WorldWideScience

Sample records for advanced chemical imaging

  1. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecular processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.

  2. Recent advances in chemical imaging technology for the detection of contaminants for food safety and security

    Science.gov (United States)

    Priore, Ryan J.; Olkhovyk, Oksana; Drauch, Amy; Treado, Patrick; Kim, Moon; Chao, Kaunglin

    2009-05-01

    The need for routine, non-destructive chemical screening of agricultural products is increasing due to the health hazards to animals and humans associated with intentional and unintentional contamination of foods. Melamine, an industrial additive used to increase flame retardation in the resin industry, has recently been used to increase the apparent protein content of animal feed, of infant formula, as well as powdered and liquid milk in the dairy industry. Such contaminants, even at regulated levels, pose serious health risks. Chemical imaging technology provides the ability to evaluate large volumes of agricultural products before reaching the consumer. In this presentation, recent advances in chemical imaging technology that exploit Raman, fluorescence and near-infrared (NIR) are presented for the detection of contaminants in agricultural products.

  3. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Quantum Dynamical Resonances in Ch

  4. Advances in chemical physics

    CERN Document Server

    Prigogine, Ilya

    2009-01-01

    The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

  5. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study o

  6. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  7. Advances in chemical Physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  8. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2014-01-01

    Advances in Chemical Physics is the only series of volumes available that explores the cutting edge of research in chemical physics. This is the only series of volumes available that presents the cutting edge of research in chemical physics.Includes contributions from experts in this field of research.Contains a representative cross-section of research that questions established thinking on chemical solutions.Structured with an editorial framework that makes the book an excellent supplement to an advanced graduate class in physical chemistry or chemical physics.

  9. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2008-01-01

    This series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This stand-alone special topics volume reports recent advances in electron-transfer research with significant, up-to-date chapters by internationally recognized researchers.

  10. Advanced Chemical Propulsion

    Science.gov (United States)

    Alexander, L.

    2004-11-01

    Improving the performance and reliability characteristics of chemical propulsion systems requires research and testing of higher-performance propellants, higher efficiency thrusters, cryogenics technology, lightweight components and advancements in propulsion system design and assessment. Propellants are being investigated to identify practical combinations with higher efficiencies and better thermal properties to reduce thermal control requirements. This includes combinations with modest increases, such as LOX-hydrazine, as well as a new evaluation of major improvements available from fluorine-bearing oxidizers. Practical ways of implementing cryogenic propulsion to further increase efficiency are also being studied. Some potential advances include small pump-fed engines, and improvements in cryocooler technology and tank pressure control. Gelled propellants will be tested to determine the practicality of letting propellants freeze at low environmental temperatures and thawing them only when required for use. The propellant tank is typically the single highest non-expendable mass in a chemical propulsion system. Lightweight tank designs, materials and methods of fabrication are being investigated. These are projected to offer a 45-50 percent decrease in tank mass, representing the potential inert system mass savings. Mission and systems analyses are being conducted to guide the technology research and set priorities for technology investment, based on estimated gains in payload and mission capabilities. This includes development of advanced assessment tools and analyses of specific missions selected from Science Missions' Directorate. The goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary trip time, increased scientific payload mass fraction and longer on-station operations. This talk will review the Advanced Chemical technology development roadmap, current

  11. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2007-01-01

    SAVO BRATOS, Laboratoire de Physique The´orique des Liquides Universite´ Pierre et Marie Curie, 75252 Paris Cedex, France MARK S. CHILD, Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford, 0X1 3QZ, United Kingdom EVELYN M. GOLDFIELD, Department of Chemistry, Wayne State University of Michigan, 48202 USA STEPHEN K. GRAY, Chemistry Division, Argonne National Laboratory, Illinois 60439 USA VASSILIY LUBCHENKO, Department of Chemistry, University of Houston, Houston, Texas 77204-5003 USA G. ALI MANSOORI, Departments of Biology and Chemical Engineering, University of

  12. Advanced cardiac chemical exchange saturation transfer (cardioCEST) MRI for in vivo cell tracking and metabolic imaging

    Science.gov (United States)

    Pumphrey, Ashley; Yang, Zhengshi; Ye, Shaojing; Powell, David K.; Thalman, Scott; Watt, David S.; Abdel-Latif, Ahmed; Unrine, Jason; Thompson, Katherine; Fornwalt, Brandon; Ferrauto, Giuseppe; Vandsburger, Moriel

    2016-01-01

    An improved pre-clinical cardiac chemical exchange saturation transfer (CEST) pulse sequence (cardioCEST) was used to selectively visualize paramagnetic CEST (paraCEST)-labeled cells following intramyocardial implantation. In addition, cardioCEST was used to examine the effect of diet-induced obesity upon myocardial creatine CEST contrast. CEST pulse sequences were designed from standard turbo-spin-echo and gradient-echo sequences, and a cardiorespiratory-gated steady-state cine gradient-echo sequence. In vitro validation studies performed in phantoms composed of 20mM Eu-HPDO3A, 20mM Yb-HPDO3A, or saline demonstrated similar CEST contrast by spin-echo and gradient-echo pulse sequences. Skeletal myoblast cells (C2C12) were labeled with either Eu-HPDO3A or saline using a hypotonic swelling procedure and implanted into the myocardium of C57B6/J mice. Inductively coupled plasma mass spectrometry confirmed cellular levels of Eu of 2.1 × 10−3 ng/cell in Eu-HPDO3A-labeled cells and 2.3 × 10−5 ng/cell in saline-labeled cells. In vivo cardioCEST imaging of labeled cells at ±15ppm was performed 24 h after implantation and revealed significantly elevated asymmetric magnetization transfer ratio values in regions of Eu-HPDO3A-labeled cells when compared with surrounding myocardium or saline-labeled cells. We further utilized the cardioCEST pulse sequence to examine changes in myocardial creatine in response to diet-induced obesity by acquiring pairs of cardioCEST images at ±1.8 ppm. While ventricular geometry and function were unchanged between mice fed either a high-fat diet or a corresponding control low-fat diet for 14 weeks, myocardial creatine CEST contrast was significantly reduced in mice fed the high-fat diet. The selective visualization of paraCEST-labeled cells using cardioCEST imaging can enable investigation of cell fate processes in cardioregenerative medicine, or multiplex imaging of cell survival with imaging of cardiac structure and function and

  13. Advanced biomedical image analysis

    CERN Document Server

    Haidekker, Mark A

    2010-01-01

    "This book covers the four major areas of image processing: Image enhancement and restoration, image segmentation, image quantification and classification, and image visualization. Image registration, storage, and compression are also covered. The text focuses on recently developed image processing and analysis operators and covers topical research"--Provided by publisher.

  14. Osteogenic sarcoma : imaging advances

    International Nuclear Information System (INIS)

    The contents are classification of osteosarcoma, radiographic appearance, radionuclide imaging, PET - positron emission tomography scanning, arteriography, computed tomography, MRI imaging, response of chemotherapy (43 refs.)

  15. Image restoration fundamentals and advances

    CERN Document Server

    Gunturk, Bahadir Kursat

    2012-01-01

    Image Restoration: Fundamentals and Advances responds to the need to update most existing references on the subject, many of which were published decades ago. Providing a broad overview of image restoration, this book explores breakthroughs in related algorithm development and their role in supporting real-world applications associated with various scientific and engineering fields. These include astronomical imaging, photo editing, and medical imaging, to name just a few. The book examines how such advances can also lead to novel insights into the fundamental properties of image sources. Addr

  16. Advances in alimentary tract imaging

    OpenAIRE

    Maglinte, Dean DT; Sandrasegaran, Kumaresan; Tann, Mark

    2006-01-01

    Advances in imaging techniques are changing the way radiologists undertake imaging of the gastrointestinal tract and their ability to answer questions posed by surgeons. In this paper we discuss the technological improvements of imaging studies that have occurred in the last few years and how these help to better diagnosing alimentary tract disease.

  17. Chemical sensing and imaging with metallic nanorods.

    Science.gov (United States)

    Murphy, Catherine J; Gole, Anand M; Hunyadi, Simona E; Stone, John W; Sisco, Patrick N; Alkilany, Alaaldin; Kinard, Brian E; Hankins, Patrick

    2008-02-01

    In this Feature Article, we examine recent advances in chemical analyte detection and optical imaging applications using gold and silver nanoparticles, with a primary focus on our own work. Noble metal nanoparticles have exciting physical and chemical properties that are entirely different from the bulk. For chemical sensing and imaging, the optical properties of metallic nanoparticles provide a wide range of opportunities, all of which ultimately arise from the collective oscillations of conduction band electrons ("plasmons") in response to external electromagnetic radiation. Nanorods have multiple plasmon bands compared to nanospheres. We identify four optical sensing and imaging modalities for metallic nanoparticles: (1) aggregation-dependent shifts in plasmon frequency; (2) local refractive index-dependent shifts in plasmon frequency; (3) inelastic (surface-enhanced Raman) light scattering; and (4) elastic (Rayleigh) light scattering. The surface chemistry of the nanoparticles must be tunable to create chemical specificity, and is a key requirement for successful sensing and imaging platforms. PMID:18209787

  18. Advanced image memory architecture

    Science.gov (United States)

    Vercillo, Richard; McNeill, Kevin M.

    1994-05-01

    A workstation for radiographic images, known as the Arizona Viewing Console (AVC), was developed at the University of Arizona Health Sciences Center in the Department of Radiology. This workstation has been in use as a research tool to aid us in investigating how a radiologist interacts with a workstation, to determine which image processing features are required to aid the radiologist, to develop user interfaces and to support psychophysical and clinical studies. Results from these studies have show a need to increase the current image memory's available storage in order to accommodate high resolution images. The current triple-ported image memory can be allocated to store any number of images up to a combined total of 4 million pixels. Over the past couple of years, higher resolution images have become easier to generate with the advent of laser digitizers and computed radiology systems. As part of our research, a larger 32 million pixel image memory for AVC has been designed to replace the existing image memory.

  19. Tobacco and chemicals (image)

    Science.gov (United States)

    Some of the chemicals associated with tobacco smoke include ammonia, carbon dioxide, carbon monoxide, propane, methane, acetone, hydrogen cyanide and various carcinogens. Other chemicals that are associated with chewing ...

  20. Advancing Destination Image

    DEFF Research Database (Denmark)

    Kock, Florian; Josiassen, Alexander; Assaf, A. George

    2016-01-01

    Knowledge of the mental representations that individuals hold about tourist destinations are important to understand their intentions. These mental destination representations have often been investigated by applying the concept of destination image. This study argues that the extant literature is...

  1. Modern Imaging Technology: Recent Advances

    International Nuclear Information System (INIS)

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area

  2. Modern Imaging Technology: Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  3. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  4. Advances in ENT imaging

    OpenAIRE

    Zammit-Maempel, I.

    2003-01-01

    Over the last ten years or so radiology has shown dramatic technological developments especially in cross sectional imaging and the investigation and management of the complex ENT patient has benefitted enormously. Plain radiographs are being utilised less and less as their limitations are becoming more apparent and various studies have shown for example a 75% discrepancy between plain sinus radiographs and coronal sinus CT in children1,2 . The incorporation of small and flexible ultrasound t...

  5. Java advanced medical image toolkit

    International Nuclear Information System (INIS)

    Full text: The Java Advanced Medical Image Toolkit (jAMIT) has been developed at the Center for PET and Department of Nuclear Medicine in an effort to provide a suite of tools that can be utilised in applications required to perform analysis, processing and visualisation of medical images. jAMIT uses Java Advanced Imaging (JAI) to combine the platform independent nature of Java with the speed benefits associated with native code. The object-orientated nature of Java allows the production of an extensible and robust package which is easily maintained. In addition to jAMIT, a Medical Image VO API called Sushi has been developed to provide access to many commonly used image formats. These include DICOM, Analyze, MINC/NetCDF, Trionix, Beat 6.4, Interfile 3.2/3.3 and Odyssey. This allows jAMIT to access data and study information contained in different medical image formats transparently. Additional formats can be added at any time without any modification to the jAMIT package. Tools available in jAMIT include 2D ROI Analysis, Palette Thresholding, Image Groping, Image Transposition, Scaling, Maximum Intensity Projection, Image Fusion, Image Annotation and Format Conversion. Future tools may include 2D Linear and Non-linear Registration, PET SUV Calculation, 3D Rendering and 3D ROI Analysis. Applications currently using JAMIT include Antibody Dosimetry Analysis, Mean Hemispheric Blood Flow Analysis, QuickViewing of PET Studies for Clinical Training, Pharamcodynamic Modelling based on Planar Imaging, and Medical Image Format Conversion. The use of jAMIT and Sushi for scripting and analysis in Matlab v6.1 and Jython is currently being explored. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  6. NATO Advanced Study Institute on Advances in Chemical Reaction Dynamics

    CERN Document Server

    Capellos, Christos

    1986-01-01

    This book contains the formal lectures and contributed papers presented at the NATO Advanced Study Institute on. the Advances in Chemical Reaction Dynamics. The meeting convened at the city of Iraklion, Crete, Greece on 25 August 1985 and continued to 7 September 1985. The material presented describes the fundamental and recent advances in experimental and theoretical aspects of, reaction dynamics. A large section is devoted to electronically excited states, ionic species, and free radicals, relevant to chemical sys­ tems. In addition recent advances in gas phase polymerization, formation of clusters, and energy release processes in energetic materials were presented. Selected papers deal with topics such as the dynamics of electric field effects in low polar solutions, high electric field perturbations and relaxation of dipole equilibria, correlation in picosecond/laser pulse scattering, and applications to fast reaction dynamics. Picosecond transient Raman spectroscopy which has been used for the elucidati...

  7. Chemical Kinetic Modeling of Advanced Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  8. Imaging spectrometer - An advanced multispectral imaging concept

    Science.gov (United States)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P. N.; Salazar, R.

    1982-01-01

    The concept of an imaging spectrometer, which is being studied as a potential Space Shuttle experiment, is evaluated as a 'push-broom' imager that includes a spectrometer to disperse each line of imaging information into its spectral components. Using this instrument, the dispersed energy falls upon a two-dimensional focal plane array that detects both spatial and spectral information. As the line field of view is advanced over the earth by the motion of the spacecraft, the focal plane is read out constantly, which produces 'push-broom' images at multiple wavelengths. Ground instantaneous fields of view of 10 m in the visual and 20 m in the infrared are provided by the system, at a spectral resolution of 20 nm over the range from 0.4-2.5 microns. The system utilizes a triple-pass Schmidt optical system with a mosaic focal plane. A subset of the data stream is selected and encoded for transmission by the use of onboard processing.

  9. Multivariate Chemical Image Fusion of Vibrational Spectroscopic Imaging Modalities.

    Science.gov (United States)

    Gowen, Aoife A; Dorrepaal, Ronan M

    2016-01-01

    Chemical image fusion refers to the combination of chemical images from different modalities for improved characterisation of a sample. Challenges associated with existing approaches include: difficulties with imaging the same sample area or having identical pixels across microscopic modalities, lack of prior knowledge of sample composition and lack of knowledge regarding correlation between modalities for a given sample. In addition, the multivariate structure of chemical images is often overlooked when fusion is carried out. We address these challenges by proposing a framework for multivariate chemical image fusion of vibrational spectroscopic imaging modalities, demonstrating the approach for image registration, fusion and resolution enhancement of chemical images obtained with IR and Raman microscopy. PMID:27384549

  10. Advances in imaging and electron physics

    CERN Document Server

    Hawkes, Peter W

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Continuation order customers for either of the original Advances will receiveVolume 90, the first combined volume.

  11. Advances in imaging and electron physics

    CERN Document Server

    Mulvey, Tom

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

  12. Recent advances in imaging technologies in dentistry

    Institute of Scientific and Technical Information of China (English)

    Naseem; Shah; Nikhil; Bansal; Ajay; Logani

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools,specially imaging methods, have become mandatory.From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation(brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.

  13. Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals

    Directory of Open Access Journals (Sweden)

    Ralf Ostendorf

    2016-05-01

    Full Text Available External-cavity quantum cascade lasers (EC-QCL are now established as versatile wavelength-tunable light sources for analytical spectroscopy in the mid-infrared (MIR spectral range. We report on the realization of rapid broadband spectral tuning with kHz scan rates by combining a QCL chip with a broad gain spectrum and a resonantly driven micro-opto-electro-mechanical (MOEMS scanner with an integrated diffraction grating in Littrow configuration. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets, as well as on hazardous substances, such as explosives. Furthermore, different applications for the EC-QCL technology in spectroscopic sensing are presented. These include the fields of process analysis with on- or even inline capability and imaging backscattering spectroscopy for contactless identification of solid and liquid contaminations on surfaces. Recent progress in trace detection of explosives and related precursors in relevant environments as well as advances in food quality monitoring by discriminating fresh and mold contaminated peanuts based on their MIR backscattering spectrum is shown.

  14. Review of advanced imaging techniques

    OpenAIRE

    Yu Chen; Chia-Pin Liang; Yang Liu; Fischer, Andrew H.; Parwani, Anil V.; Liron Pantanowitz

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies") at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These...

  15. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Zhi-Yi Chen

    2014-01-01

    Full Text Available Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy.

  16. Advances in Multimodality Molecular Imaging

    International Nuclear Information System (INIS)

    Multimodality molecular imaging is now playing a pivotal role in clinical setting and biomedical research. Modern molecular imaging technologies are deemed to potentially lead to a revolutionary paradigm shift in healthcare and revolutionize clinical practice. Within the spectrum of macroscopic medical imaging, sensitivity ranges from the detection of millimolar to submillimolar concentrations of contrast media with computed tomography (CT) and magnetic resonance imaging (MRI), respectively, to picomolar concentrations in single-photon emission computed tomography (SPECT) and positron emission 8 9 tomography (PET): a 108-109 difference. Even though the introduction of dedicated dual-modality imaging systems designed specifically and available commercially for clinical practice is relatively recent, the concept of combining anatomical and functional imaging has been recognized for several decades. Software- and hardware-based correlation between anatomical (x-ray CT, MRI) and physiological (PET) information is a promising research field and now offers unique capabilities for the medical imaging community and biomedical researchers. The introduction of dual-modality PET/CT imaging systems in clinical environments has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a 'one-stop shop' and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging where the first patient images have been shown late in 2006. This paper discusses the

  17. Imaging of the pituitary: Recent advances

    Directory of Open Access Journals (Sweden)

    Vikas Chaudhary

    2011-01-01

    Full Text Available Pituitary lesions, albeit relatively infrequent, can significantly alter the quality of life. This article highlights the role of advanced imaging modalities in evaluating pituitary-hypothalamic axis lesions. Magnetic resonance imaging (MRI is the examination of choice for evaluating hypothalamic-pituitary-related endocrine diseases. Advanced MR techniques discussed in this article include dynamic contrast-enhanced MRI, 3T MRI, magnetization transfer (MT imaging, diffusion-weighted imaging (DWI, proton MR spectroscopy, fluorine-18 fluorodeoxyglucose-positron emission tomography, single-photon emission computed tomography, intraoperative MRI, and intraoperative real-time ultrasonography.

  18. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    Science.gov (United States)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  19. Advanced development in chemical analysis of Cordyceps.

    Science.gov (United States)

    Zhao, J; Xie, J; Wang, L Y; Li, S P

    2014-01-01

    Cordyceps sinensis, also called DongChongXiaCao (winter worm summer grass) in Chinese, is a well-known and valued traditional Chinese medicine. In 2006, we wrote a review for discussing the markers and analytical methods in quality control of Cordyceps (J. Pharm. Biomed. Anal. 41 (2006) 1571-1584). Since then this review has been cited by others for more than 60 times, which suggested that scientists have great interest in this special herbal material. Actually, the number of publications related to Cordyceps after 2006 is about 2-fold of that in two decades before 2006 according to the data from Web of Science. Therefore, it is necessary to review and discuss the advanced development in chemical analysis of Cordyceps since then. PMID:23688494

  20. ADVANCED CLUSTER BASED IMAGE SEGMENTATION

    Directory of Open Access Journals (Sweden)

    D. Kesavaraja

    2011-11-01

    Full Text Available This paper presents efficient and portable implementations of a useful image segmentation technique which makes use of the faster and a variant of the conventional connected components algorithm which we call parallel Components. In the Modern world majority of the doctors are need image segmentation as the service for various purposes and also they expect this system is run faster and secure. Usually Image segmentation Algorithms are not working faster. In spite of several ongoing researches in Conventional Segmentation and its Algorithms might not be able to run faster. So we propose a cluster computing environment for parallel image Segmentation to provide faster result. This paper is the real time implementation of Distributed Image Segmentation in Clustering of Nodes. We demonstrate the effectiveness and feasibility of our method on a set of Medical CT Scan Images. Our general framework is a single address space, distributed memory programming model. We use efficient techniques for distributing and coalescing data as well as efficient combinations of task and data parallelism. The image segmentation algorithm makes use of an efficient cluster process which uses a novel approach for parallel merging. Our experimental results are consistent with the theoretical analysis and practical results. It provides the faster execution time for segmentation, when compared with Conventional method. Our test data is different CT scan images from the Medical database. More efficient implementations of Image Segmentation will likely result in even faster execution times.

  1. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  2. Recent Advancements in Microwave Imaging Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  3. Advance Neighbor Embedding for Image Super Resolution

    OpenAIRE

    Dr. Ruikar Sachin D; Mr. Wadhavane Tushar D

    2013-01-01

    This paper presents the Advance Neighbor embedding (ANE) method for image super resolution. The assumption of the neighbor-embedding (NE) algorithm for single-image super-resolution Reconstruction is that the feature spaces are locally isometric of low-resolution and high-resolution Patches. But, this is not true for Super Resolution because of one to many mappings between Low Resolution and High Resolution patches. Advance NE method minimize the problem occurred in NE using combine learning ...

  4. Advances in Lung Cancer Imaging

    OpenAIRE

    Maryam Rahimi

    2010-01-01

    Imaging has a critical role in diagnosis, staging and monitoring of patients with lung cancer."nThe role of imaging in screening for malignancy has not been established."nWe discuss new concepts in staging also the early diagnosis and screening for lung cancer.

  5. Microscopy imaging device with advanced imaging properties

    Science.gov (United States)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  6. Advanced Imaging Algorithms for Radiation Imaging Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  7. Arthritis: Conventional and Advanced Radiological Imaging

    Directory of Open Access Journals (Sweden)

    Adviye Ergun

    2014-06-01

    Full Text Available Arthritides are acute or chronic inflammation of one or more joints. The most common types of arthritis are osteoarthritis and rheumatoid arthritis, but there are more than 100 different forms. Right and early diagnosis is extremely important for the prevention of eventual structural and functional disability of the affected joint. Imaging findings, especially those of advanced level imaging, play a major role in diagnosis and monitor the progression of arthritis or its response to therapy. The objective of the review is to discuss the findings of conventional and advanced radiological imaging of most common arthritides and to present a simplified approach for their radiological evaluation.

  8. Advanced MR Imaging of the Visual Pathway.

    Science.gov (United States)

    Yu, Fang; Duong, Timothy; Tantiwongkosi, Bundhit

    2015-08-01

    Vision is one of our most vital senses, deriving from the eyes as well as structures deep within the intracranial compartment. MR imaging, through its wide selection of sequences, offers an array of structural and functional imaging tools to interrogate this intricate system. This review describes several advanced MR imaging sequences and explores their potential clinical applications as well as areas for further development. PMID:26208415

  9. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... and removes the need to integrate custom made electronics into the probe. A downside of row-column addressing 2-D arrays is the creation of secondary temporal lobes, or ghost echoes, in the point spread function. In the second part of the scientific contributions, row-column addressing of 2-D arrays...... was investigated. An analysis of how the ghost echoes can be attenuated was presented.Attenuating the ghost echoes were shown to be achieved by minimizing the first derivative of the apodization function. In the literature, a circular symmetric apodization function was proposed. A new apodization layout...

  10. ADVANCED OXIDATION PROCESSES (AOP'S FOR THE TREATMENT OF CCL CHEMICALS

    Science.gov (United States)

    Research on treatment of Contaminant Candidate List (CCL) chemicals is being conducted. Specific groups of contaminants on the CCL will be evaluated using numerous advanced oxidation processes (AOPs). Initially, these CCL contaminants will be evaluated in groups based on chemical...

  11. MR chemical shift imaging of human atheroma

    International Nuclear Information System (INIS)

    The lipid content of atheromatous plaques has been measured with chemical shift MR imaging by taking advantage of the different resonance frequencies of protons in lipid and water. Fifteen postmortem aortic specimens of the human descending aorta and the aortae of seven patients with documented peripheral vascular disease were studied at 0.5 T. Spin-echo images were used to localize the lesions before acquisition of the chemical shift images. The specimens were examined histologically, and the lipid distribution in the plaque showed good correlation with the chemical shift data. Validation in vivo and clinical applications remain to be established

  12. Advances in bacterial specific imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wareham, David; Das, Satya [St Bartholomew' s Hospital, London (United Kingdom). Dept. of Medical Microbiology; London Univ. (United Kingdom). Queen Mary' s School of Medicine and Dentistry. Inst. of Cell and Molecular Science

    2005-10-15

    Nuclear medicine is a powerful diagnostic technique able to detect inflammatory foci in human disease. A wide range of agents have been evaluated for their ability to distinguish lesions due to microbial infection from those due to sterile inflammation. Advances continue to be made on the use of radiolabelled antibiotics which as well as being highly specific in the diagnosis of infection may be useful in monitoring the treatment and course of disease. Here we provide an update on in-vitro and clinical studies with a number of established and novel radiopharmaceuticals. (author)

  13. Advances in bacterial specific imaging

    International Nuclear Information System (INIS)

    Nuclear medicine is a powerful diagnostic technique able to detect inflammatory foci in human disease. A wide range of agents have been evaluated for their ability to distinguish lesions due to microbial infection from those due to sterile inflammation. Advances continue to be made on the use of radiolabelled antibiotics which as well as being highly specific in the diagnosis of infection may be useful in monitoring the treatment and course of disease. Here we provide an update on in-vitro and clinical studies with a number of established and novel radiopharmaceuticals. (author)

  14. Recent Advances in Image Restoration

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Filip

    Piscataway: IEEE Press, 2013. ISBN 978-1-4673-6099-9. [2013 IEEE Second International Conference on Image Information Processing . 09.12.2013-11.12.2013, Shimla] R&D Projects: GA ČR GA13-29225S Grant ostatní: GA AV ČR(CZ) M100751201 Institutional support: RVO:67985556 Keywords : blind deconvolution * sparse priors Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2013/ZOI/sroubek-0421577.pdf

  15. Advances in noninvasive functional imaging of bone.

    Science.gov (United States)

    Lan, Sheng-Min; Wu, Ya-Na; Wu, Ping-Ching; Sun, Chi-Kuang; Shieh, Dar-Bin; Lin, Ruey-Mo

    2014-02-01

    The demand for functional imaging in clinical medicine is comprehensive. Although the gold standard for the functional imaging of human bones in clinical settings is still radionuclide-based imaging modalities, nonionizing noninvasive imaging technology in small animals has greatly advanced in recent decades, especially the diffuse optical imaging to which Britton Chance made tremendous contributions. The evolution of imaging probes, instruments, and computation has facilitated exploration in the complicated biomedical research field by allowing longitudinal observation of molecular events in live cells and animals. These research-imaging tools are being used for clinical applications in various specialties, such as oncology, neuroscience, and dermatology. The Bone, a deeply located mineralized tissue, presents a challenge for noninvasive functional imaging in humans. Using nanoparticles (NP) with multiple favorable properties as bioimaging probes has provided orthopedics an opportunity to benefit from these noninvasive bone-imaging techniques. This review highlights the historical evolution of radionuclide-based imaging, computed tomography, positron emission tomography, and magnetic resonance imaging, diffuse optics-enabled in vivo technologies, vibrational spectroscopic imaging, and a greater potential for using NPs for biomedical imaging. PMID:24439341

  16. Advances in image processing and pattern recognition

    International Nuclear Information System (INIS)

    The conference papers reported provide an authorative and permanent record of the contributions. Some papers are more theoretical or of review nature, while others contain new implementations and applications. They are conveniently grouped into the following 7 fields (after a general overview): Acquisition and Presentation of 2-D and 3-D Images; Static and Dynamic Image Processing; Determination of Object's Position and Orientation; Objects and Characters Recognition; Semantic Models and Image Understanding; Robotics and Computer Vision in Manufacturing; Specialized Processing Techniques and Structures. In particular, new digital image processing and recognition methods, implementation architectures and special advanced applications (industrial automation, robotics, remote sensing, biomedicine, etc.) are presented. (Auth.)

  17. Advanced microwave/millimeter-wave imaging technology

    International Nuclear Information System (INIS)

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources. (author)

  18. Recent advances in imaging of brain tumors

    OpenAIRE

    D A Sanghvi

    2009-01-01

    The recent advances in brain tumor imaging offer unique anatomical as well as pathophysiological information that provides new insights on brain tumors, directed at facilitating therapeutic decisions and providing information regarding prognosis. This information is presently utilized in clinical practice for initial diagnosis and noninvasive, preoperative grading of tumors, biopsy planning, surgery, and radiation portal planning, as well as, prognostication. The newer advances described in t...

  19. Advanced Imaging of Chiari 1 Malformations.

    Science.gov (United States)

    Fakhri, Akbar; Shah, Manish N; Goyal, Manu S

    2015-10-01

    Type I Chiari malformations are congenital deformities involving cerebellar tonsillar herniation downward through the foramen magnum. Structurally, greater than 5 mm of tonsillar descent in adults and more than 6 mm in children is consistent with type I Chiari malformations. However, the radiographic severity of the tonsillar descent does not always correlate well with the clinical symptomatology. Advanced imaging can help clinically correlate imaging to symptoms. Specifically, cerebrospinal fluid (CSF) flow abnormalities are seen in patients with type I Chiari malformation. Advanced MRI involving cardiac-gated and phase-contrast MRI affords a view of such CSF flow abnormalities. PMID:26408061

  20. IMAGE AUTHENTICATION TECHNIQUES AND ADVANCES SURVEY

    Directory of Open Access Journals (Sweden)

    Derroll David

    2015-10-01

    Full Text Available With the advanced technologies in the area of Engineering the World has become a smaller place and communication is in our finger tips. The multimedia sharing traffic through electronic media has increased tremendously in the recent years with the higher use of social networking sites. The statistics of amount of images uploaded in the internet per day is very huge. Digital Image security has become vulnerable due to increase transmission over non-secure channel and needs protection. Digital Images play a crucial role in medical and military images etc. and any tampering of them is a serious issue. Several approaches are introduced to authenticate multimedia images. These approaches can be categorized into fragile and semi-fragile watermarking, conventional cryptography and digital signatures based on the image content. The aim of this paper is to provide a comparative study and also a survey of emerging techniques for image authentication. The important requirements for an efficient image authentication system design are discussed along with the classification of image authentication into tamper detection, localization and reconstruction and robustness against image processing operation. Furthermore, the concept of image content based authentication is enlightened.

  1. Chemically Sensitive Imaging of MgP with STM

    Science.gov (United States)

    Yu, Arthur; Li, Shaowei; Czap, Greg; Ho, Wilson

    2014-03-01

    Since its invention, the STM has been limited by its lack of sensitivity to chemical structures in molecules. Recent advances in scanning probe microscopy techniques, such as non-contact AFM and scanning tunneling hydrogen microscopy have enabled imaging of the internal structure and bonding of aromatic molecules such as pentacene and PTCDA. Here, we present a novel method of using the STM to image magnesium porphyrin molecules adsorbed on Au(110) with chemical sensitivity. In our previous study, we have shown that hydrogen molecules weakly adsorb on Au(110), exhibiting both vibrational and rotational IETS spectra. Exploiting the sensitivity of the vibrational and rotational mode energies to the local chemical environment, we perform dI/dV and d2I/dV2 imaging at different bias voltages, highlighting the various parts of the MgP molecule. In particular, we are able to image the positions of the nitrogen atoms in MgP. d2I/dV2 spectral mapping reveals that the origin of the chemical sensitivity comes from an energy shift of the rotational peak as the tip is scanned across the molecule, indicating a changing potential landscape for the H2. Similar d2I/dV2 imaging with a CO terminated tip reveals no chemical sensitivity to nitrogen.

  2. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  3. Advanced imaging research and development at DARPA

    Science.gov (United States)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  4. Advances of molecular imaging in tumor angiogenesis

    International Nuclear Information System (INIS)

    Tumor angiogenesis has a close relationship with tumor growth, progression, metastasis and the prognosis of tumor patients. Therefore, tumor anti-angiogenic treatment arouses great public interest. Molecular imaging can characteristically display and measure the biochemical process of organisms at cellular and molecular level in vivo,which is based on the specific binding of molecular probe with high affinity and target molecules. In recent years, molecular imaging has a certain progress on visual and quantitative research of tumor angiogenesis and it is expected to become an important technique in the efficacy evaluation and prognostic assessment. This article summarizes the new advances of molecular imaging technology in tumor angiogenesis. (authors)

  5. Advanced imaging and visualization in gastrointestinal disorders

    Institute of Scientific and Technical Information of China (English)

    Odd Helge Gilja; Jan G Hatlebakk; Svein φdegaard; Arnold Bersta; Ivan Viola; Christopher Giertsen; Trygve Hausken; Hans Gregersen

    2007-01-01

    Advanced medical imaging and visualization has a strong impact on research and clinical decision making in gastroenterology. The aim of this paper is to show how imaging and visualization can disclose structural and functional abnormalities of the gastrointestinal (GI) tract.Imaging methods such as ultrasonography, magnetic resonance imaging (MRI), endoscopy, endosonography,and elastography will be outlined and visualization with Virtual Reality and haptic methods. Ultrasonography is a versatile method that can be used to evaluate antral contractility, gastric emptying, transpyloric flow, gastric configuration, intragastric distribution of meals, gastric accommodation and strain measurement of the gastric wall. Advanced methods for endoscopic ultrasound,three-dimensional (3D) ultrasound, and tissue Doppler (Strain Rate Imaging) provide detailed information of the GI tract. Food hypersensitivity reactions including gastrointestinal reactions due to food allergy can be visualized by ultrasonography and MRI. Development of multi-parametric and multi-modal imaging may increase diagnostic benefits and facilitate fusion of diagnostic and therapeutic imaging in the future.

  6. Advances in retinal ganglion cell imaging.

    Science.gov (United States)

    Balendra, S I; Normando, E M; Bloom, P A; Cordeiro, M F

    2015-10-01

    Glaucoma is one of the leading causes of blindness worldwide and will affect 79.6 million people worldwide by 2020. It is caused by the progressive loss of retinal ganglion cells (RGCs), predominantly via apoptosis, within the retinal nerve fibre layer and the corresponding loss of axons of the optic nerve head. One of its most devastating features is its late diagnosis and the resulting irreversible visual loss that is often predictable. Current diagnostic tools require significant RGC or functional visual field loss before the threshold for detection of glaucoma may be reached. To propel the efficacy of therapeutics in glaucoma, an earlier diagnostic tool is required. Recent advances in retinal imaging, including optical coherence tomography, confocal scanning laser ophthalmoscopy, and adaptive optics, have propelled both glaucoma research and clinical diagnostics and therapeutics. However, an ideal imaging technique to diagnose and monitor glaucoma would image RGCs non-invasively with high specificity and sensitivity in vivo. It may confirm the presence of healthy RGCs, such as in transgenic models or retrograde labelling, or detect subtle changes in the number of unhealthy or apoptotic RGCs, such as detection of apoptosing retinal cells (DARC). Although many of these advances have not yet been introduced to the clinical arena, their successes in animal studies are enthralling. This review will illustrate the challenges of imaging RGCs, the main retinal imaging modalities, the in vivo techniques to augment these as specific RGC-imaging tools and their potential for translation to the glaucoma clinic. PMID:26293138

  7. Terahertz Tools Advance Imaging for Security, Industry

    Science.gov (United States)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  8. Advanced endoscopic imaging to improve adenomadetection

    Institute of Scientific and Technical Information of China (English)

    Helmut Neumann; Andreas N?gel; Andrea Buda

    2015-01-01

    Advanced endoscopic imaging is revolutionizing ourway on how to diagnose and treat colorectal lesions.Within recent years a variety of modern endoscopicimaging techniques was introduced to improveadenoma detection rates. Those include high-definitionimaging, dye-less chromoendoscopy techniques andnovel, highly flexible endoscopes, some of themequipped with balloons or multiple lenses in order toimprove adenoma detection rates. In this review wewill focus on the newest developments in the field ofcolonoscopic imaging to improve adenoma detectionrates. Described techniques include high-definitionimaging, optical chromoendoscopy techniques, virtualchromoendoscopy techniques, the Third Eye Retroscopeand other retroviewing devices, the G-EYE endoscopeand the Full Spectrum Endoscopy-system.

  9. Image stabilization for SWIR advanced optoelectronic device

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Craciun, Anca-Ileana; Craciun, Alexandru; Granciu, Dana

    2015-02-01

    At long ranges and under low visibility conditions, Advanced Optoelectronic Device provides the signal-to-noise ratio and image quality in the Short-wave Infra-red - SWIR (wavelengths between 1,1 ÷2,5 μm), significantly better than in the near wave infrared - NWIR and visible spectral bands [1,2]. The quality of image is nearly independent of the polarization in the incoming light, but it is influenced by the relative movement between the optical system and the observer (the operators' handshake), and the movement towards the support system (land and air vehicles). All these make it difficult to detect objectives observation in real time. This paper presents some systems enhance which the ability of observation and sighting through the optical systems without the use of the stands, tripods or other means. We have to eliminate the effect of "tremors of the hands" and the vibration in order to allow the use of optical devices by operators on the moving vehicles on land, on aircraft, or on boats, and to provide additional comfort for the user to track the moving object through the optical system, without losing the control in the process of detection and tracking. The practical applications of stabilization image process, in SWIR, are the most advanced part of the optical observation systems available worldwide [3,4,5]. This application has a didactic nature, because it ensures understanding by the students about image stabilization and their participation in research.

  10. Recent Advances in Nuclear Medicine Imaging Instrumentation

    International Nuclear Information System (INIS)

    This review introduces advances in clinical and pre-clinical single photon emission computed tomography (SPECT) and positron emission tomography (PET) providing noninvasive functional images of biological processes. Development of new collimation techniques such as multi-pinhole and slit-slat collimators permits the improvement of system spatial resolution and sensitivity of SPECT. Application specific SPECT systems using smaller and compact solid-state detector have been customized for myocardial perfusion imaging with higher performance. Combined SPECT/CT providing improved diagnostic and functional capabilities has been introduced. Advances in PET and CT instrumentation have been incorporated in the PET/CT design that provide the metabolic information from PET superimposed on the anatomic information from CT. Improvements in the sensitivity of PET have achieved by the fully 3D acquisition with no septa and the extension of axial field-of-view. With the development of faster scintillation crystals and electronics, time-of-flight (TOF) PET is now commercially available allowing the increase in the signal-to-noise ratio by incorporation of TOF information into the PET reconstruction process. Hybrid PET/SPECT/CT systems has become commercially available for molecular imaging in small animal models. The pre-clinical systems have improved spatial resolution using depth-of-interaction measurement and new collimators. The recent works on solid state detector and dual modality nuclear medicine instrumentations incorporating MRI and optical images will also be discussed

  11. Towards advanced chemical microsensors-an overview.

    Science.gov (United States)

    Wróblewski, W; Dybko, A; Malinowska, E; Brzózka, Z

    2004-05-10

    The paper presents design and performance of miniaturized chemical sensors based on silicon transducers: ion-sensitive field effect transistor (ISFET) and solid-state electrode (SSE). The sensors were fabricated as back-side contact structures, which facilitate their mounting in a flow-cell. The role of an intermediate layer between the transducer and the ion-selective membrane is discussed. Various polymeric matrices were used to manufacture microsensors: polysiloxanes, polyacrylates (polymethacrylates), polyurethanes. PMID:18969402

  12. Recent advances in imaging in Parkinson disease

    International Nuclear Information System (INIS)

    Despite recent knowledge on the pathophysiology of Parkinson disease, the precise and early diagnosis of this condition remains difficult. Advances in imaging techniques have enabled the assessment of in vivo structural, neurometabolic, and neurochemical changes in Parkinson disease, and their role as biomarkers have assumed greater importance in recent years. We presently review the various approaches with these imaging techniques for the study of Parkinson disease. Voxel-based morphometry studies with structural MRI showed a characteristic pattern of gray matter loss, and fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) studies have indicated latent network abnormalities in Parkinson disease. Moreover, radiotracer imaging with dopaminergic markers facilitates the assessment of pre- and postsynaptic nigro-striatal integrity, and other radiotracers have been used in the studies of nondopaminergic neurotransmitter systems, such as the cholinergic, noradrenergic, and serotonergic systems. These imaging techniques can be used to detect presymptomatic disease and to monitor disease progression. Thus, imaging data provide meaningful insights into the pathological process in Parkinson disease. (author)

  13. Radar foundations for imaging and advanced concepts

    CERN Document Server

    Sullivan, Roger

    2004-01-01

    Through courses internally taught at IDA, Dr. Roger Sullivan has devised a book that brings readers fully up to speed on the most essential quantitave aspects of general radar in order to introduce study of the most exciting and relevant applications to radar imaging and advanced concepts: Synthetic Aperture Radar (4 chapters), Space-time Adaptive Processing, moving target indication (MTI), bistatic radar, low probability of intercept (LPI) radar, weather radar, and ground-penetrating radar. Whether you're a radar novice or experienced professional, this is an essential refer

  14. Advanced proton imaging in computed tomography

    CERN Document Server

    Mattiazzo, S; Giubilato, P; Pantano, D; Pozzobon, N; Snoeys, W; Wyss, J

    2015-01-01

    In recent years the use of hadrons for cancer radiation treatment has grown in importance, and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise body imaging for accurate beam delivery is decisive. Proton computed tomography (pCT) scanners, currently in their R&D phase, provide the ultimate 3D imaging for hadrons treatment guidance. A key component of a pCT scanner is the detector used to track the protons, which has great impact on the scanner performances and ultimately limits its maximum speed. In this article, a novel proton-tracking detector was presented that would have higher scanning speed, better spatial resolution and lower material budget with respect to present state-of-the-art detectors, leading to enhanced performances. This advancement in performances is achieved by employing the very latest development in monolithic active pixel detectors (to build high granularity, low material budget, ...

  15. Advances in Imaging for Atrial Fibrillation Ablation

    International Nuclear Information System (INIS)

    Over the last fifteen years, our understanding of the pathophysiology of atrial fibrillation (AF) has paved the way for ablation to be utilized as an effective treatment option. With the aim of gaining more detailed anatomical representation, advances have been made using various imaging modalities, both before and during the ablation procedure, in planning and execution. Options have flourished from procedural fluoroscopy, electro anatomic mapping systems, pre procedural computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and combinations of these technologies. Exciting work is underway in an effort to allow the electro physiologist to assess scar formation in real time. One advantage would be to lessen the learning curve for what are very complex procedures. The hope of these developments is to improve the likelihood of a successful ablation procedure and to allow more patients access to this treatment

  16. Advanced imaging of the scapholunate ligamentous complex

    Energy Technology Data Exchange (ETDEWEB)

    Shahabpour, Maryam; Maeseneer, Michel de; Boulet, Cedric; Mey, Johan de [Universitair Ziekenhuis Brussel (UZ Brussel), Department of Radiology, Brussels (Belgium); Staelens, Barbara; Scheerlinck, Thierry [Universitair Ziekenhuis Brussel (UZ Brussel), Department of Orthopaedics and Traumatology, Brussels (Belgium); Overstraeten, Luc van [Hand and Foot Surgery Unit (HFSU), Tournai (Belgium)

    2015-12-15

    The scapholunate joint is one of the most involved in wrist injuries. Its stability depends on primary and secondary stabilisers forming together the scapholunate complex. This ligamentous complex is often evaluated by wrist arthroscopy. To avoid surgery as diagnostic procedure, optimization of MR imaging parameters as use of three-dimensional (3D) sequences with very thin slices and high spatial resolution, is needed to detect lesions of the intrinsic and extrinsic ligaments of the scapholunate complex. The paper reviews the literature on imaging of radial-sided carpal ligaments with advanced computed tomographic arthrography (CTA) and magnetic resonance arthrography (MRA) to evaluate the scapholunate complex. Anatomy and pathology of the ligamentous complex are described and illustrated with CTA, MRA and corresponding arthroscopy. Sprains, mid-substance tears, avulsions and fibrous infiltrations of carpal ligaments could be identified on CTA and MRA images using 3D fat-saturated PD and 3D DESS (dual echo with steady-state precession) sequences with 0.5-mm-thick slices. Imaging signs of scapholunate complex pathology include: discontinuity, nonvisualization, changes in signal intensity, contrast extravasation (MRA), contour irregularity and waviness and periligamentous infiltration by edema, granulation tissue or fibrosis. Based on this preliminary experience, we believe that 3 T MRA using 3D sequences with 0.5-mm-thick slices and multiplanar reconstructions is capable to evaluate the scapholunate complex and could help to reduce the number of diagnostic arthroscopies. (orig.)

  17. Recent advances in ECE imaging performance

    International Nuclear Information System (INIS)

    ECE Imaging (ECEI) systems have been installed and are presently operating on the KSTAR, DIII-D, ASDEX-UG, and HT-7 tokamaks. All are inherently 2-D systems, collect-ing second harmonic ECE radiation to form temporally-resolved localized Te images. System resolutions range from 16 × 8 (HT-7 and ASDEX-UG) to 20 × 16 (DIII-D) to 24 × 16 (KSTAR), with a spatial resolution as low as 1.0 cm (vertical) by 0.9 cm (radial), and with video bandwidths up to 400 kHz. Noise and drift performance of ECEI systems installed on KSTAR and DIII-D were significantly improved in 2011 with new zero bias detectors. This higher level of performance has resulted in new physics advances as ECEI is employed to visualize high temperature plasmas from the plasma edge (pedestal region) through the plasma core, with examples presented herein. In addition to these systems, a new expanded view ECEI system has been developed for the EAST tokamak that produces 24 × 16 Te images from a single imaging array and which is currently being commissioned.

  18. Thermodynamics an advanced textbook for chemical engineers

    CERN Document Server

    Astarita, Gianni

    1989-01-01

    If a Writer would know how to behave himself with relation to Posterity; let him consider in old Books, what he finds, that he is glad to know; and what Omissions he most laments. Jonathan Swift This book emerges from a long story of teaching. I taught chemical engineering thermodynamics for about ten years at the University of Naples in the 1960s, and I still remember the awkwardness that I felt about any textbook I chose to consider-all of them seemed to be vague at best, and the standard of logical rigor seemed immensely inferior to what I could find in books on such other of the students in my first class subjects as calculus and fluid mechanics. One (who is now Prof. F. Gioia of the University of Naples) once asked me a question which I have used here as Example 4. 2-more than 20 years have gone by, and I am still waiting for a more intelligent question from one of my students. At the time, that question compelled me to answer in a way I didn't like, namely "I'll think about it, and I hope I'll have the ...

  19. Advanced techniques in digital mammographic images recognition

    International Nuclear Information System (INIS)

    Computer Aided Detection and Diagnosis is used in digital radiography as a second thought in the process of determining diagnoses, which reduces the percentage of wrong diagnoses of the established interpretation of mammographic images. The issues that are discussed in the dissertation are the analyses and improvement of advanced technologies in the field of artificial intelligence, more specifically in the field of machine learning for solving diagnostic problems and automatic detection of speculated lesions in digital mammograms. The developed of SVM-based ICAD system with cascade architecture for analyses and comparison mammographic images in both projections (CC and MLO) gives excellent result for detection and masses and microcalcifications. In order to develop a system with optimal performances of sensitivity, specificity and time complexity, a set of relevant characteristics need to be created which will show all the pathological regions that might be present in the mammographic image. The structure of the mammographic image, size and the large number of pathological structures in this area are the reason why the creation of a set of these features is necessary for the presentation of good indicators. These pathological structures are a real challenge today and the world of science is working in that direction. The doctoral dissertation showed that the system has optimal results, which are confirmed by experts, and institutions, which are dealing with these same issues. Also, the thesis presents a new approach for automatic identification of regions of interest in the mammographic image where regions of interest are automatically selected for further processing mammography in cases when the number of examined patients is higher. Out of 480 mammographic images downloaded from MIAS database and tested with ICAD system the author shows that, after separation and selection of relevant features of ICAD system the accuracy is 89.7% (96.4% for microcalcifications

  20. Do provisions to advance chemical facility safety also advance chemical facility security? An analysis of possible synergies

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2012-01-01

    The European Commission has launched a study on the applicability of existing chemical industry safety provisions to enhancing security of chemical facilities covering the situation in 18 EU Member States. This paper reports some preliminary analytical findings regarding the extent to which...... Infrastructures (ECI Directive) addresses facility security but does not cover the chemical sector. Chemical facility safety at EU level is addressed by way of the Seveso-II Directive. Preliminary estimates by the chemical industry suggest that perhaps 80% of the existing safety measures under Seveso-II would...... existing provisions that have been put into existence to advance safety objectives due to synergy effects could be expected advance security objectives as well. The paper provides a conceptual definition of safety and security and presents a framework of their essential components. Key differences are...

  1. Nanoscale chemical imaging by photoinduced force microscopy.

    Science.gov (United States)

    Nowak, Derek; Morrison, William; Wickramasinghe, H Kumar; Jahng, Junghoon; Potma, Eric; Wan, Lei; Ruiz, Ricardo; Albrecht, Thomas R; Schmidt, Kristin; Frommer, Jane; Sanders, Daniel P; Park, Sung

    2016-03-01

    Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials. PMID:27051870

  2. Chemical shift MR imaging of the skin

    International Nuclear Information System (INIS)

    MR imaging with conventional spin-echo pulse sequences has not found wide application in the evaluation of skin pathology. This paper reports that this study was designed to determine the value of chemical shift imaging (CSI) compared with conventional pulse sequences for the noninvasive evaluation of connective tissue and neoplastic disease of the skin and underlying fascia. The studies were acquired in patients and volunteers on a whole-body system at 1.5 T and small surface coils. Comparisons were made between T1- and T2-weighted gradient-echo, spin-echo, and hybrid lipid and water-suppressed CSI series (Chopper-Dixon combined with frequency-selective pulse). CSI improves detail in the hypodermis by eliminating unwanted (lipid) signal and chemical shift misregistration artifact. The detail of water-based signal is improved in the deeper layers of the skin by improved tissue contrast and elimination of the disturbing adjacent dominant fat-based signal. MR imaging has the potential to provide information that can complement skin biopsy. A more optimal choice of pulse sequences can improve the sensitivity of MR imaging to water-based pathology and allow noninvasive visualization of deep layers. The CSI sequences may be useful in the evaluation of infiltrative and neoplastic disease of the skin, particularly as they are adapted into microimaging methods with local gradient coils

  3. Recent advances of MIBG imaging in cardiology

    International Nuclear Information System (INIS)

    The sympathetic nervous system plays an important role in the regulation of cardiovascular function both in healthy subjects and in patients with heart disease. Cardiac neurotransmission imaging allows in vivo noninvasive assessment of presynaptic storage, release and reuptake of neurotransmitters. Iodine-123 labeled metaiodobenzylguanidine (MIBG) is an analogue of the sympatholytic agent guanethidine and behaves in a manner that is similar to norepinephrine, a neurotransmitter of the sympathetic nervous system in the heart. Qualitative and quantitative assessment of MIBG uptake and washout kinetics has evaluated alterations of the cardiac sympathetic function in various heart diseases, such as cardiomyopathies, coronary artery disease, diabetic heart and arrhythmias. As reduced MIBG uptake has been related to the clinical indices of severity and prognosis, it can be used to evaluate the therapeutic effects on the cardiac sympathetic dysfunction. For example, angiotensin converting enzyme inhibitors and β-blockers which have been shown to improve functional capacity and prognosis in patients with heart failure, have been demonstrated to increase MIBG uptake and reduce its washout rate in these patients, indicating favorable effects on the sympathetic nervous system. Thus, MIBG imaging has become a promising noninvasive tool and a widely available modality for the assessment of prognosis and effects of medical therapy in various forms of cardiac pathology. The usefulness and recent advances of MIBG imaging in cardiology will be noted in this article. (author)

  4. Imaging advances in upper cervical vertebral disease

    International Nuclear Information System (INIS)

    Upper cervical vertebral has complex anatomic structure and some diseases may involve this vital center area of human body. Most of the diseases, such as trauma, malformation, and degeneration, need to be treated with surgery to recover the function of cervical vertebral. The accurate evaluation is crucial before and after the surgery. In the past few years, CT, MRI, and ultra-sound play important roles in the evaluation of upper cervical vertebral diseases and planning treatment. Comprehensive evaluation with multidisciplinary approach is advocated. In this paper we reviewed the anatomy and clinic treatments; summarized the latest imaging advances in upper cervical vertebral disease; discussed the perspective of comprehensive evaluation with multidisciplinary approach. (authors)

  5. Recent advances in imaging subcellular processes.

    Science.gov (United States)

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  6. Recent Advances in Morphological Cell Image Analysis

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed.

  7. Advanced Color Image Processing and Analysis

    CERN Document Server

    2013-01-01

    This volume does much more than survey modern advanced color processing. Starting with a historical perspective on ways we have classified color, it sets out the latest numerical techniques for analyzing and processing colors, the leading edge in our search to accurately record and print what we see. The human eye perceives only a fraction of available light wavelengths, yet we live in a multicolor world of myriad shining hues. Colors rich in metaphorical associations make us “purple with rage” or “green with envy” and cause us to “see red.” Defining colors has been the work of centuries, culminating in today’s complex mathematical coding that nonetheless remains a work in progress: only recently have we possessed the computing capacity to process the algebraic matrices that reproduce color more accurately. With chapters on dihedral color and image spectrometers, this book provides technicians and researchers with the knowledge they need to grasp the intricacies of today’s color imaging.

  8. Advanced digital detectors for neutron imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F. Patrick

    2003-12-01

    Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.

  9. Fast infrared chemical imaging with a quantum cascade laser.

    Science.gov (United States)

    Yeh, Kevin; Kenkel, Seth; Liu, Jui-Nung; Bhargava, Rohit

    2015-01-01

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm(-1)) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546

  10. Fast Infrared Chemical Imaging with a Quantum Cascade Laser

    Science.gov (United States)

    2015-01-01

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm–1) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546

  11. A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application.

    Science.gov (United States)

    Garland, Megan; Yim, Joshua J; Bogyo, Matthew

    2016-01-21

    The Precision Medicine Initiative aims to use advances in basic and clinical research to develop therapeutics that selectively target and kill cancer cells. Under the same doctrine of precision medicine, there is an equally important need to visualize these diseased cells to enable diagnosis, facilitate surgical resection, and monitor therapeutic response. Therefore, there is a great opportunity for chemists to develop chemically tractable probes that can image cancer in vivo. This review focuses on recent advances in the development of optical probes, as well as their current and future applications in the clinical management of cancer. The progress in probe development described here suggests that optical imaging is an important and rapidly developing field of study that encourages continued collaboration among chemists, biologists, and clinicians to further refine these tools for interventional surgical imaging, as well as for diagnostic and therapeutic applications. PMID:26933740

  12. Status and advances in imaging diagnosis of hepatic adenoma

    International Nuclear Information System (INIS)

    Hepatic adenoma is a rare benign tumor, which is quite easily misdiagnosed for its nonspecific appearance. The great advances in imaging technology have led an increase in the detection rate of hepatic adenoma. This article reviews the recent advances at home and abroad in imaging diagnostic characteristic of hepatic adenoma, in order to raise awareness of clinicians and make accurate judgment. (authors)

  13. Space-Ready Advanced Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  14. Direct Atom Imaging by Chemical-Sensitive Holography.

    Science.gov (United States)

    Lühr, Tobias; Winkelmann, Aimo; Nolze, Gert; Krull, Dominique; Westphal, Carsten

    2016-05-11

    In order to understand the physical and chemical properties of advanced materials, functional molecular adsorbates, and protein structures, a detailed knowledge of the atomic arrangement is essential. Up to now, if subsurface structures are under investigation, only indirect methods revealed reliable results of the atoms' spatial arrangement. An alternative and direct method is three-dimensional imaging by means of holography. Holography was in fact proposed for electron waves, because of the electrons' short wavelength at easily accessible energies. Further, electron waves are ideal structure probes on an atomic length scale, because electrons have a high scattering probability even for light elements. However, holographic reconstructions of electron diffraction patterns have in the past contained severe image artifacts and were limited to at most a few tens of atoms. Here, we present a general reconstruction algorithm that leads to high-quality atomic images showing thousands of atoms. Additionally, we show that different elements can be identified by electron holography for the example of FeS2. PMID:27070050

  15. Nanotechnology for Advanced Imaging and Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our first objective is that of nanostructured devices for advanced light detection.  Our periodic structures exhibit absorptive (nano-antenna) and reflective...

  16. Tuberculosis, advanced - chest x-rays (image)

    Science.gov (United States)

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  17. Advanced image-retrieving method for diagnostic image terminal

    International Nuclear Information System (INIS)

    Currently, various image terminals are being considered. However, most do not have the required capabilities for image retrieval for diagnostic use. For the purpose of a diagnosis or a conference by radiologists, the following three basic retrieval functions are indispensable. First is a key-based retrieval that identifies the required images by a key combination. Second is an image-based retrieval. The required image is selected by observing a range of abstract images displayed on the terminal. Third is a similar image retrieval that automatically searches the images having similar diagnostic findings in the database. These functions are developed by integrating relational database technology, image processing techniques, and high-speed similarity detection algorithms

  18. Advanced Imaging Modalities in the Detection of Cerebral Vasospasm

    OpenAIRE

    Mills, Jena N.; Vivek Mehta; Jonathan Russin; Amar, Arun P.; Anandh Rajamohan; William J. Mack

    2013-01-01

    The pathophysiology of cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) is complex and is not entirely understood. Mechanistic insights have been gained through advances in the capabilities of diagnostic imaging. Core techniques have focused on the assessment of vessel caliber, tissue metabolism, and/or regional perfusion parameters. Advances in imaging have provided clinicians with a multifaceted approach to assist in the detection of cerebral vasospasm and the diagnosis...

  19. Chemical characteristics of negative-tone chemically amplified resist for advanced mask making: II

    Science.gov (United States)

    Takeshi, Kazumasa; Tanabe, Masahito; Inokuchi, Daisuke; Fukushima, Yuichi; Okumoto, Yasuhiro; Okuda, Yoshimitsu

    2004-12-01

    We investigated the film property and the lithographic performance of five commercialized NCARs. This report focused on Cr effect and PCD stability which are critical issues on advanced mask making. Results confirmed to solve the Cr effect by controlled dissolution rate of resist film. Furthermore, PCD was occurred by PAG moving and unsuitable reaction in the resist film standing delay time. This report suggests the strategy that was design of chemical structure for the next generation NCARs.

  20. Advanced Imaging Optics Utilizing Wavefront Coding.

    Energy Technology Data Exchange (ETDEWEB)

    Scrymgeour, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boye, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Adelsberger, Kathleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  1. Advanced Imaging Technology Other than Narrow Band Imaging

    OpenAIRE

    Cho, Jun-Hyung

    2015-01-01

    To improve the detection rate of gastrointestinal tumors, image-enhanced endoscopy has been widely used during screening and surveillance endoscopy in Korea. In addition to narrow band imaging (NBI) with/without magnification, various types of electronic chromoendoscopies have been used, including autofluorescence imaging, I-scan, and flexible spectral imaging color enhancement. These technologies enable the accurate characterization of tumors because they enable visualization of microvascula...

  2. Nonlinear optical imaging: toward chemical imaging during neurosurgery

    Science.gov (United States)

    Meyer, Tobias; Dietzek, Benjamin; Krafft, Christoph; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Popp, Jürgen

    2011-03-01

    Tumor recognition and precise tumor margin detection presents a central challenge during neurosurgery. In this contribution we present our recent all-optical approach to tackle this problem. We introduce various nonlinear optical techniques, such as coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG) and two-photon fluorescence (TPEF), to study the morphology and chemical composition of (ex vivo) brain tissue. As the experimental techniques presented are contact-free all-optical techniques, which do not rely on the administration of external (fluorescence) labels, we anticipate that their implementation into surgical microscopes will provide significant advantages of intraoperative tumor diagnosis. In this contribution an introduction to the different optical spectroscopic methods will be presented and their implementation into a multimodal microscopic setup will be discussed. Furthermore, we will exemplify their application to brain tissue, i.e. both pig brain as a model for healthy brain tissue and human brain samples taken from surgical procedures. The data to be discussed show the capability of a joint CARS/SHG/TPEF multimodal imaging approach in highlighting various aspects of tissue morphochemistry. The consequences of this microspectroscopic potential, when combined with the existing technology of surgical microscopes, will be discussed.

  3. Combining advanced imaging processing and low cost remote imaging capabilities

    Science.gov (United States)

    Rohrer, Matthew J.; McQuiddy, Brian

    2008-04-01

    Target images are very important for evaluating the situation when Unattended Ground Sensors (UGS) are deployed. These images add a significant amount of information to determine the difference between hostile and non-hostile activities, the number of targets in an area, the difference between animals and people, the movement dynamics of targets, and when specific activities of interest are taking place. The imaging capabilities of UGS systems need to provide only target activity and not images without targets in the field of view. The current UGS remote imaging systems are not optimized for target processing and are not low cost. McQ describes in this paper an architectural and technologic approach for significantly improving the processing of images to provide target information while reducing the cost of the intelligent remote imaging capability.

  4. Advances in cardiac magnetic resonance imaging of congenital heart disease

    International Nuclear Information System (INIS)

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. (orig.)

  5. Advances in cardiac magnetic resonance imaging of congenital heart disease.

    Science.gov (United States)

    Driessen, Mieke M P; Breur, Johannes M P J; Budde, Ricardo P J; van Oorschot, Joep W M; van Kimmenade, Roland R J; Sieswerda, Gertjan Tj; Meijboom, Folkert J; Leiner, Tim

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. PMID:25552386

  6. Advances in cardiac magnetic resonance imaging of congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, Mieke M.P. [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); The Interuniversity Cardiology Institute of the Netherlands (ICIN) - Netherlands Heart Institute, PO Box 19258, Utrecht (Netherlands); Breur, Johannes M.P.J. [Wilhelmina Children' s Hospital, University Medical Center Utrecht, Department of Pediatric Cardiology, PO Box 85500, Utrecht (Netherlands); Budde, Ricardo P.J.; Oorschot, Joep W.M. van; Leiner, Tim [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); Kimmenade, Roland R.J. van; Sieswerda, Gertjan Tj [University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); Meijboom, Folkert J. [University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Center Utrecht, Department of Pediatric Cardiology, PO Box 85500, Utrecht (Netherlands)

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. (orig.)

  7. Advances in Small Animal Imaging Systems

    International Nuclear Information System (INIS)

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided

  8. Optical physics enables advances in multiphoton imaging

    International Nuclear Information System (INIS)

    Since the initial images were taken using a multiphoton imaging technique the method has rapidly established itself as the preferred method for imaging deeply into biological samples with micron resolution in three dimensions. Multiphoton imaging has thus enabled researchers in the life sciences to undertake studies that had previously been believed to be impossible without significantly perturbing the sample. Many of these experiments have only been realized due to close cooperation between optical physicists, from a range of disciplines, and the biomedical researchers. This paper will provide a general review of the current state of the field demonstrating how the various aspects of the physics development have brought the multiphoton technique to its current position at the forefront of biological microscopy. (topical review)

  9. Advances in imaging with thermal neutrons

    International Nuclear Information System (INIS)

    Experiments have been conducted using a modern high-resolution 3He two-dimensional position-sensitive detection chamber combined with coded apertures to produce images by means of thermal neutrons. These images are comparable to those produced by gamma ray imaging, but with some important differences. The detector is much less sensitive to the fast neutrons than to the thermalized component. Therefore, assuming that the neutron source has a fission spectrum, the brightest regions in an image represent moderating material in close proximity to the source, rather than the source itself. Earlier experiments have shown that useful contrast can be produced with thermal neutrons using thin masks made of metallic Cd sheet, but the resolution in those experiments was detector-limited at a few centimeters per pixel. The newer detector can resolve a line image with a fwhm resolution of about 1 mm. The technique could in principle be used in re-entry vehicle on-site inspections to count multiple nuclear warheads. Thermal neutrons carry no detailed spectral information, so their detection should not be as intrusive as gamma ray imaging. This technique can be used in nuclear materials management and arms control

  10. Center for Advanced Signal and Imaging Sciences Workshop 2004

    Energy Technology Data Exchange (ETDEWEB)

    McClellan, J H; Carrano, C; Poyneer, L; Palmer, D; Baker, K; Chen, D; London, R; Weinert, G; Brase, J; Paglieroni, D; Lopez, A; Grant, C W; Wright, W; Burke, M; Miller, W O; DeTeresa, S; White, D; Toeppen, J; Haugen, P; Kamath, C; Nguyen, T; Manay, S; Newsam, S; Cantu-Paz, E; Pao, H; Chang, J; Chambers, D; Leach, R; Paulson, C; Romero, C E; Spiridon, A; Vigars, M; Welsh, P; Zumstein, J; Romero, K; Oppenheim, A; Harris, D B; Dowla, F; Brown, C G; Clark, G A; Ong, M M; Clance, T J; Kegelmeyer, l M; Benzuijen, M; Bliss, E; Burkhart, S; Conder, A; Daveler, S; Ferguson, W; Glenn, S; Liebman, J; Norton, M; Prasad, R; Salmon, T; Kegelmeyer, L M; Hafiz, O; Cheung, S; Fodor, I; Aufderheide, M B; Bary, A; Martz, Jr., H E; Burke, M W; Benson, S; Fisher, K A; Quarry, M J

    2004-11-15

    Welcome to the Eleventh Annual C.A.S.I.S. Workshop, a yearly event at the Lawrence Livermore National Laboratory, presented by the Center for Advanced Signal & Image Sciences, or CASIS, and sponsored by the LLNL Engineering Directorate. Every November for the last 10 years we have convened a diverse set of engineering and scientific talent to share their work in signal processing, imaging, communications, controls, along with associated fields of mathematics, statistics, and computing sciences. This year is no exception, with sessions in Adaptive Optics, Applied Imaging, Scientific Data Mining, Electromagnetic Image and Signal Processing, Applied Signal Processing, National Ignition Facility (NIF) Imaging, and Nondestructive Characterization.

  11. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  12. Evolving Concept of Small Vessel Disease through Advanced Brain Imaging.

    OpenAIRE

    Norrving, Bo

    2015-01-01

    Imaging plays a crucial role in studying and understanding cerebral small vessel disease. Several important findings have emerged from recent applications of advanced brain imaging methods. In patients with acute lacunar syndromes, diffusionweighted MRI studies have shown that the diagnostic precision of using clinical features alone or combined with CT scan findings to diagnose small vessel disease as the underlying cause is poor. Followup imaging studies on patients with acute infarcts rela...

  13. Imaging chemical extraction by polymer inclusion membranes using fluorescence microscopy

    International Nuclear Information System (INIS)

    Polymer inclusion membranes (PIMs) transport chemicals between bodies of liquid by simultaneously performing chemical extraction and back-extraction. The internal chemical and physical mechanisms by which this transport occurs are, however, poorly understood. Also, some PIMs, which are otherwise optimal for their task, age and lose function after only days, limiting their feasibility for industrial upscaling. Through the application of fluorescence imaging methods we are able for the first time to see where chemical extraction occurs in the membrane. Extraction of fluorescein from solution by PIMs demonstrates inhomogeneities that do not correlate to surface morphology. Fluorescence lifetime imaging demonstrates that regions of increased extraction have distinctly different fluorescence lifetimes to that of the surrounding PIM indicating localized chemical environments, and this is observed to change with membrane age. Fluorescence imaging is shown to allow probing and novel understanding of PIM internal chemical morphology. (paper)

  14. Functional knee assessment with advanced imaging.

    Science.gov (United States)

    Amano, Keiko; Li, Qi; Ma, C Benjamin

    2016-06-01

    The purpose of anterior cruciate ligament (ACL) reconstruction is to restore the native stability of the knee joint and to prevent further injury to meniscus and cartilage, yet studies have suggested that joint laxity remains prevalent in varying degrees after ACL reconstruction. Imaging can provide measurements of translational and rotational motions of the tibiofemoral joint that may be too small to detect in routine physical examinations. Various imaging modalities, including fluoroscopy, computed tomography (CT), and magnetic resonance imaging (MRI), have emerged as powerful methods in measuring the minute details involved in joint biomechanics. While each technique has its own strengths and limitations, they have all enhanced our understanding of the knee joint under various stresses and movements. Acquiring the knowledge of the complex and dynamic motions of the knee after surgery would help lead to improved surgical techniques and better patient outcomes. PMID:27052009

  15. SHG nanoprobes: advancing harmonic imaging in biology.

    Science.gov (United States)

    Dempsey, William P; Fraser, Scott E; Pantazis, Periklis

    2012-05-01

    Second harmonic generating (SHG) nanoprobes have recently emerged as versatile and durable labels suitable for in vivo imaging, circumventing many of the inherent drawbacks encountered with classical fluorescent probes. Since their nanocrystalline structure lacks a central point of symmetry, they are capable of generating second harmonic signal under intense illumination - converting two photons into one photon of half the incident wavelength - and can be detected by conventional two-photon microscopy. Because the optical signal of SHG nanoprobes is based on scattering, rather than absorption as in the case of fluorescent probes, they neither bleach nor blink, and the signal does not saturate with increasing illumination intensity. When SHG nanoprobes are used to image live tissue, the SHG signal can be detected with little background signal, and they are physiologically inert, showing excellent long-term photostability. Because of their photophysical properties, SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues with unmatched sensitivity and temporal resolution. PMID:22392481

  16. Computational Chemical Imaging for Cardiovascular Pathology: Chemical Microscopic Imaging Accurately Determines Cardiac Transplant Rejection

    Science.gov (United States)

    Tiwari, Saumya; Reddy, Vijaya B.; Bhargava, Rohit; Raman, Jaishankar

    2015-01-01

    Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR) spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients’ biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures. PMID:25932912

  17. Computational chemical imaging for cardiovascular pathology: chemical microscopic imaging accurately determines cardiac transplant rejection.

    Directory of Open Access Journals (Sweden)

    Saumya Tiwari

    Full Text Available Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients' biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures.

  18. Imaging Tumor Hypoxia to Advance Radiation Oncology

    OpenAIRE

    Lee, Chen-Ting; Boss, Mary-Keara; Dewhirst, Mark W.

    2014-01-01

    Significance: Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. Recent Advances: Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in p...

  19. Advanced optical imaging in living embryos

    OpenAIRE

    Canaria, Christie A.; Lansford, Rusty

    2010-01-01

    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recen...

  20. Advances in low-level color image processing

    CERN Document Server

    Smolka, Bogdan

    2014-01-01

    Color perception plays an important role in object recognition and scene understanding both for humans and intelligent vision systems. Recent advances in digital color imaging and computer hardware technology have led to an explosion in the use of color images in a variety of applications including medical imaging, content-based image retrieval, biometrics, watermarking, digital inpainting, remote sensing, visual quality inspection, among many others. As a result, automated processing and analysis of color images has become an active area of research, to which the large number of publications of the past two decades bears witness. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for single channel images are often not directly applicable to multichannel  ones. The goal of this volume is to summarize the state-of-the-art in the early stages of the color image processing pipeline.

  1. Recent advances in imaging of brain tumors

    Directory of Open Access Journals (Sweden)

    D A Sanghvi

    2009-01-01

    The next decade will witness further sophistication of these techniques, with data available from larger studies. It is expected that imaging will continue to provide new and unique insights in neuro-oncology, which should hopefully contribute to the better management of patients with brain tumors.

  2. Multispectral laser imaging for advanced food analysis

    Science.gov (United States)

    Senni, L.; Burrascano, P.; Ricci, M.

    2016-07-01

    A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.

  3. Advances in Lymphatic Imaging and Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Nune, Satish K.; Gunda, Padmaja; Majeti, Bharat K.; Thallapally, Praveen K.; Laird, Forrest M.

    2011-09-10

    Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases will have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed.

  4. Image transfer technology in health care advancing

    International Nuclear Information System (INIS)

    Instead of recording images used in medicine, such as x-ray images, on film, it is now increasingly often possible to record them digitally in a computer. Using open and integrated information systems, digital images and the related data can in future be processed simultaneously, for instance, at x-ray units, in laboratories and at hospital wards. The data are fed into an open and integrated information system only once. Users may search for and combine data easily and any way they wish. Images are stored in the computer system at the location where they are generated, and transferred in the network only when they are needed elsewhere. In future, it will be possible to obtain information from a database using, for instance, sound as a means of communication. Data may be stored in the network as graphs, as sound or even as films. Despite all this , the introduction of new information technology still requires much consideration, resources and time. An open information system also needs standardised concepts and services so that different pieces of equipment and programmes are able to work together. (orig.)

  5. Chemical image generation with a grid-gate device

    Science.gov (United States)

    Filippini, D.; Gunnarsson, J.; Lundström, I.

    2004-12-01

    Scanning light pulse technique generating distinctive chemical images of diverse gases is demonstrated using a sensing arrangement that allows unrestricted choice of sensing materials, disregarding its conductivity or morphology. The present device, a metal oxide semiconductor structure, disentangles biasing from chemical functions by providing an inert grid as a gate that supplies the proper biasing, while functional materials even in the form of disconnected clusters can be used for sensing. The reading of conductimetric chemical responses of clustered materials, in nominal operating conditions, is demonstrated by the generation of chemical images acquired for inversion biasing conditions.

  6. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  7. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    Science.gov (United States)

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater. PMID:17918591

  8. Recent advances in radiology and medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, R.E.; Sherwood, T.

    1986-01-01

    The first chapter, on the radiology of arthritis, is an overview. The second and seventh chapters are on the chest the former, on adult respiratory distress syndrome, is a brief summary, and the latter, on digital radiography of the chest with the prototype slit-scanning technique. The third chapter reviews computed tomography of the lumbar spine. The following two chapters are on MR imaging, one on the central nervous system (covering demyelinating diseases, cardiovascular disease, infections, and tumors), with excellent illustrations; and one on MR imaging of the body. The illustrations are good. The following chapter is on extracardiac digital subtraction angiography (DSA), with an interesting table comparing and contrasting conventional angiography with both intraveneous and intraarterial DSA. The eighth chapter on pediatric imaging fits a world of experience. Chapter 9 is an update on contrast media, while the next chapter is on barium infusion examination of the small intestine. The final three chapters are concerned with the present state of angioplasty, interventional radiology in the urinary tract.

  9. Recent advances in radiology and medical imaging

    International Nuclear Information System (INIS)

    The first chapter, on the radiology of arthritis, is an overview. The second and seventh chapters are on the chest the former, on adult respiratory distress syndrome, is a brief summary, and the latter, on digital radiography of the chest with the prototype slit-scanning technique. The third chapter reviews computed tomography of the lumbar spine. The following two chapters are on MR imaging, one on the central nervous system (covering demyelinating diseases, cardiovascular disease, infections, and tumors), with excellent illustrations; and one on MR imaging of the body. The illustrations are good. The following chapter is on extracardiac digital subtraction angiography (DSA), with an interesting table comparing and contrasting conventional angiography with both intraveneous and intraarterial DSA. The eighth chapter on pediatric imaging fits a world of experience. Chapter 9 is an update on contrast media, while the next chapter is on barium infusion examination of the small intestine. The final three chapters are concerned with the present state of angioplasty, interventional radiology in the urinary tract

  10. 7th International Workshop on Advanced Optical Imaging and Metrology

    CERN Document Server

    2014-01-01

    In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imagi...

  11. Recent advances in echocardiography: strain and strain rate imaging

    Science.gov (United States)

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications.

  12. Advances in brain imaging of neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-yong; TAO Wei; LI Yong-jie

    2008-01-01

    Objective To review the literature on the use of brain imaging,including functional magnetic resonance imaging(fMRI), positron emission tomography(PET),magnetic resonance spectroscopy(MRS)and voxel-based morphometry(VBM)in investigation of the activity in diverse brain regions that creates and modulates chronic neuropathic pain. Data sources English literatures from January 1,2000 to July 31,2007 that examined human brain activity in chronic neuropathic pain were accessed through MEDLINE/CD ROM,using PET,fMRI,VBM,MRS and receptor binding. Study selection Published articles about the application of fMRI,PET,VBM,MRS and chronic neuropathic pain were selected. Data extraction Data were mainly extracted from 40 representative articles as the research basis. Results The PET studies suggested that spontaneous neuropathic pain is associated with changes in thalamic activity. Both PET and fMRI have been used to investigate the substrate of allodynia.The VBM demonstrated that brain structural changes are involved in chronic neuropathic pain,which is not seen in a matched control group.However,the results obtained had a large variety,which may be due to different pain etiology,pain distribution,lesion tomography,symptoms and stimulation procedures. Conclusions Application of the techniques of brain imaging plays a very important role in the study of structural and functional reorganization In patients with neuropathic pain.However,a unique"pain matrix" has not been defined.Future studies should be conducted using a prospective longitudinal research design,which would guarantee the control for many confounding factors.

  13. Advanced pixel architectures for scientific image sensors

    CERN Document Server

    Coath, R; Godbeer, A; Wilson, M; Turchetta, R

    2009-01-01

    We present recent developments from two projects targeting advanced pixel architectures for scientific applications. Results are reported from FORTIS, a sensor demonstrating variants on a 4T pixel architecture. The variants include differences in pixel and diode size, the in-pixel source follower transistor size and the capacitance of the readout node to optimise for low noise and sensitivity to small amounts of charge. Results are also reported from TPAC, a complex pixel architecture with ~160 transistors per pixel. Both sensors were manufactured in the 0.18μm INMAPS process, which includes a special deep p-well layer and fabrication on a high resistivity epitaxial layer for improved charge collection efficiency.

  14. Advances in Bio-Imaging From Physics to Signal Understanding Issues State-of-the-Art and Challenges

    CERN Document Server

    Racoceanu, Daniel; Gouaillard, Alexandre

    2012-01-01

    Advances in Imaging Devices and Image processing stem from cross-fertilization between many fields of research such as Chemistry, Physics, Mathematics and Computer Sciences. This BioImaging Community feel the urge to integrate more intensively its various results, discoveries and innovation into ready to use tools that can address all the new exciting challenges that Life Scientists (Biologists, Medical doctors, ...) keep providing, almost on a daily basis. Devising innovative chemical probes, for example, is an archetypal goal in which image quality improvement must be driven by the physics of acquisition, the image processing and analysis algorithms and the chemical skills in order to design an optimal bioprobe. This book offers an overview of the current advances in many research fields related to bioimaging and highlights the current limitations that would need to be addressed in the next decade to design fully integrated BioImaging Device.

  15. Advanced Imaging Catheter: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Krulevitch, P; Colston, B; DaSilva, L; Hilken, D; Kluiwstra, J U; Lee, A P; London, R; Miles, R; Schumann, D; Seward, K; Wang, A

    2001-07-20

    Minimally invasive surgery (MIS) is an approach whereby procedures conventionally performed with large and potentially traumatic incisions are replaced by several tiny incisions through which specialized instruments are inserted. Early MIS, often called laparoscopic surgery, used video cameras and laparoscopes to visualize and control the medical devices, which were typically cutting or stapling tools. More recently, catheter-based procedures have become a fast growing sector of all surgeries. In these procedures, small incisions are made into one of the main arteries (e.g. femoral artery in the thigh), and a long thin hollow tube is inserted and positioned near the target area. The key advantage of this technique is that recovery time can be reduced from months to a matter of days. In the United States, over 700,000 catheter procedures are performed annually representing a market of over $350 million. Further growth in this area will require significant improvements in the current catheter technology. In order to effectively navigate a catheter through the tortuous vessels of the body, two capabilities must exist: imaging and positioning. In most cases, catheter procedures rely on radiography for visualization and manual manipulation for positioning of the device. Radiography provides two-dimensional, global images of the vasculature and cannot be used continuously due to radiation exposure to both the patient and physician. Intravascular ultrasound devices are available for continuous local imaging at the catheter tip, but these devices cannot be used simultaneously with therapeutic devices. Catheters are highly compliant devices, and manipulating the catheter is similar to pushing on a string. Often, a guide wire is used to help position the catheter, but this procedure has its own set of problems. Three characteristics are used to describe catheter maneuverability: (1) pushability -- the amount of linear displacement of the distal end (inside body) relative to

  16. Advances in the Application of Image Processing Fruit Grading

    OpenAIRE

    Fang, Chengjun; Hua, Chunjian

    2013-01-01

    In the perspective of actual production, the paper presents the advances in the application of image processing fruit grading from several aspects, such as processing precision and processing speed of image processing technology. Furthermore, the different algorithms about detecting size, shape, color and defects are combined effectively to reduce the complexity of each algorithm and achieve a balance between the processing precision and processing speed are keys to automatic apple grading.

  17. Advanced imaging in rheumatoid arthritis. Part 1: Synovitis

    International Nuclear Information System (INIS)

    Rheumatoid arthritis (RA) is a chronic and progressive inflammatory disorder primarily affecting the synovium. We now recognise that conventional radiographic images show changes of rheumatoid arthritis long after irreversible joint damage has occured. With the advent of powerful disease-modifying drugs, there is a need for early demonstration of rheumatoid arthritis and a need to monitor progress of the disease and response to therapy. Advanced imaging techniques such as ultrasound and MRI have focussed on the demonstration and quantification of synovitis and erosions and allow early diagnosis of RA. The technology to quantify synovitis and erosions is developing rapidly and now allows change in disease activity to be assessed. However, problems undoubtedly exist in quantification techniques, and this review serves to highlight them. Much of the literature on advanced imaging in RA appears in rheumatological journals and may not be familiar to radiologists. This review article aims to increase the awareness of radiologists about this field and to encourage them to participate and contribute to the ongoing development of these modalities. Without this collaboration, it is unlikely that these modalities will reach their full potential in the field of rheumatological imaging. This review is in two parts. The first part addresses synovitis imaging. The second part will look at advanced imaging of erosions in RA. (orig.)

  18. Advanced imaging in rheumatoid arthritis. Part 2: Erosions

    International Nuclear Information System (INIS)

    Rheumatoid arthritis (RA) is a chronic and progressive inflammatory disorder primarily affecting the synovium. We now recognise that conventional radiographic images show changes of rheumatoid arthritis late after irreversible joint damage has occured. With the advent of powerful disease-modifying drugs there is a need for early demonstration of rheumatoid arthritis and to monitor progress of the disease and response to therapy. Advanced imaging techniques such as ultrasound and MRI have focussed on the demonstration and quanitification of synovitis and erosions and allow early diagnosis of RA. The technology to quantify synovitis and erosions is developing rapidly and now allows change in disease activity to be assessed. However, problems undoubtedly exist in quantification techniques and this review serves to highlight them. Much of the literature on advanced imaging in RA appears in rheumatological journals and may not be familiar to radiologists. This review article aims to increase the awareness of radiologists to this field and to encourage them to participate and contribute to the ongoing development of these modalities. Without this collaboration it is unlikely that these modalities will reach their full potential in the field of rheumatological imaging. This review is in two parts. This first part addresses synovitis imaging. The second part will look at advanced imaging of erosions in RA. (orig.)

  19. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform

    Directory of Open Access Journals (Sweden)

    Hanwell Marcus D

    2012-08-01

    Full Text Available Abstract Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format

  20. Predictive spectroscopy and chemical imaging based on novel optical systems

    Science.gov (United States)

    Nelson, Matthew Paul

    1998-10-01

    This thesis describes two futuristic optical systems designed to surpass contemporary spectroscopic methods for predictive spectroscopy and chemical imaging. These systems are advantageous to current techniques in a number of ways including lower cost, enhanced portability, shorter analysis time, and improved S/N. First, a novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated. A regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal directly proportional to the chemical/physical property for which the regression vector was designed. Second, a novel optical system is described which takes a single-shot approach to chemical imaging with high spectroscopic resolution using a dimension-reduction fiber-optic array. Images are focused onto a two- dimensional matrix of optical fibers which are drawn into a linear distal array with specific ordering. The distal end is imaged with a spectrograph equipped with an ICCD camera for spectral analysis. Software is used to extract the spatial/spectral information contained in the ICCD images and deconvolute them into wave length-specific reconstructed images or position-specific spectra which span a multi-wavelength space. This thesis includes a description of the fabrication of two dimension-reduction arrays as well as an evaluation of the system for spatial and spectral resolution, throughput, image brightness, resolving power, depth of focus, and channel cross-talk. PCA is performed on the images by treating rows of the ICCD images as spectra and plotting the scores of each PC as a function of reconstruction position. In addition, iterative target transformation factor analysis (ITTFA) is performed on the spectroscopic images to generate ``true'' chemical maps of samples. Univariate zero-order images, univariate first

  1. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  2. Improving Seismic Image with Advanced Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mericy Lastra Cunill

    2012-07-01

    Full Text Available Taking Taking into account the need to improve the seismic image in the central area of Cuba, specifically in the area of the Venegas sector, located in the Cuban Folded Belt, the seismic data acquired by Cuba Petróleo (CUPET in the year 2007 was reprocessed according to the experience accumulated during the previous processing carried out in the same year, and the new geologic knowledge on the area. This was done with the objective of improving the results. The processing applied previously was analyzed by reprocessing the primary data with new focuses and procedures, among them are the following: the attenuation of the superficial wave with a filter in the Radon domain in its lineal variant, the change of the primary statics corrections of elevation by those of refraction, the study of velocity with the selection automatic biespectral of high density, the study of the anisotropy, the attenuation of the random noise, and the pre stack time and depth migration. As a result of this reprocessing, a structure that was not identified in the seismic sections of the previous processing was located at the top of a Continental Margin sediment located to the north of the sector that increased the potentialities of finding hydrocarbons in quantities of economic importance thus diminishing the risk of drilling in the sector Venegas.

  3. Automated extraction of chemical structure information from digital raster images

    Directory of Open Access Journals (Sweden)

    Shedden Kerby A

    2009-02-01

    Full Text Available Abstract Background To search for chemical structures in research articles, diagrams or text representing molecules need to be translated to a standard chemical file format compatible with cheminformatic search engines. Nevertheless, chemical information contained in research articles is often referenced as analog diagrams of chemical structures embedded in digital raster images. To automate analog-to-digital conversion of chemical structure diagrams in scientific research articles, several software systems have been developed. But their algorithmic performance and utility in cheminformatic research have not been investigated. Results This paper aims to provide critical reviews for these systems and also report our recent development of ChemReader – a fully automated tool for extracting chemical structure diagrams in research articles and converting them into standard, searchable chemical file formats. Basic algorithms for recognizing lines and letters representing bonds and atoms in chemical structure diagrams can be independently run in sequence from a graphical user interface-and the algorithm parameters can be readily changed-to facilitate additional development specifically tailored to a chemical database annotation scheme. Compared with existing software programs such as OSRA, Kekule, and CLiDE, our results indicate that ChemReader outperforms other software systems on several sets of sample images from diverse sources in terms of the rate of correct outputs and the accuracy on extracting molecular substructure patterns. Conclusion The availability of ChemReader as a cheminformatic tool for extracting chemical structure information from digital raster images allows research and development groups to enrich their chemical structure databases by annotating the entries with published research articles. Based on its stable performance and high accuracy, ChemReader may be sufficiently accurate for annotating the chemical database with links

  4. Advances in cardiac magnetic resonance imaging of congenital heart disease

    NARCIS (Netherlands)

    Driessen, Mieke M P; Breur, Johannes M. P. J.; Budde, Ricardo P J; van Oorschot, Joep W M; van Kimmenade, Roland R J; Sieswerda, Gertjan Tj.; Meijboom, Folkert J; Leiner, Tim

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advan

  5. Introduction: Advances in Optical Coherence Tomography, Photoacoustic Imaging, and Microscopy

    OpenAIRE

    Li, X; Beard, P.C.; Georgakoudi, I.

    2010-01-01

    The editors introduce the Biomedical Optics Express feature issue, “Advances in Optical Coherence Tomography, Photoacoustic Imaging, and Microscopy,” which combines three technical areas from the 2010 Optical Society of America (OSA), Biomedical Optics (BIOMED) Topical Meeting held on 11–14 April in Miami, Florida, and includes contributions from conference attendees.

  6. Advanced Nanomaterials in Multimodal Imaging: Design, Functionalization, and Biomedical Applications

    International Nuclear Information System (INIS)

    The biomedical applications of nanoparticles in molecular imaging, drug delivery, and therapy give rise to the term nanomedicine and have led to ever-growing developments in the past decades. New generation of imaging probes (or contrast agents) and state of the art of various strategies for efficient multimodal molecular imaging have drawn much attention and led to successful preclinical uses. In this context, we intend to elucidate the fundamentals and review recent advances as well as to provide an outlook perspective in these fields.

  7. AXIOM: Advanced X-Ray Imaging Of the Magnetosheath

    Science.gov (United States)

    Sembay, S.; Branduardi-Rayrnont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C; Kataria, D.; Kemble, S.; Milan, S.; Owen, C. J.; Read, A. M.; Peacocke, L.; Arridge, C. S.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.

    2012-01-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  8. Establishing advanced practice for medical imaging in New Zealand

    International Nuclear Information System (INIS)

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ

  9. Establishing advanced practice for medical imaging in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Yielder, Jill, E-mail: j.yielder@auckland.ac.nz [University of Auckland, Auckland (New Zealand); Young, Adrienne; Park, Shelley; Coleman, Karen [University of Otago, Wellington (New Zealand); University of Auckland, Auckland (New Zealand)

    2014-02-15

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.

  10. Recent advances in image-guided targeted prostate biopsy.

    Science.gov (United States)

    Brown, Anna M; Elbuluk, Osama; Mertan, Francesca; Sankineni, Sandeep; Margolis, Daniel J; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L; Turkbey, Baris

    2015-08-01

    Prostate cancer is a common malignancy in the United States that results in over 30,000 deaths per year. The current state of prostate cancer diagnosis, based on PSA screening and sextant biopsy, has been criticized for both overdiagnosis of low-grade tumors and underdiagnosis of clinically significant prostate cancers (Gleason score ≥7). Recently, image guidance has been added to perform targeted biopsies of lesions detected on multi-parametric magnetic resonance imaging (mpMRI) scans. These methods have improved the ability to detect clinically significant cancer, while reducing the diagnosis of low-grade tumors. Several approaches have been explored to improve the accuracy of image-guided targeted prostate biopsy, including in-bore MRI-guided, cognitive fusion, and MRI/transrectal ultrasound fusion-guided biopsy. This review will examine recent advances in these image-guided targeted prostate biopsy techniques. PMID:25596716

  11. Advanced hyperspectral video imaging system using Amici prism.

    Science.gov (United States)

    Feng, Jiao; Fang, Xiaojing; Cao, Xun; Ma, Chenguang; Dai, Qionghai; Zhu, Hongbo; Wang, Yongjin

    2014-08-11

    In this paper, we propose an advanced hyperspectral video imaging system (AHVIS), which consists of an objective lens, an occlusion mask, a relay lens, an Amici prism and two cameras. An RGB camera is used for spatial reading and a gray scale camera is used for measuring the scene with spectral information. The objective lens collects more light energy from the observed scene and images the scene on an occlusion mask, which subsamples the image of the observed scene. Then, the subsampled image is sent to the gray scale camera through the relay lens and the Amici prism. The Amici prism that is used to realize spectral dispersion along the optical path reduces optical distortions and offers direct view of the scene. The main advantages of the proposed system are improved light throughput and less optical distortion. Furthermore, the presented configuration is more compact, robust and practicable. PMID:25321019

  12. Chemically Specific Cellular Imaging of Biofilm Formation

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    complicated organism, we needed to first turn our attention to a well understood organism. Pseudomonas aeruginosa (PA) is a well-studied organism and will be used to compare our results with others. Then, we will turn our attention to TD. It is expected that the research performed will provide key data to validate biochemical studies of TD and result in high profile publications in leading journals. For this project, our ultimate goal was to combine both Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) experimental analysis with computer simulations to provide unique 3D molecular structural, dynamics, and functional information on the order of microns for this DOE mission relevant microorganism, T. denitrificans. For FY05, our goals were to: (1) Determine proper media for optimal growth of PA; growth rate measurements in that media and characterization of metabolite signatures during growth via {sup 1}H and {sup 13}C NMR, (2) Determine and build mineral, metal, and implant material surfaces to support growth of PA, (3) Implementing new MRI sequences to image biofilms more efficiently and increase resolution with new hardware design, (4) Develop further diffusion and flow MRI measurements of biofilms and biofilm formation with different MRI pulse sequences and different hardware design, and (5) Develop a zero dimension model of the rate of growth and the metabolite profiles of PA. Our major accomplishments are discussed in the following text. However, the bulk of this work is described in the attached manuscript entitled, ''NMR Metabolomics of Planktonic and Biofilm Modes of Growth in Pseudomonas aeruginosa''. This paper will be submitted to the Journal of Bacteriology in coming weeks. In addition, this one-year effort has lead to our incorporation into the Enhanced Surveillance Campaign during FY05 for some proof-of-principle MRI measurements on polymers. We are currently using similar methods to evaluate these polymers. In addition

  13. Advanced imaging modalities in the detection of cerebral vasospasm.

    Science.gov (United States)

    Mills, Jena N; Mehta, Vivek; Russin, Jonathan; Amar, Arun P; Rajamohan, Anandh; Mack, William J

    2013-01-01

    The pathophysiology of cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) is complex and is not entirely understood. Mechanistic insights have been gained through advances in the capabilities of diagnostic imaging. Core techniques have focused on the assessment of vessel caliber, tissue metabolism, and/or regional perfusion parameters. Advances in imaging have provided clinicians with a multifaceted approach to assist in the detection of cerebral vasospasm and the diagnosis of delayed ischemic neurologic deficits (DIND). However, a single test or algorithm with broad efficacy remains elusive. This paper examines both anatomical and physiological imaging modalities applicable to post-SAH vasospasm and offers a historical background. We consider cerebral blood flow velocities measured by Transcranial Doppler Ultrasonography (TCD). Structural imaging techniques, including catheter-based Digital Subtraction Angiography (DSA), CT Angiography (CTA), and MR Angiography (MRA), are reviewed. We examine physiologic assessment by PET, HMPAO SPECT, (133)Xe Clearance, Xenon-Enhanced CT (Xe/CT), Perfusion CT (PCT), and Diffusion-Weighted/MR Perfusion Imaging. Comparative advantages and limitations are discussed. PMID:23476766

  14. Advanced Imaging Modalities in the Detection of Cerebral Vasospasm

    Directory of Open Access Journals (Sweden)

    Jena N. Mills

    2013-01-01

    Full Text Available The pathophysiology of cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH is complex and is not entirely understood. Mechanistic insights have been gained through advances in the capabilities of diagnostic imaging. Core techniques have focused on the assessment of vessel caliber, tissue metabolism, and/or regional perfusion parameters. Advances in imaging have provided clinicians with a multifaceted approach to assist in the detection of cerebral vasospasm and the diagnosis of delayed ischemic neurologic deficits (DIND. However, a single test or algorithm with broad efficacy remains elusive. This paper examines both anatomical and physiological imaging modalities applicable to post-SAH vasospasm and offers a historical background. We consider cerebral blood flow velocities measured by Transcranial Doppler Ultrasonography (TCD. Structural imaging techniques, including catheter-based Digital Subtraction Angiography (DSA, CT Angiography (CTA, and MR Angiography (MRA, are reviewed. We examine physiologic assessment by PET, HMPAO SPECT, 133Xe Clearance, Xenon-Enhanced CT (Xe/CT, Perfusion CT (PCT, and Diffusion-Weighted/MR Perfusion Imaging. Comparative advantages and limitations are discussed.

  15. Recent Advances in Space-Variant Deblurring and Image Stabilization

    Czech Academy of Sciences Publication Activity Database

    Šorel, Michal; Šroubek, Filip; Flusser, Jan

    Dordrecht, The Netherlands: Springer Science + Business Media B.V, 2009 - (Byrnes, J.), s. 259-272. (NATO Science for Peace and Security Series. B: Physics and Biophysics). ISBN 978-1-4020-8922-0 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/1593 Institutional research plan: CEZ:AV0Z10750506 Keywords : camera shake * image stabilization * space-variant restoration * blind deconvolution Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2008/ZOI/sorel-recent advances in space-variant deblurring and image stabilization.pdf

  16. Standard codecs image compression to advanced video coding

    CERN Document Server

    Ghanbari, Mohammed

    2003-01-01

    This book discusses the growth of digital television technology and the revolution in image and video compression (such as JPEG2000, broadcast TV, video phone), highlighting the need for standardisation in processing static and moving images and their exchange between computer systems. The book gives an authoritative explanation of picture and video coding algorithms, working from basic principles through to the advanced video compression systems now being developed. One of its main objectives is to describe the reasons behind the introduction of a standard codec for a specific application and

  17. Labeling of virus components for advanced, quantitative imaging analyses.

    Science.gov (United States)

    Sakin, Volkan; Paci, Giulia; Lemke, Edward A; Müller, Barbara

    2016-07-01

    In recent years, investigation of virus-cell interactions has moved from ensemble measurements to imaging analyses at the single-particle level. Advanced fluorescence microscopy techniques provide single-molecule sensitivity and subdiffraction spatial resolution, allowing observation of subviral details and individual replication events to obtain detailed quantitative information. To exploit the full potential of these techniques, virologists need to employ novel labeling strategies, taking into account specific constraints imposed by viruses, as well as unique requirements of microscopic methods. Here, we compare strengths and limitations of various labeling methods, exemplify virological questions that were successfully addressed, and discuss challenges and future potential of novel approaches in virus imaging. PMID:26987299

  18. Preliminary study of the advanced ultrasonic imaging system development

    International Nuclear Information System (INIS)

    Ultrasonic imaging is an advanced technique of ultrasonic testing which utilize computerized techniques in evaluating and interpreting signal reflected from any sound reflectors including flaws located inside materials. One of the most commonly used imaging technique is known as C-Scan system. The system collects both ultrasonic data and the position tracker to create a C-Scan map of the sample being inspected. This paper describes the development of a portable PC-based ultrasonic data acquisition and processing system for industrial applications. (Author)

  19. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  20. Advances in Time-Resolved Tomographic Particle Image Velocimetry

    OpenAIRE

    Lynch, K.P.

    2015-01-01

    This thesis details advanced developments in 3-D particle image velocimetry (PIV) based on the tomographic PIV technique, with an emphasis on time-resolved experiments. Tomographic PIV is a technique introduced in 2006 to measure the flow velocity in a three-dimensional volume. When measurements are performed at a rate high enough to sample the dynamical evolution of the flow, the measurement is considered time-resolved. The present work begins with a description of developments in tomographi...

  1. An atypical meningioma demystified and advanced magnetic resonance imaging techniques

    Directory of Open Access Journals (Sweden)

    Despoina Voultsinou

    2014-01-01

    Full Text Available A 40-year-old male presented with visuospatial processing disturbances. Family history was free. Conventional and advanced magnetic resonance imaging (MRI studies were performed. On T2 and fluid attenuation inversion recovery images, an increased signal intensity extra-axial lesion was demonstrated. Post-contrast scans depicted homogeneous intense contrast medium enhancement. T2FNx01 star sequence was negative for hemorrhagic or calcification foci. Diffusion-weighted imaging findings were indicative of malignant behavior and magnetic resonance venography confirmed superior sagittal sinus infiltration. Increased cerebral blood volume values were observed and peri-lesional oedema on perfusion-weighted imaging was also demonstrated. The signal intensity-time curve depicted the characteristic meningioma pattern. Spectroscopy showed increased choline and alanine levels, but decreased N-acetyl-aspartate levels. Conventional MRI is adequate for typical types of meningiomas. However, the more atypical ones, in which even the histopathologic specimen may demonstrate characteristics of typical meningioma, could be easier diagnosed with advanced MRI techniques.

  2. Imaging spectroscopic analysis at the Advanced Light Source

    International Nuclear Information System (INIS)

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications

  3. Safety Assessment of Advanced Imaging Sequences II: Simulations

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2016-01-01

    . The simulation time is between 0.67 ms to 2.8 ms per emission and imaging point, making it possible to simulate even complex emission sequences in less than 1 s for a single spatial position. The linear simulations yield a relative accuracy on MI between -12.1% to 52.3% and for Ispta.3 between -38......An automatic approach for simulating the emitted pressure, intensity, and MI of advanced ultrasound imaging sequences is presented. It is based on a linear simulation of pressure fields using Field II, and it is hypothesized that linear simulation can attain the needed accuracy for predicting...... Mechanical Index (MI) and Ispta.3 as required by FDA. The method is performed on four different imaging schemes and compared to measurements conducted using the SARUS experimental scanner. The sequences include focused emissions with an F-number of 2 with 64 elements that generate highly non-linear fields...

  4. Advances in Spectral-Spatial Classification of Hyperspectral Images

    Science.gov (United States)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  5. AN ADVANCED SYSTEM FOR POLLUTION PREVENTION IN CHEMICAL COMPLEXES

    Science.gov (United States)

    One important accomplishment is that the system will give process engineers interactively and simultaneously use of programs for total cost analysis, life cycle assessment and sustainability metrics to provide direction for the optimal chemical complex analysis pro...

  6. Chemical imaging and spectroscopy using tunable filters: Instrumentation, methodology, and multivariate analysis

    Science.gov (United States)

    Turner, John Frederick, II

    Spectral imaging has experienced tremendous growth during the past ten years and is rapidly becoming a formidable analytical tool. Recent advances in electronically tunable filters and array detectors are enabling high resolution spectral images to be acquired of chemical and biological systems that have traditionally been difficult to study non-invasively. Additionally, the development of powerful and inexpensive computer platforms is broadening the appeal of spectral imaging methods which have historically required costly and computationally adept computer workstations. The emphasis of my research has been to explore high throughput widefield imaging instrumentation and methodology using novel acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF) imaging spectrometers. In order to demonstrate the feasibility of employing multiplexed AOTFs for spectroscopy and chemical imaging applications, a near- infrared (NIR) multiplexed AOTF spectrometer employing Hadamard encoding sequences has been developed. In addition, the use of multiplexed AOTFs as adaptive filters in NIR spectroscopy and fluorescence imaging has been demonstrated. A second type of electronically tunable image filter, the liquid crystal tunable filter (LCTF) has recently been developed and is well suited to high resolution, diffraction limited imaging applications. The earliest generation of LCTFs was based on the Lyot birefringent filter and possessed small transmittances due to the use of multiple polarizers and imperfect waveplate action. An improved LCTF prototype incorporating split-element Lyot filter stages has been evaluated and compared to the earlier generation of LCTF devices. The high image fidelity, wide acceptance angle, and large clear aperture of the LCTF make it well suited to macroscopic chemical imaging applications. A macroscopic imaging fluorometer employing LCTFs for source tuning and emission filtering has been developed for high throughput microtiter plate

  7. Obsessive-compulsive disorder: advances in brain imaging

    International Nuclear Information System (INIS)

    In the past twenty years functional brain imaging has advanced to the point of tackling the differential diagnosis, prognosis and therapeutic response in Neurology and Psychiatry. Psychiatric disorders were rendered 'functional' a century ago; however nowadays they can be seen by means of brain imaging. Functional images in positron emission tomography (PET) and single photon emission tomography (NEUROSPET) show in non-invasive fashion the state of brain functioning. PET does this assessing glucose metabolism and NEUROSPET by putting cerebral blood flow in images. Prevalence of OCD is clearly low (2 to 3%), but comorbidity with depression, psychoses, bipolar disorder and schizophrenia is high. Furthermore, it is not infrequent with autism, attention disorder, tichotillomany, borderline personality disorders, in pathological compulsive spending, sexual compulsion and in pathological gambling, in tics, and in Gilles de la Tourette disorder, NEUROSPET and PET show hypoperfusion in both frontal lobes, in their prefrontal dorsolateral aspects, in their inferior zone and premotor cortex, with hyperperfusion in the posterior cingulum and hypoperfusion in basal ganglia (caudate nucleus). Cummings states that hyperactivity of the limbic system might be involved in OCD. Thus, brain imaging in OCD is a diagnostic aid, allows us to see clinical imagenological evolution and therapeutic response and, possibly, it is useful predict therapeutic response (Au)

  8. Imaging of the heart: historical perspective and recent advances.

    Science.gov (United States)

    Lam, W C; Pennell, D J

    2016-02-01

    Correct diagnosis must be made before appropriate treatment can be given. The aim of cardiac imaging is to establish cardiac diagnosis as accurate as possible and to avert unnecessary invasive procedures. There are many different modalities of cardiac imaging and each of them has advanced tremendously throughout the past decades. Echocardiography, as the first-line modality in most clinical circumstances, has progressed from two-dimensional, single-planed M-mode in the 1960s to three-dimensional speckle tracking echocardiography nowadays. Cardiac computed tomography angiogram (CCTA) has revolutionised the management of coronary artery disease as it allows clinicians to visualise the coronary arteries without performing an invasive angiogram. Because of the high negative predictive value, CCTA plays an important reassuring role in acute chest pain management. The greatest strength of cardiovascular magnetic resonance (CMR) is that it provides information in tissue characterization. It is the modality of choice in assessing myocardial viability and myocardial infiltration such as haemochromatosis or amyloidosis. Each of these modalities has its own strengths and limitations. In fact, they are complementing each other in different clinical settings. Cardiac imaging will continue to advance and, not long from now, we will not need invasive procedures to make an accurate cardiac diagnosis. PMID:26647305

  9. Do provisions to advance chemical facility safety also advance chemical facility security? An analysis of possible synergies

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    The European Commission has launched a study on the applicability of existing chemical industry safety provisions to enhancing security of chemical facilities covering the situation in 18 EU Member States. This paper reports some preliminary analytical findings regarding the extent to which...... exist at the mitigation level. At the strategic policy level, synergies are obvious. The security of chemical facilities is important. First, facilities with large inventories of toxic materials could be attractive targets for terrorists. The concern is sabotage causing an intentional release that could...

  10. Advances in the chemical vapor deposition (CVD) of Tantalum

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Christensen, Erik;

    2014-01-01

    The chemical stability of tantalum in hot acidic media has made it a key material in the protection of industrial equipment from corrosion under such conditions. The Chemical Vapor Deposition of tantalum to achieve such thin corrosion resistant coatings is one of the most widely mentioned examples...... of CVD processes; however very little information on the process and its characteristics can be found. This work presents the state of the art on the CVD of tantalum in long narrow channels and a reaction mechanism is suggested based on a rudimentary model. The effects of the system pressure...

  11. Analysis of pharmaceutical pellets: An approach using near-infrared chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sabin, Guilherme P.; Breitkreitz, Marcia C.; Souza, Andre M. de [Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Fonseca, Patricia da; Calefe, Lupercio; Moffa, Mario [Zelus Servicos para Industria Farmaceutica Ltda., Av. Professor Lineu Prestes n. 2242, Sao Paulo, SP (Brazil); Poppi, Ronei J., E-mail: ronei@iqm.unicamp.br [Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2011-11-07

    Highlights: {yields} Near-Infrared Chemical Imaging was used for pellets analysis. {yields} Distribution of the components throughout the coatings layers and core of the pellets was estimated. {yields} Classical Least Squares (CLS) was used for calculation of the concentration maps. - Abstract: Pharmaceutical pellets are spherical or nearly spherical multi-unit dosage forms designed to optimize pharmacokinetics and pharmacodynamics features of drug release. The distribution of the pharmaceutical ingredients in the layers and core is a very important parameter for appropriate drug release, especially for pellets manufactured by the process of layer gain. Physical aspects of the sample are normally evaluated by Scanning Electron Microscopy (SEM), but it is in many cases unsuitable to provide conclusive chemical information about the distribution of the pharmaceutical ingredients in both layers and core. On the other hand, methods based on spectroscopic imaging can be very promising for this purpose. In this work, a Near-Infrared Chemical Imaging (NIR-CI) method was developed and applied to the analysis of diclophenac sodium pellets. Since all the compounds present in the sample were known in advance, Classical Least Squares (CLS) was used for calculations. The results have shown that the method was capable of providing chemical information about the distribution of the active ingredient and excipients in the core and coating layers and therefore can be complementary to SEM for the pharmaceutical development of pellets.

  12. Analysis of pharmaceutical pellets: An approach using near-infrared chemical imaging

    International Nuclear Information System (INIS)

    Highlights: → Near-Infrared Chemical Imaging was used for pellets analysis. → Distribution of the components throughout the coatings layers and core of the pellets was estimated. → Classical Least Squares (CLS) was used for calculation of the concentration maps. - Abstract: Pharmaceutical pellets are spherical or nearly spherical multi-unit dosage forms designed to optimize pharmacokinetics and pharmacodynamics features of drug release. The distribution of the pharmaceutical ingredients in the layers and core is a very important parameter for appropriate drug release, especially for pellets manufactured by the process of layer gain. Physical aspects of the sample are normally evaluated by Scanning Electron Microscopy (SEM), but it is in many cases unsuitable to provide conclusive chemical information about the distribution of the pharmaceutical ingredients in both layers and core. On the other hand, methods based on spectroscopic imaging can be very promising for this purpose. In this work, a Near-Infrared Chemical Imaging (NIR-CI) method was developed and applied to the analysis of diclophenac sodium pellets. Since all the compounds present in the sample were known in advance, Classical Least Squares (CLS) was used for calculations. The results have shown that the method was capable of providing chemical information about the distribution of the active ingredient and excipients in the core and coating layers and therefore can be complementary to SEM for the pharmaceutical development of pellets.

  13. Combining hyperspectral imaging and Raman spectroscopy for remote chemical sensing

    Science.gov (United States)

    Ingram, John M.; Lo, Edsanter

    2008-04-01

    The Photonics Research Center at the United States Military Academy is conducting research to demonstrate the feasibility of combining hyperspectral imaging and Raman spectroscopy for remote chemical detection over a broad area of interest. One limitation of future trace detection systems is their ability to analyze large areas of view. Hyperspectral imaging provides a balance between fast spectral analysis and scanning area. Integration of a hyperspectral system capable of remote chemical detection will greatly enhance our soldiers' ability to see the battlefield to make threat related decisions. It can also queue the trace detection systems onto the correct interrogation area saving time and reconnaissance/surveillance resources. This research develops both the sensor design and the detection/discrimination algorithms. The one meter remote detection without background radiation is a simple proof of concept.

  14. Advances in radiological imaging of the renal arteries and veins

    International Nuclear Information System (INIS)

    Familiarity with the normal anatomy of the renal vessels and common variants is of particular importance for the operator who performs renal transplantation or therapeutic interventions in the renal vessels. Because of the recent major advances in multislice spiral computed tomography angiography (MSCTA) techniques, our ability has been considerably improved to determine the patterns and characters of renal arteries and veins. This article summarizes the research situation and progress in the area of renal vessel imaging anatomy. Some regularity in the distribution of renal vessel positions, dimensions and variations among patients who received MSCTA examinations, and these anatomical measurements are of great value for clinical diagnosis and treatment. (authors)

  15. Chemical imaging and solid state analysis at compact surfaces using UV imaging

    DEFF Research Database (Denmark)

    Wu, Jian X.; Rehder, Sönke; van den Berg, Frans;

    2014-01-01

    Fast non-destructive multi-wavelength UV imaging together with multivariate image analysis was utilized to visualize distribution of chemical components and their solid state form at compact surfaces. Amorphous and crystalline solid forms of the antidiabetic compound glibenclamide, and...... excipients in a non-invasive way, as well as mapping the glibenclamide solid state form. An exploratory data analysis supported the critical evaluation of the mapping results and the selection of model parameters for the chemical mapping. The present study demonstrated that the multi-wavelength UV imaging is...... microcrystalline cellulose together with magnesium stearate as excipients were used as model materials in the compacts. The UV imaging based drug and excipient distribution was in good agreement with hyperspectral NIR imaging. The UV wavelength region can be utilized in distinguishing between glibenclamide and...

  16. Advances and trends in ionophore-based chemical sensors

    Science.gov (United States)

    Mikhelson, K. N.; Peshkova, M. A.

    2015-06-01

    The recent advances in the theory and practice of potentiometric, conductometric and optical sensors based on ionophores are critically reviewed. The role of the heterogeneity of the sensor/sample systems is emphasized, and it is shown that due to this heterogeneity such sensors respond to the analyte activities rather than to concentrations. The basics of the origin of the response of all three kinds of ionophore-based sensors are briefly described. The use of novel sensor materials, new preparation and application techniques of the sensors as well as advances in theoretical treatment of the sensor response are analyzed using literature sources published mainly from 2012 to 2014. The basic achievements made in the past are also addressed when necessary for better understanding of the trends in the field of ionophore-based sensors. The bibliography includes 295 references.

  17. Advances in Mid-Infrared Spectroscopy for Chemical Analysis.

    Science.gov (United States)

    Haas, Julian; Mizaikoff, Boris

    2016-06-12

    Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review. PMID:27070183

  18. Advances in Mid-Infrared Spectroscopy for Chemical Analysis

    Science.gov (United States)

    Haas, Julian; Mizaikoff, Boris

    2016-06-01

    Infrared spectroscopy in the 3–20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

  19. Advances on image interpolation based on ant colony algorithm.

    Science.gov (United States)

    Rukundo, Olivier; Cao, Hanqiang

    2016-01-01

    This paper presents an advance on image interpolation based on ant colony algorithm (AACA) for high resolution image scaling. The difference between the proposed algorithm and the previously proposed optimization of bilinear interpolation based on ant colony algorithm (OBACA) is that AACA uses global weighting, whereas OBACA uses local weighting scheme. The strength of the proposed global weighting of AACA algorithm depends on employing solely the pheromone matrix information present on any group of four adjacent pixels to decide which case deserves a maximum global weight value or not. Experimental results are further provided to show the higher performance of the proposed AACA algorithm with reference to the algorithms mentioned in this paper. PMID:27047729

  20. Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy

    OpenAIRE

    Fu, Dan; Lu, Fake; Zhang, Xu; Freudiger, Christian Wilhelm; Pernik, Douglas R.; Holtom, Gary; Xie, Xiaoliang Sunney

    2012-01-01

    Stimulated Raman scattering (SRS) microscopy is a newly developed label-free chemical imaging technique that overcomes the speed limitation of confocal Raman microscopy while avoiding the nonresonant background problem of coherent anti-Stokes Raman scattering (CARS) microscopy. Previous demonstrations have been limited to single Raman band measurements. We present a novel modulation multiplexing approach that allows real-time detection of multiple species using the fast Fourier transform. ...

  1. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform

    OpenAIRE

    Hanwell Marcus D; Curtis Donald E; Lonie David C; Vandermeersch Tim; Zurek Eva; Hutchison Geoffrey R

    2012-01-01

    Abstract Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as i...

  2. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    Science.gov (United States)

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003. PMID:24791478

  3. Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    Science.gov (United States)

    Schnabel, Julia A; Heinrich, Mattias P; Papież, Bartłomiej W; Brady, Sir J Michael

    2016-10-01

    Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. PMID:27364430

  4. Recent Advances in Techniques for Hyperspectral Image Processing

    Science.gov (United States)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  5. High-resolution X-ray imaging for microbiology at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and their associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria (∼1 microm x 4 microm in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies

  6. Chemical composition of Nigella sativa Linn: Part 2 Recent advances.

    Science.gov (United States)

    Akram Khan, M; Afzal, M

    2016-06-01

    The black cumin or Nigella sativa L. seeds have many acclaimed medicinal properties such as bronchodilatory, hypotensive, antibacterial, antifungal, analgesic, anti-inflammatory and immunopotentiating. This review article is an update on the previous article published on Nigella sativa L. in this journal in 1999. It covers the medicinal properties and chemical syntheses of the alkaloids isolated from the seeds of the herb. PMID:27068721

  7. Advances in mechanisms of activation and deactivation of environmental chemicals.

    OpenAIRE

    Goldstein, J A; Faletto, M B

    1993-01-01

    Environmental chemicals are both activated and detoxified by phase I and phase II enzymes. The principal enzymes involved in phase I reactions are the cytochrome P-450s. The phase II enzymes include hydrolase and the conjugative enzymes such as glucuronyltransferases, glutathione transferases, N-acetyltransferase, and sulfotransferase. Although other phase I and phase II enzymes exist, the present review is limited to these enzymes. Once thought to be a single enzyme, multiple cytochrome P-45...

  8. Advancements in Development of Chemical-Looping Combustion: A Review

    OpenAIRE

    He Fang; Li Haibin; Zhao Zengli

    2009-01-01

    Chemical-looping combustion (CLC) is a novel combustion technology with inherent separation of greenhouse CO2. Extensive research has been performed on CLC in the last decade with respect to oxygen carrier development, reaction kinetics, reactor design, system efficiencies, and prototype testing. Transition metal oxides, such as Ni, Fe, Cu, and Mn oxides, were reported as reactive species in the oxygen carrier particles. Ni-based oxygen carriers exhibited the best reactivity and stability dur...

  9. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    International Nuclear Information System (INIS)

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research

  10. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Udo [Yale University

    2014-12-10

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3D-AFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  11. Recent advances in chemical evolution and the origins of life

    Science.gov (United States)

    Oro, John; Lazcano, Antonio

    1992-01-01

    Consideration is given to the ideas of Oparin and Haldane who independently suggested more than 60 years ago that the first forms of life were anaerobic, heterotrophic bacteria that emerged as the result of a long period of chemical abiotic synthesis of organic compounds. It is suggested that at least some requirements for life are met in the Galaxy due to the cosmic abundance of carbon, nitrogen, oxygen, and other biogenic elements; the existence of extraterrestrial organic compounds; and the processes of stellar and interstellar planetary formation.

  12. Advances in the chemical utilization of alkali lignin

    International Nuclear Information System (INIS)

    Large quantities of alkali lignin are produced as by-products by the South African pulping industry. The potential utilization of industrial soda/anthraquinone (soda/AQ) eucalyptus, kraft pine and soda bagasse lignin was subsequently investigated. The molecular mass distributions of the three lignins were similar when determined by high pressure gel permeation chromatography (HP-GPC). The quantitative and quanlitative occurrence of various low molecular mass lignin fragments in the different spent liquors, on the other hand, indicated that the three lignins have substantial chemical differences. Analysis of the purified degraded lignins by NMR, methoxyl content determinations, elemental analysis, carbohydrate content determinations etc., quantified various of the chemical properties of the lignin. The properties of the three lignins were ultimately used to make recommendations regarding the potential use of each lignin. One such application was investigated and it was shown that soda bagasse lignin can be used successfully in phenol formaldehyde resin applications. The reaction of formaldehyde with lignin model compounds in acidic medium was also investigated. This reaction was shown to give fast crosslinking of alkyl substituted phenolic and etherified phenolic lignin model compounds at positions meta to the aromatic hydroxy groups

  13. Chemical vapor deposition for silicon cladding on advanced ceramics

    Science.gov (United States)

    Goela, Jitendra S.; Taylor, Raymond L.

    1989-01-01

    Polycrystalline Si was used to clad several advanced ceramic materials such as SiC, Si3N4, sapphire Al2O3, pyrolytic BN, and Si by a CVD process. The thickness of Si cladding ranged from 0.025 to 3.0 mm. CVD Si adhered quite well to all the above materials except Al3O, where the Si cladding was highly stressed and cracked or delaminated. A detailed material characterization of Si-clad SiC samples showed that Si adherence to SiC does not depend much on the substrate surface preparation; that the thermal cycling and polishing of the samples do not cause delamination; and that, in four-point bend tests, the Si-SiC bond remains intact, with the failure occurring in the Si.

  14. Advances in the segmentation of multi-component microanalytical images

    International Nuclear Information System (INIS)

    Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms (C-means and fuzzy C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map

  15. Advanced imaging in femoroacetabular impingement: current state and future prospects

    Directory of Open Access Journals (Sweden)

    Bernd eBittersohl

    2015-07-01

    Full Text Available Symptomatic femoroacetabular impingement (FAI is now a known precursor of early osteoarthritis (OA of the hip. In terms of clinical intervention, the decision between joint preservation and joint replacement hinges on the severity of articular cartilage degeneration. The exact threshold during the course of disease progression when the cartilage damage is irreparable remains elusive. The intention behind radiographic imaging is to accurately identify the morphology of osseous structural abnormalities and to accurately characterize the chondrolabral damage as much as possible. However, both plain radiographs and computed tomography (CT are insensitive for articular cartilage anatomy and pathology. Advanced magnetic resonance imaging (MRI techniques include magnetic resonance arthrography (MRA and biochemically sensitive techniques of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, T1rho, T2/T2* mapping and several others. The diagnostic performance of these techniques to evaluate cartilage degeneration could improve the ability to predict an individual patient-specific outcome with non-surgical and surgical care. This review discusses the facts and current applications of biochemical MRI for hip joint cartilage assessment covering the roles of dGEMRIC, T2/T2*, and T1rho mapping. The basics of each technique and their specific role in FAI assessment are outlined. Current limitations and potential pitfalls as well as future directions of biochemical imaging are also outlined.

  16. Detection of chemical pollutants by passive LWIR hyperspectral imaging

    Science.gov (United States)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Dubé, Denis

    2012-09-01

    Toxic industrial chemicals (TICs) represent a major threat to public health and security. Their detection constitutes a real challenge to security and first responder's communities. One promising detection method is based on the passive standoff identification of chemical vapors emanating from the laboratory under surveillance. To investigate this method, the Department of National Defense and Public Safety Canada have mandated Defense Research and Development Canada (DRDC) - Valcartier to develop and test passive Long Wave Infrared (LWIR) hyperspectral imaging (HSI) sensors for standoff detection. The initial effort was focused to address the standoff detection and identification of toxic industrial chemicals (TICs) and precursors. Sensors such as the Multi-option Differential Detection and Imaging Fourier Spectrometer (MoDDIFS) and the Improved Compact ATmospheric Sounding Interferometer (iCATSI) were developed for this application. This paper describes the sensor developments and presents initial results of standoff detection and identification of TICs and precursors. The standoff sensors are based on the differential Fourier-transform infrared (FTIR) radiometric technology and are able to detect, spectrally resolve and identify small leak plumes at ranges in excess of 1 km. Results from a series of trials in asymmetric threat type scenarios will be presented. These results will serve to establish the potential of the method for standoff detection of TICs precursors and surrogates.

  17. LWIR hyperspectral imaging application and detection of chemical precursors

    Science.gov (United States)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Dubé, Denis

    2012-10-01

    Detection and identification of Toxic industrial chemicals (TICs) represent a major challenge to protect and sustain first responder and public security. In this context, passive Hyperspectral Imaging (HSI) is a promising technology for the standoff detection and identification of chemical vapors emanating from a distant location. To investigate this method, the Department of National Defense and Public Safety Canada have mandated Defense Research and Development Canada (DRDC) - Valcartier to develop and test Very Long Wave Infrared (VLWIR) HSI sensors for standoff detection. The initial effort was focused to address the standoff detection and identification of toxic industrial chemicals (TICs), surrogates and precursors. Sensors such as the Improved Compact ATmospheric Sounding Interferometer (iCATSI) and the Multi-option Differential Detection and Imaging Fourier Spectrometer (MoDDIFS) were developed for this application. This paper presents the sensor developments and preliminary results of standoff detection and identification of TICs and precursors. The iCATSI and MoDDIFS sensors are based on the optical differential Fourier-transform infrared (FTIR) radiometric technology and are able to detect, spectrally resolve and identify small leak at ranges in excess of 1 km. Results from a series of trials in asymmetric threat type scenarios are reported. These results serve to establish the potential of passive standoff HSI detection of TICs, precursors and surrogates.

  18. [Advances in chemical constituents and bioactivity of Salvia genus].

    Science.gov (United States)

    Peng, Qing; Liu, Jian-xun

    2015-06-01

    The genus Salvia in the family Lamiaceae with nearly 1 000 species, is widespread in temperate and tropical regions around the world. Many species of genus Salvia are important medicinal plants with a long history of which Danshen (the dried roots and rhizomes of S. miltiorrhiza) is one of the most popular herbal traditional medicines in Asian countries. The chemical constituents from Salvia plants mainly contain sesquiterpenoids, diterpenoids, triterpenoids, steroids and polyphenols etc, which exhibit antibacterial, antidermatophytic, antioxidant, anti-inflammatory, antineoplastic, antiplatelet aggregation activities and so on. In this article, the development of new constituents and their biological activities of Salvia genus in the past five years were reviewed and summarized for its further development and utilization. PMID:26552163

  19. AXIOM: Advanced X-ray Imaging of the Magnetosphere

    Science.gov (United States)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2012-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways - by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques. which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located. X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock. with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging Of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth - Moon Ll point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  20. Handheld hyperspectral imager for standoff detection of chemical and biological aerosols

    Science.gov (United States)

    Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard

    2004-08-01

    Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patented technique, (IMSS Image Multi-spectral Sensing), that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera. This cameras technology has been tested at Dugway Proving Ground and Dstl Porton Down facilities looking at Chemical and Biological agent simulants. In addition to Chemical and Biological detection, the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. In this paper we will present some of the results from the data collection at the TRE test at Dugway Proving Ground during the summer of 2002 and laboratory testing at the Dstl facility at Porton Down in the UK in the fall of 2002.

  1. Chemical characteristics of negative-tone chemically amplified resist for advanced mask making

    Science.gov (United States)

    Takeshi, Kazumasa; Ito, Naoko; Inokuchi, Daisuke; Nishiyama, Yasushi; Fukushima, Yuichi; Okumoto, Yasuhiro

    2004-08-01

    We investigated the film property and the lithographic performance of five commercialized NCARs. This report shows the relationship between chemical structure and EB lithographic performance, such as resolution, sensitivity and environmental stability. In this study, we found the good matching the matrix polymer, the cross linker and the photo acid generator(PAG) against NCARs issues. Furthermore, we could demonstrate the trade-off relation for lithographic factor and stabilized factor by chemical characteristics. This report suggests the strategy that was design of chemical structure for the next generation NCARs.

  2. Tabletop imaging of structural evolutions in chemical reactions

    CERN Document Server

    Ibrahim, Heide; Beaulieu, Samuel; Schmidt, Bruno E; Thiré, Nicolas; Bisson, Éric; Hebeisen, Christoph T; Wanie, Vincent; Giguére, Mathieu; Kieffer, Jean-Claude; Sanderson, Joseph; Schuurman, Michael S; Légaré, François

    2014-01-01

    The introduction of femto-chemistry has made it a primary goal to follow the nuclear and electronic evolution of a molecule in time and space as it undergoes a chemical reaction. Using Coulomb Explosion Imaging we have shot the first high-resolution molecular movie of a to and fro isomerization process in the acetylene cation. So far, this kind of phenomenon could only be observed using VUV light from a Free Electron Laser [Phys. Rev. Lett. 105, 263002 (2010)]. Here we show that 266 nm ultrashort laser pulses are capable of initiating rich dynamics through multiphoton ionization. With our generally applicable tabletop approach that can be used for other small organic molecules, we have investigated two basic chemical reactions simultaneously: proton migration and C=C bond-breaking, triggered by multiphoton ionization. The experimental results are in excellent agreement with the timescales and relaxation pathways predicted by new and definitively quantitative ab initio trajectory simulations.

  3. Pitfalls of adrenal imaging with chemical shift MRI

    International Nuclear Information System (INIS)

    Chemical shift (CS) MRI of the adrenal glands exploits the different precessional frequencies of fat and water protons to differentiate the intracytoplasmic lipid-containing adrenal adenoma from other adrenal lesions. The purpose of this review is to illustrate both technical and interpretive pitfalls of adrenal imaging with CS MRI and emphasize the importance of adherence to strict technical specifications and errors that may occur when other imaging features and clinical factors are not incorporated into the diagnosis. When performed properly, the specificity of CS MRI for the diagnosis of adrenal adenoma is over 90%. Sampling the in-phase and opposed-phase echoes in the correct order and during the same breath-hold are essential requirements, and using the first echo pair is preferred, if possible. CS MRI characterizes more adrenal adenomas then unenhanced CT but may be non-diagnostic in a proportion of lipid-poor adenomas; CT washout studies may be able to diagnose these lipid-poor adenomas. Other primary and secondary adrenal tumours and supra-renal disease entities may contain lipid or gross fat and mimic adenoma or myelolipoma. Heterogeneity within an adrenal lesion that contains intracytoplasmic lipid could be due to myelolipoma, lipomatous metaplasia of adenoma, or collision tumour. Correlation with previous imaging, other imaging features, clinical history, and laboratory investigations can minimize interpretive errors

  4. Water-fat imaging and general chemical shift imaging with spectrum modeling

    Science.gov (United States)

    An, Li

    Water-fat chemical shift imaging (CSI) has been an active research area in magnetic resonance imaging (MRI) since the early 1980's. There are two main reasons for water- fat imaging. First, water-fat imaging can serve as a fat- suppression method. Removing the usually bright fatty signals not only extends the useful dynamic range of an image, but also allows better visualization of lesions or injected contrast, and removes chemical shift artifacts, which may contribute to improved diagnosis. Second, quantification of water and fat provides useful chemical information for characterizing tissues such as bone marrow, liver, and adrenal masses. A milestone in water- fat imaging is the Dixon method that can produce separate water and fat images with only two data acquisitions. In practice, however, the Dixon method is not always successful due to field inhomogeneity problems. In recent years, many variations of the Dixon method have been proposed to overcome the field inhomogeneity problem. In general, these methods can at best separate water and fat without identifying the two because the water and fat magnetization vectors are sampled symmetrically, only parallel and anti-parallel. Furthermore, these methods usually depend on two-dimensional phase unwrapping which itself is sensitive to noise and artifacts, and becomes unreliable when the images have disconnected tissues in the field-of-view (FOV). We will first introduce the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) in chapter 1, and briefly review the existing water-fat imaging techniques in chapter 2. In chapter 3, we will introduce a new method for water-fat imaging. With three image acquisitions, a general direct phase encoding (DPE) of the chemical shift information is achieved, which allows an unambiguous determination of water and fat on a pixel by pixel basis. Details of specific implementations and noise performance will be discussed. Representative results

  5. Advanced Imaging by Space-Time Deconvolution in Array GPR

    Science.gov (United States)

    Savelyev, T. G.; van Tol, N. T.; Yarovoy, A. G.; Ligthart, L. P.

    Digital beamforming in array-based UWB radar delivers a high-resolution 3-D image of subsurface in GPR landmine detection while simultaneous data acquisition by elements of the array significantly increases the scanning speed. Such a GPR system with a single transmit antenna and a linear receive array has been developed in the Delft University of Technology. For online processing we propose an advanced imaging algorithm based on migration by regularized, parametric space-time deconvolution. The algorithm deconvolves a 3-D space-time array point spread function out of the data volume by means of FFT and inverse Wiener filter that is being controlled automatically with numerical criteria for stability and accuracy. The prior knowledge of GPR impulse response and ground impulse response is used to form a separate point spread function for each receiving antenna. The developed technique has been verified on experimental data for typical anti-personnel mines and compared with a classical migration by diffraction stacking.

  6. Millimeter-wave imaging of thermal and chemical signatures

    International Nuclear Information System (INIS)

    Development of a passive millimeter-wave (mm-wave) system is described for remotely mapping thermal and chemical signatures of process effluents with application to arms control and nonproliferation. Because a large amount of heat is usually dissipated in the air or waterway as a by-product of most weapons of mass destruction facilities, remote thermal mapping may be used to detect concealed or open facilities of weapons of mass destruction. We have developed a focal-plane mm-wave imaging system to investigate the potential of thermal mapping. Results of mm-wave images obtained with a 160-GHz radiometer system are presented for different target scenes simulated in the laboratory. Chemical and nuclear facilities may be identified by remotely measuring molecular signatures of airborne molecules emitted from these facilities. We have developed a filterbank radiometer to investigate the potential of passive spectral measurements. Proof of principle is presented by measuring the HDO spectral line at 80.6 GHz with a 4-channel 77-83 GHz radiometer

  7. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    OpenAIRE

    Oyuna Tsydenova; Valeriy Batoev; Agniya Batoeva

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fe...

  8. Advanced electron crystallography through model-based imaging.

    Science.gov (United States)

    Van Aert, Sandra; De Backer, Annick; Martinez, Gerardo T; den Dekker, Arnold J; Van Dyck, Dirk; Bals, Sara; Van Tendeloo, Gustaaf

    2016-01-01

    The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy. PMID:26870383

  9. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei;

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and prod...

  10. Completing the Pain Circuit: Recent Advances in Imaging Pain and Inflammation beyond the Central Nervous System

    OpenAIRE

    Clas Linnman; David Borsook

    2013-01-01

    This review describes some of the recent developments in imaging aspects of pain in the periphery. It is now possible to image nerves in the cornea non-invasively, to image receptor level expression and inflammatory processes in injured tissue, to image nerves and alterations in nerve properties, to image astrocyte and glial roles in neuroinflammatory processes, and to image pain conduction functionally in the trigeminal ganglion. These advances will ultimately allow us to describe the pain p...

  11. Magnetic Doppler imaging of the chemically peculiar star HD 125248

    Science.gov (United States)

    Rusomarov, N.; Kochukhov, O.; Ryabchikova, T.; Ilyin, I.

    2016-04-01

    Context. Intermediate-mass, chemically peculiar stars with strong magnetic fields provide an excellent opportunity to study the topology of their surface magnetic fields and the interplay between magnetic geometries and abundance inhomogeneities in the atmospheres of these stars. Aims: We reconstruct detailed maps of the surface magnetic field and abundance distributions for the magnetic Ap star HD 125248. Methods: We performed the analysis based on phase-resolved, four Stokes parameter spectropolarimetric observations obtained with the HARPSpol instrument. These data were interpreted with the help of magnetic Doppler imaging techniques and model atmospheres taking the effects of strong magnetic fields and nonsolar chemical composition into account. Results: We improved the atmospheric parameters of the star, Teff = 9850 ± 250 K and log g = 4.05 ± 0.10. We performed detailed abundance analysis, which confirmed that HD 125248 has abundances typical of other Ap stars, and discovered significant vertical stratification effects for the Fe ii and Cr ii ions. We computed LSD Stokes profiles using several line masks corresponding to Fe-peak and rare earth elements, and studied their behavior with rotational phase. Combining previous longitudinal field measurements with our own observations, we improved the rotational period of the star Prot = 9.29558 ± 0.00006 d. Magnetic Doppler imaging of HD 125248 showed that its magnetic field is mostly poloidal and quasi-dipolar with two large spots of different polarity and field strength. The chemical maps of Fe, Cr, Ce, Nd, Gd, and Ti show abundance contrasts of 0.9-3.5 dex. Among these elements, the Fe abundance map does not show high-contrast features. Cr is overabundant around the negative magnetic pole and has 3.5 dex abundance range. The rare earth elements and Ti are overabundant near the positive magnetic pole. Conclusions: The magnetic field of HD 125248 has strong deviations from the classical oblique dipole field

  12. Advances in Modeling of Scanning Charged-Particle-Microscopy Images

    OpenAIRE

    Cizmar, Petr; Vladar, Andras E.; Postek, Michael T.

    2010-01-01

    Modeling artificial scanning electron microscope (SEM) and scanning ion microscope images has recently become important. This is because of the need to provide repeatable images with a priori determined parameters. Modeled artificial images are highly useful in the evaluation of new imaging and metrological techniques, like image-sharpness calculation, or drift-corrected image composition (DCIC). Originally, the NIST-developed artificial image generator was designed only to produce the SEM im...

  13. Recent advances and future perspectives of gamma imagers for scintimammography

    International Nuclear Information System (INIS)

    The very low sensitivity of Scintimammography for tumors under 1 cm in diameter, with current nuclear medicine cameras in use, is the major limitation in recommending this test modality for screening purposes. Recently latest generation cameras with superior imaging performances have allowed to foresee a very promising future for scintimammography. Recent technological advances obtained from our research group on the new Lanthanum scintillation crystals are now demonstrating how continuous crystals coupled to Hamamatsu Flat panel tube can overcome a number of limitations in spatial and energy resolution of scintillation arrays, carrying out 6% energy resolution, and submillimeter spatial resolution values at 140 keV. In this paper three basic detection systems have been analysed: a LumaGEM 3200S gamma camera (Gamma Medica, InC., Northridge, USA), based on a cadmium-zinc-telluride (CZT) semiconductor detector with a FoV of 12.5x12.5 cm2 and with detector elements of 1.6x1.6 mm2 in size and a detector prototype consisting of a Flat panel PMT coupled to planar LaBr3:Ce scintillator. The third one is a first generation large FoV gamma camera chosen for comparison, based on PSPMTs photodetector array coupled to a NaI(Tl) scintillation crystal matrix. LaBr3:Ce and CZT cameras showed superior spatial and energy resolution than previous generation one based on NaI(Tl) scintillation array. Both CZT and LaBr gamma cameras showed similar efficiencies for the same energy window though LaBr3:Ce continuous crystal showed better imaging performance than pixellated detectors. However large area LaBr3:Ce continuous crystals are not available yet

  14. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    Science.gov (United States)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  15. Development of a Raman chemical imaging detection method for authenticating skim milk powder

    Science.gov (United States)

    This research demonstrated that Raman chemical imaging coupled with a simple image classification algorithm can be used to detect multiple chemical adulterants in skim milk powder. Ammonium sulfate, dicyandiamide, melamine, and urea were mixed into the milk powder as chemical adulterants in the conc...

  16. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  17. Toward in vivo chemical imaging of epicuticular waxes.

    Science.gov (United States)

    Weissflog, Ina; Vogler, Nadine; Akimov, Denis; Dellith, Andrea; Schachtschabel, Doreen; Svatos, Ales; Boland, Wilhelm; Dietzek, Benjamin; Popp, Jürgen

    2010-10-01

    Epicuticular waxes, which are found on the outer surface of plant cuticles, are difficult to study in vivo. To monitor the growth, development, and structural alterations of epicuticular wax layers, coherent anti-Stokes Raman scattering (CARS) might be used. CARS, as a Raman-based technique, not only provides structural insight but also chemical information by imaging the spatial distribution of Raman-active vibrations. Here, we present a comparative study using CARS and scanning electron microscopy to characterize the structure of epicuticular waxes. The ability of CARS to provide detailed structural information on the biologically important wax layer was detailed on the examples of cherry laurel (Prunus laurocerasus), hoya (Hoya carnosa), and ceriman/Swiss cheese plant (Monstera sp. aff. deliciosa). We anticipate that the work presented will open a doorway for online monitoring of formation and alterations of epicuticular wax layers. PMID:20709828

  18. Toward in Vivo Chemical Imaging of Epicuticular Waxes1[C

    Science.gov (United States)

    Weissflog, Ina; Vogler, Nadine; Akimov, Denis; Dellith, Andrea; Schachtschabel, Doreen; Svatos, Ales; Boland, Wilhelm; Dietzek, Benjamin; Popp, Jürgen

    2010-01-01

    Epicuticular waxes, which are found on the outer surface of plant cuticles, are difficult to study in vivo. To monitor the growth, development, and structural alterations of epicuticular wax layers, coherent anti-Stokes Raman scattering (CARS) might be used. CARS, as a Raman-based technique, not only provides structural insight but also chemical information by imaging the spatial distribution of Raman-active vibrations. Here, we present a comparative study using CARS and scanning electron microscopy to characterize the structure of epicuticular waxes. The ability of CARS to provide detailed structural information on the biologically important wax layer was detailed on the examples of cherry laurel (Prunus laurocerasus), hoya (Hoya carnosa), and ceriman/Swiss cheese plant (Monstera sp. aff. deliciosa). We anticipate that the work presented will open a doorway for online monitoring of formation and alterations of epicuticular wax layers. PMID:20709828

  19. Advance of molecular imaging with positron emission tomography

    International Nuclear Information System (INIS)

    Molecular imaging with positron emission tomography (PET) is an important field of molecular imaging. This article summarizes the fundamental of PET molecular imaging technique and its application in protein function, gene expression and gene therapy, receptor imaging, and blood-flow infusion and metabolism imaging. (authors)

  20. Advanced Reservoir Imaging Using Frequency-Dependent Seismic Attributes

    Energy Technology Data Exchange (ETDEWEB)

    Fred Hilterman; Tad Patzek; Gennady Goloshubin; Dmitriy Silin; Charlotte Sullivan; Valeri Korneev

    2007-12-31

    Our report concerning advanced imaging and interpretation technology includes the development of theory, the implementation of laboratory experiments and the verification of results using field data. We investigated a reflectivity model for porous fluid-saturated reservoirs and demonstrated that the frequency-dependent component of the reflection coefficient is asymptotically proportional to the reservoir fluid mobility. We also analyzed seismic data using different azimuths and offsets over physical models of fractures filled with air and water. By comparing our physical model synthetics to numerical data we have identified several diagnostic indicators for quantifying the fractures. Finally, we developed reflectivity transforms for predicting pore fluid and lithology using rock-property statistics from 500 reservoirs in both the shelf and deep-water Gulf of Mexico. With these transforms and seismic AVO gathers across the prospect and its down-dip water-equivalent reservoir, fluid saturation can be estimated without a calibration well that ties the seismic. Our research provides the important additional mechanisms to recognize, delineate, and validate new hydrocarbon reserves and assist in the development of producing fields.

  1. Recent advances in imaging crustal fault zones: a review

    Science.gov (United States)

    Yang, Hongfeng

    2015-04-01

    Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone (LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influence rupture propagation, and hold important information of earthquake physics. A number of geophysical and geodetic methods have been developed to derive high-resolution structure of the LVZ. Here, I review a few recent approaches, including ambient noise cross-correlation on dense across-fault arrays and GPS recordings of fault-zone trapped waves. Despite the past efforts, many questions concerning the LVZ structure remain unclear, such as the depth extent of the LVZ. High-quality data from larger and denser arrays and new seismic imaging technique using larger portion of recorded waveforms, which are currently under active development, may be able to better resolve the LVZ structure. In addition, effects of the along-strike segmentation and gradational velocity changes across the boundaries between the LVZ and the host rock on rupture propagation should be investigated by conducting comprehensive numerical experiments. Furthermore, high-quality active sources such as recently developed large-volume air-gun arrays provide a powerful tool to continuously monitor temporal changes of fault-zone properties, and thus can advance our understanding of fault zone evolution.

  2. Burnout prediction using advance image analysis coal characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Edward Lester; Dave Watts; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering

    2003-07-01

    The link between petrographic composition and burnout has been investigated previously by the authors. However, these predictions were based on 'bulk' properties of the coal, including the proportion of each maceral or the reflectance of the macerals in the whole sample. Combustion studies relating burnout with microlithotype analysis, or similar, remain less common partly because the technique is more complex than maceral analysis. Despite this, it is likely that any burnout prediction based on petrographic characteristics will become more accurate if it includes information about the maceral associations and the size of each particle. Chars from 13 coals, 106-125 micron size fractions, were prepared using a Drop Tube Furnace (DTF) at 1300{degree}C and 200 millisecond and 1% Oxygen. These chars were then refired in the DTF at 1300{degree}C 5% oxygen and residence times of 200, 400 and 600 milliseconds. The progressive burnout of each char was compared with the characteristics of the initial coals. This paper presents an extension of previous studies in that it relates combustion behaviour to coals that have been characterized on a particle by particle basis using advanced image analysis techniques. 13 refs., 7 figs.

  3. Applications of Chemical Shift Imaging to Marine Sciences

    Directory of Open Access Journals (Sweden)

    Haakil Lee

    2010-08-01

    Full Text Available The successful applications of magnetic resonance imaging (MRI in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT or positron emission (PET scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS. MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H including carbon (13C or phosphorus (31P. In vivo MR spectra can be obtained from single region ofinterest (ROI or voxel or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI. Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism.

  4. Magnetic Doppler imaging of the chemically peculiar star HD 125248

    CERN Document Server

    Rusomarov, N; Ryabchikova, T; Ilyin, I

    2016-01-01

    Intermediate-mass, chemically peculiar stars with strong magnetic fields give us an excellent opportunity to study the topology of their surface magnetic fields and the interplay between magnetic geometries and abundance inhomogeneities in their atmospheres. We reconstruct detailed maps of the surface magnetic field and abundance distributions for the magnetic Ap star HD 125248. We performed the analysis based on phase-resolved, four Stokes parameter spectropolarimetric observations obtained with the HARPSpol instrument. These data were interpreted with the magnetic Doppler imaging technique. We improved the atmospheric parameters of the star, T_eff = 9850K +/- 250K and logg = 4.05 +/- 0.10. We performed detailed abundance analysis and discovered vertical stratification effects for the FeII and CrII ions. We computed LSD Stokes profiles and studied their behavior with rotational phase. We improved the rotational period of the star P_rot = 9.29558(6)d. Magnetic Doppler imaging of HD 125248 showed that its magn...

  5. Significant advancement of mass spectrometry imaging for food chemistry.

    Science.gov (United States)

    Yoshimura, Yukihiro; Goto-Inoue, Naoko; Moriyama, Tatsuya; Zaima, Nobuhiro

    2016-11-01

    Food contains various compounds that have an impact on our daily lives. Many technologies have been established to analyze these molecules of interest in foods. However, the analysis of the spatial distribution of these compounds in foods using conventional technology, such as high-performance liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry is difficult. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is considered an ideal complementary approach. MALDI-MSI is a two-dimensional MALDI-MS technology that can detect compounds in a tissue section without extraction, purification, separation, or labeling. MALDI-MSI can be used to visualize the spatial distribution of chemical compounds or biomolecules in foods. Although the methodology of MALDI-MSI in food science is not yet fully established, the versatility of MALDI-MSI is expected to open a new frontier in food science. Herein, we describe the principles and applications of MALDI-MSI in food science and related fields. PMID:27211639

  6. Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging

    Science.gov (United States)

    Tao, Feifei; Ngadi, Michael

    2016-05-01

    Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.

  7. Advanced Methods for Localized Content Based Image Retrieval

    OpenAIRE

    Radhey Shyam; Pooja Srivastava

    2012-01-01

    Localized Content based image retrieval is an effective technique for image retrieval in large databases. It is the retrieval of images based on visual features such as color, texture and shape. In this paper, our desired content of an image is not holistic, but is localized. Specifically, we define Localized Content-Based Image Retrieval, where the user is only interested in a portion of the image, and the rest of the image is irrelevant. Some work already has been done in this direction. We...

  8. Chemical Imaging of the Cell Membrane by NanoSIMS

    International Nuclear Information System (INIS)

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  9. Quantitative chemical-shift MR imaging cutoff value: Benign versus malignant vertebral compression – Initial experience

    Directory of Open Access Journals (Sweden)

    Dalia Z. Zidan

    2014-09-01

    Conclusion: Quantitative chemical shift MR imaging could be a valuable addition to standard MR imaging techniques and represent a rapid problem solving tool in differentiating benign from malignant vertebral compression, especially in patients with known primary malignancies.

  10. Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex Interfacial Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sibener, Steven J. [University of Chicago, IL (United States)

    2014-03-11

    This research program explored the efficacy of using molecular-level manipulation, imaging and scanning tunneling spectroscopy in conjunction with supersonic molecular beam gas-surface scattering to significantly enhance our understanding of chemical processes occurring on well-characterized interfaces. One program focus was on the spatially-resolved emergent behavior of complex reaction systems as a function of the local geometry and density of adsorbate-substrate systems under reaction conditions. Another focus was on elucidating the emergent electronic and related reactivity characteristics of intentionally constructed single and multicomponent atom- and nanoparticle-based materials. We also examined emergent chirality and self-organization in adsorbed molecular systems where collective interactions between adsorbates and the supporting interface lead to spatial symmetry breaking. In many of these studies we combined the advantages of scanning tunneling (STM) and atomic force (AFM) imaging, scanning tunneling local electronic spectroscopy (STS), and reactive supersonic molecular beams to elucidate precise details of interfacial reactivity that had not been observed by more traditional surface science methods. Using these methods, it was possible to examine, for example, the differential reactivity of molecules adsorbed at different bonding sites in conjunction with how reactivity is modified by the local configuration of nearby adsorbates. At the core of this effort was the goal of significantly extending our understanding of interfacial atomic-scale interactions to create, with intent, molecular assemblies and materials with advanced chemical and physical properties. This ambitious program addressed several key topics in DOE Grand Challenge Science, including emergent chemical and physical properties in condensed phase systems, novel uses of chemical imaging, and the development of advanced reactivity concepts in combustion and catalysis including carbon

  11. Chemical Imaging of Heterogeneous Muscle Foods Using Near-Infrared Hyperspectral Imaging in Transmission Mode.

    Science.gov (United States)

    Wold, Jens Petter; Kermit, Martin; Segtnan, Vegard Herman

    2016-06-01

    Foods and biomaterials are, in general, heterogeneous and it is often a challenge to obtain spectral data which are representative for the chemical composition and distribution. This paper presents a setup for near-infrared (NIR) transmission imaging where the samples are completely trans-illuminated, probing the entire sample. The system measures falling samples at high speed and consists of an NIR imaging scanner covering the spectral range 760-1040 nm and a powerful line light source. The investigated samples were rather big: whole pork bellies of thickness up to 5 cm, salmon fillets with skin, and 3 cm thick model samples of ground pork meat. Partial least square regression models for fat were developed for ground pork and salmon fillet with high correlations (R = 0.98 and R = 0.95, respectively). The regression models were applied at pixel level in the hyperspectral transmission images and resulted in images of fat distribution where also deeply embedded fat clearly contributed to the result. The results suggest that it is possible to use transmission imaging for rapid, nondestructive, and representative sampling of very heterogeneous foods. The proposed system is suitable for industrial use. PMID:27257302

  12. Rodent-repellent studies. III. Advanced studies in the evaluation of chemical repellents

    Science.gov (United States)

    Bellack, E.; DeWitt, J.B.

    1949-01-01

    In order to bridge the gap between preliminary screening of chemicals for potential rodent repellency and the application ofthese compounds to paper cartons, more advanced studies in the evaluation ofpromising materials have been carried out. These studies have resulted in: (1) a modification of the food acceptance technique which eliminates doubtful compounds and also provides a closer analogy to the ultimate goal, and (2) a method for rapidly testing chemicals incorporated in paper. When the results of these latter tests are expressed as a function of time, it can be shown that a distinct correlation exists between the deterrency exhibited by treated paper and the repellency of treated food.

  13. Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers

    International Nuclear Information System (INIS)

    We studied the photoelectron spectra generated by an intense few-cycle infrared laser pulse. By focusing on the angular distributions of the back rescattered high energy photoelectrons, we show that accurate differential elastic scattering cross-sections of the target ion by free electrons can be extracted. Since the incident direction and the energy of the free electrons can be easily changed by manipulating the laser's polarization, intensity and wavelength, these extracted elastic scattering cross-sections, in combination with more advanced inversion algorithms, may be used to reconstruct the effective single-scattering potential of the molecule, thus opening up the possibility of using few-cycle infrared lasers as powerful table-top tools for imaging chemical and biological transformations, with the desired unprecedented temporal and spatial resolutions

  14. Assessment of impacts at the advanced test reactor as a result of chemical releases at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    This report provides an assessment of potential impacts at the Advanced Test Reactor Facility (ATR) resulting from accidental chemical spill at the Idaho Chemical Processing Plant (ICPP). Spills postulated to occur at the Lincoln Blvd turnoff to ICPP were also evaluated. Peak and time weighted average concentrations were calculated for receptors at the ATR facility and the Test Reactor Area guard station at a height above ground level of 1.0 m. Calculated concentrations were then compared to the 15 minute averaged Threshold Limit Value - Short Term Exposure Limit (TLV-STEL) and the 30 minute averaged Immediately Dangerous to Life and Health (IDLH) limit. Several different methodologies were used to estimate source strength and dispersion. Fifteen minute time weighted averaged concentrations of hydrofluoric acid and anhydrous ammonia exceeded TLV-STEL values for the cases considered. The IDLH value for these chemicals was not exceeded. Calculated concentrations of ammonium hydroxide, hexone, nitric acid, propane, gasoline, chlorine and liquid nitrogen were all below the TLV-STEL value

  15. Advances in chemical standards for nuclear fuel analysis and safeguards purposes

    International Nuclear Information System (INIS)

    The objectives of the Consultants' Meeting were to evaluate the results of enquiries conducted by the IAEA and the CEC on the needs and availability of nuclear reference materials, to prepare a report on the results of the enquiries and on the advances in chemical standards for nuclear fuel analyses and safeguards purposes and to identify needs which are not being met or could not be met in the future

  16. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited

    Directory of Open Access Journals (Sweden)

    Necdet Onur Urs

    2016-05-01

    Full Text Available Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  17. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited)

    Science.gov (United States)

    Urs, Necdet Onur; Mozooni, Babak; Mazalski, Piotr; Kustov, Mikhail; Hayes, Patrick; Deldar, Shayan; Quandt, Eckhard; McCord, Jeffrey

    2016-05-01

    Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  18. 3D Chemical and Elemental Imaging by STXM Spectrotomography

    International Nuclear Information System (INIS)

    Spectrotomography based on the scanning transmission x-ray microscope (STXM) at the 10ID-1 spectromicroscopy beamline of the Canadian Light Source was used to study two selected unicellular microorganisms. Spatial distributions of sulphur globules, calcium, protein, and polysaccharide in sulphur-metabolizing bacteria (Allochromatium vinosum) were determined at the S 2p, C 1s, and Ca 2p edges. 3D chemical mapping showed that the sulphur globules are located inside the bacteria with a strong spatial correlation with calcium ions (it is most probably calcium carbonate from the medium; however, with STXM the distribution and localization in the cell can be made visible, which is very interesting for a biologist) and polysaccharide-rich polymers, suggesting an influence of the organic components on the formation of the sulphur and calcium deposits. A second study investigated copper accumulating in yeast cells (Saccharomyces cerevisiae) treated with copper sulphate. 3D elemental imaging at the Cu 2p edge showed that Cu(II) is reduced to Cu(I) on the yeast cell wall. A novel needle-like wet cell sample holder for STXM spectrotomography studies of fully hydrated samples is discussed.

  19. DESIGN AN ADVANCE COMPUTER-AIDED TOOL FOR IMAGE AUTHENTICATION AND CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Rozita Teymourzadeh

    2013-01-01

    Full Text Available Over the years, advancements in the fields of digital image processing and artificial intelligence have been applied in solving many real-life problems. This could be seen in facial image recognition for security systems, identity registrations. Hence a bottleneck of identity registration is image processing. These are carried out in form of image preprocessing, image region extraction by cropping, feature extraction using Principal Component Analysis (PCA and image compression using Discrete Cosine Transform (DCT. Other processing include filtering and histogram equalization using contrast stretching is performed while enhancing the image as part of the analytical tool. Hence, this research work presents a universal integration image forgery detection analysis tool with image facial recognition using Black Propagation Neural Network (BPNN processor. The proposed designed tool is a multi-function smart tool with the novel architecture of programmable error goal and light intensity. Furthermore, its advance dual database increases the efficiency for high performance application. With the fact that, the facial image recognition will always, give a matching output or closest possible output image for every input image irrespective of the authenticity, the universal smart GUI tool is proposed and designed to perform image forgery detection with the high accuracy of ±2% error rate. Meanwhile, a novel structure that provides efficient automatic image forgery detection for all input test images for the BPNN recognition is presented. Hence, an input image will be authenticated before being fed into the recognition tool.

  20. Advances in Imaging of the Pediatric Pituitary Gland.

    Science.gov (United States)

    Bou-Ayache, Jad M; Delman, Bradley N

    2016-06-01

    High-resolution MRI of the pediatric sella can help identity or confirm clinical abnormalities, assess pituitary gland size and structure, and reveal acquired lesions. This article reviews contemporary techniques for imaging of the sella and associated structures in this population. Strengths and weaknesses of conventional imaging are discussed, as are techniques that can enhance yield. Some new and emerging technologies are discussed, including MR elastography, perfusion imaging, spectroscopy, and diffusion-weighted and diffusion-tensor imaging. It is expected that this overview will provide insight as to where pediatric sella imaging is currently and where it may head in the future. PMID:27241974

  1. Review on advanced of solar assisted chemical heat pump dryer for agriculture produce

    International Nuclear Information System (INIS)

    Over the past three decades there has been nearly exponential growth in drying R and D on a global scale. Improving of the drying operation to save energy, improve product quality as well as reduce environmental effect remained as the main objectives of any development of drying system. A solar assisted chemical heat pump dryer is a new solar drying system, which have contributed to better cost-effectiveness and better quality dried products as well as saving energy. A solar collector is adapted to provide thermal energy in a reactor so a chemical reaction can take place. This reduces the dependency of the drying technology on fossil energy for heating. In this paper a review on advanced of solar assisted chemical heat pump dryer is presented (the system model and the results from experimental studies on the system performance are discussed). The review of heat pump dryers and solar assisted heat pump dryer is presented. Description of chemical heat pump types and the overview of chemical heat pump dryer are discussed. The combination of chemical heat pump and solar technology gives extra efficiency in utilizing energy. (author)

  2. Review on advanced of solar assisted chemical heat pump dryer for agriculture produce

    Energy Technology Data Exchange (ETDEWEB)

    Fadhel, M.I. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka (Malaysia); Sopian, K.; Daud, W.R.W.; Alghoul, M.A. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-02-15

    Over the past three decades there has been nearly exponential growth in drying R and D on a global scale. Improving of the drying operation to save energy, improve product quality as well as reduce environmental effect remained as the main objectives of any development of drying system. A solar assisted chemical heat pump dryer is a new solar drying system, which have contributed to better cost-effectiveness and better quality dried products as well as saving energy. A solar collector is adapted to provide thermal energy in a reactor so a chemical reaction can take place. This reduces the dependency of the drying technology on fossil energy for heating. In this paper a review on advanced of solar assisted chemical heat pump dryer is presented (the system model and the results from experimental studies on the system performance are discussed). The review of heat pump dryers and solar assisted heat pump dryer is presented. Description of chemical heat pump types and the overview of chemical heat pump dryer are discussed. The combination of chemical heat pump and solar technology gives extra efficiency in utilizing energy. (author)

  3. Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules

    Directory of Open Access Journals (Sweden)

    Pengcheng Xu

    2014-10-01

    Full Text Available Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing.

  4. NATO Advanced Research Workshop on The Theory of Chemical Reaction Dynamics

    CERN Document Server

    1986-01-01

    The calculation of cross sections and rate constants for chemical reactions in the gas phase has long been a major problem in theoretical chemistry. The need for reliable and applicable theories in this field is evident when one considers the significant recent advances that have been made in developing experimental techniques, such as lasers and molecular beams, to probe the microscopic details of chemical reactions. For example, it is now becoming possible to measure cross sections for chemical reactions state selected in the vibrational­ rotational states of both reactants and products. Furthermore, in areas such as atmospheric, combustion and interstellar chemistry, there is an urgent need for reliable reaction rate constant data over a range of temperatures, and this information is often difficult to obtain in experiments. The classical trajectory method can be applied routinely to simple reactions, but this approach neglects important quantum mechanical effects such as tunnelling and resonances. For al...

  5. Development of a Raman chemical image detection algorithm for authenticating dry milk

    Science.gov (United States)

    This research developed a Raman chemical imaging method for detecting multiple adulterants in skim milk powder. Ammonium sulfate, dicyandiamide, melamine, and urea were mixed into the milk powder as chemical adulterants in the concentration range of 0.1–5.0%. A Raman imaging system using a 785-nm la...

  6. A Raman chemical imaging system for detection of contaminants in food

    Science.gov (United States)

    This study presented a preliminary investigation into the use of macro-scale Raman chemical imaging for the screening of dry milk powder for the prescence of chemical contaminants. Melamine was mixed into dry milk at concentrations (w/w) of 0.2%, 0.5%, 1.0%, 2.0%, 5.0%, and 10.0% and images of the ...

  7. Terahertz pulsed imaging as an advanced characterisation tool for film coatings--a review.

    Science.gov (United States)

    Haaser, Miriam; Gordon, Keith C; Strachan, Clare J; Rades, Thomas

    2013-12-01

    Solid dosage forms are the pharmaceutical drug delivery systems of choice for oral drug delivery. These solid dosage forms are often coated to modify the physico-chemical properties of the active pharmaceutical ingredients (APIs), in particular to alter release kinetics. Since the product performance of coated dosage forms is a function of their critical coating attributes, including coating thickness, uniformity, and density, more advanced quality control techniques than weight gain are required. A recently introduced non-destructive method to quantitatively characterise coating quality is terahertz pulsed imaging (TPI). The ability of terahertz radiation to penetrate many pharmaceutical materials enables structural features of coated solid dosage forms to be probed at depth, which is not readily achievable with other established imaging techniques, e.g. near-infrared (NIR) and Raman spectroscopy. In this review TPI is introduced and various applications of the technique in pharmaceutical coating analysis are discussed. These include evaluation of coating thickness, uniformity, surface morphology, density, defects and buried structures as well as correlation between TPI measurements and drug release performance, coating process monitoring and scale up. Furthermore, challenges and limitations of the technique are discussed. PMID:23570960

  8. Advanced imaging of skeletal manifestations of systemic mastocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, J. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Fishman, E.K.; Carrino, J.A. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Horger, M.S. [Eberhard-Karls-University, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2012-08-15

    Systemic mastocytosis comprises a group of clonal disorders of the mast cell that most commonly involves the skeletal system. Imaging can be helpful in the detection and characterization of the osseous manifestations of this disease. While radiography and bone scans are frequently used for this assessment, low-dose multidetector computed tomography and magnetic resonance imaging can be more sensitive for the detection of marrow involvement and for the demonstration of the various disease patterns. In this article, we review the pathophysiological and clinical features of systemic mastocytosis, discuss the role of imaging for staging and management, and illustrate the various cross-sectional imaging appearances. Awareness and knowledge of the imaging features of this disorder will increase the accuracy of image interpretation and can contribute important information for management decisions. (orig.)

  9. Advanced imaging of skeletal manifestations of systemic mastocytosis

    International Nuclear Information System (INIS)

    Systemic mastocytosis comprises a group of clonal disorders of the mast cell that most commonly involves the skeletal system. Imaging can be helpful in the detection and characterization of the osseous manifestations of this disease. While radiography and bone scans are frequently used for this assessment, low-dose multidetector computed tomography and magnetic resonance imaging can be more sensitive for the detection of marrow involvement and for the demonstration of the various disease patterns. In this article, we review the pathophysiological and clinical features of systemic mastocytosis, discuss the role of imaging for staging and management, and illustrate the various cross-sectional imaging appearances. Awareness and knowledge of the imaging features of this disorder will increase the accuracy of image interpretation and can contribute important information for management decisions. (orig.)

  10. Advanced phase-contrast imaging using a grating interferometer

    OpenAIRE

    McDonald, S.A.; Marone, F.; Hintermüller, C; Mikuljan, G; David, C.; Pfeiffer, F.; Stampanoni, M.

    2009-01-01

    Phase-sensitive X-ray imaging methods can provide substantially increased contrast over conventional absorption-based imaging, and therefore new and otherwise inaccessible information. Differential phase-contrast (DPC) imaging, which uses a grating interferometer and a phase-stepping technique, has been integrated into TOMCAT, a beamline dedicated to tomographic microscopy and coherent radiology experiments at the Swiss Light Source. Developments have been made focusing on the fast acquisitio...

  11. Advanced techniques in medical image segmentation of the liver

    OpenAIRE

    López Mir, Fernando

    2016-01-01

    [EN] Image segmentation is, along with multimodal and monomodal registration, the operation with the greatest applicability in medical image processing. There are many operations and filters, as much as applications and cases, where the segmentation of an organic tissue is the first step. The case of liver segmentation in radiological images is, after the brain, that on which the highest number of scientific publications can be found. This is due, on the one hand, to the need to continue inno...

  12. Endoscopic Optical Coherence Tomography (OCT: Advances in Gastrointestinal Imaging

    Directory of Open Access Journals (Sweden)

    Tejas S. Kirtane

    2014-01-01

    Full Text Available In the rapidly evolving field of endoscopic gastrointestinal imaging, Optical Coherence Tomography (OCT has found many diverse applications. We present the current status of OCT and its practical applications in imaging normal and abnormal mucosa in the esophagus, stomach, small and large intestines, and biliary and pancreatic ducts. We highlight technical aspects and principles of imaging, assess published data, and suggest future directions for OCT-guided evaluation and therapy.

  13. SAR image segmentation based on the advanced level set

    International Nuclear Information System (INIS)

    Image segmentation takes an important role in SAR image processing. In this paper, a SAR image segmentation method based on level set evolution combining edge feature and statistic information is proposed. In order to enhance the impact of edge on image segmentation, all edge values are homogenized according to the calculated ROA operator. Different from traditional method where the SAR distribution is often specified based on human experiences, the Edgeworth algorithm, an approximation method for statistical distribution model, gives any SAR image distribution a statistical expression. Considering the practicability of ROA operator and the adaptivity of Edgeworth series expansion at fitting statistical distribution, an energy function based on edge and region properties is defined. To implement image division, partial differential equation (PDE) of curve evolution is obtained by minimizing the function. The proposed approach uses more information from SAR images and is appropriate for any SAR images without the need for human-specified distribution pattern. Finally, the experimental results which are obtained from the SAR images of some typical regions such as rivers and buildings show the applicability of the proposed method

  14. Secure and Faster Clustering Environment for Advanced Image Compression

    Directory of Open Access Journals (Sweden)

    D.Kesavaraja

    2010-11-01

    Full Text Available Cloud computing provides ample opportunity in many areas such as fastest image transmission, secure and efficient imaging as a service. In general users needs faster and secure service. Usually Image Compression Algorithms are not working faster. In spite of several ongoing researches, Conventional Compression and its Algorithms might not be able to run faster. So, we perform comparative study of three image compression algorithm and their variety of features and factors to choose best among them for cluster processing. After choosing a best one it can be applied for a cluster computing environment to run parallel image compression for faster processing. This paper is the real time implementation of a Distributed Image Compression in Clustering of Nodes. In cluster computing, security is also more important factor. So, we propose a Distributed Intrusion Detection System to monitors all the nodes in cluster . If an intrusion occur in node processing then take an prevention step based on RIC (Robust Intrusion Control Method. We demonstrate the effectiveness and feasibility of our method on a set of satellite images for defense forces. The efficiency ratio of this computation process is 91.20.

  15. 3D Imaging with Structured Illumination for Advanced Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Birch, Gabriel Carisle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dagel, Amber Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kast, Brian A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Collin S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  16. Advances in explosives analysis--part I: animal, chemical, ion, and mechanical methods.

    Science.gov (United States)

    Brown, Kathryn E; Greenfield, Margo T; McGrane, Shawn D; Moore, David S

    2016-01-01

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245-246, 2009). Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. This part, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons. PMID:26462922

  17. Advanced Calibration Source for Planetary and Earth Observing Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiometric calibration is critical to many NASA activities.  At NASA SSC, imaging cameras have been used in-situ to monitor propulsion test stand...

  18. Earth Observing-1 Advanced Land Imager (ALI): 2004-2008

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Global Land Survey (GLS) datasets are a collection of orthorectified, cloud-minimized Landsat-type satellite images, providing near complete coverage of the...

  19. Earth Observing 1 Advanced Land Imager (ALI): 2009-2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Global Land Survey (GLS) datasets are a collection of orthorectified, cloud-minimized Landsat-type satellite images, providing near complete coverage of the...

  20. Recent advances in computational methods and clinical applications for spine imaging

    CERN Document Server

    Glocker, Ben; Klinder, Tobias; Li, Shuo

    2015-01-01

    This book contains the full papers presented at the MICCAI 2014 workshop on Computational Methods and Clinical Applications for Spine Imaging. The workshop brought together scientists and clinicians in the field of computational spine imaging. The chapters included in this book present and discuss the new advances and challenges in these fields, using several methods and techniques in order to address more efficiently different and timely applications involving signal and image acquisition, image processing and analysis, image segmentation, image registration and fusion, computer simulation, image based modeling, simulation and surgical planning, image guided robot assisted surgical and image based diagnosis. The book also includes papers and reports from the first challenge on vertebra segmentation held at the workshop.

  1. Advanced Techniques for Automatic Change Detection in Multitemporal Hyperspectral Images

    OpenAIRE

    Liu, Sicong

    2015-01-01

    The increasing availability of the new generation remote sensing satellite hyperspectral images provides an important data source for Earth Observation (EO). Hyperspectral images are characterized by a very detailed spectral sampling (i.e., very high spectral resolution) over a wide spectral wavelength range. This important property makes it possible the monitoring of the land-cover dynamic and environmental evolution at a fine spectral scale. This also allows one to potentially detect subtle...

  2. Digital radiography and advanced imaging techniques in dentistry

    OpenAIRE

    Burcu Keles Evlice; Haluk Oztunc

    2013-01-01

    Since the discovery of x-rays in 1895, film has been the primary medium for capturing, displaying and storing radiographic images. Digital or filmless radiography is slowly being adopted by the dental profession. Digital radiography offers a number of capabilities compared with conventional radiography, such as postprocessing, electronic archiving, concurrent access to images, and improved data distribution. Computer based applications which are used for quantitative measurements and evaluati...

  3. Multi-beam synchrotron infrared chemical imaging with high spatial resolution: Beamline realization and first reports on image restoration

    International Nuclear Information System (INIS)

    Table-top Fourier transform infrared (FT-IR) imaging using focal plane array (FPA) multi-element detectors is an increasingly popular chemical microscopy technique because it can provide microspectroscopic images of large sample areas in short times at moderate spatial resolution. The novel IR beamline IRENI at the Synchrotron Radiation Center (Wisconsin, USA), the first dedicated multi-beam synchrotron-based FT-IR imaging system, offers, within minutes, high quality chemical images at the highest available spatial resolution (diffraction-limited at all mid-IR wavelengths) with a pixel size of 0.54x0.54 μm2 for transmission measurements. Due to this very high spatial sampling, mathematical image enhancement algorithms such as deconvolution and total variation (TV) reconstruction can be implemented to improve image contrast and thus spatial resolution. This is demonstrated for US Air force (USAF) targets, micron-sized aluminum beads, and a single living algal cell.

  4. White Paper AGA: Advanced Imaging in Barrett's Esophagus.

    Science.gov (United States)

    Sharma, Prateek; Brill, Joel; Canto, Marcia; DeMarco, Daniel; Fennerty, Brian; Gupta, Neil; Laine, Loren; Lieberman, David; Lightdale, Charles; Montgomery, Elizabeth; Odze, Robert; Tokar, Jeffrey; Kochman, Michael

    2015-12-01

    Enhanced imaging technologies such as narrow band imaging, flexible spectral imaging color enhancement, i-Scan, confocal laser endomicroscopy, and optical coherence tomography are readily available for use by endoscopists in routine clinical practice. In November 2014, the American Gastroenterological Association's Center for GI Innovation and Technology conducted a 2-day workshop to discuss endoscopic image enhancement technologies, focusing on their role in 2 specific clinical conditions (colon polyps and Barrett's esophagus) and on issues relating to training and implementation of these technologies (white papers). Although the majority of the studies that use enhanced imaging technologies have been positive, these techniques ideally need to be validated in larger cohorts and in community centers. As it stands today, detailed endoscopic examination with high-definition white-light endoscopy and random 4-quadrant biopsy remains the standard of care. However, the workshop panelists agreed that in the hands of endoscopists who have met the preservation and incorporation of valuable endoscopic innovation thresholds (diagnostic accuracy) with enhanced imaging techniques (specific technologies), use of the technique in Barrett's esophagus patients is appropriate. PMID:26462567

  5. Advances in chemical synthesis and application of metal-metalloid amorphous alloy nanoparticulate catalysts

    Institute of Scientific and Technical Information of China (English)

    WU Zhijie; LI Wei; ZHANG Minghui; TAO Keyi

    2007-01-01

    This paper reviews the advances in the chemical synthesis and application of metal-metalloid amorphous alloy nanoparticles consisting of transition metal (M) and metalloid elements (B,P).After a brief introduction on the history of amorphous alloy catalysts,the paper focuses on the properties and characterization of amorphous alloy catalysts,and recent developments in the solution-phase synthesis of amorphous alloy nanoparticles.This paper further outlines the applications of amorphous alloys,with special emphasis on the problems and strategies for the application of amorphous alloy nanoparticles in catalytic reactions.

  6. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the...... development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  7. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.

  8. Dedicated full-field X-ray imaging beamline at Advanced Photon Source

    International Nuclear Information System (INIS)

    We report the basic beamline design and current status of a new full-field X-ray imaging facility at Sector 32 of the Advanced Photon Source. The beamline consists of an existing hutch at 40 m and a new experiment enclosure at 77 m from the source, with both monochromatic and white-beam undulator X-ray capabilities. Experimental programs being planned for the beamline include high-speed time-resolved imaging, phase-contrast and coherent imaging, diffraction-enhanced imaging, ultra-small-angle scattering imaging, and phase- and absorption-contrast transmission X-ray microscopy

  9. Dedicated full-field X-ray imaging beamline at Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Shen Qun [Advanced Photon Source (APS), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: qshen@aps.anl.gov; Lee, Wah-Keat; Fezzaa, Kamel; Chu, Yong S.; De Carlo, Francesco; Jemian, Peter; Ilavsky, Jan; Erdmann, Mark; Long, Gabrielle G. [Advanced Photon Source (APS), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2007-11-11

    We report the basic beamline design and current status of a new full-field X-ray imaging facility at Sector 32 of the Advanced Photon Source. The beamline consists of an existing hutch at 40 m and a new experiment enclosure at 77 m from the source, with both monochromatic and white-beam undulator X-ray capabilities. Experimental programs being planned for the beamline include high-speed time-resolved imaging, phase-contrast and coherent imaging, diffraction-enhanced imaging, ultra-small-angle scattering imaging, and phase- and absorption-contrast transmission X-ray microscopy.

  10. Fast Infrared Chemical Imaging with a Quantum Cascade Laser

    OpenAIRE

    Yeh, Kevin; Kenkel, Seth; Liu, Jui-Nung; Bhargava, Rohit

    2014-01-01

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in...

  11. Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy

    OpenAIRE

    Winston, G P; Micallef, C.; Symms, M.R.; Alexander, D. C.; Duncan, J.S.; Zhang, H.

    2014-01-01

    Summary Malformations of cortical development (MCD), particularly focal cortical dysplasia (FCD), are a common cause of refractory epilepsy but are often invisible on structural imaging. NODDI (neurite orientation dispersion and density imaging) is an advanced diffusion imaging technique that provides additional information on tissue microstructure, including intracellular volume fraction (ICVF), a marker of neurite density. We applied this technique in 5 patients with suspected dysplasia to ...

  12. X-ray photon-in/photon-out methods for chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Matthew A.

    2010-03-24

    Most interesting materials in nature are heterogeneous, so it is useful to have analytical techniques with spatial resolution sufficient to resolve these heterogeneities.This article presents the basics of X-ray photon-in/photon-out chemical imaging. This family of methods allows one to derive images reflectingthe chemical state of a given element in a complex sample, at micron or deep sub-micron scale. X-ray chemical imaging is relatively non-destructiveand element-selective, and requires minimal sample preparation. The article presents the basic concepts and some considerations of data takingand data analysis, along with some examples.

  13. Machine Vision and Advanced Image Processing in Remote Sensing

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    This paper describes the multivariate alteration detection (MAD) transformation which is based on the established canonical correlation analysis. It also proposes post-processing of the change detected by the MAD variates by means of maximum autocorrelation factor (MAF) analysis. As opposed to most...... application of radiometric and atmospheric correction schemes that are linear or affine in the gray numbers of each image band. Other multivariate change detection schemes described are principal component type analysis of simple difference images. A case study with Landsat TM data using simple linear...... stretching and masking of the change images shows the usefulness of the new MAD and MAF/MAD change detection schemes. A simple simulation of a no-change situation shows the power of the MAD and MAF/MAD transformations...

  14. Advances in radionuclide molecular imaging of pancreatic β-cells

    International Nuclear Information System (INIS)

    In both type 1 and type 2 diabetes mellitus, β-cell mass (BCM) is lost.Various treatments are developed to restore or reconstruct BCM. The development of non-invasive methods to quantify BCM in vivo offers the potential for early detection of β-cell dysfunction prior to the clinical onset of diabetes. PET imaging with radioligands that directly target the pancreatic β-cells appears promising. The ability to determine the BCM has been investigated in several targets and their corresponding radiotracers, including radiolabeled receptor ligands, antibodies, metabolites and reporter genes. Therefore, we summarize the recent progress in radionuclide molecular imaging of pancreatic β-cells. (authors)

  15. Fabry-Perot MEMS Accelerometers for Advanced Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chisum, Brad [Lumedyne Technologies Incorporated, San Diego, CA (United States)

    2015-05-31

    This report summarizes the technical achievements that occurred over the duration of the project. On November 14th, 2014, Lumedyne Technologies Incorporated was acquired. As a result of the acquisition, the work toward seismic imaging applications was suspended indefinitely. This report captures the progress achieved up to that time.

  16. Computing support for advanced medical data analysis and imaging

    CERN Document Server

    Wiślicki, W; Białas, P; Czerwiński, E; Kapłon, Ł; Kochanowski, A; Korcyl, G; Kowal, J; Kowalski, P; Kozik, T; Krzemień, W; Molenda, M; Moskal, P; Niedźwiecki, S; Pałka, M; Pawlik, M; Raczyński, L; Rudy, Z; Salabura, P; Sharma, N G; Silarski, M; Słomski, A; Smyrski, J; Strzelecki, A; Wieczorek, A; Zieliński, M; Zoń, N

    2014-01-01

    We discuss computing issues for data analysis and image reconstruction of PET-TOF medical scanner or other medical scanning devices producing large volumes of data. Service architecture based on the grid and cloud concepts for distributed processing is proposed and critically discussed.

  17. Perspectives on Imaging: Advanced Applications. Introduction and Overview.

    Science.gov (United States)

    Lynch, Clifford A.; Lunin, Lois F.

    1991-01-01

    Provides an overview of six articles that address relationships between electronic imaging technology and information science. Articles discuss the areas of technology; applications in the fields of visual arts, medicine, and textile history; conceptual foundations; and future visions, including work in virtual reality and cyberspace. (LRW)

  18. Raman and mid-infrared spectroscopic imaging: applications and advancements

    NARCIS (Netherlands)

    Gautam, R.; Samuel, A.; Sil, S.; Chaturvedi, D.; Dutta, A.; Ariese, F.; Umapathy, S.

    2015-01-01

    Using Raman and Mid-Infrared (MIR) spectroscopic imaging techniques one can examine the spatial distribution of various molecular constituents in a heterogeneous sample at a microscopic scale. Raman and MIR spectroscopy techniques provide bond-specific vibrational frequencies to characterize molecul

  19. Magnetic resonance imaging in rheumatoid arthritis advances and research priorities

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; McQueen, FM; Bird, P;

    2005-01-01

    Magnetic resonance imaging (MRI) has now been used extensively in cross-sectional and observational studies as well as in controlled clinical trials to assess disease activity and joint damage in rheumatoid arthritis (RA). MRI measurements or scores for erosions, bone edema, and synovitis have been...

  20. Recent advances in blood flow vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Udesen, Jesper;

    2011-01-01

    A number of methods for ultrasound vector velocity imaging are presented in the paper. The transverse oscillation (TO) method can estimate the velocity transverse to the ultrasound beam by introducing a lateral oscillation in the received ultrasound field. The approach has been thoroughly investi...

  1. X-ray imaging in advanced studies of ophthalmic diseases

    International Nuclear Information System (INIS)

    Microscopic characterization of pathological tissues has one major intrinsic limitation, the small sampling areas with respect to the extension of the tissues. Mapping possible changes on vast tissues and correlating them with large ensembles of clinical cases is not a feasible procedure for studying most diseases, as for instance vision loss related diseases and, in particular, the cataract. Although intraocular lens implants are successful treatments, cataract still is a leading public-health issue that grows in importance as the population increases and life expectancy is extended worldwide. In this work we have exploited the radiation-tissue interaction properties of hard x-rays--very low absorption and scattering--to map distinct lesions on entire eye lenses. At the used synchrotron x-ray photon energy of 20 keV (wavelength λ=0.062 nm), scattering and refraction are angular resolved effects. It allows the employed x-ray image technique to efficiently characterize two types of lesions in eye lenses under cataractogenesis: distributions of tiny scattering centers and extended areas of fiber cell compaction. The data collection procedure is relatively fast; allowing dozens of samples to be totally imaged (scattering, refraction, and mass absorption images) in a single day of synchrotron beam time. More than 60 cases of canine cataract, not correlated to specific causes, were investigated in this first application of x-rays to image entire lenses. Cortical opacity cases, or partial opacity, could be related to the presence of calcificated tissues at the cortical areas, clearly visible in the images, whose elemental contents were verified by micro x-ray fluorescence as very rich in calcium. Calcificated tissues were also observed at nuclear areas in some cases of hypermature cataract. Total opacity cases without distinguishable amount of scattering centers consist in 70% of the analyzed cases, where remarkable fissure marks owing to extended areas of fiber cell

  2. Carbon fiber intramedullary nails reduce artifact in postoperative advanced imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zimel, Melissa N. [Memorial Sloan Kettering Cancer Center, Orthopaedic Surgery Service, Department of Surgery, New York, NY (United States); Hwang, Sinchun [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Riedel, Elyn R. [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Healey, John H. [Memorial Sloan Kettering Cancer Center, Orthopaedic Surgery Service, Department of Surgery, New York, NY (United States); Weill Medical College of Cornell University, Department of Orthopaedic Surgery, New York, NY (United States)

    2015-09-15

    This study assessed whether radiolucent carbon fiber reinforced-polyetheretherketone (CFR-PEEK) intramedullary nails decreased hardware artifact on magnetic resonance imaging (MRI) and computed tomography (CT) in vitro and in an oncologic patient population. In vitro and clinical evaluations were done. A qualitative assessment of metal artifact was performed using CFR-PEEK and titanium nail MRI phantoms. Eight patients with a femoral or tibial prophylactic CFR-PEEK nail were retrospectively identified. All patients had postoperative surveillance imaging by MRI, CT, and were followed for a median 20 months (range, 12-28 months). CFR-PEEK images were compared to images from a comparative group of patients with titanium femoral intramedullary nails who had a postoperative MRI or CT. A musculoskeletal-trained radiologist graded visualization of the cortex, corticomedullary junction, and bone-muscle interface, on T1-weighted (T1W), STIR, and contrast-enhanced T1-weighted fat-saturated (T1W FS) sequences of both groups with a five-point scale, performing independent reviews 4 months apart. Statistical analysis used the Wilcoxon rank-sum test and a weighted kappa. Substantially less MRI signal loss occurred in the CFR-PEEK phantom than in the titanium phantom simulation, particularly as the angle increased with respect to direction of the static magnetic field. CFR-PEEK nails had less MRI artifact than titanium nails on scored T1W, STIR, and contrast-enhanced T1W FS MRI sequences (p ≤ 0.03). The mean weighted kappa was 0.64, showing excellent intraobserver reliability between readings. CFR-PEEK intramedullary nail fixation is a superior alternative to minimize implant artifact on MRI or CT imaging for patients requiring long bone fixation. (orig.)

  3. Carbon fiber intramedullary nails reduce artifact in postoperative advanced imaging

    International Nuclear Information System (INIS)

    This study assessed whether radiolucent carbon fiber reinforced-polyetheretherketone (CFR-PEEK) intramedullary nails decreased hardware artifact on magnetic resonance imaging (MRI) and computed tomography (CT) in vitro and in an oncologic patient population. In vitro and clinical evaluations were done. A qualitative assessment of metal artifact was performed using CFR-PEEK and titanium nail MRI phantoms. Eight patients with a femoral or tibial prophylactic CFR-PEEK nail were retrospectively identified. All patients had postoperative surveillance imaging by MRI, CT, and were followed for a median 20 months (range, 12-28 months). CFR-PEEK images were compared to images from a comparative group of patients with titanium femoral intramedullary nails who had a postoperative MRI or CT. A musculoskeletal-trained radiologist graded visualization of the cortex, corticomedullary junction, and bone-muscle interface, on T1-weighted (T1W), STIR, and contrast-enhanced T1-weighted fat-saturated (T1W FS) sequences of both groups with a five-point scale, performing independent reviews 4 months apart. Statistical analysis used the Wilcoxon rank-sum test and a weighted kappa. Substantially less MRI signal loss occurred in the CFR-PEEK phantom than in the titanium phantom simulation, particularly as the angle increased with respect to direction of the static magnetic field. CFR-PEEK nails had less MRI artifact than titanium nails on scored T1W, STIR, and contrast-enhanced T1W FS MRI sequences (p ≤ 0.03). The mean weighted kappa was 0.64, showing excellent intraobserver reliability between readings. CFR-PEEK intramedullary nail fixation is a superior alternative to minimize implant artifact on MRI or CT imaging for patients requiring long bone fixation. (orig.)

  4. The development of chemical separation technology for an advanced Purex process

    International Nuclear Information System (INIS)

    Future reprocessing plants will require flexible processes that minimise the environmental impact and improve cost effectiveness. This paper discusses some of the technical advances made in the Chemical Separation area of BNFL's Advanced Purex project. An integrated approach involving fundamental process chemistry, computer modelling and flow-sheeting, equipment development, and small scale confirmation trials, has been adopted. The main aims of the project are process simplification and intensification, and this has led to the development of flexible single cycle flowsheets using centrifugal contactors. In order to achieve this cost effectively, comprehensive computer models have been developed based on extraction algorithms for all the major actinide and fission product species. These models also incorporate reaction kinetics, radiolysis, TBP degradation products, and contactor data. The models have been validated by data from plant and from miniature multi-stage centrifugal contactor rigs. One rig has been used to run counter-current α-active flowsheet trials with both on-line and off-line analysis. In parallel, contactor development has concentrated on the scaling up of centrifugal contactor stages up to industrial sizes and obtaining engineering data such as mass transfer rates in single stages. Chemical development is focused on both the accumulation of data needed in computer modelling such as distribution coefficients and reaction rates, and more fundamental research in to new separation processes including chelating agent based flowsheets and new salt free reducing agents. In particular key species, such as Np, Tc, Pu and U(IV), which have a significant impact on the efficiency of single cycle flowsheets are targeted. This paper will report developments in these areas, particularly highlighting how they are integrated in the design of Advanced Purex flowsheets. (author)

  5. Imaging in rheumatoid arthritis--status and recent advances for magnetic resonance imaging, ultrasonography, computed tomography and conventional radiography

    DEFF Research Database (Denmark)

    Østergaard, Morten; Dohn, U.M.; Østergaard, Mikkel;

    2008-01-01

    , and have several documented and potential applications in RA patients. This chapter will review key aspects of the current status and recent important advances in imaging in RA, briefly discussing X-ray and computed tomography, and particularly focusing on MRI and US. Suggestions for use in clinical trials...

  6. Chemical imaging of surfaces with the scanning electrochemical microscope.

    Science.gov (United States)

    Bard, A J; Fan, F R; Pierce, D T; Unwin, P R; Wipf, D O; Zhou, F

    1991-10-01

    Scanning electrochemical microscopy is a scanning probe technique that is based on faradaic current changes as a small electrode is moved across the surface of a sample. The images obtained depend on the sample topography and surface reactivity. The response of the scanning electrochemical microscope is sensitive to the presence of conducting and electroactive species, which makes it useful for imaging heterogeneous surfaces. The principles and instrumentation used to obtain images and surface reaction-kinetic information are discussed, and examples of applications to the study of electrodes, minerals, and biological samples are given. PMID:17739954

  7. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    Science.gov (United States)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  8. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    Science.gov (United States)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose

  9. In Situ Chemical Imaging of Plant Cell Walls Using CARS/SRS Microscopy (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Y.; Liu, Y. S.; Saar, B. G.; Xie, X. S.; Chen, F.; Dixon, R. A.; Himmel, M. E.; Ding S. Y.

    2009-06-01

    This poster demonstrates coherent anti-Stokes Raman scattering and stimulated Raman scattering of plant cell walls. It includes simultaneous chemical imaging of lignin and cellulose (corn stover) during acidic pretreatment.

  10. Status and Advances of RGD Molecular Imaging in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ning YUE

    2014-12-01

    Full Text Available Lung cancer has been one of the most common and the highest mortality rates malignant tumors at home and abroad. Sustained angiogenesis was not only the characteristic of malignant tumors, but also the foundation of tumor proliferation, invasion, recurrence and metastasis, it was also one of the hot spots of treatments in lung cancer biology currently. Integrins played an important part in tumor angiogenesis. Arg-Gly-Asp (RGD peptides could combine with integrins specifically, and the application of radionuclide-labeled RGD molecular probes enabled imaging of tumor blood vessels to reflect its changes. The lung cancer imaging of RGD peptides at home and abroad in recent years was reviewed in this article.

  11. NATO Advanced Research Workshop on Inverse Methods in Electromagnetic Imaging

    CERN Document Server

    Brand, Hans; Cram, Leonard; Gjessing, Dag; Jordan, Arthur; Keydel, Wolfgang; Schwierz, Günther; Vogel, Martin

    1985-01-01

    In recent years, there has been an increased interest in the use of polarization effects for radar and electromagnetic imaging problems (References 1, 2, and 3). The problem of electro­ magnetic imaging can be divided into the following areas: (1) Propagation of the Stokes' vector from the transmitter to the target region through various atmospheric conditions (rain, dust, fog, clouds, turbulence, etc.). (2) Scattering of the Stokes' vector from the object. (3) Scattering of the Stokes' vector from the rough surface, terrain, and the volume scattering. (4) Propagation of the Stokes' vector from the target region to the receiver. (5) The characteristics of the receiver relating the Stokes' vector to the output. The propagation characteristics of the Stokes' vector through various media can be described by the equation of transfer. Even though the scalar equation of transfer has been studied extensively in the past, the vector equation of transfer has not received as much attention. In recent years, however, a...

  12. AXIOM: Advanced X-ray Imaging Of the Magnetosphere

    CERN Document Server

    Branduardi-Raymont, G; Eastwood, J P; Sibeck, D G; Abbey, A; Brown, P; Carter, J A; Carr, C M; Forsyth, C; Kataria, D; Kemble, S; Milan, S E; Owen, C J; Peacocke, L; Read, A M; Coates, A J; Collier, M R; Cowley, S W H; Fazakerley, A N; Fraser, G W; Jones, G H; Lallement, R; Lester, M; Porter, F S; Yeoman, T K

    2011-01-01

    Planetary plasma and magnetic field environments can be studied by in situ measurements or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. We describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Our studies have led...

  13. Advances in Plasmaspheric Wave Research with CLUSTER and IMAGE Observations

    Czech Academy of Sciences Publication Activity Database

    Masson, A.; Santolík, Ondřej; Carpenter, D. L.; Darrouzet, F.; Décréau, P. M. E.; Mazouz, F. El-L.; Green, J. L.; Grimald, S.; Moldwin, M. B.; Němec, František; Sonwalkar, V. S.

    2009-01-01

    Roč. 145, 1-2 (2009), s. 137-191. ISSN 0038-6308 R&D Projects: GA AV ČR IAA301120601 Grant ostatní: GA MŠk(CZ) ME 842 Institutional research plan: CEZ:AV0Z30420517 Keywords : Plasmasphere * CLUSTER * IMAGE * Wave s Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.589, year: 2009 http://www.springerlink.com/content/b20518u541127044/fulltext.pdf

  14. Advances in image restoration: from theory to practice

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Filip

    Bellingham: SPIE-IS&T, 2015. ISBN 978-1-62841-494-3. ISSN 0277-786X. [Digital Photography and Mobile Imaging XI. 09.02.2015-10.02.2015, San Francisco] EU Projects: European Commission(XE) 621439 - ALMARVI Grant ostatní: GA AV ČR(CZ) M100751201 Institutional support: RVO:67985556 Keywords : deconvolution * superresolution * review Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2015/ZOI/sroubek-0444197.doc

  15. Challenges and recent advances in mass spectrometric imaging of neurotransmitters

    OpenAIRE

    Gemperline, Erin; Chen, Bingming; Li, Lingjun

    2014-01-01

    Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and curre...

  16. Advances in the imaging of cerebral aneurysm inflammation

    Directory of Open Access Journals (Sweden)

    Michael R Levitt

    2015-06-01

    Full Text Available Cerebral aneurysm formation, growth and rupture are thought to be the result of a complex interaction between cerebrovascular hemodynamics and pathobiology. Recently, new evidence has emerged regarding the role of inflammation in the walls of cerebral aneurysms. Noninvasive methods to characterize the degree of inflammation in aneurysms could enable clinicians to estimate the risk of future aneurysm growth and rupture, influencing treatment. This review examines emerging techniques of imaging inflammatory biomarkers in cerebral aneurysms.

  17. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    Science.gov (United States)

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures. PMID:26580737

  18. Chemical and physical analysis of core materials for advanced high temperature reactors with process heat applications

    International Nuclear Information System (INIS)

    Various chemical and physical methods for the analysis of structural materials have been developed in the research programmes for advanced high temperature reactors. These methods are discussed using as examples the structural materials of the reactor core - the fuel elements consisting of coated particles in a graphite matrix and the structural graphite. Emphasis is given to the methods of chemical analysis. The composition of fuel kernels is investigated using chemical analysis methods to determine the heavy metals content (uranium, plutonium, thorium and metallic impurity elements) and the amount of non-metallic constituents. The properties of the pyrocarbon and silicon carbide coatings of fuel elements are investigated using specially developed physiochemical methods. Regarding the irradiation behaviour of coated particles and fuel elements, methods have been developed for examining specimens in hot cells following exposures under reactor operating conditions, to supplement the measurements of in-reactor performance. For the structural graphite, the determination of impurities is important because certain impurities may cause pitting corrosion during irradiation. The localized analysis of very low impurity concentrations is carried out using spectrochemical d.c. arc excitation, local laser and inductively coupled plasma methods. (orig.)

  19. Chemical imaging of biological systems with the scanning electrochemical microscope.

    Science.gov (United States)

    Gyurcsányi, Róbert E; Jágerszki, Gyula; Kiss, Gergely; Tóth, Klára

    2004-06-01

    A brief overview on recent advances in the application of scanning electrochemical microscopy (SECM) to the investigation of biological systems is presented. Special emphasis is given to the mapping of local enzyme activity by SECM, which is exemplified by relevant original systems. PMID:15110274

  20. Determing the feasiblity of chemical imaging of cotton trash

    Science.gov (United States)

    There is some interest in the textile community about the identity of cotton trash that has become comingled with cotton lint. Currently, trash is identified visually by human “classers” and instrumentally by the Advanced Fiber Information System (AFIS) and the High Volume Instrument (HVI). Although...

  1. Recent advances in echocardiography: strain and strain rate imaging [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Oana Mirea

    2016-04-01

    Full Text Available Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications.

  2. Advanced automated gain adjustments for in-vivo ultrasound imaging

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Hemmsen, Martin Christian; Martins, Bo;

    2015-01-01

    each containing 50 frames. The scans are acquired using a recently commercialized BK3000 ultrasound scanner (BK Ultrasound, Denmark). Matching pairs of in-vivo sequences, unprocessed and processed with the proposed method were visualized side by side and evaluated by 4 radiologists for image quality....... Wilcoxon signed-rank test was then applied to the ratings provided by radiologists. The average VAS score was highly positive 12.16 (p-value: 2.09 x 10-23) favoring the gain-adjusted scans with the proposed algorithm....

  3. Quasi-Optical Terahertz Microfluidic Devices for Chemical Sensing and Imaging

    OpenAIRE

    Lei Liu; Zhenguo Jiang; Syed (Shawon) Rahman; Md. Itrat Bin Shams; Benxin Jing; Akash Kannegulla; Li-Jing Cheng

    2016-01-01

    We first review the development of a frequency domain quasi-optical terahertz (THz) chemical sensing and imaging platform consisting of a quartz-based microfluidic subsystem in our previous work. We then report the application of this platform to sensing and characterizing of several selected liquid chemical samples from 570–630 GHz. THz sensing of chemical mixtures including isopropylalcohol-water (IPA-H2O) mixtures and acetonitrile-water (ACN-H2O) mixtures have been successfully demonstrate...

  4. Parry-Romberg syndrome: findings in advanced magnetic resonance imaging sequences - case report

    International Nuclear Information System (INIS)

    Parry-Romberg syndrome is a rare disease characterized by progressive hemifacial atrophy associated with other systemic changes, including neurological symptoms. Currently, there are few studies exploring the utilization of advanced magnetic resonance sequences in the investigation of this disease. The authors report the case of a 45-year-old patient and describe the findings at structural magnetic resonance imaging and at advanced sequences, correlating them with pathophysiological data. (author)

  5. Parry-Romberg syndrome: findings in advanced magnetic resonance imaging sequences - case report

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Rafael Alfenas de; Ribeiro, Bruno Niemeyer de Freitas, E-mail: alfenas85@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Hospital Universitario Clementino Fraga Filho; Bahia, Paulo Roberto Valle [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de radiologia; Ribeiro, Renato Niemeyer de Freitas [Hospital de Clinica de Jacarepagua, Rio de Janeiro, RJ (Brazil); Carvalho, Lais Balbi de [Universidade Presidente Antonio Carlos (Unipac), Juiz de Fora, MG (Brazil)

    2014-05-15

    Parry-Romberg syndrome is a rare disease characterized by progressive hemifacial atrophy associated with other systemic changes, including neurological symptoms. Currently, there are few studies exploring the utilization of advanced magnetic resonance sequences in the investigation of this disease. The authors report the case of a 45-year-old patient and describe the findings at structural magnetic resonance imaging and at advanced sequences, correlating them with pathophysiological data. (author)

  6. Overview of recent advances in thermo-chemical conversion of biomass

    International Nuclear Information System (INIS)

    Energy from biomass, bioenergy, is a perspective source to replace fossil fuels in the future, as it is abundant, clean, and carbon dioxide neutral. Biomass can be combusted directly to generate heat and electricity, and by means of thermo-chemical and bio-chemical processes it can be converted into bio-fuels in the forms of solid (e.g., charcoal), liquid (e.g., bio-oils, methanol and ethanol), and gas (e.g., methane and hydrogen), which can be used further for heat and power generation. This paper provides an overview of the principles, reactions, and applications of four fundamental thermo-chemical processes (combustion, pyrolysis, gasification, and liquefaction) for bioenergy production, as well as recent developments in these technologies. Some advanced thermo-chemical processes, including co-firing/co-combustion of biomass with coal or natural gas, fast pyrolysis, plasma gasification and supercritical water gasification, are introduced. The advantages and disadvantages, potential for future applications and challenges of these processes are discussed. The co-firing of biomass and coal is the easiest and most economical approach for the generation of bioenergy on a large-sale. Fast pyrolysis has attracted attention as it is to date the only industrially available technology for the production of bio-oils. Plasma techniques, due to their high destruction and reduction efficiencies for any form of waste, have great application potential for hazardous waste treatment. Supercritical water gasification is a promising approach for hydrogen generation from biomass feedstocks, especially those with high moisture contents.

  7. Automated angiogenesis quantification through advanced image processing techniques.

    Science.gov (United States)

    Doukas, Charlampos N; Maglogiannis, Ilias; Chatziioannou, Aristotle; Papapetropoulos, Andreas

    2006-01-01

    Angiogenesis, the formation of blood vessels in tumors, is an interactive process between tumor, endothelial and stromal cells in order to create a network for oxygen and nutrients supply, necessary for tumor growth. According to this, angiogenic activity is considered a suitable method for both tumor growth or inhibition detection. The angiogenic potential is usually estimated by counting the number of blood vessels in particular sections. One of the most popular assay tissues to study the angiogenesis phenomenon is the developing chick embryo and its chorioallantoic membrane (CAM), which is a highly vascular structure lining the inner surface of the egg shell. The aim of this study was to develop and validate an automated image analysis method that would give an unbiased quantification of the micro-vessel density and growth in angiogenic CAM images. The presented method has been validated by comparing automated results to manual counts over a series of digital chick embryo photos. The results indicate the high accuracy of the tool, which has been thus extensively used for tumor growth detection at different stages of embryonic development. PMID:17946107

  8. Recent advances in PET imaging for evaluation of Parkinson's disease.

    Science.gov (United States)

    Sioka, Chrissa; Fotopoulos, Andreas; Kyritsis, Athanassios P

    2010-08-01

    Parkinson's disease (PD) consists of loss of pigmented dopamine-secreting neurons in the pars compacta of the midbrain substantia nigra. These neurons project to the striatum (putamen and caudate nucleus) and their loss leads to alterations in the activity of the neural circuits that regulate movement. In a simplified model, two dopamine pathways are involved: the direct pathway, which is mediated through facilitation of the D(1) receptors, and the indirect pathway through D(2) receptors (inhibitory). Positron emission tomography (PET) tracers to image the presynaptic sites of the dopaminergic system include 6-[(18)F]FDOPA and 6-[(18)F]FMT, [(11)C]dihydrotetrabenazine, [(11)C]nomifensine and various radiolabelled cocaine derivatives. Postsynaptically, for the dopamine D(1) subtype the most commonly used ligands are [(11)C]SCH 23390 or [(11)C]NNC 112 and for the D(2) subtype [(11)C]raclopride, [(11)C]MNPA and [(18)F]DMFP. PET is a sensitive and specific non-invasive molecular imaging technique that may be helpful for evaluation of PD and its differential diagnosis from other parkinsonian syndromes. PMID:20107789

  9. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  10. INVITED REVIEW-IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    Science.gov (United States)

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-03-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. PMID:26777133

  11. Advances in endoscopic ultrasound imaging of colorectal diseases.

    Science.gov (United States)

    Cârțână, Elena Tatiana; Gheonea, Dan Ionuț; Săftoiu, Adrian

    2016-02-01

    The development of endoscopic ultrasound (EUS) has had a significant impact for patients with digestive diseases, enabling enhanced diagnostic and therapeutic procedures, with most of the available evidence focusing on upper gastrointestinal (GI) and pancreatico-biliary diseases. For the lower GI tract the main application of EUS has been in staging rectal cancer, as a complementary technique to other cross-sectional imaging methods. EUS can provide highly accurate in-depth assessments of tumour infiltration, performing best in the diagnosis of early rectal tumours. In the light of recent developments other EUS applications for colorectal diseases have been also envisaged and are currently under investigation, including beyond-rectum tumour staging by means of the newly developed forward-viewing radial array echoendoscope. Due to its high resolution, EUS might be also regarded as an ideal method for the evaluation of subepithelial lesions. Their differential diagnosis is possible by imaging the originating wall layer and the associated echostructure, and cytological and histological confirmation can be obtained through EUS-guided fine needle aspiration or trucut biopsy. However, reports on the use of EUS in colorectal subepithelial lesions are currently limited. EUS allows detailed examination of perirectal and perianal complications in Crohn's disease and, as a safe and less expensive investigation, can be used to monitor therapeutic response of fistulae, which seems to improve outcomes and reduce the need for additional surgery. Furthermore, EUS image enhancement techniques, such as the use of contrast agents or elastography, have recently been evaluated for colorectal indications as well. Possible applications of contrast enhancement include the assessment of tumour angiogenesis in colorectal cancer, the monitoring of disease activity in inflammatory bowel disease based on quantification of bowel wall vascularization, and differentiating between benign and

  12. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Douglas C. [National Academy of Sciences, Washington, DC (United States)

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  13. Recent advances in the chemical biology of nitroxyl (HNO) detection and generation.

    Science.gov (United States)

    Miao, Zhengrui; King, S Bruce

    2016-07-01

    Nitroxyl or azanone (HNO) represents the redox-related (one electron reduced and protonated) relative of the well-known biological signaling molecule nitric oxide (NO). Despite the close structural similarity to NO, defined biological roles and endogenous formation of HNO remain unclear due to the high reactivity of HNO with itself, soft nucleophiles and transition metals. While significant work has been accomplished in terms of the physiology, biology and chemistry of HNO, important and clarifying work regarding HNO detection and formation has occurred within the last 10 years. This review summarizes advances in the areas of HNO detection and donation and their application to normal and pathological biology. Such chemical biological tools allow a deeper understanding of biological HNO formation and the role that HNO plays in a variety of physiological systems. PMID:27108951

  14. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  15. Performance Evaluation of INACT - INDECT Advanced Image Cataloguing Tool

    Directory of Open Access Journals (Sweden)

    Libor Michalek

    2012-01-01

    Full Text Available In this article, we describe the performance evaluation of INACT tool which is developed for cataloguing of high-level and low-level metadata of the evidence material. INACT tool can be used by police forces in the cases of prosecution of such crimes as as possession and distribution of child pornography (CP. In live forensic cases, the time to first hit (time when the first image containing e.g. CP is found is important, as then further legal actions are justified (such as arrest of the suspect and his hardware. The performance evaluation of first hit was performed on real data with the cooperation of Czech Police, Department of Internet Crime.

  16. Advanced Image Processing for Defect Visualization in Infrared Thermography

    Science.gov (United States)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  17. Magnetic resonance imaging in rheumatoid arthritis advances and research priorities

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; McQueen, FM; Bird, P;

    2005-01-01

    Magnetic resonance imaging (MRI) has now been used extensively in cross-sectional and observational studies as well as in controlled clinical trials to assess disease activity and joint damage in rheumatoid arthritis (RA). MRI measurements or scores for erosions, bone edema, and synovitis have been...... developed and validated by several groups. The OMERACT criteria require that outcome measures demonstrate adequate validity, discriminative power, and feasibility if they are to be useful in clinical trials. Specific performance targets for these criteria depend on the scientific, regulatory, logistical......, and financial context of the study in question. We review the extent to which MRI assessments of joint erosion, bone edema, and synovitis fulfil these criteria, particularly as they relate to proof-of-concept RA clinical trials....

  18. Recent Applications of Chemical Imaging to Pharmaceutical Process Monitoring and Quality Control

    OpenAIRE

    Gowen, A.A.; O' Donnell, Colm; Cullen, Patrick; Bell, S

    2008-01-01

    Chemical Imaging (CI) is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Vibrational spectroscopic methods, such as Near Infrared (NIR) and Raman spectroscopy, combined with imaging are particularly useful for analysis of biological/pharmaceutical forms. The rapid, non-destructive and non-invasive features of CI mark its potential suitability as a process analytical tool for the pharmaceutica...

  19. Safety Assessment of Advanced Imaging Sequences I: Measurements.

    Science.gov (United States)

    Jensen, Jorgen Arendt; Rasmussen, Morten Fischer; Pihl, Michael Johannes; Holbek, Simon; Hoyos, Carlos Armando Villagómez; Bradway, David P; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev

    2016-01-01

    A method for rapid measurement of intensities (I(spta)), mechanical index (MI), and probe surface temperature for any ultrasound scanning sequence is presented. It uses the scanner's sampling capability to give an accurate measurement of the whole imaging sequence for all emissions to yield the true distributions. The method is several orders of magnitude faster than approaches using an oscilloscope, and it also facilitates validating the emitted pressure field and the scanner's emission sequence software. It has been implemented using the experimental synthetic aperture real-time ultrasound system (SARUS) scanner and the Onda AIMS III intensity measurement system (Onda Corporation, Sunnyvale, CA, USA). Four different sequences have been measured: a fixed focus emission, a duplex sequence containing B-mode and flow emissions, a vector flow sequence with B-mode and flow emissions in 17 directions, and finally a SA duplex flow sequence. A BK8820e (BK Medical, Herlev, Denmark) convex array probe is used for the first three sequences and a BK8670 linear array probe for the SA sequence. The method is shown to give the same intensity values within 0.24% of the AIMS III Soniq 5.0 (Onda Corporation, Sunnyvale, CA, USA) commercial intensity measurement program. The approach can measure and store data for a full imaging sequence in 3.8-8.2 s per spatial position. Based on I(spta), MI, and probe surface temperature, the method gives the ability to determine whether a sequence is within U.S. FDA limits, or alternatively indicate how to scale it to be within limits. PMID:26625411

  20. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  1. Radiochemistry, PET Imaging, and the Internet of Chemical Things.

    Science.gov (United States)

    Thompson, Stephen; Kilbourn, Michael R; Scott, Peter J H

    2016-08-24

    The Internet of Chemical Things (IoCT), a growing network of computers, mobile devices, online resources, software suites, laboratory equipment, synthesis apparatus, analytical devices, and a host of other machines, all interconnected to users, manufacturers, and others through the infrastructure of the Internet, is changing how we do chemistry. While in its infancy across many chemistry laboratories and departments, it became apparent when considering our own work synthesizing radiopharmaceuticals for positron emission tomography (PET) that a more mature incarnation of the IoCT already exists. How does the IoCT impact our lives today, and what does it hold for the smart (radio)chemical laboratories of the future? PMID:27610410

  2. Radiochemistry, PET Imaging, and the Internet of Chemical Things

    Science.gov (United States)

    2016-01-01

    The Internet of Chemical Things (IoCT), a growing network of computers, mobile devices, online resources, software suites, laboratory equipment, synthesis apparatus, analytical devices, and a host of other machines, all interconnected to users, manufacturers, and others through the infrastructure of the Internet, is changing how we do chemistry. While in its infancy across many chemistry laboratories and departments, it became apparent when considering our own work synthesizing radiopharmaceuticals for positron emission tomography (PET) that a more mature incarnation of the IoCT already exists. How does the IoCT impact our lives today, and what does it hold for the smart (radio)chemical laboratories of the future? PMID:27610410

  3. Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry

    OpenAIRE

    Perner, Petra; Salvetti, Ovidio

    2008-01-01

    The automatic analysis of signals and images together with the characterization and elaboration of their representation features is still a challenging activity in many relevant scientific and hi-tech fields such as medicine, biotechnology, and chemistry. Multidimensional and multisource signal processing can generate a number of information patterns which can be useful to increase the knowledge of several domains for solving complex problems. Furthermore, advanced signal and image manipulati...

  4. Advances in Functional and Structural Imaging of the Human Lung Using Proton MRI

    OpenAIRE

    Miller, G. Wilson; Mugler, John P.; Sá, Rui C.; Altes, Talissa A.; Prisk, G. Kim; Hopkins, Susan R.

    2014-01-01

    The field of proton lung MRI is advancing on a variety of fronts. In the realm of functional imaging, it is now possible to use arterial spin labeling (ASL) and oxygen-enhanced imaging techniques to quantify regional perfusion and ventilation, respectively, in standard units of measure. By combining these techniques into a single scan, it is also possible to quantify the local ventilation-perfusion ratio, which is the most important determinant of gas-exchange efficiency in the lung. To demon...

  5. Approximating tasseled cap values to evaluate brightness, greenness, and wetness for the Advanced Land Imager (ALI)

    Science.gov (United States)

    Yamamoto, Kristina H.; Finn, Michael P.

    2012-01-01

    The Tasseled Cap transformation is a method of image band conversion to enhance spectral information. It primarily is used to detect vegetation using the derived brightness, greenness, and wetness bands. An approximation of Tasseled Cap values for the Advanced Land Imager was investigated and compared to the Landsat Thematic Mapper Tasseled Cap values. Despite sharing similar spectral, temporal, and spatial resolution, the two systems are not interchangeable with regard to Tasseled Cap matrices.

  6. The Numerical Tours of Signal Processing - Advanced Computational Signal and Image Processing

    OpenAIRE

    Peyré, Gabriel

    2011-01-01

    The Numerical Tours of Signal Processing is an online collection of tutorials to learn advanced computational signal and image processing. These tours allow one to follow a step by step Matlab or Scilab implementation of many important processing algorithms. This implementation is commented and the connexions with the relevant mathematical notions are exposed. These algorithms are applied to various signal, image, movie and 3D mesh datasets. These tours are suitable for practitioners in the f...

  7. Biomarkers in bile-complementing advanced endoscopic imaging in the diagnosis of indeterminate biliary strictures

    OpenAIRE

    Lourdusamy, Vennisvasanth; Tharian, Benjamin; Navaneethan, Udayakumar

    2015-01-01

    Biliary strictures present a diagnostic challenge and a conundrum, particularly when an initial work up including abdominal imaging and endoscopic retrograde cholangiopancreatography based sampling are non-diagnostic. Advances in endoscopic imaging have helped us diagnose these strictures better. However, even with modern technology, some strictures remain a diagnostic challenge. The proximity of bile fluid to the bile duct epithelia makes it an attractive option to investigate for bio-marker...

  8. Completing the Pain Circuit: Recent Advances in Imaging Pain and Inflammation beyond the Central Nervous System.

    Science.gov (United States)

    Linnman, Clas; Borsook, David

    2013-01-01

    This review describes some of the recent developments in imaging aspects of pain in the periphery. It is now possible to image nerves in the cornea non-invasively, to image receptor level expression and inflammatory processes in injured tissue, to image nerves and alterations in nerve properties, to image astrocyte and glial roles in neuroinflammatory processes, and to image pain conduction functionally in the trigeminal ganglion. These advances will ultimately allow us to describe the pain pathway, from injury site to behavioral consequence, in a quantitative manner. Such a development could lead to diagnostics determining the source of pain (peripheral or central), objective monitoring of treatment progression, and, hopefully, objective biomarkers of pain. PMID:24228169

  9. Completing the Pain Circuit: Recent Advances in Imaging Pain and Inflammation beyond the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Clas Linnman

    2013-10-01

    Full Text Available This review describes some of the recent developments in imaging aspects of pain in the periphery. It is now possible to image nerves in the cornea non-invasively, to image receptor level expression and inflammatory processes in injured tissue, to image nerves and alterations in nerve properties, to image astrocyte and glial roles in neuroinflammatory processes, and to image pain conduction functionally in the trigeminal ganglion. These advances will ultimately allow us to describe the pain pathway, from injury site to behavioral consequence, in a quantitative manner. Such a development could lead to diagnostics determining the source of pain (peripheral or central, objective monitoring of treatment progression, and, hopefully, objective biomarkers of pain.

  10. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  11. Advances in coronary MRA from vessel wall to whole heart imaging

    International Nuclear Information System (INIS)

    Since its introduction, magnetic resonance (MR) imaging has undergone continued technical and methodological development and found numerous practical clinical applications. Cardiac MR imaging is one of the more sophisticated applications of MR, owing to the inherent presence of flow and motion and specific anatomy. Among the different categories of cardiac MR imaging, coronary MR angiography (MRA) places particularly high demands on planning, spatial resolution, high signal-to-noise ratio (SNR), and precise cardiac and respiratory motion correction. However, recent advances in hardware, MR sequences, and motion detection techniques have made it possible to perform coronary MRA that includes volumetric acquisition of the entire heart as well as imaging of the vessel walls on a submillimeter scale within a clinically acceptable scan time. We discuss from a technical perspective some of the milestones leading to the current state of coronary MR imaging and outline recent developments that will further advance coronary MR imaging. We discuss planning procedure, contrast preparation mechanisms and MR sequences, motion correction, high-resolution coronary artery and vessel wall imaging, and fast volumetric scanning techniques. Although MR imaging has certain limitations in providing simultaneous speed, resolution, and high SNR, it nonetheless offers a dedicated scanning procedure that addresses most clinically relevant questions in the diagnosis of ischemic heart disease. (author)

  12. Forensic applications of infrared chemical imaging: multi-layered paint chips.

    Science.gov (United States)

    Flynn, Katherine; O'Leary, Robyn; Lennard, Chris; Roux, Claude; Reedy, Brian J

    2005-07-01

    This paper examines the potential of infrared chemical (hyperspectral) imaging as a technique for the forensic analysis of automotive paint chips in particular, and multicomponent (e.g., layered) samples in general. Improved sample preparation procedures for the infrared analysis of paint chips are detailed, with the recommendation that where mounting resins are chemically incompatible with the sample, it is better to mount and section the sample in a soft wax from which the sections can be removed and pressed into a KBr disk for transmission analysis. Infrared chemical images of multilayered paint chips have been successfully obtained, with the chief advantage over conventional infrared analysis being that thousands of infrared spectra are collected in a few minutes across the whole sample, at a spatial resolution of around 5 microm. As with conventional infrared spectroscopy, chemical species can be identified from their spectra, but the wealth of information available can be also extracted in a number of different ways that make multicomponent spectral (and hence chemical) comparisons between two samples easy to visualize and understand. In one approach, the infrared chemical images of two paint chips being compared side-by-side can be viewed as a "movie," in which each frame is an intensity map of the two samples at a given wavenumber (frequency) value. In another approach, the spectra (pixels) in the image files are classified into chemically similar groups, resulting in a "cluster" image that makes it possible to simultaneously compare all of the layers in two paint chips. These methods are applicable to other multicomponent samples, and also to other chemical imaging techniques. PMID:16078484

  13. NMR imaging: A 'chemical' microscope for coal analysis

    International Nuclear Information System (INIS)

    This paper presents a new three-dimensional (3-D) nuclear magnetic resonance (NMR) imaging technique for spatially mapping proton distributions in whole coals and solvent-swollen coal samples. The technique is based on a 3-D back-projection protocol for data acquisition, and a reconstruction technique based on 3-D Radon transform inversion. In principle, the 3-D methodology provides higher spatial resolution of solid materials than is possible with conventional slice-selection protocols. The applicability of 3-D NMR imaging has been demonstrated by mapping the maceral phases in Utah Blind Canyon (APCS number-sign 6) coal and the distribution of mobile phases in Utah coal swollen with deuterated and protic pyridine. 7 refs., 5 figs

  14. Characterization of Surface Chemical States of a Thick Insulator: Chemical State Imaging on MgO Surface

    Science.gov (United States)

    Yi, Yeonjin; Cho, Sangwan; Noh, Myungkeun; Whang, Chung-Nam; Jeong, Kwangho; Shin, Hyun-Joon

    2005-02-01

    We report a surface characterization tool that can be effectively used to investigate the chemical state and subtle radiation damage on a thick insulator surface. It has been used to examine the MgO surface of a plasma display panel (PDP) consisting of a stack of insulator layers of approximately 51 μm thickness on a 2-mm-thick glass plate. The scanning photoelectron microscopy (SPEM) image of the insulating MgO surface was obtained by using the difference in Au 4f peak shift due to the surface charging at each pixel, where a Au adlayer of approximately 15 {\\AA} thickness was formed on the surface to overcome the serious charging shift of the peak position and the spectral deterioration in the photoelectron spectra. The observed contrast in the SPEM image reveals the chemical modification of the underlying MgO surface induced by the plasma discharge damage. The chemical state analysis of the MgO surface was carried out by comparing the Mg 2p, C 1s and O 1s photoemission spectra collected at each pixel of the SPEM image. We assigned four suboxide phases, MgO, MgCO3, Mg(OH)2 and Mg1+, on the initial MgO surface, where the Mg(OH)2 and Mg1+ phases vanished rapidly as the discharge-induced surface damage began.

  15. PET Imaging and biodistribution of chemically modified bacteriophage MS2.

    Science.gov (United States)

    Farkas, Michelle E; Aanei, Ioana L; Behrens, Christopher R; Tong, Gary J; Murphy, Stephanie T; O'Neil, James P; Francis, Matthew B

    2013-01-01

    The fields of nanotechnology and medicine have merged in the development of new imaging and drug delivery agents based on nanoparticle platforms. As one example, a mutant of bacteriophage MS2 can be differentially modified on the exterior and interior surfaces for the concurrent display of targeting functionalities and payloads, respectively. In order to realize their potential for use in in vivo applications, the biodistribution and circulation properties of this class of agents must first be investigated. A means of modulating and potentially improving the characteristics of nanoparticle agents is the appendage of PEG chains. Both MS2 and MS2-PEG capsids possessing interior DOTA chelators were labeled with (64)Cu and injected intravenously into mice possessing tumor xenografts. Dynamic imaging of the agents was performed using PET-CT on a single animal per sample, and the biodistribution at the terminal time point (24 h) was assessed by gamma counting of the organs ex vivo for 3 animals per agent. Compared to other viral capsids of similar size, the MS2 agents showed longer circulation times. Both MS2 and MS2-PEG bacteriophage behaved similarly, although the latter agent showed significantly less uptake in the spleen. This effect may be attributed to the ability of the PEG chains to mask the capsid charge. Although the tumor uptake of the agents may result from the enhanced permeation and retention (EPR) effect, selective tumor imaging may be achieved in the future by using exterior targeting groups. PMID:23214968

  16. A geometry-based image search engine for advanced RADARSAT-1/2 GIS applications

    Science.gov (United States)

    Kotamraju, Vinay; Rabus, Bernhard; Busler, Jennifer

    2012-06-01

    Space-borne Synthetic Aperture Radar (SAR) sensors, such as RADARSAT-1 and -2, enable a multitude of defense and security applications owing to their unique capabilities of cloud penetration, day/night imaging and multi-polarization imaging. As a result, advanced SAR image time series exploitation techniques such as Interferometric SAR (InSAR) and Radargrammetry are now routinely used in applications such as underground tunnel monitoring, infrastructure monitoring and DEM generation. Imaging geometry, as determined by the satellite orbit and imaged terrain, plays a critical role in the success of such techniques. This paper describes the architecture and the current status of development of a geometry-based search engine that allows the search and visualization of archived and future RADARSAT-1 and -2 images appropriate for a variety of advanced SAR techniques and applications. Key features of the search engine's scalable architecture include (a) Interactive GIS-based visualization of the search results; (b) A client-server architecture for online access that produces up-to-date searches of the archive images and that can, in future, be extended to acquisition planning; (c) A techniquespecific search mode, wherein an expert user explicitly sets search parameters to find appropriate images for advanced SAR techniques such as InSAR and Radargrammetry; (d) A future application-specific search mode, wherein all search parameters implicitly default to preset values according to the application of choice such as tunnel monitoring, DEM generation and deformation mapping; (f) Accurate baseline calculations for InSAR searches, and, optimum beam configuration for Radargrammetric searches; (g) Simulated quick look images and technique-specific sensitivity maps in the future.

  17. A standard data set for performance analysis of advanced IR image processing techniques

    NARCIS (Netherlands)

    Weiss, A.R.; Adomeit, U.; Chevalier, P.; Landeau, S.; Bijl, P.; Champagnat, F.; Dijk, J.; Göhler, B.; Landini, S.; Reynolds, J.P.; Smith, L.N.

    2012-01-01

    Modern IR cameras are increasingly equipped with built-in advanced (often non-linear) image and signal processing algorithms (like fusion, super-resolution, dynamic range compression etc.) which can tremendously influence performance characteristics. Traditional approaches to range performance model

  18. Advanced Imaging (Positron Emission Tomography and Magnetic Resonance Imaging) and Image-Guided Biopsy in Initial Staging and Monitoring of Therapy of Lung Cancer

    OpenAIRE

    Islam, Shaheen; Walker, Ronald C.

    2013-01-01

    The results of the National Lung Screening Trial strongly support early detection and definitive treatment to reduce lung cancer mortality. Once lung cancer is discovered, accurate staging at baseline is imperative to maximize patient benefit and cost-effective use of health care resources. Although computed tomography (CT) remains a powerful tool for staging of lung cancer, advances in other imaging modalities, specifically positron emission tomography/CT and magnetic resonance imaging, can ...

  19. Ultra-realistic imaging advanced techniques in analogue and digital colour holography

    CERN Document Server

    Bjelkhagen, Hans

    2013-01-01

    Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a technique of ultra-realistic imaging.After a historical review of progress in holography, the book: Discusses CW recording lasers, pulsed holography lasers, and reviews optical designs for many of the principal laser types with emphasis on attaining th

  20. Advances in the Simultaneous Multiple Surface optical design method for imaging and non-imaging applications

    OpenAIRE

    Wang, Lin

    2012-01-01

    Classical imaging optics has been developed over centuries in many areas, such as its paraxial imaging theory and practical design methods like multi-parametric optimization techniques. Although these imaging optical design methods can provide elegant solutions to many traditional optical problems, there are more and more new design problems, like solar concentrator, illumination system, ultra-compact camera, etc., that require maximum energy transfer efficiency, or ultra-compact optical stru...

  1. Advances in high-resolution imaging – techniques for three-dimensional imaging of cellular structures

    OpenAIRE

    Lidke, Diane S.; Lidke, Keith A.

    2012-01-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below th...

  2. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G [University of Wisconsin, Madison, WI (United States); Pan, X [University Chicago, Chicago, IL (United States); Stayman, J [Johns Hopkins University, Baltimore, MD (United States); Samei, E [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within the reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical

  3. Nanoscale chemical analysis and imaging of solid oxide cells

    DEFF Research Database (Denmark)

    Hauch, Anne; Bowen, Jacob R.; Kuhn, Luise Theil;

    2008-01-01

    The performance of solid oxide cells (SOCs) is highly dependent on triple phase boundaries (TPBs). Therefore, detailed TPB characterization is crucial for their further development. We demonstrate that it is possible to prepare a similar to 50 nm thick transmission electron microscopy (TEM) lamella...... of the interface between the dense ceramic electrolyte and the porous metallic/ceramic hydrogen electrode of an SOC using focused ion beam milling. We show combined TEM/scanning TEM/energy-dispersive spectroscopy investigations of the nanostructure at the TPBs in a high-performance SOC. The chemical...... composition of nanoscale impurity phases at the TPBs has been obtained with a few nanometers lateral resolution. (c) 2008 The Electrochemical Society....

  4. Current applications of advanced cross-sectional imaging techniques in evaluating the painful arthroplasty

    International Nuclear Information System (INIS)

    Patients with a painful arthroplasty can present a clinical diagnostic dilemma. Aspirates are often negative for infection and alignment of the prosthesis on conventional radiographs is usually satisfactory. These patients can have a myriad of soft tissue as well as osseous pathologies, which may be clinically unsuspected or radiographically occult. The ability of advanced cross-sectional imaging to diagnose osseous and soft tissue injuries has been well documented, but applications to arthroplasty imaging are often limited by regional metallic artifacts. Adjustment of standard imaging parameters can make CT and MR imaging useful adjuncts in imaging the painful arthroplasty, especially in the setting of normal radiographs. Ultrasound can be used to evaluate the periprosthetic soft tissues and provide a real-time method of evaluating the dynamic relationship of the periprosthetic soft tissues to the arthroplasty components, and it also can be used as a guide for diagnostic and therapeutic interventions. (orig.)

  5. Advanced large airway CT imaging in children: evolution from axial to 4-D assessment

    International Nuclear Information System (INIS)

    Continuing advances in multidetector computed tomography (MDCT) technology are revolutionizing the non-invasive evaluation of congenital and acquired large airway disorders in children. For example, the faster scanning time and increased anatomical coverage that are afforded by MDCT are especially beneficial to children. MDCT also provides high-quality multiplanar 2-dimensional (2-D), internal and external volume-rendering 3-dimensional (3-D), and dynamic 4-dimensional (4-D) imaging. These advances have enabled CT to become the primary non-invasive imaging modality of choice for the diagnosis, treatment planning, and follow-up evaluation of various large airway disorders in infants and children. It is thus essential for radiologists to be familiar with safe and effective techniques for performing MDCT and to be able to recognize the characteristic imaging appearances of large airway disorders affecting children. (orig.)

  6. Advanced large airway CT imaging in children: evolution from axial to 4-D assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edward Y. [Boston Children' s Hospital and Harvard Medical School, Departments of Radiology and Medicine, Boston, MA (United States); Zucker, Evan J. [Tufts Medical Center, Department of Radiology, Floating Hospital for Children, Boston, MA (United States); Restrepo, Ricardo [Miami Children' s Hospital, Department of Radiology, Miami, FL (United States); Daltro, Pedro [Clinica de DiagnOstico Por Imagem, Rio de Janeiro (Brazil); Boiselle, Phillip M. [Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2013-03-15

    Continuing advances in multidetector computed tomography (MDCT) technology are revolutionizing the non-invasive evaluation of congenital and acquired large airway disorders in children. For example, the faster scanning time and increased anatomical coverage that are afforded by MDCT are especially beneficial to children. MDCT also provides high-quality multiplanar 2-dimensional (2-D), internal and external volume-rendering 3-dimensional (3-D), and dynamic 4-dimensional (4-D) imaging. These advances have enabled CT to become the primary non-invasive imaging modality of choice for the diagnosis, treatment planning, and follow-up evaluation of various large airway disorders in infants and children. It is thus essential for radiologists to be familiar with safe and effective techniques for performing MDCT and to be able to recognize the characteristic imaging appearances of large airway disorders affecting children. (orig.)

  7. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    Science.gov (United States)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design

  8. Imaging the neural circuitry and chemical control of aggressive motivation

    Directory of Open Access Journals (Sweden)

    Blanchard D Caroline

    2008-11-01

    Full Text Available Abstract Background With the advent of functional magnetic resonance imaging (fMRI in awake animals it is possible to resolve patterns of neuronal activity across the entire brain with high spatial and temporal resolution. Synchronized changes in neuronal activity across multiple brain areas can be viewed as functional neuroanatomical circuits coordinating the thoughts, memories and emotions for particular behaviors. To this end, fMRI in conscious rats combined with 3D computational analysis was used to identifying the putative distributed neural circuit involved in aggressive motivation and how this circuit is affected by drugs that block aggressive behavior. Results To trigger aggressive motivation, male rats were presented with their female cage mate plus a novel male intruder in the bore of the magnet during image acquisition. As expected, brain areas previously identified as critical in the organization and expression of aggressive behavior were activated, e.g., lateral hypothalamus, medial basal amygdala. Unexpected was the intense activation of the forebrain cortex and anterior thalamic nuclei. Oral administration of a selective vasopressin V1a receptor antagonist SRX251 or the selective serotonin reuptake inhibitor fluoxetine, drugs that block aggressive behavior, both caused a general suppression of the distributed neural circuit involved in aggressive motivation. However, the effect of SRX251, but not fluoxetine, was specific to aggression as brain activation in response to a novel sexually receptive female was unaffected. Conclusion The putative neural circuit of aggressive motivation identified with fMRI includes neural substrates contributing to emotional expression (i.e. cortical and medial amygdala, BNST, lateral hypothalamus, emotional experience (i.e. hippocampus, forebrain cortex, anterior cingulate, retrosplenial cortex and the anterior thalamic nuclei that bridge the motor and cognitive components of aggressive responding

  9. Advances and Recent Trends in Heterogeneous Photo(Electro-Catalysis for Solar Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    James Highfield

    2015-04-01

    Full Text Available In the context of a future renewable energy system based on hydrogen storage as energy-dense liquid alcohols co-synthesized from recycled CO2, this article reviews advances in photocatalysis and photoelectrocatalysis that exploit solar (photonic primary energy in relevant endergonic processes, viz., H2 generation by water splitting, bio-oxygenate photoreforming, and artificial photosynthesis (CO2 reduction. Attainment of the efficiency (>10% mandated for viable techno-economics (USD 2.00–4.00 per kg H2 and implementation on a global scale hinges on the development of photo(electrocatalysts and co-catalysts composed of earth-abundant elements offering visible-light-driven charge separation and surface redox chemistry in high quantum yield, while retaining the chemical and photo-stability typical of titanium dioxide, a ubiquitous oxide semiconductor and performance “benchmark”. The dye-sensitized TiO2 solar cell and multi-junction Si are key “voltage-biasing” components in hybrid photovoltaic/photoelectrochemical (PV/PEC devices that currently lead the field in performance. Prospects and limitations of visible-absorbing particulates, e.g., nanotextured crystalline α-Fe2O3, g-C3N4, and TiO2 sensitized by C/N-based dopants, multilayer composites, and plasmonic metals, are also considered. An interesting trend in water splitting is towards hydrogen peroxide as a solar fuel and value-added green reagent. Fundamental and technical hurdles impeding the advance towards pre-commercial solar fuels demonstration units are considered.

  10. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.

    Science.gov (United States)

    Highfield, James

    2015-01-01

    In the context of a future renewable energy system based on hydrogen storage as energy-dense liquid alcohols co-synthesized from recycled CO2, this article reviews advances in photocatalysis and photoelectrocatalysis that exploit solar (photonic) primary energy in relevant endergonic processes, viz., H2 generation by water splitting, bio-oxygenate photoreforming, and artificial photosynthesis (CO2 reduction). Attainment of the efficiency (>10%) mandated for viable techno-economics (USD 2.00-4.00 per kg H2) and implementation on a global scale hinges on the development of photo(electro)catalysts and co-catalysts composed of earth-abundant elements offering visible-light-driven charge separation and surface redox chemistry in high quantum yield, while retaining the chemical and photo-stability typical of titanium dioxide, a ubiquitous oxide semiconductor and performance "benchmark". The dye-sensitized TiO2 solar cell and multi-junction Si are key "voltage-biasing" components in hybrid photovoltaic/photoelectrochemical (PV/PEC) devices that currently lead the field in performance. Prospects and limitations of visible-absorbing particulates, e.g., nanotextured crystalline α-Fe2O3, g-C3N4, and TiO2 sensitized by C/N-based dopants, multilayer composites, and plasmonic metals, are also considered. An interesting trend in water splitting is towards hydrogen peroxide as a solar fuel and value-added green reagent. Fundamental and technical hurdles impeding the advance towards pre-commercial solar fuels demonstration units are considered. PMID:25884553

  11. Quasi-Optical Terahertz Microfluidic Devices for Chemical Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2016-04-01

    Full Text Available We first review the development of a frequency domain quasi-optical terahertz (THz chemical sensing and imaging platform consisting of a quartz-based microfluidic subsystem in our previous work. We then report the application of this platform to sensing and characterizing of several selected liquid chemical samples from 570–630 GHz. THz sensing of chemical mixtures including isopropylalcohol-water (IPA-H2O mixtures and acetonitrile-water (ACN-H2O mixtures have been successfully demonstrated and the results have shown completely different hydrogen bond dynamics detected in different mixture systems. In addition, the developed platform has been applied to study molecule diffusion at the interface between adjacent liquids in the multi-stream laminar flow inside the microfluidic subsystem. The reported THz microfluidic platform promises real-time and label-free chemical/biological sensing and imaging with extremely broad bandwidth, high spectral resolution, and high spatial resolution.

  12. Chemical Exchange Saturation Transfer MR Imaging Is Superior to Diffusion Tensor Imaging in the Diagnosis and Severity Evaluation of Parkinson's Disease: a Study on Substantia Nigra and Striatum

    Directory of Open Access Journals (Sweden)

    Chunmei eLi

    2015-10-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder characterized by nigrostriatal cell loss. To date the diagnosis of PD is still based primarily on the clinical manifestations which may be typical and obvious only in advanced-stage PD. Thus, it is crucial to find a reliable marker for the diagnosis of PD. We conducted this study to assess the diagnostic efficiency of chemical-exchange-saturation-transfer (CEST imaging and diffusion-tensor imaging (DTI in PD at 3 Tesla by evaluating changes on substantia nigra and striatum. Twenty-three PD patients and twenty-three age-matched normal controls were recruited. All patients and controls were imaged on a 3 Tesla MR system, using an 8-channel head coil. CEST imaging was acquired in two transverse slices of the head, including substantia nigra and striatum. The magnetization-transfer-ratio asymmetry at 3.5 ppm, MTRasym(3.5ppm, and the total CEST signal intensity between 0 and 4 ppm were calculated. Multi-slice DTI was acquired for all the patients and normal controls. Quantitative analysis was performed on the substantia nigra, globus pallidus, putamen and caudate. The MTRasym(3.5ppm value, the total CEST signal intensity and fractional anisotropy (FA value of the substantia nigra were all significantly lower in PD patients than in normal controls (P = 0.003, P = 0.004 and P < 0.001, respectively. The MTRasym(3.5ppm values of the putamen and the caudate were significantly higher in PD patients than in normal controls (P = 0.010 and P = 0.009, respectively. There were no significant differences for the mean diffusivity (MD in these four regions between PD patients and normal controls. In conclusion, CEST MR imaging provided multiple CEST image contrasts in the substantia nigra and the striatum in PD and may be superior to DTI in the diagnosis of PD.

  13. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales.

    Science.gov (United States)

    Hogstrom, L J; Guo, S M; Murugadoss, K; Bathe, M

    2016-02-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  14. Superresolution of Hyperspectral Image Using Advanced Nonlocal Means Filter and Iterative Back Projection

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-01-01

    Full Text Available We introduce an efficient superresolution algorithm based on advanced nonlocal means (NLM filter and iterative back projection for hyperspectral image. The nonlocal means method achieves the to-be-interpolated pixel by the weighted average of all pixels within an image, and the unrelated neighborhoods are automatically eliminated by the trivial weights. However, spatial location distance is also an important issue to reconstruct the missing pixel. Therefore, we proposed an advanced NLM (ANLM filter considering both neighborhood similarity and patch distance. In the conventional NLM method, the search region was the whole image, while the proposed ANLM utilizes the limited search to reduce the complexity. The iterative back projection (IBP is a very famous method to deal with the image restoration. In the superresolution issue, IBP is able to recover the high-resolution image iteratively from the given low-resolution image which is blurred due to the noise by minimizing the reconstruction error, while, because the reconstruction error of IBP is back projection and isotropic, the conventional IBP suffers from jaggy and ringing artifacts. Introducing the ANLM method to improve the visual quality is necessary.

  15. Gold Nanoparticle Contrast Agents in Advanced X-ray Imaging Technologies

    Directory of Open Access Journals (Sweden)

    Sungsook Ahn

    2013-05-01

    Full Text Available Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.

  16. Advances in identification and validation of protein targets of natural products without chemical modification.

    Science.gov (United States)

    Chang, J; Kim, Y; Kwon, H J

    2016-05-01

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates. PMID:26964663

  17. NATO Advanced Study Institute on Chemical Crystallography with Pulsed Neutrons and Synchrotron X-Rays

    CERN Document Server

    Jeffrey, George

    1988-01-01

    X-ray and neutron crystallography have played an increasingly impor­ tant role in the chemical and biochemical sciences over the past fifty years. The principal obstacles in this methodology, the phase problem and com­ puting, have been overcome. The former by the methods developed in the 1960's and just recognised by the 1985 Chemistry Nobel Prize award to Karle and Hauptman, the latter by the dramatic advances that have taken place in computer technology in the past twenty years. Within the last decade, two new radiation sources have been added to the crystallographer's tools. One is synchrotron X-rays and the other is spallation neutrons. Both have much more powerful fluxes than the pre­ vious sources and they are pulsed rather than continuos. New techniques are necessary to fully exploit the intense continuos radiation spectrum and its pulsed property. Both radiations are only available from particular National Laboratories on a guest-user basis for scientists outside these Na­ tional Laboratories. Hi...

  18. Advances of Ag, Cu, and Ag-Cu alloy nanoparticles synthesized via chemical reduction route

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kim Seah; Cheong, Kuan Yew, E-mail: cheong@eng.usm.my [Universiti Sains Malaysia, Electronic Materials Research Group, School of Materials and Mineral Resources Engineering (Malaysia)

    2013-04-15

    Silver (Ag) and copper (Cu) nanoparticles have shown great potential in variety applications due to their excellent electrical and thermal properties resulting high demand in the market. Decreasing in size to nanometer scale has shown distinct improvement in these inherent properties due to larger surface-to-volume ratio. Ag and Cu nanoparticles are also shown higher surface reactivity, and therefore being used to improve interfacial and catalytic process. Their melting points have also dramatically decreased compared with bulk and thus can be processed at relatively low temperature. Besides, regularly alloying Ag into Cu to create Ag-Cu alloy nanoparticles could be used to improve fast oxidizing property of Cu nanoparticles. There are varieties methods have been reported on the synthesis of Ag, Cu, and Ag-Cu alloy nanoparticles. This review aims to cover chemical reduction means for synthesis of those nanoparticles. Advances of this technique utilizing different reagents namely metal salt precursors, reducing agents, and stabilizers, as well as their effects on respective nanoparticles have been systematically reviewed. Other parameters such as pH and temperature that have been considered as an important factor influencing the quality of those nanoparticles have also been reviewed thoroughly.

  19. Application of advanced radiographic imaging techniques for characterizing low level nuclear waste

    International Nuclear Information System (INIS)

    BIR is currently investigating the use of two advanced x-ray imaging techniques for characterizing containers of solidified nuclear waste. These techniques, digital radiography (DR) and computed tomography (CT), are performed by computerized imaging systems that can automatically inspect containers using a set of imaging parameters chosen by the operator. Both inspection techniques can be performed by the same imaging system. The inspection result is a computer image, or series of images, that can be manipulated by the operator to show a wide variety of features within the inspected object. For the inspections performed so far, we have used the ACTIS CT/DR system that BIR designed and built for NASA's Marshall Space Flight Center. The inspections are being performed as part of a continuing Phase I/Phase II SBIR program for the U.S. Department of Energy. This paper discusses inspections performed on three types of waste containers: (1) a simulated waste drum imaged in Phase 1; (2) 55 gallon drums of assorted waste items supplied by the DOE'S EG and G Rocky Flats plant and by Westinghouse Hanford; and (3) several containers of glass used for solidifying radioactive substances, supplied by the DOE'S Westinghouse Savannah River site. The Phase II work also includes investigating dual energy CT imaging and designing a mechanically simplified ACTIS system and mobile trailer specifically for waste inspection. (author)

  20. Advances in Reasoning-Based Image Processing Intelligent Systems Conventional and Intelligent Paradigms

    CERN Document Server

    Nakamatsu, Kazumi

    2012-01-01

    The book puts special stress on the contemporary techniques for reasoning-based image processing and analysis: learning based image representation and advanced video coding; intelligent image processing and analysis in medical vision systems; similarity learning models for image reconstruction; visual perception for mobile robot motion control, simulation of human brain activity in the analysis of video sequences; shape-based invariant features extraction; essential of paraconsistent neural networks, creativity and intelligent representation in computational systems. The book comprises 14 chapters. Each chapter is a small monograph, representing resent investigations of authors in the area. The topics of the chapters cover wide scientific and application areas and complement each-other very well. The chapters’ content is based on fundamental theoretical presentations, followed by experimental results and comparison with similar techniques. The size of the chapters is well-ballanced which permits a thorough ...

  1. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe, E-mail: giuseppe.pastura@terra.com.b [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  2. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    International Nuclear Information System (INIS)

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  3. Uncovering brain-heart information through advanced signal and image processing.

    Science.gov (United States)

    Valenza, Gaetano; Toschi, Nicola; Barbieri, Riccardo

    2016-05-13

    Through their dynamical interplay, the brain and the heart ensure fundamental homeostasis and mediate a number of physiological functions as well as their disease-related aberrations. Although a vast number of ad hoc analytical and computational tools have been recently applied to the non-invasive characterization of brain and heart dynamic functioning, little attention has been devoted to combining information to unveil the interactions between these two physiological systems. This theme issue collects contributions from leading experts dealing with the development of advanced analytical and computational tools in the field of biomedical signal and image processing. It includes perspectives on recent advances in 7 T magnetic resonance imaging as well as electroencephalogram, electrocardiogram and cerebrovascular flow processing, with the specific aim of elucidating methods to uncover novel biological and physiological correlates of brain-heart physiology and physiopathology. PMID:27044995

  4. Uncovering brain–heart information through advanced signal and image processing

    Science.gov (United States)

    Toschi, Nicola; Barbieri, Riccardo

    2016-01-01

    Through their dynamical interplay, the brain and the heart ensure fundamental homeostasis and mediate a number of physiological functions as well as their disease-related aberrations. Although a vast number of ad hoc analytical and computational tools have been recently applied to the non-invasive characterization of brain and heart dynamic functioning, little attention has been devoted to combining information to unveil the interactions between these two physiological systems. This theme issue collects contributions from leading experts dealing with the development of advanced analytical and computational tools in the field of biomedical signal and image processing. It includes perspectives on recent advances in 7 T magnetic resonance imaging as well as electroencephalogram, electrocardiogram and cerebrovascular flow processing, with the specific aim of elucidating methods to uncover novel biological and physiological correlates of brain–heart physiology and physiopathology. PMID:27044995

  5. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  6. Chemical-state imaging of Li using scanning Auger electron microscopy

    International Nuclear Information System (INIS)

    Highlights: •Scanning Auger electron microscopy is used to image chemical states of Li. •The combined use of AES and EELS signals for the elemental mapping is powerful. •Distribution corresponding to metallic and oxidized states of Li can be imaged. -- Abstract: The demand for measurement tools to detect Li with high spatial resolution and precise chemical sensitivity is increasing with the spread of lithium-ion batteries (LIBs) for use in a wide range of applications. In this work, scanning Auger electron microscopy (SAM) is used to image chemical states of a partially oxidized Li surface on the basis of the Auger electron spectroscopy (AES) and electron energy loss spectroscopy (EELS) data obtained during an oxidation process of a metal Li. We show that distribution of metallic and oxidized states of Li is clearly imaged by mapping the intensity of the corresponding AES and EELS peaks. Furthermore, a tiny difference in the extent of oxidation can be distinguished by comparing the elemental map of an AES peak with that of an EELS peak owing to the different behaviors of those signals to the chemical states of Li

  7. High-throughput Raman chemical imaging for rapid evaluation of food safety and quality

    Science.gov (United States)

    High-throughput macro-scale Raman chemical imaging was realized on a newly developed line-scan hyperspectral system. The system utilizes a custom-designed 785 nm line laser with maximum power of 5 W as an excitation source. A 24 cm × 1 mm excitation line is normally projected on the sample surface u...

  8. Mixing and transport during pharmaceutical twin-screw wet granulation: Experimental analysis via chemical imaging

    DEFF Research Database (Denmark)

    Kumar, Ashish; Vercruysse, Jurgen; Toiviainen, Maunu;

    2014-01-01

    the residence time distribution (RTD) and mixing in TSG, mostly visual observation and particle tracking methods are used, which are either inaccurate and difficult for short RTD, or provide an RTD only for a finite number of preferential tracer paths. In this study, near infrared chemical imaging...

  9. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  10. Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions

    Science.gov (United States)

    Schmieder, Anne H.; Caruthers, Shelton D.; Keupp, Jochen; Wickline, Samuel A.; Lanza, Gregory M.

    2016-01-01

    The research roots of 19fluorine (19F) magnetic resonance imaging (MRI) date back over 35 years. Over that time span, 1H imaging flourished and was adopted worldwide with an endless array of applications and imaging approaches, making magnetic resonance an indispensable pillar of biomedical diagnostic imaging. For many years during this timeframe, 19F imaging research continued at a slow pace as the various attributes of the technique were explored. However, over the last decade and particularly the last several years, the pace and clinical relevance of 19F imaging has exploded. In part, this is due to advances in MRI instrumentation, 19F/1H coil designs, and ultrafast pulse sequence development for both preclinical and clinical scanners. These achievements, coupled with interest in the molecular imaging of anatomy and physiology, and combined with a cadre of innovative agents, have brought the concept of 19F into early clinical evaluation. In this review, we attempt to provide a slice of this rich history of research and development, with a particular focus on liquid perfluorocarbon compound-based agents.

  11. Advancing Patient-centered Outcomes in Emergency Diagnostic Imaging: A Research Agenda.

    Science.gov (United States)

    Kanzaria, Hemal K; McCabe, Aileen M; Meisel, Zachary M; LeBlanc, Annie; Schaffer, Jason T; Bellolio, M Fernanda; Vaughan, William; Merck, Lisa H; Applegate, Kimberly E; Hollander, Judd E; Grudzen, Corita R; Mills, Angela M; Carpenter, Christopher R; Hess, Erik P

    2015-12-01

    Diagnostic imaging is integral to the evaluation of many emergency department (ED) patients. However, relatively little effort has been devoted to patient-centered outcomes research (PCOR) in emergency diagnostic imaging. This article provides background on this topic and the conclusions of the 2015 Academic Emergency Medicine consensus conference PCOR work group regarding "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The goal was to determine a prioritized research agenda to establish which outcomes related to emergency diagnostic imaging are most important to patients, caregivers, and other key stakeholders and which methods will most optimally engage patients in the decision to undergo imaging. Case vignettes are used to emphasize these concepts as they relate to a patient's decision to seek care at an ED and the care received there. The authors discuss applicable research methods and approaches such as shared decision-making that could facilitate better integration of patient-centered outcomes and patient-reported outcomes into decisions regarding emergency diagnostic imaging. Finally, based on a modified Delphi process involving members of the PCOR work group, prioritized research questions are proposed to advance the science of patient-centered outcomes in ED diagnostic imaging. PMID:26574729

  12. Chemically selective NMR imaging of a 3-component (solid-solid-liquid) sedimenting system.

    Science.gov (United States)

    Beyea, Steven D; Altobelli, Stephen A; Mondy, Lisa A

    2003-04-01

    A novel magnetic resonance imaging (MRI) technique which resolves the separate components of the evolving vertical concentration profiles of 3-component non-colloidal suspensions is described. This method exploits the sensitivity of MRI to chemical differences between the three phases to directly image the fluid phase and one of the solid phases, with the third phase obtained by subtraction. 19F spin-echo imaging of a polytetrafluoroethylene (PTFE) oil was interlaced with 1H SPRITE imaging of low-density polyethylene (LDPE) particles. The third phase was comprised of borosilicate glass spheres, which were not visible while imaging the PTFE or LDPE phases. The method is demonstrated by performing measurements on 2-phase materials containing only the floating (LDPE) particles, with the results contrasted to the experimental behaviour of the individual phases in the full 3-phase system. All experiments were performed using nearly monodisperse particles, with initial suspension volume fractions, phi(i), of 0.1. PMID:12713970

  13. Quantitative Chemically-Specific Coherent Diffractive Imaging of Buried Interfaces using a Tabletop EUV Nanoscope

    CERN Document Server

    Shanblatt, Elisabeth R; Gardner, Dennis F; Mancini, Giulia F; Karl, Robert M; Tanksalvala, Michael D; Bevis, Charles S; Vartanian, Victor H; Kapteyn, Henry C; Adams, Daniel E; Murnane, Margaret M

    2016-01-01

    Characterizing buried layers and interfaces is critical for a host of applications in nanoscience and nano-manufacturing. Here we demonstrate non-invasive, non-destructive imaging of buried interfaces using a tabletop, extreme ultraviolet (EUV), coherent diffractive imaging (CDI) nanoscope. Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither optical microscopy nor atomic force microscopy can image the buried interfaces. Short wavelength (29 nm) high harmonic light can penetrate the aluminum layer, yielding high-contrast images of the buried structures. Moreover, differences in the absolute reflectivity of the interfaces before and after coating reveal the formation of interstitial diffusion and oxidation layers at the Al-Cu and Al-SiO2 boundaries. Finally, we show that EUV CDI provides a unique capability for quantitative, chemically-specific imaging of buried structures, and the material evolution that occurs at these buried ...

  14. From multispectral imaging of autofluorescence to chemical and sensory images of lipid oxidation in cod caviar paste.

    Science.gov (United States)

    Airado-Rodríguez, Diego; Høy, Martin; Skaret, Josefine; Wold, Jens Petter

    2014-05-01

    The potential of multispectral imaging of autofluorescence to map sensory flavour properties and fluorophore concentrations in cod caviar paste has been investigated. Cod caviar paste was used as a case product and it was stored over time, under different headspace gas composition and light exposure conditions, to obtain a relevant span in lipid oxidation and sensory properties. Samples were divided in two sets, calibration and test sets, with 16 and 7 samples, respectively. A third set of samples was prepared with induced gradients in lipid oxidation and sensory properties by light exposure of certain parts of the sample surface. Front-face fluorescence emission images were obtained for excitation wavelength 382 nm at 11 different channels ranging from 400 to 700 nm. The analysis of the obtained sets of images was divided in two parts: First, in an effort to compress and extract relevant information, multivariate curve resolution was applied on the calibration set and three spectral components and their relative concentrations in each sample were obtained. The obtained profiles were employed to estimate the concentrations of each component in the images of the heterogeneous samples, giving chemical images of the distribution of fluorescent oxidation products, protoporphyrin IX and photoprotoporphyrin. Second, regression models for sensory attributes related to lipid oxidation were constructed based on the spectra of homogeneous samples from the calibration set. These models were successfully validated with the test set. The models were then applied for pixel-wise estimation of sensory flavours in the heterogeneous images, giving rise to sensory images. As far as we know this is the first time that sensory images of odour and flavour are obtained based on multispectral imaging. PMID:24720964

  15. Chemical imaging with combined fast-scan cyclic voltammetry-scanning electrochemical microscopy.

    Science.gov (United States)

    Schrock, Daniel S; Baur, John E

    2007-09-15

    Fast-scan cyclic voltammetry (FSCV) is applied to the tip of a scanning electrochemical microscope (SECM) for imaging the distribution of chemical species near a substrate. This approach was used to image the diffusion layer of both a large substrate electrode (3-mm-diameter glassy carbon) and a microelectrode substrate (10-microm-diameter Pt). Additionally, oxygen depletion near living cells was measured and correlated to respiratory activity. Finally, oxygen and hydrogen peroxide were simultaneously detected during the oxidative burst of a zymosan-stimulated macrophage cell. These results demonstrate the utility of FSCV-SECM for chemical imaging when conditions are chosen such that feedback interactions with the substrate are minimal. PMID:17705555

  16. Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes.

    Science.gov (United States)

    Wei, Lu; Hu, Fanghao; Chen, Zhixing; Shen, Yihui; Zhang, Luyuan; Min, Wei

    2016-08-16

    Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. In particular, fluorescence microscopy with the expanding choices of fluorescent probes has provided a comprehensive toolkit to tag and visualize various molecules of interest with exquisite specificity and high sensitivity. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because common fluorescent labels, which are relatively bulky, could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, a bioorthogonal chemical imaging platform has recently been introduced. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes and stable isotopes), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, and biocompatibility for imaging small biomolecules in live systems. In this Account, we review recent technical achievements for visualizing a broad spectrum of small biomolecules, including ribonucleosides and deoxyribonucleosides, amino acids, fatty acids, choline, glucose, cholesterol, and small-molecule drugs in live biological systems ranging from individual cells to animal tissues and model organisms. Importantly, this platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, we discuss further chemical and spectroscopic strategies for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". As a unique tool for biological discovery, this platform has been applied to

  17. Application of phase equilibria and chemical thermodynamics to the preparation, farbiration, and performance of advanced fast reactor fuel materials

    International Nuclear Information System (INIS)

    Described are some phase equilibria and chemical thermodynamics of systems relevant to the production and operation of the so-called ''advanced'' fast breeder reactor fuels. The systems discussed include UPu carbides, nitrides, oxycarbides and carbonitrides. Some examples of the application of these phase equilibria to the preparation, fabrication and behaviour of the materials in temperature gradients appropriate to reactor conditions are presented. Finally, aspects of the complex four and five component, U-C-O-N and U-Pu-C-O-N systems are discussed, a detailed knowledge of which is required for an analysis of advanced fuel behaviour

  18. A standard data set for performance analysis of advanced IR image processing techniques

    Science.gov (United States)

    Weiß, A. Robert; Adomeit, Uwe; Chevalier, Philippe; Landeau, Stéphane; Bijl, Piet; Champagnat, Frédéric; Dijk, Judith; Göhler, Benjamin; Landini, Stefano; Reynolds, Joseph P.; Smith, Leslie N.

    2012-06-01

    Modern IR cameras are increasingly equipped with built-in advanced (often non-linear) image and signal processing algorithms (like fusion, super-resolution, dynamic range compression etc.) which can tremendously influence performance characteristics. Traditional approaches to range performance modeling are of limited use for these types of equipment. Several groups have tried to overcome this problem by producing a variety of imagery to assess the impact of advanced signal and image processing. Mostly, this data was taken from classified targets and/ or using classified imager and is thus not suitable for comparison studies between different groups from government, industry and universities. To ameliorate this situation, NATO SET-140 has undertaken a systematic measurement campaign at the DGA technical proving ground in Angers, France, to produce an openly distributable data set suitable for the assessment of fusion, super-resolution, local contrast enhancement, dynamic range compression and image-based NUC algorithm performance. The imagery was recorded for different target / background settings, camera and/or object movements and temperature contrasts. MWIR, LWIR and Dual-band cameras were used for recording and were also thoroughly characterized in the lab. We present a selection of the data set together with examples of their use in the assessment of super-resolution and contrast enhancement algorithms.

  19. Screening of adulterants in powdered foods and ingredients using line-scan Raman chemical imaging

    Science.gov (United States)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2015-05-01

    A newly developed line-scan Raman imaging system using a 785 nm line laser was used to authenticate powdered foods and ingredients. The system was used to collect hyperspectral Raman images in a wavenumber range of 102-2865 cm-1 from three representative food powders mixed with selected adulterants with a concentration of 0.5%, including milk and melamine, flour and benzoyl peroxide, and starch and maleic anhydride. An acoustic mixer was used to create food adulterant mixtures. All the mixed samples were placed in sample holders with a surface area of 50 mm×50 mm. Spectral and image processing algorithms were developed based on single-band images at unique Raman peaks of the individual adulterants. Chemical images were created to show identification, spatial distribution, and morphological features of the adulterant particles mixed in the food powders. The potential of estimating mass concentrations of the adulterants using the percentages of the adulterant pixels in the chemical images was also demonstrated.

  20. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications.

    Science.gov (United States)

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  1. Applications of Gas Imaging Micro-Well Detectors to an Advanced Compton Telescope

    CERN Document Server

    Bloser, P F; Ryan, J M; McConnell, M L; Miller, R S; Jackson, T N; Bai, B; Jung, S

    2004-01-01

    We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined from the drift time of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which ...

  2. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented. (paper)

  3. Recent advancements in structured-illumination microscopy toward live-cell imaging.

    Science.gov (United States)

    Hirano, Yasuhiro; Matsuda, Atsushi; Hiraoka, Yasushi

    2015-08-01

    Fluorescence microscopy allows us to observe fluorescently labeled molecules in diverse biological processes and organelle structures within living cells. However, the diffraction limit restricts its spatial resolution to about half of its wavelength, limiting the capability of biological observation at the molecular level. Structured-illumination microscopy (SIM), a type of super-resolution microscopy, doubles the spatial resolution in all three dimensions by illuminating the sample with a patterned excitation light, followed by computer reconstruction. SIM uses a relatively low illumination power compared with other methods of super-resolution microscopy and is easily available for multicolor imaging. SIM has great potential for meeting the requirements of live-cell imaging. Recent developments in diverse types of SIM have achieved higher spatial (∼50 nm lateral) and temporal (∼100 Hz) resolutions. Here, we review recent advancements in SIM and discuss its application in noninvasive live-cell imaging. PMID:26133185

  4. Advanced Cu chemical displacement technique for SiO2-based electrochemical metallization ReRAM application

    OpenAIRE

    Chin, Fun-Tat; Lin, Yu-Hsien; You, Hsin-Chiang; Yang, Wen-Luh; Lin, Li-Min; Hsiao, Yu-Ping; Ko, Chum-Min; Chao, Tien-Sheng

    2014-01-01

    This study investigates an advanced copper (Cu) chemical displacement technique (CDT) with varying the chemical displacement time for fabricating Cu/SiO2-stacked resistive random-access memory (ReRAM). Compared with other Cu deposition methods, this CDT easily controls the interface of the Cu-insulator, the switching layer thickness, and the immunity of the Cu etching process, assisting the 1-transistor-1-ReRAM (1T-1R) structure and system-on-chip integration. The modulated shape of the Cu-Si...

  5. Recent Advances in the Imaging Diagnosis of Hepatocellular Carcinoma: Value of Gadoxetic Acid-Enhanced MRI.

    Science.gov (United States)

    Joo, Ijin; Lee, Jeong Min

    2016-02-01

    Magnetic resonance imaging (MRI) using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DPTA), or gadoxetic acid for short, is a hepatocyte-specific contrast agent which is now increasingly used for the detection and characterization of focal hepatic lesions, particularly in patients at high-risk of developing hepatocellular carcinomas (HCC). In fact, several recent guidelines now recognize gadoxetic acid-enhanced MRI (Gd-EOB-MRI) as the primary diagnostic imaging modality for the noninvasive diagnosis of HCC, although it must be noted that several major guidelines still include only extracellular contrast media-enhanced computed tomography and MRI. The primary merits of Gd-EOB-MRI lie in the fact that it can provide not only dynamic imaging, but also hepatobiliary phase (HBP) imaging which can lead to high lesion-to-liver contrast and give additional information regarding hepatocyte uptake via organic anion transporting polypeptides. This, in turn, allows higher sensitivity in detecting small HCCs and helps provide additional information regarding the multistep process of hepatocarcinogenesis. Indeed, many recent studies have investigated the diagnostic value of Gd-EOB-MRI for early HCCs as well as its role as a potential imaging biomarker in predicting outcome. We herein review the recent advances in the imaging diagnosis of HCCs focusing on the applications of Gd-EOB-MRI and the challenging issues that remain. PMID:26989660

  6. Clinical evaluation of the cerebral energy metabolism with 31P chemical shift imaging in neurosurgical disorders

    International Nuclear Information System (INIS)

    Cerebral energy metabolism was evaluated by means of 31P chemical shift imaging (CSI) using the 2.0 T whole-body MRIS system. 31P CSI was carried out by means of Spectroscopic Imaging by Dephasing Amplitude Changing method, four-dimensional CSI, and three-dimensional CSI. Twenty three patients with cerebral infarction and 21 patients with hypertensive intracerebral hemorrhage were examined. In cerebral infarction, an acute infarction was seen as a low-signal area in the PCr and ATP images and as a high-signal area in the Pi image. A subacute and chronic infarction was seen as a low-signal area in all the images -- 31P, PCr, ATP, Pi, PDE and PME. Intracellular acidosis was noticed within 2 days after onset. The intracellular pH became alkaline at the subacute and chronic stages of infarction. The chronological changes in the phosphorus metabolites were evaluated by means of these methods. In hypertensive intracerebral hemorrhage, hematoma and perifocal edema in the acute stage were seen as low-signal areas in the 31P, PCr, and ATP images, and as high-signal areas in the Pi image. In the chronic stage, a hematoma was seen as a low-signal area in all the images -- 31P, PCr, ATP and Pi. 31P CSI is thus a practical tool for studying phosphate metabolites clinically. Changes in the phosphorus metabolism relative to the anatomy of interest were detected by the use of these methods. (author)

  7. A Raman chemical imaging system for detection of contaminants in food

    Science.gov (United States)

    Chao, Kaunglin; Qin, Jianwei; Kim, Moon S.; Mo, Chang Yeon

    2011-06-01

    This study presented a preliminary investigation into the use of macro-scale Raman chemical imaging for the screening of dry milk powder for the presence of chemical contaminants. Melamine was mixed into dry milk at concentrations (w/w) of 0.2%, 0.5%, 1.0%, 2.0%, 5.0%, and 10.0% and images of the mixtures were analyzed by a spectral information divergence algorithm. Ammonium sulfate, dicyandiamide, and urea were each separately mixed into dry milk at concentrations of (w/w) of 0.5%, 1.0%, and 5.0%, and an algorithm based on self-modeling mixture analysis was applied to these sample images. The contaminants were successfully detected and the spatial distribution of the contaminants within the sample mixtures was visualized using these algorithms. Although further studies are necessary, macro-scale Raman chemical imaging shows promise for use in detecting contaminants in food ingredients and may also be useful for authentication of food ingredients.

  8. Investigation of the composition of anabolic tablets using near infrared spectroscopy and Raman chemical imaging.

    Science.gov (United States)

    Rebiere, Hervé; Ghyselinck, Céline; Lempereur, Laurent; Brenier, Charlotte

    2016-01-01

    The use of performance enhancing drugs is a widespread phenomenon in professional and leisure sports. A spectroscopic study was carried out on anabolic tablets labelled as 5 mg methandienone tablets provided by police departments. The analytical approach was based on a two-step methodology: a fast analysis of tablets using near infrared (NIR) spectroscopy to assess sample homogeneity based on their global composition, followed by Raman chemical imaging of one sample per NIR profile to obtain information on sample formulation. NIR spectroscopy assisted by a principal components analysis (PCA) enabled fast discrimination of different profiles based on the excipient formulation. Raman hyperspectral imaging and multivariate curve resolution - alternating least square (MCR-ALS) provided chemical images of the distribution of the active substance and excipients within tablets and facilitated identification of the active compounds. The combination of NIR spectroscopy and Raman chemical imaging highlighted dose-to-dose variations and succeeded in the discrimination of four different formulations out of eight similar samples of anabolic tablets. Some samples contained either methandienone or methyltestosterone whereas one sample did not contain an active substance. Other ingredients were sucrose, lactose, starch or talc. Both techniques were fast and non-destructive and therefore can be carried out as exploratory methods prior to destructive screening methods. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26198290

  9. Automated high-throughput assessment of prostate biopsy tissue using infrared spectroscopic chemical imaging

    Science.gov (United States)

    Bassan, Paul; Sachdeva, Ashwin; Shanks, Jonathan H.; Brown, Mick D.; Clarke, Noel W.; Gardner, Peter

    2014-03-01

    Fourier transform infrared (FT-IR) chemical imaging has been demonstrated as a promising technique to complement histopathological assessment of biomedical tissue samples. Current histopathology practice involves preparing thin tissue sections and staining them using hematoxylin and eosin (H&E) after which a histopathologist manually assess the tissue architecture under a visible microscope. Studies have shown that there is disagreement between operators viewing the same tissue suggesting that a complementary technique for verification could improve the robustness of the evaluation, and improve patient care. FT-IR chemical imaging allows the spatial distribution of chemistry to be rapidly imaged at a high (diffraction-limited) spatial resolution where each pixel represents an area of 5.5 × 5.5 μm2 and contains a full infrared spectrum providing a chemical fingerprint which studies have shown contains the diagnostic potential to discriminate between different cell-types, and even the benign or malignant state of prostatic epithelial cells. We report a label-free (i.e. no chemical de-waxing, or staining) method of imaging large pieces of prostate tissue (typically 1 cm × 2 cm) in tens of minutes (at a rate of 0.704 × 0.704 mm2 every 14.5 s) yielding images containing millions of spectra. Due to refractive index matching between sample and surrounding paraffin, minimal signal processing is required to recover spectra with their natural profile as opposed to harsh baseline correction methods, paving the way for future quantitative analysis of biochemical signatures. The quality of the spectral information is demonstrated by building and testing an automated cell-type classifier based upon spectral features.

  10. Renovation of CPF (Chemical Processing Facility) for Development of Advanced Fast Reactor Fuel Cycle System

    International Nuclear Information System (INIS)

    CPF (Chemical Processing Facility) was constructed at Nuclear Fuel Cycle Engineering Laboratories of JAEA (Japan Atomic Energy Agency) in 1980 as a basic research field where spent fuel pins from fast reactor (FR) and high level liquid waste can be dealt with. The renovation consists of remodeling of the CA-3 cell and the laboratory A, installation of globe boxes, hoods and analytical equipments to the laboratory C and the analytical laboratory. Also maintenance equipments in the CA-5 cell which had been out of order were repaired. The CA-3 cell is the main cell in which important equipments such as a dissolver, a clarifier and extractors are installed for carrying out the hot test using the irradiated FR fuel. Since the CPF had specialized originally in the research function for the Purex process, it was desired to execute the research and development of such new, various reprocessing processes. Formerly, equipments were arranged in wide space and connected with not only each other but also with utility supply system mainly by fixed stainless steel pipes. It caused shortage of operation space in flexibility for basic experimental study. Old equipments in the CA-3 cell including vessels and pipes were removed after successful decontamination, and new equipments were installed conformably to the new design. For the purpose of easy installation and rearranging the experimental equipments, equipments are basically connected by flexible pipes. Since dissolver is able to be easily replaced, various dissolution experiments is conducted. Insoluble residue generated by dissolution of spent fuel is clarified by centrifugal. This small apparatus is effective to space-saving. Mini mixer settlers or centrifugal contactors are put on to the prescribed limited space in front of the backside wall. Fresh reagents such as solvent, scrubbing and stripping solution are continuously fed from the laboratory A to the extractor by the reagent supply system with semi-automatic observation

  11. High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography

    International Nuclear Information System (INIS)

    We combine resonant scattering with (ptychographic) scanning coherent diffraction microscopy to determine the chemical state of gold nanoparticles with high spatial resolution. Ptychographic images of the sample are recorded for a series of energies around the gold L3 absorption edge. From these data, chemical information in the form of absorption and resonant scattering spectra is reconstructed at each location in the sample. For gold nanoparticles of about 100 nm diameter, a spatial resolution of about 20–30 nm is obtained. In the future, this microscopy approach will open the way to operando studies of heterogeneous catalysts on the nanometer scale.

  12. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging

    KAUST Repository

    Kundhikanjana, Worasom

    2009-11-11

    Local electrical imaging using microwave impedance microscope is performed on graphene in different modalities, yielding a rich hierarchy of the local conductivity. The low-conductivity graphite oxide and its derivatives show significant electronic inhomogeneity. For the conductive chemical graphene, the residual defects lead to a systematic reduction of the microwave signals. In contrast, the signals on pristine graphene agree well with a lumped-element circuit model. The local impedance information can also be used to verify the electrical contact between overlapped graphene pieces. © 2009 American Chemical Society.

  13. High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography

    DEFF Research Database (Denmark)

    Hoppe, R.; Reinhardt, J.; Hofmann, G.;

    2013-01-01

    We combine resonant scattering with (ptychographic) scanning coherent diffraction microscopy to determine the chemical state of gold nanoparticles with high spatial resolution. Ptychographic images of the sample are recorded for a series of energies around the gold L3 absorption edge. From these...... data, chemical information in the form of absorption and resonant scattering spectra is reconstructed at each location in the sample. For gold nanoparticles of about 100 nm diameter, a spatial resolution of about 20-30 nm is obtained. In the future, this microscopy approach will open the way to...

  14. Infrared chemical imaging: Spatial resolution evaluation and super-resolution concept

    Energy Technology Data Exchange (ETDEWEB)

    Offroy, Marc [Laboratoire de Spectrochimie Infrarouge et Raman, LASIR, CNRS UMR 8516, Bat. C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France); Roggo, Yves [F. Hoffmann-La Roche A.G., Basel (Switzerland); Milanfar, Peyman [Multi-Dimensional Signal Processing Laboratory, Electrical Engineering Department, Baskin School of Engineering, University of California, 1156 High Street, Mailcode SOE2, Santa Cruz, CA 95064 (United States); Duponchel, Ludovic, E-mail: ludovic.duponchel@univ-lille1.fr [Laboratoire de Spectrochimie Infrarouge et Raman, LASIR, CNRS UMR 8516, Bat. C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France)

    2010-08-03

    Chemical imaging systems help to solve many challenges in various scientific fields. Able to deliver rapid spatial and chemical information, modern infrared spectrometers using Focal Plane Array detectors (FPA) are of great interest. Considering conventional infrared spectrometers with a single element detector, we can consider that the diffraction-limited spatial resolution is more or less equal to the wavelength of the light (i.e. 2.5-25 {mu}m). Unfortunately, the spatial resolution of FPA spectroscopic setup is even lower due to the detector pixel size. This becomes a real constraint when micron-sized samples are analysed. New chemometrics methods are thus of great interest to overcome such resolution drawback, while keeping our far-field infrared imaging spectrometers. The aim of the present work is to evaluate the super-resolution concept in order to increase the spatial resolution of infrared imaging spectrometers using FPA detectors. The main idea of super-resolution is the fusion of several low-resolution images of the same sample to obtain a higher-resolution image. Applying the super-resolution concept on a relatively low number of FPA acquisitions, it was possible to observe a 30% decrease in spatial resolution.

  15. Infrared chemical imaging: Spatial resolution evaluation and super-resolution concept

    International Nuclear Information System (INIS)

    Chemical imaging systems help to solve many challenges in various scientific fields. Able to deliver rapid spatial and chemical information, modern infrared spectrometers using Focal Plane Array detectors (FPA) are of great interest. Considering conventional infrared spectrometers with a single element detector, we can consider that the diffraction-limited spatial resolution is more or less equal to the wavelength of the light (i.e. 2.5-25 μm). Unfortunately, the spatial resolution of FPA spectroscopic setup is even lower due to the detector pixel size. This becomes a real constraint when micron-sized samples are analysed. New chemometrics methods are thus of great interest to overcome such resolution drawback, while keeping our far-field infrared imaging spectrometers. The aim of the present work is to evaluate the super-resolution concept in order to increase the spatial resolution of infrared imaging spectrometers using FPA detectors. The main idea of super-resolution is the fusion of several low-resolution images of the same sample to obtain a higher-resolution image. Applying the super-resolution concept on a relatively low number of FPA acquisitions, it was possible to observe a 30% decrease in spatial resolution.

  16. Estimation and characterization of physical and inorganic chemical indicators of water quality by using SAR images

    Science.gov (United States)

    Shareef, Muntadher A.; Toumi, Abdelmalek; Khenchaf, Ali

    2015-10-01

    Recently, remote sensing is considering one of the most important tools in studies of water scattering and water characterization. Traditional methods for monitoring pollutants depended on optical satellite rather than Radar data. Thus, many of Water Quality Parameters (WQP) from optical imagery are still limited. In this paper, a new approach based on the TerraSAR-X images has been presented which it is used to map the region of interest and to estimate physical and chemical WQPs. This approach based on a Small Perturbation Model (SPM) for the electromagnetic scattering is applied by using the Elfouhaily spectrum. A series of inversions have been included in this model started by finding the reflectivity from backscattering coefficients which are calculated from SAR images. Another inversion has been applied to find dielectric constant from the calculation models of the reflectivity (in HH and VV polarizations). Then, a Stogryn Debye formulation has been used to estimate temperature and salinity of water surface from SAR images. After many derivations we got a new model able to estimate temperature and salinity directly from backscattering coefficients obtained from radar images. Inorganic chemical parameters which are represented by Total Dissolved Salts (TDS) and the Electrical Conductivity (EC) are estimated directly from salinity. A tow dataset of instu data have been used to validate this work. The validation included a comparison between parameters measured in situ and those estimated from Terra SAR-X image.

  17. Two decades of chemical imaging of solutes in sediments and soils

    DEFF Research Database (Denmark)

    Santner, Jakob; Larsen, Morten; Kreuzeder, Andreas;

    2015-01-01

    -called sandwich sensors for multianalyte measurements. Here we review the capabilities and limitations of the chemical imaging methods that are currently at hand, using a number of case studies, and provide an outlook on potential future developments for two-dimensional solute imaging in soils and sediments....... sampling of solutes (diffusive equilibration in thin films, diffusive gradients in thin films) followed by planar luminescent sensors (planar optodes) have been used as analytical tools for studies on solute distribution and dynamics. These approaches have provided new conceptual and quantitative...

  18. Recent Advances in Cryo-TEM Imaging of Soft Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shen Helvig

    2015-05-01

    Full Text Available Cryo-transmission electron microscopy (Cryo-TEM, and its technological variations thereof, have become a powerful tool for detailed morphological characterization and 3D tomography of soft lipid and polymeric nanoparticles as well as biological materials such as viruses and DNA without chemical fixation. Here, we review and discuss recent advances in Cryo-TEM analysis of lipid-based drug nanocarriers with particular emphasis on morphological and internal nanostructure characterization of lyotropic liquid crystalline nanoparticles such as cubosomes and hexosomes.

  19. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    Science.gov (United States)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  20. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, Sebastian [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Kubik-Huch, Rahel A.; Peters, Alexander [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Klarhoefer, Markus [Siemens Healthcare, Zurich (Switzerland); Bolliger, Stephan A.; Thali, Michael J. [University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Anderson, Suzanne [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Notre Dame Australia, Radiology, Sydney School of Medicine, Sydney, NSW (Australia); Froehlich, Johannes M. [Federal Institute of Technology, Pharmaceutical Sciences, Zurich (Switzerland)

    2015-09-15

    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  1. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    International Nuclear Information System (INIS)

    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  2. Advances in MR image-guided high-intensity focused ultrasound therapy.

    Science.gov (United States)

    Kim, Young-sun

    2015-05-01

    The clinical role of magnetic resonance image-guided high-intensity focused ultrasound (MR-HIFU) is rapidly expanding due to its merit of non-invasiveness. MR thermometry based on a proton resonance frequency shift technique is able to accurately measure HIFU-induced temperature changes, which provides considerable advantages over ultrasonography-guided HIFU in terms of safety and therapeutic efficacy. Recent studies and the resulting technological advances in MR-HIFU such as MR thermometry for moving organs, MR-acoustic radiation force imaging, and a volumetric mild hyperthermia technique further will expand its clinical roles from mere ablation therapy to targeted drug delivery and chemo- or radio-sensitisation for cancer treatment. In this article, MR-HIFU therapy is comprehensively reviewed with an emphasis on the roles of MR imaging in HIFU therapy, techniques of MR monitoring, recent advances in clinical MR-HIFU systems, and potential future applications of MR-HIFU therapy. In addition, the pros and cons of MR-HIFU when compared with ultrasonography-guided HIFU are discussed. PMID:25373687

  3. Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology.

    Science.gov (United States)

    Petibois, Cyril; Déléris, Gérard

    2006-10-01

    Fourier-transform infrared (FT-IR) spectro-imaging enables global analysis of samples, with resolution close to the cellular level. Recent studies have shown that FT-IR imaging enables determination of the biodistribution of several molecules of interest (carbohydrates, lipids, proteins) for tissue analysis without pre-analytical modification of the sample such as staining. Molecular structure information is also available from the same analysis, notably for protein secondary structure and fatty acyl chain peroxidation level. Thus, several cancer markers can be identified from FT-IR tissue images, enabling accurate discrimination between healthy and tumor areas. FT-IR imaging applications are now able to provide unique chemical and morphological information about tissue status. With the fast image acquisition provided by modern mid-infrared imaging systems, it is now envisaged to analyze cerebral tumor exereses in delays compatible with neurosurgery. Accordingly, we propose to take FT-IR imaging into consideration for the development of new molecular histopathology tools. PMID:16935373

  4. Potential for MERLIN-Expo, an advanced tool for higher tier exposure assessment, within the EU chemical legislative frameworks.

    Science.gov (United States)

    Suciu, Nicoleta; Tediosi, Alice; Ciffroy, Philippe; Altenpohl, Annette; Brochot, Céline; Verdonck, Frederik; Ferrari, Federico; Giubilato, Elisa; Capri, Ettore; Fait, Gabriella

    2016-08-15

    MERLIN-Expo merges and integrates advanced exposure assessment methodologies, allowing the building of complex scenarios involving several pollution sources and targets. The assessment of exposure and risks to human health from chemicals is of major concern for policy and ultimately benefits all citizens. The development and operational fusion of the advanced exposure assessment methodologies envisaged in the MERLIN-Expo tool will have a significant impact in the long term on several policies dealing with chemical safety management. There are more than 30 agencies in Europe related to exposure and risk evaluation of chemicals, which have an important role in implementing EU policies, having especially tasks of technical, scientific, operational and/or regulatory nature. The main purpose of the present paper is to introduce MERLIN-Expo and to highlight its potential for being effectively integrated within the group of tools available to assess the risk and exposure of chemicals for EU policy. The main results show that the tool is highly suitable for use in site-specific or local impact assessment, with minor modifications it can also be used for Plant Protection Products (PPPs), biocides and REACH, while major additions would be required for a comprehensive application in the field of consumer and worker exposure assessment. PMID:27107646

  5. The hunt for the dynamical resonances in chemical reaction dynamics: a perspective on historical advances

    OpenAIRE

    Yu Angyang; Zhonghua Yang

    2015-01-01

    The theoretical background and basic definition of the resonances in chemical reaction dynamics have been introduced in this article. The historical breakthrough in the experimental search for the reaction resonances has been reviewed in this report, with an emphasis on the crossed molecular beam apparatus. The research of the chemical reaction resonances has attracted many scientists’ attention from 80s of last century. The chemical reaction resonances in the F+H2 reaction were firstly obser...

  6. Advances in Groundwater Remediation: Achieving Effective In Situ Delivery of Chemical Oxidants and Amendments

    DEFF Research Database (Denmark)

    Siegrist, Robert L.; Crimi, Michelle; Broholm, Mette Martina;

    2012-01-01

    Contamination of soil and groundwater by organic chemicals represents a major environmental problem in urban areas throughout the United States and other industrialized nations. In situ chemical oxidation (ISCO) has emerged as one of several viable methods for remediation of organically contamina...... delivery of treatment fl uids, with an emphasis on chemical oxidants and amendments, which can help achieve cleanup goals and protect groundwater and associated drinking water resources....

  7. The hunt for the dynamical resonances in chemical reaction dynamics: a perspective on historical advances

    Directory of Open Access Journals (Sweden)

    Yu Angyang

    2015-06-01

    Full Text Available The theoretical background and basic definition of the resonances in chemical reaction dynamics have been introduced in this article. The historical breakthrough in the experimental search for the reaction resonances has been reviewed in this report, with an emphasis on the crossed molecular beam apparatus. The research of the chemical reaction resonances has attracted many scientists’ attention from 80s of last century. The chemical reaction resonances in the F+H2 reaction were firstly observed by the researchers of the Chinese Academy of Sciences in 2006. Besides, the partial wave resonances in the chemical reactions have been observed for the first time in 2010.

  8. A versatile toolbox for posttranscriptional chemical labeling and imaging of RNA

    Science.gov (United States)

    Sawant, Anupam A.; Tanpure, Arun A.; Mukherjee, Progya P.; Athavale, Soumitra; Kelkar, Ashwin; Galande, Sanjeev; Srivatsan, Seergazhi G.

    2016-01-01

    Cellular RNA labeling strategies based on bioorthogonal chemical reactions are much less developed in comparison to glycan, protein and DNA due to its inherent instability and lack of effective methods to introduce bioorthogonal reactive functionalities (e.g. azide) into RNA. Here we report the development of a simple and modular posttranscriptional chemical labeling and imaging technique for RNA by using a novel toolbox comprised of azide-modified UTP analogs. These analogs facilitate the enzymatic incorporation of azide groups into RNA, which can be posttranscriptionally labeled with a variety of probes by click and Staudinger reactions. Importantly, we show for the first time the specific incorporation of azide groups into cellular RNA by endogenous RNA polymerases, which enabled the imaging of newly transcribing RNA in fixed and in live cells by click reactions. This labeling method is practical and provides a new platform to study RNA in vitro and in cells. PMID:26384420

  9. 1H chemical shift imaging characterization of human brain tumor and edema

    International Nuclear Information System (INIS)

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) 1H chemical shift imaging results at different repetition times (TR=1500 and 5000 ms; T1: n=19) and echo times (TE=135 and 270 ms; T2: n=7). Metabolite T1 and T2 relaxation times in unaffected brain tissue corresponded with those published for healthy volunteers. T2 relaxation times were reduced in tumor (choline, N-acetyl aspartate) and edema (choline, creatine) compared with unaffected brain tissue (p1H chemical shift imaging is most suited in the use of choline elevation as tumor marker. (orig.)

  10. Biochemical imaging of cervical intervertebral discs with glycosaminoglycan chemical exchange saturation transfer magnetic resonance imaging: feasibility and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Christoph; Mueller-Lutz, Anja; Zimmermann, Lisa; Boos, Johannes; Wittsack, Hans-Joerg; Antoch, Gerald; Miese, Falk [Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf (Germany); Schmitt, Benjamin [Siemens Ltd. Australia, Healthcare Sector, Macquarie Park, NSW (Australia)

    2016-01-15

    To evaluate glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging at 3T in the assessment of the GAG content of cervical IVDs in healthy volunteers. Forty-two cervical intervertebral discs of seven healthy volunteers (four females, three males; mean age: 21.4 ± 1.4 years; range: 19-24 years) were examined at a 3T MRI scanner in this prospective study. The MRI protocol comprised standard morphological, sagittal T2 weighted (T2w) images to assess the magnetic resonance imaging (MRI) based grading system for cervical intervertebral disc degeneration (IVD) and biochemical imaging with gagCEST to calculate a region-of-interest analysis of nucleus pulposus (NP) and annulus fibrosus (AF). GagCEST of cervical IVDs was technically successful at 3T with significant higher gagCEST values in NP compared to AF (1.17 % ± 1.03 % vs. 0.79 % ± 1.75 %; p = 0.005). We found topological differences of gagCEST values of the cervical spine with significant higher gagCEST effects in lower IVDs (r = 1; p = 0). We could demonstrate a significant, negative correlation between gagCEST values and cervical disc degeneration of NP (r = -0.360; p = 0.019). Non-degenerated IVDs had significantly higher gagCEST effects compared to degenerated IVDs in NP (1.76 % ± 0.92 % vs. 0.52 % ± 1.17 %; p < 0.001). Biochemical imaging of cervical IVDs is feasible at 3T. GagCEST analysis demonstrated a topological GAG distribution of the cervical spine. The depletion of GAG in the NP with increasing level of morphological degeneration can be assessed using gagCEST imaging. (orig.)

  11. Advances in Tumor Screening, Imaging, and Avatar Technologies for High-Grade Serous Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Anders eOhman

    2014-11-01

    Full Text Available The majority of high-grade serous ovarian carcinoma cases are detected in advanced stages when treatment options are limited. Surgery is less effective at eradicating the disease when it is widespread, resulting in high rates of disease relapse and chemoresistance. Current screening techniques are ineffective for early tumor detection and consequently, BRCA mutations carriers, with an increased risk for developing high-grade serous ovarian cancer, elect to undergo risk-reducing surgery. While prophylactic surgery is associated with a significant reduction in the risk of cancer development, it also results in surgical menopause and significant adverse side effects. The development of efficient early-stage screening protocols and imaging technologies is critical to improving the outcome and quality of life for current patients and women at increased risk. In addition, more accurate animal models are necessary in order to provide relevant in vivo testing systems and advance our understanding of the disease origin and progression. Moreover, both genetically engineered and tumor xenograft animal models enable the preclinical testing of novel imaging techniques and molecularly targeted therapies as they become available. Recent advances in xenograft technologies have made possible the creation of avatar mice, personalized tumorgrafts, which can be used as therapy testing surrogates for individual patients prior to or during treatment. High-grade serous ovarian cancer may be an ideal candidate for use with avatar models based on key characteristics of the tumorgraft platform. This review explores multiple strategies, including novel imaging and screening technologies in both patients and animal models, aimed at detecting cancer in the early stages and improving the disease prognosis.

  12. SU-E-QI-20: A Review of Advanced PET and CT Image Features for the Evaluation of Tumor Response

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2014-06-15

    Purpose: To review the literature in using quantitative PET and CT image features for the evaluation of tumor response. Methods: We reviewed and summarized more than fifty papers that use advanced, quantitative PET/CT image features for the evaluation of tumor response. We also discussed future works on extracting disease-specific features, combining multiple and complementary features in response modeling, delineating tumor in multimodality images, and exploring biological explanations of these advanced features. Results: Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features (characterizing spatial distribution of FDG uptake) have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Conclusions: Advanced, quantitative FDG PET/CT image features have been shown promising for the evaluation of tumor response. With the emerging multi-modality imaging performed at multiple time points for each patient, it becomes more important to analyze the serial images quantitatively, select and combine both complementary and contradictory information from various sources, for accurate and personalized evaluation of tumor response to therapy.

  13. New dual gas puff imaging system with up-down symmetry on experimental advanced superconducting tokamak

    DEFF Research Database (Denmark)

    Liu, S. C.; Shao, L. M.; Zweben, S. J.; Xu, G.S.; Guo, H. Y.; Cao, B.; Wang, H. Q.; Wang, L.; Yan, Ning; Xia, S. B.; Zhang, W.; Chen, R.; Chen, L.; Ding, S. Y.; Xiong, H.; Zhao, Y.; Wan, B. N.; Gong, X. Z.; Gao, X.

    2012-01-01

    Gas puff imaging (GPI) offers a direct and effective diagnostic to measure the edge turbulence structure and velocity in the edge plasma, which closely relates to edge transport and instability in tokamaks. A dual GPI diagnostic system has been installed on the low field side on experimental...... advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6 degrees. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130x130 mm (radial versus poloidal) objective plane. A fast camera is...

  14. What advances in microscopy are required for combined MRI and optical functional brain imaging? (Conference Presentation)

    Science.gov (United States)

    Kleinfeld, David

    2016-03-01

    This overview talk will focus on forward-looking scientific needs and physical limits to images of neuronal processes. The challenge in nervous systems is that the basic unit for "switching" events in the nervous system occurs on the one micrometer scale of synaptic spines, while computations involve communication between individual neurons across the full expanse of cortex, which is ten millimeters for mouse cortex. I will address hoped-for advances in optical microscopy, within the context of existing and proposed contrast mechanisms of neuronal function, that span the four orders of magnitude of length scales for neuronal processing

  15. Chemicals-Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    International Nuclear Information System (INIS)

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Chemicals. Information on what works for the Chemicals industry, examples of successful partnerships, and benefits of partnering with OIT are included

  16. Image-guided radiotherapy for locally advanced head and neck cancer

    Directory of Open Access Journals (Sweden)

    NamPhongNguyen

    2013-07-01

    Full Text Available Treatment of locally advanced head and neck cancer remains a challenge because of the head and neck complex anatomy and the tumor invasion to the adjacent organs and/or metastases to the cervical nodes. Postoperative irradiation or concurrent chemoradiation may lead to damage of radiosensitive structures such as the salivary glands, mandible, cochlea, larynx, and pharyngeal muscles. Xerostomia, osteoradionecrosis, deafness, hoarseness of the voice, dysphagia, and aspiration remain serious complications of head and neck irradiation and impair patient quality of life. Intensity-modulated and image-guided radiotherapy by virtue of steep dose gradient and daily imaging may allow for decreased radiation of the organs at risk for complication while preserving loco-regional control.

  17. High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing

    Directory of Open Access Journals (Sweden)

    Siawoosh eMohammadi

    2015-01-01

    Full Text Available Diffusion Kurtosis Imaging (DKI is more sensitive to microstructural differences and can be related to more specific micro-scale metrics (e.g. intra-axonal volume fraction than diffusion tensor imaging (DTI, offering exceptional potential for clinical diagnosis and research into the white and gray matter. Currently DKI is acquired only at low spatial resolution (2-3 mm isotropic, because of the lower signal-to-noise ratio (SNR and higher artifact level associated with the technically more demanding DKI. Higher spatial resolution of about 1mm is required for the characterization of fine white matter pathways or cortical microstructure. We used restricted-field-of-view imaging in combination with advanced post-processing methods to enable unprecedented high-quality, high-resolution DKI (1.2 mm isotropic on a clinical 3T scanner. Post-processing was advanced by developing a novel method for Retrospective Eddy current and Motion ArtifacT Correction in High-resolution, multi-shell diffusion data (REMATCH. Furthermore, we applied a powerful edge preserving denoising method, denoted as multi-shell orientation-position-adaptive smoothing (msPOAS. We demonstrated the feasibility of high-quality, high-resolution DKI and its potential for delineating highly myelinated fiber pathways in the motor cortex. REMATCH performs robustly even at the low SNR level of high-resolution DKI, where standard EC and motion correction failed (i.e. produced incorrectly aligned images and thus biased the diffusion model fit. We showed that the combination of REMATCH and msPOAS increased the contrast between gray and white matter in mean kurtosis (MK maps by about 35% and at the same time preserves the original distribution of MK values, whereas standard Gaussian smoothing strongly biases the distribution.

  18. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    International Nuclear Information System (INIS)

    Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies, and importantly, for facilitating patient management, sparing patients from weeks or months of toxicity and ineffective treatment. This review will present an overview of epidemiology, molecular pathogenesis and current advances in diagnoses, and management of malignant gliomas

  19. Image optimization for chemical species tomography with an irregular and sparse beam array

    International Nuclear Information System (INIS)

    High-speed tomographic imaging of hostile engineering processes using absorption-based measurements presents a number of difficulties. In some cases, these challenges include severe limitations on the number of available measurement paths through the subject and the process of designing the geometrical arrangement of these paths for best imaging performance. This paper considers the case of a chemical species tomography system based on near-IR spectroscopic absorption measurements, intended for application to one cylinder of a multi-cylinder production engine. Some of the results, however, are also applicable to other hard-field tomographic modalities in applications where similar constraints may be encountered. A hitherto unreported design criterion is presented for optimal beam geometry for imaging performance, resulting in an irregular array with only 27 measurement paths through the subject for the engine application. Image reconstruction for this severely limited geometry is considered at length, using both simulated and experimental phantom data. Novel methods are presented for the practical generation of gaseous phantoms for calibration and testing of the system. The propane absorption coefficient at 1700 nm is measured. Quantitative imaging of propane plumes in air is demonstrated, showing good localization of circular plumes with diameter as small as 1/5 of the subject diameter and excellent imaging of multiple plumes

  20. Raman imaging to study structural and chemical features of the dentin enamel junction

    Science.gov (United States)

    Alebrahim, M. Anwar; Krafft, C.; Popp, J.

    2015-10-01

    The structure and chemical features of the human dentin enamel junction (DEJ) were characterized using Raman spectroscopic imaging. Slices were prepared from 10 German, and 10 Turkish teeth. Raman images were collected at 785 nm excitation and the average Raman spectra were calculated for analysis. Univariate and multivariate spectral analysis were applied for investigation. Raman images were obtained based on the intensity ratios of CH at 1450 cm-1 (matrix) to phosphate at 960 cm-1 (mineral), and carbonate to phosphate (1070/960) ratios. Different algorithms (HCA, K-means cluster and VCA) also used to study the DEJ. The obtained results showed that the width of DEJ is about 5 pm related to univariate method while it varies from 6 to 12 μm based on multivariate spectral technique. Both spectral analyses showed increasing in carbonate content inside the DEJ compared to the dentin, and the amide I (collagen) peak in dentin spectra is higher than DEJ spectra peak.

  1. Nanoelectron spectroscopy for chemical analysis: a novel energy filter for imaging x-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    A novel instrument for imaging ESCA is described. It is based on a tandem arrangement of two hemispherical energy analysers used as an imaging energy filter. The main spherical aberration (α2-term) of the analyser is corrected by the antisymmetry of the tandem configuration. The kinetic energy range usable for imaging extends up to 1.6 keV; this is compatible with Mg and Al Kα laboratory x-ray sources. First experiments on the chemical surface composition of a Cu0.98Bi0.02 polycrystal, a GaAs/AlGaAs heterostructure and Ag crystallites on Si(111) have been performed using synchrotron radiation. The results reveal an energy resolution of 190 meV and a lateral resolution (edge resolution) of 120 nm. Besides elimination of the analyser's spherical aberration, the tandem arrangement largely retains the time structure of the electron signal, unlike a single hemispherical analyser

  2. Advances in image-guided radiation therapy-the role of PET-CT

    International Nuclear Information System (INIS)

    In the era of image-guided radiation therapy (IGRT), the greatest challenge remains target delineation, as the opportunity to maximize cures while simultaneously decreasing radiation dose to the surrounding normal tissues is to be realized. Over the last 2 decades, technological advances in radiographic imaging, biochemistry, and molecular biology have played an increasing role in radiation treatment planning, delivery, and evaluation of response. Previously, fluoroscopy formed the basis of radiation treatment planning. Beginning in the late 1980s, computed tomography (CT) has become the basis for modern radiation treatment planning and delivery, coincident with the rise of 3-dimensional conformal radiation therapy (3DCRT). Additionally, multi-modality anatomic imaging registration was the solution pursued to augment delineation of tumors and surrounding structures on CT-based treatment planning. Although these imaging modalities provide the customary anatomic details necessary for radiation treatment planning, they have limitations, including difficulty with identification of small tumor deposits, tumor extension, and distinction from scar tissues. To overcome these limitations, PET and, more recently, PET-CT have been innovative regarding the extent of disease appraisal, target delineation in the treatment planning, and assessment of therapy response. We review the role of functional imaging in IGRT as it reassures transformations on the field of radiation oncology. As we move toward the era of IGRT, the use of multi-modality imaging fusion, and the introduction of more sensitive and specific PET-CT tracers may further assist target definition. Furthermore, the potential to predict early outcome or even detect early recurrence of tumor, may allow for the tailoring of intervention in cancer patients. The convergence of a biological target volume, and perhaps multi-tracer tumor, molecular, and genetic profile tumors will probably be vital in cancer treatment

  3. Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues

    Science.gov (United States)

    Nelson, Matthew P.; Gardner, Charles W.; Klueva, Oksana; Tomas, David

    2014-05-01

    Passive, standoff detection of chemical, explosive and narcotic threats employing widefield, shortwave infrared (SWIR) hyperspectral imaging (HSI) continues to gain acceptance in defense and security fields. A robust and user-friendly portable platform with such capabilities increases the effectiveness of locating and identifying threats while reducing risks to personnel. In 2013 ChemImage Sensor Systems (CISS) introduced Aperio, a handheld sensor, using real-time SWIR HSI for wide area surveillance and standoff detection of explosives, chemical threats, and narcotics. That SWIR HSI system employed a liquid-crystal tunable filter for real-time automated detection and display of threats. In these proceedings, we report on a next generation device called VeroVision™, which incorporates an improved optical design that enhances detection performance at greater standoff distances with increased sensitivity and detection speed. A tripod mounted sensor head unit (SHU) with an optional motorized pan-tilt unit (PTU) is available for precision pointing and sensor stabilization. This option supports longer standoff range applications which are often seen at checkpoint vehicle inspection where speed and precision is necessary. Basic software has been extended to include advanced algorithms providing multi-target display functionality, automatic threshold determination, and an automated detection recipe capability for expanding the library as new threats emerge. In these proceedings, we report on the improvements associated with the next generation portable widefield SWIR HSI sensor, VeroVision™. Test data collected during development are presented in this report which supports the targeted applications for use of VeroVision™ for screening residue and bulk levels of explosive and drugs on vehicles and personnel at checkpoints as well as various applications for other secure areas. Additionally, we highlight a forensic application of the technology for assisting forensic

  4. 油菜化学杀雄剂研究进展%Research Advances in Chemical Emasculation of Rape

    Institute of Scientific and Technical Information of China (English)

    张振乾; 王国槐; 官春云; 陈社员

    2011-01-01

    利用化学杀雄剂进行品种选育可有效利用杂种优势,加快育种进程,在油菜育种中应用广泛.综述了油菜化学杀雄剂及其应用、化学杀雄的生理生化研究及其分子方面的研究进展,针对目前在杀雄机理方面研究不足,提出了相关的方法和建议,为油菜化学杀雄剂研究提供参考,促进其在油菜育种中的应用.%Chemical emasculation can effectively using hybrid advantages and promoting breeding process, therefore, it applying widely in rape breeding.The research advances in chemical emasculation agent and its application, physiology and biochemistry of chemical emasculation and its molecule study were reviewed.The results indicated that at present, it is lacking in study of emasculation mechanism, and some correlative measures and suggestions were proposed to provide reference for rape’s chemical emasculation and promote selecting tape’s chemical emasculation agents and breeding emasculated variety.

  5. REMOVAL OF SYNTHETIC ORGANIC CHEMICAL CONTAMINANTS IN DRINKING WATER: RASCO, INC. ADVANCED SIMULTANEOUS OXIDATION PROCESS (ASOP)

    Science.gov (United States)

    The RASco, Inc. ASOP Drinking Water Treatment Module was tested at NSF’s Laboratory for the reduction of the following chemicals of concern: aldicarb, benzene, carbofuran, chloroform, dichlorvos, dicrotophos, methomyl, mevinphos, nicotine, oxamyl, paraquat, phorate, sodium fluor...

  6. Differential diagnosis of adrenal masses by chemical shift and dynamic gadolinium enhanced MR imaging

    International Nuclear Information System (INIS)

    Chemical shift MRI is widely used for identifying adenomas, but it is not a perfect method. We determined whether combined dynamic MRI methods can lead to improved diagnostic accuracy. Fifty-seven adrenal masses were examined by chemical shift and dynamic MR imaging using 2 MR systems. The masses included 38 adenomas and 19 non-adenomas. In chemical shift MRI studies, the signal intensity index (SI) was calculated, and the lesions classified into 5 types in the dynamic MRI studies. Of the 38 adenomas studied, 37 had an SI greater than 0. In the dynamic MRI, 34 of 38 adenomas showed a benign pattern (type 1). If the SI for the adenomas in the chemical shift MRI was considered to be greater than 0, the positive predictive value was 0.9, and the negative predictive value was 0.94 and κ=0.79. If type 1 was considered to indicate adenomas in the dynamic MRI, the corresponding values were 0.94, 0.81 and κ=0.77 respectively. The results obtained when the 2 methods were combined were 1, 0.95 and κ=0.96 respectively. The chemical shift MRI was found to be useful for identifying adenomas in most cases. If the adrenal mass had a low SI (0< SI<5), dynamic MRI was also found to be helpful for making a differential diagnosis. (author)

  7. Advances in elemental imaging of rocks using the AGLAE external microbeam

    International Nuclear Information System (INIS)

    Rocks are widely represented in cultural heritage materials. They constitute the major part of archaeological artefacts like stone carvings, tools and weapons, and are present in art works in various forms, such as precious stone inlays or paint pigments. The study of such geomaterials, which are usually constituted of a complex aggregate of mineral phases, aims at determining their exact nature, their provenance and at understanding their possible alteration. Since minerals are often composed of light elements, IBA techniques such as PIXE and PIGE, thanks to their ability to measure with high sensitivity elements down to lithium, should be well adapted to their analysis. However, the bulk composition classically obtained using macro-IBA on pelletized samples or using a broad beam hides the multi-phased nature of the rocks and considerably blurs the searched chemical fingerprint. In contrast, the small size of a nuclear microprobe allows imaging the chemical composition at a finer scale and, when implemented in air, appears ideally suited to analyse without sampling these often precious items. This paper illustrates chemical micro-imaging of rocks with examples performed with the AGLAE external nuclear microprobe: characterisation of microscopic inclusions in gems and detailed chemical mapping of rocks with special emphasis to lapis lazuli. Lapis lazuli is of particular interest in both archaeology and art history: after being employed in Asia since the 7th millennium BC to make carvings and beads, it was used in Medieval Europe as a precious blue painting pigment known as ultramarine. The chemical imaging of major and trace elements in lapis lazuli using external μ-PIXE has permitted to identify its mineral phases, to assign their trace elements and to evidence undetected elements. In combination with μ-XRD and μ-Raman spectrometry, this approach provides a clear mineralogical fingerprint useful to determine rock provenance and to authenticate artefacts of

  8. Advances in elemental imaging of rocks using the AGLAE external microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Calligaro, T., E-mail: thomas.calligaro@culture.gouv.fr [Centre de Recherche et de Restauration des musees de France, CNRS UMR171, Palais du Louvre, 75001 Paris (France); Coquinot, Y.; Pichon, L.; Moignard, B. [Centre de Recherche et de Restauration des musees de France, CNRS UMR171, Palais du Louvre, 75001 Paris (France)

    2011-10-15

    Rocks are widely represented in cultural heritage materials. They constitute the major part of archaeological artefacts like stone carvings, tools and weapons, and are present in art works in various forms, such as precious stone inlays or paint pigments. The study of such geomaterials, which are usually constituted of a complex aggregate of mineral phases, aims at determining their exact nature, their provenance and at understanding their possible alteration. Since minerals are often composed of light elements, IBA techniques such as PIXE and PIGE, thanks to their ability to measure with high sensitivity elements down to lithium, should be well adapted to their analysis. However, the bulk composition classically obtained using macro-IBA on pelletized samples or using a broad beam hides the multi-phased nature of the rocks and considerably blurs the searched chemical fingerprint. In contrast, the small size of a nuclear microprobe allows imaging the chemical composition at a finer scale and, when implemented in air, appears ideally suited to analyse without sampling these often precious items. This paper illustrates chemical micro-imaging of rocks with examples performed with the AGLAE external nuclear microprobe: characterisation of microscopic inclusions in gems and detailed chemical mapping of rocks with special emphasis to lapis lazuli. Lapis lazuli is of particular interest in both archaeology and art history: after being employed in Asia since the 7th millennium BC to make carvings and beads, it was used in Medieval Europe as a precious blue painting pigment known as ultramarine. The chemical imaging of major and trace elements in lapis lazuli using external {mu}-PIXE has permitted to identify its mineral phases, to assign their trace elements and to evidence undetected elements. In combination with {mu}-XRD and {mu}-Raman spectrometry, this approach provides a clear mineralogical fingerprint useful to determine rock provenance and to authenticate artefacts

  9. Advances in elemental imaging of rocks using the AGLAE external microbeam

    Science.gov (United States)

    Calligaro, T.; Coquinot, Y.; Pichon, L.; Moignard, B.

    2011-10-01

    Rocks are widely represented in cultural heritage materials. They constitute the major part of archaeological artefacts like stone carvings, tools and weapons, and are present in art works in various forms, such as precious stone inlays or paint pigments. The study of such geomaterials, which are usually constituted of a complex aggregate of mineral phases, aims at determining their exact nature, their provenance and at understanding their possible alteration. Since minerals are often composed of light elements, IBA techniques such as PIXE and PIGE, thanks to their ability to measure with high sensitivity elements down to lithium, should be well adapted to their analysis. However, the bulk composition classically obtained using macro-IBA on pelletized samples or using a broad beam hides the multi-phased nature of the rocks and considerably blurs the searched chemical fingerprint. In contrast, the small size of a nuclear microprobe allows imaging the chemical composition at a finer scale and, when implemented in air, appears ideally suited to analyse without sampling these often precious items. This paper illustrates chemical micro-imaging of rocks with examples performed with the AGLAE external nuclear microprobe: characterisation of microscopic inclusions in gems and detailed chemical mapping of rocks with special emphasis to lapis lazuli. Lapis lazuli is of particular interest in both archaeology and art history: after being employed in Asia since the 7th millennium BC to make carvings and beads, it was used in Medieval Europe as a precious blue painting pigment known as ultramarine. The chemical imaging of major and trace elements in lapis lazuli using external μ-PIXE has permitted to identify its mineral phases, to assign their trace elements and to evidence undetected elements. In combination with μ-XRD and μ-Raman spectrometry, this approach provides a clear mineralogical fingerprint useful to determine rock provenance and to authenticate artefacts of

  10. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla

    International Nuclear Information System (INIS)

    To demonstrate the feasibility of using chemical exchange saturation transfer (CEST) imaging to detect Parkinson's disease (PD) in patients at 3 Tesla. Twenty-seven PD patients (17 men and 10 women; age range, 54-77 years) and 22 age-matched normal controls (13 men and 9 women; age range, 55-73 years) were examined on a 3-Tesla MRI system. Magnetization transfer spectra with 31 different frequency offsets (-6 to 6 ppm) were acquired at two transverse slices of the head, including the basal ganglia and midbrain. One-way analysis of variance tests was used to compare the differences in CEST imaging signals between PD patients and normal controls. Total CEST signal between the offsets of 0 and 4 ppm in the substantia nigra was significantly lower in PD patients than in normal controls (P = 0.006), which could be associated with the loss of dopaminergic neurons. Protein-based CEST imaging signals at the offset of 3.5 ppm in the globus pallidus, putamen and caudate were significantly increased in PD patients, compared to normal controls (P < 0.001, P = 0.003, P < 0.001, respectively). CEST imaging signals could potentially serve as imaging biomarkers to aid in the non-invasive molecular diagnosis of PD. (orig.)

  11. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunmei; Peng, Shuai; Wang, Rui; Chen, Min [Beijing Hospital, Department of Radiology, Beijing (China); Chen, Haibo; Su, Wen [Beijing Hospital, Department of Neurology, Beijing (China); Zhao, Xuna [Peking University, Center for MRI Research and Beijing City Key Lab for Medical Physics and Engineering, Beijing (China); Zhou, Jinyuan [Johns Hopkins University, Department of Radiology, Baltimore, MD (United States)

    2014-10-15

    To demonstrate the feasibility of using chemical exchange saturation transfer (CEST) imaging to detect Parkinson's disease (PD) in patients at 3 Tesla. Twenty-seven PD patients (17 men and 10 women; age range, 54-77 years) and 22 age-matched normal controls (13 men and 9 women; age range, 55-73 years) were examined on a 3-Tesla MRI system. Magnetization transfer spectra with 31 different frequency offsets (-6 to 6 ppm) were acquired at two transverse slices of the head, including the basal ganglia and midbrain. One-way analysis of variance tests was used to compare the differences in CEST imaging signals between PD patients and normal controls. Total CEST signal between the offsets of 0 and 4 ppm in the substantia nigra was significantly lower in PD patients than in normal controls (P = 0.006), which could be associated with the loss of dopaminergic neurons. Protein-based CEST imaging signals at the offset of 3.5 ppm in the globus pallidus, putamen and caudate were significantly increased in PD patients, compared to normal controls (P < 0.001, P = 0.003, P < 0.001, respectively). CEST imaging signals could potentially serve as imaging biomarkers to aid in the non-invasive molecular diagnosis of PD. (orig.)

  12. Advances in Bio-Optical Imaging for the Diagnosis of Early Oral Cancer

    Directory of Open Access Journals (Sweden)

    Ivan Keogh

    2011-07-01

    Full Text Available Oral cancer is among the most common malignancies worldwide, therefore early detection and treatment is imperative. The 5-year survival rate has remained at a dismal 50% for the past several decades. The main reason for the poor survival rate is the fact that most of the oral cancers, despite the general accessibility of the oral cavity, are not diagnosed until the advanced stage. Early detection of the oral tumors and its precursor lesions may be the most effective means to improve clinical outcome and cure most patients. One of the emerging technologies is the use of non-invasive in vivo tissue imaging to capture the molecular changes at high-resolution to improve the detection capability of early stage disease. This review will discuss the use of optical probes and highlight the role of optical imaging such as autofluorescence, fluorescence diagnosis (FD, laser confocal endomicroscopy (LCE, surface enhanced Raman spectroscopy (SERS, optical coherence tomography (OCT and confocal reflectance microscopy (CRM in early oral cancer detection. FD is a promising method to differentiate cancerous lesions from benign, thus helping in the determination of adequate resolution of surgical resection margin. LCE offers in vivo cellular imaging of tissue structures from surface to subsurface layers and has demonstrated the potential to be used as a minimally invasive optical biopsy technique for early diagnosis of oral cancer lesions. SERS was able to differentiate between normal and oral cancer patients based on the spectra acquired from saliva of patients. OCT has been used to visualize the detailed histological features of the oral lesions with an imaging depth down to 2–3 mm. CRM is an optical tool to noninvasively image tissue with near histological resolution. These comprehensive diagnostic modalities can also be used to define surgical margin and to provide a direct assessment of the therapeutic effectiveness.

  13. Advances in bio-optical imaging for the diagnosis of early oral cancer.

    Science.gov (United States)

    Olivo, Malini; Bhuvaneswari, Ramaswamy; Keogh, Ivan

    2011-01-01

    Oral cancer is among the most common malignancies worldwide, therefore early detection and treatment is imperative. The 5-year survival rate has remained at a dismal 50% for the past several decades. The main reason for the poor survival rate is the fact that most of the oral cancers, despite the general accessibility of the oral cavity, are not diagnosed until the advanced stage. Early detection of the oral tumors and its precursor lesions may be the most effective means to improve clinical outcome and cure most patients. One of the emerging technologies is the use of non-invasive in vivo tissue imaging to capture the molecular changes at high-resolution to improve the detection capability of early stage disease. This review will discuss the use of optical probes and highlight the role of optical imaging such as autofluorescence, fluorescence diagnosis (FD), laser confocal endomicroscopy (LCE), surface enhanced Raman spectroscopy (SERS), optical coherence tomography (OCT) and confocal reflectance microscopy (CRM) in early oral cancer detection. FD is a promising method to differentiate cancerous lesions from benign, thus helping in the determination of adequate resolution of surgical resection margin. LCE offers in vivo cellular imaging of tissue structures from surface to subsurface layers and has demonstrated the potential to be used as a minimally invasive optical biopsy technique for early diagnosis of oral cancer lesions. SERS was able to differentiate between normal and oral cancer patients based on the spectra acquired from saliva of patients. OCT has been used to visualize the detailed histological features of the oral lesions with an imaging depth down to 2-3 mm. CRM is an optical tool to noninvasively image tissue with near histological resolution. These comprehensive diagnostic modalities can also be used to define surgical margin and to provide a direct assessment of the therapeutic effectiveness. PMID:24310585

  14. Noninvasive Assessment of Hypoxia in Rabbit Advanced Atherosclerosis Using 18F-fluoromisonidazole PET Imaging

    Science.gov (United States)

    Mateo, Jesus; Izquierdo-Garcia, David; Badimon, Juan J.; Fayad, Zahi A.; Fuster, Valentin

    2014-01-01

    Background Hypoxia is an important microenvironmental factor influencing atherosclerosis progression by inducing foam-cell formation, metabolic adaptation of infiltrated macrophages and plaque neovascularization. Therefore, imaging plaque hypoxia could serve as a marker of lesions at risk. Methods and Results Advanced aortic atherosclerosis was induced in 18 rabbits by atherogenic diet and double balloon endothelial denudation. Animals underwent 18F-FMISO PET and 18F-fluorodeoxyglucose (18F-FDG) PET imaging after 6–8 months (atherosclerosis induction) and 12–16 months (progression) of diet initiation. Four rabbits fed standard chow served as controls. Radiotracer uptake of the abdominal aorta was measured using standardized uptake values (SUV). Following imaging, plaque hypoxia (pimonidazole), macrophages (RAM-11), neovessels (CD31) and hypoxia-inducible factor-1α (HIF-1α) were assessed by immunohistochemistry. 18F-FMISO uptake increased with time on diet (SUVmean, 0.10±0.01 in non-atherosclerotic animals versus 0.20±0.03 (P=0.002) at induction and 0.25±0.03 (P<0.001) at progression). Ex vivo PET imaging corroborated the 18F-FMISO uptake by the aorta of atherosclerotic rabbits. 18F-FDG uptake also augmented in atherosclerotic animals, with a SUVmean of 0.43±0.02 at induction versus 0.35±0.02 in non-atherosclerotic animals (P=0.031), and no further increase at progression. By immunohistochemistry, hypoxia was mainly located in the macrophage-rich areas within the atheromatous core, whereas the macrophages close to the lumen were hypoxia-negative. Intraplaque neovessels were found predominantly in macrophage-rich hypoxic regions (pimonidazole+/HIF-1α+/RAM-11+). Conclusions Plaque hypoxia increases with disease progression and is present in macrophage-rich areas associated with neovascularization. 18F-FMISO PET imaging emerges as a new tool for detection of atherosclerotic lesions. PMID:24508668

  15. Advances of molecular imaging probes for the diagnosis of Alzheimer's disease.

    Science.gov (United States)

    Zhou, Ming; Wang, Xiaobo; Liu, Zhiguo; Yu, Lun; Hu, Shuo; Chen, Lizhang; Zeng, Wenbin

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in multiple cognitive domains and it becomes the most common cause of dementia in the elderly. There is an urgent need for the early diagnosis and treatment of AD to ease caregiver burden and medical costs, as well as improve patients' living activities associated with the dramatic increasing number of affected individuals. Molecular imaging with target-specific probes is contributing to identify the underlying biology in AD, which benefits to the early diagnosis of AD and the evaluation of anti-AD therapy. Molecular imaging probes, such as (11)C-PIB, (11)C-MP4A, (18)F-AV-45, and (11)F-FDG, can selectively bind to special bimolecular of AD or accurately accumulate at the location of damage areas, thus become an edge tool for a better management of the diseases in the clinical practice and new drug development. In the past decades, a large variety of probes is being developed and tested to be useful for the early and accurate diagnosis of Alzheimer's disease, patient selection for disease-modifying therapeutic trials and monitoring the effect of anti-amyloid therapy. Since imaging probes may also help to guide physicians to identify those patients that could best benefit from a given therapeutic regimen, dose, or duration of drug, this paper is to present a perspective of the available imaging probes for AD, classified on different modalities. Meanwhile, recent advances of those probes that have been selected for clinical trials and are at the different stages of the US Food and Drugs Administration (FDA) approval are outlined. Additionally, future directions and specific application of imaging strategies designed for both diagnosis and treatment for AD are discussed. PMID:24484277

  16. Radiation dose reduction in CT of the brain: can advanced noise filtering compensate for loss of image quality?

    International Nuclear Information System (INIS)

    Background: Computed tomography (CT) of the brain is performed with high local doses due to high demands on low contrast resolution. Advanced algorithms for noise reduction might be able to preserve critical image information when reducing radiation dose. Purpose: To evaluate the effect of advanced noise filtering on image quality in brain CT acquired with reduced radiation dose. Material and Methods: Thirty patients referred for non-enhanced CT of the brain were examined with two helical protocols: normal dose (ND, CTDIvol 57 mGy) and low dose (LD, CTDIvol 40 mGy) implying a 30% radiation dose reduction. Images from the LD examinations were also post processed with a noise reduction software with non-linear filters (SharpView CT), creating filtered low dose images (FLD) for each patient. The three image stacks for each patient were presented side by side in randomized order. Five radiologists, blinded for dose level and filtering, ranked these three axial image stacks (ND, LD, FLD) as best to poorest (1 to 3) regarding three image quality criteria. Measurements of mean Hounsfield units (HU) and standard deviation (SD) of the HU were calculated for large region of interest in the centrum semiovale as a measure for noise. Results: Ranking results in pooled data showed that the advanced noise filtering significantly improved the image quality in FLD as compared to LD images for all tested criteria. No significant differences in image quality were found between ND examinations and FLD. However, there was a notable inter-reader spread of the ranking. SD values were 15% higher for LD as compared to ND and FLD. Conclusion: The advanced noise filtering clearly improves image quality of CT examinations of the brain. This effect can be used to significantly lower radiation dose.

  17. Localizing chemical groups while imaging single native proteins by high-resolution atomic force microscopy.

    Science.gov (United States)

    Pfreundschuh, Moritz; Alsteens, David; Hilbert, Manuel; Steinmetz, Michel O; Müller, Daniel J

    2014-05-14

    Simultaneous high-resolution imaging and localization of chemical interaction sites on single native proteins is a pertinent biophysical, biochemical, and nanotechnological challenge. Such structural mapping and characterization of binding sites is of importance in understanding how proteins interact with their environment and in manipulating such interactions in a plethora of biotechnological applications. Thus far, this challenge remains to be tackled. Here, we introduce force-distance curve-based atomic force microscopy (FD-based AFM) for the high-resolution imaging of SAS-6, a protein that self-assembles into cartwheel-like structures. Using functionalized AFM tips bearing Ni(2+)-N-nitrilotriacetate groups, we locate specific interaction sites on SAS-6 at nanometer resolution and quantify the binding strength of the Ni(2+)-NTA groups to histidine residues. The FD-based AFM approach can readily be applied to image any other native protein and to locate and structurally map histidine residues. Moreover, the surface chemistry used to functionalize the AFM tip can be modified to map other chemical interaction sites. PMID:24766578

  18. High-throughput Raman chemical imaging for evaluating food safety and quality

    Science.gov (United States)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2014-05-01

    A line-scan hyperspectral system was developed to enable Raman chemical imaging for large sample areas. A custom-designed 785 nm line-laser based on a scanning mirror serves as an excitation source. A 45° dichroic beamsplitter reflects the laser light to form a 24 cm x 1 mm excitation line normally incident on the sample surface. Raman signals along the laser line are collected by a detection module consisting of a dispersive imaging spectrograph and a CCD camera. A hypercube is accumulated line by line as a motorized table moves the samples transversely through the laser line. The system covers a Raman shift range of -648.7-2889.0 cm-1 and a 23 cm wide area. An example application, for authenticating milk powder, was presented to demonstrate the system performance. In four minutes, the system acquired a 512x110x1024 hypercube (56,320 spectra) from four 47-mm-diameter Petri dishes containing four powder samples. Chemical images were created for detecting two adulterants (melamine and dicyandiamide) that had been mixed into the milk powder.

  19. Ultrahigh-spatial-resolution chemical and magnetic imaging by laser-based photoemission electron microscopy

    International Nuclear Information System (INIS)

    We report the first experiments carried out on a new chemical and magnetic imaging system, which combines the high spatial resolution of a photoemission electron microscope (PEEM) with a continuous-wave deep-ultraviolet laser. Threshold photoemission is sensitive to the chemical and magnetic structures of the surface of materials. The spatial resolution of PEEM is limited by space charging when using pulsed photon sources as well as aberrations in the electron optics. We show that the use of a continuous-wave laser enabled us to overcome such a limit by suppressing the space-charge effect, allowing us to obtain a resolution of approximately 2.6 nm. With this system, we demonstrated the imaging of surface reconstruction domains on Si(001) by linear dichroism with normal incidence of the laser beam. We also succeeded in magnetic imaging of thin films with the use of magnetic circular dichroism near the Fermi level. The unique features of the ultraviolet laser will give us fast switching of the incident angles and polarizations of the photon source, which will be useful for the characterization of antiferromagnetic materials as well as ferromagnetic materials

  20. Comparative performance studies between tunable filter and push-broom chemical imaging systems

    Science.gov (United States)

    Malinen, Jouko; Saari, Heikki; Kemeny, Gabor; Shi, Zhenqi; Anderson, Carl

    2010-04-01

    This paper reports instrument characterization measurements, which were recently arranged to provide comparative information on different hyperspectral chemical imaging systems. Three different instruments were studied covering both tunable filter and push-broom techniques: The first instrument MatrixNIRTM is based on a LCTF tunable filter and InGaAs camera and covers wavelengths from 1000 to 1700 nm. The second one SisuCHEMATM is based on push-broom technology and MCT camera operating from 1000 to 2500 nm. The third system is an instrument prototype from VTT Technical Research Centre of Finland exploiting high speed Fabry-Perot interferometer and MCT camera, currently calibrated from 1260 to 2500 nm. The characterization procedure was designed to study instrumental noise, signal-to-noise ratio, linearity and spectral as well as spatial resolution. Finally, a pharmaceutical tablet sample was measured with each instrument to demonstrate speed of measurement in a typical application. In spite of differences in wavelength ranges and camera technologies used, the results provide interesting information on relative instrumental advantages and disadvantages, which may be useful for selecting appropriate instrumentation for defined applications. Further, an additional aim of this study is to compare the high speed Fabry-Perot imaging technology under development against the established chemical imaging techniques available on the market today.

  1. Vapor Phase Alkyne Coating of Pharmaceutical Excipients: Discrimination Enhancement of Raman Chemical Imaging for Tablets.

    Science.gov (United States)

    Yamashita, Mayumi; Sasaki, Hiroaki; Moriyama, Kei

    2015-12-01

    Raman chemical imaging has become a powerful analytical tool to investigate the crystallographic characteristics of pharmaceutical ingredients in tablet. However, it is often difficult to discriminate some pharmaceutical excipients from each other by Raman spectrum because of broad and overlapping signals, limiting their detailed assessments. To overcome this difficulty, we developed a vapor phase coating method of excipients by an alkyne, which exhibits a distinctive Raman signal in the range of 2100-2300 cm(-1) . We found that the combination of two volatile reagents, propargyl bromide and triethylamine, formed a thin and nonvolatile coating on the excipient and observed the Raman signal of the alkyne at the surface. We prepared alkyne-coated cellulose by this method and formed a tablet. The Raman chemical imaging of the tablet cross-section using the alkyne peak area intensity of 2120 cm(-1) as the index showed a much clearer particle image of cellulose than using the peak area intensity of 1370 cm(-1) , which originated from the cellulose itself. Our method provides an innovative technique to analyze the solid-state characteristics of pharmaceutical excipients in tablets. PMID:26343262

  2. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    Directory of Open Access Journals (Sweden)

    Ahmed R

    2014-03-01

    Full Text Available Rafay Ahmed,1 Matthew J Oborski,2 Misun Hwang,1 Frank S Lieberman,3 James M Mountz11Department of Radiology, 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; 3Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies

  3. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A;

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...

  4. Body image in Brazil: recent advances in the state of knowledge and methodological issues

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Laus

    2014-04-01

    Full Text Available OBJECTIVE To analyze Brazilian literature on body image and the theoretical and methodological advances that have been made. METHODS A detailed review was undertaken of the Brazilian literature on body image, selecting published articles, dissertations and theses from the SciELO, SCOPUS, LILACS and PubMed databases and the CAPES thesis database. Google Scholar was also used. There was no start date for the search, which used the following search terms: “body image” AND “Brazil” AND “scale(s”; “body image” AND “Brazil” AND “questionnaire(s”; “body image” AND “Brazil” AND “instrument(s”; “body image” limited to Brazil and “body image”. RESULTS The majority of measures available were intended to be used in college students, with half of them evaluating satisfaction/dissatisfaction with the body. Females and adolescents of both sexes were the most studied population. There has been a significant increase in the number of available instruments. Nevertheless, numerous published studies have used non-validated instruments, with much confusion in the use of the appropriate terms (e.g., perception, dissatisfaction, distortion. CONCLUSIONS Much more is needed to understand body image within the Brazilian population, especially in terms of evaluating different age groups and diversifying the components/dimensions assessed. However, interest in this theme is increasing, and important steps have been taken in a short space of time.

  5. Wild-Type Transthyretin Cardiac Amyloidosis: Novel Insights From Advanced Imaging.

    Science.gov (United States)

    Narotsky, David L; Castano, Adam; Weinsaft, Jonathan W; Bokhari, Sabahat; Maurer, Mathew S

    2016-09-01

    Amyloidosis is caused by extracellular deposition of abnormal protein fibrils, resulting in destruction of tissue architecture and impairment of organ function. The most common forms of systemic amyloidosis are light-chain and transthyretin-related (ATTR). ATTR can result from an autosomal dominant hereditary transmission of mutated genes in the transthyretin or from a wild-type form of disease (ATTRwt), previously known as senile cardiac amyloidosis. With the aging of the worldwide population, ATTRwt will emerge as the most common type of cardiac amyloidosis that clinicians encounter. Diagnosis of systemic amyloidosis is often delayed, either because of the false assumption that it is a rare disease, or because of misdiagnosis as a result of mistaking it with other conditions. Clinicians must integrate clinical clues from history, physical examination, and common diagnostic tests to raise suspicion for ATTRwt. The historical gold standard for diagnosis of cardiac amyloid is endomyocardial biopsy analysis with pathological distinction of precursor protein type, but this method often results in delayed diagnosis because of the limited availability of expertise to perform and interpret the endomyocardial biopsy specimen. Emerging noninvasive imaging modalities provide easier, accurate screening for ATTRwt. These modalities include advanced echocardiography, using strain imaging and the myocardial contraction fraction; nuclear scintigraphy, which can differentiate between ATTR and light-chain cardiac amyloid; and cardiac magnetic resonance imaging, using extracellular volume measurement, late gadolinium enhancement, and distinct T1 mapping. These novel approaches reveal insights into the prevalence, clinical course, morphological effects, and prognosis of ATTRwt. PMID:27568874

  6. Imaging-Genetics in Autism Spectrum Disorder: Advances, Translational Impact and Future Directions

    Directory of Open Access Journals (Sweden)

    StephanieH.Ameis

    2012-05-01

    Full Text Available Autism Spectrum Disorder (ASD refers to a group of heterogeneous neurodevelopmental disorders that are unified by impairments in reciprocal social communication and a pattern of inflexible behaviours. Recent genetic advances have resolved some of the complexity of the genetic architecture underlying ASD by identifying several genetic variants that contribute to the disorder. Different etiological pathways associated with ASD may converge through effects on common molecular mechanisms, such as synaptogenesis, neuronal motility, and axonal guidance. Recently, with more sophisticated techniques, neuroimaging and neuropathological studies have provided some consistency of evidence that altered structure, activity, and connectivity within complex neural networks is present in ASD, compared to typically developing children. The imaging-genetics approach promises to help bridge the gap between genetic variation, resultant biological effects on the brain, and production of complex neuropsychiatric symptoms. Here, we review recent findings from the developing field of imaging-genetics applied to ASD. Studies to date have indicated that relevant risk genes are associated with alterations in circuits that mediate socio-emotional, visuospatial and language processing. Longitudinal studies ideally focused on early development, in conjunction with investigation for gene-gene, and gene-environment interactions may move the promise of imaging-genetics in ASD closer to the clinical domain.

  7. Assessment of geometric errors of Advanced Himawari-8 Imager (AHI) over one year operation

    Science.gov (United States)

    Takeuchi, Wataru

    2016-06-01

    This paper presents an approach to check a geometric performance of Advanced Himawari-8 imager (AHI) and demonstrate and evaluate a new approach to ensure more geometric accurately focusing on visible imagery in 500 meters. A series of processing is supplemented by ground control points of shore lines, land mark locations and digital elevation model. Firstly, a template matching technique is conducted to find a best matching point by simply moving the center of AHI sub-image over each point in a reference image of shore lines and calculating the sum of products between the coefficients and the corresponding neighbourhood pixels in the area spanned by the filter mask. Secondly, ortho-rectification processing is carried out to compensate for the geodetical distortions with respect to the acquisition condition including viewing geometry and so on. As a result, an average of root mean square sum of residual errors with system correction and that of precise geometric correction are shown. Overall geometric accuracy is about 1 to 1.5 pixels from 2015 March to July and it also gradually decreased down to 0.2 to 0.8 from 2015 September to 2016 February. AHI is officially open to public for operational use as of July 1, 2015 and after that operation date geometric errors are reasonably satisfied within one pixels of errors.

  8. An analysis of the chemical safety of secondary effluent for reuse purposes and the requirement for advanced treatment.

    Science.gov (United States)

    Jin, Pengkang; Jin, Xin; Wang, Xiaochang C; Shi, Xinbin

    2013-04-01

    This paper presents a study on the chemical safety of the secondary effluent for reuse purposes and the requirement of advanced treatment. Water quality analysis was conducted regarding conventional chemical items, hazardous metals, trace organics and endocrine disrupting chemicals (EDCs). Generally speaking, the turbidity, COD, BOD, TN and TP of the secondary effluent can meet the Chinese standards for urban miscellaneous water reuse but higher colour is a problem. Further removal of BOD and TP may still be required if the water is reused for landscape and environmental purposes especially relating to recreation. In addition, Hazardous metals, trace organics and endocrine disrupting chemicals (EDCs) are not the main problems for water reuse. At the same time, several tertiary treatment processes were evaluated. The coagulation-filtration process is effective process for further improvement of the conventional water quality items and removal of hazardous metals but less effective in dealing with dissolved organic matter. The ultrafiltration (UF) can achieve almost complete removal of turbid matter while its ability to remove dissolved substances is limited. The ozone-biofiltration is the most effective for colour and organic removal but it can hardly remove the residual hazardous metals. Therefore, the selection of suitable process for different water quality is important for water use. PMID:23384543

  9. Advances in Methane Activation Studies at Dalian Institute of Chemical Physics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Following successful implementation of selective oxida-tion of methane into methanol at low temperature (80℃) through setting up a circulating system of multiple electron pairs the Dalian Institute of Chemical Physics (DICP) has made new stride in the fundamental research on direct acti-vation of methane. This institute by means of collaboration with the US West Pacific National Laboratory has acquired the complete information on the structure of active centers of solid catalysts with the relevant results published in the latest issue of Journal of American Chemical Society.

  10. Characterization of aerosol-containing chemical simulant clouds using a sensitive, thermal infrared imaging spectrometer

    Science.gov (United States)

    Hall, Jeffrey L.; D'Amico, Francis M.; Kolodzey, Steven J.; Qian, Jun; Polak, Mark L.; Westerberg, Karl; Chang, Clement S.

    2011-05-01

    A sensitive, ground-based thermal imaging spectrometer was deployed at the Army's Dugway Proving Ground to remotely monitor explosively released chemical-warfare-agent-simulant clouds from stand-off ranges of a few kilometers. The sensor has 128 spectral bands covering the 7.6 to 13.5 micron region. The measured cloud spectra clearly showed scattering of high-elevation-angle sky radiance by liquid aerosols or dust in the clouds: we present arguments that show why the scattering is most likely due to dust. This observation has significant implications for early detection of dust-laden chemical clouds. On one hand, detection algorithms must properly account for the scattered radiation component, which would include out-of-scene radiation components as well as a dust signature; on the other hand, this scattering gives rise to an enhanced "delta-T" for detection by a ground-based sensor.

  11. Live cell imaging with chemical specificity using dual frequency CARS microscopy.

    Science.gov (United States)

    Pope, Iestyn; Langbein, Wolfgang; Borri, Paola; Watson, Peter

    2012-01-01

    Live cell microscopy using fluorescent proteins and small fluorescent probes is a well-established and essential tool for cell biology; however, there is a considerable need for noninvasive techniques able to study tissue and cell dynamics without the need to introduce chemical or genetically encoded probes. Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging tool for cell biologists to examine live cell dynamics with chemical specificity in a label-free, noninvasive way. CARS is a multiphoton process offering intrinsic three-dimensional submicron resolution, where the image contrast is obtained from light inelastically scattered by the vibrations of endogenous chemical bonds. CARS is particularly well suited to study lipid biology, since the CARS signal of localized lipids (exhibiting a large amount of identical bonds in the focal volume) is very strong. Conversely, photostable, lipid-specific markers for fluorescence microscopy are difficult to produce and the process of labeling often affects lipid localization and function, making imaging lipids in live cells challenging, and accurate quantification often impossible. Here, we describe in detail the principles behind our experimental setup for performing CARS microscopy of lipid droplets on live cells. Since typical vibrational resonances in liquid have coherence times in the picosecond range, CARS is preferably implemented with picosecond lasers which are however expensive and less efficient than femtosecond lasers, which could also be used for other multiphoton techniques such as two-photon fluorescence. In our setup, we show that femtosecond lasers can be spectrally focused in a simple, alignment insensitive, and cost-effective way to achieve a vibrational excitation similar to picosecond lasers. This opens the way to integrate CARS and two-photon fluorescence in a single multimodal instrument for its widespread application. We also describe our dual frequency CARS system which eliminates

  12. Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic acid Ester)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sharon Shoemaker

    2004-09-03

    The development of commercial boi-based processes and products derived from agricultural waste biomass has the potential for significant impact on the economy and security of our nation. Adding value, rather than disposing of the waste of agriculture, can solve an environmental problem and reduce our dependence on foreign sources of fossil fuel for production of chemicals, materials and fuels.

  13. Monitoring chemical degradation of thermally cycled glass-fibre composites using hyperspectral imaging

    Science.gov (United States)

    Papadakis, V. M.; Müller, B.; Hagenbeek, M.; Sinke, J.; Groves, R. M.

    2016-04-01

    Nowadays, the application of glass-fibre composites in light-weight structures is growing. Although mechanical characterizations of those structures are commonly performed in testing, chemical changes of materials under stresses have not yet been well documented. In the present work coupon tests and Hyperspectral Imaging (HSI) have been used to categorise possible chemical changes of glass-fibre reinforced polymers (GFRP) which are currently used in the aircraft industry. HSI is a hybrid technique that combines spectroscopy with imaging. It is able to detect chemical degradation of surfaces and has already been successfully applied in a wide range of fields including astronomy, remote sensing, cultural heritage and medical sciences. GFRP specimens were exposed to two different thermal loading conditions. One thermal loading condition was a continuous thermal exposure at 120°C for 24h, 48 h and 96h, i.e. ageing at a constant temperature. The other thermal loading condition was thermal cycling with three different numbers of cycles (4000, 8000, 12000) and two temperature ranges (0°C to 120°C and -25°C to 95°C). The effects of both conditions were measured using both HSI and interlaminar shear (ILSS) tests. No significant changes of the physical properties of the thermally cycled GFRP specimens were detected using interlaminar shear strength tests and optical microscopy. However, when using HIS, differences of the surface conditions were detected. The results showed that the different thermal loading conditions could be successfully clustered in different colours, using the HSI linear unmixing technique. Each different thermal loading condition showed a different chemical degradation level on its surface which was indicated using different colours.

  14. Visualization and prediction of porosity in roller compacted ribbonswith near infrared chemical imaging (NIR-CI)

    DEFF Research Database (Denmark)

    Khorasani, Milad Rouhi; Amigo Rubio, Jose Manuel; Sonnergaard, Jørn;

    2015-01-01

    reference methods that ribbons compressed at a higher pressure resulted in a lower mean porosity. Using NIR-CI in combination with multivariate data analysis it was possible to visualize and predict the porosity distribution of the ribbons. This approach is considered important for process monitoring and......The porosity of roller compacted ribbon is recognized as an important critical quality attribute which has a huge impact on the final product quality. The purpose of this study was to investigate the use of near-infrared chemical imaging (NIR-CI) for porosity estimation of ribbons produced at...

  15. Infrared spectroscopic imaging detects chemical modifications in liver fibrosis due to diabetes and disease

    Science.gov (United States)

    Sreedhar, Hari; Varma, Vishal K.; Gambacorta, Francesca V.; Guzman, Grace; Walsh, Michael J.

    2016-01-01

    The importance of stroma as a rich diagnostic region in tissue biopsies is growing as there is an increasing understanding that disease processes in multiple organs can affect the composition of adjacent connective tissue regions. This may be especially true in the liver, since this organ’s central metabolic role exposes it to multiple disease processes. We use quantum cascade laser infrared spectroscopic imaging to study changes in the chemical status of hepatocytes and fibrotic regions of liver tissue that result from the progression of liver cirrhosis to hepatocellular carcinoma and the potentially confounding effects of diabetes mellitus. PMID:27375956

  16. Chemically modified STM tips for atomic-resolution imaging of ultrathin NaCI films

    Institute of Scientific and Technical Information of China (English)

    Zhe Li[1; Koen Schouteden[1; Violeta lancu[1; Ewald Janssens[1; Peter Lievens[1; Chris Van Haesendonck[1; Jorge I. Cerda[2

    2015-01-01

    Cl-functionalized scanning tunneling microscopy (STM) tips are fabricated by modifying a tungsten STM tip in situ on islands of ultrathin NaCI(100) films on Au(111) surfaces. The functionalized tips are used to achieve clear atomic- resolution imaging of NaCI(100) islands. In comparison with bare metal tips, the chemically modified tips yield drastically enhanced spatial resolution as well as contrast reversal in STM topographs, implying that Na atoms, rather than C1 atoms, are imaged as protrusions. STM simulations based on a Green's function formalism reveal that the experimentally observed contrast reversal in the STM topographs is due to the highly localized character of the Cl-pz states at the tip apex. An additional remarkable characteristic of the modified tips is that in dI/dV maps, a Na atom appears as a ring with a diameter that depends crucially on the tip-sample distance.

  17. Advanced exergoenvironmental analysis of a near-zero emission power plant with chemical looping combustion.

    Science.gov (United States)

    Petrakopoulou, Fontina; Tsatsaronis, George; Morosuk, Tatiana

    2012-03-01

    Carbon capture and storage (CCS) from power plants can be used to mitigate CO(2) emissions from the combustion of fossil fuels. However, CCS technologies are energy intensive, decreasing the operating efficiency of a plant and increasing its costs. Recently developed advanced exergy-based analyses can uncover the potential for improvement of complex energy conversion systems, as well as qualify and quantify plant component interactions. In this paper, an advanced exergoenvironmental analysis is used for the first time as means to evaluate an oxy-fuel power plant with CO(2) capture. The environmental impacts of each component are split into avoidable/unavoidable and endogenous/exogenous parts. In an effort to minimize the environmental impact of the plant operation, we focus on the avoidable part of the impact (which is also split into endogenous and exogenous parts) and we seek ways to decrease it. The results of the advanced exergoenvironmental analysis show that the majority of the environmental impact related to the exergy destruction of individual components is unavoidable and endogenous. Thus, the improvement potential is rather limited, and the interactions of the components are of lower importance. The environmental impact of construction of the components is found to be significantly lower than that associated with their operation; therefore, our suggestions for improvement focus on measures concerning the reduction of exergy destruction and pollutant formation. PMID:22239071

  18. Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models

    International Nuclear Information System (INIS)

    Purpose: To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. Methods and Materials: After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by x-ray CT. With this technique we delineated the pancreas and both orthotopic xenografts and genetically engineered disease. Computed tomographic imaging was validated by comparison with magnetic resonance imaging. Therapeutic radiation was delivered via a 1-cm diameter field. Selective x-ray radiation therapy of the noninvasively defined orthotopic mass was confirmed using γH2AX staining. Mice could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360° arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic x-ray radiation therapy to orthotopic tumors. Results: Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times after treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. Conclusions: This advance permits evaluation of radiation planning and dosing parameters. Accurate noninvasive longitudinal imaging and monitoring of tumor progression and therapeutic response in preclinical models is now possible and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response

  19. Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Thorek, Daniel L.J., E-mail: dthorek1@jhmi.edu [Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins School of Medicine, Baltimore, MD (United States); Kramer, Robin M. [Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center (MSKCC), Weill Cornell Medical College, The Rockefeller University, New York, NY (United States); Chen, Qing; Jeong, Jeho; Lupu, Mihaela E. [Department of Medical Physics, MSKCC, New York, NY (United States); Lee, Alycia M.; Moynahan, Mary E.; Lowery, Maeve [Department of Medicine, MSKCC, New York, NY (United States); Ulmert, David [Molecular Pharmacology and Chemistry Program, MSKCC, New York, NY (United States); Department of Surgery (Urology), Skåne University Hospital, Malmö (Sweden); Zanzonico, Pat; Deasy, Joseph O.; Humm, John L. [Department of Medical Physics, MSKCC, New York, NY (United States); Russell, James, E-mail: russellj@mskcc.org [Department of Medical Physics, MSKCC, New York, NY (United States)

    2015-10-01

    Purpose: To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. Methods and Materials: After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by x-ray CT. With this technique we delineated the pancreas and both orthotopic xenografts and genetically engineered disease. Computed tomographic imaging was validated by comparison with magnetic resonance imaging. Therapeutic radiation was delivered via a 1-cm diameter field. Selective x-ray radiation therapy of the noninvasively defined orthotopic mass was confirmed using γH2AX staining. Mice could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360° arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic x-ray radiation therapy to orthotopic tumors. Results: Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times after treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. Conclusions: This advance permits evaluation of radiation planning and dosing parameters. Accurate noninvasive longitudinal imaging and monitoring of tumor progression and therapeutic response in preclinical models is now possible and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response.

  20. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  1. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    Science.gov (United States)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  2. Histopathological image analysis of chemical-induced hepatocellular hypertrophy in mice.

    Science.gov (United States)

    Asaoka, Yoshiji; Togashi, Yuko; Mutsuga, Mayu; Imura, Naoko; Miyoshi, Tomoya; Miyamoto, Yohei

    2016-04-01

    Chemical-induced hepatocellular hypertrophy is frequently observed in rodents, and is mostly caused by the induction of phase I and phase II drug metabolic enzymes and peroxisomal lipid metabolic enzymes. Liver weight is a sensitive and commonly used marker for detecting hepatocellular hypertrophy, but is also increased by a number of other factors. Histopathological observations subjectively detect changes such as hepatocellular hypertrophy based on the size of a hepatocyte. Therefore, quantitative microscopic observations are required to evaluate histopathological alterations objectively. In the present study, we developed a novel quantitative method for an image analysis of hepatocellular hypertrophy using liver sections stained with hematoxylin and eosin, and demonstrated its usefulness for evaluating hepatocellular hypertrophy induced by phenobarbital (a phase I and phase II enzyme inducer) and clofibrate (a peroxisomal enzyme inducer) in mice. The algorithm of this imaging analysis was designed to recognize an individual hepatocyte through a combination of pixel-based and object-based analyses. Hepatocellular nuclei and the surrounding non-hepatocellular cells were recognized by the pixel-based analysis, while the areas of the recognized hepatocellular nuclei were then expanded until they ran against their expanding neighboring hepatocytes and surrounding non-hepatocellular cells by the object-based analysis. The expanded area of each hepatocellular nucleus was regarded as the size of an individual hepatocyte. The results of this imaging analysis showed that changes in the sizes of hepatocytes corresponded with histopathological observations in phenobarbital and clofibrate-treated mice, and revealed a correlation between hepatocyte size and liver weight. In conclusion, our novel image analysis method is very useful for quantitative evaluations of chemical-induced hepatocellular hypertrophy. PMID:26776450

  3. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    Science.gov (United States)

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals. PMID:25431012

  4. Advanced Exergy Analysis for Chemically Reacting Systems – Application to a Simple Open Gas-Turbine System

    Directory of Open Access Journals (Sweden)

    George Tsatsaronis

    2009-09-01

    Full Text Available

    A conventional exergy analysis has some limitations, which are significantly reduced by an advanced exergy analysis. The latter evaluates: (a the interactions among components of the overall system (splitting the exergy destruction into endogenous and exogenous parts; and, (b the real potential for improving a system component (splitting the exergy destruction into unavoidable and avoidable parts. The main role of an advanced exergy analysis is to provide engineers with additional information useful for improving the design and operation of energy conversion systems. This information cannot be supplied by any other approach. In previous publications, approaches were presented that were appropriate for application to closed thermodynamic cycles, without chemical reactions (e.g., refrigeration cycles. Here a general approach is discussed that could be applied to systems with chemical reactions. Application of this approach to a simple gas-turbine system reveals the potential for improvement and the interactions among the system components.

    • This paper is an updated version of a paper published in the ECOS'08 proceedings. 

  5. Visualizing excipient composition and homogeneity of Compound Liquorice Tablets by near-infrared chemical imaging

    Science.gov (United States)

    Wu, Zhisheng; Tao, Ou; Cheng, Wei; Yu, Lu; Shi, Xinyuan; Qiao, Yanjiang

    2012-02-01

    This study demonstrated that near-infrared chemical imaging (NIR-CI) was a promising technology for visualizing the spatial distribution and homogeneity of Compound Liquorice Tablets. The starch distribution (indirectly, plant extraction) could be spatially determined using basic analysis of correlation between analytes (BACRA) method. The correlation coefficients between starch spectrum and spectrum of each sample were greater than 0.95. Depending on the accurate determination of starch distribution, a method to determine homogeneous distribution was proposed by histogram graph. The result demonstrated that starch distribution in sample 3 was relatively heterogeneous according to four statistical parameters. Furthermore, the agglomerates domain in each tablet was detected using score image layers of principal component analysis (PCA) method. Finally, a novel method named Standard Deviation of Macropixel Texture (SDMT) was introduced to detect agglomerates and heterogeneity based on binary image. Every binary image was divided into different sizes length of macropixel and the number of zero values in each macropixel was counted to calculate standard deviation. Additionally, a curve fitting graph was plotted on the relationship between standard deviation and the size length of macropixel. The result demonstrated the inter-tablet heterogeneity of both starch and total compounds distribution, simultaneously, the similarity of starch distribution and the inconsistency of total compounds distribution among intra-tablet were signified according to the value of slope and intercept parameters in the curve.

  6. Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery

    Science.gov (United States)

    Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.

    2016-06-01

    Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability

  7. A Large State Medicaid Outpatient Advanced Imaging Utilization Management Program: Substantial Savings Without the Need for Denials.

    Science.gov (United States)

    Rapoport, Robert J; Parker, Laurence; Levin, David C; Hiatt, Mark D

    2016-06-01

    A decade of rapidly rising outpatient advanced imaging utilization ended toward the end of the past decade, with slow growth since. This has been attributed to repetitive reimbursement cuts, medical radiation exposure concerns, increasing deductibles and patient copayments, and the influence of radiology benefit management companies. State Medicaid programs have been reluctant to institute radiology benefit management preauthorization programs since the time burden for obtaining test approval could cause providers to drop out. Also, these patients may lack the knowledge to appeal denials, and medically necessary tests could be denied with adverse outcomes. Little data exist demonstrating the efficacy of such programs in decreasing utilization and cost. We report a 2-year experience with an outpatient advanced imaging prior notification program for a large state Medicaid fee-for-service population. The program did not allow any denials, but nevertheless the data reveal a large, durable decrease in advanced imaging utilization and cost. PMID:26416792

  8. Advanced Numerical Imaging Procedure Accounting for Non-Ideal Effects in GPR Scenarios

    Science.gov (United States)

    Comite, Davide; Galli, Alessandro; Catapano, Ilaria; Soldovieri, Francesco

    2015-04-01

    The capability to provide fast and reliable imaging of targets and interfaces in non-accessible probed scenarios is a topic of great scientific interest, and many investigations have shown that Ground Penetrating Radar (GPR) can provide an efficient technique to conduct this kind of analysis in various applications of geophysical nature and civil engineering. In these cases, the development of an efficient and accurate imaging procedure is strongly dependent on the capability of accounting for the incident field that activates the scattering phenomenon. In this frame, based on a suitable implementation of an electromagnetic (EM) CAD tool (CST Microwave Studio), it has been possible to accurately and efficiently model the radiation pattern of real antennas in environments typically considered in GPR surveys [1]. A typical scenario of our interest is constituted by targets hidden in a ground medium, described by certain EM parameters and probed by a movable GPR using interfacial antennas [2]. The transmitting and receiving antennas considered here are Vivaldi ones, but a wide variety of other antennas can be modeled and designed, similar to those ones available in commercial GPR systems. Hence, an advanced version of a well-known microwave tomography approach (MTA) [3] has been implemented, both in the canonical 2D scalar case and in the more realistic 3D vectorial one. Such an approach is able to account for the real distribution of the radiated and scattered EM fields. Comparisons of results obtained by means of a 'conventional' implementation of the MTA, where the antennas are modeled as ideal line sources, and by means of our 'advanced' approach, which instead takes into account the radiation features of the chosen antenna type, have been carried out and discussed. Since the antenna radiation patterns are modified by the probed environment, whose EM features and the possible stratified structure usually are not exactly known, the imaging capabilities of the MTA

  9. Mission science value-cost savings from the Advanced Imaging Communication System (AICS)

    Science.gov (United States)

    Rice, R. F.

    1984-01-01

    An Advanced Imaging Communication System (AICS) was proposed in the mid-1970s as an alternative to the Voyager data/communication system architecture. The AICS achieved virtually error free communication with little loss in the downlink data rate by concatenating a powerful Reed-Solomon block code with the Voyager convolutionally coded, Viterbi decoded downlink channel. The clean channel allowed AICS sophisticated adaptive data compression techniques. Both Voyager and the Galileo mission have implemented AICS components, and the concatenated channel itself is heading for international standardization. An analysis that assigns a dollar value/cost savings to AICS mission performance gains is presented. A conservative value or savings of $3 million for Voyager, $4.5 million for Galileo, and as much as $7 to 9.5 million per mission for future projects such as the proposed Mariner Mar 2 series is shown.

  10. The SFM/ToF-SIMS combination for advanced chemically-resolved analysis at the nanoscale

    International Nuclear Information System (INIS)

    The combination of Time-of-flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Scanning Force Microscopy (SFM) allows the 3D-compositional analysis of samples or devices. Typically, the topographical data obtained by SFM is used to determine the initial sample topography and the absolute depth of the ToF-SIMS analysis. Here ToF-SIMS and SFM data sets obtained on 2 prototypical samples are explored to go beyond conventional 3D-compositional analysis. SFM topographical and material contrast maps are combined with ToF-SIMS retrospective analysis to detect features that would have escaped a conventional ToF-SIMS data analysis. In addition, SFM data is used to extrapolate the chemical information beyond the spatial resolution of ToF-SIMS, allowing the mapping of the chemical composition at the nanoscale

  11. Molecular Imaging : Computer Reconstruction and Practice - Proceedings of the NATO Advanced Study Institute on Molecular Imaging from Physical Principles to Computer Reconstruction and Practice

    CERN Document Server

    Lemoigne, Yves

    2008-01-01

    This volume collects the lectures presented at the ninth ESI School held at Archamps (FR) in November 2006 and is dedicated to nuclear physics applications in molecular imaging. The lectures focus on the multiple facets of image reconstruction processing and management and illustrate the role of digital imaging in clinical practice. Medical computing and image reconstruction are introduced by analysing the underlying physics principles and their implementation, relevant quality aspects, clinical performance and recent advancements in the field. Several stages of the imaging process are specifically addressed, e.g. optimisation of data acquisition and storage, distributed computing, physiology and detector modelling, computer algorithms for image reconstruction and measurement in tomography applications, for both clinical and biomedical research applications. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehen...

  12. MALDI mass spectrometric imaging meets "omics": recent advances in the fruitful marriage.

    Science.gov (United States)

    Crecelius, A C; Schubert, U S; von Eggeling, F

    2015-09-01

    Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) is a method that allows the investigation of the molecular content of surfaces, in particular, tissues, within its morphological context. The applications of MALDI MSI in the field of large-scale mass spectrometric studies, which are typically denoted by the suffix "omics", are steadily increasing. This is because, on the one hand, technical advances regarding sample collection and preparation, matrix application, instrumentation, and data processing have enhanced the molecular specificity and sensitivity of MALDI MSI; on the other hand, the focus of the "omics" community has moved from establishing an inventory of certain compound classes to exploring their spatial distribution to gain novel insights. Thus, the aim of this mini-review is twofold, to display the state-of-the-art in terms of technical aspects in MALDI MSI and to highlight selected applications in the last two years, which either have significantly advanced a certain "omics" field or have introduced a new one through pioneering efforts. PMID:26161715

  13. Advances in Echocardiographic Imaging in Heart Failure With Reduced and Preserved Ejection Fraction.

    Science.gov (United States)

    Omar, Alaa Mabrouk Salem; Bansal, Manish; Sengupta, Partho P

    2016-07-01

    Echocardiography, given its safety, easy availability, and the ability to permit a comprehensive assessment of cardiac structure and function, is an indispensable tool in the evaluation and management of patients with heart failure (HF). From initial phenotyping and risk stratification to providing vital data for guiding therapeutic decision-making and monitoring, echocardiography plays a pivotal role in the care of HF patients. The recent advent of multiparametric approaches for myocardial deformation imaging has provided valuable insights in the pathogenesis of HF, elucidating distinct patterns of myocardial dysfunction and events that are associated with progression from subclinical stage to overt HF. At the same time, miniaturization of echocardiography has further expanded clinical application of echocardiography, with the use of pocket cardiac ultrasound as an adjunct to physical examination demonstrated to improve diagnostic accuracy and risk stratification. Furthermore, ongoing advances in the field of big data analytics promise to create an exciting opportunity to operationalize precision medicine as the new approach to healthcare delivery that aims to individualize patient care by integrating data extracted from clinical, laboratory, echocardiographic, and genetic assessments. The present review summarizes the recent advances in the field of echocardiography, with emphasis on their role in HF phenotyping, risk stratification, and optimizing clinical outcomes. PMID:27390337

  14. Advanced computational sensors technology: testing and evaluation in visible, SWIR, and LWIR imaging

    Science.gov (United States)

    Rizk, Charbel G.; Wilson, John P.; Pouliquen, Philippe

    2015-05-01

    The Advanced Computational Sensors Team at the Johns Hopkins University Applied Physics Laboratory and the Johns Hopkins University Department of Electrical and Computer Engineering has been developing advanced readout integrated circuit (ROIC) technology for more than 10 years with a particular focus on the key challenges of dynamic range, sampling rate, system interface and bandwidth, and detector materials or band dependencies. Because the pixel array offers parallel sampling by default, the team successfully demonstrated that adding smarts in the pixel and the chip can increase performance significantly. Each pixel becomes a smart sensor and can operate independently in collecting, processing, and sharing data. In addition, building on the digital circuit revolution, the effective well size can be increased by orders of magnitude within the same pixel pitch over analog designs. This research has yielded an innovative class of a system-on-chip concept: the Flexible Readout and Integration Sensor (FRIS) architecture. All key parameters are programmable and/or can be adjusted dynamically, and this architecture can potentially be sensor and application agnostic. This paper reports on the testing and evaluation of one prototype that can support either detector polarity and includes sample results with visible, short-wavelength infrared (SWIR), and long-wavelength infrared (LWIR) imaging.

  15. Promotion Influence in Sales Advance and in Increasing the Image to the SMEs in Kosova

    Directory of Open Access Journals (Sweden)

    Rajan Arapi

    2013-04-01

    Full Text Available The promotion as an important element of marketing mix plays a key role in marketingmanagement regard, in every enterprise, and also for SMEs. The SMEs in Kosova aregiving more and more importance to the promotion, and this factor, beside the salesadvance for their products, is important to increase their image. What is the impact of thepromotion in SMEs longevity; respectively ëhat are the advantages and disadvantages ofpromotion application compared with the other traditional advertisement forms? Whatare the promotion models used by the advance companies to increase their sales level andimprove the service level ? These are some of the research questions that follow thispaper. On the other side the increasing promotion application in front of traditionalforms of Marketing have made SMEs to save from their budget dedicated to Marketing,always taking into consideration the advanced models that today provides thiscommunication form. The research on hand will reflect the new advanced promotionmodels which are practiced by some SMEs in Kosova, these case studies will argue thecompany’s sustainability achieved by the promotion. The budgeting as an integral part ofpromotion realization, in this research will prove the possibility to save from the budgetby avoiding the classical – traditional forms of advertisement. This aspect also will beargued by case studies of SMEs in Kosova. The mass media, in this case, thecommunication with the public, in way to transmit the promotion message, request aprofound analyze when it comes to select the mediums, rating and audiencemeasurement, etc. The research will contribute not only to SMEs but also to consumersand public in general. The research will have its conclusions and recommendations whichwill enforce each of elements that require a different treatment from the one that isapplied in reality.

  16. Restaging locally advanced rectal cancer by different imaging modalities after preoperative chemoradiation: a comparative study

    International Nuclear Information System (INIS)

    To compare the accuracy of different imaging modalities, alone and in combination in predicting findings at surgery after preoperative chemoradiation for locally advanced rectal cancer. Following chemoradiation, tumors were reclassified on the basis of findings on pelvic computed tomography (CT) (94 patients), endorectal ultrasonography (EUS) (138 patients) alone or by both CT and EUS (80 patients). The ability of the imaging modalities, to predict the pathologic T status, N status, and TNM stage at surgery was evaluated and compared. Mean age of the patients was 64.5 years (range 28–88 years); 55% were male. CT and EUS combined had a positive predictive value of 20% for pathologic pT1 stage, 29% for pT1, 29% for pT2, and 58% for pT3. Predictive values for the operative TNM stage were 50% for stage I, 45% for stage II, and 31% for stage III. These values did not exceed those for each modality alone. The performance of preoperative CT and EUS in predicting the T and TNM stage of rectal cancer at surgery is poor. Neither modality alone nor the two combined is sufficiently accurate to serve as the basis for decisions regarding treatment modification

  17. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    Science.gov (United States)

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability. PMID:25570014

  18. Post Launch Calibration and Testing of the Advanced Baseline Imager on the GOES-R Satellite

    Science.gov (United States)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  19. Advanced prism-grating-prism imaging spectrograph in online industrial applications

    Science.gov (United States)

    Vaarala, Tapio; Aikio, Mauri; Keraenen, Heimo

    1997-08-01

    Imaging spectrographs have traditionally been utilized in aerial and remote sensing applications. A novel, compact and inexpensive imaging spectrograph developed by VTT Electronics is now available. It contains a multichannel fiber optic sensor head, a dispersive prism-grating-prism (PGP) component and digital CCD matrix camera capable of area integration. In rolled steel manufacturing, a protective oil film is applied on steel to resist corrosion while in transport and storage. The main problems in the oiling machine are film thickness control and jet failures. In this application, the spectrum of fluorescence of an oil film was measured simultaneously with parallel fibers. A relatively simple calibration and analysis procedure was used to calculate the oil film thickness. On-line color control for color reproduction is essential in both consumer and industrial products. The instrument was tested and analyzed for measuring differences in color by multivariate analysis of the spectra and by color space coordinate estimation. In general, a continuous spectrum is not absolute requirement. In these two examples, filter-based measurement would probably cost less thana PGP spectrograph solution. On the other hand, by measuring the spectrum and using an advanced signal processing algorithm one production version will cover all installations in both applications. In practice, only the fiber sensor mechanics need to be modified.

  20. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    Science.gov (United States)

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition. PMID:25430200

  1. Utilization of optical image data from the Advanced Test Accelerator (ATA)

    International Nuclear Information System (INIS)

    Extensive use is made of optical diagnostics to obtain information on the 50-MeV, 10-kA, 70-ns pulsed-electron beam produced by the Advanced Test Accelerator (ATA). Light is generated by the beam striking a foil inserted in the beamline or through excitation of the gas when the beamline is filled with air. The emitted light is collected and digitized. Two-dimensional images are recorded by either a gated framing camera or a streak camera. Extraction of relevant beam parameters, such as current density, current, and beam size, requires an understanding of the physics of the light-generation mechanism and an ability to handle and properly exploit a large digital database of image data. We will present a brief overview of the present understanding of the light-generation mechanisms in foil and gas, with emphasis on experimental observations and trends. We will review our data management and analysis techniques and indicate successful approaches for extracting beam parameters

  2. Applying advanced imaging techniques to a murine model of orthotopic osteosarcoma

    Directory of Open Access Journals (Sweden)

    Matthew Lawrence Broadhead

    2015-08-01

    Full Text Available IntroductionReliable animal models are required to evaluate novel treatments for osteosarcoma. In this study, the aim was to implement advanced imaging techniques in a murine model of orthotopic osteosarcoma to improve disease modeling and the assessment of primary and metastatic disease.Materials and methodsIntra-tibial injection of luciferase-tagged OPGR80 murine osteosarcoma cells was performed in Balb/c nude mice. Treatment agent (pigment epithelium-derived factor; PEDF was delivered to the peritoneal cavity. Primary tumors and metastases were evaluated by in vivo bioluminescent assays, micro-computed tomography, [18F]-Fluoride-PET and [18F]-FDG-PET. Results[18F]-Fluoride-PET was more sensitive than [18F]-FDG-PET for detecting early disease. Both [18F]-Fluoride-PET and [18F]-FDG-PET showed progressive disease in the model, with 4-fold and 2-fold increases in SUV (p<0.05 by the study endpoint, respectively. In vivo bioluminescent assay showed that systemically delivered PEDF inhibited growth of primary osteosarcoma.DiscussionApplication of [18F]-Fluoride-PET and [18F]-FDG-PET to an established murine model of orthotopic osteosarcoma has improved the assessment of disease. The use of targeted imaging should prove beneficial for the evaluation of new approaches to osteosarcoma therapy.

  3. Advanced Imaging and Receipt of Guideline Concordant Care in Women with Early Stage Breast Cancer

    Science.gov (United States)

    Buist, Diana S. M.; Gold, Laura S.; Zeliadt, Steven; Hunter Merrill, Rachel; Etzioni, Ruth; Ramsey, Scott D.; Sullivan, Sean D.; Kessler, Larry

    2016-01-01

    Objective. It is unknown whether advanced imaging (AI) is associated with higher quality breast cancer (BC) care. Materials and Methods. Claims and Surveillance Epidemiology and End Results data were linked for women diagnosed with incident stage I-III BC between 2002 and 2008 in western Washington State. We examined receipt of preoperative breast magnetic resonance imaging (MRI) or AI (defined as computed tomography [CT]/positron emission tomography [PET]/PET/CT) versus mammogram and/or ultrasound (M-US) alone and receipt of guideline concordant care (GCC) using multivariable logistic regression. Results. Of 5247 women, 67% received M-US, 23% MRI, 8% CT, and 3% PET/PET-CT. In 2002, 5% received MRI and 5% AI compared to 45% and 12%, respectively, in 2008. 79% received GCC, but GCC declined over time and was associated with younger age, urban residence, less comorbidity, shorter time from diagnosis to surgery, and earlier year of diagnosis. Breast MRI was associated with GCC for lumpectomy plus radiation therapy (RT) (OR 1.55, 95% CI 1.08–2.26, and p = 0.02) and AI was associated with GCC for adjuvant chemotherapy for estrogen-receptor positive (ER+) BC (OR 1.74, 95% CI 1.17–2.59, and p = 0.01). Conclusion. GCC was associated with prior receipt of breast MRI and AI for lumpectomy plus RT and adjuvant chemotherapy for ER+ BC, respectively. PMID:27525122

  4. Advancing Cardiovascular, Neurovascular and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    Directory of Open Access Journals (Sweden)

    Thoralf eNiendorf

    2015-11-01

    Full Text Available Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF coils in small animal MR as a means of boosting image quality (e.g. by supporting MR microscopy and making data acquisition more efficient (e.g. by reducing measuring time; both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (biomedical imaging, molecular medicine and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (pathophysiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular and renal disease will be discussed.

  5. Asymmetric catalysis in Brazil: development and potential for advancement of Brazilian chemical industry

    International Nuclear Information System (INIS)

    The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country. (author)

  6. Phase contrast medical imaging with compact X-ray sources at the Munich-Centre for Advance Photonics (MAP)

    Energy Technology Data Exchange (ETDEWEB)

    Coan, P. [European Synchrotron Radiation Facility, Grenoble (France); Munich-Centre for Advance Photonics, Munich (Germany)], E-mail: paola.coan@esrf.fr; Gruener, F. [Munich-Centre for Advance Photonics, Munich (Germany); Department of Physics, Ludwig-Maximilians-Universitaet Munich, Garching (Germany); Glaser, C.; Schneider, T. [Munich-Centre for Advance Photonics, Munich (Germany); Institut of Clinical Radiology, Klinikum Ludwig-Maximilians-Universitaet, Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility, Grenoble (France); Munich-Centre for Advance Photonics, Munich (Germany); Reiser, M. [Munich-Centre for Advance Photonics, Munich (Germany); Institut of Clinical Radiology, Klinikum Ludwig-Maximilians-Universitaet, Munich (Germany); Habs, D. [Munich-Centre for Advance Photonics, Munich (Germany); Department of Physics, Ludwig-Maximilians-Universitaet Munich, Garching (Germany)

    2009-09-01

    In this paper, the excellence cluster 'Munich-Centre for Advance Photonics' (MAP) is presented. One of the aims of the project is the development of innovative X-ray-based diagnostics imaging techniques to be implemented at an ultra-compact high-energy and high-brilliance X-ray source. The basis of the project and the developments towards the clinical application of phase contrast imaging applied to mammography and cartilage studies will be presented and discussed.

  7. Advancing the molecular movie: Femtosecond X-ray scattering of an electrocyclic chemical reaction

    Science.gov (United States)

    Minitti, Michael

    Since it began operation in 2009, SLAC's Linac Coherent Light Source (LCLS) has allowed scientists to make new types of X-ray measurements that were once thought unattainable by delivering one trillion X-ray photons in incredibly short bursts of less than a few femtoseconds. It was promised that this astonishing quantity of photons, delivered in such a small slice of time, could capture the motions of atoms in chemical reactions. Now we have used this capability to make a ``molecular movie'' of a molecule undergoing a chemical reaction from start to finish, with frames just a few femtoseconds long. We assembled the movie by taking individual X-ray snapshots of the molecules that show the positions of their atoms at each moment in time. Comparing these results to computer simulations of the reaction, we determined the routes the individual molecules followed as it's structure rearranged. This is the first step in developing robust methods for visualizing molecular motions in chemistry, biology, and materials science at the atomic scale. Please enjoy the movie! SLAC National Accelerator Laboratory U.S. DOE, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  8. Treatment of mature landfill leachate by chemical precipitation and Fenton advanced oxidation process

    Directory of Open Access Journals (Sweden)

    Nemat Alah Jaafarzadeh Haghighi Fard

    2016-03-01

    Full Text Available Background: Mature landfill leachate is a complicated mixture which is resistant to biological treatment processes. The treatment of mature landfill leachate by struvite precipitation and Fenton oxidation was the main objective of the current research. Methods: Struvite with the phosphate/ammonia/magnesium molar ratio of 1/1/1.05 was considered during all experiments. Five initial pHs of 3, 4, 5, 6, and 7, four different H2O2/Fe mass ratios of 50, 100, 200, and 400, and reaction times of 20, 40, 80, 120, and 160 minutes were examined for the Fenton oxidation process. Results: A leachate sample with average chemical oxygen demand (COD, BOD5, and NH4 concentrations of 7350, 2220, and 2280 mg L-1, respectively, and a BOD5/COD ratio of 0.3 was introduced to the chemical precipitation unit. An NH4 removal efficiency of 87% was obtained at pH 8.5 for struvite precipitation. Under optimum conditions of Fenton oxidation, including pH 3, an H2O2/Fe2+ mass ratio of 200, and a reaction time of 160 min, more than 95% COD and BOD5 removal was observed. Conclusion: Struvite precipitation and Fenton oxidation are reliable and efficient alternatives for mature landfill treatment.

  9. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy J.; Weise, David; Lincoln, E. N.; Sams, Robert L.; Cameron, Melanie; Veres, Patrick; Yokelson, Robert J.; Urbanski, Shawn; Profeta, Luisa T.; Williams, S.; Gilman, Jessica; Kuster, W. C.; Akagi, Sheryl; Stockwell, Chelsea E.; Mendoza, Albert; Wold, Cyle E.; Warneke, Carsten; de Gouw, Joost A.; Burling, Ian R.; Reardon, James; Schneider, Matthew D.; Griffith, David WT; Roberts, James M.

    2013-12-17

    Objectives: Project RC-1649, “Advanced Chemical Measurement of Smoke from DoD-prescribed Burns” was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement of need (SON) called for “(1) improving characterization of fuel consumption” and “(2) improving characterization of air emissions under both flaming and smoldering conditions with respect to volatile organic compounds, heavy metals, and reactive gases.” The measurements and fuels were from several bases throughout the southeast (Camp Lejeune, Ft. Benning, and Ft. Jackson) and were carried out in collaboration and conjunction with projects 1647 (models) and 1648 (particulates, SW bases). Technical Approach: We used an approach that featured developing techniques for measuring biomass burning emission species in both the laboratory and field and developing infrared (IR) spectroscopy in particular. Using IR spectroscopy and other methods, we developed emission factors (EF, g of effluent per kg of fuel burned) for dozens of chemical species for several common southeastern fuel types. The major measurement campaigns were laboratory studies at the Missoula Fire Sciences Laboratory (FSL) as well as field campaigns at Camp Lejeune, NC, Ft. Jackson, SC, and in conjunction with 1648 at Vandenberg AFB, and Ft. Huachuca. Comparisons and fusions of laboratory and field data were also carried out, using laboratory fuels from the same bases. Results: The project enabled new technologies and furthered basic science, mostly in the area of infrared spectroscopy, a broadband method well suited to biomass burn studies. Advances in hardware, software and supporting reference data realized a nearly 20x improvement in sensitivity and now provide quantitative IR spectra for potential detection of ~60 new

  10. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  11. Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.

    2012-01-01

    NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.

  12. Scanning microwave microscope imaging of micro-patterned monolayer graphene grown by chemical vapor deposition

    Science.gov (United States)

    Myers, J.; Mou, S.; Chen, K.-H.; Zhuang, Y.

    2016-02-01

    Characterization of micro-patterned chemical vapor deposited monolayer graphene using a scanning microwave microscope has been presented. Monolayer graphene sheets deposited on a copper substrate were transferred to a variety of substrates and micro-patterned into a periodic array of parallel lines. The measured complex reflection coefficients exhibit a strong dependency on the operating frequency and on the samples' electrical conductivity and permittivity. The experiments show an extremely high sensitivity by detecting image contrast between single and double layer graphene sheets. Correlating the images recorded at the half- and quarter-wavelength resonant frequencies shows that the relative permittivity of the single layer graphene sheet is above 105. The results are in good agreement with the three dimensional numerical electromagnetic simulations. This method may be instrumental for a comprehensive understanding of the scanning microwave microscope image contrast and provide a unique technique to estimate the local electrical properties with nano-meter scale spatial resolution of two dimensional materials at radio frequency.

  13. X-ray Tomography and Chemical Imaging within Butterfly Wing Scales

    International Nuclear Information System (INIS)

    The rainbow like color of butterfly wings is associated with the internal and surface structures of the wing scales. While the photonic structure of the scales is believed to diffract specific lights at different angle, there is no adequate probe directly answering the 3-D structures with sufficient spatial resolution. The NSRRC nano-transmission x-ray microscope (nTXM) with tens nanometers spatial resolution is able to image biological specimens without artifacts usually introduced in sophisticated sample staining processes. With the intrinsic deep penetration of x-rays, the nTXM is capable of nondestructively investigating the internal structures of fragile and soft samples. In this study, we imaged the structure of butterfly wing scales in 3-D view with 60 nm spatial resolution. In addition, synchrotron-radiation-based Fourier transform Infrared (FT-IR) microspectroscopy was employed to analyze the chemical components with spatial information of the butterfly wing scales. Based on the infrared spectral images, we suggest that the major components of scale structure were rich in protein and polysaccharide

  14. Scan time reduction in {sup 23}Na-Magnetic Resonance Imaging using the chemical shift imaging sequence. Evaluation of an iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Weingaertner, Sebastian; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Wetterling, Friedrich [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Dublin Univ. (Ireland) Trinity Inst. of Neuroscience; Fatar, Marc [Heidelberg Univ., Mannheim (Germany). Dept. of Neurology; Neumaier-Probst, Eva [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2015-07-01

    To evaluate potential scan time reduction in {sup 23}Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI {sup 23}Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered {sup 1}H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error < 12%) and an almost identical delineation of the stroke region (mismatch < 6%). The acquisition of undersampled {sup 23}Na-CSI images enables up to three-fold scan time reduction with improved image quality compared to conventional methods of scan time saving.

  15. Quantitative Imaging Biomarkers: The Application of Advanced Image Processing and Analysis to Clinical and Preclinical Decision Making

    OpenAIRE

    Prescott, Jeffrey William

    2012-01-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for dia...

  16. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    International Nuclear Information System (INIS)

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO3-) were found in 21% of the samples, manganese (Mn) and fluoride (F-) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m3, many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m3) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment. Those

  17. Advanced construction materials for thermo-chemical hydrogen production from VHTR process heat

    International Nuclear Information System (INIS)

    The (very) high temperature reactor concept ((V)HTR) is characterized by its potential for process heat applications. The production of hydrogen by means of thermo-chemical cycles is an appealing example, since it is more efficient than electrolysis due to the direct use of process heat. The sulfur-iodine cycle is one of the best studied processes for the production of hydrogen, and solar or nuclear energy can be used as a heating source for the high temperature reaction of this process. The chemical reactions involved in the cycle are: I2 (l) + SO2 (g) +2 H2O (l) → 2HI (l) + H2SO4 (l) (70-120 deg. C); H2SO4 (l) → H2O (l) + SO2 (g) + 1/2 O2 (g) (800-900 deg. C); 2HI (l) → I2 (g) + H2 (g) (300-450 deg. C) The high temperature decomposition of sulphuric acid, which is the most endothermic reaction, results in a very aggressive chemical environment which is why suitable materials for the decomposer heat exchanger have to be identified. The class of candidate materials for the decomposer is based on SiC. In the current study, SiC based materials were tested in order to determine the residual mechanical properties (flexural strength and bending modulus, interfacial strength of brazed joints), after exposure to an SO2 rich environment, simulating the conditions in the hydrogen production plant. Brazed SiC specimens were tested after 20, 100, 500 and 1000 hrs exposure to SO2 rich environment at 850oC under atmospheric pressure. The gas composition in the corrosion rig was: 9.9 H2O, 12.25 SO2, 6.13 O2, balance N2 (% mol). The characterization involved: weight change monitoring, SEM microstructural analysis and four-point bending tests after exposure. Most of the specimens gained weight due to the formation of a corrosion layer as observed in the SEM. The corrosion treatment also showed an effect on the mechanical properties. In the four-point bending tests performed at room temperature and at 850 deg. C, a decrease in bending modulus with exposure time was observed

  18. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

  19. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rossiter, Helfrid M.A. [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom); Owusu, Peter A.; Awuah, Esi [Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); MacDonald, Alan M. [British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA (United Kingdom); Schaefer, Andrea I., E-mail: Andrea.Schaefer@ed.ac.uk [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO{sub 3}{sup -}) were found in 21% of the samples, manganese (Mn) and fluoride (F{sup -}) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m{sup 3}, many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m{sup 3}) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic

  20. Recent advances in gas and chemical detection by Vernier effect-based photonic sensors.

    Science.gov (United States)

    La Notte, Mario; Troia, Benedetto; Muciaccia, Tommaso; Campanella, Carlo Edoardo; De Leonardis, Francesco; Passaro, Vittorio M N

    2014-01-01

    Recently, the Vernier effect has been proved to be very efficient for significantly improving the sensitivity and the limit of detection (LOD) of chemical, biochemical and gas photonic sensors. In this paper a review of compact and efficient photonic sensors based on the Vernier effect is presented. The most relevant results of several theoretical and experimental works are reported, and the theoretical model of the typical Vernier effect-based sensor is discussed as well. In particular, sensitivity up to 460 μm/RIU has been experimentally reported, while ultra-high sensitivity of 2,500 μm/RIU and ultra-low LOD of 8.79 × 10(-8) RIU have been theoretically demonstrated, employing a Mach-Zehnder Interferometer (MZI) as sensing device instead of an add drop ring resonator. PMID:24618728