) concepts are addressed and discussed in application to the prediction, quantification and assurance of the aerospace electronics reliability: 1) Boltzmann-Arrhenius-Zhurkov (BAZ) model, which is an extension of the currently widely used Arrhenius model and, in combination with the exponential law of reliability, enables one to obtain a simple, easy-to-use and physically meaningful formula for the evaluation of the probability of failure (PoF) of a material or a device after the given time in operation at the given temperature and under the given stress (not necessarily mechanical), and 2) Extreme Value Distribution (EVD) technique that can be used to assess the number of repetitive loadings that result in the material/device degradation and eventually lead to its failure by closing, in a step-wise fashion, the gap between the bearing capacity (stress-free activation energy) of the material or the device and the demand (loading). It is shown that the material degradation (aging, damage accumulation, flaw propagation, etc.) can be viewed, when BAZ model is considered, as a Markovian process, and that the BAZ model can be obtained as the ultimate steady-state solution to the well-known Fokker-Planck equation in the theory of Markovian processes. It is shown also that the BAZ model addresses the worst, but a reasonably conservative, situation. It is suggested therefore that the transient period preceding the condition addressed by the steady-state BAZ model need not be accounted for in engineering evaluations. However, when there is an interest in understanding the transient degradation process, the obtained solution to the Fokker-Planck equation can be used for this purpose. As to the EVD concept, it attributes the degradation process to the accumulation of damages caused by a train of repetitive high-level loadings, while loadings of levels that are considerably lower than their extreme values do not contribute

  15. A System Concept for the Advanced Post-TRMM Rainfall Profiling Radars

    Science.gov (United States)

    Im, Eastwood; Smith, Eric A.

    1998-01-01

    ultimate goal. The Precipitation Radar (PR) aboard the TRMM satellite is the first ever spaceborne radar dedicated to three-dimensional, global precipitation measurements over the tropics and the subtropics, as well as the detailed synopsis of a wide range of tropical rain storm systems. In only twelve months since launch, the PR, together with other science instruments abroad the satellite have already provided unprecedented insights into the rainfall systems. It is anticipated the a lot more exciting and important rain observations would be made by TRMM throughout its mission duration. While TRMM has provided invaluable data to the user community, it is only the first step towards advancing our knowledge on rain processes and its contributions to climate variability. It is envisioned that a TRMM follow-on mission is needed in such a way to capitalize on the pioneering information provided by TRMM, and its instrument capability must be extended beyond TRMM in such a way to fully address the key science questions from microphysical to climatic time scale. In fact, a number of new and innovative mission concepts have recently put forth for this purpose. Almost all of these new concepts have suggested the utility of a more advanced, high-resolution, Doppler-enabled, vertical profiling radar that can provide multi-parameter observations of precipitation. In this paper, a system concept for a second- gene ration precipitation radar (PR-2) which addresses the above requirements will be described.

  16. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VIII. Advanced concepts

    International Nuclear Information System (INIS)

    The goal of the Nonproliferation Alternative Systems Assessment Program has been to provide recommendations for the development and deployment of more proliferation-resistant civilian nuclear-power systems without jeopardizing the development of nuclear energy. In principle, new concepts for nuclear-power systems could be designed so that materials and facilities would be inherently more proliferation-resistant. Such advanced, i.e., less-developed systems, are the subject of this volume. Accordingly, from a number of advanced concepts that were proposed for evaluation, six representative concepts were selected: the fast mixed-spectrum reactor; the denatured molten-salt reactor; the mixed-flow gaseous-core reactor; the linear-accelerator fuel-regenerator reactor; the ternary metal-fueled electronuclear fuel-producer reactor; and the tokamak fusion-fission hybrid reactor

  17. Capillary electrophoresis microchip coupled with on-line chemiluminescence detection

    International Nuclear Information System (INIS)

    In the present work, chemiluminescence detection was integrated with capillary electrophoresis microchip. The microchip was designed on the principle of flow-injection chemiluminescence system and capillary electrophoresis. It has three main channels, five reservoirs and a detection cell. As model samples, dopamine and catechol were separated and detected using a permanganate chemiluminescent system on the prepared microchip. The samples were electrokinetically injected into the double-T cross section, separated in the separation channel, and then oxidized by chemiluminescent reagent delivered by a home-made micropump to produce light in the detection cell. The electroosmotic flow could be smoothly coupled with the micropump flow. The detection limits for dopamine and catechol were 20.0 and 10.0 μM, respectively. Successful separation and detection of dopamine and catechol demonstrated the distinct advantages of integration of chemiluminescent detection on a microchip for rapid and sensitive analysis

  18. Chemiluminescence methods for the determination of ofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Paul S. [School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217 (Australia)]. E-mail: psf@deakin.edu.au; Adcock, Jacqui L. [School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217 (Australia)

    2005-06-13

    Ofloxacin is a synthetic fluoroquinolone antibiotic that has been used in the treatment of respiratory tract, urinary tract and tissue-based infections. Methodology for the determination of ofloxacin based on chemiluminescence detection can be divided into: direct oxidation with tris(2,2'-bipyridyl)ruthenium(III) or permanganate; and enhancement of the emission from either the oxidation of sulfite or the reaction between sodium nitrite and hydrogen peroxide. In this paper, we compare the analytical methodology and evaluate the light-producing pathways that have been proposed for these reactions.

  19. Chemiluminescence methods for the determination of ofloxacin

    International Nuclear Information System (INIS)

    Ofloxacin is a synthetic fluoroquinolone antibiotic that has been used in the treatment of respiratory tract, urinary tract and tissue-based infections. Methodology for the determination of ofloxacin based on chemiluminescence detection can be divided into: direct oxidation with tris(2,2'-bipyridyl)ruthenium(III) or permanganate; and enhancement of the emission from either the oxidation of sulfite or the reaction between sodium nitrite and hydrogen peroxide. In this paper, we compare the analytical methodology and evaluate the light-producing pathways that have been proposed for these reactions

  20. The environmental impacts of Korean advanced nuclear fuel cycle KIEP-21 and disposal concepts

    International Nuclear Information System (INIS)

    We have performed a performance assessment to investigate effects of waste forms and repository designs by comparing the case of direct disposal of used PWR fuel in the Korean Reference Repository System (KRS) concept with the case of Advanced Korean Reference Disposal System (A-KRS) repository containing ILW and HLW from the KIEP-21 system. Numerical evaluations have been made for release rates of actinide and fission product isotopes at the boundaries of the engineered barrier system (EBS) and the natural barrier system (NBS) by the TTB code developed at UC Berkeley. Results show that in both cases, most actinides and their daughters remain as precipitates in the EBS because of their assumed low solubilities. The radionuclides that reach the 1 000-m location in NBS are fission products, 129I, 79Se and 36Cl. They have high solubilities and weak or no sorption with the EBS materials or with the host rock, and are released congruently with waste form alteration. In case of direct disposal, a contribution of 2% of iodine is assumed to be accumulated in the gap between the cladding and fuel pellets released after failure of the waste package and cladding dominates the total release rate. With increase in the waste form alteration time, the peak value of total release rate decreases proportionally because the dominant radionuclides are fission product isotopes, which are released from waste forms congruently with waste form dissolution. It has been shown by PHREEQC simulation that actinide solubilities can be significantly affected by pore water chemistry determined by the evolving EBS materials, waste forms and compositions of groundwater from the far field. (authors)

  1. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    Energy Technology Data Exchange (ETDEWEB)

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung

  2. Improved best estimate plus uncertainty methodology, including advanced validation concepts, to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Research highlights: → The best estimate plus uncertainty methodology (BEPU) is one option in the licensing of nuclear reactors. → The challenges for extending the BEPU method for fuel qualification for an advanced reactor fuel are primarily driven by schedule, the need for data, and the sufficiency of the data. → In this paper we develop an extended BEPU methodology that can potentially be used to address these new challenges in the design and licensing of advanced nuclear reactors. → The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. → The methodology includes a formalism to quantify an adequate level of validation (predictive maturity) with respect to existing data, so that required new testing can be minimized, saving cost by demonstrating that further testing will not enhance the quality of the predictive tools. - Abstract: Many evolving nuclear energy technologies use advanced predictive multiscale, multiphysics modeling and simulation (M and S) capabilities to reduce the cost and schedule of design and licensing. Historically, the role of experiments has been as a primary tool for the design and understanding of nuclear system behavior, while M and S played the subordinate role of supporting experiments. In the new era of multiscale, multiphysics computational-based technology development, this role has been reversed. The experiments will still be needed, but they will be performed at different scales to calibrate and validate the models leading to predictive simulations for design and licensing. Minimizing the required number of validation experiments produces cost and time savings. The use of multiscale, multiphysics models introduces challenges in validating these predictive tools - traditional methodologies will have to be modified to address these challenges. This paper gives the basic aspects of a methodology that can potentially be used to address these new challenges in

  3. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The appendices include: (A) design data sheets and P and I drawing for 100-MWe commercial plant design, for all-sodium storage concept; (B) design data sheets and P and I drawing for 100-MWe commercial plant design, for air-rock bed storage concept; (C) electric power generating water-steam system P and I drawing and equipment list, 100-MWe commercial plant design; (D) design data sheets and P and I drawing for 281-MWe commercial plant design; (E) steam generator system conceptual design; (F) heat losses from solar receiver surface; (G) heat transfer and pressure drop for rock bed thermal storage; (H) a comparison of alternative ways of recovering the hydraulic head from the advanced solar receiver tower; (I) central receiver tower study; (J) a comparison of mechanical and electromagnetic sodium pumps; (K) pipe routing study of sodium downcomer; and (L) sodium-cooled advanced central receiver system simulation model. (WHK)

  4. Advanced Electroactive Single Crystal and Polymer Actuator Concepts for Passive Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision piezoelectric single crystal and electroactive polymer actuator concepts?HYBrid Actuation System (HYBAS)...

  5. Introduction to strategic research program “Advanced Technologies of Energy Generation” under which the Smart Grid concept is developed

    OpenAIRE

    Marek Laskowski; Michał Zabielski

    2016-01-01

    The paper presents a brief introduction to strategic programme “Advanced Technologies of Energy Generation”, under which Research Task 4. “Development of Integrated technologies for Production of Fuels and Energy from Biomass, Agricultural Waste and Other Materials” is implemented. The context justifies joining the task, its main objectives, management structure, and entities involved. Also justified is the inclusion of Smart Grid concept to the project scope.

  6. Introduction to strategic research program “Advanced Technologies of Energy Generation” under which the Smart Grid concept is developed

    Directory of Open Access Journals (Sweden)

    Marek Laskowski

    2016-01-01

    Full Text Available The paper presents a brief introduction to strategic programme “Advanced Technologies of Energy Generation”, under which Research Task 4. “Development of Integrated technologies for Production of Fuels and Energy from Biomass, Agricultural Waste and Other Materials” is implemented. The context justifies joining the task, its main objectives, management structure, and entities involved. Also justified is the inclusion of Smart Grid concept to the project scope.

  7. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M and S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for

  8. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Williams, Brian [Los Alamos National Laboratory; Mc Clure, Patrick [Los Alamos National Laboratory; Nelson, Ralph A [IDAHO NATIONAL LAB

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M&S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost

  9. Recent advances and design options of the aseismic bearing pad concept for reduction of seismic loading

    International Nuclear Information System (INIS)

    The intent of this paper is to: briefly review the developed concepts from a mechanics standpoint; summarize the results of recent testing and applications; discuss the complexities and subtleties of differences between concepts, and highlight the effectiveness of each within selected frequency ranges. On this basis, the paper will provide a forum for application of each concept within the nuclear design community. The potential licensing implications of incorporating the ABP concept into nuclear plant design are be discussed in light of actual experience extrapolated to several dominant regulatory processes; namely the French, German, Japanese, Canadian and American. The intent is to identify potential licensing issues, spur additional research and development in these areas, and continue to bring the concept to the attention of the nuclear community to facilitate acceptance and application. (orig./HP)

  10. Advanced Wind Turbine Drivetrain Concepts: Workshop Report, June 29-30, 2010

    Energy Technology Data Exchange (ETDEWEB)

    DOE, EERE

    2010-12-01

    This report presents key findings from the Department of Energy's Advanced Drivetrain Workshop, held on June 29-30, 2010 in Broomfield, Colorado, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  11. Human whole-body chemiluminescence in surgically treated subjects

    Czech Academy of Sciences Publication Activity Database

    Lojek, Antonín; Černý, J.; Číž, Milan; Vondráček, Jan; Dušková, Monika; Čížová, Hana; Němec, P.; Wagner, R.; Ničovský, J.

    Wroclaw : Polish Academy of Sciences, 1995 - (Kochel, B.; Podbielska, H.; Strek, W.), s. 24 [International Conference: Light and Biological Systems. Wroclaw (PL), 03.07.1995-06.07.1995] Keywords : chemiluminescence * phagocytes * heart surgery * transplantation

  12. Detection of peroxyacetyl nitrate in air using chemiluminescence aerosol detector

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Bružeňák, L.; Večeřa, Zbyněk

    2014-01-01

    Roč. 68, č. 11 (2014), s. 1482-1490. ISSN 0366-6352 Institutional support: RVO:68081715 Keywords : peroxyacetylnitrate * chemiluminescence * air Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.468, year: 2014

  13. Evaluation of glycophenotype in prostatic neoplasm by chemiluminescent assay

    OpenAIRE

    da Silva, Lúcia Patrícia Bezerra Gomes; Almeida, Sinara Mônica Vitalino; Lima, Luiza Rayanna Amorim; Cavalcanti, Carmelita de Lima Bezerra; Lira, Mariana Montenegro de Melo; da Silva, Maria da Paz Carvalho; Beltrão, Eduardo Isidoro Carneiro; Júnior, Luiz Bezerra de Carvalho

    2014-01-01

    This work aimed to evaluate the glycophenotype in normal prostate, bening prostatic hyperplasia (BPH) and prostatic adenocarcinoma (PCa) tissues by a chemiluminescent method. Concanavalin A (Con A), Ulex europaeus agglutinin (UEA-I) and Peanut agglutinin (PNA) lectins were conjugated to acridinium ester (lectins-AE). These conjugates remained capable to recognize their specific carbohydrates. Tissue samples were incubated with lectins-AE. The chemiluminescence of the tissue-lectin-AE complex ...

  14. Duct wall impedance control as an advanced concept for acoustic impression

    Science.gov (United States)

    Dean, P. D.; Tester, B. J.

    1975-01-01

    Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.

  15. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly report, April--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, D.P.

    1994-07-01

    The primary objective of this research project is the direct production of elemental sulfur during the regeneration of known high temperature desulfurization sorbents. The contract was awarded to LSU on April 12, 1994, and this quarterly report covers accomplishments during the first 2 1/2 months of the project. Effort during the initial 2 1/2 month period has been limited to Tasks 1 and 2, and involves a search of the literature to identify concepts for producing elemental sulfur during regeneration of known metal oxide sorbents and a thermodynamic evaluation of these concepts. While searching and evaluating the literature is a continuing process, concentrated effort on that phase is now complete and a detailed summary is included in this report. Three possible concepts for the direct production of elemental sulfur were identified in the LSU proposal, and the literature search has not uncovered any additional concepts. Thus, the three concepts being investigated involve: (1) regeneration with SO{sub 2}, (2) regeneration with mixtures Of 02 and H{sub 2}O, and (3) regeneration with H{sub 2}O. While concept (3) directly produces H{sub 2}S instead of elemental sulfur, the concept is included because the possibility exists for converting H{sub 2}S to elemental sulfur using the Claus process. Each of the concepts will ultimately be compared to the Direct Sulfur Recovery Process (DSRP) under development by RTI. DSRP involves initial sorbent regeneration to SO{sub 2}, and the inclusion of additional processing steps to reduce the SO{sub 2} to elemental sulfur.

  16. Advanced Concepts of the Propulsion System for the Futuristic Gun Ammunition

    OpenAIRE

    R.S. Darnse; Amarjit Singh

    2003-01-01

    This review paper reports various concepts of the gun propulsion system to meet the goal of the futuristic hypervelocity projectiles. The nonconventional concepts, such as liquid gun propellant, rail gun, coil gun, electrothermal gun, electrothermal chemical gun along with conventional energetic solid gun propellant have been discussed. Even though muzzle velocity around 2000 m/s has been claimed to be achieved using such nonconventional propulsion systems, it will take quite some time before...

  17. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  18. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    International Nuclear Information System (INIS)

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e+3- linear colliders

  19. A novel glucose chemiluminescence biosensor based on a rhodanine derivative chemiluminescence system and multilayer-enzyme membrane

    OpenAIRE

    YU, JINGHUA; Ge, Lei; Dai, Ping; Zhang, Congcong

    2010-01-01

    Using glucose oxidase as a model enzyme, a novel rhodanine derivative chemiluminescence biosensor for the determination of glucose was formed based on multilayer-enzyme membrane as receptor, which was assembled via layer-by-layer assembly of sol-gel and glucose oxidase-gold nano-particles inside a glass tube. Compared with the traditional chemiluminescence biosensor, the proposed biosensor had some remarkable advantages, such as good selectivity of substrate, good response performance...

  20. Evaluating the Effects of Dimensionality in Advanced Avionic Display Concepts for Synthetic Vision Systems

    Science.gov (United States)

    Alexander, Amy L.; Prinzel, Lawrence J., III; Wickens, Christopher D.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.

    2007-01-01

    Synthetic vision systems provide an in-cockpit view of terrain and other hazards via a computer-generated display representation. Two experiments examined several display concepts for synthetic vision and evaluated how such displays modulate pilot performance. Experiment 1 (24 general aviation pilots) compared three navigational display (ND) concepts: 2D coplanar, 3D, and split-screen. Experiment 2 (12 commercial airline pilots) evaluated baseline 'blue sky/brown ground' or synthetic vision-enabled primary flight displays (PFDs) and three ND concepts: 2D coplanar with and without synthetic vision and a dynamic multi-mode rotatable exocentric format. In general, the results pointed to an overall advantage for a split-screen format, whether it be stand-alone (Experiment 1) or available via rotatable viewpoints (Experiment 2). Furthermore, Experiment 2 revealed benefits associated with utilizing synthetic vision in both the PFD and ND representations and the value of combined ego- and exocentric presentations.

  1. Some advanced concepts of mobile robotics for plant inspection and maintenance

    International Nuclear Information System (INIS)

    The paper introduces two concepts in robotics the feasibility of which are presently being studied for plant inspection/maintenance purposes. One of them is a walking machine platform which utilizes walking on discrete set of points making it possible to feed energy trough legs and/or grip on fixing points when needing strong support or climbing on walls. The other is a robot society concept in which the work is distributed among the member robots of the society. The society has an inner communication system trough which information is spread between the members. The control system of the society takes care of the task coordination and communication between the society and the user. As a special feature energy distribution within the society is considered. The concept is suggested for inspection and cleaning type of work in process equipment area and also inside processes in some cases. (author)

  2. Development of Proof-of-Concept Units for the Advanced Medium-Sized Mobile Power Sources (AMMPS) Program

    Energy Technology Data Exchange (ETDEWEB)

    Andriulli, JB

    2002-04-03

    The purpose of this report is to document the development of the proof-of-concept units within the Advanced Medium-sized Mobile Power Sources (AMMPS) program. The design used a small, lightweight diesel engine, a permanent magnet alternator, power electronics and digital controls as outlined in the philosophy detailed previously. One small proof-of-concept unit was completed and delivered to the military. The unit functioned well but was not optimized at the time of delivery to the military. A tremendous amount of experience was gained during this phase that can be used in the development of any follow-on AMMPS production systems. Lessons learned and recommendations for follow-on specifications are provided. The unit demonstrated that significant benefits are possible with the new design philosophy. Trade-offs will have to be made but many of the advantages appear to be within the technical grasp of the market.

  3. Design and fabrication of an advanced, lightweight, high stiffness, railgun barrel concept

    International Nuclear Information System (INIS)

    An advanced lightweight and high stiffness railgun barrel design and incorporates several new design features and advanced materials is being developed by SPARTA, Inc. The program is sponsored by the U.S. Army Armament Research, Development, and Engineering Center ARDEC and by the Defense Advanced Research Projects Agency (DARPA). The railgun is 7 m long and has a 90 mm round bore. It is designed to accommodate both solid and plasma armatures. Muzzle energies are expected in the range of 9 to 15 MJ. Analysis and final design has been completed and the barrel and other railgun subassemblies are in the fabrication stage at SPARTA, Inc. in San Diego, California. Initial testing will be conducted at Maxwell Laboratories Green Farm facility in September 1990 and will subsequently be shipped to the ARDEC Railgun Laboratory in October 1990 for full power operation and testing. This paper discusses the design features and fabrication approaches for this high performance, lightweight railgun barrel system

  4. Concept of advanced back-up control panel design of digital control room

    International Nuclear Information System (INIS)

    Back-up control panel (BCP) of digital main control room (DMCR) is the back-up means for main computerized control means (MCM). This paper focus on technical issues for advanced design of back-up panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. Human factors engineering (HFE) issues also have been considered in the BCP design. Then, as the mean to fulfill safety target of nuclear power plant (NPP), an ideal ergonomic design method is exploited for advanced BCP design. (author)

  5. Concept of Advanced Back-up Control Panel Design of Digital Main Control Room

    International Nuclear Information System (INIS)

    Back-up control panel (BCP) of digital main control room (DMCR) is the backup means for main computerized control means (MCM). This paper focus on technical issues for advanced design of Backup Panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. HFE issues also have been considered in the BCP design. Then, mean to fulfill safety target of NPP, best ergonomic effect has been described. At last conclusion on advanced BCP design is provided

  6. Teaching Pediatric Nursing Concepts to Non-Pediatric Nurses Using an Advance Organizer

    Science.gov (United States)

    Bell, Julie Ann

    2013-01-01

    Non-pediatric nurses in rural areas often care for children in adult units, emergency departments, and procedural areas. A half-day program about pediatric nursing using constructivist teaching strategies including an advance organizer, case studies, and simulation was offered at a community hospital in Western North Carolina. Nurses reported a…

  7. Advanced and Innovative Reactor Concept Designs, Associated Objectives and Driving Forces

    International Nuclear Information System (INIS)

    Advanced and innovative options for fast reactors are presented through a short selection of recent publications at international conferences. Driving forces and major trends are analysed to give a comprehensive overview of the various existing projects and supportive R and D. (author)

  8. Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors

    Directory of Open Access Journals (Sweden)

    Honglan Qi

    2009-01-01

    Full Text Available Electrogenerated chemiluminescence (also called electrochemiluminescence and abbreviated ECL involves the generation of species at electrode surfaces that then undergo electron-transfer reactions to form excited states that emit light. ECL biosensor, combining advantages offered by the selectivity of the biological recognition elements and the sensitivity of ECL technique, is a powerful device for ultrasensitive biomolecule detection and quantification. Nanomaterials are of considerable interest in the biosensor field owing to their unique physical and chemical properties, which have led to novel biosensors that have exhibited high sensitivity and stability. Nanomaterials including nanoparticles and nanotubes, prepared from metals, semiconductor, carbon or polymeric species, have been widely investigated for their ability to enhance the efficiencies of ECL biosensors, such as taking as modification electrode materials, or as carrier of ECL labels and ECL-emitting species. Particularly useful application of nanomaterials in ECL biosensors with emphasis on the years 2004-2008 is reviewed. Remarks on application of nanomaterials in ECL biosensors are also surveyed.

  9. Photoinduced chemiluminescence determination of carbamate pesticides.

    Science.gov (United States)

    Catalá-Icardo, M; Meseguer-Lloret, S; Torres-Cartas, S

    2016-05-11

    A liquid chromatography method with post-column photoinduced chemiluminescence (PICL) detection is proposed for the simultaneous determination of eight carbamate pesticides, namely aldicarb, butocarboxim, ethiofencarb, methomyl, methiocarb, thiodicarb, thiofanox and thiophanate-methyl. After chromatographic separation, quinine (sensitizer) was incorporated and the flow passed through an UV lamp (67 s of irradiation time) to obtain the photoproducts, which reacted with acidic Ce(iv) and provided a CL emission. The PICL method showed great selectivity for carbamate pesticides containing sulphur in their chemical structure. A solid-phase extraction process increased sensitivity (LODs ranging from 0.06 to 0.27 ng mL(-1)) and allowed the carbamate pesticides in surface and ground water samples to be determined, with recoveries in the range 87-110% (except for thiophanate-methyl, whose recoveries were between 60 and 75%). The intra- and inter-day precision was evaluated, with RSD ranging from 1.1 to 7.5% and from 2.6 to 12.3%, respectively. A discussion about the PICL mechanism is also included. PMID:27079156

  10. Advanced Concepts of the Propulsion System for the Futuristic Gun Ammunition

    Directory of Open Access Journals (Sweden)

    R.S. Darnse

    2003-10-01

    Full Text Available This review paper reports various concepts of the gun propulsion system to meet the goal of the futuristic hypervelocity projectiles. The nonconventional concepts, such as liquid gun propellant, rail gun, coil gun, electrothermal gun, electrothermal chemical gun along with conventional energetic solid gun propellant have been discussed. Even though muzzle velocity around 2000 m/s has been claimed to be achieved using such nonconventional propulsion systems, it will take quite some time before such systems are in regular use in the battlefield. Hence, solid gun propellants containing novel energetic ingredients (binders, plasticisers, and oxidisers would continue to be used in the near future and are expected to meet the requirements of the futuristic gun ammunition.

  11. Advanced atomization concept for CWF burning in small combustors, Phase 2. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Heaton, H.L.

    1991-12-01

    The program describes a concept referred to as opposed-jet atomization, which is particularly applicable to coal-water fuel (CWF). In the present atomizer design, two opposed jets of CWF are directed at each other and externally encounter a perpendicular blast of air at the collision point to create a spray of much finer droplets. The present Phase 2 program involved further evaluation of the opposed-jet atomizer performance and related tasks.

  12. Advanced atomization concept for CWF burning in small combustors, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Heaton, H.L.

    1991-12-01

    The program describes a concept referred to as opposed-jet atomization, which is particularly applicable to coal-water fuel (CWF). In the present atomizer design, two opposed jets of CWF are directed at each other and externally encounter a perpendicular blast of air at the collision point to create a spray of much finer droplets. The present Phase 2 program involved further evaluation of the opposed-jet atomizer performance and related tasks.

  13. Artist concept computer graphic of Lockheed Martin X-33 Advance Technology Demonstrator vehicle in f

    Science.gov (United States)

    1998-01-01

    An artist's conception of the X-33 in flight, with the aerospike engine firing. The X-33 demonstrator was designed to test a wide range of new technologies (including the aerospike engine), that would be used in a future single-stage-to-orbit reusable launch vehicle called the VentureStar. Due to technical problems with the liquid hydrogen tank, however, the X-33 program was cancelled in February 2001.

  14. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    Science.gov (United States)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-01-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers…

  15. Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes.

    Science.gov (United States)

    Liu, Xiaoqing; Freeman, Ronit; Golub, Eyal; Willner, Itamar

    2011-09-27

    The incorporation of hemin into the thrombin/G-quadruplex aptamer assembly or into the ATP/G-quadruplex nanostructure yields active DNAzymes that catalyze the generation of chemiluminescence. These catalytic processes enable the detection of thrombin and ATP with detection limits corresponding to 200 pM and 10 μM, respectively. The conjugation of the antithrombin or anti-ATP aptamers to CdSe/ZnS semiconductor quantum dots (QDs) allowed the detection of thrombin or ATP through the luminescence of the QDs that is powered by a chemiluminescence resonance energy-transfer (CRET) process stimulated by the hemin/G-quadruplex/thrombin complex or the hemin/G-quadruplex/ATP nanostructure, in the presence of luminol/H(2)O(2). The advantages of applying the CRET process for the detection of thrombin or ATP, by the resulting hemin/G-quadruplex DNAzyme structures, are reflected by low background signals and the possibility to develop multiplexed aptasensor assays using different sized QDs. PMID:21866963

  16. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystems Concepts. Volume 3; Program Cost Estimates

    Science.gov (United States)

    Levack, Daniel J. H.

    2000-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.

  17. Advanced storage concepts for solar thermal systems in low energy buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Andersen, Elsa; Schultz, Joergen M.

    2006-04-07

    The aim of Task 32 is to develop new and advanced heat storage systems which are economic and technical suitable as long-term heat storage systems for solar heating plants with a high degree of coverage. The project is international and Denmark's participation has focused on Subtask A, C, and D. In Subtask A Denmark has contributed to a status report about heat storage systems. In Subtask C Denmark has focused on liquid thermal storage tanks based on NaCH{sub 3}COO?3H{sub 2}O with a melting point of 58 deg. C. Theoretical and experimental tests have been conducted in order to establish optimum conditions for storage design. In Subtask D theoretical and experimental tests of optimum designs for advanced water tanks for solar heating plants for combined space heating and domestic hot water have been conducted. (BA)

  18. Advanced fuel cycle scenario study in the European context using different burner reactor concepts

    International Nuclear Information System (INIS)

    Different types of fast spectrum dedicated burners have been proposed for the management of radioactive wastes in the frame of various advanced fuel cycle scenarios. Accelerator-driven systems (ADS) and critical low conversion ratio fast reactors have been studied, e.g. within the European context. A potential alternative system is a fusion-fission hybrid (FFH). In the present study, a sodium-cooled fast reactor driven by a D-T fusion neutron source, the subcritical advanced burner reactor (SABR) system is considered. In order to intercompare the different systems, a systematic study is under way. The performances of the two types of systems (SABR, ADS) will be compared from a minor actinide (MA) or transuranic (i.e. Pu+MA) burning potential point of view. The present paper reports preliminary results of the first phase of study, i.e. the comparison of SABR and ADS when used as minor actinides burners. (authors)

  19. Chemiluminescence from alkoxy-substituted acridinium dimethylphenyl ester labels.

    Science.gov (United States)

    Natrajan, Anand; Sharpe, David; Wen, David

    2012-05-01

    Chemiluminescent acridinium dimethylphenyl ester labels are used in automated immunoassays for clinical diagnostics. Light emission from these labels is triggered by alkaline peroxide in the presence of the cationic surfactant cetyltrimethylammonium chloride (CTAC). The surfactant plays a critical role in the chemiluminescence process of these labels by both accelerating their emission kinetics and increasing total light output enabling high throughout and improved assay sensitivity in automated immunoassays. Despite the surfactant's crucial role in the chemiluminescent reaction, no study has investigated how structural perturbations in the acridinium ring could impact the influence of the surfactant. We describe herein the synthesis and properties of three new alkoxy-substituted, acridinium dimethylphenyl esters where the nature of the alkoxy group in the acridinium ring was varied (hydrophobic or hydrophilic). Chemiluminescence measurements of these alkoxy-substituted labels indicate that hydrophilic functional groups in the acridinium ring, in particular sulfobetaine zwitterions, disrupt surfactant-mediated compression of emission times but not enhancement of light yield. These results support the hypothesis that surfactant-mediated effects require the binding of two different reaction intermediates to surfactant aggregates and, that surfactants influence light emission from acridinium esters by two separate mechanisms. Our studies also indicate that preservation of both surfactant effects on acridinium ester chemiluminescence and low non-specific binding of the label can be achieved with a relatively hydrophobic acridinium ring coupled to a hydrophilic phenolic ester leaving group. PMID:22441905

  20. STAR-GENERIS: A software concept for advanced information presentation of future operator aids

    International Nuclear Information System (INIS)

    Man-machine communication in power plants is increasingly relying on improved information quality provided by computerized operator support systems. It could be demonstrated that the different plant functions can be represented by one advanced software programme package, the STAR-GENERIS. The specific applications now under development include: symptom-oriented display of disturbed plant situation, post-trip analysis, integrated disturbance analysis, alarm reduction, and status surveillance of components and plant systems. (author). 2 figs

  1. Luminol-potassium permanganate chemiluminescence system for the determination of three anthracycline antibiotics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Objective To establish a flow-injection chemiluminescence method for the determination of doxorubicin,epirubicin and mitoxantrone and study its reaction mechanism.Methods In alkaline medium,chemiluminescence of luminol-potassium permanganate system could be inhibited obviously by anthracycline antibiotics.Combined with flow-injection technique,a new chemiluminescence method for determining the anthracycline antibiotics was set up.The chemiluminescence mechanism of the luminol-potassium permanganate system w...

  2. Advanced atomization concept for CWF burning in small combustors: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.; McHale, E.

    1991-01-01

    The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the single most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of a prototype opposed-jet atomizer that met the goals of the first contract.

  3. Advanced and innovative wind energy concept development: Dynamic inducer system, executive summary

    Science.gov (United States)

    Lissaman, P. B. S.; Zalay, A. D.; Hibbs, B. H.

    1981-05-01

    Concepts to improve the technical and economic performance of wind energy conversion systems (WECS) were examined. One technique for improving the cost-effectiveness of WECS is the use of tip vanes. Tip vanes are small airfoils attached approximately at right angles to the rotor tips with their span oriented approximately parallel to the local freestream. The performance benefits of the dynamic inducer tip vane system were demonstrated Tow-tests conducted on a three-bladed, 3.6-meter diameter rotor show that a dynamic inducer can achieve a power coefficient of 0.5, which exceeds that of a plain rotor by about 35%.

  4. Safety physics inter-comparison of advanced concepts of critical reactors and ADS

    International Nuclear Information System (INIS)

    Enhanced safety based on the principle of the natural ''self-defence'' is one of the most desirable features of innovative nuclear systems (critical or sub-critical) regarding both TRU transmutation and ''clean'' energy producer concepts. For the evaluation of the ''self-defence'' domain, the method of the asymptotic reactivity balance has been generalised. The promising option of Hybrids systems (that use a symbiosis of fission and spallation in sub-critical cores) which could benefit the advantages of both Accelerated Driven Systems of the traditional type and regular critical systems, has been advocated. General features of Hybrid dynamics have been presented and analysed. It was demonstrated that an external neutron source of Hybrids can expand the inherent safety potential significantly. This analysis has been applied to assess the safety physics potential of innovative concepts for prospective nuclear power both for energy producers and for transmutation. It has been found, that safety enhancement goal defines a choice of sub-criticality of Hybrids. As for energy producers with Th-fuel cycle, a significant sub-criticality level is required due to a necessity of an improvement of neutronics together with safety enhancement task. (author)

  5. Design features of BREST reactors and experimental work to advance the concept of BREST reactors

    International Nuclear Information System (INIS)

    Principle design features of BREST-300 (300 MWe) and BREST-1200 (1200 MWe) lead.cooled fast reactors are presented in this paper. Several experimental works have been performed or under way in order to justify lead-cooled reactor design concepts. BREST reactor designs of different outputs have been developed using the same principles. In conjunction with the increased output and the implement of inherent safety concept, a number of new solutions, which may be applied to the BREST-300 reactor design too, have been considered in the BREST-1200 reactor design. The new design features adopted in the BREST-1200 reactor design include: pool-type reactor design not requiring metal vessel, hence, not limiting reactor power; new handling system allowing to reduce central hall and building dimensions as a whole; emergency cooling system using field pipes, immersed directly in lead, which may be used to cool down reactor under normal conditions; by--pass line incorporated in coolant loop allowing to refuse the actively actuating valve initiated in pumps shut down. (author)

  6. Safety physics inter-comparison of advanced concepts of critical reactors and ADS

    Energy Technology Data Exchange (ETDEWEB)

    Slessarev, I. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs

    2001-07-01

    Enhanced safety based on the principle of the natural ''self-defence'' is one of the most desirable features of innovative nuclear systems (critical or sub-critical) regarding both TRU transmutation and ''clean'' energy producer concepts. For the evaluation of the ''self-defence'' domain, the method of the asymptotic reactivity balance has been generalised. The promising option of Hybrids systems (that use a symbiosis of fission and spallation in sub-critical cores) which could benefit the advantages of both Accelerated Driven Systems of the traditional type and regular critical systems, has been advocated. General features of Hybrid dynamics have been presented and analysed. It was demonstrated that an external neutron source of Hybrids can expand the inherent safety potential significantly. This analysis has been applied to assess the safety physics potential of innovative concepts for prospective nuclear power both for energy producers and for transmutation. It has been found, that safety enhancement goal defines a choice of sub-criticality of Hybrids. As for energy producers with Th-fuel cycle, a significant sub-criticality level is required due to a necessity of an improvement of neutronics together with safety enhancement task. (author)

  7. Advanced Concepts and Controversies in Emergency Department Pain Management.

    Science.gov (United States)

    Motov, Sergey M; Nelson, Lewis S

    2016-06-01

    Pain is the most common complaint for which patients come to the emergency department (ED). Emergency physicians are responsible for pain relief in a timely, efficient, and safe manner in the ED. The improvement in our understanding of the neurobiology of pain has balanced the utilization of nonopioid and opioid analgesia, and simultaneously has led to more rational and safer opioid prescribing practices. This article reviews advances in pain management in the ED for patients with acute and chronic pain as well as describes several newer strategies and controversies. PMID:27208710

  8. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  9. Studies on the mechanism of the peroxyoxalate chemiluminescence reaction

    International Nuclear Information System (INIS)

    Further consideration has been given to the reaction pathway of a model peroxyoxalate chemiluminescence system. Again utilising doubly labelled oxalyl chloride and anhydrous hydrogen peroxide, 2D EXSY 13C nuclear magnetic resonance (NMR) spectroscopy experiments allowed for the characterisation of unknown products and key intermediate species on the dark side of the peroxyoxalate chemiluminescence reaction. Exchange spectroscopy afforded elucidation of a scheme comprised of two distinct mechanistic pathways, one of which contributes to chemiluminescence. 13C NMR experiments carried out at varied reagent molar ratios demonstrated that excess amounts of hydrogen peroxide favoured formation of 1,2-dioxetanedione: the intermediate that, upon thermolysis, has been long thought to interact with a fluorophore to produce light

  10. Microfluidic device capable of sensing ultrafast chemiluminescence.

    Science.gov (United States)

    Kim, Young-Teck; Ko, Seok Oh; Lee, Ji Hoon

    2009-05-15

    Based on the principle of liquid core waveguide, a novel microfluidic device with micro-scale detection window capable of sensing flashlight emitted from rapid 1,1'-oxalyldi-4-methylimidazole (OD4MI) chemiluminescence (CL) reaction was fabricated. Light emitted from OD4MI CL reaction occurring in the micro-dimensional pentagonal detection window (length of each line segment: 900.0 microm, depth: 50.0 microm) of the microfluidic device with two inlets and one outlet was so bright that it was possible to take an image every 1/30 s at the optimal focusing distance (60 cm) using a commercial digital camera. Peaks obtained using a flow injection analysis (FIA) system with the micro-scale detection window and OD4MI CL detection show excellent resolution and reproducibility without any band-broadening observed in analytical devices having additional reaction channel(s) to measure light generated from slow CL reaction. Maximum height (H(max)) and area (A) of peak, reproducibility and sensitivity observed in the FIA system with the microfluidic device and OD4MI CL detection depends on (1) the mole ratio between bis(2,4,6-trichlorophenyl) oxalate and 4-methyl imidazole yielding OD4MI, (2) the flow rate to mix OD4MI, H(2)O(2) and 1-AP in the detection window of the microfluidic device, and (3) H(2)O(2) concentration. We obtained linear calibration curves with wide dynamic ranges using H(max) and A. The detection limit of 1-AP determined with H(max) and A was as low as 0.05 fmole/injection (signal/background=3.0). PMID:19269463

  11. Advanced Concepts for Ultrahigh Brightness and Low Temperature Beams. Final Report

    International Nuclear Information System (INIS)

    This grant supported research on techniques to manipulate and combine positrons and antiprotons to synthesize, and to probe, antihydrogen. The majority of the research was conducted as part of the ALPHA Collaboration at CERN. Using ideas and techniques from accelerator physics, we proposed a new method for measuring the the gravitational attraction of antihydrogen to the Earth's field. ALPHA reported the first precision charge measurement on antihydrogen and a crude bound on its gravitational dynamics in the Earth's field. We proposed using a stochastic acceleration method to measure any putative charge of antihydrogen and built numerical models of the mixing of antiprotons and positrons. Further research included proposing the radiator-first concept for operating an X-ray free electron laser driven by a high repetition rate bunch source and studying scattering in passive foil-based ion focusing systems.

  12. Advanced Concepts for Ultrahigh Brightness and Low Temperature Beams. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan S. [Univ. of California, Berkeley, CA (United States); Fajans, Joel [Univ. of California, Berkeley, CA (United States)

    2015-06-01

    This grant supported research on techniques to manipulate and combine positrons and antiprotons to synthesize, and to probe, antihydrogen. The majority of the research was conducted as part of the ALPHA Collaboration at CERN. Using ideas and techniques from accelerator physics, we proposed a new method for measuring the the gravitational attraction of antihydrogen to the Earth's field. ALPHA reported the first precision charge measurement on antihydrogen and a crude bound on its gravitational dynamics in the Earth's field. We proposed using a stochastic acceleration method to measure any putative charge of antihydrogen and built numerical models of the mixing of antiprotons and positrons. Further research included proposing the radiator-first concept for operating an X-ray free electron laser driven by a high repetition rate bunch source and studying scattering in passive foil-based ion focusing systems.

  13. Carbon honeycomb grids for advanced lead-acid batteries. Part I: Proof of concept

    Science.gov (United States)

    Kirchev, Angel; Kircheva, Nina; Perrin, Marion

    2011-10-01

    The carbon honeycomb grid is proposed as innovative solution for high energy density lead acid battery. The proof of concept is demonstrated, developing grids suitable for the small capacity, scale of valve-regulated lead acid batteries with 2.5-3 Ah plates. The manufacturing of the grids, includes fast, known and simple processes which can be rescaled for mass production with a minimum, investment costs. The most critical process of green composite carbonisation by heating in inert, atmosphere from 200 to 1000 °C takes about 5 h, guaranteeing the low cost of the grids. An AGM-VRLA, cell with prototype positive plate based on the lead-2% tin electroplated carbon honeycomb grid and, conventional negative plates is cycled demonstrating 191 deep cycles. The impedance spectroscopy, measurements indicate the grid performance remains acceptable despite the evolution of the corrosion, processes during the cycling.

  14. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747

    Science.gov (United States)

    1980-01-01

    The feasibility of applying wing tip extensions, winglets, and active control wing load alleviation to the Boeing 747 is investigated. Winglet aerodynamic design methods and high speed wind tunnel test results of winglets and of symmetrically deflected ailerons are presented. Structural resizing analyses to determine weight and aeroelastic twist increments for all the concepts and flutter model test results for the wing with winglets are included. Control law development, system mechanization/reliability studies, and aileron balance tab trade studies for active wing load alleviation systems are discussed. Results are presented in the form of incremental effects on L/D, structural weight, block fuel savings, stability and control, airplane price, and airline operating economics.

  15. More Than Pretty Pictures: How Translating Science Concepts into Pictures Advances Scientific Thinking

    Science.gov (United States)

    Frankel, Felice

    2010-02-01

    The judgment and decision-making required to render science visual clarifies thinking. One must decide on a hierarchy of information--what must be included and what might be left out? What is the main point of the visual? Just as in writing an article or responding to an essay question, we must understand and then plan what we want to ``say'' in a drawing or other forms of representation. And since a visual representation of a scientific concept (or data) is a re-presentation, and not the thing itself, interpretation or translation is involved. The process tends to transcend barriers of linguistic facility and educational background; it attracts and communicates students and teachers of all backgrounds, where other methods intimidate. The rendered images are, in essence More Than Pretty Pictures. )

  16. Palliative radiotherapy. Ranking within an interdisciplinary treatment concept in case of advanced tumor disease

    International Nuclear Information System (INIS)

    Many tumor-induced symptoms can be alleviated by suitable irradiation in a direct, effective and sparing manner. The clinical response amounts to 80% and is independent of tumor histology. Careful diagnosis and accurate localisation of the causes of symptoms as well as exact therapy planning and execution are required. Based on individual dose planning harmonising single dosis and total dosis, pin-pointed definition of target areas, and application of modern planning and irradiation techniques, palliative radiotherapy is able to achieve long-term improvement with neglectible side-effects, sometimes within only a few days or weeks. It is a valuable part of a consistant therapy concept that is tailored to the individual needs of a patient, by cooperative action of experts from a variety of medical disciplines, intended to optimize the quality of life of patients, and sometimes may exclude conventional radiotherapy. (orig./CB)

  17. DNA imaging and quantification using chemi-luminescent probes

    International Nuclear Information System (INIS)

    During this interdisciplinary study we have developed an ultra sensitive and reliable imaging system of DNA labelled by chemiluminescence. Based on a liquid nitrogen cooled CCD, the system achieves sensitivities down to 10 fg/mm2 labelled DNA over a surface area of 25 x 25 cm2 with a sub-millimeter resolution. Commercially available chemi-luminescent - and enhancer molecules are compared and their reaction conditions optimized for best signal-to-noise ratios. Double labelling was performed to verify quantification with radioactive probes. (authors)

  18. Advanced and innovative reactor concept designs, associated objectives and driving forces

    International Nuclear Information System (INIS)

    Before deployment on an industrial and commercial basis, innovative components features and designs have to be developed and qualified: For the general design, the loop concept is investigated in Japan while other countries focus on the pool concept. Simplification of design will be needed to meet economical objectives. As for the fuel, oxide fuel has more feedback experience, but metal fuel is studied mainly because of its performances with regards to the breeding ratio as well as with regards to possibly simpler manufacturing process. Carbide fuel is also under consideration because of its high density, its high fusion temperature and good thermal conductivity. Fuel development should take into account manufacturing processes (remote handling in case of minor actinide presence), behaviour under irradiation in normal and accidental conditions, and compatibility with treatment processes. Safety, especially behaviour under severe accidental conditions should be a field of major progress. Re-criticality should be well mastered. In support of safety, in service inspection and repair has to be improved to cope with the issues of sodium opacity and temperature of cold shutdown. Energy conversion leads to the study of steam generators more resistant with regards to water-sodium reaction, or to the use of supercritical CO2 enabling higher yields. Treatment and recycling are part of the system; hydro-metallurgical processes have reached an industrial level, and are being further investigated for additional improvements regarding minor actinide separation and non proliferation. Pyro-metallurgical processes are considered for metal fuels. Proliferation resistance, like safety, should offer high guarantee levels in order to meet sustainable development targets. Apart from national R and D programs that support all new projects, there exist international collaboration structures: - The Generation IV International Forum (GIF), which aims at performing R and D on 4th generation

  19. Heat-Pipe Development for Advanced Energy Transport Concepts Final Report Covering the Period January 1999 through September 2001

    Energy Technology Data Exchange (ETDEWEB)

    R.S.Reid; J.F.Sena; A.L.Martinez

    2002-10-01

    This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodium heat pipe to the penetration of water.

  20. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The aims of this research program are to advance to bench-scale testing, concepts that have the potential for making net reductions in direct coal liquefaction process costs. The research involves a teaming arrangement between the University of Kentucky Center for Applied Energy Research (CAER), Consolidation Coal Company (CONSOL), Sandia National Laboratories (SNL), and LDP Associates. Progress reports are presented for: Task 2.1.1 development of a catalyst screening test (UK/CAER); Task 2.1.2 activation of impregnated catalysts (UK/CAER); Task 2.2 laboratory support (CONSOL); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.) and; Task 4.4 conceptual design, preliminary technical assessment (LDP Associates).

  1. Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Science.gov (United States)

    Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.

    1989-01-01

    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.

  2. Advanced target concepts for production of radioactive ions and neutrino beams

    International Nuclear Information System (INIS)

    The 1-20 MW of proton beam power which modern accelerator technology put at our disposal for production of intense secondary beams presents a major technically challenge to the production targets. A conceptual design is presented for a high power pion production target and collection system, which was originally suggested to be used as the source for the proposed CERN muon-neutrino factory. It will be shown that the major parts of this target could also serve as an efficient spallation neutron source for production of 6He and fission products in the two-step converter target concept. The heart of the system consists of a free surface mercury jet with a high axial velocity, which allows the heat to be carried away efficiently from the production region. For the neutrino factory the secondary pions are collected and injected into the pion decay channel by means of a magnetic horn. For the radioactive ion-beam facility the Hg-jet is surrounded by the high-temperature isotope separator on-line (ISOL) production target. The suggested mechanical layout and technical parameters of the Hg-jet, ISOL target, horn and cooling system are discussed. The critical issues are identified and a description of the R and D program designed to provide experimental proof of the principle as well as providing engineering parameters is given

  3. Advanced atomization concept for CWF (coal-water fuel) burning in small combustors

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Heaton, H.L.; Lippold, J.H. Jr.

    1989-09-01

    Atlantic Research has undertaken a program to design, fabricate and test this new concept in coal-water fuel atomizers. The device employs two diametrically opposed jets of CWF which impinge on each other at high velocity. An air blast is directed at the impact zone of the two jets and the resulting high energy collision of all streams serves to break up the slurry fuel into fine droplets which are then directed by the air blast into the combustion zone. Prototypes of this atomizer have been built and tested under cold flow conditions using both water and CWF sprays. Based on the cold flow result with the prototypes, an atomizer has been fabricated for installation in a 1 MMBTU/H research tunnel-type'' furnace. A comprehensive testing program was conducted to evaluate the atomizer under firing conditions. The parameters covered in the test plan included CWF firing rate, atomizing air pressure, secondary air preheat temperature, secondary air diffuser design, CWF viscosity and solid content, CWF preheat temperature, and coal type. The effects of these parameters on combustion efficiency have been determined. 3 refs., 20 figs., 26 tabs.

  4. Advanced atomization concept for CWF burning in small combustors, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.; McHale, E.

    1991-01-01

    The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the single most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of a opposed-jet atomizer (described below) that met the goals of the first contract. Progress was made on Tasks 1, 2, 3 and 7, involving set-up of the prototype atomizer and preliminary testing; designing and ordering the PETC atomizer; identifying and ordering the Parker-Hannifin atomizer; and producing the bituminous CWF (Fuel A), respectively. Work on Tasks 4, 5 and 6 is expected to begin next quarter. There has been a delay in acquiring two items for the program -- the Parker-Hannifin atomizer and the western bituminous coal for Fuel B. 1 fig.

  5. Computer-assisted generation of individual training concepts for advanced education in manufacturing metrology

    Science.gov (United States)

    Werner, Teresa; Weckenmann, Albert

    2010-05-01

    Due to increasing requirements on the accuracy and reproducibility of measurement results together with a rapid development of novel technologies for the execution of measurements, there is a high demand for adequately qualified metrologists. Accordingly, a variety of training offers are provided by machine manufacturers, universities and other institutions. Yet, for an interested learner it is very difficult to define an optimal training schedule for his/her individual demands. Therefore, a computer-based assistance tool is developed to support a demand-responsive scheduling of training. Based on the difference between the actual and intended competence profile and under consideration of amending requirements, an optimally customized qualification concept is derived. For this, available training offers are categorized according to different dimensions: regarding contents of the course, but also intended target groups, focus of the imparted competences, implemented methods of learning and teaching, expected constraints for learning and necessary preknowledge. After completing a course, the achieved competences and the transferability of gathered knowledge are evaluated. Based on the results, recommendations for amending measures of learning are provided. Thus, a customized qualification for manufacturing metrology is facilitated, adapted to the specific needs and constraints of each individual learner.

  6. Computer-assisted generation of individual training concepts for advanced education in manufacturing metrology

    International Nuclear Information System (INIS)

    Due to increasing requirements on the accuracy and reproducibility of measurement results together with a rapid development of novel technologies for the execution of measurements, there is a high demand for adequately qualified metrologists. Accordingly, a variety of training offers are provided by machine manufacturers, universities and other institutions. Yet, for an interested learner it is very difficult to define an optimal training schedule for his/her individual demands. Therefore, a computer-based assistance tool is developed to support a demand-responsive scheduling of training. Based on the difference between the actual and intended competence profile and under consideration of amending requirements, an optimally customized qualification concept is derived. For this, available training offers are categorized according to different dimensions: regarding contents of the course, but also intended target groups, focus of the imparted competences, implemented methods of learning and teaching, expected constraints for learning and necessary preknowledge. After completing a course, the achieved competences and the transferability of gathered knowledge are evaluated. Based on the results, recommendations for amending measures of learning are provided. Thus, a customized qualification for manufacturing metrology is facilitated, adapted to the specific needs and constraints of each individual learner

  7. Practical applications of safety culture concepts in human performance advances on Russian nuclear industry

    International Nuclear Information System (INIS)

    Sometimes, many from negative external factors can be compensated by human psychological readiness of worker. However there would be main worse to come: some cases of personnel activity and organisational factors, some person's peculiarities (attitudes, responsibility, etc.) add considerable number of the events at NPPs. A lot of aspects of Human Factor Reliability are united in Safety Culture concept. This paper presents some results of our recently research in that area. In 'proactive approach': Unique methods for measuring maturity and satisfaction of personnel motivation: comparative analysis of the labour and safety culture motivation from attitude; organization of the socio-psychological climate and safety attitude examining monitoring at all of Russia's NPPs; working-out recommendations for managers on improving human performance are presented. Besides, ergonomic research concerning work conditions at the NPP is displayed. In 'reactive approach': Analysis of the incorrect activity cases, which led to the breaches of work of the Russian NPPs, is shown. The special method to work-up is used. It was issue, that events caused by a human error, depends not only on the worker's professional competence, but on the attitude and motivation, some professionally important psychological and psycho-physiological quality data, the functional state, the group's socio-psychological climate, etc. (author)

  8. On-sun test results from second-generation and advanced-concepts alkali-metal pool-boiler receivers

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.B.; Andraka, C.E.; Moss, T.A.; Cordeiro, P.G.; Dudley, V.E.; Rawlinson, K.S.

    1994-05-01

    Two 75-kW{sub t} alkali-metal pool-boiler solar receivers have been successfully tested at Sandia National Laboratories` National Solar Thermal Test Facility. The first one, Sandia`s `` second-generation pool-boiler receiver,`` was designed to address commercialization issues identified during post-test assessment of Sandia`s first-generation pool-boiler receiver. It was constructed from Haynes alloy 230 and contained the alkali-metal alloy NaK-78. The absorber`s wetted side had a brazed-on powder-metal coating to stabilize boiling. This receiver was evaluated for boiling stability, hot- and warm-restart behavior, and thermal efficiency. Boiling was stable under all conditions. All of the hot restarts were successful. Mild transient hot spots observed during some hot restarts were eliminated by the addition of 1/3 torr of xenon to the vapor space. All of the warm restarts were also successful. The heat-transfer crisis that damaged the first receiver did not recur. Thermal efficiency was 92.3% at 750{degrees}C with 69.6 kW{sub t} solar input. The second receiver tested, Sandia`s ``advanced-concepts receiver,`` was a replica of the first-generation receiver except that the cavities, which were electric-discharge-machined in the absorber for boiling stability, were eliminated. This step was motivated by bench-scale test results that showed that boiling stability improved with increased heated-surface area, tilt of the heated surface from vertical, and added xenon. The bench-scale results suggested that stable boiling might be possible without heated-surface modification in a 75-kW{sub t} receiver. Boiling in the advanced-concepts receiver with 1/3 torr of xenon added has been stable under all conditions, confirming the bench-scale tests.

  9. CPV module design optimization for advanced multi-junction solar cell concepts

    Science.gov (United States)

    Steiner, Marc; Kiefel, Peter; Siefer, Gerald; Wiesenfarth, Maike; Dimroth, Frank; Krause, Rainer; Gombert, Andreas; Bett, Andreas W.

    2015-09-01

    A network model for multi-junction solar cells has been combined with ray tracing and finite element simulations of a Fresnel lens in order to interpret experimentally derived measurement results. This combined model reveals a good agreement between simulation and measurement for advanced four-junction solar cells under a Fresnel lens when the cell-to-lens distance was varied. Thus, the effect of fill factor drop caused by distributed series resistance losses due to chromatic aberration is well described by this model. Eventually, this model is used to calculate I-V characteristics of a four-junction cell, as well as of a upright metamorphic and lattice-matched triple-junction solar cell under the illumination profile of a Fresnel lens. A significant fill factor drop at distinct cell-to-lens distances was found for all three investigated solar cell types. In this work we discuss how this fill factor drop can be avoided. It is shown that already a halving of the sheet resistance within one of the lateral conduction layer in the solar cell increases the module efficiency significantly.

  10. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    International Nuclear Information System (INIS)

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  11. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andrew [Oregon State Univ., Corvallis, OR (United States). Nuclear Engineering and Radiation Health Physics; Matthews, Topher [Oregon State Univ., Corvallis, OR (United States); Lenhof, Renae [Oregon State Univ., Corvallis, OR (United States); Deason, Wesley [Oregon State Univ., Corvallis, OR (United States); Harter, Jackson [Oregon State Univ., Corvallis, OR (United States)

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  12. Advanced direct liquefaction concepts for PETC generic units: Phase 2. Quarterly technical progress report, July--September, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Advanced Direct Liquefaction Concepts Program sponsored by the DOE Pittsburgh Energy Technology Center was initiated in 1991 with the objective of promoting the development of new and emerging technology that has the potential for reducing the cost of producing liquid fuels by direct coal liquefaction. The laboratory research program (Phase I) was completed in 1995 by UK/CAER, CONSOL, Sandia National Laboratories and LDP Associates. A three year extension was subsequently awarded in October 1995 to further develop several promising concepts derived from the laboratory program. During Phase II, four continuous bench scale runs will be conducted at Hydrocarbon Technologies, Inc. using a 2 kg/hr continuous bench scale unit located at their facility in Lawrenceville, NJ. The first run in this program (ALC-1), conducted between April 19 and May 14, 1996, consisted of five test conditions to evaluate the affect of coal cleaning and recycle solvent modification. A detailed discussion of this run is included in Section Two of this report. Results obtained during this reporting period for all participants in this program are summarized.

  13. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume VIII. Advanced concepts

    International Nuclear Information System (INIS)

    The six advanced concepts for nuclear power systems that were selected for evaluation are: the fast mixed-spectrum reactor; the denatured molten-salt reactor; the mixed-flow gaseous-core reactor; the linear-accelerator fuel-regenerator reactor; the ternary metal-fueled electronuclear fuel-producer reactor; and the tokamak fusion-fission hybrid reactor. The design assessment was performed by identifying needs in six specific areas: conceptual plant design; reactor-physics considerations; fuel cycle alternatives; mechanical and thermal-hydraulic considerations; selection, development, and availability of materials; and engineering and operability. While none of the six concepts appears to be a credible commercial alternative to the liquid-metal fast-breeder within the Nonproliferation Alternative Systems Assessment Program horizon of 2025, there are a number of reasons for continued interest in the fast mixed-spectrum reactor: it is a once-through cycle fast reactor with proliferation risk characteristics similar to those of the light-water reactor; only about one-third as much uranium is required as for the once-through light-water reactor; the system will benefit directly from fast-breeder development programs; and, finally, the research and development required to develop the high-burnup metal fuel could benefit the on-going liquid-metal fast-breeder reactor program. Accordingly, a limited research and development effort on the high-burnup fuel seems justified, at present

  14. Quantum Mechanics: Fundamentals; Advanced Quantum Mechanics; Mathematical Concepts of Quantum Mechanics

    International Nuclear Information System (INIS)

    second book under consideration, that of Schwabl, contains 'Advanced' elements of quantum theory; it is designed for a course following on from one for which Gottfried and Yan, or Schwabl's own 'Quantum Mechanics' might be recommended. Many useful student problems are included. The presentation is said to be rigorous, but again this is a book for the physicist rather than the mathematician. The third book under consideration, that by Gustafson and Sigal is very different from the others. In academic level, at least the initial sections may actually be slightly lower; the book covers a one-term course taken by senior undergraduates or junior graduate students in mathematics or physics, and the initial chapters are on basic topics, such as the physical background, basic dynamics, observables and the uncertainty principle. However the level of mathematical sophistication is far higher than in the other books. While the mathematical prerequisites are modest, a third of the book is made up of what are called mathematical supplements. On the basis of these supplements, the level of mathematical sophistication and difficulty is increased substantially in the middle section of the book, where the topics considered are many-particle systems, density matrices, positive temperatures, the Feynman path integral, and quasi-classical analysis, and there is a final substantial step for the concluding chapters on resonances, an introduction to quantum field theory, and quantum electrodynamics of non-relativistic particles. A supplementary chapter contains an interesting approach to the renormalization group due to Bach, Froehlich and Sigal himself. This book is well-written, and the topics discussed have been well thought-out. It would provide a useful approach to quantum theory for the mathematician, and would also provide access for the physicist to some mathematically advanced methods and topics, but the physicist would definitely have to be prepared to work hard at the mathematics

  15. Development of a test bed for operator aid and advanced control concepts in nuclear power plants

    International Nuclear Information System (INIS)

    A great amount of research and development is currently under way in the utilization of artificial intelligence (AI), expert system, and control theory advances in nuclear power plants as a basis for operator aids and automatic control systems. This activity requires access to the measured dynamic responses of the plant to malfunction, operator- or automatic-control-initiated actions. This can be achieved by either simulating plant behavior or by using an actual plant. The advantage of utilizing an actual plant versus a simulator is that the true behavior is assured of both the power generation system and instrumentation. Clearly, the disadvantages of using an actual plant are availability due to licensing, economic, and risk constraints and inability to address accident conditions. In this work the authors have decided to employ a functional one-ninth scale model of a pressurized water reactor (PWR). The scaled PWR (SPWR) facility is a two-loop representation of a Westinghouse PWR utilizing freon as the working fluid and electric heater rods for the core. The heater rods are driven by a neutron kinetics model accounting for measured thermal core conditions. A control valve in the main steam line takes the place of the turbine generator. A range of normal operating and accident situations can be addressed. The SPWR comes close to offering all the advantages of both a simulator and an actual physical plant in regard to research and development on AI, expert system, and control theory applications. The SPWR is being employed in the development of an expert-system-based operator aid system. The current status of this project is described

  16. Oxidative Stress in Patients with Regular Hemodialysis Measured by Chemiluminescence

    Czech Academy of Sciences Publication Activity Database

    Kubala, Lukáš; Číž, Milan; Lojek, Antonín; Studeník, P.; Černý, J.; Soška, V.

    Dresden : SCHWEDAWERBEDRUCK GmbH, Druckerei and Verlag, 2001 - (Albrecht, S.; Zimmermann, T.; Brandl, H.), s. 264-269 ISBN 3-9807853-0-0 R&D Projects: GA AV ČR IBS5004009; GA MZd NA4796 Institutional research plan: CEZ:AV0Z5004920 Keywords : oxidative stress * chemiluminescence Subject RIV: BO - Biophysics

  17. Chemiluminescence of lucigenin is dependent on experimental conditions

    Czech Academy of Sciences Publication Activity Database

    Hyršl, P.; Lojek, Antonín; Číž, Milan; Kubala, Lukáš

    2004-01-01

    Roč. 19, č. 2 (2004), s. 61-63. ISSN 1522-7235 R&D Projects: GA ČR GA524/02/0395 Institutional research plan: CEZ:AV0Z5004920 Keywords : chemiluminescence * lucigenin * light irradiation Subject RIV: BO - Biophysics Impact factor: 1.297, year: 2004

  18. Flow-injection chemiluminescence determination of formaldehyde in water

    Czech Academy of Sciences Publication Activity Database

    Motyka, Kamil; Mikuška, Pavel; Večeřa, Zbyněk; Onjia, A.

    Hamburg : University of Hamburg, 2006 - (Broekaert, J.). A60 [ISEAC34. International Symposium on Environmental Analytical Chemistry /34./. 04.06.2006-08.06.2006, Hamburg] Institutional research plan: CEZ:AV0Z40310501 Keywords : formaldehyde * FIA * chemiluminescence Subject RIV: CB - Analytical Chemistry, Separation

  19. Natural convection and natural circulation flow and limits in advanced reactor concepts

    International Nuclear Information System (INIS)

    Existing reactor designs and new concepts rely to varying degrees on heat removal processes driven by natural convection as a potentially important design feature or ultimate heat removal mechanism. This is independent of whether the nuclear core is cooled by water, gas or liquid metal, since in many shut down or emergency conditions forced cooling is assumed or predicted to be lost. However, using natural convection to advantage is possible, since it can provide significant cost-savings by the elimination of pumps and ancillary equipment and also can result in simplified and hence higher reliability safety systems. It is highly desirable to build on the inherent or existing heat removal processes than to graft design or add them on afterwards. The limits to the heat removal are set by the natural circulation flow and heat removal capability, so these need to be predicted with accuracy. The capability limit is determined by well-known physically linked parameters, including the flow rates, driving heads, heat sinks, fluid thermal expansion, and flow thermal and hydraulic stability. In natural convection plants, there are opportunities for the limits to be set by the absolute power output available from naturally convective flow, and the onset of instability in that flow. We are interested in the ultimate or maximum power output both in order to minimize power generation costs, and to determine how far the natural circulation designs can be developed. This paper reviews some of the fundamental equations and analytical solutions for natural convection flows, and examines their application to determine the limits of heat removal as a means of establishing simple criteria and fundamental design limits. This type of physical analysis can be used to investigate the flow and stability limits for a thermally expandable fluid, which encompasses the extremes of both low and supercritical pressure applications. To illustrate the approach, simple analytical expressions are

  20. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Afjeh, Abdollah A. [Univ. of Toledo, OH (United States); Windpower, Nautica [Nautica Windpower, Olmsted Falls, OH (United States); Marrone, Joseph [OCC COWI, Vancouver (Canada); Wagner, Thomas [Nautica Windpower, Olmsted Falls, OH (United States)

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method

  1. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    Energy Technology Data Exchange (ETDEWEB)

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  2. Advanced core physics and thermal hydraulics analysis of boiling water reactors using innovative fuel concepts

    International Nuclear Information System (INIS)

    The economical operation of a boiling water reactor (BWR) is mainly achieved by the axially uniform utilization of the nuclear fuel in the assemblies which is challenging because the neutron spectrum in the active reactor core varies with the axial position. More precisely, the neutron spectrum becomes harder the higher the position is resulting in a decrease of the fuel utilization because the microscopic fission cross section is smaller by several orders of magnitude. In this work, the use of two fuel concepts based on a mixed oxide (MOX) fuel and an innovative thorium-plutonium (ThPu) fuel is investigated by a developed simulation model encompassing thermal hydraulics, neutronics, and fuel burnup. The main feature of these fuel concepts is the axially varying enrichment in plutonium which is, in this work, recycled from spent nuclear fuel and shows a high fission fraction of the absorption cross section for fast incident neutron energies. The potential of balancing the overall fuel utilization by an increase of the fission rate in the upper part of the active height with a combination of the harder spectrum and the higher fission fraction of the absorption cross section in the BWR core is studied. The three particular calculational models for thermal hydraulics, neutronics, and fuel burnup provide results at fuel assembly and/or at core level. In the former case, the main focus lies on the thermal hydraulics analysis, fuel burnup, and activity evolution after unloading from the core and, in the latter case, special attention is paid to reactivity safety coefficients (feedback effects) and the optimization of the operational behavior. At both levels (assembly and core), the isotopic buildup and depletion rates as a function of the active height are analyzed. In addition, a comparison between the use of conventional fuel types with homogeneous enrichments and the use of the innovative fuel types is made. In the framework of the simulations, the ThPu and the MOX

  3. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    none

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting

  4. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    Science.gov (United States)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a

  5. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  6. Flow-through solid-phase based optical sensor for the multisyringe flow injection trace determination of orthophosphate in waters with chemiluminescence detection

    OpenAIRE

    Morais, Inês P. A.; Miró, Manuel; Manera, Matias; Estela, José Manuel; Cerdà, Víctor; Souto, M. Renata S.; Rangel, António O S S

    2004-01-01

    In this work, a novel flow-through solid-phase based chemiluminescence (CL) optical sensor is described for the trace determination of orthophosphate in waters exploiting the multisyringe flow injection analysis (MSFIA) concept with multicommutation. The proposed time-based injection flow system relies upon the in-line derivatisation of the analyte with ammonium molybdate in the presence of vanadate, and the transient immobilisation of the resulting heteropolyacid in a N-vinylpyrroli...

  7. Self-consistent Green's function embedding for advanced electronic structure methods based on a dynamical mean-field concept

    Science.gov (United States)

    Chibani, Wael; Ren, Xinguo; Scheffler, Matthias; Rinke, Patrick

    2016-04-01

    We present an embedding scheme for periodic systems that facilitates the treatment of the physically important part (here a unit cell or a supercell) with advanced electronic structure methods, that are computationally too expensive for periodic systems. The rest of the periodic system is treated with computationally less demanding approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent manner. Our scheme is based on the concept of dynamical mean-field theory formulated in terms of Green's functions. Our real-space dynamical mean-field embedding scheme features two nested Dyson equations, one for the embedded cluster and another for the periodic surrounding. The total energy is computed from the resulting Green's functions. The performance of our scheme is demonstrated by treating the embedded region with hybrid functionals and many-body perturbation theory in the GW approach for simple bulk systems. The total energy and the density of states converge rapidly with respect to the computational parameters and approach their bulk limit with increasing cluster (i.e., computational supercell) size.

  8. Advanced cementation concepts

    International Nuclear Information System (INIS)

    The purpose of this programme of work was to investigate whether improvements could be made to existing formulations for cement suitable for the immobilization of intermediate level radioactive waste. Two additives were selected, microsilica and limestone flour. Improvements to the cement were only slight. (author)

  9. Advanced ADS concepts

    International Nuclear Information System (INIS)

    Current Nuclear Power has already proved its ability to be used as one of the principal means of the large scale energy production throughout the world. There is the widely spread opinion that many of the problems can be resolved if LWR's would be able to close its fuel cycle (MOX-strategy). Really, closure of fuel cycle (if it could be realised technically in full degree) leads to the reduction of the TRU-accumulation rate and of the most worrying long-lived fuel waste by factor of 10 -30 and, hence, to facilitation the waste repository problems. Analysis shows that one of the most important problems with MOX-type fuelled LWR exploitation is its potential safety degradation due to corresponding degradation of some principal physical parameters. Non-favourable feed back effects, delayed neutron fraction reduction, etc. lead, probably, to some important constraints in fuel multirecycling fraction. However, if the LWR's fuel cycle closure would be even realised, other, not less important, key-issues will rest unresolved or even more aggravated such as the economical competitiveness, weapons material proliferation, fuel resources, natural safety level, etc. Possible replacement of LWR's park by Sodium Fast Reactors (SFR) is able to change some accents in NP acceptance, however, can not change this situation drastically. Really, the potential of the waste long-term toxicity reduction is slightly favourable for SFR's than for LWRs (by the factor of 1.5 [1,2]) and this benefit is indebted mostly due to the higher fuel burnup potential of SFR's. Hence, the waste toxicity reduction factor, when SFR fuel cycle will be closed, is expecting to be in the interval 20-50 and, hence, it is slightly better than for LWRs. Nevertheless, it is important to mention that the closure of fast reactors fuel cycles does not lead to important degradation of safety physics. TRU equilibrium inventory is one of penalising factors of fast reactors: the total TRU inventory in NP, based on SFR, will be higher (roughly, by factor of 2) than for LWR based Np

  10. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Science.gov (United States)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  11. Whole and strip nitrocellulose membrane as well as a new-line-immunoblotting of antigen using the chemiluminescence technique.

    Science.gov (United States)

    Dorri, Yaser; Khalili, Ali W; Scofield, R Hal

    2009-01-01

    There are a number of techniques in the scientific world that researchers use to detect specific antigens. One such technique that has provided many advantages over typical immunochemical staining is chemiluminescence. The emission of visible radiation by compounds once exposed to sunlight has been known for centuries and currently is the main principle for chemiluminescence. Here, we introduce three different chemiluminescence techniques that are widely used in immunodetection of antigens: (a) whole membrane chemiluminescence detection, (b) strip membrane chemiluminescence detection, and (c) new line blotting chemiluminescence. PMID:19378079

  12. Detection of gamma irradiated pepper and papain by chemiluminescence

    Science.gov (United States)

    Sattar, Abdus; Delincée, H.; Diehl, J. F.

    Chemiluminescence (CL) measurements of black pepper and of papain using luminol and lucigenin reactions were studied. Effects of grinding, irradiation (5-20 kGy) and particle size (750-140 μm) on CL of pepper, and of irradiation (10-30 kGy) on CL of papain, were investigated. All the tested treatments affected the luminescence response in both the luminol and lucigenin reactions; however, the pattern of changes in each case, was inconsistent. Optimum pepper size for maximum luminescence was 560 μm, and optimum irradiation doses were >15 kGy for pepper and >20 kGy for papain. Chemiluminescence may possibly be used as an indicator or irradiation treatment for pepper and papain at a dose of 10 kGy or higher, but further research is needed to establish the reliability of this method.

  13. Detection of gamma irradiated pepper and papain by chemiluminescence

    International Nuclear Information System (INIS)

    Chemiluminescence (CL) measurements of black pepper and of papain using luminol and lucigenin reactions were studied. Effects of grinding, irradiation (5-20 kGy) and particle size (750-140 μm) on CL of pepper, and of irradiation (10-30 kGy) on CL of papain, were investigated. All the tested treatments affected the luminescence response in both the luminol and lucigenin reactions; however, the pattern of changes in each case, was inconsistent. Optimum pepper size for maximum luminescence was 560 μm, and optimum irradiation doses were > 15 kGy for pepper and > 20 kGy for papain. Chemiluminescence may possibly be used as an indicator or irradiation treatment for pepper and papain at a dose of 10 kGy or higher, but further research is needed to establish the reliability of this method. (author)

  14. Reliability Study on Compact and Portable Chemiluminescence Detector

    Directory of Open Access Journals (Sweden)

    Kai-Di Zhang

    2014-11-01

    Full Text Available Two reliability issues on the compact chemiluminescence detector for glucose measurement based on a single planar transparent EWOD (electrowetting-on-dielectrics device are studied. Several dielectrics for lowering the manipulation voltage are investigated and 20-27V is realized. An on-chip heater is designed and manufactured for restore the damage of the hydrophobic surface of the EWOD after chemiluminescence reaction. The measurement of glucose shows the sensitivity of the detector reaches 0.12V/mM and the detection range from 1mM to 20mM with a detection limit of 1mM. Such a detector demonstrates its potential as a portable immuno-detector with prompt response and low cost measurement compared with expensive and bulky traditional instruments.

  15. Chemiluminescence characteristics of cumarin derivatives as blue fluorescers in peroxyoxalate-hydrogen peroxide system

    Science.gov (United States)

    Chaichi, Mohammad Javad; Karami, Ali Reza; Shockravi, Abbas; Shamsipur, Mojtaba

    2003-04-01

    The chemiluminescence characteristics of seven different cumarin derivatives were studied in detail. The fluorescence and chemiluminescence spectra were compared; all cumarins used were found to act as blue fluorescers. The intensity and kinetic parameters for the chemiluminescent systems were evaluated from computer fitting of the resulting intensity-time plots. Among different cumarin derivatives used, 7-amino-4-trifluoromethylcumarin revealed the most promising characteristics as an efficient blue fluorescent emitter.

  16. Quantification of biogenic amines by microchip electrophoresis with chemiluminescence detection

    OpenAIRE

    Zhao, Shulin; Yong HUANG; Shi, Ming; Liu, Yi-Ming

    2009-01-01

    A highly sensitive microchip electrophoresis (MCE) method with chemiluminescence (CL) detection was developed for the determination of biogenic amines including agmatine, epinephrine, dopamine, tyramine, and histamine in human urine samples. To achieve a high assay sensitivity, the targeted analytes were pre-column labeled by a CL tagging reagent, N-(4-aminobutyl)-N-ethylisoluminol (ABEI). ABEI-tagged biogenic amines after MCE separation reacted with hydrogen peroxide in the presence of horse...

  17. Evaluation of the LIAISON Chemiluminescence Immunoassay for Diagnosis of Syphilis▿

    OpenAIRE

    Knight, Carrie S.; Crum, Mary A.; Hardy, Robert W

    2007-01-01

    We report the results of an evaluation of the LIAISON Treponema pallidum-specific assay, a one-step sandwich chemiluminescence immunoassay (CLIA), as a screening test and as a confirmatory test for the diagnosis of syphilis. The assay was compared with the CAPTIA Syphilis-G enzyme immunoassay (EIA) and with a testing algorithm that also included the rapid plasma reagin (RPR) and T. pallidum particle agglutination (PA) assays. As a screening test, the CLIA showed levels of agreement with the E...

  18. Nanoparticle-enhanced chemiluminescence in micro-flow injection analysis

    OpenAIRE

    A. Mosayyebi; Karabchevsky, A.; J. S. Wilkinson

    2013-01-01

    Chemiluminescence (CL) detection for biomedical analysis has the principal advantage that no optical source is required so that instrumentation is simple and background radiation is minimised, resulting in high sensitivity. CL has been exploited in a wide range of chemical and biochemical measurements such as enzyme-linked immunoassays (ELISA), DNA sequencing, and for the analysis of biomedical, food and environmental samples [1]. CL is ideally suited to microfluidic flow-injection analysis (...

  19. Chemiluminescence initiated by laser-induced excitation of lanthanide and actinide ions in aqueous solutions

    International Nuclear Information System (INIS)

    Data on luminol chemiluminescence in solutions containing Sm(III), U(IV), and Pu(IV) are presented. Chemiluminescence was induced by multiquantum excitation of lanthanide and actinide ions in the range of 4f- and 5f-electron transitions by the schemes: two steps - one color and two steps - two colors with the use of dye lasers. We observed chemiluminescence of chemiluminogen (luminol) caused by multiquantum excitation of lanthanides and actinides in aqueous solutions by laser radiation. A multistep scheme of chemiluminescence excitation makes this procedure not only highly sensitive but also highly selective procedure of detection of substances

  20. Electrogenerated chemiluminescence. 58. Ligand-sensitized electrogenerated chemiluminescence in europium labels.

    Science.gov (United States)

    Richter, M M; Bard, A J

    1996-08-01

    The electrochemistry and electrogenerated chemiluminescence (ECL) of a series of europium chelates, cryptates, and mixed-ligand chelate/cryptand complexes were studied. The complexes were of the following general forms:  EuL(4)(-), where L = β-diketonate, a bis-chelating ligand (such as dibenzoylmethide), added as salts (A)EuL(4), where A = tetrabutylammonium ion or piperidinium ion (pipH(+)); Eu(crypt)(3+), where crypt = a cryptand ligand, e.g., 4,7,13,16,21-pentaoxa-1,10-diazabicyclo[8,8,5]tricosane; and Eu(crypt)(L)(2+) for the mixed-ligand systems. ECL was obtained for the chelates and mixed-ligand systems by reducing the complexes at a Pt electrode in the presence of peroxydisulfate in acetonitrile solutions and was attributed to the electron-transfer reaction between the reduced bound ligands and SO(4)(•)(-), followed by intramolecular excitation transfer from the excited ligand orbitals to the metal-centered 4f states. No ECL was observed under the same conditions for the europium complexes incorporating only the cryptand ligands in aqueous solution. The ECL spectra matched the photoluminescence spectra with a narrow emission band observed at 612 nm, corresponding to a metal-centered 4f-4f transition. The ECL efficiencies for the ECL-active species were low, about 10(-)(1)-10(-)(4)% of that of the Ru(bpy)(3)(2+)/S(2)O(8)(2)(-) system under similar conditions. PMID:21619211

  1. Electrogenerated chemiluminescence. 58. Ligand-sensitized electrogenerated chemiluminescence in europium labels

    Energy Technology Data Exchange (ETDEWEB)

    Richter, M.M.; Bard, A.J. [Univ. of Texas, Austin, TX (United States)

    1996-08-01

    The electrochemistry and electrogenerated chemiluminescence (ECL) of a series of europium chelates, cryptates, and mixed-ligand chelate/cryptand complexes were studied. The complexes were of the following general forms: EuL{sub 4}{sup -}, where L = {beta}-diketonate, a bis-chelating ligand (such as dibenzoylmethide), added as salts (A)EuL{sub 4}, where A= tetrabutylammonium ion or piperidinium ion (pipH{sup +}); Eu(crypt){sup 3+}, where crypt = a cryptand ligand, e.g., 4,7,13,16,21-pentaoxa-1,10-diazabicyclo[8,8,5]-tricosa ne; and Eu(crypt)(L){sup 2+} for the mixed-ligand systems. ECL was obtained for the chelates and mixed-ligand systems by reducing the complexes at a Pt electrode in the presence of peroxydisulfate in acetonitrile solutions and was attributed to the electron-transfer reaction between the reduced bound ligands and SO{sub 4}{sup .-}, followed by intramolecular excitation transfer from the excited ligand orbitals to the metal-centered 4f states. No ECL was observed under the same conditions for the europium complexes incorporating only the cryptand ligands in aqueous solution. The ECL spectra matched the photoluminescence spectra with a narrow emission band observed at 612 nm, corresponding to a metal-centered 4f-4f transition. The ECL efficiencies for the ECL-active species were low, about 10{sup -1}-10{sup -4}% of that of the Ru-(bpy){sub 3}{sup 2+}/S{sub 2}O{sub 8}{sup 2-} system under similar conditions. 38 refs., 6 figs., 2 tabs.

  2. The EU advanced lead lithium blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators

    International Nuclear Information System (INIS)

    Preparatory work on the EU advanced dual coolant (A-DC) blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators has been carried out at the Forschungszentrum Karlsruhe in co-operation with CEA (SiCf/SiC composite-related issues) as a conceptual design proposal to the EU fusion power plant study planned to be launched in 2001 within the framework of the EU fusion programme having the main objective of specifying the characteristics of an attractive and viable commercial D-T fusion power plant. The basic principles and the study method for the A-DC blanket concept are presented in this report. The results of this study show that the A-DC blanket concept has a high potential for further development due to its high thermal efficiency and its simple concept solution

  3. “You can get there from here”: Advanced low cost propulsion concepts for small satellites beyond LEO

    Science.gov (United States)

    Baker, Adam M.; da Silva Curiel, Alex; Schaffner, Jake; Sweeting, Martin

    2005-07-01

    microsatellite from a typical 700 km sun-synchronous orbit to a lower or higher orbit using a low cost 40 N thrust concentrated hydrogen peroxide/kerosene bipropellant engine. A spin stabilized 'tug' concept capable of providing between 130 and 300 m/s of deltaV to the payload is described. Transfer of an enhanced microsatellite from LEO to lunar orbit using a novel, storable propellant solar thermal propulsion system under development at the Surrey Space Centre. The solar thermal propulsion unit is designed for low cost small satellite support and will be compared with a more traditional approach using and industry standard storable bipropellant chemical engine. Nanosatellite manoeuvring for formation flying using advanced low power electric propulsion. A colloid thruster system concept is planned for development jointly between SSTL, Queen Mary University London and Rutherford Appleton Laboratory, UK. The colloid thruster system is designed to complement an existing butane resistojet to give full 3-axis manoeuvrability to an upgraded SNAP nanosatellite platform which could be reflown in 2007 alongside ESA's Proba 2 technology demonstrator microsatellite. A comparison between low power resistojets, a colloid thruster system, and pulsed plasma thrusters for orbit manoeuvring of microsatellites will be made. This paper's final section will briefly describe some of the interplanetary missions which have been considered at the Surrey Space Centre, and will highlight the few as yet practical solutions for sending small spacecraft on high deltaV missions without the use of a costly upper stage.

  4. Investigation on the spontaneous combustion of refuse-derived fuels during storage using a chemiluminescence technique.

    Science.gov (United States)

    Matunaga, Atsushi; Yasuhara, Akio; Shimizu, Yoshitada; Wakakura, Masahide; Shibamoto, Takayuki

    2008-12-01

    Refuse-derived fuel (RDF), a high-caloric material, is used by various combustion processes, such as power plants, as alternative fuel. Several explosion accidents, however, possibly initiated by the spontaneous combustion of stored RDF, have been reported in Japan. Therefore the spontaneous combustion of RDF prepared from domestic garbage was investigated using chemiluminescence. RDF samples were heated either under air or under nitrogen for 1, 2, or 4 h at 120 or 140 degrees C and then cooled by an air or nitrogen stream. All RDF samples exhibited chemiluminescence. In air-treated RDF samples (heated and cooled by air), chemiluminescence after ageing was shown to be slightly lower than before ageing, whereas in nitrogen-treated samples (both heated and cooled by nitrogen) chemiluminescence decreased significantly after ageing. When nitrogen was replaced with air during aging, however, a sudden increase of chemiluminescence was observed. On the other hand, when cooling was done with air, chemiluminescence increased. Higher chemiluminescence was also observed during high-temperature treatment. Further experiments on cellulose, one of the major components of domestic garbage, exhibited similar chemiluminescence patterns to those of RDF when treated by the same methods as those used for RDF ageing. Chemiluminescence from cellulose increased significantly when the atmospheric gas was changed from nitrogen to air, suggesting that oxygen in the air promoted the formation of hydroperoxide from cellulose. Therefore, it is hypothesized that cellulose plays an important role in the formation of chemiluminescence from RDF. The formation of chemiluminescence indicated that radicals are formed from RDF by oxidation or thermal degradation at room or atmospheric temperatures and may subsequently lead to spontaneous combustion. PMID:19039070

  5. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 4. Commercial and pilot plant cost data. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    This volume of the advanced central receiver final report presents the cost data using the cost breakdown structure identified in the preliminary specification. Cost summaries are presented in the following sections for the 100-MWe and 281-MWe commercial plant and a 10-MWe pilot plant. Cost substantiation data for this volume are presented in the appendices. Other cost summary data include Nth plant data for the 100-MWe and 281-MWe commercial plants, and a summary for the alternative concept air-rock storage system. The main description of the plant costing technique occurs as part of Section II for the 100-MWe baseline concept.

  6. Effect of Saliva on Measurement of Chemiluminescence by a Micro-Reactor Incorporating a Micro-Channel

    OpenAIRE

    Tsukagoshi, Kazuhiko; Fukumoto, Kazuaki; Nakajima, Riichiro; Yamashita, Kenichi; Maeda, Hideaki

    2007-01-01

    Effect of saliva on measurement of chemiluminescence was examined by a micro-reactor incorporating a micro-channel. Sodium hypochlorite and hydrogen peroxide solutions were delivered into a micro-channel developed in a micro-reactor by a syringe pump, providing a laminar flow liquid-liquid interface in the channel and leading to chemiluminescence from singlet oxygen. It was found under certain conditions including saliva that ca. 5% chemiluminescence of the total chemiluminescence was lost in...

  7. Modernization of the Radioisotopes Production Laboratory of the La Reina Nuclear Center in Chile: Incorporating advanced concepts of safety and good manufacturing practices

    International Nuclear Information System (INIS)

    A radioisotopes and radiopharmaceuticals production laboratory was established in Chile in the 1960s for research activities. From 1967 until January 2012, it was dedicated to the manufacturing of radioisotopes and radiopharmaceuticals for medical diagnosis and treatment purposes. In 2012, modernization of the facility’s design and technology began as part of the IAEA technical cooperation project, Modernizing the Radioisotopes Production Laboratory of La Reina Nuclear Centre by Incorporating Advanced Concepts of Safety and Good Manufacturing Practices, (CHI4022)

  8. Immunoblotting of Antigens: Whole, Strip, and New-Line Nitrocellulose Membrane Immunoblotting Using the Chemiluminescence Technique.

    Science.gov (United States)

    Dorri, Yaser

    2015-01-01

    Antigen detection is a well-known tool in the scientific world that is used by clinicians and researchers to detect specific antigens in diagnosing diseases or for other medical/environmental discoveries. Antigen detection is introduced in various forms over the past decades. These techniques are often evaluated by their sensitivity, accuracy, and ease of use. One technique that has provided many advantages over typical immunochemical staining is the use of chemiluminescence. This technique has been used in various scientific fields, anywhere from clinical diagnosis to environmental research. The emission of visible radiation by compounds once exposed to sunlight has been known for centuries and currently is the main principle for chemiluminescence. Here, we introduce three different chemiluminescence techniques that are widely used in immunodetection of antigens: (a) whole membrane chemiluminescence detection, (b) strip membrane chemiluminescence detection, and PMID:26139257

  9. Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex

    Science.gov (United States)

    Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko

    1999-04-01

    Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.

  10. Synthesis and properties of differently charged chemiluminescent acridinium ester labels.

    Science.gov (United States)

    Natrajan, Anand; Sharpe, David

    2013-02-14

    Chemiluminescent acridinium dimethylphenyl esters containing N-sulfopropyl groups in the acridinium ring are highly sensitive, hydrophilic labels that are used in automated immunoassays for clinical diagnostics. Light emission from these labels is triggered with alkaline peroxide in the presence of a cationic surfactant. At physiological pH, N-sulfopropyl acridinium esters exist as water adducts that are commonly referred to as pseudobases. Pseudobase formation, which results from addition of water to the zwitterionic N-sulfopropyl acridinium ring, neutralizes the positive charge on the acridinium nitrogen and imparts a net negative charge to the label due to the sulfonate moiety. As a consequence, N-sulfopropyl acridinium ester conjugates of small molecule haptens as well as large molecules such as proteins gain negative charges at neutral pH. In the current study, we describe the synthesis and properties of two new hydrophilic acridinium dimethylphenyl ester labels where the net charge in the labels was altered. In one label, the structure of the hydrophilic N-alkyl group attached to the acridinium ring was changed so that the pseudobase of the label contains no net charge. In the second acridinium ester, two additional negative charges in the form of sulfopropyl groups were added to the acridinium ring to make this label's pseudobase strongly anionic. Chemiluminescence measurements of these labels, as well as their conjugates of an antibody with a neutral pI, indicate that acridinium ester charge while having a modest effect on emission kinetics has little influence on light output. However, our results demonstrate that acridinium ester charge can affect protein pI, apparent chemiluminescence stability and non-specific binding of protein conjugates to microparticles. These results emphasize the need for careful consideration of acridinium ester charge in order to optimize reagent stability and performance in immunoassays. In the current study, we observed that

  11. Sensors for ceramic components in advanced propulsion systems: Summary of literature survey and concept analysis, task 3 report

    Science.gov (United States)

    Bennethum, W. H.; Sherwood, L. T.

    1988-01-01

    The results of a literature survey and concept analysis related to sensing techniques for measuring of surface temperature, strain, and heat flux for (non-specific) ceramic materials exposed to elevated temperatures (to 2200 K) are summarized. Concepts capable of functioning in a gas turbine hot section environment are favored but others are reviewed also. Recommendation are made for sensor development in each of the three areas.

  12. СHANGES IN PARAMETERS OF LUMINOL-DEPENDENT AND LUCIGENIN-DEPENDENT CHEMILUMINESCENCE OF PERIPHERAL BLOOD NEUTROPHILS IN PATIENTS WITH BLADDER CANCER IN THE DISEASE DYNAMICS

    Directory of Open Access Journals (Sweden)

    L. M. Kurtasova

    2015-01-01

    Full Text Available The study deals with parameters of luminol-dependent and lucigenin-dependent chemiluminescence (CL of peripheral blood neutrophils from patients with bladder cancer (BC prior to surgical treatment. We examined sixty patients (45 to 55 years old with advanced bladder cancer (TNM prior to the operation, and forty-six patients at 10 days after surgical treatment. A control group consisted of 56 healthy donors. Luminol-dependent and lucigenin-dependent chemiluminescence of blood neutrophils was assessed according to De Sole et al. (1983. Chemiluminescence assays of peripheral blood neutrophils from the patients with bladder cancer revealed changes in production of reactive oxygen species (ROS, both for initial stage of oxidation reaction, and total level of active oxygen radicals. We have found disturbed values of primary-to-secondary ROS ratio in the cells. In the patients with bladder cancer, some changes in oxidative metabolism of the blood neutrophils have been registered. These alterations may play an important role in promotion of potential effector cell functions, thus, probably, affecting the whole-scale development of a cytopathic effect exerted by neutrophilic granulocytes. 

  13. Selective Detection of Neurotransmitters by Fluorescence and Chemiluminescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziqiang Wang; Edward S. Yeung

    2001-08-06

    In recent years, luminescence imaging has been widely employed in neurochemical analysis. It has a number of advantages for the study of neuronal and other biological cells: (1) a particular molecular species or cellular constituent can be selectively visualized in the presence of a large excess of other species in a heterogeneous environment; (2) low concentration detection limits can be achieved because of the inherent sensitivity associated with fluorescence and chemiluminescence; (3) low excitation intensities can be used so that long-term observation can be realized while the viability of the specimen is preserved; and (4) excellent spatial resolution can be obtained with the light microscope so subcellular compartments can be identified. With good sensitivity, temporal and spatial resolution, the flux of ions and molecules and the distribution and dynamics of intracellular species can be measured in real time with specific luminescence probes, substrates, or with native fluorescence. A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with CCD imaging is down to {micro}M levels of glutamate with reasonable response time. They also found that chemiluminescence associated with the ATP-dependent reaction between luciferase and luciferin can be used to image ATP at levels down to 10 nM in the millisecond time scale. Similar imaging experiments should be feasible in a broad spectrum of biological systems.

  14. Establishment of chemiluminescence immunoassay for thyroid stimulating hormone

    International Nuclear Information System (INIS)

    The chemiluminescence immunoassay for thyroid stimulating hormone in human serum was developed. Two monoclonal antibodies of TSH were used in the assay, one of which was labeled with horseradish peroxidase (HRP) and the other was coated on the microtiter plate. Luminol was used as the substrate of HRP and hydrogen peroxide was introduced into this system. The standard range of the method is 0.1- 100 mIU/L. The assay sensitivity is 0.04 mIU/L. The intra and inter-assay coefficients of variance are 3.98 %-6.48% and 4.61%-13.1%. Analytical recovery is 95.8%- 117.4%. The correlation coefficient between measured and expected values is more than 0.99. The cross reaction rate with LH is less than 1.62%, and that with FSH and HCG is less than 0.05% and 0.02%, respectively. Compared with determine value clinically in chemiluminescence immunoassay (CLIA) kit from Roche company, the correlative equation is y=1.10x-0.207, and correlation coefficient is 0.969. Compared with immunoradiometric assay (IRMA) kit, the correlative equation is y=1.00x+0.191, and correlation coefficient is 0.965. This method is rapid and convenient, and it is suitable for clinical and research application. (authors)

  15. Selective Detection of Neurotransmitters by Fluorescence and Chemiluminescence Imaging

    International Nuclear Information System (INIS)

    In recent years, luminescence imaging has been widely employed in neurochemical analysis. It has a number of advantages for the study of neuronal and other biological cells: (1) a particular molecular species or cellular constituent can be selectively visualized in the presence of a large excess of other species in a heterogeneous environment; (2) low concentration detection limits can be achieved because of the inherent sensitivity associated with fluorescence and chemiluminescence; (3) low excitation intensities can be used so that long-term observation can be realized while the viability of the specimen is preserved; and (4) excellent spatial resolution can be obtained with the light microscope so subcellular compartments can be identified. With good sensitivity, temporal and spatial resolution, the flux of ions and molecules and the distribution and dynamics of intracellular species can be measured in real time with specific luminescence probes, substrates, or with native fluorescence. A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with CCD imaging is down to(micro)M levels of glutamate with reasonable response time. They also found that chemiluminescence associated with the ATP-dependent reaction between luciferase and luciferin can be used to image ATP at levels down to 10 nM in the millisecond time scale. Similar imaging experiments should be feasible in a broad spectrum of biological systems

  16. Sensitive chemiluminescent immunoassay of triclopyr by digital image analysis.

    Science.gov (United States)

    Díaz, Aurora N; Sánchez, Francisco G; Baro, Enrique N; Díaz, Ana F G; Aguilar, Alfonso; Algarra, Manuel

    2012-08-15

    An image based detection of chemiluminescence enzyme-linked immunosorbent assay (CL-ELISA) for the quantification of triclopyr has been developed. The immunoassay was an indirect competitive immunoassay with an anti-rabbit secondary antibody conjugated to horseradish peroxidase (HRP). Chemiluminescence was produced by the luminol/H(2)O(2)/HRP reaction, detected by a monochrome video CCD camera and digitized with an Imagraph IC-PCI frame grabber using a custom program developed in C(++) (Microsoft Visual C(++) 6.0). Two main improvements are reported in the data processing software: the implementation of a circular mesh covering the perimeter of each well, eliminating diffuse light from the neighboring wells, and the use of volume (the integration of light intensity of all pixels that define a well) as an analytical signal instead of CL intensity or area (as usual in commercial plate readers) to improve precision for normalization of the total light output. The standard curve was produced for 0.01-10 ng/L triclopyr. The limit of detection was 0.8 ng/L and the variation coefficient was 3.07% (n=10, P=0.05). PMID:22841045

  17. Chemiluminescence assay for the detection of biological warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Langry, K; Horn, J

    1999-11-05

    A chemiluminescent homogeneous immunoassay and a hand-size multiassay reader are described that could be used for detecting biological materials. The special feature of the assay is that it employs two different antibodies that each bind to a unique epitope on the same antigen. Each group of epitope-specific antibodies has linked to it an enzyme of a proximal-enzyme pair. One enzyme of the pair utilizes a substrate in high concentration to produce a second substrate required by the second enzyme. This new substrate enables the second enzyme to function. The reaction of the second enzyme is configured to produce light. This chemiluminescence is detected with a charge-coupled device (CCD) camera. The proximal pair enzymes must be in close proximity to one another to allow the second enzyme to react with the product of the first enzyme. This only occurs when the enzyme-linked antibodies are attached to the antigen, whether antigen is a single protein with multiple epitopes or the surface of a cell with a variety of different antigens. As a result of their juxtaposition, the enzymes produce light only in the presence of the biological material. A brief description is given as to how this assay could be utilized in a personal bio-agent detector system.

  18. Energy response in chemiluminescence dosimetry with sugar and sorbite

    International Nuclear Information System (INIS)

    A series of study on energy dependence in chemiluminescence dosimetry with sugar and sorbite produced in two different countries was carried out administering a dose of 5 Gy to the samples at six different mean photon energies of 30, 50, 80, 130, 662 and 1250 keV. The results revealed distinct energy dependence of chemiluminescence(CL) output of sugar and sorbite. Although the energy dependence, in general, could be fitted by a polynomial of log E, with E being radiation energy, up to cubic term, we reached a conclusion that the adoption of a fitting function, yR=a·(1-e-b·logE)c+d deduced from theoretical energy response curve calculated as the ratio of the mass energy absorption coefficients of the samples of interest to the soft tissue is more reasonable and rational. Here yR is CL intensity, and a, b, c and d are constants to be determined in the fitting process. Energy dependence of relative sensitivities of one sample to the other, discrepancy in sensitivities of the samples from the two countries, and prominent grain size effect in Sorbitol were also shown

  19. Investigating the Effect of Different Verbal Formats of Advance Organizers on Third Graders' Understanding of Heat Transfer Concept

    OpenAIRE

    Hsueh-Hua CHUANG; Liu, Han-Chin

    2014-01-01

    The emergence of computer and multimedia technology change the forms of instructional materials and instructional design plays an important role on student learning outcome in multimedia learning. Research has found that using advance organizers has the potential for achieving learning objectives. Thus, this study investigated how using different forms (oral narration/onscreen text) of advance organizers (AOs) with different formats (oral narration/onscreen text) of learning content affected ...

  20. Advance the Harmonious Development of Higher Education Institutions under the Guidance of the Scientific Concept of Development

    Science.gov (United States)

    Lan, Jiang-qiao

    2006-01-01

    To build up and carry out the scientific concept of development will have a major and directive significance in solving the problems and conflicts of the development of higher education institutions (HEIs). This paper is based on drawing up the development strategy of a university, and brings up the idea of grasping the strategic opportunity,…

  1. How Do Concept-Maps Function for Reading Comprehension Improvement of Iranian Advanced EFL Learners of Both Genders?

    Science.gov (United States)

    Khaghaninejad, Mohammad Saber; Arefinejad, Mansour

    2015-01-01

    This study was an attempt to examine the effect of concept mapping on reading comprehension of Iranian EFL learners. Pretest-posttest design was employed to scrutinize the possible improvement of the study's participants who were male and female learners whose ages ranged from 19 to 40 and had taken general English courses at Islamic Azad…

  2. Validation of a Computational Model for the SLS Core Stage Oxygen Tank Diffuser Concept and the Low Profile Diffuser - An Advanced Development Design for the SLS

    Science.gov (United States)

    Brodnick, Jacob; Richardson, Brian; Ramachandran, Narayanan

    2015-01-01

    The Low Profile Diffuser (LPD) project originated as an award from the Marshall Space Flight Center (MSFC) Advanced Development (ADO) office to the Main Propulsion Systems Branch (ER22). The task was created to develop and test an LPD concept that could produce comparable performance to a larger, traditionally designed, ullage gas diffuser while occupying a smaller volume envelope. Historically, ullage gas diffusers have been large, bulky devices that occupy a significant portion of the propellant tank, decreasing the tank volume available for propellant. Ullage pressurization of spacecraft propellant tanks is required to prevent boil-off of cryogenic propellants and to provide a positive pressure for propellant extraction. To achieve this, ullage gas diffusers must slow hot, high-pressure gas entering a propellant tank from supersonic speeds to only a few meters per second. Decreasing the incoming gas velocity is typically accomplished through expansion to larger areas within the diffuser which has traditionally led to large diffuser lengths. The Fluid Dynamics Branch (ER42) developed and applied advanced Computational Fluid Dynamics (CFD) analysis methods in order to mature the LPD design from and initial concept to an optimized test prototype and to provide extremely accurate pre-test predictions of diffuser performance. Additionally, the diffuser concept for the Core Stage of the Space Launch System (SLS) was analyzed in a short amount of time to guide test data collection efforts of the qualification of the device. CFD analysis of the SLS diffuser design provided new insights into the functioning of the device and was qualitatively validated against hot wire anemometry of the exterior flow field. Rigorous data analysis of the measurements was performed on static and dynamic pressure data, data from two microphones, accelerometers and hot wire anemometry with automated traverse. Feasibility of the LPD concept and validation of the computational model were

  3. Implementation plan for automatic data processing equipment as part of the DYMAC advanced accountability system. Addendum 3 to applications of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to include an implementation plan for the Automatic Data Processing System, as required by ERDA Manual Appendix 1830. The proposed system consists of a dual-control computer system with a minimum complement of peripheral equipment, which will be interfaced to the necessary measuring and display devices. Technical specifications for hardware and software system requirements are included, and cost estimates based on these specifications have been obtained

  4. Investigating the Effect of Different Verbal Formats of Advance Organizers on Third Graders' Understanding of Heat Transfer Concept

    Science.gov (United States)

    Chuang, Hsueh-Hua; Liu, Han-Chin

    2014-01-01

    The emergence of computer and multimedia technology change the forms of instructional materials and instructional design plays an important role on student learning outcome in multimedia learning. Research has found that using advance organizers has the potential for achieving learning objectives. Thus, this study investigated how using different…

  5. Investigating the Effect of Different Verbal Formats of Advance Organizers on Third Graders' Understanding of Heat Transfer Concept

    Science.gov (United States)

    Chuang, Hsueh-Hua; Liu, Han-Chin

    2014-01-01

    The emergence of computer and multimedia technology change the forms of instructional materials and instructional design plays an important role on student learning outcome in multimedia learning. Research has found that using advance organizers has the potential for achieving learning objectives. Thus, this study investigated how using different…

  6. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: New concepts in multi-barrier treatment

    KAUST Repository

    Sudhakaran, Sairam

    2013-07-01

    In the past, emphasis has been on individual treatment processes comprising conventional treatment (coagulation, sedimentation, and filtration) followed by advanced treatment processes (adsorption, ion-exchange, oxidation, and membrane separation). With the depletion of water resources and high demand for power and chemical usage, efforts need to be made to judiciously use advanced treatment processes. There is a new interest in multiple barriers with synergies in which two coupled processes can function as a hybrid process. Within the context of this paper, the hybrid processes include a natural treatment process coupled with an advanced process. Pilot/full-scale studies have shown efficient removal of OMPs by these hybrid processes. With this hybridization, the usage of resources such as power and chemicals can be reduced. In this study, coupling/hybridization of aquifer recharge and recovery (ARR) with oxidation (O3), advanced oxidation process which involves OH radicals (AOP), nanofiltration (NF), reverse osmosis (RO) and granular activated carbon (GAC) adsorption for OMP removal was studied. O3 or AOP as a pre-treatment and GAC, NF, RO, or UV/chlorination as a post-treatment to ARR was studied. NF can be replaced by RO for removal of OMPs since studies have shown similar performance of NF to RO for removal of many OMPs, thereby reducing costs and providing a more sustainable approach. © 2013 Elsevier Ltd.

  7. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: new concepts in multi-barrier treatment.

    Science.gov (United States)

    Sudhakaran, Sairam; Maeng, Sung Kyu; Amy, Gary

    2013-07-01

    Organic micropollutants (OMPs) represent a major constraint in drinking water supply. In the past, emphasis has been on individual treatment processes comprising conventional treatment (coagulation, sedimentation, and filtration) followed by advanced treatment processes (adsorption, ion-exchange, oxidation, and membrane separation). With the depletion of water resources and high demand for power and chemical usage, efforts need to be made to judiciously use advanced treatment processes. There is a new interest in multiple barriers with synergies in which two coupled processes can function as a hybrid process. Within the context of this paper, the hybrid processes include a natural treatment process coupled with an advanced process. Pilot/full-scale studies have shown efficient removal of OMPs by these hybrid processes. With this hybridization, the usage of resources such as power and chemicals can be reduced. In this study, coupling/hybridization of aquifer recharge and recovery (ARR) with oxidation (O3), advanced oxidation process which involves OH radicals (AOP), nanofiltration (NF), reverse osmosis (RO) and granular activated carbon (GAC) adsorption for OMP removal was studied. O3 or AOP as a pre-treatment and GAC, NF, RO, or UV/chlorination as a post-treatment to ARR was studied. NF can be replaced by RO for removal of OMPs since studies have shown similar performance of NF to RO for removal of many OMPs, thereby reducing costs and providing a more sustainable approach. PMID:23664475

  8. Imaging Electrogenerated Chemiluminescence at Single Gold Nanowire Electrodes.

    Science.gov (United States)

    Wilson, Andrew J; Marchuk, Kyle; Willets, Katherine A

    2015-09-01

    We report electrogenerated chemiluminescence (ECL) generated at single gold nanowire electrodes supported on tin-doped indium oxide. Unlike other single nanoparticle electrochemical characterization techniques, ECL provides a massively parallel direct readout of electrochemical activity on individual nanoparticle electrodes without the need for extrinsic illumination or a scanning electrochemical probe. While ECL is not observed from as-purchased nanowires due to the surfactant layer, by removing the layer and coating the nanowires with a polymer blend, ECL from single nanowire electrodes is readily measured. With an increase in polymer thickness, an increase in ECL image quality and reproducibility over multiple redox cycles is observed. The polymer coating also provides a strategy for stabilizing gold nanoparticle electrodes against complete surface oxidation in aqueous environments. PMID:26267267

  9. Chemiluminescent immunoassay for TSH using biotin-streptavidin system

    International Nuclear Information System (INIS)

    TSH chemiluminescent immunoassay using biotin-streptavidin system was established and studied. Two monoclonal antibodies of TSH were used in the assay, with one coated to 96 well plate and the other labeled with biotin. Streptavidin was labeled by DMAE·NHS. Assay sensitivity was 0.007 mIU/L. Intraassay coefficient of variation was 1.47%-5.65%. Interassay coefficient of variation was 2.45%-8.72%. Average recovery was 101.7%. Correlation coefficient and correlation equation of the assay with TSH IRMA were 0.989 and Y= -0.015+1.02X, respectively. The assay sensitivity and CPS of this assay were higher than those of TSH-CLIA, in which no biotin-streptavidin system was used

  10. The application of automatic chemiluminescence machine in rapid immune detection

    International Nuclear Information System (INIS)

    Objective: To provide high-quality, rapid and dependable result for clinical practice, and give satisfactory service to patients of different economical status by supplementation with other labeling immune examination. With an innovative attitude, we carried out efficient technical reform on ACS180 automatic chemiluminescence machine, making it possible for patients to complete the whole process including examination, check-out, diagnosis and getting drugs. The reported will be issued within an hour, thus a rapid immune detection service was established in out-patients department. Methods: 1. ACS-180 automatic chemiluminescence machine is used based on the principle of chemiluminescence immune methods. 2. The reagents are provided by Ciba-Comig Company of USA, composed of anti acridinium ester antibody of liquid phase and particulate antigen of solid phase wrapped in magnetic powder. 3. Calibration and quality control: high and low concentration are set for each calibration fluid with attached standard curve. Product for quality controlling includes three concentration of low, moderate and high. Results: 1. rapid machine detection for sample: serum is replaced with plasma coagulated by heparin, and comparison among series of methods using serum or plasma suggest no significant difference exists. 2. The problem about fasting detection: chemiluminescence machine measure optical density directly, with the results hardly being influenced by turbidity. But attention should be paid to the treatment of lipid turbid samples. 3. Other innovations: (1) direct placement of sample tube on machine: a cushion is placed on sample plate to transfer sample to machine directly after centrifugation, saving time and reducing the accident in sample transference. (2) for HCG quantification in blood and urine, 'gold criteria' is used firstly in screening to determine approximately the dilution range, with an advantage of saving time and reagent as well as accuracy. (3) we design a

  11. N plus 3 Advanced Concept Studies for Supersonic Commercial Transport Aircraft Entering Service in the 2030-2035 Period

    Science.gov (United States)

    Welge, H. Robert; Bonet, John; Magee, Todd; Tompkins, Daniel; Britt, Terry R.; Nelson, Chet; Miller, Gregory; Stenson, Douglas; Staubach, J. Brent; Bala, Naushir; Duge, Robert; OBrien, Mark; Cedoz, Robert; Barlow, Andrew; Martins, Steve; Viars, Phil; Rasheed, Adam; Kirby, Michelle; Raczynski, Chris; Roughen, Kevin; Doyle, Steven; Alston, Katherine; Page, Juliet; Plotkin, Kenneth J.

    2011-01-01

    Boeing, with Pratt & Whitney, General Electric, Rolls-Royce, M4 Engineering, Wyle Laboratories and Georgia Institute of Technology, conducted a study of supersonic commercial aircraft concepts and enabling technologies for the year 2030-2035 timeframe. The work defined the market and environmental/regulatory conditions that could evolve by the 2030/35 time period, from which vehicle performance goals were derived. Relevant vehicle concepts and technologies are identified that are anticipated to meet these performance and environmental goals. A series of multidisciplinary analyses trade studies considering vehicle sizing, mission performance and environmental conformity determined the appropriate concepts. Combinations of enabling technologies and the required technology performance levels needed to meet the desired goals were identified. Several high priority technologies are described in detail, including roadmaps with risk assessments that outline objectives, key technology challenges, detailed tasks and schedules and demonstrations that need to be performed. A representative configuration is provided for reference purposes, along with associated performance estimates based on these key technologies.

  12. Concept - or no concept

    DEFF Research Database (Denmark)

    Thorsteinsson, Uffe

    1999-01-01

    Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown......Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown...

  13. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period Phase 2

    Science.gov (United States)

    Morgenstern, John; Buonanno, Michael; Yao, Jixian; Murugappan, Mugam; Paliath, Umesh; Cheung, Lawrence; Malcevic, Ivan; Ramakrishnan, Kishore; Pastouchenko, Nikolai; Wood, Trevor; Martens, Steve; Viars, Phil; Tersmette, Trevor; Lee, Jason; Simmons, Ron; Plybon, David; Alonso, Juan; Palacios, Francisco; Lukaczyk, Trent; Carrier, Gerald

    2015-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR) and Stanford University, executed a 19 month program responsive to the NASA sponsored "N+2 Supersonic Validation: Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period" contract. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies necessary to realize a supersonic vehicle capable of meeting the N+2 environmental and performance goals. The N+2 program is aligned with NASA's Supersonic Project and is focused on providing system level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight. The N+2 environmental and performance goals are outlined in the technical paper, AIAA-2014-2138 (Ref. 1) along with the validated N+2 Phase 2 results. Our Phase 2 efforts built upon our Phase 1 studies (Ref. 2) and successfully demonstrated the ability to design and test realistic configurations capable of shaped sonic booms over the width of the sonic boom carpet. Developing a shaped boom configuration capable of meeting the N+2 shaped boom targets is a key goal for the N+2 program. During the LM Phase 1 effort, LM successfully designed and tested a shaped boom trijet configuration (1021) capable of achieving 85 PLdB under track (forward and aft shock) and up to 28 deg off-track at Mach 1.6. In Phase 2 we developed a refined configuration (1044-2) that extended the under 85 PLdB sonic boom level over the entire carpet of 52 deg off-track at a cruise Mach number of 1.7. Further, the loudness level of the configuration throughout operational conditions calculates to an average of 79 PLdB. These calculations rely on propagation employing Burger's (sBOOM) rounding methodology, and there are indications that the configuration average loudness would actually be 75 PLdB. We also added

  14. Inhibition of human monocyte chemotaxis and chemiluminescence by Pseudomonas aeruginosa elastase

    DEFF Research Database (Denmark)

    Kharazmi, A; Nielsen, H

    1991-01-01

    The in vitro effect of Pseudomonas aeruginosa elastase on human monocyte function was examined. Mononuclear cells isolated from the peripheral blood of healthy individuals were incubated with various concentrations of elastase, and the chemotactic activity and chemiluminescence response of these ...

  15. Fully Automated Quantification of Insulin Concentration Using a Microfluidic-Based Chemiluminescence Immunoassay.

    Science.gov (United States)

    Yao, Ping; Liu, Zhu; Tung, Steve; Dong, Zaili; Liu, Lianqing

    2016-06-01

    A fully automated microfluidic-based detection system for the rapid determination of insulin concentration through a chemiluminescence immunoassay has been developed. The microfluidic chip used in the system is a double-layered polydimethylsiloxane device embedded with interconnecting micropumps, microvalves, and a micromixer. At a high injection rate of the developing solution, the chemiluminescence signal can be excited and measured within a short period of time. The integral value of the chemiluminescence light signal is used to determine the insulin concentration of the samples, and the results indicate that the measurement is accurate in the range from 1.5 pM to 391 pM. The entire chemiluminescence assay can be completed in less than 10 min. The fully automated microfluidic-based insulin detection system provides a useful platform for rapid determination of insulin in clinical diagnostics for diabetes, which is expected to become increasingly important for future point-of-care applications. PMID:25824205

  16. Chemiluminescence of whole-body phagocytes from rats with ischemic-reperfused small intestine

    Czech Academy of Sciences Publication Activity Database

    Dušková, Monika; Lojek, Antonín; Číž, Milan; Vondráček, Jan; Čížová, Hana; Pavlíček, V.; Černý, J.; Lilius, E. M.; Hamar, J.

    Wroclaw: Polish Academy of Sciences, 1995 - (Kochel, B.; Podbielska, H.; Strek, W.), s. 11 [International Conference: Light and Biological Systems. Wroclaw (PL), 03.07.1995-06.07.1995] Keywords : ischemia * reperfusion * intestine * rat * phagocytes * chemiluminescence

  17. Surface plasmon coupled chemiluminescence during adsorption of oxygen on magnesium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Ulrich [Interdisciplinary Center for the Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nienhaus, Hermann, E-mail: hermann.nienhaus@uni-due.de [Faculty of Physics, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstr. 1, 47048 Duisburg (Germany)

    2015-12-28

    The dissociative adsorption of oxygen molecules on magnesium surfaces represents a non-adiabatic reaction exhibiting exoelectron emission, chemicurrent generation, and weak chemiluminescence. Using thin film Mg/Ag/p-Si(111) Schottky diodes with 1 nm Mg on a 10-60 nm thick Ag layer as 2π-photodetectors, the chemiluminescence is internally detected with a much larger efficiency than external methods. The chemically induced photoyield shows a maximum for a Ag film thickness of 45 nm. The enhancement is explained by surface plasmon coupled chemiluminescence, i.e., surface plasmon polaritons are effectively excited in the Ag layer by the oxidation reaction and decay radiatively leading to the observed photocurrent. Model calculations of the maximum absorption in attenuated total reflection geometry support the interpretation. The study demonstrates the extreme sensitivity and the practical usage of internal detection schemes for investigating surface chemiluminescence.

  18. The effects of advance organizer and prerequisite knowledge passages on the learning and retention of science concepts

    Science.gov (United States)

    Healy, Vivian C.

    Fifty-five ninth-grade science students participated in this study which compared the effects of two pretreatments, an advance organizer and a prerequisite knowledge passage, on learning and retention measured at low (knowledge and comprehension) and high (application and analysis) levels of the cognitive domain. The effectiveness of the pretreatments was measured by a framework test and a prerequisite knowledge test prior to the beginning of instruction. An analysis of covariance, with IQ as the covariate, was performed on the framework test and the prerequisite knowledge test. It was found that the advance organizer group performed significantly better than the prerequisite knowledge group (p test, and the prerequisite knowledge group performed significantly better (p test. These results provide evidence that both passages were read and understood by the students and that the passages had their intended effects as preinstructional treatments. An analysis of covariance, with IQ as the covariate, was performed on the low-level questions, high-level questions, and total score for the posttest and retention test. The group means for the two question levels and the total score were not found to be significantly different (p > 0.05) for either the posttest or retention test. The results of this study do not provide evidence that an advance organizer facilitates learning and retention more than a preinstructional treatment that concentrates on developing prerequisite knowledge.

  19. Determination of Ciprofloxacin by Flow Injection Analysis Based on Chemiluminescence System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel flow injection chemiluminescence (CL) method for the determination of ciprofloxacin (CPLX) was reported. The proposed method is based on luminescence produced by KMnO4-Na2S2O4-Tb3+-CPLX chemiluminescence (CL) system. The effects of some critical experimental conditions were discussed and the optimization of working condithe recoveries of real sample analyses were in the range from 110 ± 4 to 104 ± 4.

  20. The influence of He-Ne laser radiation on chemiluminescence of mouse spleen cells

    International Nuclear Information System (INIS)

    A study was made of He-Ne laser radiation (λ=632.8 nm) on spontaneous chemiluminescence of mouse splenic cells and that stimulated by addition of Candida albicans. Irradiation with low-intensity red light was shown to stimulate cell chemiluminescence and to intensify that stimulated by C. albicans within the dose range from 100 to 300 J/m2 with a maximum at about 200 J/m2

  1. A highly-sensitive multisubstrate-compatible chemiluminescent immunoassay for human fetuin A

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Sandeep Kumar Vashist ### Abstract We report a highly-sensitive chemiluminescent immunoassay (CIA) for the detection of human fetuin A (HFA), which is based on the leach-proof covalent crosslinking of anti-HFA capture antibodies on 3-aminopropyltriethoxysilane (APTES)-functionalized 96-well chemiluminescent microtiter plates (CMTP) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysulfosuccinimide. It has more than 3-fold reduced overall assay du...

  2. Optical tomography of fluorophores in dense scattering media based on ultrasound-enhanced chemiluminescence

    International Nuclear Information System (INIS)

    This letter proposes and demonstrates ultrasound-combined optical imaging in dense scattering media. A peroxyoxalate chemiluminescence system that includes fluorophores to chemically excite the pigment is stimulated by ultrasound irradiation with power of less than 0.14 W/cm2. Using focused ultrasound, the chemiluminescence is selectively spatially enhanced, which leads to imaging of the pigment when embedded in a light-scattering medium via scanning of the focal point. The ultrasonically enhanced intensity of the chemiluminescence depends on the base intensity of the chemiluminescence without the applied ultrasound irradiation, which thereby enables quantitative determination of the fluorophore concentration. The authors demonstrate the potential of this method to resolve chemiluminescent targets in a dense scattering medium that is comparable to biological tissue. An image was acquired of a chemiluminescent target that included indocyanine green as the fluorophore embedded at a depth of 20 mm in an Intralipid-10% 200 ml/l solution scattering medium (the reduced scattering coefficient was estimated to be approximately 1.3 mm−1), indicating the potential for expansion of this technique for use in biological applications

  3. Optical tomography of fluorophores in dense scattering media based on ultrasound-enhanced chemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Masaki, E-mail: masaki@tohtech.ac.jp; Kikuchi, Naoto; Sato, Akihiro [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577 (Japan)

    2015-01-12

    This letter proposes and demonstrates ultrasound-combined optical imaging in dense scattering media. A peroxyoxalate chemiluminescence system that includes fluorophores to chemically excite the pigment is stimulated by ultrasound irradiation with power of less than 0.14 W/cm{sup 2}. Using focused ultrasound, the chemiluminescence is selectively spatially enhanced, which leads to imaging of the pigment when embedded in a light-scattering medium via scanning of the focal point. The ultrasonically enhanced intensity of the chemiluminescence depends on the base intensity of the chemiluminescence without the applied ultrasound irradiation, which thereby enables quantitative determination of the fluorophore concentration. The authors demonstrate the potential of this method to resolve chemiluminescent targets in a dense scattering medium that is comparable to biological tissue. An image was acquired of a chemiluminescent target that included indocyanine green as the fluorophore embedded at a depth of 20 mm in an Intralipid-10% 200 ml/l solution scattering medium (the reduced scattering coefficient was estimated to be approximately 1.3 mm{sup −1}), indicating the potential for expansion of this technique for use in biological applications.

  4. An Advanced Fly-By-Wire Flight Control System for the RASCAL Research Rotorcraft: Concept to Reality

    Science.gov (United States)

    Rediess, Nicholas A.; Dones, Fernando; McManus, Bruce L.; Ulmer, Lon; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Design features of a new fly-by-wire flight control system for the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these pro-rams and the design implementation of the research flight control system (RFCS), with emphasis on safety-of-flight, adaptability to multiple requirements and performance considerations.

  5. Modeling and Test Data Analysis of a Tank Rapid Chill and Fill System for the Advanced Shuttle Upper Stage (ASUS) Concept

    Science.gov (United States)

    Flachbart, Robin; Hedayat, Ali; Holt, Kimberly A.; Cruit, Wendy (Technical Monitor)

    2001-01-01

    The Advanced Shuttle Upper Stage (ASUS) concept addresses safety concerns associated .with cryogenic stages by launching empty, and filling on ascent. The ASUS employs a rapid chill and fill concept. A spray bar is used to completely chill the tank before fill, allowing the vent valve to be closed during the fill process. The first tests of this concept, using a flight size (not flight weight) tank. were conducted at Marshall Space Flight Center (MSFC) during the summer of 2000. The objectives of the testing were to: 1) demonstrate that a flight size tank could be filled in roughly 5 minutes to accommodate the shuttle ascent window, and 2) demonstrate a no-vent fill of the tank. A total of 12 tests were conducted. Models of the test facility fill and vent systems, as well as the tank, were constructed. The objective of achieving tank fill in 5 minutes was met during the test series. However, liquid began to accumulate in the tank before it was chilled. Since the tank was not chilled until the end of each test, vent valve closure during fill was not possible. Even though the chill and fill process did not occur as expected, reasonable model correlation with the test data was achieved.

  6. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 4: Advanced fan section aerodynamic analysis computer program user's manual

    Science.gov (United States)

    Crook, Andrew J.; Delaney, Robert A.

    1992-01-01

    The computer program user's manual for the ADPACAPES (Advanced Ducted Propfan Analysis Code-Average Passage Engine Simulation) program is included. The objective of the computer program is development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates at the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes meeting the requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. The efficiency of the solution procedure was shown to be the same as the original analysis.

  7. Design concepts and advanced telerobotics development for facilities in the back end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    In the Fuel Recycle Division at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past seven years. The new remote technology under development is expected to significantly improve remote operations by extending the range of tasks accomplished by remote means and increasing the efficiency of remote work undertaken. Five areas of the development effort are primary contributors to the goal of higher operating efficiency for major facilities for the back end of the nuclear fuel cycle. These areas are the single-cell concept, the low-flow ventilation concept, television viewing, equipment-mounting racks, and force-reflecting manipulation. These somewhat innovative directions are products of a design process where the technical scenario to be accomplished, the remote equipment to accomplish the scenario, and the facility design to house the equipment, are considered in an iterative design process to optimize performance, maximize long-term costs effectiveness, and minimize initial capital outlay. 14 refs., 3 figs

  8. Design concepts and advanced telerobotics development for facilities in the back end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    In the Fuel Recycle Division at the Oak Ridge National Laboratory (ORNL), a comprehensive remote systems development program has existed for the past seven years. The new remote technology under development is expected to significantly improve remote operations by extending the range of tasks accomplished by remote means and increasing the efficiency of remote work undertaken. Five areas of the development effort are primary contributors to the goal of higher operating efficiency for major facilities for the back end of the nuclear fuel cycle. These areas are (1) the single-cell concept, (2) the low-flow ventilation concept, (3) television viewing, (4) equipment-mounting racks, and (5) force-reflecting manipulation. These somewhat innovative directions are products of a design process where the technical scenario to be accomplished, the remote equipment to accomplish the scenario, and the facility design to house the equipment, are considered in an iterative design process to optimize performance, maximize long-term costs effectiveness, and minimize initial capital outlay. (author)

  9. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    Science.gov (United States)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  10. High-performance liquid chromatography with chemiluminescence detection of serum levels of pre-column derivatized fluoropyrimidine compounds.

    Science.gov (United States)

    Yoshida, S; Urakami, K; Kito, M; Takeshima, S; Hirose, S

    1990-08-24

    7-(Diethylamino)-3-[4-[iodoacetyl)amino)phenyl]-4-methylcoumarin (DCIA) and 4-(bromomethyl)-7-methoxycoumarin have been evaluated as fluoropyrimidine-derivatizing agents to be detected using peroxyoxalate chemiluminescence with high-performance liquid chromatography. The derivatization procedure required only one step. No chemiluminescence was observed from the bromo derivatives, and the detection limits of fluoropyrimidine compounds derivatized with the iodo compound and detected with peroxyoxalate chemiluminescence were in the low femtomole range. PMID:2148941

  11. Advances in integrated and sustainable supply chain planning concepts, methods, tools and solution approaches toward a platform for industrial practice

    CERN Document Server

    Laínez-Aguirre, José Miguel

    2015-01-01

    Decision making at the enterprise level often encompass not only production operations and  product R&D, but other strategic functions such as financial planning and marketing. With the aim of maximizing growth and a firm’s value, companies often focus on co-ordinating these functional components as well as traditional hierarchical decision levels. Understanding this interplay can enhance enterprise capabilities of adaptation and response to uncertainties arising from internal processes as well as the external environment. This book presents concepts, methods, tools and solutions based on mathematical programming, which provides the quantitative support needed for integrated decision-making and ultimately for improving the allocation of overall corporate resources (e.g., materials, cash and personnel). Through a systems perspective, the integrated planning of the supply chain also promotes activities of reuse, reduction and recycling for achieving more sustainable environmental impacts of production/di...

  12. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, S [Saint Agnes Cancer Institute, Department of Radiation Oncology, Baltimore, MD (United States)

    2014-06-15

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physical principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as

  13. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    International Nuclear Information System (INIS)

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physical principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as

  14. Euler Technology Assessment - SPLITFLOW Code Applications for Stability and Control Analysis on an Advanced Fighter Model Employing Innovative Control Concepts

    Science.gov (United States)

    Jordan, Keith J.

    1998-01-01

    This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.

  15. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    Rodolfo Araneo

    2014-12-01

    Full Text Available Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews.

  16. Investigation of Advanced Counterrotation Blade Configuration Concepts for High Speed Turboprop Systems. Task 2: Unsteady Ducted Propfan Analysis

    Science.gov (United States)

    Hall, Edward J.; Delaney, Robert A.; Bettner, James L.

    1991-01-01

    The primary objective was the development of a time dependent 3-D Euler/Navier-Stokes aerodynamic analysis to predict unsteady compressible transonic flows about ducted and unducted propfan propulsion systems at angle of attack. The resulting computer codes are referred to as Advanced Ducted Propfan Analysis Codes (ADPAC). A computer program user's manual is presented for the ADPAC. Aerodynamic calculations were based on a four stage Runge-Kutta time marching finite volume solution technique with added numerical dissipation. A time accurate implicit residual smoothing operator was used for unsteady flow predictions. For unducted propfans, a single H-type grid was used to discretize each blade passage of the complete propeller. For ducted propfans, a coupled system of five grid blocks utilizing an embedded C grid about the cowl leading edge was used to discretize each blade passage. Grid systems were generated by a combined algebraic/elliptic algorithm developed specifically for ducted propfans. Numerical calculations were compared with experimental data for both ducted and unducted flows.

  17. Advanced instrumentation and post-irradiation examination concepts for the analysis of aerosols and vapours in source term experiments

    International Nuclear Information System (INIS)

    Aerosols and vapours predicted to form in light water reactor accidents could be generated at high temperatures and pressures in the presence of steam and hydrogen. The radioactive fission products could constitute only a small percentage of the material released, since the bulkier components from the reactor core could dominate the aerosol mass. Such factors limit the vapour and aerosol sampling analysis techniques that can be used successfully in source term experiments, and care has to be taken in choosing the most appropriate methods. Comprehensive reviews have been undertaken of a wide range of relevant analytical techniques to monitor the chemical and physical effects that occur in large-scale tests designed to study severe reactor accidents, with particular emphasis placed on the choice and design of instruments for the Phebus-FP experiments. Various techniques have been developed to determine the chemical and physical forms of the vapours, aerosols and deposits formed during and after such integral experiments. Other methods have the long-term potential to provide some of the desired data in greater detail, although considerable efforts are still required to apply these techniques to the study of radioactive debris. Advanced methods are described and assessed for the on-line determination of aerosol properties, as well as novel measuring techniques that are being used in related fields (eg fuel reprocessing and non-nuclear applications). The merits and disadvantages of each approach are discussed, and guidelines provided for future development. (author)

  18. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 5: Unsteady counterrotation ducted propfan analysis

    Science.gov (United States)

    Hall, Edward J.; Delaney, Robert A.

    1993-01-01

    The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOAR\\CR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This document is the final report describing the theoretical basis and analytical results from the ADPAC-AOACR codes developed under task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR Program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows.

  19. Concepts for Near-Earth Asteroid Deflection using Spacecraft with Advanced Nuclear and Solar Electric Propulsion Systems

    Science.gov (United States)

    Walker, R.; Izzo, D.; de Negueruela, C.; Summerer, L.; Ayre, M.; Vasile, M.

    The near-Earth object population, composed mostly of asteroids rather than comets, poses an impact hazard to Earth. Space technology is reaching a sufficient level of capability and maturity where the deflection of an Earth impactor may be possible within the next decades. The paper focuses on assessing the maximum deflection capability (minimum response time) that could be achieved with a rendezvous/landed spacecraft, using electric propulsion and nuclear/solar power technologies likely to be available in the near-term, within the constraints of a single heavy launch into low Earth orbit. Preliminary design concepts are presented for large, high-power nuclear and solar electric spacecraft, based on a trade-off analysis of power/ propulsion technology options and an optimisation of the complete mission design to the minimise the total response time for a representative impactor/deflection scenario. High specific impulse gridded-ion engines show significantly improved mission performance over Hall effect thrusters due to the high delta-V requirements for Earth spiral out, rendezvous, spin axis re-orientation and deflection. Amorphous silicon thin film solar arrays perform substantially better than conventional high cell efficiency alternatives. It was found that solar electric spacecraft could achieve lower total response times for the deflection than a nuclear electric spacecraft of the same initial mass, if the asteroid perihelion is much lower than the Earth. The comparison is expected to be much closer if the asteroid perihelion is near the Earth. Both systems were found to provide effective deflection capabilities for small/moderate-size impactors.

  20. Experimental study on advanced concepts of IHX-SG combined system for loop-type LMFBRs. Effects of scale and arrangement of heat tubes

    International Nuclear Information System (INIS)

    The basic experiments were performed for the feasibility study on advanced concepts of IHX-SG combined system where the heat transfer tubes of the primary sodium coolant loop and those of the tertiary water/steam loop are closely placed in alternating arrangement in a vessel with the intermediate heat transfer medium (liquid-metal such as Pb-Bi alloy). The effects of the scale and the arrangement of the heat transfer tubes were examined in the present experiments, which were conducted with a pair of one straight heater rod and four cooling tubes by using liquid-metal gallium or water as the intermediate heat transfer medium. The additional experiments were also performed to examine the effects of the safety barrier for the protection of sodium-water direct interaction on the heat transfer characteristics. The applicability of the present system to the reactor conditions was discussed based on the results of the present experiments, which was encouraging for the further studies on the present concepts of the IHX-SG combined system. (author)

  1. Photofragmentation of nitro-based explosives with chemiluminescence detection.

    Science.gov (United States)

    Monterola, Maria Pamela P; Smith, Benjamin W; Omenetto, Nicolò; Winefordner, James D

    2008-08-01

    A simple, fast, reliable, sensitive and potentially portable explosive detection device was developed employing laser photofragmentation (PF) followed by heterogeneous chemiluminescence (CL) detection. The PF process involves the release of NO(x(x = 1,2)) moieties from explosive compounds such as TNT, RDX, and PETN through a stepwise excitation-dissociation process using a 193 nm ArF laser. The NO(x(x = 1,2)) produced upon PF is subsequently detected by its CL reaction with basic luminol solution. The intensity of the CL signal was detected by a thermoelectrically cooled photomultiplier tube with high quantum efficiency and negligible dark current counts. The system was able to detect trace amounts of explosives in various forms in real time under ambient conditions. Detection limits of 3 ppbv for PETN, 2 ppbv for RDX, and 34 ppbv for TNT were obtained. It was also demonstrated that the presence of PETN residue within the range of 61 to 186 ng/cm(2) can be detected at a given signal-to-background ratio of 10 using a few microjoules of laser energy. The technique also demonstrated its potential for the direct analysis of trace explosive in soil. An LOD range of 0.5-4.3 ppm for PETN was established, which is comparable to currently available techniques. PMID:18551285

  2. Capillary electrophoresis-chemiluminescence determination of norfloxacin and prulifloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhongju; Wang Xiaoli [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Qin Weidong [College of Chemistry, Beijing Normal University, Beijing 100875 (China)], E-mail: qinwd@bnu.edu.cn; Zhao Huichun [College of Chemistry, Beijing Normal University, Beijing 100875 (China)], E-mail: zhaohuichun@bnu.edu.cn

    2008-08-15

    A capillary electrophoresis (CE)-chemiluminescence (CL) method for determining norfloxacin (NFLX) and prulifloxacin (PFLX) was developed based on the enhanced CL intensity of the cerium(IV)-sulfite-fluoroquinolone (FQ) reaction sensitized by terbium(III). The separation was conducted in buffer composed of 20 mM sodium citrate, 4 mM citric acid and 10 mM sodium sulfite at pH 6.1. The CL reagent solution consisted of 2 mM cerium(IV), 4 mM terbium(III) and 1.1 mM hydrochloric acid. NFLX and PFLX were baseline separated within 11 min with detection limits (S/N = 3) of 0.057 and 0.084 {mu}g mL{sup -1}, respectively. The maximum intra- and inter-day relative standard deviations (R.S.D.s) of migration time of the analytes were less than 4.0% and 4.2%, respectively. The proposed method was applied to detect NFLX and PFLX in fortified urine sample and the results were comparable to high-performance liquid chromatography (HPLC)-UV method. Moreover, the high selectivity of the CL detection and the high-separation efficiency of CE render the method the potential of quick analyzing fluoroquinolones in real complex matrix.

  3. Evaluation of a new chemiluminescence immunoassay for diagnosis of syphilis

    Directory of Open Access Journals (Sweden)

    Mo Xiaohui

    2010-02-01

    Full Text Available Abstract Objective To assess the sensitivity, specificity, and feasibility of a new chemiluminescence immunoassay (CLIA in the diagnosis of syphilis. Methods At first, a retrospective study was conducted, using 135 documented cases of syphilis and 30 potentially interfering samples and 80 normal sera. A prospective study was also performed by testing 2, 071 unselected samples for routine screening for syphilis. CLIA was compared with a nontreponemal test (TRUST and a treponemal test (TPPA. Results There was an agreement of 100% between CLIA and TPPA in the respective study. The percentage of agreement among the 245 sera tested was 100.0%. Compared with TPPA, the specificity of CLIA was 99.9% (1817/1819, the sensitivity of CLIA was 100.0% (244/244 in the prospective study. CLIA showed 99.5% agreement with TPPA by testing 2, 071 unselected samples. And CLIA seemed to be more sensitive than TPPA in detecting the samples of primary syphilis. Conclusions CLIA is easy to perform and the indicator results are objective and unequivocal. It may be suitable for large-scale screening as a treponemal test substituted for TPPA.

  4. Maxillo-mandibular counter-clockwise rotation and mandibular advancement with TMJ Concepts total joint prostheses: part II--airway changes and stability.

    Science.gov (United States)

    Coleta, K E D; Wolford, L M; Gonçalves, J R; Pinto, A dos Santos; Cassano, D S; Gonçalves, D A G

    2009-03-01

    The purpose of this study was to evaluate the anatomical changes and stability of the oropharyngeal airway and head posture following TMJ reconstruction and mandibular advancement with TMJ Concepts custom-made total joint prostheses and maxillary osteotomies with counter-clockwise rotation of the maxillo-mandibular complex. All patients were operated at Baylor University Medical Center, Dallas TX, USA, by one surgeon (Wolford). The lateral cephalograms of 47 patients were analyzed to determine surgical and post-surgical changes of the oropharyngeal airway, hyoid bone and head posture. Surgery increased the narrowest retroglossal airway space 4.9 mm. Head posture showed flexure immediately after surgery (-5.6+/-6.7 degrees) and extension long-term post surgery (1.8+/-6.7 degrees); cervical curvature showed no significant change. Surgery increased the distances between the third cervical vertebrae and the menton 11.7+/-9.1 mm and the third cervical vertebrae and hyoid 3.2+/-3.9 mm, and remained stable. The distance from the hyoid to the mandibular plane decreased during surgery (-3.8+/-5.8 mm) and after surgery (-2.5+/-5.2 mm). Maxillo-mandibular advancement with counter-clockwise rotation and TMJ reconstruction with total joint prostheses produced immediate increase in oropharyngeal airway dimension, which was influenced by long-term changes in head posture but remained stable over the follow-up period. PMID:19135866

  5. Concept development

    International Nuclear Information System (INIS)

    The wind energy development started up with a variety of wind turbine concepts, and at the same time with the establishment (at lest in Denmark) of a very efficient network of acquainted people for exchange of information and experience. As a result of an unconscious common 'decision' within this network, the three-bladed standard type was selected quite expedite. Some manufacturers had good results with this type. Blades became available, and new manufacturers had a 'receipt' to start up. Furthermore, it was generally accepted that only limited time was available for the wind energy technology to show promising perspectives in competition to other sources of energy production. Other countries worked at the same time on more advanced concepts with a longer time frame before commercialization (large two-bladed teetering rotors). Unfortunately many of these developments were not sufficiently successful in time, and it came to a point where the three-bladed standard concept was widely selected worldwide for commercialization - but this might not be as a result of a competition between concepts on equal conditions. Rather, it could be seen as a way of getting respite in the competition to conventional energy sources, where wind turbines in the meantime have shown 'arguably' competitive. This achievement gives the freedom to the wind turbine community to develop new concepts from the present day foundation of experience and knowledge and relate to the standard concept. (au)

  6. Image and laparoscopic guided interstitial brachytherapy for locally advanced primary or recurrent gynaecological cancer using the adaptive GEC ESTRO target concept

    International Nuclear Information System (INIS)

    Purpose: To retrospectively assess treatment outcome of image and laparoscopic guided interstitial pulsed dose rate brachytherapy (PDR-BT) for locally advanced gynaecological cancer using the adaptive GEC ESTRO target concept. Materials and methods: Between June 2005 and December 2010, 28 consecutive patients were treated for locally advanced primary vaginal (nine), recurrent endometrial (12) or recurrent cervical cancer (seven) with combined external beam radiotherapy (EBRT) and interstitial PDR-BT. Treatment was initiated with whole pelvic EBRT to a median dose of 45 Gy followed by PDR-BT using the Martinez Universal Perineal Interstitial Template (MUPIT). All implants were virtually preplanned using MRI of the pelvis with a dummy MUPIT in situ. The GEC ESTRO high risk clinical target volume (HR CTV), intermediate risk clinical target volume (IR CTV) and the organs at risk (OAR) were contoured and a preplan for implantation was generated (BrachyVision, Varian). The subsequent implantation was performed under laparoscopic visualisation. Final contouring and treatment planning were done using a post-implant CT. Planning aim of PDR-BT was to deliver 30 Gy in 50 hourly pulses to HR CTV. Manual dose optimisation was performed with the aim of reaching a D90 > 80 Gy in the HR CTV calculated as the total biologically equivalent to 2 Gy fractions of EBRT and BT (EQD2). Dose to the OAR were evaluated using dose volume constraints for D2cc of 90 Gy for bladder and 70 Gy for rectum and sigmoid. Results: For HR CTV the median volume was 26 cm3 (7-91 cm3). Coverage of the HR CTV was 97% (90-100%) and D90 was 82 Gy (77-88 Gy). The D2cc for bladder, rectum, and sigmoid were 65 Gy (47-81 Gy), 61 Gy (50-77 Gy), and 52 Gy (44-68 Gy), respectively. Median follow up was 18 months (6-61 months). The actuarial 2 years local control rate was 92% (SE 5), while disease-free survival and overall survival were 59% (SE 11) and 74%, respectively (SE 10). No complications to the laparoscopic

  7. Flow injection-chemiluminescence determination of phenol using potassium permanganate and formaldehyde system

    Science.gov (United States)

    Cao, Wei; Mu, Xuemin; Yang, Jinghe; Shi, Wenbo; Zheng, Yongcun

    2007-01-01

    It is found that phenol can react with potassium permanganate in the acidic medium and produce chemiluminescence, which is greatly enhanced by formaldehyde. The optimum conditions for this chemiluminescent reaction are in detail studied using a flow injection system. The experiments indicate that under optimum conditions, the chemiluminescence intensity is linearly related to the concentration of phenol in the range 5.0 × 10 -9 to 1.0 × 10 -6 g mL -1 with a detection limit (3 σ) of 3 × 10 -9 g mL -1. The relative standard deviation is 1.2% for 4.0 × 10 -7 g mL -1 phenol solution in 11 repeated measurements. This method has the advantages of simple operation, fast response and high sensitivity. The method is successfully applied to the determination of phenol in the waste water.

  8. Application of advanced validation concepts to oxide fuel performance codes: LIFE-4 fast-reactor and FRAPCON thermal-reactor fuel performance codes

    International Nuclear Information System (INIS)

    /validation of MS/MP capabilities because these advanced tools have not yet reached sufficient maturity to support such an investigation. In an earlier paper (Unal et al., 2011), we proposed a methodology that potentially can be used to address these new challenges in the design and licensing of evolving nuclear technology. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept was introduced and is accomplished through data assimilation. Since advanced MS/MP codes have not yet reached the level of maturity required for a comprehensive validation and calibration exercise, we considered two legacy fuel codes and apply parts of our methodology to these codes to demonstrate the benefits of the new calibration capabilities we recently developed as a part of the proposed framework. This effort does not directly support “born-assessed” validation for advanced MS/MP codes, but is useful to gain insight on legacy modeling deficiencies and to guide and develop recommendations on high and low priority directions for development of advanced codes and advanced experiments, so as to maximize the benefits of advanced validation and uncertainty quantification (VU) efforts involving the next generation of MS/MP code capabilities. This paper discusses the application of advanced validation techniques (sensitivity, calibration, and prediction) to nuclear fuel performance codes FRAPCON (Geelhood et al., 2011a,b) and LIFE-4 (Boltax et al., 1990). FRAPCON is used to predict oxide fuel behavior in light water reactors. LIFE-4 was developed in the 1980s to predict oxide fuel behavior in fast reactors. We introduce a sensitivity ranking methodology to narrow down the selected parameters for follow-up sensitivity and calibration analyses. We use screening methods with both codes and discuss the results. The number of selected modeling parameters was 61 for FRAPCON and 69 for LIFE-4. The screening

  9. Effect of irradiation on chemiluminescence of EPR pure valcanisate

    International Nuclear Information System (INIS)

    Chemiluminescence of ethylene-propylene pure rubber which is irradiated at various doses was measured. Three methods were attempted to obtain the temperature dependence of the counts of luminescence. In the first method, the relationship between counts of luminescence and time at constant temperature was measured, and the maximum value of counts per unit time is defined as the counts at the temperature (maximum counts method). The relationship between the counts and the passage time was found to be maxwellian after a certain period of time. The extrapolated value to time 0 was defined as the initial count of luminescence in the second method (extrapolate method). In the third method, temperature of the samples was raised stepwise and the counts of each temperature was measured (temperature rising method). Irradiation of 2.7 kGy increases the amount of luminescence remarkably, although the mechanical properties are not affected significantly at the dose. The counts of luminescence does not increase linearly with increasing dose. The counts were found to level off at about 50 kGy. This is because the antioxidant agent which is added during production process of EPR is consumed by irradiation. The results suggests that the rate of autoxidation of the constant temperature depends on whether an antioxidant agent exists or not. The activation energy of the count of CL did not change irrespective of irradiation, and was 82.7 kJ/mol in the extrapolate method. On the other hand, the activation energy for non-irradiated EPR was lower than that of irradiated samples in the maximum counts method, but higher than the values of irradiated samples in the temperature rising method. (author)

  10. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  11. Use of gas-surface chemiluminescence analyzer for NO and NO2 measurements in combustion

    International Nuclear Information System (INIS)

    This paper reports on a gas-surface NO2 chemiluminescent analyzer developed for atmospheric measurements of NO2 which has been adapted for the first time to measure NO and NO2 in flames. Its substantial advantages compared with the traditional gas-phase chemiluminescent NO analyzers are (1) direct determinations of NO2 concentrations, (2) an ∼ 10-fold increase in time response and (3) an ∼1000 fold-increase in sensitivity. Its primary disadvantage is the need for quantitative sample dilution if the NO concentration is greater than 200 ppb. Its application in laminar premixed flames at atmospheric and elevated pressures are demonstrated

  12. The operational complexity index: A new method for the global assessment of the human factor impact on the safety of advanced reactors concepts

    International Nuclear Information System (INIS)

    With the increasing reliability of the modern technology, the human contribution to the global risk in the operation of industrial systems is becoming more and more significant: in the nuclear reactor operation, for example, a recent Probabilistic Safety Assessment of this contribution is about 25% of the probability of core damage, all situations considered. This urges the designers of future nuclear reactors to consider the minimization of this Human Factor (HF) contribution, at the very early stage of their design: the experience feedback shows that this is indeed at this stage that the fundamental design options, most impacting the human reliability in operation, are fixed. The problem is that at these early design stages, it is also quite impossible to apply formal human reliability methods to support this HF optimisation, while the precise operating conditions of the reactor are not yet known in enough details. In this paper, another approach of the HF evaluation is presented. This method for the early assessment of the HF impact on the plant safety is proposed for the comparison of various advanced reactor concepts currently being designed within the frame of the international GENERATION IV initiative

  13. A new primary cleft lip repair technique tailored for Asian patients that combines three surgical concepts: Comparison with rotation--advancement and straight-line methods.

    Science.gov (United States)

    Funayama, Emi; Yamamoto, Yuhei; Furukawa, Hiroshi; Murao, Naoki; Shichinohe, Ryuji; Hayashi, Toshihiko; Oyama, Akihiko

    2016-01-01

    Various techniques have been described for unilateral cleft lip repair. These may be broadly classified into three types of procedure/concept: the straight-line method (SL; Rose-Thompson effect); rotation-advancement (RA; upper-lip Z-plasty); and the triangular flap method (TA; lower-lip Z-plasty). Based on these procedures, cleft lip repair has evolved in recent decades. The cleft lip repair method in our institution has also undergone several changes. However, we have found that further modifications are needed for Asian patients who have wider philtral dimples and columns than Caucasians, while following the principles of the original techniques mentioned above. Here, we have incorporated the advantages of each procedure and propose a refined hybrid operating technique, seeking a more appropriate procedure for Asian patients. To evaluate our new technique, a comparison study was performed to evaluate RA, SL, and our technique. We have used our new technique to treat 137 consecutive cleft lip cases of all types and degrees of severity, with or without a cleft palate, since 2009. In the time since we adopted the hybrid technique, we have observed improved esthetics of the repaired lip. Our technique demonstrated higher glance impression average scores than RA/SL. PMID:26653337

  14. The source and characteristics of chemiluminescence associated with the oxygenase reaction catalyzed by Mn(2+)-ribulosebisphosphate carboxylase.

    Science.gov (United States)

    Lilley, R M; Riesen, H; Andrews, T J

    1993-07-01

    We confirm the observation of Mogel and McFadden (Mogel, S.N., and McFadden, B. A. (1990) Biochemistry 29, 8333-8337) that ribulosebisphosphate carboxylase/oxygenase (rubisco) exhibits chemiluminescence while catalyzing its oxygenase reaction in the presence of Mn2+. However, our results with the spinach and Rhodospirillum rubrum enzymes differ markedly in the following respects. 1) Chemiluminescence intensity was directly proportional to enzyme concentration and behaved as if representing the rate of oxygenase catalysis. 2) The wavelength spectrum peaked at about 770 nm and extended beyond 810 nm. This seems inconsistent with chemiluminescence generated by simultaneous decay of pairs of singlet O2 molecules. It is consistent with manganese(II) luminescence and we discuss its possible sources. The time course of chemiluminescence (resolution, 0.25 s) was distinctively different for spinach and R. rubrum enzymes during the initial 5 s of catalysis, with the bacterial enzyme exhibiting a pronounced initial "burst." Chemiluminescence by the spinach enzyme responded to substrate concentrations in a manner consistent with known oxygenase properties, exhibiting Michaelis-Menten kinetics with ribulose-1,5-bisphosphate (Km 400 nM). Chemiluminescence required carbamylated enzyme with Mn2+ bound at the active site (activation energy, -57.1 KJ.mol-1). As an indicator of oxygenase activity, chemiluminescence represents an improvement over oxygen electrode measurements in response time and sensitivity by factors of at least 100. PMID:8314755

  15. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

    2014-06-01

    -based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payload’s communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods – the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.

  16. Clinical Evaluation of a Chemiluminescence Immunoassay for Determination of Immunoglobulin G Avidity to Human Cytomegalovirus

    OpenAIRE

    Grazia Revello, Maria; Gorini, Giovanna; Gerna, Giuseppe

    2004-01-01

    Clinical evaluation of a novel fully automated chemiluminescence immunoassay for determination of immunoglobulin G avidity to human cytomegalovirus (HCMV) showed 92.8% sensitivity and 84.7% specificity in detecting a recent (≤90 days) primary HCMV infection. The assay appears useful for accurately diagnosing recent primary HCMV infections.

  17. Synthesis and properties of chemiluminescent acridinium ester labels with fluorous tags.

    Science.gov (United States)

    Natrajan, Anand; Wen, David; Sharpe, David

    2014-06-21

    Acridinium dimethylphenyl esters are highly sensitive chemiluminescent labels that are used in clinical diagnostics. Light emission from these labels is triggered with alkaline peroxide in the presence of the cationic surfactant cetyltrimethylammonium chloride (CTAC). CTAC compresses emission times of these labels to fluorous tags of varying fluorine content and their chemiluminescence in the presence of cationic micelles of CTAC, anionic micelles of sodium perfluorooctanoate (SPFO) as well as mixed micelles of CTAC and SPFO. These studies indicate that in the presence of the mixed micelle system of CTAC and SPFO and at low mole fractions of SPFO, polarity of the mixed micelle interface is lower than that of CTAC leading to a greater enhancement of chemiluminescence for both fluorinated acridinium esters as well as a structurally analogous but non-fluorinated acridinium ester. Chemiluminescence stability of the fluorinated acridinium esters was either comparable to or better than the stability of the non-fluorinated acridinium ester. Non-specific binding to paramagnetic microparticles was higher for fluorinated acridinium esters requiring a surfactant wash to reduce their non-specific binding to the same extent as that observed for the non-fluorinated acridinium ester. PMID:24788381

  18. Review of Federal Reference Method for Ozone: Nitric Oxide-Chemiluminescence:Supplemental Material for CASAC AMMS

    Science.gov (United States)

    ApproachPer suggestion made by CASAC AMMS members during the April 3, 2014 conference call on the Review of Federal Reference Method for Ozone: Nitric Oxide-Chemiluminescence, ORD has performed additional data analysis activities to explain and mitigate scatter observed in the co...

  19. Assay of Cysteine in Human Serum with Quinine-Ce4+ Chemiluminescence System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A sensitive and selective chemiluminescence (CL) method was developed for the determination of cysteine. This method is based on that the weak CL of cysteine oxidized with cerium (IV) can be greatly enhanced by quinine, and the total cysteine in human serum can be detected through simply diluting with water, showing a simpler analytical characteristic.

  20. Flow injection analysis of ketoprofen based on the order transform second chemiluminescence reaction

    Science.gov (United States)

    Zhuang, Yafeng; Cao, Guiping; Ge, Chuanqin

    2012-01-01

    This paper explores an order-transform-second-chemiluminescence (OTSCL) method combining the flow injection technique for the determination of ketoprofen. When ketoprofen solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate solution was injected into the reaction mixture of ketoprofen and alkaline luminol, a new chemiluminescence (CL) reaction was initiated and strong CL signal was detected. A mechanism for the OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristic, UV-visible absorption and chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of ketoprofen over the range of 2.0 × 10 -7 to 1.0 × 10 -5 mol/L with a correlation coefficient of 0.9950 and a detection limit of 8.0 × 10 -9 mol/L (3 σ). The relative standard deviation for 11 repetitive determinations of 1.0 × 10 -6 mol/L ketoprofen is 2.9%. The utility of this method was demonstrated by determining ketoprofen in pharmaceutical formulations without interference from its potential impurities.

  1. Microflow injection potassium bioassay based on G-quadruplex DNAzyme-enhanced chemiluminescence.

    Science.gov (United States)

    Song, Lifang; Pan, Xiaoyan; Shen, Hong; Yu, Yaling

    2014-12-01

    By taking advantage of microflow injection chemiluminescence analysis, we developed a distinctive microfluidic bioassay method based on G-Quadruplex DNAzyme-enhanced chemiluminescence for the determination of K(+) in human serum. AGRO100, the G-rich oligonucleotide with high hemin binding affinity was primarily selected as a K(+) recognition element. In the presence of K(+), AGRO100 folded into G-quadruplex and bound hemin to form DNAzyme, which catalyzed the oxidation of luminol by H2 O2 to produce chemiluminescence. The intensity of chemiluminescence increased with the K(+) concentration. In the study, the DNAzyme showed both long-term stability and high catalytic activity; other common cations at their physiological concentration did not cause notable interference. With only 6.7 × 10(-13) mol of AGRO100 consumption per sample, a linear response of K(+) ranged from 1 to 300 µmol/L, the concentration detection limit 0.69 µmol/L (S/N = 3) and the absolute detection limit 1.38 × 10(-12) mol were obtained. The precision of 10 replicate measurements of 60 µmol/L K(+) was found to be 1.72% (relative standard deviation). The accuracy of the method was demonstrated by analyzing real human serum samples. PMID:24851824

  2. Differentiating between intra- and extracellular chemiluminescence in diluted whole-blood samples

    Czech Academy of Sciences Publication Activity Database

    Rájecký, Michal; Lojek, Antonín; Číž, Milan

    2012-01-01

    Roč. 34, č. 2 (2012), s. 136-142. ISSN 1751-5521 R&D Projects: GA MŠk(CZ) OC10044 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chemiluminescence * isoluminol * whole blood Subject RIV: BO - Biophysics Impact factor: 1.293, year: 2012

  3. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    Science.gov (United States)

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts. PMID:26803763

  4. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2

    Science.gov (United States)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M.; Wu, Jerry J.

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes.

  5. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2.

    Science.gov (United States)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M; Wu, Jerry J

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes. PMID:27131144

  6. Luminol/antibody labeled gold nanoparticles for chemiluminescence immunoassay of carcinoembryonic antigen

    International Nuclear Information System (INIS)

    A facile strategy by loading luminol and secondary antibody on gold nanoparticles (Au NPs) was described in the present work. The as-prepared luminol/antibody labeled Au NPs conjugates (LAAu NPs) were used as the chemiluminescent probe for the detection of carcinoembryonic antigen (CEA) in serum. The LAAu NPs were characterized by transmission electron microscopy (TEM), UV-vis spectrophotometry (UV-vis), and chemiluminescent method. Stable and efficient chemiluminescence (CL) was obtained when luminol molecules and secondary antibodies were coimmobilized on the Au NPs by using hydrogen peroxide (H2O2) as an oxidant, horseradish peroxidase (HRP) as a catalyst, and 4-(4'-iodo)phenylphenol (IPP) as an enhancer. The LAAu NPs were further evaluated via a sandwich-type CL immunoassay of CEA in serum. In this protocol, the CEA analyte was captured by the primary antibody immobilized on the surface of magnetic beads, and then was sandwiched by the secondary antibody loaded on luminol-labeled Au NPs. The chemiluminescent intensity was proportional to the concentration of CEA over the range of 5.0 x 10-10 to 5.0 x 10-8 g mL-1 and 5.0 x 10-9 to 2.0 x 10-8 g mL-1 by using HRP and Co2+ as catalysts, respectively. The present chemiluminescent immunoassay based on the luminol/antibody labeled Au NPs conjugates has offered great promise for simple, highly biocompatible, and cost-effective analysis of biological samples.

  7. Development and characterization of a microfluidic glucose sensing system based on an enzymatic microreactor and chemiluminescence detection

    NARCIS (Netherlands)

    Moon, B. -U; de Vries, M. G.; Westerink, B. H. C.; Verpoorte, E.

    2012-01-01

    Chemiluminescence detection was developed as an alternative to amperometric detection for glucose analysis in a portable, microfluidics-based continuous glucose monitoring system. Amperometric detection allows easy determination of hydrogen peroxide, a product of the glucose oxidase-catalyzed reacti

  8. Chemiluminescence of isolated human leukocytes induced by Streptococcus mutans is generated extracellularly in the absence of phagocytosis

    Czech Academy of Sciences Publication Activity Database

    Lojek, Antonín; Číž, Milan; Kubala, Lukáš; Nuutila, J.; Lilius, E. M.

    Singapore: World Scientific, 2002 - (Stanley, P.; Kricka, L.), s. 269-272 ISBN 981-238-156-2. [Symposium on Bioluminescence and Chemiluminescence /12./. Cambridge (GB), 05.04.2002-09.04.2002] R&D Projects: GA ČR GA524/00/1223; GA AV ČR IBS5004009 Institutional research plan: CEZ:AV0Z5004920 Keywords : chemiluminescence * leukocytes * Streptococcus mutans Subject RIV: BO - Biophysics

  9. The Concept of Validity

    Science.gov (United States)

    Borsboom, Denny; Mellenbergh, Gideon J.; van Heerden, Jaap

    2004-01-01

    This article advances a simple conception of test validity: A test is valid for measuring an attribute if (a) the attribute exists and (b) variations in the attribute causally produce variation in the measurement outcomes. This conception is shown to diverge from current validity theory in several respects. In particular, the emphasis in the…

  10. 积极心理学理念下的高职生消极心理探析%Study on Negative Mind in Students with Advanced Vocational Education based on Positive Psychology Concept

    Institute of Scientific and Technical Information of China (English)

    谢桂莹

    2014-01-01

    This paper started with the analysis of specific performance of negative mind in current students with advanced vocational education, and discussed that how to apply the new positive psychology concepts to analyze the development status of students with advanced vocational education, and how to trigger their potential and improve their feeling of happiness, and further proposed specific strategies of delaminating stu-dents′ negative mind based on basic concepts of positive psychology.%本文从分析当前高职生消极心理的具体表现入手,具体阐述了如何挖掘高职生的潜能和提升其幸福感,从而提出从积极心理学基本理念出发摒除高职生消极心理的具体策略。

  11. A chemiluminescence method to detect hydroquinone with water-soluble sulphonato-(salen)manganese(III) complex as catalyst.

    Science.gov (United States)

    Zhang, Guangbin; Tang, Yuhai; Sun, Yang; Yu, Hua; Du, Wei; Fu, Qiang

    2016-02-01

    A water-soluble sulphonato-(salen)manganese(III) complex with excellent catalytic properties was synthesized and demonstrated to greatly enhance the chemiluminescence signal of the hydrogen peroxide - luminol reaction. Coupled with flow-injection technique, a simple and sensitive chemiluminescence method was first developed to detect hydroquinone based on the chemiluminescence system of the hydrogen peroxide-luminol-sulphonato-(salen)manganese(III) complex. Under optimal conditions, the assay exhibited a wide linear range from 0.1 to 10 ng mL(-1) with a detection limit of 0.05 ng mL(-1) for hydroquinone. The method was applied successfully to detect hydroquinone in tap-water and mineral-water, with a sampling frequency of 120 times per hour. The relative standard deviation for determination of hydroquinone was less than 5.6%, and the recoveries ranged from 96.8 to 103.0%. The ultraviolet spectra, chemiluminescence spectra, and the reaction kinetics for the peroxide-luminol-sulphonato-(salen)manganese(III) complex system were employed to study the possible chemiluminescence mechanism. The proposed chemiluminescence analysis technique is rapid and sensitive, with low cost, and could be easily extended and applied to other compounds. PMID:26014972

  12. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    Science.gov (United States)

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  13. Determination of glyphosate in foodstuff by one novel chemiluminescence-molecular imprinting sensor

    Science.gov (United States)

    Zhao, Peini; Yan, Mei; Zhang, Congcong; Peng, Ruixue; Ma, Dongsheng; Yu, Jinghua

    2011-05-01

    A novel chemiluminescence (CL) sensor for the determination of glyphosate (GLY) was made up based on molecularly imprinted polymer (MIP). The molecularly imprinted microspheres (MIMs) with a small dimension which possess extremely high surface-to-volume ratio were synthesized using precipitation polymerization with GLY as template. And then the MIMs were modified on glass sheets, which were placed at the bottom of wells of microplate as the recognizer. Subsequently, a highly selective and high throughput chemiluminescence (CL)-molecular imprinting (MI) sensor for detection of GLY was achieved. Influencing factors were investigated and optimized in detail. The method can perform 96 independent measurements sequentially in 10 min and the limit of detection (LOD) for GLY was 0.046 μg mL -1. The relative standard deviation (RSD) for 11 parallel measurements of GLY was 4.68%. The results show that CL-MI sensor can become a useful analytical technology for quick molecular recognition.

  14. Chemiluminescence of curcumin and quenching effect of dimethyl sulfoxide on its peroxyoxalate system

    Energy Technology Data Exchange (ETDEWEB)

    Yari, Abdollah, E-mail: a.yari@ymail.co [Lorestan University, Department of Chemistry, Flakalaflak Street, 68178-17133 Khorramabad (Iran, Islamic Republic of); Saidikhah, Marzieh [Lorestan University, Department of Chemistry, Flakalaflak Street, 68178-17133 Khorramabad (Iran, Islamic Republic of)

    2010-04-15

    The chemiluminescence behavior of the reaction between bis(2,4,6-trichlorophenyl)oxalate (TCPO) and hydrogen peroxide, in the presence of curcumin as fluorophore, has been investigated. Experimental factors such as TCPO, sodium salicylate (SS), hydrogen peroxide and curcumin concentration were optimized. The chemiluminescence signal showed a linear decay while dimethyl sulfoxide (DMSO) was added to the peroxyoxalate (PO-CL) system. The reaction resulted in a Stern-Volmer plot with a K{sub q} value of 7.3x10{sup 4}. The evaluated lower and upper detection limits of measurable concentrations of DMSO are 3.50x10{sup -5} and 1.53x10{sup -4} M, respectively. The PO-CL parameters were estimated by computer fitting of the experimental CL intensity to proper models.

  15. Chemiluminescence Determination of Benzoic Acid Using A Solid-Phase Verdigris Reactor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new chemiluminescence flow system has been developed for sequential determina-tion of benzoic acid based on the reaction of the compound with copper carbonate entrapped in a solid-phase reactor. It was found that the unsaturated complex of Cu(II) and benzoic acid (1:1) has strong catalytic effect on the luminol-H2O2 chemiluminescence reaction. The calibration graph is linear over the range of 0.025 ~ 60 μg/mL of benzoic acid, with a relative standard deviation of less than 3.0 %, and the detection limit is 0.01μg@mL-1. The proposed method was applied to the determination of benzoic acid content in different pharmaceutical formulations.

  16. Recent analytical applications of nanoparticle sensitized lucigenin and luminol chemiluminescent reactions

    Indian Academy of Sciences (India)

    S M Wabaidur; Mu Naushad; Z A Alothman

    2012-02-01

    There is an ever-increasing demand for rapid, sensitive, cost effective and selective detection methods for the analysis of many essential compounds.When chemiluminescence has been introduced to analytical chemistry as a detection technique, it has been shown to meet many of these requirements. This method has become a powerful tool for the determination of many compounds. Using this method, low detection limits can be obtained with simple and inexpensive instrumentation. Coupled with flow injection technique the method has become more popular for wider applications. Since many excellent reviews on the chemiluminogenic techniques have appeared in the literature in recent years, the present paper does not intend to cover the exhaustive studies in this area, but will selectively describe the analytical applications of nanoparticle sensitized lucigenin and luminol chemiluminescent reactions and evaluate their recent progress together with our present work.

  17. Effect of external agent on chemiluminescence in bioassay sample - a study

    International Nuclear Information System (INIS)

    Tritium is one of the important radio nuclide contributing about 30-35% of collective dose through internal exposure of plant personnel in Indian PHWRs. Internal dose is monitored by bioassay using liquid scintillation analyzer. There are some external agents that interfere with the tritium counting in urine sample of individuals. These external agents give rise to chemiluminescence in the sample, which may result in wrong interpretation of the counting rates. One such case was studied at Rajasthan Atomic Power Station (RAPS)-3 and 4 in which urine sample of an individual indicated significantly high uptake of tritium whereas the person was not involved in any radioactive job. Investigation revealed that counts due to the sample were caused by chemiluminescence in the urine sample because of homeopathic drug, which the person was taking. (author)

  18. Bioinspired photonic structures by the reflector layer of firefly lantern for highly efficient chemiluminescence

    Science.gov (United States)

    Chen, Linfeng; Shi, Xiaodi; Li, Mingzhu; Hu, Junping; Sun, Shufeng; Su, Bin; Wen, Yongqiang; Han, Dong; Jiang, Lei; Song, Yanlin

    2015-08-01

    Fireflies have drawn considerable attention for thousands of years due to their highly efficient bioluminescence, which is important for fundamental research and photonic applications. However, there are few reports on the reflector layer (RL) of firefly lantern, which contributes to the bright luminescence. Here we presented the detailed microstructure of the RL consisting of random hollow granules, which had high reflectance in the range from 450 nm to 800 nm. Inspired by the firefly lantern, artificial films with high reflectance in the visible region were fabricated using hollow silica microparticles mimicking the structure of the RL. Additionally, the bioinspired structures provided an efficient RL for the chemiluminescence system and could substantially enhance the initial chemiluminescence intensity. The work not only provides new insight into the bright bioluminescence of fireflies, but also is importance for the design of photonic materials for theranostics, detection, and imaging.

  19. Highly Sensitive Chemiluminescence Detection for PDMS/Glass Micro-chip Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Xiang Yi HUANG; Jiao Ning WANG; Lin CHEN; Ji Cun REN

    2004-01-01

    This paper described a highly sensitive chemiluminescence detection system for micro-chip electrophoresis (MCE) based on luminol-hydrogen peroxide reaction catalyzed by the metal ions. The micro-chip was composed of poly(dimethylsiloxane) (PDMS) and glass, and was fabricated by micro-machining technology. The surface of channels was dynamically modified by polydimethylacrylamide (PDMA) in order to eliminate unhomogeneous electroosmotic flow (EOF) of the PDMS/glass chip, adsorption of molecules, and improve hydrophobicity on PDMS surface. The detection modes, reagent mix procedures and reaction conditions were optimized and the detection limit of 5 x 10-11 mol/L for cobalt (II) was achieved by MCE with chemiluminescence detection, which was about four orders of magnitude more sensitive than that reported in the reference.

  20. Analysis of Phenolic Compounds in Coke Plant Wastewater by Capillary Zone Electrophoresis with Inhibited Chemiluminescence Detection

    Institute of Scientific and Technical Information of China (English)

    Xiang Dong XU; Yong Gang HU; Ze Yu YANG

    2006-01-01

    A capillary electrophoresis(CE) with on-line inhibited chemiluminescence (CL) detection was firstly used for the simultaneous analysis of benzenediol isomers and phenol. It is based on the quenching effect of benzenediol isomers and phenol on the chemiluminescence reaction of luminol with potassium ferricyanide in sodium hydroxide medium. Under the optimum conditions, the four phenols were baseline separated and detected in less than 10 min.The detection limits (S/N=3) for hydroquinone, resorcinol, catechol and phenol were 2.9×10-8mol/L, 3.7×10-7 mol/L, 8.4×10-8 mol/L and 4.4×10-6 mol/L, respectively. Finally, the presented method has been successfully applied to real sample.

  1. Flow-injection chemiluminescence determination of tryptophan using galangin-potassium permanganate-polyphosphoric acid system

    Institute of Scientific and Technical Information of China (English)

    Hui Chen; Li Li; Min Zhou; Yong Jun Ma

    2008-01-01

    A high sensitive flow-injection chemiluminescence (FI-CL)method for the determination of tryptephan has been developed.The method is based on the chemiluminescence reaction of galangin-potassium perrnanganate-tryptophan in polyphosphoric acid (PPA)media.Under the optimized conditions,tryptophan was determined in the range 0.05-10 μg/mL with the detection limit (30)of 5.0× 10-3 μg/mL.The relative standard deviation (RSD)was 1.0% for 11 replicate determinations of 1.0 μg/mL tryptophan.Three synthetic samples were determined selectively with recoveries in the range from 99.6% to 102.0% in the presence of other amino acids.

  2. Chemiluminescence determination of potassium bromate in flour based on flow injection analysis.

    Science.gov (United States)

    Yan, Zhengyu; Zhang, Zhengwei; Yu, Yan; Liu, Zhen; Chen, Jianqiu

    2016-01-01

    A novel and highly sensitive flow-injection chemiluminescence method for the determination of potassium bromate (KBrO3) has been developed. This method is based on the luminescence properties of the KBrO3-Na2SO3-quinine sulfate system in acid medium. Optimized experimental conditions and a possible mechanism were investigated. The relative chemiluminescence intensity responded linearly to the concentration of KBrO3 in the range of 7.054 × 10(-6)-1.008 × 10(-4) mol/L with a detection limit of 2.116 × 10(-6) mol/L. The relative standard deviation (RSD) at 5.0 × 10(-5) mol/L KBrO3 (n = 12) was 2.3%. The proposed method was applied successfully to the determination of KBrO3 in flour. PMID:26212936

  3. Chemiluminescence of curcumin and quenching effect of dimethyl sulfoxide on its peroxyoxalate system

    International Nuclear Information System (INIS)

    The chemiluminescence behavior of the reaction between bis(2,4,6-trichlorophenyl)oxalate (TCPO) and hydrogen peroxide, in the presence of curcumin as fluorophore, has been investigated. Experimental factors such as TCPO, sodium salicylate (SS), hydrogen peroxide and curcumin concentration were optimized. The chemiluminescence signal showed a linear decay while dimethyl sulfoxide (DMSO) was added to the peroxyoxalate (PO-CL) system. The reaction resulted in a Stern-Volmer plot with a Kq value of 7.3x104. The evaluated lower and upper detection limits of measurable concentrations of DMSO are 3.50x10-5 and 1.53x10-4 M, respectively. The PO-CL parameters were estimated by computer fitting of the experimental CL intensity to proper models.

  4. Chemiluminescence assay for catechin based on generation of hydrogen peroxide in basic solution

    International Nuclear Information System (INIS)

    We have determined that the catechin group in basic solution efficiently produces hydrogen peroxide; moreover, a highly sensitive analysis methodology was developed to measure catechin employing a peroxalate chemiluminescence detection system. Identification of hydrogen peroxide generated by catechin was determined by ESR as well as peroxalate chemiluminescence using catalase and SOD. As a result, catechin-generated superoxide by electron reduction to dissolved oxygen in basic solution, followed by production of hydrogen peroxide through dismutation reaction. This method could measure several tea catechins, (+)-catechin (CC), (-)-epigallocatechin-3-gallate (EGCg), (-)-epicatechin-3-gallate (ECG) and gallic acid, with measurement range from 10-7 to 10-3 mol/l and sensitivity of 10-8 mol/l. This method was also applied to the determination of total catechin levels in green tea, black tea and roasted green tea

  5. New method for the photo-chemiluminometric determination of benzoylurea insecticides based on acetonitrile chemiluminescence.

    Science.gov (United States)

    Gil García, M D; Martínez Galera, M; Santiago Valverde, R

    2007-03-01

    The viability of tandem photochemical reaction-chemiluminescence detection has been studied for the determination of five benzoylurea insecticides, namely, diflubenzuron, triflumuron, hexaflumuron, lufenuron and flufenoxuron. The 'on-line' photochemical reaction of benzoylurea pesticides provides an enhanced chemiluminescence response of the pesticides during their oxidation by potassium hexacyanoferrate(III) and sodium hydroxide, whose signal increases with the percentage of acetonitrile in the reaction medium. The determination was performed using a photoreactor consisting of a PFA (perfluoroalkoxy) tube reactor coil (5 mx1.6-mm O.D. and 0.8-mm I.D.) and an 8-W xenon lamp. As the yield of the photoderivatization process and the chemiluminescent signals depend on the percentage of acetonitrile, the chromatographic column (a Gemini C18, Phenomenex 150 mmx4.6 mm, 5-microm particle size) was chosen with the aim of using high percentages of this organic solvent in the mobile phase. Previous studies showed that the rate of the chemiluminescent reaction was very fast. Therefore, a modification was carried out in the detector in order to mix the analytes and reactants as near as possible to the measure cell. The optimised method was validated with respect to linearity, precision, limits of detection and quantification accuracy. Under the optimised conditions, linear working range extends three orders of magnitude with the relative standard deviation of intra-day precision below 10% and detection limits between 0.012 and 0.18 microg mL-1, according to the compound. The proposed method has been successfully applied to the determination of benzoylureas in cucumber with good results. PMID:17205265

  6. High milk neutrophil chemiluminescence limits the severity of bovine coliform mastitis

    OpenAIRE

    Mehrzad, Jalil; Duchateau, Luc; Burvenich, Christian

    2005-01-01

    Polymorphonuclear neutrophil (PMN) function changes during mastitis. To investigate the contribution of milk PMN to the severity of Escherichia coli (E. coli) mastitis, chemiluminescence ( CL) of blood and milk PMN and their efficiency to destroy coliform bacteria in the mammary gland were examined following the induction of E. coli mastitis in early lactating cows. To better assess and define the degree of mastitis severity, cows were classified as moderate and severe responders according to...

  7. A High Sensitivity Micro Format Chemiluminescence Enzyme Inhibition Assay for Determination of Hg(II)

    OpenAIRE

    Kanchanmala Deshpande; Mishra, Rupesh K.; Sunil Bhand

    2010-01-01

    A highly sensitive and specific enzyme inhibition assay based on alcohol oxidase (AlOx) and horseradish peroxidase (HRP) for determination of mercury Hg(II) in water samples has been presented. This article describes the optimization and miniaturization of an enzymatic assay using a chemiluminescence reaction. The analytical performance and detection limit for determination of Hg(II) was optimized in 96 well plates and further extended to 384 well plates with a 10-fold reduction in assay volu...

  8. Development of a Flow Injection Manifold for Napropamide Determination by Photo-Induced Chemiluminescence

    OpenAIRE

    Catalá Icardo, Mónica; López Paz, José Luis; Asensio Martín, Víctor

    2012-01-01

    A new, rapid, and simple method is proposed for the determination of the pesticide napropamide by photo-induced chemiluminescence detection coupled with a flow injection analysis (FIA) system. The emission was obtained by oxidation with periodate in basic medium, of the photoproducts generated on-line by UV irradiation (254 nm) of napropamide in acidic SDS (sodium dodecyl sulfate) medium. The flow method, in combination with the solid phase extraction (SPE) performed off-line with C-18 cartri...

  9. Study on Chemiluminescence Reaction between Lucigenin and Four Rare Metal Ions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The chemiluminescence (CL) reactions between lucigenin and four rare metal reductants were studied systematically using a flow injection system.The results show that the reactions can be used for determination of rare metals.The probable mechanism of the CL reactions involves the reduction of dissolved oxygen to the superoxide radical O-2.by the reductant,followed by the O-2.reacting with alkaline Lu to generate CL.The pathway involves a dioxetane intermediate.

  10. Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment

    OpenAIRE

    Dunlea, E. J.; S. C. Herndon; Nelson, D. D.; Volkamer, R. M.; F. San Martini; Sheehy, P. M.; M. S. Zahniser; Shorter, J. H.; J. C. Wormhoudt; Lamb, B. K.; Allwine, E. J.; J. S. Gaffney; Marley, N. A.; M. Grutter; Marquez, C.

    2007-01-01

    Data from a recent field campaign in Mexico City are used to evaluate the performance of the EPA Federal Reference Method for monitoring ambient concentrations of NO2. Measurements of NO2 from standard chemiluminescence monitors equipped with molybdenum oxide converters are compared with those from Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS) and Differential Optical Absorption Spectroscopy (DOAS) instruments. A significant...

  11. Quantification of carnosine- related peptides by microchip electrophoresis with chemiluminescence detection

    OpenAIRE

    Zhao, Shulin; Huang, Yong; Shi, Ming; Huang, Junming; Liu, Yi-Ming

    2009-01-01

    A microchip electrophoresis (MCE) method with chemiluminescence (CL) detection was developed for the determination of carnosine-related peptides including carnosine, homocarnosine and anserine in biological samples. A simple integrated MCE-CL system was built to perform the assays. The highly sensitive CL detection was achieved by means of the CL reaction between hydrogen peroxide and N-(4-aminobutyl)- N-ethylisoluminol-tagged peptides in the presence of adenine as a CL enhancer and Co2+ as a...

  12. An Ultrasensitive Chemiluminescence Biosensor for Carcinoembryonic Antigen Based on Autocatalytic Enlargement of Immunogold Nanoprobes

    OpenAIRE

    2012-01-01

    A sensitive flow injection chemiluminescence assay for carcinoembryonic antigen (CEA) detection based on signal amplification with gold nanoparticles (NPs) is reported in the present work. The sandwich system of CEA/anti-CEA/goat-anti-mouse IgG functionalized Au nanoparticles was used as the sensing platform. In order to improve detection sensitivity, a further gold enlargement step was developed based on the autocatalytic Au deposition of gold nanoprobes via the reduction of AuCl4 − to Au0 o...

  13. Advanced nanoelectronics

    CERN Document Server

    Ismail, Razali

    2012-01-01

    While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The

  14. 3D flame topography obtained by tomographic chemiluminescence with direct comparison to planar Mie scattering measurements.

    Science.gov (United States)

    Xu, Wenjiang; Wickersham, A J; Wu, Yue; He, Fan; Ma, Lin

    2015-03-20

    This work reports the measurements of 3D flame topography using tomographic chemiluminescence and its validation by direct comparison against planar Mie scattering measurements. Tomographic measurements of the 3D topography of various well-controlled laboratory flames were performed using projections measured by seven cameras, and a simultaneous Mie scattering measurement was performed to measure a 2D cross section of the 3D flame topography. The tomographic measurements were based on chemiluminescence emissions from the flame, and the Mie scattering measurements were based on micrometer-size oil droplets seeded into the flow. The flame topography derived from the 3D tomographic and the Mie scattering measurement was then directly compared. The results show that the flame topography obtained from tomographic chemiluminescence and the Mie measurement agreed qualitatively (i.e., both methods yielded the same profile of the flame fronts), but a quantitative difference on the order of millimeters was observed between these two methods. These results are expected to be useful for understanding the capabilities and limitations of the 3D tomographic and Mie scattering techniques in combustion diagnostics. PMID:25968497

  15. Schlieren and OH* chemiluminescence imaging of combustion in a turbulent boundary layer over a solid fuel

    Science.gov (United States)

    Jens, Elizabeth T.; Miller, Victor A.; Cantwell, Brian J.

    2016-03-01

    Combustion in a turbulent boundary layer over a solid fuel is studied using simultaneous schlieren and OH* chemiluminescence imaging. The flow configuration is representative of a hybrid rocket motor combustor. Six different hydrocarbon fuels, including both classical hybrid rocket fuels and a high regression rate fuel (paraffin wax), are burned in an undiluted oxygen free-stream at pressures ranging from atmospheric to 1524.2 kPa (221.1 psi). A detailed explanation of methods for registering the schlieren and OH* chemiluminescence images to one another is presented, and additionally, details of the routines used to extract flow features of interest (like the boundary layer height and flame location) are provided. At atmospheric pressure, the boundary layer location is consistent between all fuels; however, the flame location varies for each fuel. The flame zone appears to be smoothly distributed over the fuel surface at atmospheric pressure. At elevated pressures and correspondingly increased Dahmköhler number (but at constant Reynolds number), flame morphology is markedly different, exhibiting large rollers in a shear layer above the fuel grain and finer structures in the flame. The chemiluminescence intensity is found to be roughly proportional to the fuel burn rate at both atmospheric and elevated chamber pressures.

  16. Evaluation of the oxidative activity of some free base porphyrins by a chemiluminescence method

    Directory of Open Access Journals (Sweden)

    MARIANA VOICESCU

    2010-03-01

    Full Text Available Due to their spectral characteristics, phototoxicity and high affinity for tumour tissues, porphyrins and their derivatives are widely used in modern medicine as contrast agents for cancer diagnostics and as sensitizers in photodynamic therapy, where they kill tumours via enhancement of tumour oxidative stress. The aim of this work was to simulate in vitro the effects caused by oxidation of two free base porphyrins, 5,10,15,20-tetraphenylporphyrin (TPP and 5,10,15,20‑tetra(4‑methoxyphenylporphyrin (TMOPP. The kinetic study was monitored using spectral techniques and chemiluminescence. The effect of both porphyrins on an oxidation process was evidenced using the chemilumi-nescent system, luminal–hydrogen peroxide, in a phosphate buffer at pH 7. It was found that at low concentration, TPP exerts the anti-oxidative effect in the employed chemiluminescent system, while at higher concentrations; its effect is pro-oxidative. TMOPP exerts a pro-oxidant effect, which was more pronounced than TPP. The results are discussed with respect to oxidative stress.

  17. Analysis of chemiluminescence measurements by grey-scale ICCD and colour digital cameras

    International Nuclear Information System (INIS)

    Spectral, grey-scale and colour chemiluminescence measurements of C2* and CH* radicals' emission are carried out on the flame front of a methane–air premixed flame at different equivalence ratios. To this purpose, properly spatially resolved optical equipment has been implemented in order to reduce the background emission from other burned gas regions. The grey-scale (ICCD + interference filters) and RGB colour (commercial digital camera) approaches have been compared in order to find a correspondence between the C2* and the green component, as well as the CH* and the blue component of the emission intensities. The C2*/CH* chemiluminescence ratio has been investigated at different equivalence ratios and a good correlation has been obtained, showing the possibility of sensing the equivalence ratio in practical systems. The grey-scale and colour chemiluminescence analysis has then been applied to a meso-scale not premixed swirl combustor fuelled with a methane–air mixture and operating at 0.3 MPa. 2D results are presented and discussed in this work. (paper)

  18. Insights into the antioxidant activity of some flavones on silver nanoparticles using the chemiluminescence method

    Energy Technology Data Exchange (ETDEWEB)

    Voicescu, Mariana, E-mail: voicescu@icf.ro [Romanian Academy, Institute of Physical Chemistry “Ilie Murgulescu”, Splaiul Independentei 202, 060021 Bucharest (Romania); Nistor, Cristina L. [Polymer Department, National R and D Institute for Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest (Romania); Meghea, Aurelia [University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Sciences, Polizu 1, 78126 Bucharest (Romania)

    2015-01-15

    The work aims to simulate in vitro the effects caused by oxidation of five hydroxyflavones (HF) (some typical models of flavonols), (3-HF, 6-HF, 7-HF, 3,6-diHF and 3,7-diHF) on silver nanoparticles (SNPs) using the chemiluminescent system luminol–hydrogen peroxide, in phosphate buffer, pH 7.4. The contribution of bovine and human serum albumins to the antioxidant activity of the mentioned flavones, and the effect on the SNPs support, in the chemiluminescent system luminol–hydrogen peroxide, has been also investigated. The results are discussed with relevance to the oxidative stress process. - Highlights: • The effects caused by oxidation of five hydroxiflavones (HF) (3-HF, 6-HF, 7-HF, 3,6-diHF and 3,7-diHF) on silver nanoparticles (SNPs) using the chemiluminescent (CL) system luminol–hydrogen peroxide, in phosphate buffer, pH 7.4. • The contribution of bovine and human serum albumins to the antioxidant activity of the mentioned flavones, and the effect on the SNPs support, in the CL system luminol–hydrogen peroxide, are discussed. • The results have relevance to the oxidative stress process.

  19. Internal detection of surface plasmon coupled chemiluminescence during chlorination of potassium thin films

    Science.gov (United States)

    Becker, Felix; Krix, David; Hagemann, Ulrich; Nienhaus, Hermann

    2013-01-01

    The interaction of chlorine with potassium surfaces is a prototype reaction with a strong non-adiabatic energy transfer leading to exoemission and chemiluminescence. Thin film K/Ag/p-Si(111) Schottky diodes with 8 nm potassium on a 5-200 nm thick Ag layer are used as 2π-photodetectors for the chemiluminescence during chlorination of the K film at 110 K. The observed photocurrent shows a sharp maximum for small exposures and decreases gradually with the increasing chloride layer. The time dependence can be explained by the reaction kinetics, which is governed initially by second-order adsorption processes followed by an electric field-assisted diffusion. The detector current corresponds to a yield of a few percent of elementary charge per reacting chlorine molecule and is orders of magnitude larger than for external detection. The photoyield can be enhanced by increasing the Ag film thickness. For Ag films of 30 and 50 nm, the yield exhibits a maximum indicating surface plasmon coupled chemiluminescence. Surface plasmon polaritons in the Ag layer are excited by the reaction and decay radiatively into Si leading to the observed currents. A model calculation for the reverse process in attenuated total reflection is applied to explain the observed current yield maxima.

  20. Insights into the antioxidant activity of some flavones on silver nanoparticles using the chemiluminescence method

    International Nuclear Information System (INIS)

    The work aims to simulate in vitro the effects caused by oxidation of five hydroxyflavones (HF) (some typical models of flavonols), (3-HF, 6-HF, 7-HF, 3,6-diHF and 3,7-diHF) on silver nanoparticles (SNPs) using the chemiluminescent system luminol–hydrogen peroxide, in phosphate buffer, pH 7.4. The contribution of bovine and human serum albumins to the antioxidant activity of the mentioned flavones, and the effect on the SNPs support, in the chemiluminescent system luminol–hydrogen peroxide, has been also investigated. The results are discussed with relevance to the oxidative stress process. - Highlights: • The effects caused by oxidation of five hydroxiflavones (HF) (3-HF, 6-HF, 7-HF, 3,6-diHF and 3,7-diHF) on silver nanoparticles (SNPs) using the chemiluminescent (CL) system luminol–hydrogen peroxide, in phosphate buffer, pH 7.4. • The contribution of bovine and human serum albumins to the antioxidant activity of the mentioned flavones, and the effect on the SNPs support, in the CL system luminol–hydrogen peroxide, are discussed. • The results have relevance to the oxidative stress process

  1. Kinetics analysis of chemiluminescence in discharge-driven HF chemical lasers

    Institute of Scientific and Technical Information of China (English)

    Wei Luo; Shengfu Yuan; Baozhu Yan; Qisheng Lu; Qianjin Zou

    2011-01-01

    The chcinilummescence spectrum in the optical cavity of discharge-driven hydrogen fluoride (HF) chemical laser is measured. The result reveals that the spectra of the helium and fluorine (F) atoms are the major components. Moreover, the green chemiluminescence in the downstream of the optical axis is mostly composed of the 60P20 spectral line of the HF molecule. The analysis shows that, except for the cold pumping reaction, the recombination of the F atoms and the hot pumping reaction also occur in the optical cavity. Due to the hot. Pumping reaction and the optical cavity temperature in a specific range, the 60P20 line becomes the strongest HF molecule in the downstream region of the optical axis. After the hot pumping reaction, the green chcmilum inference always appears in the downstream region of the optical axis when the optical cavity temperature varies in a greater range.%@@ The chemiluminescence spectrum in the optical cavity of discharge-driven hydrogen fluoride(HF) chemical laser is measured.The result reveals that the spectra of the helium and fluorine(F) atoms are the major components.Moreover,the green chemiluminescence in the downstream of the optical axis is mostly composed of the 60P20 spectral line of the HF molecule.

  2. A streptavidin functionalized graphene oxide/Au nanoparticles composite for the construction of sensitive chemiluminescent immunosensor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhanjun, E-mail: zjyang@yzu.edu.cn [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Luo, Shufen; Li, Juan; Shen, Juan; Yu, Suhua; Hu, Xiaoya [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, School of Energy Environmental, Biological and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2014-08-11

    Highlights: • A novel streptavidin/GO/AuNPs composite is prepared for immobilizing antibody. • A highly sensitive chemiluminescent immunosensor is constructed for tumor marker. • The immunoassay system shows extremely low detection limit down to picogram level. • This work provides a promising approach for ultrasensitive biosensing applications. - Abstract: In this work, a novel streptavidin functionalized graphene oxide/Au nanoparticles (streptavidin/GO/AuNPs) composite is prepared and for the first time used to construct sensitive chemiluminescent immunosensor for the detection of tumor marker. The streptavidin/GO/AuNPs composite and the immunosensor are characterized using scanning electron microscopy, static water contact angle measurement and electrochemical impedance spectroscopy. The biofunctionalized composite has large reactive surface area and excellent biocompatibility, thus the capture antibody can be efficiently immobilized on its surface based on the highly selective recognition of streptavidin to biotinylated antibody. Using α-fetoprotein (AFP) as a model, the proposed chemiluminescent immunosensor shows a wide linear range from 0.001 to 0.1 ng mL{sup −1} with an extremely low detection limit down to 0.61 pg mL{sup −1}. The resulting AFP immunosensor shows high detection sensitivity, fast assay speed, acceptable detection and fabrication reproducibility, good specificity and stability. The assay results of serum samples with the proposed method are in an acceptable agreement with the reference values. This work provides a promising biofunctionalized nanostructure for sensitive biosensing applications.

  3. Micro-plate magnetic chemiluminescence immunoassay and its applications in carcinoembryonic antigen analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A micro-plate magnetic chemiluminescence immunoassay was developed for rapid and high throughput detection of carcinoembryonic antigens (CEA) in human sera. This method was based on a sandwich immunoreaction of fluorescein isothiocyanate (FITC)-labeled anti-CEA antibodies, CEA antigens, and horseradish peroxidase (HRP)-conjugated anti-CEA antibodies in mi- cro-plate. The immunomagnetic particles coated with anti-FITC antibodies were used as the solid phase for the immunoassay. The separation procedure was carried out by a magnetic plate adaptor and the luminol-hydrogen peroxide (H2O2)-HRP system was employed for the chemiluminescence detection. The proposed method combined the advantages of the micro-plate reactor and magnetic particle separation technology with the linear range of 5-250 ng mL·1. The detection limit of CEA was 0.61 ng mL·1. The coefficient of the variation was less than 7% and 13% for intra-assay and inter-assay precision, respectively. Compared with the commercial micro-plate chemiluminescent kit, the proposed method showed a good correlation.

  4. Direct current-induced electrogenerated chemiluminescence of hydrated and chelated Tb(III) at aluminum cathodes

    International Nuclear Information System (INIS)

    Cathodic DC polarization of oxide-covered aluminum produces electrogenerated chemiluminescence from hydrated and chelated Tb(III) ions in aqueous electrolyte solutions. At the moment of cathodic voltage onset, a strong cathodic flash is observed, which is attributed to a tunnel emission of hot electrons into the aqueous electrolyte solution and the successive chemical reactions with the luminophores. However, within a few milliseconds the insulating oxide film is damaged and finally dissolved due to (i) indiffusion of protons or alkali metal ions into the thin oxide film, (ii) subsequent hydrogen evolution at the aluminum/oxide interface and (iii) alkalization of the electrode surface induced by hydrogen evolution reaction. When the alkalization of the electrode surface has proceeded sufficiently, chemiluminescence is generated with increasing intensity. Aluminum metal, short-lived Al(II), Al(I) or atomic hydrogen and its conjugated base form, hydrated electron, can act as highly reducing species in addition to the less energetic heterogeneously transferred electrons from the aluminum electrode. Tb(III) added as a hydrated ion in the solution probably luminesces in the form of Tb(OH)3 or Tb(OH)4- by direct redox reactions of the central ion whereas multidentate aromatic ligand chelated Tb(III) probably luminesces by ligand sensitized chemiluminescence mechanism in which ligand is first excited by one-electron redox reactions, which is followed by intramolecular energy transfer to the central ion which finally emits light

  5. Chemiluminescence evidence supporting the selective role of ligands in the permanganate oxidation of micropollutants.

    Science.gov (United States)

    Roderick, Mark S; Adcock, Jacqui L; Terry, Jessica M; Smith, Zoe M; Parry, Samuel; Linton, Stuart M; Thornton, Megan T; Barrow, Colin J; Francis, Paul S

    2013-10-10

    The selective increase in the oxidation rate of certain organic compounds with permanganate in the presence of environmental "ligands" and reduced species has been ascribed to the different reactivity of the target compounds toward Mn(III), which bears striking similarities to recent independent investigations into the use of permanganate as a chemiluminescence reagent. In spite of the importance of Mn(III) in the light-producing pathway, the dependence of the oxidation mechanism for any given compound on this intermediate could not be determined solely through the emission intensity. However, target compounds susceptible to single-electron oxidation by Mn(III) (such as bisphenol A and triclosan) can be easily distinguished by the dramatic increase in chemiluminescence intensity when a permanganate reagent containing high, stable concentrations of Mn(III) is used. The differences are accentuated under the low pH conditions that favor the chemiluminescence emission due to the greater reactivity of Mn(III) and the greater influence of complexing agents. This study supports the previously postulated selective role of ligands and reducing agents in permanganate oxidations and demonstrates a new approach to explore the chemistry of environmental manganese redox processes. PMID:24050380

  6. Determination of Epinephrine by Flow Injection Analysis Coupled Ag(Ⅲ) Complex-Luminol Chemiluminescence Detection

    Institute of Scientific and Technical Information of China (English)

    BAI,Jiangbo; SHI,Hongmei; ZHANG,Yingze; TIAN,Dehu; XU,Xiangdong; KANG,Weijun

    2009-01-01

    A new Ag(Ⅲ) complex-luminol chemiluminescent system which was applied to the determination of epinephrine is firstly reported.Based on the enhancing effect of epinephrine on the chemiluminescence reaction of luminol with [Ag(HIO6)2]5- in alkaline solution,a highly sensitive chemiluminescence (CL) detection by flow injection analysis (FIA) was developed for epinephrine.Under the optimum conditions,CL intensity was proportional to concentration of epinephrine in the 1.0× 10 9-1.0×10-7 mol·L-1 range.The limit of detection was 8.0× 10-10mol·L 1 for epinephrine (3σ),with a relative standard deviation (n= 11) of 2.9% for 1.5 × 10 8 mol·L-1 epinephrine.The method validation was done with epinephrine determinations in commercial pharmaceutical products.The mechanism of the reactions was also discussed.

  7. Recent advances in carbon nanodots: synthesis, properties and biomedical applications

    Science.gov (United States)

    Miao, Peng; Han, Kun; Tang, Yuguo; Wang, Bidou; Lin, Tao; Cheng, Wenbo

    2015-01-01

    Herein, a mini review is presented concerning the most recent research progress of carbon nanodots, which have emerged as one of the most attractive photoluminescent materials. Different synthetic methodologies to achieve advanced functions and better photoluminescence performances are summarized, which are mainly divided into two classes: top-down and bottom-up. The inspiring properties, including photoluminescence emission, chemiluminescence, electrochemical luminescence, peroxidase-like activity and toxicity, are discussed. Moreover, the biomedical applications in biosensing, bioimaging and drug delivery are reviewed.

  8. AdvancED Flex 4

    CERN Document Server

    Tiwari, Shashank; Schulze, Charlie

    2010-01-01

    AdvancED Flex 4 makes advanced Flex 4 concepts and techniques easy. Ajax, RIA, Web 2.0, mashups, mobile applications, the most sophisticated web tools, and the coolest interactive web applications are all covered with practical, visually oriented recipes. * Completely updated for the new tools in Flex 4* Demonstrates how to use Flex 4 to create robust and scalable enterprise-grade Rich Internet Applications.* Teaches you to build high-performance web applications with interactivity that really engages your users.* What you'll learn Practiced beginners and intermediate users of Flex, especially

  9. Framework Programmable Platform for the Advanced Software Development Workstation (FPP/ASDW). Demonstration framework document. Volume 1: Concepts and activity descriptions

    Science.gov (United States)

    Mayer, Richard J.; Blinn, Thomas M.; Dewitte, Paul S.; Crump, John W.; Ackley, Keith A.

    1992-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at effectively combining tool and data integration mechanisms with a model of the software development process to provide an intelligent integrated software development environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The Advanced Software Development Workstation (ASDW) program is conducting research into development of advanced technologies for Computer Aided Software Engineering (CASE).

  10. Induction of chemiluminescence of luminol during excitation of NpO2F4OH3- complexes by nitrogen laser (λ = 337.1 nm) radiation

    International Nuclear Information System (INIS)

    Chemiluminescence response of luminol on optical excitation of NpO22+ complexes by nitrogen laser radiation is investigated. Experiments are carried out in solutions containing 42 % of CsF with different ph values. Absorption spectra of NpO2F4OH3- complexes and chemiluminescence spectra of luminol introduced into solutions in the case of different ph are represented

  11. Influence of dichloromethylene bisphosphonate on the in vitro phagocytosis of hydroxyapatite particles by rat peritoneal exudate cells: an electron microscopic and chemiluminescence study.

    OpenAIRE

    Hyvönen, P M; Kowolik, M J

    1992-01-01

    Transmission electron microscopy and standard chemiluminescence assays were used to investigate the in vivo effect of dichloromethylene bisphosphonate (clodronate) on the phagocytosis of pure hydroxyapatite particles by rat peritoneal macrophages and the production of chemiluminescence by the peritoneal exudate cells. Hydroxyapatite (control) and a hydroxyapatite/clodronate suspension (28 mumol clodronate per gram of hydroxyapatite, experimental) were injected into the peritoneum of rats, the...

  12. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    Science.gov (United States)

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  13. Application of UV-Vis spectrophotometric and chemiluminescent methods for evaluation of the antioxidant action of curcumin

    Directory of Open Access Journals (Sweden)

    Stanchev Stancho

    2012-01-01

    Full Text Available Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5- dione is a natural biological active substance with an antioxidant activity. The ability of curcumin to inhibit the free radical mechanisms can be used in a prevention of diseases such as cancer and coronary heart disease. The UV-VIS spectrophotometric and chemiluminescent dynamic methods for determination of antioxidant activity of curcumin were developed. The spectrophotometric method includes investigation of the interaction between DNA, isolated from HL-60 cells, and curcumin. The decreasing of the absorption of curcumin in the presence of HL-60 DNA against the blank sample can be a measurement for some complex formation between curcumin and DNA. The chemiluminescent method involves three tests for detection of luminol - depending chemiluminescence on the base of model systems which generate superoxide, hydroxide and hypochlorite radicals. The strongest decay of chemilunimescence was registered at the highest concentration of curcumin (100 μmol/L.

  14. Automated determinations of selenium in thermal power plant wastewater by sequential hydride generation and chemiluminescence detection.

    Science.gov (United States)

    Ezoe, Kentaro; Ohyama, Seiichi; Hashem, Md Abul; Ohira, Shin-Ichi; Toda, Kei

    2016-02-01

    After the Fukushima disaster, power generation from nuclear power plants in Japan was completely stopped and old coal-based power plants were re-commissioned to compensate for the decrease in power generation capacity. Although coal is a relatively inexpensive fuel for power generation, it contains high levels (mgkg(-1)) of selenium, which could contaminate the wastewater from thermal power plants. In this work, an automated selenium monitoring system was developed based on sequential hydride generation and chemiluminescence detection. This method could be applied to control of wastewater contamination. In this method, selenium is vaporized as H2Se, which reacts with ozone to produce chemiluminescence. However, interference from arsenic is of concern because the ozone-induced chemiluminescence intensity of H2Se is much lower than that of AsH3. This problem was successfully addressed by vaporizing arsenic and selenium individually in a sequential procedure using a syringe pump equipped with an eight-port selection valve and hot and cold reactors. Oxidative decomposition of organoselenium compounds and pre-reduction of the selenium were performed in the hot reactor, and vapor generation of arsenic and selenium were performed separately in the cold reactor. Sample transfers between the reactors were carried out by a pneumatic air operation by switching with three-way solenoid valves. The detection limit for selenium was 0.008 mg L(-1) and calibration curve was linear up to 1.0 mg L(-1), which provided suitable performance for controlling selenium in wastewater to around the allowable limit (0.1 mg L(-1)). This system consumes few chemicals and is stable for more than a month without any maintenance. Wastewater samples from thermal power plants were collected, and data obtained by the proposed method were compared with those from batchwise water treatment followed by hydride generation-atomic fluorescence spectrometry. PMID:26653491

  15. Sequential injection chemiluminescence immunoassay for anionic surfactants using magnetic microbeads immobilized with an antibody.

    Science.gov (United States)

    Zhang, Ruiqi; Hirakawa, Koji; Seto, Daisuke; Soh, Nobuaki; Nakano, Koji; Masadome, Takashi; Nagata, Kazumi; Sakamoto, Kazuhira; Imato, Toshihiko

    2005-12-15

    A rapid and sensitive immunoassay for the determination of linear alkylbenzene sulfonates (LAS) is described. The method involves a sequential injection analysis (SIA) system equipped with a chemiluminescence detector and a neodymium magnet. Magnetic beads, to which an anti-LAS monoclonal antibody was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of the magnetic beads in the flow cell were controlled by means of a neodymium magnet and adjusting the flow of the carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an anti-LAS monoclonal antibody on the magnetic beads and the LAS sample and horseradish peroxidase (HRP)-labeled LAS, and was based on the subsequent chemiluminscence reaction of HRP with hydrogen peroxide and p-iodophenol, in a luminol solution. The anti-LAS antibody was immobilized on the beads by coupling the antibody with the magnetic beads after activation of a carboxylate moiety on the surface of magnetic beads that had been coated with a polylactic acid film. The antibody immobilized magnetic beads were introduced, and trapped in the flow cell equipped with the neodymium magnet, an LAS solution containing HRP-labeled LAS at constant concentration and the luminol solution were sequentially introduced into the flow cell based on an SIA programmed sequence. Chemiluminescence emission was monitored by means of a photon counting unit located at the upper side of the flow cell by collecting the emitted light with a lens. A typical sigmoid calibration curve was obtained, when the logarithm of the concentration of LAS was plotted against the chemiluminescence intensity using various concentrations of standard LAS samples (0-500ppb) under optimum conditions. The time required for analysis is less than 15min. PMID:18970310

  16. Determination of photoirradiated high polar benzoylureas in tomato by HPLC with luminol chemiluminescence detection.

    Science.gov (United States)

    Galera, M Martínez; García, M D Gil; Valverde, R Santiago

    2008-08-15

    This study reports the first analytical application of luminol chemiluminescence reaction for the sensitive detection of two benzoylurea insecticides (diflubenzuron and triflumuron). Off-line experiments demonstrated that previously irradiated traces of these benzoylurea insecticides largely enhanced the chemiluminescence emission yielded from the oxidation of luminol in methanol:water mixtures, by potassium permanganate in alkaline medium, the enhancement being proportional to the concentration of both pesticides. The two benzoylureas were determined in tomato samples by coupling liquid chromatography with post-column photoderivatization and detection based on this chemiluminescence reaction. Tomato samples were extracted using the QuEChERS method based on extraction with acetonitrile and dispersive solid-phase clean-up using primary and secondary amine (PSA). Interferences due to matrix effect were overcome by using matrix-matched standards. The optimised method was validated with respect to linearity, limits of detection and quantification, precision and accuracy. Under the optimised conditions, calibrations graphs were linear between 0.05 and 0.50 microg mL(-1) for diflubenzuron and between 0.10 and 1.00 microg mL(-1) for triflumuron. Method detection limits were 0.0025 and 0.0131 microg mL(-1) (equivalent to 0.0005 and 0.0026 mg kg(-1)) and quantification limits were 0.05 and 0.10 microg mL(-1) (equivalent to 0.01 and 0.02 mg kg(-1)) for diflubenzuron and triflumuron, respectively. In both cases, quantification limits were lower than the maximum residue levels (MRLs) established by the European legislation. The relative standard deviation of intra-day precision was below 10% and recoveries were between 79.7% and 94.2% for both pesticides. PMID:18656664

  17. Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment

    Directory of Open Access Journals (Sweden)

    M. J. Molina

    2007-05-01

    Full Text Available Data from a recent field campaign in Mexico City are used to evaluate the performance of the EPA Federal Reference Method for monitoring the ambient concentrations of NO2. Measurements of NO2 from standard chemiluminescence monitors equipped with molybdenum oxide converters are compared with those from Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS and Differential Optical Absorption Spectroscopy (DOAS instruments. A significant interference in the chemiluminescence measurement is shown to account for up to 50% of ambient NO2 concentration during afternoon hours. As expected, this interference correlates well with non-NOx reactive nitrogen species (NOz as well as with ambient O3 concentrations, indicating a photochemical source for the interfering species. A combination of ambient gas phase nitric acid and alkyl and multifunctional alkyl nitrates is deduced to be the primary cause of the interference. Observations at four locations at varying proximities to emission sources indicate that the percentage contribution of HNO3 to the interference decreases with time as the air parcel ages. Alkyl and multifunctional alkyl nitrate concentrations are calculated to reach concentrations as high as several ppb inside the city, on par with the highest values previously observed in other urban locations. Averaged over the MCMA-2003 field campaign, the chemiluminescence monitor interference resulted in an average measured NO2 concentration up to 22% greater than that from co-located spectroscopic measurements. Thus, this interference has the potential to initiate regulatory action in areas that are close to non-attainment and may mislead atmospheric photochemical models used to assess control strategies for photochemical oxidants.

  18. Toward complete miniaturisation of flow injection analysis systems: microfluidic enhancement of chemiluminescent detection.

    Science.gov (United States)

    Gracioso Martins, Ana M; Glass, Nick R; Harrison, Sally; Rezk, Amgad R; Porter, Nichola A; Carpenter, Peter D; Du Plessis, Johan; Friend, James R; Yeo, Leslie Y

    2014-11-01

    Conventional flow injection systems for aquatic environmental analysis typically comprise large laboratory benchscale equipment, which place considerable constraints for portable field use. Here, we demonstrate the use of an integrated acoustically driven microfluidic mixing scheme to enhance detection of a chemiluminescent species tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate-a common chemiluminescent reagent widely used for the analysis of a wide range of compounds such as illicit drugs, pharmaceuticals, and pesticides-such that rapid in-line quantification can be carried out with sufficient on-chip sensitivity. Specifically, we employ surface acoustic waves (SAWs) to drive intense chaotic streaming within a 100 μL chamber cast in polydimethoxylsiloxane (PDMS) atop a microfluidic chip consisting of a single crystal piezoelectric material. By optimizing the power, duration, and orientation of the SAW input, we show that the mixing intensity of the sample and reagent fed into the chamber can be increased by one to two orders of magnitude, leading to a similar enhancement in the detection sensitivity of the chemiluminescent species and thus achieving a theoretical limit of detection of 0.02 ppb (0.2 nM) of l-proline-a decade improvement over the industry gold-standard and two orders of magnitude more sensitive than that achievable with conventional systems-simply using a portable photodetector and without requiring sample preconcentration. This on-chip microfluidic mixing strategy, together with the integrated miniature photodetector and the possibility for chip-scale microfluidic actuation, then alludes to the attractive possibility of a completely miniaturized platform for portable field-use microanalytical systems. PMID:25275830

  19. Advancement of the climate dual strategy. New concepts for a globally effective climate protection; Weiterentwicklung der baden-wuerttembergischen Klimadoppelstrategie. Neue Konzepte fuer einen global wirksamen Klimaschutz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    The Baden-Wuerttemberg Council on Sustainable Development (Stuttgart, Federal Republic of Germany) presents a climate expert report with new concepts for a globally effective climate protection. First of all, the development of the global emissions of carbon dioxide since 1990 is described. The development of the global emissions of carbon dioxide up to 2050 is forecasted. Four general criteria (effectiveness, efficiency, fairness and acceptance) for a comparative evaluation of climate protection concepts are introduced. A proposal for solution on the basis of a globally effective cap-and-trade system as well as an identical scenario as an alternative with respect to the implementation are described. This alternative scenario is based on a cap-and-trade system but it develops on the basis of national self-commitment in accordance with an incentive and sanctionative system. Both implementation proposals are compared. Recommendations of the national government Baden-Wuerttemberg are given.

  20. Temperature measurements by oh lif and chemiluminescence kinetic modeling for ethanol flames

    Directory of Open Access Journals (Sweden)

    Carla S. T. Marques

    2009-01-01

    Full Text Available OH LIF-thermometry was applied to premixed ethanol flames at atmospheric pressure in a burner for three flame conditions. Flame temperatures were simulated from energy equation with PREMIX code of CHEMKIN software package for comparison. A kinetic modeling based on a model validated through chemiluminescence measurements and on a set of reactions for nitrogen chemistry was evaluated. Marinov's mechanism was also tested. Sensitivity analysis was performed for fuel-rich flame condition with Φ = 1.34. Simulated temperatures from both reaction mechanisms evaluated were higher than experimental values. However, the proposed kinetic modeling resulted in temperature profiles qualitatively very close to the experimental.

  1. Fiber-Optic Chemiluminescent Biosensors for Monitoring Aqueous Alcohols and Other Water Quality Parameters

    Science.gov (United States)

    Verostko, Charles E. (Inventor); Atwater, James E. (Inventor); Akse, James R. (Inventor); DeHart, Jeffrey L. (Inventor); Wheeler, Richard R. (Inventor)

    1998-01-01

    A "reagentless" chemiluminescent biosensor and method for the determination of hydrogen peroxide, ethanol and D-glucose in water is disclosed. An aqueous stream is basified by passing it through a solid phase base bed. Luminol is then dissolved in the basified effluent at a controlled rate. Oxidation of the luminol is catalyzed by the target chemical to produce emitted light. The intensity of the emitted light is detected as a measure of the target chemical concentration in the aqueous stream. The emitted light can be transmitted by a fiber optic bundle to a remote location from the aqueous stream for a remote reading of the target chemical concentration.

  2. Investigation and analytical application of the sulphide-hypobromite chemiluminescence reaction.

    Science.gov (United States)

    Teckentrup, J; Klockow, D

    1981-09-01

    The results of an investigation of the sensitized and non-sensitized chemiluminescence reaction between sulphide and hypobromite in alkaline solution are presented. The reaction can be used for the determination of traces of sulphide at concentrations above 5 x 10(-8)M. For this purpose a special flow system is employed which includes coulometric generation of reagent, and photon-counting. The flow system can also be combined with a special microdistillation apparatus, making it possible to analyse impregnated filters such as are used for the collection of hydrogen sulphide from ambient air. PMID:18962976

  3. [Chemiluminescence of whole saliva in antioxidant treatment of prosthetic bed tissues].

    Science.gov (United States)

    Tunian, M Iu; Lalaian, B K; Zakarian, A E; Grigorian, K L; Pogosian, G A; Egiazarian, A V

    2010-03-01

    Inflammatory reaction is always accompanied by increased intensity of free-radical oxidation, especially when the phenomena of hypoxia and microcirculatory disorders that occur during the development of side-effects of acrylic removable dentures. This study determined the effectiveness of adaptogens, antioxidants in the complex treatment of diseases of tissues prosthetic field and their influence on the processes of LPO in whole mixed unstimulated saliva. Formed in the reaction to initiate the process of oxygen radicals (OH, RO, O(2)), initiate the formation of lipid peroxide radicals RO(2) biological substrate, the recombination of which leads to the emergence of unsustainable tetroxids, which decays with the release of light quanta. This luminescence is recorded as an amplified current of the photomultiplier, the registration systems. The results suggest the intensive formation of free radicals and peroxides in diseased tissue prosthetic field. Probably the main reason for increasing free-radical oxidation is the release of peroxidase from the crumbling inflammation, phagocytes (mainly neutrophils). The process of peroxidation contributes to an increase in blood supply to inflamed tissues, leading to local enrichment of oxygen, as well as toxic effects of acrylic bases of partial and complete removable dentures in the prosthetic field of tissue. Effect of antioxidants in combination with traditional treatment in 70 patients with periodontal disease and prosthetic bed was assessed by chemiluminescence analysis of whole mixed unstimulated saliva. The level of lipid peroxidation and chemiluminescence activity exceeded the normal values in the 1,5-2 - twice before the treatment. After treatment with antioxidants, these parameters decreased and increased during remission. Thus, studies to determine the status of saliva chemiluminescence method to treat and monitor the dynamics after treatment of periodontitis tissues supporting teeth prosthetic field in the control

  4. Intercomparison study of NOx passive diffusion tubes with chemiluminescence analysers and evaluation of bias factors

    OpenAIRE

    Sánchez Jiménez, Araceli; Heal, Mathew R.; Beverland, Iain J.

    2011-01-01

    Passive diffusion tubes (PDTs) are an inexpensive and simple method to monitor air pollutants. Numerous studies have investigated the performance of PDTs for NO2 but little attention has been paid to PDTs for NOx. The aim of this study was to evaluate the performance of NOx PDTs in three different urban environments. Duplicate NOx and NO2 PDTs were co-located with chemiluminescence analysers at kerbside, urban centre and background sites in the city of Glasgow for twelve 1-week exposures. PDT...

  5. Capillary electrophoresis with direct chemiluminescence detection for the analysis of catecholamines in human urine

    Institute of Scientific and Technical Information of China (English)

    Cheng Quan Wang; Hui Wang; Yan Ming Liu

    2007-01-01

    A rapid and sensitive method for the analysis of three catecholamines by capillary electrophoresis (CE) with direct chemiluminescence (CL) detection is described. The detection limits (S/N = 3) were 1.3 × 10-8 g/mL for isoprenaline,1.0 × 10-8 g/mL for epinephrine and 2.8 × 10-8 g/mL for dopamine. The proposed method was successfully applied to the analysis of catecholamines in urine samples of cigarette smokers and nonsmokers. The results showed that there is a close relation between the release of dopamine in human body fluids and cigarette smoking/nonsmoking.

  6. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Liao, Y.P.; Jons, O.

    sulphite, whereupon both species were detected by use of the luminol-hydrogen peroxide chemiluminescence system. Parameters affecting retention times and resolution of the separator columns, such as eluent pH, eluent composition, reductant pH and concentration, and flow rates were optimized. Furthermore......, the stabilities of reductant and luminol solutions were studied. The linear range of the calibration curve for chromium(III) and chromium(VI) was 1-400 mu g l(-1). The detection limit was 0.12 mu g l(-1) for chromium(III) and 0.09 mu g l(-1) for chromium(VI), respectively. The precision at the 20 mu g...

  7. Flow Injection Analysis of Histidine with Enhanced Electrogenerated Chemiluminescence of Luminol

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A simple and sensitive flow injection method is presented for the determination of histidine based on its enhancement of electrogenerated chemiluminescence (ECL) of luminol. After optimization of the experimental parameters, the working range for histidine was in 1.0 x 10-6 to 1.0 x 10 -3 mol/L with a detection limit (S/N = 3) of 0.56 μmol/L. The relative standard deviation was 1.6% for 11 measurements of 5 x 10 -5 mol/L histidine solution. The proposed method has been successfully applied to the determination of histidine in real pharmaceutical preparation.

  8. Investigation of radiaiton defect annealing in LiF by chemiluminescence and thermostimulated luminescence

    International Nuclear Information System (INIS)

    To study radiation defect properties in LiF by simultaneously measured chemi- and thermoluminescence and to prove their regularity, the samples were exposed to gamma-radiation of 60Co with the dose of 1 Mrad/hour. Then the samples were annealed at 100-400 deg C. Dependence of chemi- and thermoluminescence and F-centre concentration on the annealing temperature have been investigated. Those dependences are found to be interrelated. Chemiluminescence intensity change (according to the growth of the annealing temperature for the crystals with a great number of associated electron centres at a high radiation dose) is proved to be caused by the radiation defect clustering

  9. Sequential Injection Determination of D-Glucose by Chemiluminescence Using an Open Tubular Immobilised Enzyme Reactor

    DEFF Research Database (Denmark)

    Liu, Xuezhu; Hansen, Elo Harald

    1996-01-01

    A sequential injection analysis system is described that incorporates a nylon tubular reactor containing immobilised glucose oxidase, allowing determination of D-glucose by means of subsequent luminol chemiluminescence detection of the hydrogen peroxide generated in the enzymatic reaction. The...... operating parameters were optimised by fractional factorial screening and response surface modelling. The linear range of D-glucose determination was 30-600 mu M, With a detection limit of 15 mu M using a photodiode detector. The sampling frequency was 54 h(-1). Lower LOD (0.5 mu M D-glucose) could be...

  10. Alternate fusion concepts

    International Nuclear Information System (INIS)

    This review summarizes the status of alternate fusion concepts and plans for their future. The concepts selected for review are those employing electromagnetic confinement for which there have been reasonable predictions of net energy gain from pure fusion and which have shown significant recent development or are the subjects of ongoing international activity. They include advanced tokamaks, stellarators, the spherical torus, reversed-field pinch and dense z-field pinch devices, field reversed configuration, and spheromaks. In addition, an overall view of the status of each concept with respect to achieving ignition and to reactor designs is presented

  11. Recent Advances in the Concept and Pathogenesis of IgG4-Related Disease in the Hepato-Bilio-Pancreatic System

    OpenAIRE

    Okazaki, Kazuichi; Yanagawa, Masahito; Mitsuyama, Toshiyuki; Uchida, Kazushige

    2014-01-01

    Recent studies have proposed nomenclatures of type 1 autoimmune pancreatitis (AIP) (IgG4-related pancreatitis), IgG4-related sclerosing cholangitis (IgG4-SC), IgG4-related cholecystitis, and IgG4-related hepatopathy as IgG4-related disease (IgG4-RD) in the hepato-bilio-pancreatic system. In IgG4-related hepatopathy, a novel concept of IgG4-related autoimmune hepatitis (AIH) with the same histopathological features as AIH has been proposed. Among organs involved in IgG4-RD, associations with p...

  12. Performance Evaluation of the Concept of Hybrid Heat Pipe as Passive In-core Cooling Systems for Advanced Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yeong Shin; Kim, Kyung Mo; Kim, In Guk; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    As an arising issue for inherent safety of nuclear power plant, the concept of hybrid heat pipe as passive in-core cooling systems was introduced. Hybrid heat pipe has unique features that it is inserted in core directly to remove decay heat from nuclear fuel without any changes of structures of existing facilities of nuclear power plant, substituting conventional control rod. Hybrid heat pipe consists of metal cladding, working fluid, wick structure, and neutron absorber. Same with working principle of the heat pipe, heat is transported by phase change of working fluid inside metal cask. Figure 1 shows the systematic design of the hybrid heat pipe cooling system. In this study, the concept of a hybrid heat pipe was introduced as a Passive IN-core Cooling Systems (PINCs) and demonstrated for internal design features of heat pipe containing neutron absorber. Using a commercial CFD code, single hybrid heat pipe model was analyzed to evaluate thermal performance in designated operating condition. Also, 1-dimensional reactor transient analysis was done by calculating temperature change of the coolant inside reactor pressure vessel using MATLAB. As a passive decay heat removal device, hybrid heat pipe was suggested with a concept of combination of heat pipe and control rod. Hybrid heat pipe has distinct feature that it can be a unique solution to cool the reactor when depressurization process is impossible so that refueling water cannot be injected into RPV by conventional ECCS. It contains neutron absorber material inside heat pipe, so it can stop the reactor and at the same time, remove decay heat in core. For evaluating the concept of hybrid heat pipe, its thermal performance was analyzed using CFD and one-dimensional transient analysis. From single hybrid heat pipe simulation, the hybrid heat pipe can transport heat from the core inside to outside about 18.20 kW, and total thermal resistance of hybrid heat pipe is 0.015 .deg. C/W. Due to unique features of long heat

  13. Performance Evaluation of the Concept of Hybrid Heat Pipe as Passive In-core Cooling Systems for Advanced Nuclear Power Plant

    International Nuclear Information System (INIS)

    As an arising issue for inherent safety of nuclear power plant, the concept of hybrid heat pipe as passive in-core cooling systems was introduced. Hybrid heat pipe has unique features that it is inserted in core directly to remove decay heat from nuclear fuel without any changes of structures of existing facilities of nuclear power plant, substituting conventional control rod. Hybrid heat pipe consists of metal cladding, working fluid, wick structure, and neutron absorber. Same with working principle of the heat pipe, heat is transported by phase change of working fluid inside metal cask. Figure 1 shows the systematic design of the hybrid heat pipe cooling system. In this study, the concept of a hybrid heat pipe was introduced as a Passive IN-core Cooling Systems (PINCs) and demonstrated for internal design features of heat pipe containing neutron absorber. Using a commercial CFD code, single hybrid heat pipe model was analyzed to evaluate thermal performance in designated operating condition. Also, 1-dimensional reactor transient analysis was done by calculating temperature change of the coolant inside reactor pressure vessel using MATLAB. As a passive decay heat removal device, hybrid heat pipe was suggested with a concept of combination of heat pipe and control rod. Hybrid heat pipe has distinct feature that it can be a unique solution to cool the reactor when depressurization process is impossible so that refueling water cannot be injected into RPV by conventional ECCS. It contains neutron absorber material inside heat pipe, so it can stop the reactor and at the same time, remove decay heat in core. For evaluating the concept of hybrid heat pipe, its thermal performance was analyzed using CFD and one-dimensional transient analysis. From single hybrid heat pipe simulation, the hybrid heat pipe can transport heat from the core inside to outside about 18.20 kW, and total thermal resistance of hybrid heat pipe is 0.015 .deg. C/W. Due to unique features of long heat

  14. Advanced calculus

    CERN Document Server

    Nickerson, HK; Steenrod, NE

    2011-01-01

    ""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,

  15. Evaluation of Antibacterial Enrofloxacin in Eggs by Matrix Solid Phase Dispersion-Flow Injection Chemiluminescence

    Directory of Open Access Journals (Sweden)

    Xiaocui Duan

    2014-01-01

    Full Text Available The study based on the chemiluminescence (CL reaction of potassium ferricyanide and luminol in sodium hydroxide medium, enrofloxacin (ENRO could dramatically enhance CL intensities and incorporated with matrix solid-phase dispersion (MSPD technique (Florisil used as dispersant, dichloromethane eluted the target compounds. A simple flow injection chemiluminescence (FL-CL method with MSPD technique for determination of ENRO in eggs was described. Under optimal conditions, the CL intensities were linearly related to ENRO concentration ranging from 4.0×10-8 g.L−1 to 5.0×10-5 g.L−1, with a correlation coefficient of 0.9989 and detection limit of 5.0×10-9 g.L−1. The relative standard deviation was 3.6% at an ENRO concentration of 2.0×10-6 g.L−1. Our testing technique can help ensure food safety, and thus, protect public health.

  16. Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on Microfluidic chip.

    Science.gov (United States)

    Wu, Jing; Wang, Xiong; Lin, Yitong; Zheng, Yongzan; Lin, Jin-Ming

    2016-07-01

    A chemiluminescent method for nitrite detection was developed on microfluidic chip. Carbon dots-NaNO2(-) acidified H2O2 system was adopted. Chemiluminescence (CL) spectrum of this system was detected. The radiative recombination of hole-injected and electron-injected carbon dots explained their CL property. Spiral microchannels were designed on the microfluidic chip to allow enough reaction time for the carbon dots-NaNO2-acidified H2O2 system. Carbon dots and NaNO2 were premixed in the branch microchannel, then, the mixture reacted with acidified H2O2 in spiral microchannels. Concentrations of H2SO4 and H2O2, dilution ratio of carbon dots in H2O and flow rate were optimized to obtain the best CL signals. The approach presented satisfactory linear relationship between NaNO2 concentration and CL intensity. The tolerance of metal ions in determination of 1×10(-5)M nitrite was analyzed. The nitrites in water and beverage samples were successfully analyzed on the microfluidic chip with good repeatability. The data were well accordance with the results obtained from GB 5009.33(-) 2010. This microfluidic CL detection method is believed to be a simple, automatic and agent-save approach for inorganic ion analysis. PMID:27154650

  17. Streptavidin-functionalized capillary immune microreactor for highly efficient chemiluminescent immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhanjun [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); College of Chemistry and Engineering, Yangzhou University, 88 South University Avenue, Yangzhou 225002 (China); Zong Chen [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ju Huangxian, E-mail: hxju@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Yan Feng, E-mail: yanfeng2007@sohu.com [Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009 (China)

    2011-11-07

    Highlights: {yields} A novel capillary immune microreactor was proposed for highly efficient flow-through chemiluminescent immunoassay. {yields} The microreactor was prepared by functionalizing capillary inner wall with streptavidin for capture of biotinylated antibody. {yields} The proposed immunoassay method showed wide dynamic range, good reproducibility, stability and practicality. {yields} The microreactor was low-cost and disposable, and possessed several advantages over the conventional immunoreactors. - Abstract: A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using {alpha}-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL{sup -1} and a low detection limit of 0.1 ng mL{sup -1}. The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay.

  18. Suppression of chemiluminescence of eastern oyster (Crassostrea virginica) hemocytes by the protozoan parasite Perkinsus marinus.

    Science.gov (United States)

    Volety, A K; Chu, F L

    1995-01-01

    Experiments were conducted to determine the ability of the protistan parasite, Perkinsus marinus, to inhibit chemiluminescence of hemocytes from the eastern oyster, Crassostrea virginica. Luminol-enhanced chemiluminescence (CL) was used to measure the production of reactive oxygen intermediates (ROI) generated by oyster hemocytes using zymosan as a stimulant. To determine whether P. marinus suppresses ROI evoked from zymosan-stimulated hemocytes, live or heat killed P. marinus in filtered estuarine water (YRW) (salinity = 20 ppt) were added to (1) zymosan-stimulated hemocytes after CL reached its peak, or (2) hemocytes at the same time as zymosan, and reduction of CL responses were recorded. In both tests, controls received only estuarine water. Live P. marinus meronts significantly suppressed ROI production by zymosan-stimulated hemocytes. The suppression of ROI production was dose dependent. Suppression of ROI production from zymosan-stimulated hemocytes by heat killed P. marinus was significantly less than by live P. marinus. Similarly, CL of hemocytes was reduced, though not significantly when hemocytes were exposed to YRW preincubated with P. marinus. When P. marinus meronts were used as a stimulant, no CL response was elicited. Results of this study suggest that P. marinus cells are able to suppress ROI release from oyster hemocytes, thus evading this component of the host's defense. PMID:7556800

  19. Proximity hybridization-regulated chemiluminescence resonance energy transfer for homogeneous immunoassay.

    Science.gov (United States)

    Liu, Mengmeng; Wu, Jie; Yang, Kaili; Zong, Chen; Lei, Jianping; Ju, Huangxian

    2016-07-01

    Chemiluminescence resonance energy transfer (CRET) and the proximity ligation assay have been widely used in design of sensors for the bioanalysis. Here, a wash-free and homogeneous strategy was proposed to detect carcino-embryonic antigen (CEA) based on proximity hybridization-regulated CRET. The Cy5 demonstrated strong chemiluminescence (CL) via the oxidation of TCPO in the presence of H2O2 and energy transfer between excited TCPO and Cy5. Graphene oxide (GO) as an excellent quencher was used to produce the "Signal off" mode that little CL emission was observed through CRET between GO and the Cy5-labelled DNA3. Once CEA was introduced, the target-induced proximity hybridization occurred to form a proximate complex, which inhibited the CRET by preventing GO from absorbing Cy5-labelled DNA3. Furthermore, taking advantage of nicking endonuclease Nt.BbvCI for in situ recycling, the signal could be further amplified for highly sensitive CL detection. Our results showed that this strategy enabled a specific response to CEA with a detection range of 5 orders of magnitude, along with a detection limit of 3.2pg mL(-1). Apart from its easy operation, high sensitivity and acceptable accuracy, the proposed method needed only 0.3μL of sample, indicating its great opportunity for commercial application. PMID:27154699

  20. l-Tyrosine Contained in Dietary Supplement by Chemiluminescence Reaction of an Iron-Phthalocyanine Complex

    Directory of Open Access Journals (Sweden)

    Takao Ohtomo

    2012-01-01

    Full Text Available The chemiluminescence (CL signal immediately appeared when a hydrogen peroxide solution was injected into an iron-phthalocyanine tetrasulfonic acid (Fe-PTS aqueous solution. Moreover, the CL intensity of Fe-PTS decreased by adding L-tyrosine. Based on these results, the determination of trace amounts of L-tyrosine was developed using the quenching-chemiluminescence. The calibration curve of L-tyrosine was obtained in the concentration range of 2.0×10−7 M to 2.0×10−5 M. Moreover, the relative standard deviation (RSD was 1.63 % (=5 for 2.0×10−6 M L-tyrosine, and its detection limits (3σ were 1.81×10−7 M. The spike and recovery experiments for L-tyrosine were performed using a soft drink. Furthermore, the determination of L-tyrosine was applied to supplements containing various kinds of amino acids. Each satisfactory relative recovery was obtained at 98 to 102%.

  1. Microplate-reader method for the rapid analysis of copper in natural waters with chemiluminescence detection

    Directory of Open Access Journals (Sweden)

    AxelDurand

    2013-01-01

    Full Text Available We have developed a method for the determination of copper in natural waters at nanomolar levels. The use of a microplate-reader minimises sample processing time (~ 25 sec per sample, reagent consumption (~ 120 μL per sample and sample volume (~ 700 μL. Copper is detected by chemiluminescence. This technique is based on the formation of a complex between copper and 1,10-phenanthroline and the subsequent emission of light during the oxidation of the complex by hydrogen peroxide. Samples are acidified to pH 1.7 and then introduced directly into a 24-well plate. Reagents are added during data acquisition via two reagent injectors. When trace metal clean protocols are employed, the reproducibility is generally less then 7% on blanks and the detection limit is 0.7 nM for seawater and 0.4 nM for freshwater. More than 100 samples per hour can be analyzed with this technique, which is simple, robust, and amenable to at-sea analysis. Seawater samples from Storm Bay in Tasmania illustrate the utility of the method for environmental science. Indeed other trace metals for which optical detection methods exist (e.g. chemiluminescence, fluorescence and absorbance could be adapted to the microplate-reader.

  2. The observation of chemiluminescent NiO* emissions in the laboratory and in the night airglow

    Directory of Open Access Journals (Sweden)

    A. L. Broadfoot

    2011-04-01

    Full Text Available The recent finding of an orange spectral feature in OSIRIS/Odin spectra of the night airglow near 85 km has raised interest in the origin of the emission. The feature was positively identified as the chemiluminescent FeO* emission where the iron is of meteoric origin. Since the meteorite source of atomic metals in the mesosphere contains both iron and nickel, with Ni being typically 6% of Fe, it is expected that faint emissions involving Ni should also be present in the night airglow. The present study summarizes the laboratory observations of chemiluminescent NiO* emissions and includes a search for the NiO* signature in the night airglow. A faint previously unidentified "continuum" extending longwave of 440 nm has been identified in night airglow spectra obtained with two space-borne limb viewing instruments and through a comparison with laboratory spectra this continuum is identified as arising from the NiO* emission. The FeO* and NiO* emissions both originate from a reaction of the metal atoms with mesospheric ozone and so support the presence of NiO* in the night airglow.

  3. The observation of chemiluminescent NiO* emissions in the laboratory and in the night airglow

    Directory of Open Access Journals (Sweden)

    W. F. J. Evans

    2011-09-01

    Full Text Available The recent finding of an orange spectral feature in OSIRIS/Odin spectra of the night airglow near 87 km has raised interest in the origin of the emission. The feature was positively identified as the chemiluminescent FeO* emission where the iron is of meteoric origin. Since the meteorite source of atomic metals in the mesosphere contains both iron and nickel, with Ni being typically 6 % of Fe, it is expected that faint emissions involving Ni should also be present in the night airglow. The present study summarizes the laboratory observations of chemiluminescent NiO* emissions and includes a search for the NiO* signature in the night airglow. A very faint previously unidentified "continuum" extending longwave of 440 nm has been detected in the night airglow spectra obtained with two space-borne limb viewing instruments. Through a comparison with laboratory spectra this continuum is identified as arising from the NiO* emission. The altitude profile of the new airglow emission has also been measured. The similarity of the altitude profiles of the FeO* and NiO* emissions also suggests the emission is NiO as both can originate from reaction of the metal atoms with mesospheric ozone. The observed NiO* to FeO* ratio exhibits considerable variability; possible causes of this observed variation are briefly discussed.

  4. Comparison of chemiluminescence methods for analysis of hydrogen peroxide and hydroxyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    Pehrman, R.; Amme, M. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, (Germany)); Cachoir, C. (SCK.CEN, Waste and Disposal Unit., Mol (Belgium))

    2010-03-15

    Full text: Disposal of spent nuclear fuel in underground repositories is being considered in many countries and for this purpose understanding of behaviour of radiolysis products is required. To study the effects of alpha radiolysis products of water on oxidation and dissolution of actinides, a method to analyse those products is needed. Chemiluminescence is generally considered a simple, sensitive and reasonably selective method to detect reactive oxygen species on low concentrations. Concentrations of interest for both hydrogen peroxide and hydroxyl radicals are 10-6 to 10-9 M. The aim of this study is to compare various chemiluminescence methods for detecting hydrogen peroxide and hydroxyl radicals. Four methods to analyse hydrogen peroxide were chosen based on the estimated suitability for radiolysis experiments. Two of these use luminol, catalyzed by either mu-peroxidase or hemin, one uses 10-methyl-9-(p-formylphenyl) acridinium carboxylate trifluoromethanesulfonate and one potassium periodate. All methods were tested as batch systems in basic conditions. For hydroxyl radical detection luminophores tested were 3-hydroxyphthalic hydrazide (product of phthalic hydrazide and hydroxyl radical) and rutin. Both methods were tested as batch systems. The results are compared and the applicability of the methods for near-field dissolution studies is discussed. (author)

  5. Enhanced Silver Nanoparticle Chemiluminescence Method for the Determination of Gemifloxacin Mesylate using Sequential Injection Analysis

    International Nuclear Information System (INIS)

    A sequential injection analysis (SIA) with chemiluminescence detection has been proposed for the determination of the antibiotic gemifloxacin mesylate (GFX). The developed method is based on the enhancement effect of silver nanoparticles (Ag NPs) on the chemiluminescence (CL) signal of luminol-potassium ferricyanide reaction in alkaline medium. The introduction of gemifloxacin in this system produced a significant decrease in the CL intensity in presence of (Ag NPs). The optimum conditions for CL emission were investigated. Linear relationship between the decrease in CL intensity and concentration was obtained in the range 0.01-1000 ng mL-1, (r = 0.9997) with detection limit of 2.0 pg mL-1 and quantification limit of 0.01 pg mL-1. The relative standard deviation was 1.3 %. The proposed method was employed for the determination of gemifloxacin in bulk drug, in its pharmaceutical dosage forms and biological fluids such as human serum and urine. The interference of some common additive compounds such as glucose, lactose, starch, talc and magnesium stearate was investigated, and no interference was found from these excipients. The obtained SIA results were statistically compared with those obtained from a reported method and did not show any significant difference at confidence level 95%. (author)

  6. Determination of Biotin in Pharmaceutical Formulations by Potassium Permanganate-luminol-CdTe Nanoparticles Chemiluminescence System

    Institute of Scientific and Technical Information of China (English)

    TRAORE Zoumana Sékou; SU Xing-guang

    2012-01-01

    A sensitive flow-injection chemiluminescence method was developed for the determination of biotin in the pharmaceutical formulations.The affinity between avidin and biotin was used to adsorb biotin on the polystyrene,with subsequent quantification of biotin based on its ability to enhance the chemiluminescence(CL) signal generated by the redox reaction of potassium permanganate-luminol-CdTe nanoparticles CL system.The investigations prove that apart from 3-aminophthalate,the CdTe quantum dots(QDs) play both catalytic and emitter roles.Under optimum conditions,the linear range for the determination of biotin was 0.01-25 ng/mL with a detection limit of 7.3×10-3ng/mL(S/N=3).The relative standard deviation of 5 ng/L biotin was 2.06%(n=7).The proposed method was used to determine the biotin concentration in the pharmaceutical formulations and the recovery was between 96.4% and 104%.The proposed method is simple,convenient,rapid and sensitive.

  7. Flow injection-chemiluminescence determination of dopamine using potassium permanganate and formaldehyde system

    Science.gov (United States)

    Wabaidur, Saikh Mohammad; Alothman, Zeid Abdullah; Alam, Seikh Mafiz; Lee, Sang Hak

    2012-10-01

    A simple and sensitive flow injection-chemiluminescence method for the determination of dopamine has been proposed. The method is based on the enhancing effect of dopamine on the chemiluminescence emission generated by the reaction of potassium permanganate with formaldehyde in an acidic medium. The proposed procedure allows the determination of dopamine over the concentration range of 3.1 × 10-8-1.7 × 10-5 mol/L and with a detection limit of 1.0 × 10-8 mol/L. The linear regression equation was F = 44.4912 + 1.07 × 109 ∗ C (correlation coefficient, r2 = 0.9998). The relative standard deviation is 2.1% for the determination of 1.0 × 10-8 mol/L dopamine (n = 11). The method was successfully applied to the determination of dopamine in pharmaceutical preparation with satisfactory results. The recoveries were found in the range of 96.5-101.3%.

  8. A comparison of chemiluminescent acridinium dimethylphenyl ester labels with different conjugation sites.

    Science.gov (United States)

    Natrajan, Anand; Wen, David

    2015-03-01

    Chemiluminescent acridinium dimethylphenyl esters are highly sensitive labels that are used in automated assays for clinical diagnosis. Light emission from these labels and their conjugates is triggered by treatment with alkaline peroxide. Conjugation of acridinium ester labels is normally done at the phenol. During the chemiluminescent reaction of these acridinium esters, the phenolic ester is cleaved and the light emitting acridone moiety is liberated from its conjugate partner. In the current study, we report the synthesis of three new acridinium esters with conjugation sites at the acridinium nitrogen and compare their properties with that of a conventional acridinium ester with a conjugation site at the phenol. Our study is the first that provides a direct comparison of the emissive properties of acridinium dimethylphenyl esters (free labels and protein conjugates) with different conjugation sites, one where the light emitting acridone remains attached to its conjugate partner versus conventional labeling which results in cleavage of the acridone from the conjugate. Our results indicate that the conjugation at the acridinium nitrogen, which also alters how the acridinium ring and phenol are oriented with respect to the protein surface, has a minimal impact on emission kinetics and emission spectra. However, this mode of conjugation to three different proteins led to a significant increase in light yield which should be useful for improving the assay sensitivity. PMID:25581208

  9. Zwitterionic reagents for labeling, cross-linking and improving the performance of chemiluminescent immunoassays.

    Science.gov (United States)

    Natrajan, Anand; Sharpe, David; Wen, David

    2012-03-01

    Improving reagent performance in immunoassays both to enhance assay sensitivity and to minimize interference are ongoing challenges in clinical diagnostics. We describe herein the syntheses of a new class of hydrophilic reagents containing sulfobetaine zwitterions and their applications. These zwitterionic reagents are potentially useful for improving the properties of immunoassay reagents. We demonstrate for the first time that zwitterion labeling is a general and viable strategy for reducing the non-specific binding of proteins to microparticles and, to improve the aqueous solubility of hydrophobic peptides. We also describe the synthesis of zwitterionic cross-linking reagents and demonstrate their utility for peptide conjugation. In automated, chemiluminescent immunoassays, improved assay performance was observed for a hydrophobic, small analyte (theophylline) using an acridinium ester conjugate with a zwitterionic sulfobetaine linker compared to a hexa(ethylene)glycol linker. Sandwich assay performance for a large analyte (thyroid stimulating hormone) was similar for the two acridinium ester labels. These results indicate that zwitterions are complementary to poly(ethylene)glycol in improving the aqueous solubility and reducing the non-specific binding of chemiluminescent acridinium ester conjugates. PMID:22278720

  10. Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor.

    Science.gov (United States)

    Jo, Eun-Jung; Mun, Hyoyoung; Kim, Su-Ji; Shim, Won-Bo; Kim, Min-Gon

    2016-03-01

    We report a chemiluminescence resonance energy transfer (CRET) aptasensor for the detection of ochratoxin A (OTA) in roasted coffee beans. The aptamer sequences used in this study are 5'-DNAzyme-Linker-OTA aptamer-3'-dabcyl. Dabcyl at the end of the OTA aptamer region plays as a quencher in CRET aptasensor. When hemin and OTA are added, the dabcyl-labeled OTA aptamer approaches to the G-quadruplex-hemin complex by formation of the G-quadruplex-OTA complex. The G-quadruplex-hemin complexes possess horseradish peroxidase (HRP)-like activity, and therefore, the HRP-mimicking DNAzyme (HRPzyme) catalyzes peroxidation in the presence of luminol and H2O2. Resonance energy transfer between luminol (donor) and dabcyl (acceptor) enables quenching of chemiluminescence signals. The signal decreases with increasing the concentration of OTA within the range of 0.1-100ngmL(-1) (limit of detection 0.22ngmL(-1)), and the level of recovery of the respective 1ngmL(-1) and 10ngmL(-1) spiked coffee samples was 71.5% and 93.3%. These results demonstrated the potential of the proposed method for OTA analysis in diverse foods. PMID:26471659

  11. Comparison of performance of two Treponema pallidum automated chemiluminescent immunoassays in blood donors.

    Science.gov (United States)

    Sommese, Linda; Sabia, Chiara; Esposito, Antonella; Iannone, Carmela; Montesano, Maria Lourdes; Napoli, Claudio

    2016-06-01

    The recrudescence of syphilis is leading to the development of new serological tests. The goal of this study was to compare the performance of the more recent Elecsys Syphilis assay, the Electro Chemiluminescence Immunoassay (ECLIA), with the former Architect Syphilis TP assay, the Chemiluminescent Microparticle Immunoassay (CMIA), for the detection of antibodies against Treponema pallidum in blood donors. Serum samples of 5543 voluntary blood donors were screened in parallel with two tests. All repeatedly reactive (RR) samples by one or both assays were further analysed for confirmation by immmunoblot INNO-LIA and TPHA. Of 32 RR samples by CMIA, 21 were confirmed positive; of 21 RR samples by ECLIA, 20 were confirmed positive. The sensitivities of CMIA and ECLIA were 100% and 95.24% (95% CI = 85.71-100), respectively, not significant (p > 0.05). The specificity and predictive positive value (PPV) of CMIA were 99.86% (95% CI = 99.74-99.94) and 72.41%, respectively, while the specificity and PPV of ECLIA were both 100%, being statistically significant (p = 0.01 for both). The overall agreement was 99.80% and the Cohen's kappa coefficients was 0.79. In conclusion, the recent Elecsys Syphilis assay could represent another reliable assay for blood donor screening. PMID:27030921

  12. CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation.

    Science.gov (United States)

    Zang, Yang; Lei, Jianping; Hao, Qing; Ju, Huangxian

    2016-03-15

    This work developed a CdS/MoS2 heterojunction-based photoelectrochemical biosensor for sensitive detection of DNA under the enhanced chemiluminescence excitation of luminol catalyzed by hemin-DNA complex. The CdS/MoS2 photocathode was prepared by the stepwise assembly of MoS2 and CdS quantum dots (QDs) on indium tin oxide (ITO), and achieved about 280% increasing of photocurrent compared to pure CdS QDs electrode due to the formation of heterostructure. High photoconversion efficiency in the photoelectrochemical system was identified to be the rapid spatial charge separation of electron-hole pairs by the extension of electron transport time and electron lifetime. In the presence of target DNA, the catalytic hairpin assembly was triggered, and simultaneously the dual hemin-labeled DNA probe was introduced to capture DNA/CdS/MoS2 modified ITO electrode. Thus the chemiluminescence emission of luminol was enhanced via hemin-induced mimetic catalysis, leading to the physical light-free photoelectrochemical strategy. Under optimized conditions, the resulting photoelectrode was proportional to the logarithm of target DNA concentration in the range from 1 fM to 100 pM with a detection limit of 0.39 fM. Moreover, the cascade amplification biosensor demonstrated high selectivity, desirable stability and good reproducibility, showing great prospect in molecular diagnosis and bioanalysis. PMID:26476013

  13. Concept Search

    OpenAIRE

    Giunchiglia, Fausto; Kharkevich, Uladzimir; Zaihrayeu, Ilya

    2008-01-01

    In this paper we present a novel approach, called Concept Search, which extends syntactic search, i.e., search based on the computation of string similarity between words, with semantic search, i.e., search based on the computation of semantic relations between concepts. The key idea of Concept Search is to operate on complex concepts and to maximally exploit the semantic information available, reducing to syntactic search only when necessary, i.e., when no semantic information is available. ...

  14. Analytically useful blue chemiluminescence from a water-soluble iridium(III) complex containing a tetraethylene glycol functionalised triazolylpyridine ligand.

    Science.gov (United States)

    Smith, Zoe M; Kerr, Emily; Doeven, Egan H; Connell, Timothy U; Barnett, Neil W; Donnelly, Paul S; Haswell, Stephen J; Francis, Paul S

    2016-04-01

    We examine [Ir(df-ppy)2(pt-TEG)](+) as the first highly water soluble, blue-luminescent iridium(III) complex for chemiluminescence detection. Marked differences in selectivity were observed between the new complex and the conventional [Ru(bpy)3](2+) reagent, which will enable this mode of detection to be extended to new areas of application. PMID:26915962

  15. THE OPTIMISATION OF THE SIMULATION OF DIFFUSIONAL TRANSPORT TO A MICROSPHERE ELECTRODE AND ITS APPLICATION TO ELECTROGENERATED CHEMILUMINESCENCE

    OpenAIRE

    Irina B. Svir; Oleinick, Alexander I.; Compton, Richard G.

    2000-01-01

    The application is reported of the three layer finite implicit (3LFI) method for the simulation of electrogenerated chemiluminescence at a microsphere electrode. Two different transformed coordinates in the radial coordinate were employed, a conformal map and an exponentially expanding grid, with aim of optimising the modelling of the diffusion under non steady state conditions.

  16. Application of UV-Vis spectrophotometric and chemiluminescent methods for the evaluation of the antioxidant action of curcumin

    Czech Academy of Sciences Publication Activity Database

    Stanchev, Stancho; Pencheva, I.; Konstantinov, S.; Obreshkova, D.; Hadjimitova, V.

    2012-01-01

    Roč. 77, č. 8 (2012), s. 1063-1069. ISSN 0352-5139 Institutional research plan: CEZ:AV0Z40550506 Keywords : curcumin * antioxidant * UV-Vis spectrophotometry * DNA complexation * chemiluminescence Subject RIV: CC - Organic Chemistry Impact factor: 0.912, year: 2012

  17. Egg-Citing! Isolation of Protoporphyrin IX from Brown Eggshells and Its Detection by Optical Spectroscopy and Chemiluminescence

    Science.gov (United States)

    Dean, Michelle L.; Miller, Tyson A.; Bruckner, Christian

    2011-01-01

    A simple and cost-effective laboratory experiment is described that extracts protoporphyrin IX from brown eggshells. The porphyrin is characterized by UV-vis and fluorescence spectroscopy. A chemiluminescence reaction (peroxyoxalate ester fragmentation) is performed that emits light in the UV region. When the porphyrin extract is added as a fluor…

  18. Effect of H1-histamine antagonist dithiaden on human PMN-leukocyte aggregation and chemiluminescence is stimulus dependent

    Czech Academy of Sciences Publication Activity Database

    Nosál, R.; Drábiková, K.; Číž, Milan; Lojek, Antonín; Danihelová, E.

    Sochi, 2001, s. 18-19. [JOINT MEETING of the European Histamine Research Society and the Institute of Allergy and Asthma MEDIATORS OF ALLERGY AND ASTHMA /1./. Sochi (RU), 09.10.2001-12.10.2001] Institutional research plan: CEZ:AV0Z5004920 Keywords : dithiaden * human leukocyte aggregation * chemiluminescence Subject RIV: BO - Biophysics

  19. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Science.gov (United States)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; Angelis, A. De; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-12-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  20. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA. (authors)

  1. Advanced atomization concept for CWF burning in small combustors. Phase 2, Quarterly technical progress report No. 3, 1 April 1991--30 June 1991

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.; McHale, E.

    1991-12-31

    The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of an opposed-jet atomizer that met the goals of the first contract. Performance as a function of operating conditions was measured, and the technical feasibility of the device established in the Atlantic Research Atomization Test Facility employing a Malvern Particle Size Analyzer. Testing then proceeded to a combustion stage in a test furnace at a firing rate of 0.5 to 1.5 MMBtu/H.

  2. Concept, Characteristics and Advances of Geographic Knowledge Visualization%地学知识可视化概念特征与研究进展

    Institute of Scientific and Technical Information of China (English)

    王伟星; 龚建华

    2009-01-01

    As a new field of visualization,knowledge visualization is to use maps,graphics or images to construct and transfer insights and knowledge between at least two persons.In view of geovisualization,geographic diagram,geoinformatic Tupu,and visual analytics are cutting edge researches on visual and graphic representation and discovery of geographic knowledge.Thus,this paper focuses on the discussion of geographic knowledge visualization in terms of general knowledge visualization and geographic diagram.In the paper,the concept and characteristics of geographic knowledge visualization are mainly explored according to the dual coding theory of representation of mental images and spatial thinking in mental images.Based on the theoretical foundation mentioned above,five formats of geographic knowledge visualization are introduced.Besides geographic knowledge map,they are concept maps,mind maps,cognitive maps,semantic networks and thinking maps.In the end,the practical application of geographic knowledge visualization and its development trend in the fields of geographic knowledge maps' construction,geographic collaborative work,design and implementation of visualization model and related algorithms,and so forth are summarized.%地学知识可视化是将知识可视化研究的理论、技术、方法引入地学研究领域,形成一个新的研究方向.通过分析地学知识可视化国内外研究现状,在总结其研究特点的基础上,对地学知识可视化的定义进行阐述,讨论其概念特征、理论基础以及表达方法,并对其应用研究现状与发展趋势进行概括总结.

  3. Recent advances in the concept and pathogenesis of IgG4-related disease in the hepato-bilio-pancreatic system.

    Science.gov (United States)

    Okazaki, Kazuichi; Yanagawa, Masahito; Mitsuyama, Toshiyuki; Uchida, Kazushige

    2014-09-01

    Recent studies have proposed nomenclatures of type 1 autoimmune pancreatitis (AIP) (IgG4-related pancreatitis), IgG4-related sclerosing cholangitis (IgG4-SC), IgG4-related cholecystitis, and IgG4-related hepatopathy as IgG4-related disease (IgG4-RD) in the hepato-bilio-pancreatic system. In IgG4-related hepatopathy, a novel concept of IgG4-related autoimmune hepatitis (AIH) with the same histopathological features as AIH has been proposed. Among organs involved in IgG4-RD, associations with pancreatic and biliary lesions are most frequently observed, supporting the novel concept of "biliary diseases with pancreatic counterparts." Targets of type 1 AIP and IgG4-SC may be periductal glands around the bile and pancreatic ducts. Based on genetic backgrounds, innate and acquired immunity, Th2-dominant immune status, regulatory T (Treg) or B cells, and complement activation via a classical pathway may be involved in the development of IgG4-RD. Although the role of IgG4 remains unclear in IgG4-RD, IgG4-production is upregulated by interleukin 10 from Treg cells and by B cell activating factor from monocytes/basophils with stimulation of toll-like receptors/nucleotide-binding oligomerization domain-like receptors. Based on these findings, we have proposed a hypothesis for the development of IgG4-RD in the hepato-bilio-pancreatic system. Further studies are necessary to clarify the pathogenic mechanism of IgG4-RD. PMID:25228969

  4. A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tao Liang [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Song Chaojun; Sun Yuanjie [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Li Xiaohua; Li Yunyun [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Jin Boquan [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Zhang Zhujun, E-mail: zhangzj@snnu.edu.cn [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Yang Kun, E-mail: yangkunkun@fmmu.edu.cn [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer Difunctional amino mesoporous silica nanoparticles (FCMSN) were synthesized. Black-Right-Pointing-Pointer The fluorescence and chemiluminescence properties of the FCMSN were studied. Black-Right-Pointing-Pointer The NaIO{sub 4} oxidation method was used for modification of the FCMSN. Black-Right-Pointing-Pointer Liver cancer 7721 cell was detected. Black-Right-Pointing-Pointer The specificity affected by FCMSN's amino groups was studied. - Abstract: A new kind of ultrabright fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle (FCMSN) is reported. A luminescent dye, Rhodamine 6G or tris(2,2 Prime -bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy), is doped inside nanochannels of a silica matrix. The hydrophobic groups in the silica matrix avoid the leakage of dye from open channels. The amines groups on the surface of the FCMSN improve the modification performance of the nanoparticle. Because the nanochannels are isolated by a network skeleton of silica, fluorescence quenching based on the inner filter effect of the fluorescent dyes immobilized in nanochannels is weakened effectively. The Quantum Yield of obtained 90 nm silica particles was about 61%. Compared with the fluorescent core-shell nanoparticle, the chemiluminescence reagents can freely enter the nanoparticles to react with fluorescent dyes to create chemiluminescence. The results show that the FCMSN are both fluorescent labels and chemiluminescent labels. In biological applications, the NaIO{sub 4} oxidation method was proven to be superior to the glutaraldehyde method. The amount of amino could affect the specificity of the FCMSN. The fluorescence microscopy imaging demonstrated that the FCMSN is viable for biological applications.

  5. Imaging and high-sensitivity quantification of chemiluminescent labeled DNA-blots

    International Nuclear Information System (INIS)

    The present thesis has for objective the development of both, methods of DNA labeling by chemiluminescence (via the catalytic activity of the enzyme alkaline phosphatase - AP) and an appropriate imaging system. Offering a competitive alternative to the detection of classical radio-labels in molecular-biological experiments of the blotting type, this technique should permit the realization of quantitative studies of gene expression at ultra-high sensitivity necessary in particular for differential-screening experiments. To reach our aim. we separated the project into three different parts. In a first step an imager based on a liquid-nitrogen-cooled CCD coupled to a standard optics (50 mm/fl.2) has been installed and characterized. This system offers a sensitive area of up to 625 cm2, a spatial resolution of 0.3-1 mm (depending on the field of view) and a sensitivity sufficient to detect 10 fg/mm2 labeled DNA. In a second part, the chemiluminescent light-generation process in solution has been investigated to optimize the parameters temperature. pH and concentration of the substrate as well as the enzyme. The substrate offering the highest light yield (CDP-Star in addition with the enhancer EMERALD II) allows quantification of AP down to 10-15 M within a dynamic range of 104 in solution. Finally. preparation, immobilization and detection of AP-labeled DNA probes (via a biotin-streptavidin-biotin-AP bridge) on nylon membranes has been optimized. A linear relation between the light intensities and the amount of DNA was observed in a range of 10 fg/mm2 - 100 pg/mm2. Hybridization of the probes to bacterial cloned target-DNA has been addressed after examination of the best hybridization conditions. Our protocol includes the treatment of a proteinase, which resulted in a significantly lower background on the filter. The results of our investigations suggest that the main conditions for a reliable differential-screening experiment are fulfilled when using chemiluminescent

  6. Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot low speed wind tunnel with flow visualization

    Science.gov (United States)

    Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.

    1988-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.

  7. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 2: Unsteady ducted propfan analysis computer program users manual

    Science.gov (United States)

    Hall, Edward J.; Delaney, Robert A.; Bettner, James L.

    1991-01-01

    The primary objective of this study was the development of a time-dependent three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict unsteady compressible transonic flows about ducted and unducted propfan propulsion systems at angle of attack. The computer codes resulting from this study are referred to as Advanced Ducted Propfan Analysis Codes (ADPAC). This report is intended to serve as a computer program user's manual for the ADPAC developed under Task 2 of NASA Contract NAS3-25270, Unsteady Ducted Propfan Analysis. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. A time-accurate implicit residual smoothing operator was utilized for unsteady flow predictions. For unducted propfans, a single H-type grid was used to discretize each blade passage of the complete propeller. For ducted propfans, a coupled system of five grid blocks utilizing an embedded C-grid about the cowl leading edge was used to discretize each blade passage. Grid systems were generated by a combined algebraic/elliptic algorithm developed specifically for ducted propfans. Numerical calculations were compared with experimental data for both ducted and unducted propfan flows. The solution scheme demonstrated efficiency and accuracy comparable with other schemes of this class.

  8. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 5: Unsteady counterrotation ducted propfan analysis. Computer program user's manual

    Science.gov (United States)

    Hall, Edward J.; Delaney, Robert A.; Adamczyk, John J.; Miller, Christopher J.; Arnone, Andrea; Swanson, Charles

    1993-01-01

    The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOACR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This report is intended to serve as a computer program user's manual for the ADPAC-AOACR codes developed under Task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows.

  9. Conceptual design of Advanced Central Receiver Power Systems sodium-cooled receiver concept: development plan and pilot plant description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-03-01

    This volume encompasses Task 6 of the Phase I effort on the Advanced Central Receiver. This task included developing a plan to bring the commercial plant conceptual design into being. The base version of the plan includes a pilot plant to be designed and constructed during Phases II and III, three subsystem research experiments to be performed during Phase II, and the design and construction of a commercial demonstration plant. These plans are discussed in detail, as well as several options which could reduce both cost and schedule to achieve the overall goal of a commercial-sized demonstration plant. In evaluating pilot plant characeristics, emphasis was placed on representing commercial plant receiver characteristics and total system operation. In considering total system operation, it was recognized that a water-steam pilot plant would already be in operation, hence certain systems will already have been tested. Several receiver configurations were investigated consisting of from one to five full-size panels, with the objective of representing peak north side power for a 100-MWe plant as well as the peak flux vaue of about 1.4 MW/m/sup 2/. This goal was accomplished with a 5-panel receiver; however, the power to the edge panels is very low. Hence, with little loss, these panels can be eliminated to give a 3-panel configuration. The total absorbed thermal power is about 38 MWt, which is sufficient for about 10 MWe. A plant of this size is described.

  10. Understanding the fate and biological effects of Ag- and TiO₂-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts.

    Science.gov (United States)

    Schaumann, Gabriele E; Philippe, Allan; Bundschuh, Mirco; Metreveli, George; Klitzke, Sondra; Rakcheev, Denis; Grün, Alexandra; Kumahor, Samuel K; Kühn, Melanie; Baumann, Thomas; Lang, Friederike; Manz, Werner; Schulz, Ralf; Vogel, Hans-Jörg

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag2S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in

  11. Simultaneous identification and quantification of new psychoactive substances in blood by GC-APCI-QTOFMS coupled to nitrogen chemiluminescence detection without authentic reference standards.

    Science.gov (United States)

    Ojanperä, Ilkka; Mesihää, Samuel; Rasanen, Ilpo; Pelander, Anna; Ketola, Raimo A

    2016-05-01

    A novel platform is introduced for simultaneous identification and quantification of new psychoactive substances (NPS) in blood matrix, without the necessity of using authentic reference standards. The instrumentation consisted of gas chromatography (GC) coupled to nitrogen chemiluminescence detection (NCD) and atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-QTOFMS). In this concept, the GC flow is divided in appropriate proportions between NCD for single-calibrant quantification, utilizing the detector's equimolar response to nitrogen, and QTOFMS for accurate mass-based identification. The principle was proven by analyzing five NPS, bupropion, desoxypipradrol (2-DPMP), mephedrone, methylone, and naphyrone, in sheep blood. The samples were spiked with the analytes post-extraction to avoid recovery considerations at this point. All the NPS studies produced a protonated molecule in APCI resulting in predictable fragmentation with high mass accuracy. The N-equimolarity of quantification by NCD was investigated by using external calibration with the secondary standard caffeine at five concentration levels between 0.17 and 1.7 mg/L in blood matrix as five replicates. The equimolarity was on average 98.7 %, and the range of individual equimolarity determinations was 76.7-130.1 %. The current analysis platform affords a promising approach to instant simultaneous qualitative and quantitative analysis of drugs in the absence of authentic reference standards, not only in forensic and clinical toxicology but also in other bioanalytical applications. Graphical abstract Analytical & Bioanalytical Chemistry. PMID:26968570

  12. Chemiluminescence and Bioluminescence as an Excitation Source in the Photodynamic Therapy of Cancer: A Critical Review.

    Science.gov (United States)

    Magalhães, Carla M; Esteves da Silva, Joaquim C G; Pinto da Silva, Luís

    2016-08-01

    Photodynamic therapy (PDT) of cancer is known for its limited number of side effects, and requires light, oxygen and photosensitizer. However, PDT is limited by poor penetration of light into deeply localized tissues, and the use of external light sources is required. Thus, researchers have been studying ways to improve the effectiveness of this phototherapy and expand it for the treatment of the deepest cancers, by using chemiluminescent or bioluminescent formulations to excite the photosensitizer by intracellular generation of light. The aim of this Minireview is to give a précis of the most important general chemi-/bioluminescence mechanisms and to analyze several studies that apply them for PDT. These studies have demonstrated the potential of utilizing chemi-/bioluminescence as excitation source in the PDT of cancer, besides combining new approaches to overcome the limitations of this mode of treatment. PMID:27129132

  13. Chemiluminescent determination of humic substances based on the oxidation by peroxymonosulfate

    International Nuclear Information System (INIS)

    The intensity of emission radiation produced by humic (HA) and fulvic acids (FA) in the presence of SO52- in basic medium was used to determine HA and FA in the range of 0.5-20.0 mg l-1. The detection limit was 0.24 mg l-1. A comparative study was carried out using H2O2 in the presence of CH2O as oxidizing agent. Humic substances (HS) from several soil sources, different extraction and purifying procedures led to different calibration sensitivities and selectivity. Cations and anions such as Cu(II), Cr(III), Ca(II), Cl-, EDTA2-, NO3-, PO43- and CO32-, did not interfere with the determination of HA. Although it was not possible to confirm the accuracy of the chemiluminescent method, low concentrations of HS in natural waters can be detected

  14. Plasmonic luminescent core-shell nanocomposites-enhanced chemiluminescence arising from the decomposition of peroxomonosulfite

    Science.gov (United States)

    Chen, Hui; Xue, Wei; Lu, Chao; Li, Hai-fang; Zheng, Yongzan; Lin, Jin-Ming

    2013-12-01

    A core-shell structure of plasmonic luminescent nanocomposite, Ni@SiO2@FITC@SiO2 (NSFS) combining the stable luminescence of fluorophore with the excellent plasmonic property of metal nanomaterials, has been synthesized through layer-by-layer assembly. The effect of NSFS on the ultraweak chemiluminescence (CL) reaction of hydrogen peroxide (H2O2) and sodium bisulfite (NaHSO3) was explored for the first time. It was found that the CL intensity from the decomposition of peroxomonosulfite was significantly enhanced by NSFS. The mechanism of the nanocomposite-enhanced CL was revealed as the coupling of chemically induced excited states of fluorescein isothiocyanate (FITC) with surface plasmons of Ni nanoparticles based on studies of CL emission spectra, electron spin resonance spectra, extinction spectra and fluorescence spectra. The work sheds new light on the characteristics of the versatile materials and gives us new insight into the optical properties of fluorophores.

  15. A comparative study of hemoglobin estimated by the traditional (Who) technique and chemiluminescence method

    International Nuclear Information System (INIS)

    The addition of hemoglobin (Hb) caused an inhibitory effect on the luminol-dependent chemiluminescence of luminol by the oxidative metabolic, hydrogen peroxide, in a cell free sensitive photon counting system designed and built in the department of physiology, The inhibitory effect produced by various Hb levels was dose dependent, reproducible and linear with an r=0.997. Hb concentration curves constructed by CL and standard Cyanmethaemoglobin (HiCN) methods were parallel. A comparison between the inhibited CL (area under the curves),and the optical density (HiCN method) produced by same Hb levels was linear with r=0.990. There was no significant difference (0.1> P 9 C/L) has no significant effect on Hb levels measured by CL and the modified HiCN methods. These results suggest that, CL method may provide an additional reliable method for Hb estimation. (authors)

  16. Determination of beta-agonists in swine hair by μFIA and chemiluminescence.

    Science.gov (United States)

    Chen, Xu; Luo, Yong; Shi, Bo; Gao, Zhigang; Du, Yuguang; Liu, Xianming; Zhao, Weijie; Lin, Bingcheng

    2015-04-01

    β-Agonists are a group of illegal feed additives. In this paper, it was found that the light emission produced by the oxidation of luminol by potassium ferricyanide was enhanced by the β-agonists (ractopamine, salbutamol, and terbutaline). Based on chemiluminescence phenomenon, a novel, rapid, and sensitive microflow injection analysis system on a microfluidic glass chip was established for determination of the β-agonists. The chip was fabricated from two glass plates (64 mm × 32 mm) with microchannels of 200 μm width and 100 μm depth. The detection limits were achieved at 2.0 × 10(-8) mol/L of ractopamine, 1.0 × 10(-8) mol/L of terbutaline and 5.0 × 10(-7) mol/L of salbutamol. In this report, our method was applied for determination of the β-agonists in swine hair from three different sources with satisfactory results. PMID:25546131

  17. A New Immunoassay Method by Capillary Electrophoresis with Enhanced Chemiluminescence Detection

    Institute of Scientific and Technical Information of China (English)

    Jiao Ning WANG; Ji Cun REN

    2005-01-01

    This paper described a new immunoassay method by capillary electrophoresis with enhanced chemiluminescence (CL) detection system based on luminol-hydrogen peroxide reaction catalyzed by horseradish peroxides (HRP). Using para-iodophenol as a CL enhancer, the detection limit of about 1×10-12 mol/L for HRP was achieved, which corresponded to 1.32×10-5U/mL. In optimal conditions, the free HRP-labeled CA125 antibody (Ab*) and the bound enzyme-labeled complex (Ab*-Ag) were well separated by capillary electrophoresis within 4 min.The assay was successfully used to determine the contents of CA125 in human sera, which were associated with ovarian cancer, and the recoveries of the standard addition experiments were 96 to109 %.

  18. Chemiluminescence determination of tetracyclines using Fenton system in the presence europium(III) ions

    International Nuclear Information System (INIS)

    A new simple chemiluminescent method for the determination of chlortetracycline (Chlor-TC), oxytetracycline (Oxy-TC) and doxycycline (Doxy-TC) is described. This method is based on the europium(III) emission as a result of the energy transfer process from the excited product of the tetracyclines oxidation to the uncomplexed Eu(III). Under the optimum conditions, calibration graphs were obtained for 4 x 10-7 to 2 x 10-5 mol L-1 of Chlor-TC; 2 x 10-7 to 2 x 10-5 mol L-1 of Oxy-TC and 1 x 10-7 to 3 x 10-5 mol L-1 of Doxy-TC. The method was successfully applied to the determination of these drugs in pharmaceutical and veterinary formulation and honey.

  19. Usage of liquid scintillation counting for detecting the chemiluminescence of cells and its application in medicine

    International Nuclear Information System (INIS)

    The liquid scintillator counting-chemiluminescence (LSC-CL) of mono-photon radiance is a sensitive, handy and high-autoanalytic technique. Through measuring basic CL, dependent CL and maximum phagocytic CL of polymorphonuclear (PMN), we studied best factor levels of the method with orthogonal design [L9 (34)]. The results showed the peak forms changed markedly (inter-group P-4 M). PMN-CL in blood was measured during acute attack of the old patients with chronic bronchitis and the children with pneumonia bronchial. It was suggested that PMN phagocytosis decreased. So the dynamic analysis of maximum phagocytic CL would help us with the deep going clinical researches of the mechanisms of anti-inflammation and injuring by the oxygen free radicals

  20. Enhanced chemiluminescence CdSe quantum dots by histidine and tryptophan

    Science.gov (United States)

    Hosseini, Morteza; Ganjali, Mohammad Reza; Jarrahi, Afsaneh; Vaezi, Zahra; Mizani, Farhang; Faridbod, Farnoush

    2014-11-01

    The enhancing effect of histidine and tryptophan on chemiluminescence (CL) of CdSe quantum dots (QDs)-H2O2 system was studied. This reaction is based on the catalytic effect of amino acids, causing a significant increase in the light emission, as a result of the reaction of quantum dots (QDs) with hydrogen peroxide. In the optimum conditions, this method was satisfactorily described by linear calibration curve in the range of 0.66-35.5 μM and 0.83-35.1 μM for histidine and tryptophan, respectively. The effect of various parameters such as concentration of CdSe QDs, concentration of H2O2 and concentration of imidazole on the intensity of CL system were studied. The main experimental advantage of the proposed method is it's selective to two amino acids compared with other amino acids.