WorldWideScience

Sample records for advanced ceramic materials

  1. Photon CT scanning of advanced ceramic materials

    International Nuclear Information System (INIS)

    Advanced ceramic materials are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems. Small size flaws (10 - 200 μm) and small nonuniformities in density distributions (0.1 -2%) present as long-range density gradients, are critical in most ceramics and their detection is of crucial importance. Computed tomographic (CT) imaging provides a means of obtaining a precise two-dimensional density map of a cross section through an object from which accurate information about small flaws and small density gradients can be obtained. With the use of high energy photon sources high contrast CT images can be obtained for both low and high density ceramics. In the present paper we illustrate the applicability of the photon CT technique to the examination of advanced ceramics. CT images of sintered alumina tiles are presented from which data on high-density inclusions, cracks and density gradients have been extracted

  2. Advanced Ceramic Materials for Future Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  3. Advanced Ceramics

    International Nuclear Information System (INIS)

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.)

  4. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  5. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  6. Advanced ceramic materials for next-generation nuclear applications

    International Nuclear Information System (INIS)

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  7. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  8. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  9. Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials

    Science.gov (United States)

    Garcia-Giron, A.; Sola, D.; Peña, J. I.

    2016-02-01

    In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.

  10. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range

    OpenAIRE

    Daniel Sola; Jose I. Peña

    2013-01-01

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth...

  11. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  12. PREFACE: Symposium 1: Advanced Structure Analysis and Characterization of Ceramic Materials

    Science.gov (United States)

    Yashima, Masatomo

    2011-05-01

    Preface to Symposium 1 (Advanced Structure Analysis and Characterization of Ceramic Materials) of the International Congress of Ceramics III, held 14-18 November 2010 in Osaka, Japan Remarkable developments have been made recently in the structural analysis and characterization of inorganic crystalline and amorphous materials, such as x-ray, neutron, synchrotron and electron diffraction, x-ray/neutron scattering, IR/Raman scattering, NMR, XAFS, first-principle calculations, computer simulations, Rietveld analysis, the maximum-entropy method, in situ measurements at high temperatures/pressures and electron/nuclear density analysis. These techniques enable scientists to study not only static and long-range periodic structures but also dynamic and short-/intermediate-range structures. Multi-scale characterization from the electron to micrometer levels is becoming increasingly important as a means of understanding phenomena at the interfaces, grain boundaries and surfaces of ceramic materials. This symposium has discussed the structures and structure/property relationships of various ceramic materials (electro, magnetic and optical ceramics; energy and environment related ceramics; bio-ceramics; ceramics for reliability secure society; traditional ceramics) through 38 oral presentations including 8 invited lectures and 49 posters. Best poster awards were given to six excellent poster presentations (Y-C Chen, Tokyo Institute of Technology; C-Y Chung, Tohoku University; T Stawski, University of Twente; Y Hirano, Nagoya Institute of Technology; B Bittova, Charles University Prague; Y Onodera, Kyoto University). I have enjoyed working with my friends in the ICC3 conference. I would like to express special thanks to other organizers: Professor Scott T Misture, Alfred University, USA, Professor Xiaolong Chen, Institute of Physics, CAS, China, Professor Takashi Ida, Nagoya Institute of Technology, Japan, Professor Isao Tanaka, Kyoto University, Japan. I also acknowledge the

  13. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.

    2010-09-29

    , and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

  14. III Advanced Ceramics and Applications Conference

    CERN Document Server

    Gadow, Rainer; Mitic, Vojislav; Obradovic, Nina

    2016-01-01

    This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.

  15. Development of advanced ceramics at AECL

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  16. ENERGY EFFICIENCY CHALLENGES ADDRESSED THROUGH THE USE OF ADVANCED REFRACTORY CERAMIC MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL

    2014-01-01

    Refractory ceramics can play a critical role in improving the energy efficiency of traditional industrial processes through increased furnace efficiency brought about by the employment of novel refractory systems and techniques. Examples of advances in refractory materials related to aluminum, gasification, glass, and lime are highlighted. Energy savings are realized based on reduction of chemical reactions, elimination of mechanical degradation caused by the service environment, reduction of temperature limitations of materials, and elimination of costly installation and repair needs. Key results of projects resulting from US Department of Energy (DOE) funded research programs are discussed with emphasis on applicability of these results to high temperature furnace applications and needed research directions for the future.

  17. Ceramic Laser Materials

    OpenAIRE

    Guillermo Villalobos; Jasbinder Sanghera; Ishwar Aggarwal; Bryan Sadowski; Jesse Frantz; Colin Baker; Brandon Shaw; Woohong Kim

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers,...

  18. Advanced functional materials

    CERN Document Server

    2011-01-01

    This book reviews the results of recent research on new materials arising from progress in polymer, ceramic, sensor, and fuel cell technology, including advanced inorganic-organic-hybrid polymeric materials, high functional sensor, and microbial fuel cells.

  19. Advanced ceramics: the present and the perspectives

    International Nuclear Information System (INIS)

    Development in the Brazilian and international areas of advanced ceramics is described, emphasizing its economic perspectivas and industrial applications. Results obtained by national institutions are reviewed, mainly in the context of those that pioneered the required high technology in this ceramic field. The rapid growth of the interest for those special materials, made more evident by ample information related to the superconducting ceramics great pontential for important practical applications, is one of the most significant characteristics of the area. (author)

  20. Reinforcement of ceramic materials

    International Nuclear Information System (INIS)

    In the commercial field, greater reproduceability of ceramic materials was achieved by systematic process control of the steps in manufacture. By improvement of the microstructure design, the strength and toughness against tearing of the materials were increased. The articles give a survey of theoretical and experimental results in manufacture and of the composition of ceramics with reinforced structure. Preferred materials are zirconium-, aluminium- and yttrium oxide, silicon oxide and -nitride and titanium- and silicon carbide. (DG)

  1. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  2. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  3. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  4. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  5. Development of Hi-Tech ceramics fabrication technologies - Development of advanced nuclear materials

    International Nuclear Information System (INIS)

    The objective of the present work is to prepare the foundation of hi-tech ceramics fabrication technologies through developing important processes i.e., tape casting, sol-gel, single crystal growing, compacting and sintering, and grinding and machining processes. Tape casting process is essential to manufacture hard and functional thin plates and structural elements for some composite materials. For the fabrication of spherical mono-sized micropowders of oxides, sol-gel process has widely been used. Piezoelectric elements that are the core parts of the sensors of LPMS (loose part monitoring system) and ALMS (acoustic leakage monitoring system) are used in single crystal forms. Compacting and sintering processes are general methods for fabricating structural parts using powders. Grinding and machining processes are important to achieve the final dimensions and surface properties of the parts. (Author).

  6. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  7. Ceramic Laser Materials

    Energy Technology Data Exchange (ETDEWEB)

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I

    2005-02-15

    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  8. Laser machining of advanced materials

    CERN Document Server

    Dahotre, Narendra B

    2011-01-01

    Advanced materialsIntroductionApplicationsStructural ceramicsBiomaterials CompositesIntermetallicsMachining of advanced materials IntroductionFabrication techniquesMechanical machiningChemical Machining (CM)Electrical machiningRadiation machining Hybrid machiningLaser machiningIntroductionAbsorption of laser energy and multiple reflectionsThermal effectsLaser machining of structural ceramicsIntrodu

  9. Joining of advanced materials

    CERN Document Server

    Messler, Robert W

    1993-01-01

    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  10. Advanced ceramics in Brazil: actual stage and perspectives

    International Nuclear Information System (INIS)

    The development of advanced ceramics in Brazil, the perspectives of the world and Brazilian markets, the raw materials, the equipments for industry and research, the human resources, and the disposable technology, are presented. The researches on advanced ceramics in Brazil initiated in the sixty decade, with the nuclear fuel development and production projets. (M.C.K.)

  11. Index of competences Advanced Materials

    International Nuclear Information System (INIS)

    This index gathers the main french competences in advanced materials field (university laboratories, research and development organisms, technical centers, experts...). The concerned advanced materials are plastics and technical polymers, metals and alloys, composite materials, technical ceramics, glasses, paper, wood and textile. A PC computer version is also available. (A.B.)

  12. Advances in materials science, metals and ceramics division. Triannual progress report, June-September 1980

    International Nuclear Information System (INIS)

    Information is presented concerning the magnetic fusion energy program; the laser fusion energy program; geothermal research; nuclear waste management; Office of Basic Energy Sciences (OBES) research; diffusion in silicate minerals; chemistry research resources; and chemistry and materials science research

  13. High temperature corrosion of advanced ceramic materials for hot-gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Kupp, E.R.; Trubelja, M.F.; Spear, K.E.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Experimental corrosion studies of hot gas filter materials and heat exchanger materials in oxidizing combustion environments have been initiated. Filter materials from 3M Co. and DuPont Lanxide Composites Inc. are being tested over a range of temperatures, times and gas flows. It has been demonstrated that morphological and phase changes due to corrosive effects occur after exposure of the 3M material to a combustion environment for as little as 25 hours at 800{degrees}C. The study of heat exchanger materials has focused on enhancing the corrosion resistance of DuPont Lanxide Dimox{trademark} composite tubes by adding chromium to its surfaces by (1) heat treatments in a Cr{sub 2}O{sub 3} powder bed, or (2) infiltrating surface porosity with molten chromium nitrate. Each process is followed by a surface homogenization at 1500{degrees}C. The powder bed method has been most successful, producing continuous Cr-rich layers with thicknesses ranging from 20 to 250 {mu}m. As-received and Cr-modified DuPont Lanxide Dimox{trademark} samples will be reacted with commonly encountered coal-ash slags to determine the Cr effects on corrosion resistance.

  14. Examination of the material removal mechanisms during the lapping process of advanced ceramic rolling elements

    OpenAIRE

    Kang, J.; Hadfield, M

    2005-01-01

    Two types of HIPed Si3N4 bearing ball blanks with different surface hardness and fracture toughness were lapped under various loads, speeds, and lubricants using a novel eccentric lapping machine. The lapped surfaces were examined by optical microscope and SEM. The experimental results show that the material removal rate for type I ball blanks were 3-4-fold of type 2 in most cases. Different lapping fluids affected the material removal rate at lower lapping loads, but they had much less influ...

  15. Ceramic catalyst materials

    Energy Technology Data Exchange (ETDEWEB)

    Sault, A.G.; Gardner, T.J. [Sandia National Laboratories, Albuquerque, NM (United States); Hanprasopwattanna, A.; Reardon, J.; Datye, A.K. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-08-01

    Hydrous titanium oxide (HTO) ion-exchange materials show great potential as ceramic catalyst supports due to an inherently high ion-exchange capacity which allows facile loading of catalytically active transition metal ions, and an ability to be cast as thin films on virtually any substrate. By coating titania and HTO materials onto inexpensive, high surface area substrates such as silica and alumina, the economics of using these materials is greatly improved, particularly for the HTO materials, which are substantially more expensive in the bulk form than other oxide supports. In addition, the development of thin film forms of these materials allows the catalytic and mechanical properties of the final catalyst formulation to be separately engineered. In order to fully realize the potential of thin film forms of titania and HTO, improved methods for the deposition and characterization of titania and HTO films on high surface area substrates are being developed. By varying deposition procedures, titania film thickness and substrate coverage can be varied from the submonolayer range to multilayer thicknesses on both silica and alumina. HTO films can also be formed, but the quality and reproducibility of these films is not nearly as good as for pure titania films. The films are characterized using a combination of isopropanol dehydration rate measurements, point of zero charge (PZC) measurements, BET surface area, transmission electron microscopy (TEM), and elemental analysis. In order to assess the effects of changes in film morphology on catalytic activity, the films are being loaded with MoO{sub 3} using either incipient wetness impregnation or ion-exchange of heptamolybdate anions followed by calcining. The MoO{sub 3} is then sulfided to form MOS{sub 2}, and tested for catalytic activity using pyrene hydrogenation and dibenzothiophene (DBT) desulfurization, model reactions that simulate reactions occurring during coal liquefaction.

  16. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  17. Method for Waterproofing Ceramic Materials

    Science.gov (United States)

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  18. Nuclear techniques in the development of advanced ceramic technologies

    International Nuclear Information System (INIS)

    The importance of research, development and application of advanced materials is well understood by all developed and most developing countries. Amongst advanced materials, ceramics play a prominent role due to their specific chemical and physical properties. According to performance and importance, advanced ceramics can be classified as structural ceramics (mechanical function) and the so-called functional ceramics. In the latter class of materials, special electrical, chemical, thermal, magnetic and optical properties are of interest. The most valuable materials are multifunctional, for example, when structural ceramics combine beneficial mechanical properties with thermal and chemical sensitivity. Multifunctionality is characteristic of many composite materials (organic/inorganic composite). Additionally, properties of material can be changed by reducing its dimension (thin films, nanocrystalline ceramics). Nuclear techniques, found important applications in research and development of advanced ceramics. The use of neutron techniques has increased dramatically in recent years due to the development of advanced neutron sources, instrumentation and improved data analysis. Typical neutron techniques are neutron diffraction, neutron radiography, small angle neutron scattering and very small angle neutron scattering. Neutrons can penetrate deeply into most materials thus sampling their bulk properties. In determination of the crystal structure of HTSC, YBa2 Cu2O7, XRD located the heavy metal atoms, but failed in finding many of the oxygen atoms, while the neutron diffraction located all atoms equally well in the crystal structure. Neutron diffraction is also unique for the determination of the magnetic structure of materials since the neutrons themselves have a magnetic moment. Application of small angle neutron scattering for the determination of the size of hydrocarbon aggregates within the zeolite channels is illustrated. (author)

  19. Improved ceramic heat exchange material

    Science.gov (United States)

    Mccollister, H. L.

    1977-01-01

    Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.

  20. Natural Radioactivity in Ceramic Materials

    International Nuclear Information System (INIS)

    Ceramics are one of the most important types of the industrial building materials. The raw materials of the ceramic are made of a mixture of clay, feldspar, silica, talc kaolin minerals together with zirconium silicates (ZrSiO4).The ceramic raw materials and the final products contain naturally occurring radionuclide mainly U-238 and, Th-232 series, and the radioactive isotope of potassium K-40. Six raw ceramic samples were obtained from the Aracemco Company at Egypt together with a floor tile sample (final product) for measuring radioactive concentration levels., The activity of the naturally U-238, Th-232, and K-40 were determined as (Bq/kg) using gamma spectroscopy (Hyperactive pure germanium detector). Concentration of U and Th were determined in (ppm) using spectrophotometer technique by Arsenazo 111 and Piridy l-Azo -Resorcinol (PAR) indicators. Sequential extraction tests were carried out in order to determine the quantity of the radionuclide associated with various fractions as exchangeable, carbonate, acid soluble and in the residue. The results evaluated were compared to the associated activity indices (AI) that were defined by former USSR and West Germany

  1. Ceramic materials testing and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wilfinger, K. R., LLNL

    1998-04-30

    corrosion by limiting the transport of water and oxygen to the ceramic-metal interface. Thermal spray techniques for ceramic coating metallic structures are currently being explored. The mechanics of thermal spray resembles spray painting in many respects, allowing large surfaces and contours to be covered smoothly. All of the relevant thermal spray processes use a high energy input to melt or partially melt a powdered oxide material, along with a high velocity gas to impinge the molten droplets onto a substrate where they conform, quench, solidify and adhere mechanically. The energy input can be an arc generated plasma, an oxy-fuel flame or an explosion. The appropriate feed material and the resulting coating morphologies vary with technique as well as with application parameters. To date on this project, several versions of arc plasma systems, a detonation coating system and two variations of high velocity oxy-fuel (HVOF) fired processes have been investigated, operating on several different ceramic materials.

  2. CVD COATING OF CERAMIC LAYERS ON CERAMIC CUTTING TOOL MATERIALS

    OpenAIRE

    Porat, R.

    1991-01-01

    When forming cutting tool materials based on ceramic components, one must take into considration the combination of wear resistance and mechanical properties which can withstand unfavorable cutting conditions at the same time maintaining high strength and fracture toughness. Ceramic cutting tools which are designed for machining at high cutting speeds and which have high strength and fracture toughness can be formed by applying a thin layer of ceramic materials on the substrate in order to in...

  3. NDE (nondestructive examination) development for ceramics for advanced heat engines

    Energy Technology Data Exchange (ETDEWEB)

    McClung, R.W. (McClung (R.W.), Powell, TN (USA)); Johnson, D.R. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    The Department of Energy (DOE) Ceramic Technology for Advanced Heat Engines (CTAHE) project was initiated in 1983 to meet the ceramic technology needs of DOE's advanced heat engines programs (i.e., advanced gas turbines and low heat rejection diesels). The objective is to establish an industrial ceramic technology base for reliable and cost-effective high-temperature components. Reliability of ceramics was recognized as the major technology need. To increase the material reliability of current and new ceramics, advances were needed in component design methodology, materials processing technology, and data base/life prediction. Nondestructive examination (NDE) was identified as one of the key elements in the approach to high-reliability components. An assessment was made of the current status of NDE for structural ceramics, and a report was prepared containing the results and recommendations for needed development. Based on these recommendations, a long-range NDE development program has been established in the CTAHE project to address these needs.

  4. Tribology of ceramics and composites materials science perspective

    CERN Document Server

    Basu, Bikramjit

    2011-01-01

    This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.

  5. ADVANCED SECOND GENERATION CERAMIC CANDLE FILTERS

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Alvin

    2002-01-31

    Through sponsorship from the Department of Energy's National Energy Technology Laboratory (DOE/NETL), development and manufacture of advanced second generation candle filters was undertaken in the early 1990's. Efforts were primarily focused on the manufacture of fracture toughened, 1.5 m, continuous fiber ceramic composite (CFCC) and filament wound candle filters by 3M, McDermott, DuPont Lanxide Composites, and Techniweave. In order to demonstrate long-term thermal, chemical, and mechanical stability of the advanced second generation candle filter materials, Siemens Westinghouse initiated high temperature, bench-scale, corrosion testing of 3M's CVI-SiC and DuPont's PRD-66 mini-candles, and DuPont's CFCC SiC-SiC and IF&P Fibrosic{sup TM} coupons under simulated, pressurized fluidized-bed combustion (PFBC) conditions. This effort was followed by an evaluation of the mechanical and filtration performance of the advanced second generation filter elements in Siemens Westinghouse's bench-scale PFBC test facility in Pittsburgh, Pennsylvania. Arrays of 1.4-1.5 m 3M CVI-SiC, DuPont PRD-66, DuPont SiC-SiC, and IF&P Fibrosic{sup TM} candles were subjected to steady state process operating conditions, increased severity thermal transients, and accelerated pulse cycling test campaigns which represented {approx}1760 hours of equivalent filter operating life. Siemens Westinghouse subsequently participated in early material surveillance programs which marked entry of the 3M CVI-SiC and DuPont PRD-66 candle filters in Siemens Westinghouse Advanced Particulate Filtration (APF) system at the American Electric Power (AEP) Tidd Demonstration Plant in Brilliant, Ohio. Siemens Westinghouse then conducted an extended, accelerated life, qualification program, evaluating the performance of the 3M, McDermott, and Techniweave oxide-based CFCC filter elements, modified DuPont PRD-66 elements, and the Blasch, Scapa Cerafil{sup TM}, and Specific Surface monolithic

  6. High temperature fracture of ceramic materials

    International Nuclear Information System (INIS)

    A review is presented of fracture mechanisms and methods of lifetime prediction in ceramic materials. Techniques of lifetime prediction are based on the science of fracture mechanics. Application of these techniques to structural ceramics is limited by our incomplete understanding of fracture mechanisms in these materials, and by the occurrence of flaw generation in these materials at elevated temperatures. Research on flaw generation and fracture mechanisms is recommended as a way of improving the reliability of structural ceramics

  7. Ceramic component processing development for advanced gas-turbine engines

    Science.gov (United States)

    Mcentire, B. J.; Hengst, R. R.; Collins, W. T.; Taglialavore, A. P.; Yeckley, R. L.; Bright, E.; Bingham, M. G.

    1991-01-01

    A review of ceramic component advancements directed at developing manufacturing technologies for rotors, stators, vane-seat platforms and scrolls is presented. The first three components are being produced from HIPed Si3N4, while scrolls were prepared from a series of siliconized silicon-carbide materials. Developmental work has been conducted on all aspects of the fabrication process utilizing Taguchi experimental design methods. An assessment of material properties for various components from each process and material are made.

  8. Measurement of Emissivity of Porous Ceramic Materials

    OpenAIRE

    BÜYÜKALACA, Orhan

    1998-01-01

    In this study, measurements of spectral and total emissivities of seven different porous ceramic materials and one ceramic fibre material are reported. Measurements were made for wavelength range from 1.2 µm to 20 µm and temperature range from 200 °C to 700 °C. It was found that total emissivity increases with increase of pore size but decreases with increase of temperature. The results showed all the porous ceramic materials tested to be much better than ceramic fibre in terms of total em...

  9. Ceramic Materials and Color in Dentistry

    OpenAIRE

    Volpato, Claudia; Fredel, Márcio; Philippi, Analúcia; PETTER, Carlos

    2010-01-01

    Since the introduction of metal ceramic crowns, clinicians and researchers have been looking for a restorative system that can associate beauty, strength and durability, but without the presence of a metallic infrastructure. Indeed, dental ceramics are materials that come aesthetically closest to natural teeth. With the improvement of ceramic systems, it has been possible to combine the excellent aesthetic characteristics of this material with a considerable resistance to fracture. It is impe...

  10. High Temperature Wear of Advanced Ceramics

    Science.gov (United States)

    DellaCorte, C.

    2005-01-01

    It was initially hypothesized that advanced ceramics would exhibit favorable high te- friction and wear properties because of their high hot hardness and low achievable surface roughness welding observed in metals does not occur in ceramics. More recent tribological studies of many nitride, carbide, oxide and composite ceramics, however, have revealed that ceramics often exhibit high friction and wear in non-lubricated, high temperature sliding contacts. A summary is given to measure friction and wear factor coefficients for a variety of ceramics from self mated ceramic pin-on-disk tests at temperatures from 25 to up to 1200 C. Observed steady state friction coefficients range from about 0.5 to 1.0 or above. Wear factor coefficients are also very high and range from about to 10(exp -5) to 10(exp -2) cubic millimeters per N-m. By comparison, oil lubricated steel sliding results in friction coefficients of 0.1 or less and wear factors less than 10(exp -9) cubic millimeters per N-m.

  11. Insights on Ceramics as Dental Materials. Part I: Ceramic Material Types in Dentistry

    OpenAIRE

    Ho, GW; Matinlinna, JP

    2011-01-01

    Ceramics are widely used biomaterials in prosthetic dentistry due to their attractive clinical properties. They are aesthetically pleasing with their color, shade and luster, and they are chemically stable. The main constituents of dental ceramic are Si-based inorganic materials, such as feldspar, quartz, and silica. Traditional feldspar-based ceramics are also referred to as "Porcelain". The crucial difference between a regular ceramic and a dental ceramic is the proportion of feldspar, quar...

  12. Development in laser peening of advanced ceramics

    Science.gov (United States)

    Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan

    2015-07-01

    Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.

  13. Surface characterization of ceramic materials

    International Nuclear Information System (INIS)

    In recent years several techniques have become available to characterize the structure and chemical composition of surfaces of ceramic materials. These techniques utilize electron scattering and scattering of ions from surfaces. Low-energy electron diffraction is used to determine the surface structure, Auger electron spectroscopy and other techniques of electron spectroscopy (ultraviolet and photoelectron spectroscopies) are employed to determine the composition of the surface. In addition the oxidation state of surface atoms may be determined using these techniques. Ion scattering mass spectrometry and secondary ion mass spectrometry are also useful in characterizing surfaces and their reactions. These techniques, their applications and the results of recent studies are discussed. 12 figures, 52 references, 2 tables

  14. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  15. Strength of advanced ceramic laminated structures

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Bermejo, R.; Hadraba, Hynek; Malíková, L.; Ševeček, O.; Danzer, R.; Dlouhý, Ivo

    Brno : Ústav fyziky materiálů AV ČR, v. v. i., 2015 - (Dlouhý, A.; Kunz, L.). s. 42-42 ISBN 978-80-87434-07-9. [ICSMA-17 International Conference on the Strength of Materials /17./. 09.08.2015-14.08.2015, Brno] Institutional support: RVO:68081723 Keywords : Strength * Laminates * Ceramics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  17. Oxygen diffusion in glasses and ceramic materials

    International Nuclear Information System (INIS)

    A survey is given on the published works to study oxygen diffusion in glasses and ceramic materials in the last years. In the first part methods are described for the measurement of oxygen diffusion coefficients and in the second part the published reports on oxygen diffusion in glasses, ceramic and other oxides are discussed. The most important results are summarized in different tables. (author)

  18. New ceramic materials; Nuevos materiales ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-07-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  19. Advanced materials processing

    International Nuclear Information System (INIS)

    Advanced materials will require improved processing methods due to high melting points, low toughness or ductility values, high reactivity with air or ceramics and typically complex crystal structures with significant anisotropy in flow and/or fracture stress. Materials for structural applications at elevated temperature in critical systems will require processing with a high degree of control. This requires an improved understanding of the relationship between process variables and microstructure to enable control systems to achieve consistently high quality. One avenue to the required level of understanding is computer simulation. Past attempts to do process modeling have been hampered by incomplete data regarding thermophysical or mechanical material behavior. Some of the required data can be calculated. Due to the advances in software and hardware, accuracy and costs are in the realm of acquiring experimental data. Such calculations can, for example, be done at an atomic level to compute lattice energy, fault energies, density of states and charge densities. These can lead to fundamental information about the competition between slip and fracture, anisotropy of bond strength (and therefore cleavage strength), cohesive strength, adhesive strength, elastic modulus, thermal expansion and possibly other quantities which are difficult (and therefore expensive to measure). Some of these quantities can be fed into a process model. It is probable that temperature dependencies can be derived numerically as well. Examples are given of the beginnings of such an approach for Ni3Al and MoSi2. Solidification problems are examples of the state-of-the-art process modeling and adequately demonstrate the need for extensive input data. Such processes can be monitored in terms of interfacial position vs. time, cooling rate and thermal gradient

  20. Lightweight high performance ceramic material

    Science.gov (United States)

    Nunn, Stephen D [Knoxville, TN

    2008-09-02

    A sintered ceramic composition includes at least 50 wt. % boron carbide and at least 0.01 wt. % of at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy Ho, Er, Tm, Yb, and Lu, the sintered ceramic composition being characterized by a density of at least 90% of theoretical density.

  1. Advanced Gas Turbine (AGT) Technology Development Project, ceramic component developments

    Science.gov (United States)

    Teneyck, M. O.; Macbeth, J. W.; Sweeting, T. B.

    1987-01-01

    The ceramic component technology development activity conducted by Standard Oil Engineered Materials Company while performing as a principal subcontractor to the Garrett Auxiliary Power Division for the Advanced Gas Turbine (AGT) Technology Development Project (NASA Contract DEN3-167) is summarized. The report covers the period October 1979 through July 1987, and includes information concerning ceramic technology work categorized as common and unique. The former pertains to ceramic development applicable to two parallel AGT projects established by NASA contracts DEN3-168 (AGT100) and DEN3-167 (AGT101), whereas the unique work solely pertains to Garrett directed activity under the latter contract. The AGT101 Technology Development Project is sponsored by DOE and administered by NASA-Lewis. Standard Oil directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and nondestructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This permitted engine testing to proceed without program slippage.

  2. Development of a tensile creep apparatus for advanced ceramics and tensile creep investigations of silicon nitride materials

    International Nuclear Information System (INIS)

    The critical components of the developed tensile creep concept for temperatures up to 1400deg C are described, i.e. geometry of the test pieces, gripping and aligning system and the high temperature extensometer. Misalignment of less than 5% can be achieved. The creep behaviour of two sintered Si3N4-materials is studied. One material contains Y2O3 and MgO as sintering additives and the second Yb2O3. Whereas the first material shows crystalline as well as amorphous grain boundary phases, the Yb-containing material is to a large extension crystalline. Both materials exhibit high nonlinear stress dependencies of the minimal creep rates, which can be assigned to different creep mechanisms. For the material containing an amorphous grain boundary phase the change of the composition of the glassy phase leads to extended transient creep ranges. The dependency of the minimal creep rate on the annealing time suggests a time independent analysis of the primary creep behaviour to determine the stress and temperature dependency of the creep rates. The static fatigue behaviour of both materials can be described as a superposition of creep rupture and fracture by slow crack growth. Tensile and bending creep results are compared indicating clearly the stress relaxation effect which occurs in bending. (orig./MM)

  3. Study on Low Resistance PTC Ceramic Material

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The low resistance PTC ceramic thermistor material with excellent eleectrical properties are successfully fabricated by raw materials at industrial range made in our country on the study of its composition expression and fabrication process by using the addition of Nb, La, Y, Ta , microstructure regulator BN and ASTL phase .The composition and its fabrication method are studied.The relation of electrical properties of the PTC ceramic material to its composition expression and its related electrical properties are discussed.

  4. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  5. Ceramic waste materials – source for the geopolymer technology

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Hanzlíček, Tomáš; Straka, Pavel; Steinerová, Michaela

    Hammamed: SDST, 2008 - (Darve, F.), s. 735-740 ISBN 978-9973-0-0299-0. [Second Euro Mediterranean Symposium in Advances on Geomaterials and Structures. Hammamet (TN), 05.05.2008-08.05.2008] Institutional research plan: CEZ:AV0Z30460519 Keywords : ceramic waste material * white waters * geopolymer Subject RIV: DM - Solid Waste and Recycling

  6. Dynamic properties of ceramic materials

    International Nuclear Information System (INIS)

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  7. A novel eccentric lapping machine for finishing advanced ceramic balls

    OpenAIRE

    Kang, J.; Hadfield, M.

    2001-01-01

    Advanced ceramic balls are used extensively in hybrid precision ball bearings and show advantages in high speed, high temperature, high load and hostile environment. Finishing these balls with high quality, good efficiency and low cost is critical to their widespread application. A brief review of the methods for finishing ceramic balls is presented. The design of a novel eccentric lapping machine for finishing advanced ceramic balls is described. The kinematics of eccentric lapping is analys...

  8. AGT 101: Ceramic component development: Advanced Gas Turbine Program: Topical report, October 1979-July 1987

    Energy Technology Data Exchange (ETDEWEB)

    Ten Eyck, M.O.; MacBeth, J.W.; Sweeting, T.B.

    1987-11-01

    This topical report summarizes the ceramic component technology development activity conducted by Standard Oil Engineered Materials Company. Standard Oil, acting as a principal subcontractor and supplier of ceramic components, directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and non-destructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This enabled engine testing to proceed without program slippage, and developed the approaches for producing low-cost, production quantity processes. Standard Oil contributed to the acceptance of ceramics as a viable approach for automotive gas turbine engines and to the advancement of this vital ceramic technology. 174 figs., 33 tabs.

  9. Advanced materials-2007

    International Nuclear Information System (INIS)

    The 10th International Symposium on Advanced Materials (ISAM) was held from 3-7 September, 2007. From this symposium, material scientists and engineers can keep abreast with recent technologies involving advanced structural and functional materials. The proceeding of ISAM includes 94 papers which have been divided into six different sections: i) Development in material processing ii) Surface Engineering iii) phase transformation iv) advances in magnetic materials v) Nanotechnology and vi) reliability and life assessment. ISAM provides the opportunity to exchange technical know-how amongst Scientists, Engineers and researchers. (A.B.)

  10. Novel polymer derived ceramic hard materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, A.; Lehner, W.; Greil, P. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Mater. Sci.; Kim, D.J. [Sung Kyun Kwan Univ., Dept. of Materials Science, Suwon (Korea, Republic of)

    1997-12-31

    Manufacturing, microstructure and properties of novel ceramic hard materials derived from polymer/reactive filler mixtures were investigated. Carbide forming metal powders of Mo were used as fillers to react with the carbon bearing decomposition products of polymethylsiloxanes during pyrolysis in nitrogen atmosphere. Microcrystalline composites with the filler reaction product Mo{sub 2}C embedded in an amorphous SiOC-matrix could be formed with complex geometry due to near-netshape polymer/ceramic conversion. Depending on the filler and the pyrolysis conditions ceramic hard materials with Vickers hardness up to 10 GPa, fracture toughness of 5.1 MPa{radical}(m), a flexural strength of 330 MPa and a Youngs modulus of 280 GPa were obtained. (orig.) 8 refs.

  11. Joining and surfacing of advanced materials

    Institute of Scientific and Technical Information of China (English)

    Andrzej Kolasa; Wladyslaw Wlosinski

    2004-01-01

    The application of advanced materials, i.e. advanced ceramics, glasses, intermetallic phases and various type of composites, not only depends on their manufacture processes including a great input of know-how, but also on their abilities for processing, among which the joining processes play an important role. The uses of advanced materials are changing rapidly, with a major emphasis on technical applications, especially the components of machines, apparatus and technical devices expected to withstand very heavy exploitation conditions. Furthermore,these materials are becoming more complex, in terms of being strengthened and toughened by transformation processes as well as by the addition of other ceramic or metallic materials including nanomaterials. The successful use of advanced materials requires the development of equally advanced joining materials, processes and technology. Some selected examples of results of joining advanced materials with the use of various procedures as well as surface modification of structural components with the use of advanced materials obtained in the Welding Engineering Department of Warsaw University of Technology, Poland, are presented.

  12. Smart Energy Materials of PZT Ceramics

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2015-10-01

    Full Text Available To better understand the material properties of lead zirconate titanate (PZT ceramics, the domain-switching characteristics and electric power generation characteristics have been investigated during loading and unloading by using various experimental techniques. Furthermore, the influence of oscillation condition on the electrical power generation properties of lead zirconate titanate (PZT piezoelectric ceramics has been investigated. It is found that the power generation is directly attributed to the applied load and wave mode. The voltage rises instantly to the maximum level under square-wave mode, although the voltage increases gradually under triangular-wave mode. After this initial increase, there is a rapid fall to zero, followed by generation of increasingly negative voltage as the applied load is removed for all wave modes. Variation of the electric voltage is reflected by the cyclic loading at higher loading frequencies. On the basis of the obtained experimental results for the wave modes, the electrical power generation characteristics of PZT ceramics are proposed, and the voltages generated during loading and unloading are accurately estimated. The electric generation value is decrease with increasing the cyclic number due to the material failure, e.g., domain switching and crack. The influence of domain switching on the mechanical properties PZT piezoelectric ceramics is clarified, and 90 degree domain switching occurs after the load is applied to the PZT ceramic directly. Note that, in this paper, our experimental results obtained in our previous works were introduced [1,2].

  13. Calcium phosphate-based ceramic and composite materials for medicine

    International Nuclear Information System (INIS)

    The topical problems in chemistry and technology of materials based on calcium phosphates aimed at both the replacement of damaged bone tissue and its regeneration are discussed. Specific features of the synthesis of nanocrystalline powders and the fabrication of ceramic implants are described. Advances in the development of porous scaffolds from resorbable and osteoconductive calcium phosphates and of hybrid composites that form the basis of bone tissue engineering are considered.

  14. Ceramics technology for advanced industrial gas turbines

    International Nuclear Information System (INIS)

    Recent developments in the fabrication of high strength ceramic materials and in their application to automotive and aerospace gas turbine engines may lead also to significant improvements in the performance of industrial gas turbines. This paper presents a brief review of the improvements projected in a study initiated by the U.S. Department of Energy. The future costs of power generated by small gas turbines (up to 25 MW) are predicted, as well as the potential for fuel savings. Gas turbines in this size range are used extensively for gas compression and for cogeneration, as well as in a variety of more diverse applications. This paper includes results of analyses of the ways in which changes in gas turbine cost and performance are likely to affect market penetration. These results lead to predictions of future savings in U.S. fuel consumption in the industrial sector that would result. The paper also presents a brief overview of the scope of a suggested R and D program, with an appropriate schedule, which would provide a technical basis for achieving the projected results. Important parts of this program would cover ceramic design and fabrication technology, engine development and demonstration, and combustion technology

  15. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  16. Advanced healthcare materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Advanced materials are attracting strong interest in the fundamental as well as applied sciences and are being extensively explored for their potential usage in a range of healthcare technological and biological applications. Advanced Healthcare Nanomaterials summarises the current status of knowledge in the fields of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, up and coming bio-engineering devices. The book highlights the key features which enable engineers to design stimuli-responsive smart nanoparticles, novel biomaterials, nan

  17. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-02-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  18. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  19. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    Science.gov (United States)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  20. Dental ceramics: An update

    OpenAIRE

    Shenoy Arvind; Shenoy Nina

    2010-01-01

    In the last few decades, there have been tremendous advances in the mechanical properties and methods of fabrication of ceramic materials. While porcelain-based materials are still a major component of the market, there have been moves to replace metal ceramics systems with all ceramic systems. Advances in bonding techniques have increased the range and scope for use of ceramics in dentistry. In this brief review, we will discuss advances in ceramic materials and fabrication techniques. Examp...

  1. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  2. Advanced materials for thermal protection system

    Science.gov (United States)

    Heng, Sangvavann; Sherman, Andrew J.

    1996-03-01

    Reticulated open-cell ceramic foams (both vitreous carbon and silicon carbide) and ceramic composites (SiC-based, both monolithic and fiber-reinforced) were evaluated as candidate materials for use in a heat shield sandwich panel design as an advanced thermal protection system (TPS) for unmanned single-use hypersonic reentry vehicles. These materials were fabricated by chemical vapor deposition/infiltration (CVD/CVI) and evaluated extensively for their mechanical, thermal, and erosion/ablation performance. In the TPS, the ceramic foams were used as a structural core providing thermal insulation and mechanical load distribution, while the ceramic composites were used as facesheets providing resistance to aerodynamic, shear, and erosive forces. Tensile, compressive, and shear strength, elastic and shear modulus, fracture toughness, Poisson's ratio, and thermal conductivity were measured for the ceramic foams, while arcjet testing was conducted on the ceramic composites at heat flux levels up to 5.90 MW/m2 (520 Btu/ft2ṡsec). Two prototype test articles were fabricated and subjected to arcjet testing at heat flux levels of 1.70-3.40 MW/m2 (150-300 Btu/ft2ṡsec) under simulated reentry trajectories.

  3. Chemical vapor deposition for silicon cladding on advanced ceramics

    Science.gov (United States)

    Goela, Jitendra S.; Taylor, Raymond L.

    1989-01-01

    Polycrystalline Si was used to clad several advanced ceramic materials such as SiC, Si3N4, sapphire Al2O3, pyrolytic BN, and Si by a CVD process. The thickness of Si cladding ranged from 0.025 to 3.0 mm. CVD Si adhered quite well to all the above materials except Al3O, where the Si cladding was highly stressed and cracked or delaminated. A detailed material characterization of Si-clad SiC samples showed that Si adherence to SiC does not depend much on the substrate surface preparation; that the thermal cycling and polishing of the samples do not cause delamination; and that, in four-point bend tests, the Si-SiC bond remains intact, with the failure occurring in the Si.

  4. Fluorine 18 in tritium generator ceramic materials

    International Nuclear Information System (INIS)

    At present time, the ceramic materials generators of tritium are very interesting mainly by the necessity of to found an adequate product for its application as fusion reactor shielding. The important element that must contain the ceramic material is the lithium and especially the isotope with mass=6. The tritium in these materials is generated by neutron irradiation, however, when the ceramic material contains oxygen, then is generated too fluorine 18 by the action of energetic atoms of tritium in recoil on the 16 O, as it is showed in the next reactions: 1) 6 Li (n, α) 3 H ; 2) 16 O(3 H, n) 18 F . In the present work was studied the LiAlO2 and the Li2O. The first was prepared in the laboratory and the second was used such as it is commercially expended. In particular the interest of this work is to study the chemical behavior of fluorine-18, since if it would be mixed with tritium it could be contaminate the fusion reactor fuel. The ceramic materials were irradiated with neutrons and also the chemical form of fluorine-18 produced was studied. It was determined the amount of fluorine-18 liberated by the irradiated materials when they were submitted to extraction with helium currents and argon-hydrogen mixtures and also it was investigated the possibility about the fluorine-18 was volatilized then it was mixed so with the tritium. Finally it was founded that the liberated amount of fluorine-18 depends widely of the experimental conditions, such as the temperature and the hydrogen amount in the mixture of dragging gas. (Author)

  5. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  6. Advanced materials-2005

    International Nuclear Information System (INIS)

    The 9. International Symposium on Advanced Materials (ISAM) was held from 19-22 September, 2005. This popular biennial event is one of the prime international forums in South Asia where material scientists and engineers can keep abreast with recent technologies involving advanced structural and functional materials. The technical committee of ISAM received 213 papers, 49 from abroad 164 from within the country. These papers were submitted in response to five important topics; i) Processing, Production and Developments, ii) Surface Engineering, iii) Phase Transformation and Characterization, iv) Advances in Magnetic Materials and v) Reliability and Life Assessment. The proceedings of the 9. ISAM consists of 108 reviewed papers. This symposium provided an ideal opportunity for exchange of information amongst scientists, engineers, and researchers. (A.B.)

  7. Advanced electro-ceramics: role of nanoscience

    International Nuclear Information System (INIS)

    Electro-ceramics have immense technological applications in energy conversion devices such as Fuel Cells, Oxygen storage capacitors and Li ion batteries etc. There is a growing need to develop better soft chemical synthesis routes as the conventional solid state method has several limitations. Among the available chemical routes, the combustion technique is capable of producing the nanocrystalline powders of the oxide ceramics at lower calcination temperature. This process involves a combustion reaction between a fuel (e.g. glycine, citric acid, urea etc.) and an oxidizer (e.g. metal nitrates). In my group, a wide range of materials for SOFC applications have been synthesized, such as ceria, Gd or Sm doped ceria, Zr0.8Ce0.2O2, YSZ, CeO2-Y2O3 solid solution, La1-xMxCrO3 (M = Ca, Sr), Sr-doped LaCoO3 and doped LaGaO3 etc. The powder properties were tailored to achieve near theoretical density sintered pellets. A number of techniques like XRD, HT-XRD, surface area analyzer, SEM, TEM, sinterability, Raman spectroscopy, dynamic light scattering, small angle X-ray/neutron scattering, dilatometer, AC Impedance analyzer etc. were used for detailed characterization of these products. A major emphasis was on the optimization of the processing parameters so as to get a highly sinteractive phase pure materials. The size and nature of agglomeration was found to be a crucial parameter affecting the sinterability. Another key issue of SOFC technology is the design of better ionic conductors. It is well known that ionic conductivity is a highly structure-driven property. Several new ionic conductors, such Nd3GaO6 and Nd2-xGd2Zr2O7 and Ba2In2-xTixO5+x/2 were prepared based on the structure-property correlation. Detailed XRD and Raman spectroscopy studies revealed that an optimum degree of disorder enhances the ionic conductivity. As an offshoot, this work resulted in preparation of interesting potential oxygen storage materials such as Gd2-xCexZr2O7 (x = 0.0 to 2.0) and Ce0.5Sc0.5O

  8. Advances in dental materials.

    Science.gov (United States)

    Vaderhobli, Ram M

    2011-07-01

    The use of materials to rehabilitate tooth structures is constantly changing. Over the past decade, newer material processing techniques and technologies have significantly improved the dependability and predictability of dental material for clinicians. The greatest obstacle, however, is in choosing the right combination for continued success. Finding predictable approaches for successful restorative procedures has been the goal of clinical and material scientists. This article provides a broad perspective on the advances made in various classes of dental restorative materials in terms of their functionality with respect to pit and fissure sealants, glass ionomers, and dental composites. PMID:21726695

  9. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G

    2008-01-01

    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  10. Fabrication of Bulk Nanocrystalline Ceramic Materials

    Czech Academy of Sciences Publication Activity Database

    Chráska, Tomáš; Neufuss, Karel; Dubský, Jiří; Ctibor, Pavel; Klementová, Mariana

    2008-01-01

    Roč. 17, 5-6 (2008), s. 872-877. ISSN 1059-9630 R&D Projects: GA AV ČR KAN300430651 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z40320502 Keywords : thermal spraying * nanocrystalline composites * wear Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.200, year: 2008

  11. Materials for advanced packaging

    CERN Document Server

    Lu, Daniel

    2010-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  12. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2008-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  13. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Directory of Open Access Journals (Sweden)

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  14. Friction and wear of ceramic pairs under high temperature conditions representative of advanced engine components

    International Nuclear Information System (INIS)

    Ball-on-disc friction and wear tests were performed with PSZ zirconia, Si3N4, and SiC ceramics and TiC cemented-carbide pairs under oscillating and linear sliding tests at 6500C in air and load conditions representative of advanced power systems. These tests showed high friction and wear of ceramic pairs at 6500C; improved performance was achieved coupling ceramics to TiC, and with TiC pairs. A review of practical lubrication systems for tribological engine components of high temperature materials showed that these exist and include solid lubrication, powder in gaseous carriers, and gas film support

  15. Fusion ceramic materials and components

    International Nuclear Information System (INIS)

    Present-day approach for the radiation hardness assurance of components and materials for the International Thermonuclear Experimental Reactor ITER is based on extensive testing under representative conditions. Those conditions include radiation, temperature and vacuum and the possibility of in-situ monitoring of radiation-induced changes in characteristics of interest. The resistive bolometers are an example of an ITER component currently tested at SCK-CEN. Bolometers will be used for the plasma emission monitoring in high-radiation and high-temperature locations such as the divertor region. Previous tests with bolometers having gold strips on mica substrates were performed in the JMTR (Japan) and revealed problems of adhesion of the strips on the mica surface, which naturally has a very low roughness. A new type of the resistive bolometer based on platinum meander on alumina or aluminum-nitride (AlN) substrates have to be tested at a high neutron flux (0.01 dpa), high temperature (400 C) and in vacuum (10-3 mBar)- conditions appropriate for the ITER. Another illustration of on-going radiation testing for the ITER is the investigation of the Radiation-Induced Electrical Degradation (RIED). RIED is degradation of electrical insulation under the combined effect of radiation, temperature, vacuum and a strong electric field. It may be an issue to be dealt with in the design phase. Our objective is to develop instrumentation capabilities, which can provide in-situ data on the radiation hardness of materials and components intended for the use in the ITER. These capabilities will allow assessment of the performance parameters under conditions representative in terms of radiation load, temperature and vacuum, and will include on-line electric measurements

  16. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  17. Addition of alternative materials to ceramic slabs

    Directory of Open Access Journals (Sweden)

    E. O. B. Nara

    2014-09-01

    Full Text Available The construction market is very growing, leading to the emergence of new technologies and materials, and a growing need for sustainable products for the construction process, and the call for quality of life we present the description of a new option alternative materials for environments that require careful with the acoustics. The research covers the development and incorporation of new material in construction, with the potential acoustic, from tests and measurements with calibrated decibel meter called. We also used the ceramic tiles pre-molded, used for making floors or ceilings in buildings and homes. The methodology used for the development of this research was characterized as literature, exploratory, descriptive, qualitative and quantitative, alternative and affordable. How after the analysis results of the tests performed it can be seen that the incorporation of rice hulls of agglomerated to form ceramic tiles, possible reductions in noise levels on the order of 8 dB (A than the traditional construction of the buildings, and then an excellent material. This research contributes to the construction so that presented a description of a new product developed from a conventional material, originating in agriculture, waste rice husk and its incorporation during the construction of buildings and home, with the potential acoustic observed from tests and measurements with calibrated decibel meter called.

  18. Proceedings of the two day national workshop on advanced materials for engineering applications

    International Nuclear Information System (INIS)

    The subjects like material preparation, material forming, material properties, materials testing, material mechanics, material structure, metal materials, non-metallic materials, composite materials, medical materials, chemical materials, food materials, electrician/electrical materials, building materials, biological materials, electronic/magnetic/optical materials, advanced materials applications in engineering are included in the workshop. Processing of advanced materials, studies on novel ceramic coatings, high strength, light weight and nanostructured materials are discussed in this proceedings. Papers relevant to INIS are indexed separately

  19. Factors Affecting Fiber Design and Selection for Advanced Ceramic Composites

    Science.gov (United States)

    DiCarlo, James A.

    1998-01-01

    Structural Ceramic Matrix Composites (CMC) have the potential for application in the hot sections of a variety of advanced propulsion and power systems. It is therefore necessary to have a general understanding of the key properties of CMC and Reinforcing Fibers. This need is complicated by the wide variety of application conditions and structural requirements for which CMC's will be used, and the proprietary concerns of the design engineers. CMC's, to be successful, must display properties which are competitive with the currently used high temperature structural materials: (i.e., Iron and Nickel based superalloys, tough monolithic ceramics, and carbon/carbon composites.) Structural CMC offers several areas of competition: (1) performance, (i.e., strength and strength retention, creep resistance, and thermal conductivity), (2) reliability (i.e., environmental durability, and damage tolerance) and (3) processing (i.e., capability for varying sizes and shapes, and cost effective fabrication). The presentation further discusses, and illustrates with fiber and CMC data the key fiber properties and processes which strongly affect each CMC area of competition. The presentation further discusses the current knowledge of the important factors which control the key fiber properties. A design guidelines for the optimum fiber characteristics is developed, and the currently available fibers are compared against those guidelines.

  20. Ceramic nanostructure materials, membranes and composite layers

    OpenAIRE

    Burggraaf, A.J.; Keizer, K.; Hassel, van, E Edwin

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of 1–10 μm consist of a packing of elementary particles with a size of 3–7 nm. The mean pore size is about 2.5–3 nm. The preparation routes are based on sol and sol-gel technologies. The pores can be ...

  1. Rare earths in ceramic materials technology

    International Nuclear Information System (INIS)

    Rare earth elements are mainly exploited for electronic devices, but far from negligible is their importance in materials for structural applications, i.e. for their mechanical properties, useful in modern technologies. For example, widely renown is the role of rare earth oxides in the study of zirconia (zirconium dioxide, ZrO2), by far the most interesting ceramic material for structural applications. Among rare earth oxides, ceria (cerium dioxide, CeO2) has played a fundamental role because at room temperature it stabilizes the tetragonal phase of zirconia, which is the most interesting phase from a mechanical point of view. In this presentation the main characteristics of the system CeO2-ZrO2 are outlined, along with the mechanical properties of binary alloys of the two oxides; these properties are evaluated as a function of their composition and microstructure. Some of these alloys exhibited behaviour completely unexpected for ceramic materials, e.g. the Shape Memory Effect (SME) and the Gorsky Effect. (orig.)

  2. Advanced superconducting materials

    International Nuclear Information System (INIS)

    The superconducting properties of various materials are reviewed in view of their use in high field magnets. The critical current densities above 12 T of conductors based on NbN or PbMo6S8 are compared to those of the most advanced practical conductors based on alloyed by Nb3Sn. Different aspects of the mechanical reinforcement of high field conductors, rendered necessary by the strong Lorentz forces (e.g. in fusion magnets), are discussed. (orig.)

  3. Laser hearth melt processing of ceramic materials

    Science.gov (United States)

    Richard Weber, J. K.; Felten, J. J.; Nordine, Paul C.

    1996-02-01

    A new technique for synthesizing small batches of oxide-based ceramic and glass materials from high purity powders is described. The method uses continuous wave CO2 laser beam heating of material held on a water-cooled copper hearth. Contamination which would normally result during crucible melting is eliminated. Details of the technique are presented, and its operation and use are illustrated by results obtained in melting experiments with a-aluminum oxide, Y-Ba-Cu-O superconductor material, and the mixtures, Al2O3-SiO2, Bi2O3-B2O3, Bi2O3-CuO. Specimen masses were 0.05-1.5 g.

  4. Materials characteristics of uncoated/ceramic-coated implant materials.

    Science.gov (United States)

    Lacefield, W R

    1999-06-01

    In this paper, the biocompatibility of dental implant materials is discussed in the context of both the mechanical characteristics of the materials and the type of surface presented to the surrounding tissues. The proper functioning of the implant depends on whether it possesses the strength necessary to withstand loading within the expected range, with other properties such as elongation being of importance in some instances. A suitable modulus of elasticity may be of major importance in situations when optimum load transmission from the implant into the surrounding bone is key to the successful functioning of the device. Dental implants present a wide range of surfaces to the surrounding tissues based on surface composition, texture, charge energy, and cleanliness (sterility). Metallic implants are characterized by protective oxide layers, but ion release is still common with these materials, and is a function of passivation state, composition, and corrosion potential. An effective surface treatment for titanium appears to be passivation or anodization in a suitable solution prior to implantation. Inert ceramic surfaces exhibit minimal ion release, but are similar to metals in that they do not form a high energy bond to the surrounding bone. Some of the newly developed dental implant alloys such as titanium alloys, which contain zirconium and niobium, and high-strength ceramics such as zirconia may offer some advantages (such as lower modulus of elasticity) over the conventional materials. Calcium phosphate ceramic coatings are commonly used to convert metallic surfaces into a more bioactive state and typically cause faster bone apposition. There is a wide range of ceramic coatings containing calcium and phosphorus, with the primary difference in many of these materials being in the rate of ion release. Although their long-term success rate is unknown, the calcium phosphate surfaces seem to have a higher potential for attachment of osteoinductive agents than do

  5. Manufacturing technologies for nanocomposite ceramic structural materials and coatings

    International Nuclear Information System (INIS)

    The new material class of ceramic nanocomposites, containing at least one phase in nanometric dimension, has achieved special interest in previous years. While earlier research was focused on materials science and microstructural details in laboratory scale the subject of developing suitable manufacturing technologies in technical scale is the challenge for the manufacturing engineer. The same high-performance features which make the nanocomposite materials so interesting in their properties are absolutely detrimental if it comes to production of these materials. Extreme hardness, toughness and abrasion resistance make the state of the art cutting-and-machining operations extremely cost intensive so that, from a manufacturing point of view, true near-net-shape manufacturing is mandatory to accomplish reasonable cost targets. Ceramic feedstocks with both, high solid content to reduce shrinkage and warping and stable processing conditions are required to accomplish this aim of near-net-shape processing. Stable and reproducible processing conditions, e.g. favourable rheological properties for injection moulding are essentials for the manufacturing engineer. These prerequisites of ceramic production technologies cannot be reached with pure nanopowders in the 10-20 nm range but materials with a micro-nano architecture can fulfill these requirements, using a mixture of a submicron-sized matrix in the 100-200 nm range and smaller nanosized additives in <20% content which contribute the desired functionality. By using these micro-nanocomposites near-net-shape ceramic forming technologies such as injection moulding, gel casting and slip casting have been developed which lead to high-performance materials at affordable production cost. Advanced surface technologies include nanoceramic coatings made by thermokinetic deposition processes. Modern ceramic processing, i.e. spray drying leads to fine granulated nanopowders with appropriate flowability for subsequent APS plasma or

  6. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  7. Dental ceramics: An update

    Directory of Open Access Journals (Sweden)

    Shenoy Arvind

    2010-01-01

    Full Text Available In the last few decades, there have been tremendous advances in the mechanical properties and methods of fabrication of ceramic materials. While porcelain-based materials are still a major component of the market, there have been moves to replace metal ceramics systems with all ceramic systems. Advances in bonding techniques have increased the range and scope for use of ceramics in dentistry. In this brief review, we will discuss advances in ceramic materials and fabrication techniques. Examples of the microstructure property relationships for these ceramic materials will also be addressed.

  8. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB2-based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  9. UV laser micromachining of ceramic materials: formation of columnar topographies

    International Nuclear Information System (INIS)

    Laser machining is increasingly appearing as an alternative for micromachining of ceramics. Using ceramic materials using excimer lasers can result in smooth surfaces or in the formation of cone-like or columnar topography. Potential applications of cone-shaped or columnar surface topography include, for example, light trapping in anti-reflection coatings and improvement of adhesion bonding between ceramic materials. In this communication results of a comparative study of surface topography change during micromachining of several ceramic materials with different ablation behaviors are reported. (orig.)

  10. Emerging Ceramic-based Materials for Dentistry

    OpenAIRE

    Denry, I.; Kelly, J. R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appr...

  11. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  12. Contributions to the R-curve behaviour of ceramic materials

    International Nuclear Information System (INIS)

    Several ceramic materials show an increase in crack growth resistance with increasing crack extension. Especially, in case of coarse-grained alumina this ''R-curve effect'' is caused by crack-face interactions in the wake of the advancing crack. Similar effects occur for whisker reinforced ceramics. Due to the crack-face interactions so-called ''bridging stresses'' are generated which transfer forces between the two crack surfaces. A second reason for an increase of crack-growth resistance are stress-induced phase transformations in zirconia ceramics with the tetragonal phase changing to the monoclinic phase. These transformations will affect the stress field in the surroundings of crack tips. The transformation generates a crack-tip transformation zone and, due to the stress balance, also residual stresses in the whole crack region which result in a residual stress intensity factor. This additional stress intensity factor is also a reason for the R-curve behaviour. In this report both effects are outlined in detail. (orig.)

  13. Advanced materials-2003

    International Nuclear Information System (INIS)

    The 8th International Symposium on Advanced Materials (ISAM) was held from 8-11 September, 2003. The proceeding of ISAM includes 87 papers which have been divided in to ten different sections. These include production and processing, coating and thin films, characterization, superconductors and semiconductors mechanical modeling, mechanical testing and life prediction composites, corrosion and oxidation, single crystals and related papers. Ten eminent researchers and scholars of international fame presented their keynote/invited lectures of 40 minutes each. This symposium provided an ideal opportunity for exchange of information amongst scientists, engineers, and researchers from all over Pakistan and 30 other countries of the world. (A.B.)

  14. Elastic properties of various ceramic materials

    International Nuclear Information System (INIS)

    The Young's modulus and the Poisson's ratio of various ceramics have been investigated at room temperature and compared with data from the literature. The ceramic materials investigated are Al2O3, Al2O3-ZrO2, MgAl2O4, LiAlO2, Li2SiO3, Li4SiO4, UO2, AlN, SiC, B4C, TiC, and TiB2. The dependence of the elastic moduli on porosity and temperature have been reviewed. Measurements were also performed on samples of Al2O3, AlN, and SiC, which had been irradiated to maximum neutron fluences of 1.6.1026 n/m2 (E>0.1 MeV) at different temperatures. The Young's modulus is nearly unaffected at fluences up to about 4.1024 n/m2. However, it decreases with increasing neutron fluence and seems to reach a saturation value depending upon the irradiation temperature. The reduction of the Young's modulus is lowest in SiC. (orig.)

  15. Accelerating advanced-materials commercialization

    Science.gov (United States)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  16. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich

    2008-01-01

    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  17. Calculation of the bio-ceramic material parameters

    Czech Academy of Sciences Publication Activity Database

    Fuis, Vladimír; Janíček, Přemysl

    Berlin : Springer, 2014, s. 855-861. ISBN 978-3-319-02293-2. [Mechatronics 2013 /10./. Brno (CZ), 07.10.2013-09.10.2013] R&D Projects: GA ČR GA13-34632S Institutional support: RVO:61388998 Keywords : ceramics * material parameters * weibull Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  18. Award-Winning CARES/Life Ceramics Durability Evaluation Software Is Making Advanced Technology Accessible

    Science.gov (United States)

    1997-01-01

    Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CARES/Life software developed at the NASA Lewis Research Center eases this by providing a tool that uses probabilistic reliability analysis techniques to optimize the design and manufacture of brittle material components. CARES/Life is an integrated package that predicts the probability of a monolithic ceramic component's failure as a function of its time in service. It couples commercial finite element programs--which resolve a component's temperature and stress distribution - with reliability evaluation and fracture mechanics routines for modeling strength - limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength.

  19. Survey of the patents intensity in advanced ceramics

    International Nuclear Information System (INIS)

    A survey about a sectorial diagnostic of advanced ceramics, using patents of the Industrial Properties National Institute, as a reference documentation is presented. The mains points for generating technology in 80 decade are identified, by the institutions/company titularies of patents. (C.G.C.)

  20. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  1. Ceramic materials for fission and fusion nuclear reactors

    International Nuclear Information System (INIS)

    A general survey on the ceramics for nuclear applications is presented. For the fission nuclear reactor, the ceramics materials are almost totally used as fuel e.g. (U,Pu)O2; other types of ceramics, e.g. Uranium-Plutonium carbide and nitride, have been investigated as potential nuclear fuels. The (U,Pu)N compound is to be the fuel for the space nuclear power reactor in the U.S.A. For the fusion nuclear reactor, the ceramics should be the fundamental materials for many components: first wall, breeder, RF heating systems, insulant and shielding parts, etc. In recent years many countries are involved on the research and development of ceramic compounds with the principal purpose of being used in the fusion powerplant (year 2010-2020 ?). An effort has been even made to verify if it is possible to use more ceramic components in the fission nuclear plant (probably differntly disigned) to improve the safety level

  2. Advanced High-Temperature Engine Materials Technology Progresses

    Science.gov (United States)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  3. A new ceramic material for shielding pulsed neutron scattering instruments

    International Nuclear Information System (INIS)

    We propose a new ceramic composite, based on boron carbide, to use as a shielding material for pulsed neutron scattering instrumentation. The measured transmission data show characteristics equivalent to crispy mix, a common shielding material used at ISIS (UK)

  4. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  5. Corrosion penetration monitoring of advanced ceramics in hot aqueous fluids

    OpenAIRE

    Nickel, Klaus G; Björn Seipel

    2004-01-01

    Advanced ceramics are considered as components in energy related systems, because they are known to be strong, wear and corrosion resistant in many environments, even at temperatures well exceeding 1000 °C. However, the presence of additives or impurities in important ceramics, for example those based on Silicon Nitride (Si3N4) or Al2O3 makes them vulnerable to the corrosion by hot aqueous fluids. The temperatures in this type of corrosion range from several tens of centigrade to hydrothermal...

  6. Advanced Industrial Materials (AIM) fellowship program

    Energy Technology Data Exchange (ETDEWEB)

    McCleary, D.D. [Oak Ridge Institute for Science and Education, TN (United States)

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currently under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).

  7. Ceramic glossary

    International Nuclear Information System (INIS)

    This book is a 2nd edition that contains new terms reflecting advances in high technology applications of ceramic materials. Definitions for terms which materials scientists, engineers, and technicians need to know are included

  8. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  9. Hot corrosion of ceramic engine materials

    Science.gov (United States)

    Fox, Dennis S.; Jacobson, Nathan S.; Smialek, James L.

    1988-01-01

    A number of commercially available SiC and Si3N4 materials were exposed to 1000 C in a high velocity, pressurized burner rig as a simulation of a turbine engine environment. Sodium impurities added to the burner flame resulted in molten Na2SO4 deposition, attack of the SiC and Si4N4 and formation of substantial Na2O-x(SiO2) corrosion product. Room temperature strength of the materials decreased. This was a result of the formation of corrosion pits in SiC, and grain boundary dissolution and pitting in Si3N4. Corrosion regimes for such Si-based ceramics have been predicted using thermodynamics and verified in rig tests of SiO2 coupons. Protective mullite coatings are being investigated as a solution to the corrosion problem for SiC and Si3N4. Limited corrosion occurred to cordierite (Mg2Al4Si5O18) but some cracking of the substrate occurred.

  10. Advanced zinc phosphate conversion and pre-ceramic polymetallosiloxane coatings for corrosion protection of steel and aluminum, and characteristics of polyphenyletheretherketone-based materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.; Carciello, N.R.

    1992-07-01

    Anhydrous zinc phosphate (Zn{center_dot}Ph) coatings deposited by immersing the steel in transition Co, Ni, and Mn cation-incorporated phosphating solutions were investigated. Two features for the anhydrous 340C-heated (Zn{center_dot}Ph) were addressed; one was to determine if electron trapping of adsorbed CO{sup 2+} and Ni{sup 2+} ions acts to inhibit the cathodic reaction on the (Zn{center_dot}Ph), and the second was to determine the less susceptibility of the {alpha}-Zn{sub 3}(PO{sub 4}){sub 2} phase to alkali-induced dissolution. The factors governing film-forming of pre-ceramic polymetallosiloxane (PMS) coatings for Al substrates were investigated. Four factors were important in obtaining a good film: (1) formation of organopolymetallosiloxane at sintering temperatures of 150C; (2) pyrolytic conversion at 350C into an amorphous PMS network structure in which the Si-O-M linkage were moderately enhanced; (3) noncrystalline phases; and (4) formation of interfacial oxane bond between PMS and Al oxide. Formation of well-crystallized polyphenyletheretherketone (PEEK) in vicinity of silica aggregates was found in the molted body made in N{sub 2}. Crystalline PEEK contributed to thermal and hydrothermal stabilities of mortar specimens at temperatures up to 200C, and resistance in 5 wt % H{sub 2}SO{sub 4} solution at 80C.

  11. Nondestructive characterization of advanced composite materials

    International Nuclear Information System (INIS)

    A comprehensive review of nondestructive characterization (NDC) techniques and their application to metal-matrix, polymer-matrix and ceramic-matrix composites is presented. Particular attention is given to the identification of critical materials properties and defects in these advanced composites. NDC is required: (i) to detect discrete defects, such as delaminations and cracking, and (ii) to measure distributed material properties, such as density, resistivity and elastic constants. Ultrasonic and eddy-current characterization are described in detail, along with new NDC results obtained at the Aeronautical and Maritime Research Laboratory. These include a method for the determination of fibre volume fraction in continuous fibre reinforced metal-matrix composites using eddy-current NDC, and the use of eddy-current methods to complement ultrasonic testing for characterization of impact damage in graphite-epoxy laminates. Future problem areas and possible solutions in NDC of advanced composites are also discussed. 90 refs., 1 tab., 6 figs

  12. Exotic development of ceramic tritium breeding materials

    International Nuclear Information System (INIS)

    In the near future fusion reactors will be based on the tritium-deuterium plasma reaction. As such the production of tritium, a non-natural element, becomes of crucial importance in fusion technology. An experimental programme, EXOTIC, is in progress since 1983 in which the laboratories of SNL-Springfields, ECN-Petten, JRC-Petten and SCK-CEN Mol work in close collaboration within the framework of the manufacture, characterization and irradiation of ceramic lithium compounds. This programme must result in the understanding of the tritium release processes and the effect of material characteristics on this release. Up to now three irradiation experiments in the High Flux Reactor-Petten were scheduled (EXOTIC I, II and III). The Annual Progress Report 1985 summarizes information on these experiments during the period of 1985. The reader is also referred to the previous Annual Progress Report 1984. During the EXOTIC I experiment lithium silicate pellets and lithium aluminate pellets were irradiated. The resulting tritium release data are still to be interpreted in full detail. Some preliminary observations are presented in this Report. In the EXOTIC II experiment lithium oxide, lithium aluminate and lithium silicate pellets were used. In the EXOTIC III experiment lithium oxide, lithium zirconate and lithium silicate pellets were used. (Author)

  13. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

    1996-02-01

    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  14. Engineering spinal fusion: evaluating ceramic materials for cell based tissue engineered approaches

    NARCIS (Netherlands)

    Wilson, C.E.

    2011-01-01

    The principal aim of this thesis was to advance the development of tissue engineered posterolateral spinal fusion by investigating the potential of calcium phosphate ceramic materials to support cell based tissue engineered bone formation. This was accomplished by developing several novel model syst

  15. Phase transformation study of advanced ceramics using in-situ XRD

    International Nuclear Information System (INIS)

    The paper describes phase transformation of some advanced ceramic materials involving alumina and zirconia. Phase transformation was studied using in-situ XRD that was heated from room temperature to elevated temperature of more than 1000 degree C. The different advanced ceramic material follows different path and involved different reaction mechanism. Alumina for example was studied from gibbs site. As the heating temperature is increase the gibbsite was transformed in a boehmite at 400 degree C by a dissolution-recrystallization mechanism. With further heating, the boehmite transforms into γ-alumina through a dehydroxylation process at 800 degree C. At 1100 degree C, the α- alumina was transfomed into a mix phase of δ and θ aluminas. Finally a α- alumina was formed at 1200 degree C. (Author)

  16. Actively Cooled Ceramic Composite Nozzle Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I Project demonstrated the capability of the Pyrowave? manufacturing process to produce fiber-reinforced ceramics (FRCs) with integral metal features,...

  17. Sealing ceramic material in low melting point glass

    Science.gov (United States)

    Moritoki, M.; Fujikawa, T.; Miyanaga, J.

    1984-01-01

    A structured device placed in an aerated crucible to pack ceramics molding substance that is to be processed was designed. The structure is wrapped by sealing material made of pyrex glass and graphite foil or sheet with a weight attached on top of it. The crucible is made of carbon; the ceramics material to be treated through heat intervenient press process is molding substance consisting mainly of silicon nitride.

  18. Aluminium nitrate ceramics: A potential UV dosemeter material

    DEFF Research Database (Denmark)

    Trinkler, L.; Bøtter-Jensen, L.; Berzina, B.

    The ceramic material AIN-Y2O3 is proposed as a potential ultraviolet radiation (UVR) dosemeter using optically stimulated luminescence (OSL) and thermally stimulated luminescence (TL). Experimental studies have shown that AIN ceramics exhibit attractive characteristics suitable for practical UV...... Al2O3:C; and (4) a large dynamic range TL signal (5 orders of magnitude). Although there is relatively high fading, it is demonstrated that AIN is a feasible material for UVR dosimetry using short integration times....

  19. Next generation grinding spindle for cost-effective manufacture of advanced ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.A.; Laurich, M.A.

    2000-01-01

    Finish grinding of advanced structural ceramics has generally been considered an extremely slow and costly process. Recently, however, results from the High-Speed, Low-Damage (HSLD) program have clearly demonstrated that numerous finish-process performance benefits can be realized by grinding silicon nitride at high wheel speeds. A new, single-step, roughing-process capable of producing high-quality silicon nitride parts at high material removal rates while dramatically reducing finishing costs has been developed.

  20. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  1. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016). PMID:27021548

  2. Corrosion penetration monitoring of advanced ceramics in hot aqueous fluids

    Directory of Open Access Journals (Sweden)

    Klaus G. Nickel

    2004-03-01

    Full Text Available Advanced ceramics are considered as components in energy related systems, because they are known to be strong, wear and corrosion resistant in many environments, even at temperatures well exceeding 1000 °C. However, the presence of additives or impurities in important ceramics, for example those based on Silicon Nitride (Si3N4 or Al2O3 makes them vulnerable to the corrosion by hot aqueous fluids. The temperatures in this type of corrosion range from several tens of centigrade to hydrothermal conditions above 100 °C. The corrosion processes in such media depend on both pH and temperature and include often partial leaching of the ceramics, which cannot be monitored easily by classical gravimetric or electrochemical methods. Successful corrosion penetration depth monitoring by polarized reflected light optical microscopy (color changes, Micro Raman Spectroscopy (luminescence changes and SEM (porosity changes will be outlined. The corrosion process and its kinetics are monitored best by microanalysis of cross sections, Raman spectroscopy and eluate chemistry changes in addition to mass changes. Direct cross-calibrations between corrosion penetration and mechanical strength is only possible for severe corrosion. The methods outlined should be applicable to any ceramics corrosion process with partial leaching by fluids, melts or slags.

  3. Research and development status of ceramic breeder materials

    International Nuclear Information System (INIS)

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was also recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option breeder material. Blanket design studies have indicated areas in the properties data base that need further investigation. Current studies are focusing on issues such as tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests are underway, some as part of an international collaboration for development of ceramic breeder materials. 36 refs

  4. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  5. Refractory Materials for Flame Deflector Protection System Corrosion Control: Refractory Ceramics Literature Survey

    Science.gov (United States)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.; Coffman, Brekke E.

    2009-01-01

    Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications

  6. Reactivity of ceramic coating materials with uranium and uranium trichlorid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Cho, Choon Ho; Lee, Yoon Sang; Lee, Han Soo; Kim, Jeong Guk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Uranium and uranium alloys are typically induction melted in graphite crucibles under a vacuum. The graphite crucible is used for the manufacturing of uranium ingots in the casting equipment. But, due to the chemical reactivity of uranium and most alloying elements with carbon, a protective ceramic coating is generally applied to the crucibles. In this study, to investigate the most suitable ceramic coating material applied to graphite melting crucibles and ingot moldsused in the melting and casting of uranium in the casting equipment, firstly, the thermodynamic analysis was performed by using HSC software to investigate the reactivity between uranium and several ceramic materials and the experiments on the reaction of ceramic coated crucibles in molten uranium were carried out at 1300 .deg. C

  7. Reactivity of ceramic coating materials with uranium and uranium trichlorid

    International Nuclear Information System (INIS)

    Uranium and uranium alloys are typically induction melted in graphite crucibles under a vacuum. The graphite crucible is used for the manufacturing of uranium ingots in the casting equipment. But, due to the chemical reactivity of uranium and most alloying elements with carbon, a protective ceramic coating is generally applied to the crucibles. In this study, to investigate the most suitable ceramic coating material applied to graphite melting crucibles and ingot moldsused in the melting and casting of uranium in the casting equipment, firstly, the thermodynamic analysis was performed by using HSC software to investigate the reactivity between uranium and several ceramic materials and the experiments on the reaction of ceramic coated crucibles in molten uranium were carried out at 1300 .deg. C

  8. Improvements in the processing of Yb:YAG ceramic materials

    OpenAIRE

    Serantoni, Marina; Esposito, Laura; Piancastelli, Andreana; Alderighi, Daniele; Pirri, Angela

    2010-01-01

    Laser ceramics can attain a significant role in the frame of the generation of high peak power, high energy laser pulses at high repetition rate, applications where fiber lasers or single crystals undergo fundamental or technological limitations. A ceramic material in order to be used as a laser amplifier, needs to fulfil strict requirements in terms of properties, in particular microstructure, purity level, porosity. The important role played by the production process on the transparency of ...

  9. Optical properties of advanced materials

    CERN Document Server

    Kajikawa, Kotaro

    2013-01-01

    In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include:  quantum structures of sem...

  10. Optical ceramics for fast scintillator materials

    Czech Academy of Sciences Publication Activity Database

    Nikl, Martin; Yanagida, T.; Yagi, H.; Yanagitani, T.; Mihóková, Eva; Yoshikawa, A.

    New York: Nova Science Publishers, 2013 - (Roa Rovira, J.; Rubi, M.), s. 127-176 ISBN 9781624177293 R&D Projects: GA MŠk LH12150; GA AV ČR KAN300100802 Institutional support: RVO:68378271 Keywords : scintillators * ceramics * oxides * halides * nanocomposites Subject RIV: BM - Solid Matter Physics ; Magnetism

  11. Helium mobility in advanced nuclear ceramics

    International Nuclear Information System (INIS)

    The main goal of this work is to improve our knowledge on the mechanisms able to drive the helium behaviour in transition metal carbides and nitrides submitted to thermal annealing or ion irradiation. TiC, TiN and ZrC polycrystals were implanted with 3 MeV 3He ions at room temperature in the fluence range 2 * 1015 et 6 * 1016 cm-2. Some of them have been pre-irradiated with self-ions (14 MeV Ti or Zr). Fully controlled thermal annealing tests were subsequently carried out in the temperature range 1000 - 1600 C for two hours. The evolution of the helium depth distribution in function of implantation dose, temperature and pre-irradiation dose was measured thanks to the deuteron-induced nuclear reaction 3He(d, p0)4He between 900 keV and 1.8 MeV. The microstructure of implanted and annealed samples was investigated by transmission electron microscopy on thin foils prepared using the FIB technique. Additional characterization tools, as X-ray diffraction and Raman microspectrometry, have been also applied in order to obtain complementary information. Among the most relevant results obtained, the following have to be outlined: - double-peak helium depth profile was measured on as implanted sample for the three compounds. The first peak is located near the end of range and includes the major part of helium, a second peak located close to the surface corresponds to the helium atoms trapped by the native vacancies; - the helium retention capacity in transition metal carbides and nitrides submitted to fully controlled thermal treatments varies according to ZrC0.92 ≤ TiC0.96 ≤ TiN0.96; - whatever the investigated material, a self-ion-induced pre-damaging does not modify the initial helium profile extent. The influence of the post-implantation thermal treatment remains preponderant in any case; - the apparent diffusion coefficient of helium is in the range 4 * 10-18 - 2 * 10-17 m2 s-1 in TiC0.96 and 3.5 * 10-19 - 5.3 * 10-18 m2 s-1 in TiN0.96 between 1100 and 1600 C. The

  12. On the fracture toughness of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Ritchie, Robert O.

    2008-11-24

    Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materials that are comparatively low in strength but high in toughness. Indeed, in many classes of materials, strength and toughness are almost mutually exclusive. In the first instance, such resistance to fracture is a function of bonding and crystal structure (or lack thereof), but can be developed through the design of appropriate nano/microstructures. However, the creation of tough microstructures in structural materials, i.e., metals, polymers, ceramics and their composites, is invariably a compromise between resistance to intrinsic damage mechanisms ahead of the tip of a crack (intrinsic toughening) and the formation of crack-tip shielding mechanisms which principally act behind the tip to reduce the effective 'crack-driving force' (extrinsic toughening). Intrinsic toughening is essentially an inherent property of a specific microstructure; it is the dominant form of toughening in ductile (e.g., metallic) materials. However, for most brittle (e.g., ceramic) solids, and this includes many biological materials, it is largely ineffective and toughening conversely must be developed extrinsically, by such shielding mechanisms as crack bridging. From a fracture mechanics perspective, this results in toughening in the form of rising resistance-curve behavior where the fracture resistance actually increases with crack extension. The implication of this is that in many biological and high-strength advanced materials, toughness is developed primarily during crack growth and not for crack initiation. This is an important realization yet is still rarely reflected in the way that toughness is measured, which is invariably involves the use of single-value (crack-initiation) parameters such as

  13. Valorization of rice straw waste: an alternative ceramic raw material

    Directory of Open Access Journals (Sweden)

    Á. Guzmán A

    2015-03-01

    Full Text Available In the production of rice a large amount of solid residue is produced, for which alternative utilizations are scarce or are not commonly applied in industry. Rice straw (RS is a waste product of rice harvest that is generated in equal or greater quantities than the rice itself. RS is frequently burned in open air, which makes it a significant source of pollution. In the search for possible uses of RS, it should be noted that its ash (RSA is particularly rich in silica, alkaline and alkaline earth metals and may be used as a source of alkalis and silica for the production of triaxial ceramics. The present research work proposes the production of a ceramic raw material from RS for its use in the fabrication of ceramic materials for the construction industry. Based on the chemical and mineralogical composition of RSA created under different thermal conditions, the most suitable RSA for this purpose was that obtained from treating RS at a temperature of 800 ºC for a time of 2 h. The resulting RSA presented high contents of SiO2 (79.62%, alkaline oxides (K2O (10.53% and alkaline earth oxides (CaO (2.80%. It is concluded that RSA is a new alternative ceramic raw material that can be used as a replacement for the fluxing (mainly feldspar and inert (quartz materials that are used in the production of triaxial ceramics.

  14. Water reservoir as resource of raw material for ceramic industry

    Science.gov (United States)

    Irie, M.; Tarhouni, J.

    2015-04-01

    The industries related to the ceramics such as construction bricks, pottery and tile are the important sectors that cover the large part of the working population in Tunisia. The raw materials, clay or silt are excavated from opencast site of limestone clay stratum. The opencast site give the negative impact on landscape and environment, risks of landslide, soil erosion etc. On the other hand, a most serious problem in water resource management, especially in arid land such as Tunisia, is sedimentation in reservoirs. Sediment accumulation in the reservoirs reduces the water storage capacity. The authors proposed the exploitation of the sediment as raw material for the ceramics industries in the previous studies because the sediment in Tunisia is fine silt. In this study, the potential of the water reservoirs in Tunisia as the resource of the raw material for the ceramics industries is estimated from the sedimentation ratio in the water reservoirs.

  15. Emerging materials by advanced processing

    International Nuclear Information System (INIS)

    This volume contains 36 contributions with following subjects (selection): Densification of highly reactive aluminium titanate powders; influence of precursor history on carbon fiber characteristics; influence of water removal rate during calcination on the crystallization of ZrO2 from amorphous hydrous precipitates; tape casting of AlN; influence of processing on the properties of beta-SiC powders; corrosion of SiSiC by gases and basic slag at high temperature; influence of sintering and thermomechanical treatment on microstructure and properties of W-Ni-Fe alloys; mechanical alloying for development of sintered steels with high hard phase content (NbC); early stages of mechanical alloying in Ni-Ti and Ni-Al powder mixtures; growth and microstructural development of melt-oxidation derived Al2O3/Al-base composites; fabrication of RSBN composites; synthesis of high density coridierite bodies; comparative studies on post-HIP and sinter-HIP treatments on transformation thoughened ceramics; sinter HIP of SiC; precipitation mixing of Si3N4 with bimetallic oxides; temperature dependence of the interfacial energies in Al2O3-liquid metal systems; synthesis and microstructural examination of Synroc B; solid state investigation of ceramic-metal bonding; thermophysical properties of MgAl2O4; preparation, sintering and thermal expansion of MgAl2O4; microstructural studies on alumina-zirconia and metallized alumina ceramics; electrodeposition of metals (e.g. Ti, Mo, In) and metal oxides from molten salts; electrochemical deposition of Ti from nonaqueous media (DMSO, DMF); lithium as anode material in power sources (passivation); reduction of chromium(VI) when solar selective black chromium is deposited; thermodynamic optimization of phase diagrams (computer calculations); optimization of Na-Tl phase diagram; phase relations in the Y-Si-Al-O-N system: Controlled manufacturing of alpha/beta-SIALON composites. (MM)

  16. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  17. Analysis of advanced ceramics and their basic products

    International Nuclear Information System (INIS)

    A review on the analysis of the most important ceramic materials and their basic substances is given. The importance of minor and trace elements in the bulk a well as their distribution on the microscale in both classes of substances is discussed by the example of Al2O3, AlN, TiO2, Si3N4, SiO2, SiC, Y2O3, ZrO2-based and some other ceramics and of their basic substances. The state-of-the-art and trends of development in modern atomic spectrometric methods for bulk analysis of the basic substances subsequent the sample dissolution, such as plasma emission and mass spectrometry, but also of direct methods such as slurry nebulization for plasma spectrometry, inorganic mass spectrometry and X-ray spectrometry are discussed. Further, first approaches for the in-depth analysis of powders and trends in direct methods for compact ceramics based on laser evaporation as well as on electron and ion probe techniques are presented. The latter are illustrated with selected examples from the literature. (orig.) With 218 refs

  18. 粉末表面涂层陶瓷的硬质合金刀具材料%Advanced Cutting Tool Material by Hot-Pressing Ceramic Coated Carbide Powders

    Institute of Scientific and Technical Information of China (English)

    陈元春; 黄传真; 艾兴; 王宝友

    2000-01-01

    Carbide powders were coated with very thin alumina films by the sol-gel process. The coated powders were then hot-pressed as a novel cutting tool material. This material possessed relatively high hardness, which led to similar wear resistant ability with ceramics. At the same time, its bending strength and toughness were higher than that of the ceramic cutting tool materials with similar composition. As a result, these tools show good performance in cutting high-hardness materials. SEM and TEM photographs of coated powders and fracture surface were presented as an aid to illustrate the strengthen mechanism.%使用溶胶-凝胶法在硬质合金粉末表面涂覆了一层氧化铝陶瓷,涂层粉末经热压烧结后, 制得一种新型的涂层刀具材料. 这种刀具材料的耐磨性与陶瓷材料接近,并且具有较高的强度和韧性,在切削高硬度材料时表现出良好性能,具有广阔的应用前景.

  19. Development of an Advanced Ceramic Seal for Maintaining Continuity of Knowledge in Treaty Verification and Safeguards Applications

    International Nuclear Information System (INIS)

    Sandia National Laboratories and the Savannah River National Laboratory are collaborating on research and development of technologies for an advanced capability prototype tamper-indicating device known as the Ceramic Seal. Advanced capabilities include multiple levels of tamper indication such as a frangible seal body, surface coatings, and an active detection of seal status; and unique identification via electronics as well as non-reproducible surface features. The innovation of the Ceramic Seal is the inclusion of multiple advanced capabilities in a volume comparable to the ubiquitous metal cup seal. Our advanced capability small volume seal has application in treaty verification and safeguards regimes for maintaining continuity of knowledge. Once attached to a monitored item, the seal's identity and status can be verified in-situ rather than requiring removal and analysis at an inspectorate location. The Ceramic Seal has evolved from a first generation prototype constructed of alumina to a second generation prototype manufactured from low-temperature co-fired ceramic (LTCC). LTCC allows integration of passive electronic components into the seal construction material. Vulnerability reviews have been conducted periodically throughout the project and results used to guide the design. This paper will describe the capabilities of the current generation Ceramic Seal. Keywords: Tamper-indicating devices; seals; Containment and Surveillance

  20. Structural materials challenges for advanced reactor systems

    Science.gov (United States)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  1. Advanced research workshop: nuclear materials safety

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  2. The possibility of giant dielectric materials for multilayer ceramic capacitors

    OpenAIRE

    Ishii, Tatsuya; Endo, Makoto; Masuda, Kenichiro; Ishida, Keisuke

    2013-01-01

    There have been numerous reports on discovery of giant dielectric permittivity materials called internal barrier layer capacitor in the recent years. We took particular note of one of such materials, i.e., BaTiO3 with SiO2 coating. It shows expressions of giant electric permittivity when processed by spark plasma sintering. So we evaluated various electrical characteristics of this material to find out whether it is applicable to multilayer ceramic capacitors. Our evaluation revealed that the...

  3. Overview: Damage resistance of graded ceramic restorative materials

    OpenAIRE

    Zhang, Yu

    2012-01-01

    Improving mechanical response of materials is of great interest in a wide range of disciplines, including biomechanics, tribology, geology, optoelectronics, and nanotechnology. It has been long recognized that spatial gradients in surface composition and structure can improve the mechanical integrity of a material. This review surveys recent results of sliding-contact, flexural, and fatigue tests on graded ceramic materials from our laboratories and elsewhere. Although our findings are examin...

  4. Ceramic material which absorbs neutrons and its uses

    International Nuclear Information System (INIS)

    A ceramic material, which absorbs thermal and epithermal neutrons even at high temperatures, consists of a basic material absorbing neutrons and 5 to 50% by weight relative to the total weight of the material of at least one of the hydrides of zirconium, yttrium and/or at least one of the rare earth elements, and possibly a binder, and the usual fillers and auxiliaries. (orig.)

  5. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. PMID:20217798

  6. Metals and Ceramics Division materials science program. Annual progress report for period ending June 30, 1981

    International Nuclear Information System (INIS)

    Information is presented concerning the theoretical studies of metals and alloys; x-ray diffraction research; structural ceramics; structure of coal; analytical and high-voltage electron microscopy; deformation and mechanical properties; mechanisms of surface and solid-state reactions; physical properties research; metastable materials; neutron radiation effects; charged particle radiation effects; theory and modeling of radiation effects; facility and advanced technique development; fundamentals of welding and joining; and studies in nondestructive evaluation

  7. The Uniaxial Tensile Response of Porous and Microcracked Ceramic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Amit [ORNL; Shyam, Amit [ORNL; Watkins, Thomas R [ORNL; Lara-Curzio, Edgar [ORNL; Lara-Curzio, Edgar [ORNL; Stafford, Randall [Cummins, Inc; Hemker, Kevin J [Johns Hopkins University

    2014-01-01

    The uniaxial tensile stress-strain behavior of three porous ceramic materials was determined at ambient conditions. Test specimens in the form of thin beams were obtained from the walls of diesel particulate filter honeycombs and tested using a microtesting system. A digital image correlation technique was used to obtain full-field 2D in-plane surface displacement maps during tensile loading, and in turn, the 2D strains obtained from displacement fields were used to determine the Secant modulus, Young s modulus and initial Poisson s ratio of the three porous ceramic materials. Successive unloading-reloading experiments were performed at different levels of stress to decouple the linear elastic, anelastic and inelastic response in these materials. It was found that the stress-strain response of these materials was non-linear and that the degree of nonlinearity is related to the initial microcrack density and evolution of damage in the material.

  8. 3rd Workshop on metal ceramic materials for functional applications

    International Nuclear Information System (INIS)

    This workshop contains contributions about materials and processing, characterization and modeling of properties and applications of metallic ceramics and composite structures. It was held on behalf of the Taiwan-Austrian scientific collaboration in Vienna, June 4th - 6th 1997. (Suda)

  9. Advanced materials for clean energy

    CERN Document Server

    Xu (Kyo Jo), Qiang

    2015-01-01

    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  10. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  11. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  12. Neutron irradiation of candidate ceramic breeder materials of fusion reactors

    International Nuclear Information System (INIS)

    In the context of the European programs for the future fusion reactors, the Process Chemistry Department of ENEA, Casaccia Center (Rome), has been involved in preparing ceramic blanket materials as tritium breeders; a special consideration has been addressed to the nuclear characterization of LiAlO2 and Li2ZrO3. In this paper are reported neutron irradiation of ceramic specimens in TRIGA reactor and γ-spectrometric measurements for INAA purposes; and isothermal annealing of the irradiated samples and tritium extraction, by using an 'out of pile' system. (author) 3 refs.; 4 figs.; 4 tabs

  13. Phosphate bonded ceramics as candidate final-waste-form materials

    International Nuclear Information System (INIS)

    Room-temperature setting phosphate-bonded ceramics were studied as candidate materials for stabilization of DOE low-level problem mixed wastes which cannot be treated by other established stabilization techniques. Phosphates of Mg, Mg-Na, Al and Zr were studied to stabilize ash surrogate waste containing RCRA metals as nitrates and RCRA organics. We show that for a typical loading of 35 wt.% of the ash waste, the phosphate ceramics pass the TCLP test. The waste forms have high compression strength exceeding ASTM recommendations for final waste forms. Detailed X-ray diffraction studies and differential thermal analyses of the waste forms show evidence of chemical reaction of the waste with phosphoric acid and the host matrix. The SEM studies show evidence of physical bonding. The excellent performance in the leaching tests is attributed to a chemical solidification and physical as well as chemical bonding of ash wastes in these phosphate ceramics

  14. Glass-ceramics: A class of nanostructured materials for photonics

    International Nuclear Information System (INIS)

    Glass-ceramics (GCs) are constituted by nanometer–to–micron-sized crystals embedded in a glass matrix; usually, their structural or functional elements (clusters, crystallites or molecules) have dimensions in the 1 to 100 nm range. As the name says, GCs must be considered an intermediate material between inorganic glasses and ceramics; in most cases the crystallinity is between 30 and 50%. GCs share many properties with both glasses and ceramics, offering low defects, extra hardness, high thermal shock resistance (typical of ceramics) together with the ease of fabrication and moulding (typical of glasses). The embedded crystalline phase, however, can enhance the existing properties of the matrix glass or lead to entirely new properties. GCs are produced by controlled crystallization of certain glasses, generally induced by nucleating additives; they may result opaque or transparent. Transparent GCs are now gaining a competitive advantage with respect to amorphous glasses and, sometimes, to crystals too. The aim of the present paper is to introduce the basic characteristics of transparent glass-ceramics, with particular attention to the relationship between structure and transparency and to the mechanism of crystallization, which may also be induced by selective laser treatments. Their applications to the development of guided-wave structures are also briefly described.

  15. Glass-ceramics: A class of nanostructured materials for photonics

    Science.gov (United States)

    de Pablos-Martin, A.; Ferrari, M.; Pascual, M. J.; Righini, G. C.

    2015-07-01

    Glass-ceramics (GCs) are constituted by nanometer-to-micron-sized crystals embedded in a glass matrix; usually, their structural or functional elements (clusters, crystallites or molecules) have dimensions in the 1 to 100nm range. As the name says, GCs must be considered an intermediate material between inorganic glasses and ceramics; in most cases the crystallinity is between 30 and 50%. GCs share many properties with both glasses and ceramics, offering low defects, extra hardness, high thermal shock resistance (typical of ceramics) together with the ease of fabrication and moulding (typical of glasses). The embedded crystalline phase, however, can enhance the existing properties of the matrix glass or lead to entirely new properties. GCs are produced by controlled crystallization of certain glasses, generally induced by nucleating additives; they may result opaque or transparent. Transparent GCs are now gaining a competitive advantage with respect to amorphous glasses and, sometimes, to crystals too. The aim of the present paper is to introduce the basic characteristics of transparent glass-ceramics, with particular attention to the relationship between structure and transparency and to the mechanism of crystallization, which may also be induced by selective laser treatments. Their applications to the development of guided-wave structures are also briefly described.

  16. FTIR characterization of advanced materials

    Science.gov (United States)

    Young, P. R.; Chang, A. C.

    1986-01-01

    This paper surveys the application of Fourier transform infrared spectroscopy to the characterization of advanced materials. FTIR sampling techniques including internal and external reflectance and photoacoustic spectroscopy are discussed. Representative examples from the literature of the analysis of resins, fibers, prepregs and composites are reviewed. A discussion of several promising specialized FTIR techniques is also presented.

  17. Advanced batteries materials science aspects

    CERN Document Server

    Huggins, Robert A

    2008-01-01

    Storage and conversion are critical components of important energy-related technologies. This title employs materials science concepts and tools to describe the features that control the behavior of advanced electrochemical storage systems. It focuses on the basic phenomena that determine the properties of the components.

  18. Nondestructive evaluation of a ceramic matrix composite material

    Science.gov (United States)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1992-01-01

    Monolithic ceramic materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited because of their sensitivity to small imperfections. To overcome this extreme sensitivity to small imperfections, ceramic matrix composite materials have been developed that have the ability to withstand some distributed damage. A borosilicate glass reinforced with several layers of silicon-carbide fiber mat has been studied. Four-point flexure and tension tests were performed not only to determine some of the material properties, but also to initiate a controlled amount of damage within each specimen. Acousto-ultrasonic (AU) measurements were performed periodically during mechanical testing. This paper will compare the AU results to the mechanical test results and data from other nondestructive methods including acoustic emission monitoring and X-ray radiography. It was found that the AU measurements were sensitive to the damage that had developed within the material.

  19. Mechanics of advanced functional materials

    CERN Document Server

    Wang, Biao

    2013-01-01

    Mechanics of Advanced Functional Materials emphasizes the coupling effect between the electric and mechanical field in the piezoelectric, ferroelectric and other functional materials. It also discusses the size effect on the ferroelectric domain instability and phase transition behaviors using the continuum micro-structural evolution models. Functional materials usually have a very wide application in engineering due to their unique thermal, electric, magnetic, optoelectronic, etc., functions. Almost all the applications demand that the material should have reasonable stiffness, strength, fracture toughness and the other mechanical properties. Furthermore, usually the stress and strain fields on the functional materials and devices have some important coupling effect on the functionality of the materials. Much progress has been made concerning the coupling electric and mechanical behaviors such as the coupled electric and stress field distribution in piezoelectric solids, ferroelectric domain patterns in ferr...

  20. Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials.

    Science.gov (United States)

    Souza, A E; Teixeira, S R; Santos, G T A; Costa, F B; Longo, E

    2011-10-01

    Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 °C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 °C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible. PMID:21733619

  1. INTELLIGENT MATERIALS BASED ON CERAMIC COMPOSITES

    OpenAIRE

    Maximov, Y.; Merzlikin, V.; Sidorov, O.; Suttugin, V.

    2010-01-01

    The paper examines the possibility to design intellectual materials based on film composites. Ferroelectric composites are offered to use as the film composites. The authors discuss ferroelectric composites of different structures. Sensors and intellectual materials on the basis of the obtained composites are considered.

  2. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    OpenAIRE

    Enrico Bernardo; Laura Fiocco; Giulio Parcianello; Enrico Storti; Paolo Colombo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, ...

  3. Perspectives of development of ceramic materials with luminescent applications

    International Nuclear Information System (INIS)

    The science and technology of materials believes and it applies the knowledge that allow to relate the composition, it structures and the one processed with those properties that those they make capable for each one of the applications. The ceramic materials are inorganic materials not metallic, constituted by metallic elements and not metallic. In general, they usually behave, as good insulating electric and thermal due to the absence of conductive electrons. Usually, they possess relatively high coalition temperatures and, also, a chemical stability relatively high. Due to these properties, they are indispensable for many of those designs in engineering. The ceramic materials for luminescent applications are constituted typically by pure compounds (Al2O3, TiO2, SiO2 and ZrO2) or cocktails with some sludges giving as a result (Al2O3:TR, TiO2:Eu, Si:ZrO2, ZrO2:TR). Presently work describes the panorama to big features on the development of ceramic materials in the CICATA Unit it would Bequeath, which can be characterized by the photoluminescence techniques and thermoluminescence mainly. (Author)

  4. New approach to design of ceramic/polymer material compounds

    Science.gov (United States)

    Todt, A.; Nestler, D.; Trautmann, M.; Wagner, G.

    2016-03-01

    The damage tolerance of carbon fibre-reinforced ceramic-matrix composite materials depends on their porosity and can be rather significant. Complex structures are difficult to produce. The integration of simple geometric structures of ceramic-matrix composite materials in complex polymer-based hybrid structures is a possible approach of realising those structures. These hybrid material compounds, produced in a cost-efficient way, combine the different advantages of the individual components in one hybrid material compound. In addition the individual parts can be designed to fit a specific application and the resulting forces. All these different advantages result in a significant reduction of not only the production costs and the production time, but also opens up new areas of application, such as the large-scale production of wear-resistant and chemically inert, energy dampening components for reactors or in areas of medicine. The low wettability of the ceramic component however is a disadvantage of this approach. During the course of this contribution, different C/C composite materials with a specific porosity were produced, while adjusting the resin/hardening agent-ratio, as well as the processing parameters. After the production, different penetration tests were conducted with a polymer component. The final part of the article is comprised of the microstructural analysis and the explanation of the mechanical relationships.

  5. A literature survey on gas turbines materials - recent advances

    International Nuclear Information System (INIS)

    The 9001F gas turbine (rating of about 200 MW) is one of the most recent versions of the 9000 series, benefitting from the developments and technological advances, notably in regard to structural materials. In the framework of the EDF gas turbine engineering and construction program, evaluating the nature of these developments can provide guidance in appraising the construction materials proposed by other manufacturers. After a brief comparison between the Gennevilliers 9001F engine and the 85 MW 9000B gas turbine at Bouchain, ordered by EDF in 1971, various research aspects for optimizing gas turbine refractory material mechanical properties and corrosion resistance (superalloys, monolithic ceramics and composite ceramics) are presented; present current and future trends for high power equipment of this type are also discussed

  6. Selected advances in materials research

    International Nuclear Information System (INIS)

    Several findings emanating from materials research that should have a beneficial impact on technological advancement in the future are described. The report deals with the GRAPHNOL, a new class of high-temperature brazing alloy for joining refractory components, gel-sphere-pac process for manufacture of nuclear fuel, and noble-metal fuel cladding for service in radioisotope thermoelectric generators designed to provide auxiliary power aboard spacecraft for planetary exploration

  7. Advanced Material Rendering in Blender

    Czech Academy of Sciences Publication Activity Database

    Hatka, Martin; Haindl, Michal

    2012-01-01

    Roč. 11, č. 2 (2012), s. 15-23. ISSN 1081-1451 R&D Projects: GA ČR GAP103/11/0335; GA ČR GA102/08/0593 Grant ostatní: CESNET(CZ) 387/2010; CESNET(CZ) 409/2011 Institutional support: RVO:67985556 Keywords : realistic material rendering * bidirectional texture function * Blender Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2013/RO/haindl-advanced material rendering in blender.pdf

  8. Recent advances on thermoelectric materials

    Institute of Scientific and Technical Information of China (English)

    Jin-cheng ZHENG

    2008-01-01

    By converting waste heat into electricity through the thermoelectric power of solids without producing greenhouse gas emissions,thermoelectric generators could be an important part of the solution to today's energy challenge.There has been a resurgence in the search for new materials for advanced thermoelectric energy conversion applications. In this paper,we will review recent efforts on improving thermoelectric efficiency. Particularly,several novel proof-of-principle approaches such as phonon disorder in phonon-glasselectron crystals,low dimensionality in nanostructured materials and charge-spin-orbital degeneracy in strongly correlated systems on thermoelectric performance will be discussed.

  9. Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material

    Energy Technology Data Exchange (ETDEWEB)

    Verst, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-12

    The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a function of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.

  10. MATERIAL AND ENVIRONMENTAL SUSTAINABILITY IN CERAMIC PROCESSING

    Science.gov (United States)

    Materials Characterization The density of 3124 Ferro Frit and Mason Chrome Free Black Pigment was measured to be 2.4911 g/cm3 and 5.0703 g/cm3 respectively. The single point, BET and Langmuir surface area of 3124 Ferro Frit was deter...

  11. Assessment of ceramic raw materials in Uganda for electrical porcelain

    OpenAIRE

    Olupot, Peter Wilberforce

    2006-01-01

    Clay, quartz and feldspar are widely available in Uganda. The location and properties of various clay deposits are reported in the literature, but little is reported on feldspar and quartz deposits. In this work an extended literature on ceramics and porcelains in particular, is documented. Samples from two deposits of feldspar and two deposits of quartz are characterised and found to possess requisite properties for making porcelain insulators. Sample porcelain bodies are made from materials...

  12. High-temperature behaviour of ceramic materials

    International Nuclear Information System (INIS)

    This volume contains 7 papers presented at the DFG Colloquium in Munich on 16 September 1991. The subjects of the individual papers are: 1) High-Temperature Failure of Gas-Phase Containing Aluminum Oxide; 2) High-Temperature Behavior of Aluminum Oxides of Different Compositions; 3) Effect of Processing Parameters on Mechanical Properties of Platelet-Reinforced Mullite Composites; 4) Tensile Creep Investigations On Silicon Nitride Materials Using a Newly Developed Tensile Creep Facility; 5) Influence of Material and Process Technological Parameters On the High-Temperature Characteristics of Gas-Pressure Sintered Silicon Nitride; 6) The Influence of Age Hardening On the Mechanical Behavior and Microstructure of Y-doped Si3N4; 7) Application of a Crack Growth Model to Silicon Nitride. (orig./MM)

  13. Plasma Processing of Advanced Materials

    Energy Technology Data Exchange (ETDEWEB)

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  14. Clinical application of bio ceramics

    Science.gov (United States)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  15. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  16. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cuccio, J.C.; Brehm, P.; Fang, H.T. [Allied-Signal Aerospace Co., Phoenix, AZ (United States). Garrett Engine Div.] [and others

    1995-03-01

    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  17. Low-Cost Innovative Hi-Temp Fiber Coating Process for Advanced Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MATECH GSM (MG) proposes 1) to demonstrate a low-cost innovative Hi-Temp Si-doped in-situ BN fiber coating process for advanced ceramic matrix composites in order...

  18. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    Science.gov (United States)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  19. Investigations on the performance of ultrasonic drilling process with special reference to precision machining of advanced ceramics

    International Nuclear Information System (INIS)

    Advanced ceramics are assuming an important role in modern industrial technology. The applications and advantages of using advanced ceramics are many. There are several reasons why we should go in for machining of advanced ceramics after their compacting and sintering. These are discussed in this paper. However, precision machining of advanced ceramics must be economical. Critical technological issues to be addressed in cost effective machining of ceramics include design of machine tools, tooling arrangements, improved yield and precision, relationship of part dimensions and finish specifications to functional performance, and on-line inspection. Considering the above ultrasonic drilling is an important process used for the precision machining of advanced ceramics. Extensive studies on tool wear occurring in the ultrasonic machining of advanced ceramics have been carried out. In addition, production accuracy of holes drilled, surface finish obtained and surface integrity aspects in the machining of advanced ceramics have also been investigated. Some specific findings with reference to surface integrity are: a) there were no cracks or micro-cracks developed during or after ultrasonic machining of advanced ceramics, b) while machining Hexoloy alpha silicon carbide a recast layer is formed as a result of ultrasonic machining. This is attributed to the viscous heating resulting from high energy impacts during ultrasonic machining. While machining all other types of ceramics no such formation of recast layer was observed, and , c) there is no change in the microstructure of the advanced ceramics as a result of ultrasonic machining

  20. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    Science.gov (United States)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  1. Sensitivity Analysis of the Material Parameters of the Ceramics on the Inner Radius of the Hip Joint Endoprosthesis Head

    Czech Academy of Sciences Publication Activity Database

    Fuis, Vladimír; Janíček, Přemysl

    Warsawa : Springer, 2015 - (Jablonski, R.; Brezina, T.), s. 123-128 ISBN 978-3-319-23921-7. ISSN 2194-5357. - (Advances in Intelligent Systems and Computing. 393). [Mechatronics 2015. Varšava (PL), 21.09.2015-13.09.2015] R&D Projects: GA ČR GA13-34632S Institutional support: RVO:61388998 Keywords : hip joint endoprosthesis * ceramic head * material parameters * weibull's weakest-link theory * sensitivity analysis Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  2. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  3. Encapsulation of spent nuclear fuel in ceramic materials

    International Nuclear Information System (INIS)

    The international situation with regard to deposition of spent nuclear fuel is surveyed, with emphasis on encapsulation in ceramic materials. The feasibility and advantages of ceramic containers, thermodynamic stable in groundwater, are discussed as well as the possibility to ensure that stability for longevity by engineered measures. The design prerequisite are summarized and suggestions are made for a conceptual design, comprising rutile containers with stacks of coiled fuel pins. A novel technique is suggested for the homogeneous sealing of rutile containers at low temperatures. acceptable also for the fuel pin package. Key points are given for research, demonstration and verifications of the design foundations and for future improvements. Of which a few ideas are exemplified. (author)

  4. Mechanical behaviour of new zirconia-hydroxyapatite ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J.A.; Morejon, L. [La Habana Univ. (Cuba). Centro de Biomateriales; Martinez, S. [Barcelona Univ. (Spain). Dept. Cristallografia, Mineralogia; Ginebra, M.P.; Carlsson, N.; Fernandez, E.; Planell, J.A. [Universidad Politecnica de Cataluna, Barcelona (Spain). CREB; Clavaguera-Mora, M.T.; Rodriguez-Viejo, J. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica

    2001-07-01

    In this work a new zirconia-hydroxyapatite ceramic material was obtained by uniaxial pressing and sintering in humid environment. The powder X-ray diffraction (XRD) patterns and infrared spectra (FT-IR) showed that the hydroxyapatite (HA) is the only calcium phosphate phase present. The fracture toughness for HA with 20 wt.% of magnesia partially stabilised zirconia (Mg-PSZ) was around 2.5 times higher than those obtained for HA pure, also the highest value of bending strength (160 MPa) was obtained for material reinforced with Mg-PSZ. For the MgPSZ-HA (20%) the fracture mechanism seems to be less transgranular. (orig.)

  5. Advances in polypropylene based materials

    International Nuclear Information System (INIS)

    Polypropylene is an extremely versatile thermoplastic polymer known for its good performance/price ratio, excellent heat, moisture and chemical resistance, favorable processing characteristics and recyclability. Due to its universal properties, polypropylene is applied in numerous industrial fields such as electronic and electrical, automobile, textile, pipeline, etc. Furthermore, the progress in its synthesis and property modification in the last decade has contributed to the development of new polypropylene based materials with advanced performance. This review aims at reporting on some recent developments in polypropylene based materials, such as nano fibers, natural fiber reinforced composites, self-reinforced polypropylene and polypropylene/clay hybrids, that have replaced many types of engineering thermoplastics in high-performance applications. (Author)

  6. Ceramic membranes for gas separation in advanced fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Ivanova, M.; Gestel, T. van; Bram, M.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF)

    2010-07-01

    The reduction or elimination of CO{sub 2} emissions from electricity generation power plants fuelled by coal or gas is a major target in the current socio-economic, environmental and political discussion to reduce green house gas emissions such as CO{sub 2}. This mission can be achieved by introducing gas separation techniques making use of membrane technology, which is, as a rule, associated with significantly lower efficiency losses compared with the conventional separation technologies. Depending on the kind of power plant process different membrane types (ceramic, polymer, metal) can be implemented. The possible technology routes are currently investigated to achieve the emission reduction. They rely on different separation tasks. The CO{sub 2}/N{sub 2} separation is the main target in the post-combustion process. Air separation (O{sub 2}/N{sub 2}) is the focus of the oxyfuel process. In the pre-combustion process an additional H{sub 2}/CO{sub 2} separation is included. Although all separation concepts imply different process requirements they have in common a need in membranes with high permeability, selectivity and stability. In each case CO{sub 2} is obtained in a readily condensable form. CO{sub 2}/N{sub 2} separation membranes like microporous membranes or polymer membranes are applicable in post-combustion stages. In processes with oxyfuel combustion, where the fuel is combusted with pure oxygen, oxygen transport membranes i.e. mixed ionic electronic conducting (MIEC) membranes with mainly perovskite or fluorite structure can be integrated. In the pre-combustion stages of the power plant process, H{sub 2}/CO{sub 2} separation membranes like microporous membranes e.g. doped silica or mixed protonic electronic conductors or metal membranes can be applied. The paper gives an overview about the considered ceramic materials for the different gas separation membranes. The manufacturing of bulk materials as well as supported thin films of these membranes along

  7. Session: CSP Advanced Systems: Optical Materials (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  8. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  9. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  10. Colour variations in graffiti-proofed ceramic materials

    Directory of Open Access Journals (Sweden)

    García Santos, A.

    2005-06-01

    Full Text Available The investigation analyses the variation of superficial properties, COLOUR and LUMINOSITY, hat the ceramic support protected by the incorporation of a protection with transparent painting undergoes, antigraffiti. The test pieces were analysed by digital procedures, obtaining quantifiable values of each ceramic sample by means of computer programs (modifications of colour taking itself as it bases the same type of ceramics without protection. In the surface of the pieces ceramics dealt with painting antigraffiti, tones different from the original ones were observed from the piece without painting. The type of painting and the material of base, obtaining itself the following results, determine this variation: - The rustic ceramics is much more susceptible to modify its characteristics of colour that the industrialists. - In both types of analysed industrial ceramics in the investigation, the variation of the tone independently took place with the same characteristics or parameters of quantification of the type of painting. - In all the analysed types of ceramics dealt with painting antigraffiti, the colour modifies its tonality tending towards the called tones «cold», violates, by the presence of blue and the loss of the red one. Before a same painting, it was observed a greater alteration of tones and luminosity in the rustic ceramics in comparison with the industrialists.

    Se analiza la variación de propiedades superficiales, COLOR Y LUMINOSIDAD, que sufre el soporte cerámico protegido por la incorporación de una protección con pintura transparente, antigraffiti. Las probetas fueron analizadas por procedimientos digitales, obteniéndose valores cuantificables de cada muestra cerámica mediante programas de ordenador (modificaciones de color, tomándose como base el mismo tipo de cerámica sin protección. En la superficie de las piezas cerámicas tratadas con pintura antigraffiti, se observaron tonos distintos a los originales de la

  11. Raw material versus processing

    International Nuclear Information System (INIS)

    Some brazilian aspects related with the obtainment of raw materials for advanced ceramic products are described. The necessity of import raw materials by the advanced ceramic industries is mentioned, generating dangerous depedence for the country. The brazilian mineral reserves for using in raw materials of advanced ceramic are also cited. (C.G.C.)

  12. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    Science.gov (United States)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  13. Potential Early Applications of Advanced Effusion Cooled Ceramic Combustion Chambers

    OpenAIRE

    Sippel, Martin; Dietlein, Ingrid

    2010-01-01

    Technologies for porous effusion or transpiration cooled ceramic combustion chambers are under investi-gation at DLR since a couple of years. Research concentrates on applying transpiration cooling to C/C liners as a candidate technology to fulfill the requirements of future cryogenic (LOX/LH2) liquid rocket engines, taking advantage of interesting features of C/C liners such as low weight as well as potentially increased reliability and life time of the rocket engine. A fully ceramic combust...

  14. High temperature resistant materials and structural ceramics for use in high temperature gas cooled reactors and fusion plants

    International Nuclear Information System (INIS)

    Irrespective of the systems and the status of the nuclear reactor development lines, the availability, qualification and development of materials are crucial. This paper concentrates on the requirements and the status of development of high temperature metallic and ceramic materials for core and heat transferring components in advanced HTR supplying process heat and for plasma exposed, high heat flux components in Tokamak fusion reactor types. (J.P.N.)

  15. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  16. The role of characterization in emerging high performance ceramic materials

    International Nuclear Information System (INIS)

    Since the early 70's research and development efforts focusing on nitride, oxynitride, and carbide based ceramic materials have created renewed optimism concerning their potential application in severe high temperature structural applications. Cost and reliability, however, still remain as major obstacles in achieving the final successful large scale utilization of these materials. The ceramics community must now devote an appreciable effort on the less ''glamorous'' areas of those needs concerned with the maturing of an emerging technology. These aspects consist of achieving demonstrated reliability in larger scale production activities. In order to accomplish this much effort should be devoted to establishing processing optimization, design property data bases, and nondestructive or semidestructive property evaluation (NPE) procedures. As reiterated recently by Stein pull factors of need and economic gain, in general, are much more important in a free market than the technologic push factors of perceived or research scale demonstration of improved performance; analogous to pulling or pushing on a rope. Therefore, there is a strong temptation during this phase of the development to ignore this aspect and to return to more fundamental work on other, less developed, emerging materials

  17. Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hui Zhang; Raman P. Singh

    2008-11-30

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor componets is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

  18. Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels

    International Nuclear Information System (INIS)

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

  19. Selection of Raw Materials for the Reactive Sinterling of Zircon Porous Ceramics

    Institute of Scientific and Technical Information of China (English)

    SHENYi; ZHANGWenli; 等

    1999-01-01

    The effect of three kinds of zircon raw materials on the sinterability and properties of porous zircon ceramics have been investigated.The results have shown that all the tested fired compacts are of high porosity,However,the sintering process are different for different raw materials.The preferable selected raw materials for porous zircon ceramics were commercials zircon and quartz.

  20. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  1. Modeling of tritium behavior in ceramic breeder materials

    International Nuclear Information System (INIS)

    Computer models are being developed to predict tritium release from candidate ceramic breeder materials for fusion reactors. Early models regarded the complex process of tritium release as being rate limited by a single slow step, usually taken to be tritium diffusion. These models were unable to explain much of the experimental data. We have developed a more comprehensive model which considers diffusion and desorption from the grain surface. In developing this model we found that it was necessary to include the details of the surface phenomena in order to explain the results from recent tritium release experiments. A diffusion-desorption model with a desorption activation energy which is dependent on the surface coverage was developed. This model provided excellent agreement with the results from the CRITIC tritium release experiment. Since evidence suggests that other ceramic breeder materials have desorption activation energies which are dependent on surface coverage, it is important that these variations in activation energy be included in a model for tritium release. 17 refs., 12 figs

  2. Understanding and control of optical performance from ceramic materials

    International Nuclear Information System (INIS)

    This report summarizes a two-year Laboratory-Directed Research and Development (LDRD) program to gain understanding and control of the important parameters which govern the optical performance of rare-earth (RE) doped ceramics. This LDRD developed the capability to determine stable atomic arrangements in RE doped alumina using local density functional theory, and to model the luminescence from RE-doped alumina using molecular dynamic simulations combined with crystal-field calculations. Local structural features for different phases of alumina were examined experimentally by comparing their photoluminescence spectra and the atomic arrangement of the amorphous phase was determined to be similar to that of the gamma phase. The luminescence lifetimes were correlated to these differences in the local structure. The design of both high and low-phonon energy host materials was demonstrated through the growth of Er-doped aluminum oxide and lanthanum oxide. Multicomponent structures of rare-earth doped telluride glass in an alumina and silica matrix were also prepared. Finally, the optical performance of Er-doped alumina was determined as a function of hydrogen content in the host matrix. This LDRD is the groundwork for future experimentation to understand the effects of ionizing radiation on the optical properties of RE-doped ceramic materials used in space and other radiation environments

  3. Modeling of tritium behavior in ceramic breeder materials

    International Nuclear Information System (INIS)

    The model described in this paper considers diffusion and desorption as the rate-controlling mechanisms for tritium release from a ceramic breeder material. This model was used to predict the tritium release from samples of Li2SiO3 and LiAlO2, given the temperature history of the samples. The diffusion-desorption model did a better job of predicting the tritium release for these samples under pure helium purge gas than did a pure diffusion model using the best values for the diffusivity of these materials available. The activation energies of desorption found from the best fit of the predicted tritium release to the observed release were 105-108 kJ/mol for Li2SiO3 and 85.7 kJ/mol for LiAlO2. These values are in fair agreement with activation energies reported in the literature. 13 refs., 6 figs

  4. On modelling of microwave heating of a ceramic material

    International Nuclear Information System (INIS)

    A simple model is proposed and tested for simulations of ceramic processing by microwave heating. The model is based on a piecewise constant approximation of the material properties and makes it possible to separate and analyse different effects caused by the sample shape and the dependence of the material properties on temperature. Specifically, the simulation results demonstrate that microwave heating of an alumina sample can be very sensitive to a variation of its dielectric constant with temperature. For different geometries, there is a similarity in the dependences of the thermal state characteristics (temperature drop across the sample, amount of dissipated power and electric field amplitude at the sample centre) on maximal temperature. It is shown also that a temperature drop between the sample centre and surface can be strongly enhanced in the case of a spherical sample irradiated symmetrically by microwaves

  5. Kinetics mechanism of microwave sintering in ceramic materials

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the traditional sintering model incorporating the characteristic of microwave sintering, the ionic conductance diffusion mechanism in microwave sintering was studied. A flat-ball model was presented to describe the kinetics process in microwave sintering, and was applied to the sintering process of TZP and ZrO2-Al2O3 ceramics. The results indicate that the shrinkage rate of materials in microwave sintering is proportional to t2/3 and r-4/3, respectively, where t is the sintering time and r is the particle radius. Whereas, the shrinkage rate of materials in conventional sintering is proportional to sintering time t2/5. Our model suggests that microwave sintering is faster than conventional sintering, which shows a good agreement with the experimental observation in sintering process of TZP and ZrO2-Al2O3.

  6. Application of Technogenic-Raw Material and Burning Out Additive in Composite Ceramic System

    OpenAIRE

    Viktor KIZINIEVIČ; Ramunė ŽURAUSKIENĖ; Kizinievič, Olga; Liudas TUMONIS; Rimvydas ŽURAUSKAS

    2012-01-01

    The investigation of the composite ceramic system containing easily fusible hydro-micous clay, technogenic finely dispersed raw material, and burning out waste additive is presented in the article. The properties of the raw materials used are described in the paper. The obtained ceramic bodies were burned at 1000 °C and 1050 °C temperatures, keeping at the highest burning temperature for 4 h. The analysis of physical-mechanical properties of composite ceramics (density, compressive strength, ...

  7. Multielement trace determination in high purity advanced ceramics and high purity metals

    Indian Academy of Sciences (India)

    R Matschat; H-J Heinrich; M Czerwensky; S Kuxenko; H Kipphardt

    2005-07-01

    In the field of advanced ceramics two CRMs were developed in the last few years by the Federal Institute for Materials Research and Testing, one for silicon nitride and one for silicon carbide. Besides their application by industry they are appropriate to be used for the validation of special methods used for trace determination in accordance with high purity materials. This is demonstrated, for example, on ultrapure silicon carbide which was analysed by solid sampling electrothermal atomic absorption spectrometry (SS ET AAS). BAM is also certifying primary pure reference materials used as the National Standards for inorganic analysis in Germany. The crucial point of this project is the certification of the total purity of high purity materials, each representing one element of the periodic table. A variety of different analytical methods was necessary to determine the trace contents of metallic and non-metallic impurities from almost the whole periodic table in the high purity materials. The primary CRMs of copper, iron and molybdenum are used as examples to demonstrate the modus operandi, analytical effects observed by using high resolution ICP mass spectrometry (HR ICP–MS) and the results.

  8. Bioeutectic: a new ceramic material for human bone replacement.

    Science.gov (United States)

    De Aza, P N; Guitián, F; De Aza, S

    1997-10-01

    In the present work, a new way of obtaining bioactive ceramic materials with eutectic morphology is presented. To this purpose the binary system wollastonite-tricalcium phosphate was selected, taking into account the different bioactivity behaviour of both phases. The material is formed by quasi-spherical colonies composed of alternating radial lamellae of wollastonite and tricalcium phosphate. In in vitro experiments the material presents a high reactivity, with the formation of two well-differentiated zones of hydroxyapatite, one formed by alteration of the eutectic material with solution of the wollastonite into the simulated body fluid and subsequent pseudomorphic transformation of the tricalcium phosphate into hydroxyapatite, and the other, in the last stages of the experiments, by deposition of hydroxyapatite onto the surface of the material. The hydroxyapatite morphology, formed at the beginning of the reaction, is similar to that of porous bone. The method used opens the opportunity to develop a new family of bioactive materials with different constituents, binary or ternary, for which the authors propose the general name of bioeutectics. PMID:9307217

  9. 11 International Symposium on Advanced Materials

    International Nuclear Information System (INIS)

    The 11 International Symposium on Advanced Materials (ISAM) was held from 08-12 August, 2009 at Islamabad, Pakistan. The main theme of the proceedings encompasses technological advances of recent years. The significance of advanced materials and technological advancements made in this respect have been incorporated in this proceeding. The scientists, researchers and engineers doing their research in different areas of material sciences would benefit from this proceedings. The proceeding of ISAM includes 61 papers which reflects on various aspects of materials and alloys and their properties. (A.B.)

  10. Low-Activation structural ceramic composites for fusion power reactors: materials development and main design issues

    International Nuclear Information System (INIS)

    This paper is devoted to the development of advanced Low-Activation Materials (LAMs) with favourable short-term activation characteristics for the use as structural materials in a fusion power reactor (in order to reduce the risk associated with a major accident, in particular those related with radio-isotopes release in the environment), and to try to approach the concept of an inherently safe reactor. LA Ceramics Composites (LACCs) are the most promising LAMs because of their relatively good thermo-mechanical properties. At present, SiC/SiC composite is the only LACC considered by the fusion community, and therefore is the one having the most complete data base. The preliminary design of a breeding blanket using SiC/SiC as structural material indicated that significant improvement of its thermal conductivity is required. (orig.)

  11. Low-activation structural ceramic composites for fusion power reactors: materials development and main design issues

    International Nuclear Information System (INIS)

    Development of advanced Low-Activation Materials (LAMs) with favourable short-term activation characteristics is discussed, for the use as structural materials in a fusion power reactor (in order to reduce the risk associated with a major accident, in particular those related with radio-isotopes release in the environment), and to try to approach the concept of an inherently safe reactor. LA Ceramics Composites (LACCs) are the most promising LAMs because of their relatively good thermo-mechanical properties. At present, SiC/SiC composite is the only LACC considered by the fusion community, and therefore is the one having the most complete data base. The preliminary design of a breeding blanket using SiC/SiC as structural material indicated that significant improvement of its thermal conductivity is required. (author) 11 refs.; 3 figs

  12. An optical coherence tomography investigation of materials defects in ceramic fixed partial dental prostheses

    Science.gov (United States)

    Sinescu, Cosmin; Negrutiu, Meda; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Mihai; Laissue, Philippe L.; Podoleanu, Adrian Gh.

    2008-04-01

    Metal ceramic and integral ceramic fixed partial prostheses are mainly used in the frontal part of the dental arch because for esthetics reasons. The masticatory stress may induce fractures of the bridges. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures.

  13. Proceedings of the twenty fourth annual general meeting of Materials Research Society of India and theme symposium on advanced materials for energy applications: abstract and souvenir book

    International Nuclear Information System (INIS)

    Materials science and engineering plays a crucial role in the development of advanced technologies that include development of materials that can withstand high temperatures and intense neutron dose, development of advanced sensors and radiochemical processing methodologies. The contributed papers in the symposium were focussed on energy materials: thermoelectrics, photovoltaics; nuclear materials: alloys and glasses; oxides and ceramics; alloys and intermetallics; fictionalised nanomaterials and applications; thin films; soft matter and bio materials etc. Papers relevant to INIS are indexed separately

  14. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects

  15. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  16. New toughening concepts for ceramic composites from rigid natural materials.

    Science.gov (United States)

    Mayer, George

    2011-07-01

    The mechanisms underlying the toughening in rigid natural composites exhibited by the concentric cylindrical composites of spicules of hexactinellid sponges, and by the nacre (brick-and-mortar) structure of mollusks such as Haliotis rufescens (red abalone), as well as the crossed-lamellar structure of Strombus gigas (queen conch) show commonalities in the manner in which toughening takes place. It is proposed that crack diversion, a new kind of crack bridging, resulting in retardation of delamination, creation of new surface areas, and other energy-dissipating mechanisms occur in both natural systems. However, these are generally different from the toughening mechanisms that are utilized for other classes of structural materials. Complementary to those mechanisms found in rigid natural ceramic/organic composites, special architectures and thin viscoelastic organic layers have been found to play controlling roles in energy dissipation in these structures. PMID:21565715

  17. Advanced Materials and Processing 2010

    Science.gov (United States)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  18. Advanced cellular ceramics processed using direct foaming methods

    OpenAIRE

    Guzi De Moraes, Elisangela

    2015-01-01

    The research work presented in this thesis concerns the development of silicon nitride based ceramics with a cellular structure and containing designed interconnected porosity (> 80 vol%) and cell size distribution (10 up to 800 μm) by direct foaming processing routes. Concentrated emulsions (O/W oil-in-water) stabilized by surfactants and gelcasting using environmentally friendly biopolymers as gelling agents, were developed as intermediates in the production of highly porous inorganic mater...

  19. Dynamic material properties and terminal ballistic behaviour of shock-loaded silicon-nitride ceramics

    International Nuclear Information System (INIS)

    The dynamic properties and microscopic material structure of shock loaded Silicon-Nitride ceramics of two different densities have been investigated by means of the planar plate impact and VISAR technique. In addition the terminal ballistic behaviour of both ceramics has been determined. The combined results of the tests performed suggest an important influence of the microstructure on the terminal ballistic behaviour and thus on the ceramics protection capability against impact processes. (orig.)

  20. Composite materials based on porous ceramic preform infiltrated by aluminium alloy

    OpenAIRE

    Nagel, A.; A. J. Nowak; M. Kremzer; L.A. Dobrzański

    2007-01-01

    Purpose: The goal of this project is the optimization of manufacturing technology of the ceramic preforms basedon Al2O3 powder manufactured by the pressure infiltration method with liquid metal alloy.Design/methodology/approach: Ceramic preforms were manufactured by the method of sintering of ceramicpowder. The preform material consists of powder Condea Al2O3 CL 2500, however, as the forming factor ofthe structure of canals and pores inside the ceramic agglomerated framework the carbon fibers...

  1. The Influence of Tool Composite's Structure During Process of Diamond Grinding of Ceramic Materials

    OpenAIRE

    Gawlik Józef; Niemczewska-Wójcik Magdalena; Krajewska Joanna; Sokhan Serghej V.; Paščenko E.A.; Žuk T.S.

    2014-01-01

    This paper presents the results of the tests performed during the grinding process of the ceramic materials: – polycrystalline ceramics (Zirconium ZrO2) and mono-crystalline ceramics (sapphire α-Al2O3) by the diamond tools. Studies have shown that the concentration (thickening) of the tool composite changes the tool's pore structure when using suitable wetted adamantine additives. Such modified composite has positive impact on tribological properties of the subsurface layer of the machined co...

  2. Electrophoretically prepared hybrid materials for biopolymer hydrogel and layered ceramic nanoparticles

    OpenAIRE

    Gwak, Gyeong-Hyeon; Choi, Ae-Jin; Bae, Yeoung-Seuk; Choi, Hyun-Jin; Oh, Jae-Min

    2016-01-01

    Background In order to obtain biomaterials with controllable physicochemical properties, hybrid biomaterials composed of biocompatible biopolymers and ceramic nanoparticles have attracted interests. In this study, we prepared biopolymer/ceramic hybrids consisting of various natural biopolymers and layered double hydroxide (LDH) ceramic nanoparticles via an electrophoretic method. We studied the structures and controlled-release properties of these materials. Results and discussion X-ray diffr...

  3. Novel particle and radiation sources and advanced materials

    Science.gov (United States)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  4. Development of manufacturing technologies for hard optical ceramic materials

    Science.gov (United States)

    Fess, Edward; DeFisher, Scott; Cahill, Mike; Wolfs, Frank

    2014-05-01

    Hard ceramic optical materials such as sapphire, ALON, Spinel, or PCA can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Premature tool wear or tool loading during the grinding process is a common result of these tough mechanical properties. Another challenge is the requirement to create geometries that conform to the platforms they reside in, but still achieve optical window tolerances for wavefront. These shapes can be complex and require new technologies to control sub aperture finishing techniques in a deterministic fashion. In this paper we will present three technologies developed at OptiPro Systems to address the challenges associated with these materials and complex geometries. The technologies presented will show how Ultrasonic grinding can reduce grinding load by up to 50%, UltraForm Finishing (UFF) and UltraSmooth Finishing (USF) technologies can accurately figure and finish these shapes, and how all of them can be controlled deterministically, with utilizing metrology feedback, by a new Computer Aided Manufacturing (CAM) software package developed by OptiPro called ProSurf.

  5. Materials for advanced power engineering 2010. Proceedings

    International Nuclear Information System (INIS)

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  6. Cost effective machining and inspection of structural ceramic components for advanced high temperature application. Final CRADA report for CRADA number Y-1292-0151

    Energy Technology Data Exchange (ETDEWEB)

    Abbatiello, L.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Haselkorn, M. [Caterpillar, Inc., Peoria, IL (United States)

    1996-11-29

    This Cooperative Research and Development Agreement (CRADA) was a mutual research and development (R and D) effort among the participants to investigate a range of advanced manufacturing technologies for two silicon nitride (Si{sub 3}N{sub 4}) ceramic materials. The general objective was to identify the most cost-effective part manufacturing processes for the ceramic materials of interest. The focus was determining the relationship between material removal rates, surface quality, and the structural characteristics of each ceramic resulting from three innovative processes. These innovated machining processes were studied using silicon nitride advanced materials. The particular (Si{sub 3}N{sub 4}) materials of interest were sintered GS-44 from the Norton Company, and reaction-bonded Ceraloy 147-3. The processes studied included the following activities: (1) direct laser machining; (2) rotary ultrasonic machining; and (3) diamond abrasive grinding, including both resinoid and vitreous-bonded grinding wheels. Both friable and non-friable diamond types were included within the abrasive grinding study. The task also conducted a comprehensive survey of European experience in use of ceramic materials, principally aluminum oxide. Originally, the effort of this task was to extend through a prototype manufacturing demonstration of selected engine components. During the execution of this program, however changes were made to the scope of the project, altering the goals. The Program goal became only the development of assessment of their impacts on product strength and surface condition.

  7. Histological evaluation of bone response to bioactive ceramics as graft material in rats

    Directory of Open Access Journals (Sweden)

    Kršljak Elena

    2005-01-01

    Full Text Available This experimental study was carried out on 35 Albino Wister rats Artificially created bone defects were grafted with bioactive ceramic materials or control material. Histological analysis was preformed 8 weeks and 6 months after the implantation. The results revealed that bone regeneration occurred in defects treated with bioactive ceramic materials while in the defects treated with the control material signs of tissue rejection were present. As stated before, it could be concluded that bioactive ceramics can be recommended as bone substitutes in orthopedic surgery and dentistry.

  8. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  9. Ceramic thermal wind sensor based on advanced direct chip attaching package

    International Nuclear Information System (INIS)

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor. (semiconductor devices)

  10. Advanced lubrication systems and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.

    1998-05-07

    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  11. Glycopolymeric Materials for Advanced Applications

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz-Bonilla

    2015-04-01

    Full Text Available In recent years, glycopolymers have particularly revolutionized the world of macromolecular chemistry and materials in general. Nevertheless, it has been in this century when scientists realize that these materials present great versatility in biosensing, biorecognition, and biomedicine among other areas. This article highlights most relevant glycopolymeric materials, considering that they are only a small example of the research done in this emerging field. The examples described here are selected on the base of novelty, innovation and implementation of glycopolymeric materials. In addition, the future perspectives of this topic will be commented on.

  12. A combinatorial approach to the discovery of advanced materials

    Science.gov (United States)

    Sun, Xiao-Dong

    This thesis discusses the application of combinatorial methods to the search of advanced materials. The goal of this research is to develop a "parallel" or "fast sequential" methodology for both the synthesis and characterization of materials with novel electronic, magnetic and optical properties. Our hope is to dramatically accelerate the rate at which materials are generated and studied. We have developed two major combinatorial methodologies to this end. One involves generating thin film materials libraries using a combination of various thin film deposition and masking strategies with multi-layer thin film precursors. The second approach is to generate powder materials libraries with solution precursors delivered with a multi-nozzle inkjet system. The first step in this multistep combinatorial process involves the design and synthesis of high density libraries of diverse materials aimed at exploring a large segment of the compositional space of interest based on our understanding of the physical and structural properties of a particular class of materials. Rapid, sensitive measurements of one or more relevant physical properties of each library member result in the identification of a family of "lead" compositions with a desired property. These compositions are then optimized by continuously varying the stoichiometries of a more focused set of precursors. Materials with the optimal composition are then synthesized in quantities sufficient for detailed characterization of their structural and physical properties. Finally, the information obtained from this process should enhance our predictive ability in subsequent experiments. Combinatorial methods have been successfully used in the synthesis and discovery of materials with novel properties. For example, a class of cobaltite based giant magnetoresistance (GMR) ceramics was discovered; Application of this method to luminescence materials has resulted in the discovery of a few highly efficient tricolor

  13. Development of new ceramic materials from the waste of serpentinite and red clay

    International Nuclear Information System (INIS)

    The objective of this work is to develop new ceramic materials using serpentine and glass waste and clay red. The raw materials were characterized through morphological, granulometric, mineralogical and chemical analysis. Six formulations have been developed based on the serpentine and red clay, which three of the six compositions have been adjusted with the addition of residual glass. The ceramic bodies were formed by uniaxial pressing and subjected to burn in an electric oven at temperatures of 1100 ° C, 1200 ° C, 1250 ° C and 1300 ° C. The ceramic samples obtained this way were characterized according to their physical properties (specific mass and linear retraction) and the mechanical (three points bending strength). The final properties varied according to the proportions of raw materials and firing temperature. In general, the different formulations fit the standards for traditional ceramics such as tiles and ceramic blocks. (author)

  14. Thermoluminescence study of materials (natural minerals) used in ceramic tiles industry

    International Nuclear Information System (INIS)

    Mother earth is giving many materials in the natural form as well as in mineral form. Among them the marbles, granites and other variety of slabs for house hold flooring purposes. The people demand for variety of flooring materials leads to develop various types of ceramic tile. In India ceramic tiles industry is one of the fast growing one. More than two hundred units are manufacturing the ceramic tiles situated around Morbi, Rajkot, Gujarat, India. The basic raw materials required for manufacturing the various types of ceramic tiles are natural minerals. The following are the minerals used to manufacture the ceramic tiles i.e. quartz, feldspar, zircon, china clay, talc, grok, Aluminum oxide etc.,

  15. Advanced materials and technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, V.K.; Alander, T.K.R. [eds.] [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physical Metallurgy and Materials Science

    1995-12-31

    The contents of the proceedings consist of three chapters, of which, the first discusses common megatrends, both nationally and globally, in different fields of materials technology. The second chapter is dealing with novel production and processing of base metals and, finally, the third chapter is related with current achievements and future goals of electronic, magnetic, optical and coating materials and their processing

  16. Energy Materials Coordinating Committee (EMACC) contractors meeting on problems and opportunities in structural ceramics

    International Nuclear Information System (INIS)

    This report consists mainly of viewographs and summaries of DOE and other programs on structural ceramics. Applications include heat engines, fusion reactors, solar absorbers, heat exchangers, coal conversion, turbines, material substitution, etc. Research centers and their capabilities are described. Panel discussions on fabrication reliability, market, ceramic producers and engine manufacturers, and conclusions are summarized

  17. Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.

  18. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  19. Advanced Materials for Automotive Application

    International Nuclear Information System (INIS)

    In this paper some recent material developments will be overviewed mainly from the point of view of automotive industry. In car industry, metal forming is one of the most important manufacturing processes imposing severe restrictions on materials; these are often contradictory requirements, e.g. high strength simultaneously with good formability, etc. Due to these challenges and the ever increasing demand new material classes have been developed; however, the more and more wide application of high strength materials meeting the requirements stated by the mass reduction lead to increasing difficulties concerning the formability which requires significant technological developments as well. In this paper, the recent materials developments will be overviewed from the point of view of the automotive industry

  20. Fibres : future materials for advanced emerging applications

    OpenAIRE

    Fangueiro, Raúl; Rana, S

    2012-01-01

    Fibrous materials are finding widespread applications in diversified areas, starting from clothing sector to medical fields, various structural and infrastructural applications of civil engineering, aerospace industries and even for energy harvesting and storage applications. In this paper, the results of various research activities conducted by the Fibrous Materials Research Group (FMRG), University of Minho to explore fibrous materials in several advanced and emerging applicatio...

  1. Prediction of the functional properties of ceramic materials from composition using artificial neural networks

    OpenAIRE

    Scott, D. J.; Coveney, P. V.; Kilner, J. A.; Rossiny, J. C. H.; Alford, N. Mc N.

    2007-01-01

    We describe the development of artificial neural networks (ANN) for the prediction of the properties of ceramic materials. The ceramics studied here include polycrystalline, inorganic, non-metallic materials and are investigated on the basis of their dielectric and ionic properties. Dielectric materials are of interest in telecommunication applications where they are used in tuning and filtering equipment. Ionic and mixed conductors are the subjects of a concerted effort in the search for new...

  2. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending June 30, 1984

    International Nuclear Information System (INIS)

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division for the period January 1, 1983, to June 30, 1984. These activities constitute about one-fourth of the research and development conducted by the division. The emphasis of the program can be described as the scientific design of materials. The efforts are directed toward three classes of materials: high-temperature metallic alloys based on intermetallic compounds, structural ceramics, and radiation-resistant alloys

  3. Composite materials based on porous ceramic preform infiltrated by aluminium alloy

    Directory of Open Access Journals (Sweden)

    A. Nagel

    2007-01-01

    Full Text Available Purpose: The goal of this project is the optimization of manufacturing technology of the ceramic preforms basedon Al2O3 powder manufactured by the pressure infiltration method with liquid metal alloy.Design/methodology/approach: Ceramic preforms were manufactured by the method of sintering of ceramicpowder. The preform material consists of powder Condea Al2O3 CL 2500, however, as the forming factor ofthe structure of canals and pores inside the ceramic agglomerated framework the carbon fibers Sigrafil C10M250 UNS were used. Then ceramic preforms were infiltrated with liquid EN AC – AlSi12 aluminum alloy.Stereological and structure investigations of obtained composite materials were made on light microscope.Findings: It was proved that developed technology of manufacturing of composite materials with the pore ceramicAl2O3 infiltration ensures expected structure and can be used in practice.Practical implications: The developed technology allows to obtain method’s elements locally reinforced andcomposite materials with precise shape mapping.Originality/value: The received results show the possibility of obtaining the new composite materials being thecheaper alternative for other materials based on the ceramic fibers.

  4. Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges

    OpenAIRE

    M. Szutkowska

    2012-01-01

    Purpose: Specific characteristics in fracture toughness measurements of advanced alumina ceramics and alumina matrix composites with particular reference to α-Al2O3, Al2O3-ZrO2, Al2O3-ZrO2-TiC and Al2O3-Ti(C,N) has been presented.Design/methodology/approach: The present study reports fracture toughness obtained by means of the conventional method and direct measurements of the Vickers crack length (DCM method) of selected tool ceramics based on alumina: pure alumina, alumina-zirconia composit...

  5. High Speed Lapping of SiC Ceramic Material with Solid (Fixed) Abrasives

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; YANG Xin-hong; SHANG Chun-min; HU Xiao-yong; HU Zhong-hui

    2005-01-01

    An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of Ra 2.4nm can be achieved.

  6. The research of ceramic materials for applications in the glass industry including microwave heating techniques

    Science.gov (United States)

    Kogut, K.; Kasprzyk, K.; Zboromirska-Wnukiewicz, B.; Ruziewicz, T.

    2016-02-01

    The melting of a glass is a very energy-intensive process. Selection of energy sources, the heating technique and the method of heating recovery are a fundamental issue from the furnace design point of view of and economic effectiveness of the process. In these processes the problem constitutes the lack of the appropriate ceramic materials that would meet the requirements. In this work the standard ceramic materials were examined and verified. The possibilities of application of microwave techniques were evaluated. In addition the requirements regarding the parameters of new ceramic materials applied for microwave technologies were determined.

  7. Ceramic materials based on modified pyrogenic titanium dioxide and titanium-silica

    International Nuclear Information System (INIS)

    Ceramic materials based on modified titanium dioxide and titanium-silica are obtained. Method for modification of titanium dioxide and titanium-silica by palladium additions in the process of flame, hydrolysis of titanium, tetrachloride or silicon tetrachloride mixture with titanium tetrachloride is developed. The above method makes it possible to modify already formed particles of the final products in the reactor cooling zone, which does not effect their size and where by the whole palladium is on the surface of the ceramic material. A series of textolite is prepared on the basis of the developed ceramic materials and their metallization is performed

  8. Effect of Rare Earth Composite Ceramic Materials on Oil Combustion of Oil-Burning Boiler

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1.5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively.

  9. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Price, Jeffrey

    2008-09-30

    injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40

  10. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    Science.gov (United States)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  11. Residual stress analysis of metal/ceramic functionally graded materials

    International Nuclear Information System (INIS)

    It is very difficult to join a metal and a ceramic film directly, because the difference in their coefficients of thermal expansion is so large that cracks may occur in the film or a delamination may occur in an interface. A functionally graded material (FGM) is usual to relax an abrupt change in mechanical and/or physical properties at an interface of joining. We prepared the Fe/Al2O3 FGM consisting five layers from iron to Al2O3 by spark plasma sintering (SPS). Residual stresses in each layer of FGM were measured by RESA in order to investigate the best production condition of FGM. The following results were obtained from the residual stress measurement in FGM.1. Residual stresses in all parts of Fe were tensile and increased with decreasing the volume fraction of Fe.2. Residual stresses in all parts of Al2O3 were compression and increased with decreasing the volume fraction of Al2O3. The difference in an average internal stress was large in the part of Fe 20%-Al2O3 80%. (author)

  12. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  13. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  14. Advanced materials in radiation dosimetry

    CERN Document Server

    Bruzzi, M; Nava, F; Pini, S; Russo, S

    2002-01-01

    High band-gap semiconductor materials can represent good alternatives to silicon in relative dosimetry. Schottky diodes made with epitaxial n-type 4 H SiC and Chemical Vapor Deposited diamond films with ohmic contacts have been exposed to a sup 6 sup 0 Co gamma-source, 20 MeV electrons and 6 MV X photons from a linear accelerator to test the current response in on-line configuration in the dose range 0.1-10 Gy. The released charge as a function of the dose and the radiation-induced current as a function of the dose-rate are found to be linear. No priming effects have been observed using epitaxial SiC, due to the low density of lattice defects present in this material.

  15. High Efficiency Axial Deep Creep-Feed Grinding Machining Technology of Engineering Ceramics Materials

    Institute of Scientific and Technical Information of China (English)

    GUO Fang; ZHANG Baoguo; LU Hong; TIAN Xinli; WANG Jianquan; LI Fuqiang

    2012-01-01

    Axial deep creep-feed grinding machining technology is a high efficiency process method of engineering ceramics materials,which is an original method to process the cylindrical ceramics materials or hole along its axis.The analysis of axial force and edge fracture proved the cutting thickness and feed rate could be more than 5-10 mm and 200 mm/min respectively in once process,and realized high efficiency,low-cost process of engineering ceramics materials.Compared with high speed-deep grinding machining,this method is also a high efficiency machining technology of engineering ceramics materials as well as with low cost.In addition,removal mechanism analyses showed that both median/radial cracks and lateral cracks appeared in the part to be removed,and the processed part is seldom destroyed,only by adjusting the axial force to control the length of transverse cracks.

  16. Newly developed foam ceramic body shows promise as thermal insulation material at 3000 deg F

    Science.gov (United States)

    Blocker, E. W.; Paul, R. D.

    1967-01-01

    Optimized zirconia foam ceramic body shows promise for use as a thermal insulation material. The insulating media displays low density and thermal conductivity, good thermal shock resistance, high melting point, and mechanical strength.

  17. Solid-State Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II we will develop transparent Nd:Yttria ceramic laser materials that can operate at 914 nm and 946 nm suitable for applications in ozone LIDAR systems. We...

  18. High-speed, low-damage grinding of advanced ceramics Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.A. [Eaton Corp., Willoughby Hills, OH (United States). Mfg. Technologies Center; Malkin, S. [Univ. of Massachusetts (United States)

    1995-03-01

    In manufacture of structural ceramic components, grinding costs can comprise up to 80% of the entire manufacturing cost. Most of these costs arise from the conventional multi-step grinding process with numerous grinding wheels and additional capital equipment, perishable dressing tools, and labor. In an attempt to reduce structural ceramic grinding costs, a feasibility investigation was undertaken to develop a single step, roughing-finishing process suitable for producing high-quality silicon nitride ceramic parts at high material removal rates at lower cost than traditional, multi-stage grinding. This feasibility study employed combined use of laboratory grinding tests, mathematical grinding models, and characterization of resultant material surface condition. More specifically, this Phase 1 final report provides a technical overview of High-Speed, Low-Damage (HSLD) ceramic grinding and the conditions necessary to achieve the small grain depths of cut necessary for low damage grinding while operating at relatively high material removal rates. Particular issues addressed include determining effects of wheel speed and material removal rate on resulting mode of material removal (ductile or brittle fracture), limiting grinding forces, calculation of approximate grinding zone temperatures developed during HSLD grinding, and developing the experimental systems necessary for determining HSLD grinding energy partition relationships. In addition, practical considerations for production utilization of the HSLD process are also discussed.

  19. Silicon nitride ceramic material having an in-situ continuous gradient function, process for manufacture, properties and applications thereof

    OpenAIRE

    Belmonte, Manuel; González Julián, Jesús; Miranzo López, Pilar; Osendi, María Isabel

    2008-01-01

    [EN] The present invention relates to a silicon mitride ceramic material having a continuous gradient in the microstructural characteristics thereof and in the properties thereof, from one extremity to the other of the ceramic component. Furthermore a method is described for the manufacture in situ of said ceramic materials having a gradient function from a single homogenous composition of ceramic powders and employing a sintering process through electric discharge modifying the temperatu...

  20. Compact pulse forming line using barium titanate ceramic material

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P.; Shukla, R.; Prabaharan, T.; Shyam, A.

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO3) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber.

  1. Compact pulse forming line using barium titanate ceramic material.

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber. PMID:22129008

  2. Capsulation of moldings made from silicon ceramic material

    Science.gov (United States)

    Rossmann, A.; Schweitzer, K.; Huether, W.

    1985-01-01

    Ceramic articles are potted for hot isostatic pressing by porous glass and/or ceramic coating which is sintered to a pressure-tight coating in vacuo. Thus, a powdered SiO2 glass mixture with saturated alcohol sterin is sprayed on a SI3N4 ceramic, dried, introduced into the press which is evacuated to less than 0.013 mbar and heated to approximately 1200 C to drive off the organic binder and leave a powdered glass coating on the ceramic. The coating is sintered by heating to approximately 1200 C for 0.5 to 2 hours and forms a tight gass-impermeable layer. The press is heated to approximately 1700 C at 1000-300 bar and isostatic pressing is performed in the conventional manner.

  3. Effect of carbon on wettability and interface reaction between melt superalloy and ceramic material

    OpenAIRE

    Chen Xiaoyan; Zhou Yizhou; Jin Tao; Sun Xiaofeng

    2014-01-01

    Effect of C on wettability and interface reaction between a nickel based superalloy and ceramic material was investigated by using a sessile drop method. It was found that the content of C in the alloy is able to influence the wettability and interface reaction. Alloys with C content lower than 0.1wt.% are stable on ceramic material and no interface reaction generates at the alloy-ceramic interface. However, when C content is higher than 0.1wt.%, the interface reaction occurs and the wetting ...

  4. Advanced materials for radiation-cooled rockets

    Science.gov (United States)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-01-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  5. Advanced materials for radiation-cooled rockets

    Science.gov (United States)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-11-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  6. 15th annual conference on composites and advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, G.Y.; Bhatt, R.T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  7. Raw-materials mixtures from waste of the coal industry for production of ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Galpern, E.I. [Scientific-Manufacturing Enterprise ``Ceramics``, Donetsk (Ukraine); Pashchenko, L.V. [Inst. of Physical, Organic and Coal Chemistry of NASU, Donetsk (Ukraine)

    1998-09-01

    The liquidation of waste dumps on the surface of mining enterprises and realization of measures by environment protection of air and aquatic basins are connected to the complex processing of mining mass. The main directions of utilization of mining rocks and coal wastes realized in Ukraine industry are: - filling of mines worked-out area by grouting solutions; - ceramic brick, porous filling materials and binding materials production; - road-making, construction of hydrostructures and industrial objects; - output of concrete items predominantly for using in mining conditions. The peculiarity of wastes using in above-mentioned fields is the possibility of their mass application in quantities commensurable with valumes of their yields. The experience of enterprises work which process mining rocks into building materials by burning method (ceramic brick, porous aggregates of concretes as aggloporite, expanded clay aggregate) has shown that unconstant and, as the rule, exceeding norms content of carbon and sulphur in the rock results to deterioration of products quality and technological factors of production. Unstability of carbon content in raw material makes the burning process hardly operated. Obtained products having residual carbon in the view of coke residue are often characterized by lower physical-mechanical characteristics. (orig./SR)

  8. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  9. Methane storage in advanced porous materials.

    Science.gov (United States)

    Makal, Trevor A; Li, Jian-Rong; Lu, Weigang; Zhou, Hong-Cai

    2012-12-01

    The need for alternative fuels is greater now than ever before. With considerable sources available and low pollution factor, methane is a natural choice as petroleum replacement in cars and other mobile applications. However, efficient storage methods are still lacking to implement the application of methane in the automotive industry. Advanced porous materials, metal-organic frameworks and porous organic polymers, have received considerable attention in sorptive storage applications owing to their exceptionally high surface areas and chemically-tunable structures. In this critical review we provide an overview of the current status of the application of these two types of advanced porous materials in the storage of methane. Examples of materials exhibiting high methane storage capacities are analyzed and methods for increasing the applicability of these advanced porous materials in methane storage technologies described. PMID:22990753

  10. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  11. Modified PZT ceramics as a material that can be used in micromechatronics

    Science.gov (United States)

    Zachariasz, Radosław; Bochenek, Dariusz

    2015-11-01

    Results on investigations of the PZT type ceramics with the following chemical composition: Pb0.94Sr0.06(Zr0.50 Ti0.50)0.99 Cr0.01O3 (PSZTC) which belongs to a group of multicomponent ceramic materials obtained on basis of the PZT type solid solution, are presented in this work. Ceramics PSZTC was obtained by a free sintering method under the following conditions: Tsint = 1250 °C and tsint = 2 h. Ceramic compacts of specimens for the sintering process were made from the ceramic mass consisting of a mixture of the synthesized PSZTC powder and 3% polyvinyl alcohol while wet. The PSZTC ceramic specimens were subjected to poling by two methods: low temperature and high temperature. On the basis of the examinations made it has been found that the ceramics obtained belongs to ferroelectric-hard materials and that is why it may be used to build resonators, filters and ultrasonic transducers. Contribution to the Topical Issue "Materials for Dielectric Applications" edited by Maciej Jaroszewski and Sabu Thomas.

  12. Fabrication and characterization of glass–ceramics materials developed from steel slag waste

    International Nuclear Information System (INIS)

    Highlights: ► Steelmaking slag (SS) is one of the most common industrial wastes. ► Glass–ceramics produced from SS is observed to have good properties. ► A large volume of raw SS can be recycled. ► The utilization of SS could reduce solid waste pollution. -- Abstract: In this study, glass–ceramic materials were produced from SS (steel slag) obtained from Wuhan Iron and Steel Corporation in China. The amount of SS used in glass batch was about 31–41 wt.% of the total batch mixture. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of the parent glass samples were identified, respectively. X-ray diffraction (XRD) revealed that multiple crystalline phases coexisted in the glass–ceramics, and the main crystalline phase was wollastonite (CaSiO3). SEM observation indicated that there was an increase in the amount of crystalline phase in the glass–ceramics when the CaO content and crystallization time increased. It was also found that the glass–ceramics with fine microstructure enhance mechanical properties and erosion wear resistance. The obtained glass–ceramics showed a maximum bending strength of 145.6 MPa and very nice wear resistance. Therefore, it is feasible to produce nucleated glass–ceramics materials for building and decorative materials from SS.

  13. Materials for Advanced Power Engineering 2014

    OpenAIRE

    2014-01-01

    The 10th Liege Conference on Materials for Advanced Power Engineering presents theachievements of international materials related research for high eciency, low-emissionpower plants. Furthermore the new demands of the transition of electricity supply towardsmore and more regenerative power sources are reported.Resource preservation and maximization of economic success by improved plant e-ciency were the driving forces in past materials and power plant technology development.Fossil fuels will ...

  14. Compaction of Ceramic Microspheres, Spherical Molybdenum Powder and Other Materials to 3 GPa

    International Nuclear Information System (INIS)

    Pressure-volume relationships were measured at room temperature for eight granular materials and one specimen of epoxy foam. The granular materials included hollow ceramic microspheres, spherical molybdenum powder, Ottawa sand, aluminum, copper, titanium and silicon carbide powders and glassy carbon spheres. Measurements were made to 0.9 GPa in a liquid medium press for all of the granular materials and to 3 GPa in a solid medium press for the ceramic microspheres and molybdenum powder. A single specimen of epoxy foam was compressed to 30 MPa in the liquid medium press. Bulk moduli were calculated as a function of pressure for the ceramic microspheres, the molybdenum powder and three other granular materials. The energy expended in compacting the granular materials was determined by numerically integrating pressure-volume curves. More energy was expended per unit volume in compacting the molybdenum powder to 1 GPa than for the other materials, but compaction of the ceramic microspheres required more energy per gram due to their very low initial density. The merge pressure, the pressure at which all porosity is removed, was estimated for each material by plotting porosity against pressure on a semi-log plot. The pressure-volume curves were then extrapolated to the predicted merge pressures and numerically integrated to estimate the energy required to reach full density for each material. The results suggest that the glassy carbon spheres and the ceramic microspheres would require more energy than the other materials to attain full density

  15. Archaeometry of ceramic materials: an evaluation of the andalusian experience

    Directory of Open Access Journals (Sweden)

    Cordero Ruiz, Tomás

    2006-06-01

    Full Text Available This paper assesses the impact that the introduction of scientific methods for materials characterisation (conventionally grouped under the label of Archaeometry has had in the methodological configuration of Spanish archaeology over the last two decades. This is achieved through a bibliometric study of publications dealing with characterisation of archaeological ceramics from Andalucía (southern Spain. The variables handled in this study include aspects such as the number of sampled sites and items, their geographical provenance, the chronological and functional dimensions of the archaeological contexts they were taken from as well as the analytical techniques employed in their study.

    Este artículo intenta valorar el impacto que la introducción de métodos de caracterización de materiales procedentes de la física y la química (y agrupados habitualmente bajo la denominación genérica de Arqueometría ha tenido en la configuración metodológica de la investigación arqueológica de nuestro país durante las últimas dos décadas. Para ello se realiza un análisis bibliométrico de un ámbito específico de la aplicación de las técnicas arqueométricas, cual es el de la caracterización de materiales cerámicos dentro de la Arqueología andaluza. Las variables tenidas en cuenta incluyen aspectos tales como la cantidad de sitios arqueológicos muestreados y de muestras analizadas, su procedencia geográfica, los contextos cronológicos y funcionales de los que las muestras fueron tomadas y las técnicas analíticas empleadas.

  16. Effect of carbon on wettability and interface reaction between melt superalloy and ceramic material

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyan

    2014-01-01

    Full Text Available Effect of C on wettability and interface reaction between a nickel based superalloy and ceramic material was investigated by using a sessile drop method. It was found that the content of C in the alloy is able to influence the wettability and interface reaction. Alloys with C content lower than 0.1wt.% are stable on ceramic material and no interface reaction generates at the alloy-ceramic interface. However, when C content is higher than 0.1wt.%, the interface reaction occurs and the wetting angle decreases quickly. The product of interface reaction is discontinuous and composed of 9Al2O3 ⋅Cr2O3. Such result indicates that Cr in the alloy is impossible to react with the ceramic material and form Cr2O3 without the assistance of C. It is suggested that C in the alloy deoxidizes SiO2 in the ceramic material and produces SiO and CO. SiO is unstable and it can release active O atom at the interface. Cr at the interface combines with free O atom and forms Cr2O3. Al2O3 in the ceramic material and Cr2O3 finally forms 9Al2O3 ⋅Cr2O3.

  17. Radioactivity and associated radiation hazards in ceramic raw materials and end products

    International Nuclear Information System (INIS)

    Studies have been planned to obtain activity and associated radiation hazards in ceramic raw materials (quartz, feldspar, clay, zircon, kaolin, grog, alumina bauxite, baddeleyite, masse, dolomite and red mud) and end products (ceramic brick, glazed ceramic wall and floor tiles) as the activity concentrations of uranium, thorium and potassium vary from material to material. The primordial radionuclides in ceramic raw materials and end products are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the activity level in these materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the activity concentration of 226Ra, 232Th and 40K in ceramic raw materials and end products. The activity of these materials has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyser (MCA). Radium equivalent activity, alpha-gamma indices and radiation hazard indices associated with the natural radionuclides are calculated to assess the radiological aspects of the use of the ceramic end products as decorative or covering materials in construction sector. Results obtained were examined in the light of the relevant international legislation and guidance and compared with the results of similar studies reported in different countries. The results suggest that the use of ceramic end product samples examined in the construction of dwellings, workplace and industrial buildings is unlikely to give rise to any significant radiation exposure to the occupants. (authors)

  18. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  19. The modeling of the shock response of powdered ceramic materials

    Science.gov (United States)

    Rajendran, A. M.; Ashmawi, W. M.; Zikry, M. A.

    2006-06-01

    A two-cap constitutive model that incorporates inelastic yielding, frictional sliding, and densification was modified for shock-loading applications, and used to model shock-wave propagation of a powdered ceramic that is constrained by aluminum layers in a system, which is impacted by a flyer plate. The numerical results included analyses of the effects of shock stress amplitudes on densification, unloading behaviors, stress attenuation and dispersion, and stress and pressure distributions. An understanding of how interfacial impedances affect shock-front attenuation, dispersion, and propagation were obtained through modeling different shock-load conditions. The constitutive and computational models were validated with detailed simulations of shock-front experiments pertaining to powdered ceramics. It is shown how shock amplitude duration and rise time are related to stress evolution, and how physically limiting values result in inelastic damage. This analysis underscores how modeling with the appropriate constitutive description can provide insights on how powdered ceramics behave under impact-loading conditions.

  20. Antibacterial and mechanical properties of honeycomb ceramic materials incorporated with silver and zinc

    International Nuclear Information System (INIS)

    Highlights: • Novel application of honeycomb ceramic carrier for environmentally benign processes. • Honeycomb ceramic have antibacterial properties by doping with silver and zinc. • The foundation of honeycomb ceramic to promote the application in various fields. • Honeycomb ceramic microstructure and characterization by XRD and SEM micro-analysis. - Abstract: The antibacterial and mechanical properties of heat-resistant honeycomb ceramic materials produced from red mud industrial waste and doped with Zn and Ag are determined. Excellent antibacterial effects against Escherichia coli are obtained by the plate counting and vibration methods. When 5% and 6% Zn are added to the honeycombs doped with 0.3% Ag, the antibacterial rates reach 98.9% and 99.5%, respectively. The mechanical properties are evaluated by monitoring the bending strength, open porosity, water absorption capability, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The Zn and Ag particles are distributed uniformly in the honeycomb ceramics and the crystalline structure of the ceramic materials is not altered after Zn and Ag incorporation consequently enabling good dispersion of the antibacterial metals

  1. Annual report 90. Institute for advanced materials

    International Nuclear Information System (INIS)

    The Annual Report 1990 of the Institute for Advanced Materials of the JRC highlights the Scientific Technical Achievements and presents in the Annex the Institute's Competence and Facilities available to industry for services and research under contract. The Institute executed in 1990 the R and D programme on advanced materials of the JRC and contributed to the programmes: reactor safety, radio-active waste management, fusion technology and safety, nuclear fuel and actinide research. The supplementary programme: Operation of the High Flux Reactor is presented in condensed form. A full report is published separately

  2. Reclamation of material from used ceramic moulds applied in the investment casting technology

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2010-07-01

    Full Text Available Investigations on utilisation of reclaimed materials from used ceramic moulds applied in the investment casting technology, are presented in the hereby paper. This reclaim was used as a matrix for the preparation of the test moulds. Rheological properties as well as tensile strength at a room temperature of such ceramic sands were even better than of sands made of fresh components. However, ceramic sands with a reclaimed material exhibited worse properties at higher temperatures. The second direction of utilizing the reclaim was using it as the so-called powder topping when making ceramic moulds (for the IInd and successive layers. Tensile strength values at hightemperatures of moulds made with the reclaim participation were comparable (and in some cases even higher to values of moulds made offresh components (Al2O3. These results encourage the further investigations in this field.

  3. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    International Nuclear Information System (INIS)

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  4. Advanced Materials for Redox Flow Batteries

    OpenAIRE

    Friedl, Jochen

    2015-01-01

    We investigate two advanced materials electrochemically in order to see if they can be applied to improve energy- and power-density of Redox Flow Batteries (RFBs). First, multi-walled carbon nanotubes are analyzed as electrode material for the All-Vanadium RFB. We discovered that an enhanced activity assigned by previous studies was a misinterpretation caused by an apparent catalytic effect. Second, large inorganic molecules, polyoxometalates (POMs), were investigated as nano-sized el...

  5. NATO Advanced Research Workshop on Molecular Engineering for Advanced Materials

    CERN Document Server

    Schaumburg, Kjeld

    1995-01-01

    An important aspect of molecular engineering is the `property directed' synthesis of large molecules and molecular assemblies. Synthetic expertise has advanced to a state which allows the assembly of supramolecules containing thousands of atoms using a `construction kit' of molecular building blocks. Expansion in the field is driven by the appearance of new building blocks and by an improved understanding of the rules for joining them in the design of nanometer-sized devices. Another aspect is the transition from supramolecules to materials. At present no single molecule (however large) has been demonstrated to function as a device, but this appears to be only a matter of time. In all of this research, which has a strongly multidisciplinary character, both existing and yet to be developed analytical techniques are and will remain indispensable. All this and more is discussed in Molecular Engineering for Advanced Materials, which provides a masterly and up to date summary of one of the most challenging researc...

  6. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2016-01-01

    In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of�...

  7. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2012-01-01

    Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...

  8. Annual report 1991. Institute for Advanced Materials

    International Nuclear Information System (INIS)

    The Institute executed in 1991 the R and D programme on advanced materials of the Joint Research Centre and contributed to the programmes: reactor safety, radio-active waste management, fusion technology and safety, nuclear fuel and actinide research. The supplementary programme: Operation of the High Flux Reactor is presented in condensed form. A full report is published separately. (Author). refs., figs., tabs

  9. EXAFS and XANES analysis of plutonium and cerium edges from titanate ceramics for fissile materials disposal

    International Nuclear Information System (INIS)

    We report x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra from the plutonium LIII edge and XANES from the cerium LII edge in prototype titanate ceramic hosts. The titanate ceramics studied are based upon the hafnium-pyrochlore and zirconolite mineral structures and will serve as an immobilization host for surplus fissile materials, containing as much as 10 weight % fissile plutonium and 20 weight % (natural or depleted) uranium. Three ceramic formulations were studied: one employed cerium as a ''surrogate'' element, replacing both plutonium and uranium in the ceramic matrix, another formulation contained plutonium in a ''baseline'' ceramic formulation, and a third contained plutonium in a formulation representing a high-impurity plutonium stream. The cerium XANES from the surrogate ceramic clearly indicates a mixed III-IV oxidation state for the cerium. In contrast, XANES analysis of the two plutonium-bearing ceramics shows that the plutonium is present almost entirely as Pu(IV) and occupies the calcium site in the zirconolite and pyrochlore phases. The plutonium EXAFS real-space structure shows a strong second-shell peak, clearly distinct from that of PuO2, with remarkably little difference in the plutonium crystal chemistry indicated between the baseline and high-impurity formulations

  10. Utilisation of Spark Plasma Sintering for joining of advanced SiC-based ceramics for aerospace applications

    Czech Academy of Sciences Publication Activity Database

    Tatarko, P.; Saunders, T.; Chlup, Zdeněk; Dlouhý, Ivo; Reece, M. J.

    Toledo: ECERS, 2015. ISBN 978-84-606-9257-7. [ECERS 14 - International Conference of the European Ceramic Society /14./. 21.06.2015-25.06.2015, Toledo] Institutional support: RVO:68081723 Keywords : Spark Plasma Sintering * joining * SiC-based ceramics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  11. Advancement of Cellular Ceramics Made of Silicon Carbide for Burner Applications

    International Nuclear Information System (INIS)

    Lower emissions of CO and NOx as well as a higher power density were observed in combustion processes performed in porous media like ceramic foams. Only a few materials are applicable for porous burners. Open-celled ceramic foams made of silicon carbide are of particular interest because of their outstanding properties. Two different SiC materials have been investigated, silicon-infiltrated silicon carbide (SiSiC) and pressureless sintered silicon carbide (SSiC). The oxidation behaviour of both has been characterized by furnace oxidation and burner tests up to 500 h operating time. Up to a temperature of 1200 deg. C SiSiC exhibited a good oxidation resistance in combustion gases by forming a protective layer of silica. High inner porosity up to 30% in the ceramic struts was found in the SSiC material. Caused by inner oxidation processes the pure material SSiC allows only short time applications with a temperature limit of 1550 deg. C in combustion gases. An increase of the lifetime of the SSiC foams was obtained by development of a new SSiC with an inner porosity of less than 12%. The result was a considerable reduction of the inner oxidation processes in the SSiC struts.

  12. Research study for gel precursors as glass and ceramic starting materials for space processing applications research

    Science.gov (United States)

    Downs, R. L.; Miller, W. J.

    1983-01-01

    The development of techniques for the preparation of glass and ceramic starting materials that will result in homogeneous glasses or ceramic products when melted and cooled in a containerless environment is described. Metal-organic starting materials were used to make compounds or mixtures which were then decomposed by hydrolysis reactions to the corresponding oxides. The sodium tungstate system was chosen as a model for a glass with a relatively low melting temperature. The alkoxide tungstates also have interesting optical properties. For all the compositions studied, comparison samples were prepared from inorganic starting materials and submitted to the same analyses.

  13. Potentiality of a frit waste from ceramic sector as raw material to glass-ceramic material production

    International Nuclear Information System (INIS)

    This work consists of studying the devitrification capacity of a residue from sodium-calcium frit, using the vitreous powder sintering method, which follows the traditional ceramic processing route, including a specific heat treatment to generate the appearance of crystals from the original glass phase. Initially the frit residue has been characterized by instrumental techniques such as XRF, XRD and DTA/TG. Furthermore, the chemical analysis (XRF) has allowed the prediction of devitrification potentiality of this residue by theoretical approaches represented by Gingsberg, Raschin-Tschetverikov and Lebedeva ternary diagrams. Then, this residue was subjected to traditional ceramic method, by changing the grinding time, the pressing pressure and prepared samples were obtained at different temperatures. In this part, the techniques for measuring particle size by laser diffraction and XRD and SEM to evaluate the generated crystalline phases, were applied. Finally, it has been found that this frit residue works as glass-ceramic precursor, devitrifying in wollastonite crystals as majority phase and without being subjected to the melting step of the glass-ceramic typical method. (Author)

  14. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. PMID:27524006

  15. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

    Science.gov (United States)

    Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li

    2016-03-01

    Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.

  16. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  17. Compatibility tests of materials for a prototype ceramic melter for defense glass-waste products

    International Nuclear Information System (INIS)

    The corrosion--erosion resistance of potential electrode and refractory materials was evaluated by static and dynamic tests in simulated glass waste. Based on corrosion--erosion behavior, thermal and electrical properties, and cost and availability, Monofrax K3 (Carborundum Co.) and Inconel 690 (International Nickel Co.) were selected as the contact refractory and electrode materials, respectively, for a prototype ceramic melter

  18. Morphologies, Processing and Properties of Ceramic Foams and Their Potential as TPS Materials

    Science.gov (United States)

    Stackpoole, Mairead; Simoes, Conan R.; Johnson, Sylvia M.

    2002-01-01

    The current research is focused on processing ceramic foams with compositions that have potential as a thermal protection material. The use of pre-ceramic polymers with the addition of sacrificial blowing agents or sacrificial fillers offers a viable approach to form either open or closed cell insulation. Our work demonstrates that this is a feasible method to form refractory ceramic foams at relatively low processing temperatures. It is possible to foam complex shapes then pyrolize the system to form a ceramic while retaining the shape of the unfired foam. Initial work focused on identifying suitable pre-ceramic polymers with desired properties such as ceramic yield and chemical make up of the pyrolysis product after firing. We focused on making foams in the Si system (Sic, Si02, Si-0-C), which is in use in current acreage TPS systems. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies and the characterization of these foams in terms of mechanical and thermal properties are presented. We have conducted preliminary arc jet testing on selected foams with the materials being exposed to typical re-entry conditions for acreage TPS and these results will be discussed. Foams processed using these approaches have bulk densities ranging from 0.15 to 0.9 g/cm3 and cell sizes ranging from 5 to 500 pm. Compression strengths ranged from 2 to 7 MPa for these systems. Finally, preliminary oxidation studies have been conducted on selected systems and will be discussed.

  19. Efficiency characterization of ceramic filtering materials used for drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    For ceramic filtering materials, their adsorption capacities, purification efficiencies to remove organic compounds from drinking water, and correlation between adsorption capacities and pore structures were tested and analyzed. The results show that correlation coefficient between the specific surface area and the adsorptive amount of iodine molecule is 0.99;correlation coefficient between the pore volume and the adsorptive value of tannin molecule is 0.92. And correlation coefficient between the most probable diameter and the adsorption parameter is 1.0. A new method of morphology characterization for ceramic filtering materials was developed. Which offered a sort of standard for the evaluation on water purification efficiencies and selection of ceramic filtering materials.

  20. Development and application of ferrite materials for low temperature co-fired ceramic technology

    Science.gov (United States)

    Zhang, Huai-Wu; Li, Jie; Su, Hua; Zhou, Ting-Chuan; Long, Yang; Zheng, Zong-Liang

    2013-11-01

    Development and application of ferrite materials for low temperature co-fired ceramic (LTCC) technology are discussed, specifically addressing several typical ferrite materials such as M-type barium ferrite, NiCuZn ferrite, YIG ferrite, and lithium ferrite. In order to permit co-firing with a silver internal electrode in LTCC process, the sintering temperature of ferrite materials should be less than 950 °C. These ferrite materials are research focuses and are applied in many ways in electronics.

  1. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  2. 13th International Symposium on Advanced Materials

    International Nuclear Information System (INIS)

    The 13th international symposium on advanced materials (ISAM) was held from september 23-27, 2013, at islamabad, Pakistan. The main theme of this conference was to discuss the ever increasing changes and intricacies that characterize modern industry necessitate a growing demand for technical information on advanced materials. In five day of the symposium, nearly Two hundred and twenty seven contributory and invited papers, comprising of Nineteen technical sessions and two poster sessions were presented. Renowned scientists and researchers from foreign and local institutes have shared their counter parts on the topics of common interest. This symposium provided an ideal opportunity for exchange of information amongst scientists, engineers and researchers from all over pakistan and other countries of the world. (A.B.)

  3. Ceramic materials lead to underestimated DNA quantifications: a method for reliable measurements

    Directory of Open Access Journals (Sweden)

    E Piccinini

    2010-07-01

    Full Text Available In the context of investigating cell-material interactions or of material-guided generation of tissues, DNA quantification represents an elective method to precisely assess the number of cells attached or embedded within different substrates.Nonetheless, nucleic acids are known to electrostatically bind to ceramics, a class of materials commonly employed in orthopaedic implants and bone tissue engineering scaffolds. This phenomenon is expected to lead to a relevant underestimation of the DNA amount, resulting in erroneous experimental readouts. The present work aims at (i investigating the effects of DNA-ceramic bond occurrence on DNA quantification, and (ii developing a method to reliably extract and accurately quantify DNA in ceramic-containing specimens.A cell-free model was adopted to study DNA-ceramic binding, highlighting an evident DNA loss (up to 90% over a wide range of DNA/ceramic ratios (w/w. A phosphate buffer-based (800mM enzymatic extraction protocol was developed and its efficacy in terms of reliable DNA extraction and measurement was confirmed with commonly used fluorometric assays, for various ceramic substrates. The proposed buffered DNA extraction technique was validated in a cell-based experiment showing 95% DNA retrieval in a cell seeding experiment, demonstrating a 3.5-fold increase in measured DNA amount as compared to a conventional enzymatic extraction protocol.In conclusion, the proposed phosphate buffer method consistently improves the DNA extraction process assuring unbiased analysis of samples and allowing accurate and sensitive cell number quantification on ceramic containing substrates.

  4. Cellulose nanocrystals : surface modification and advanced materials

    OpenAIRE

    Lin, Ning

    2014-01-01

    The present work focuses on the properties of cellulose nanocrystals, their surface modification and development of advanced materials. Diverse approaches are employed on these nanoscaled substrates aiming to modify their surface properties and extend their use in highly sophisticated applications, such as postsulfation and desulfation, polymer grafting and adsorption, selective oxidation, molecular grafting, and ‘host-guest' inclusion. On the basis of surface modifications, properties analys...

  5. Advances in materials for fossil power plants

    International Nuclear Information System (INIS)

    The external constraints on the electric power industry over the past 10-15 years have resulted in increased demands on the performance and reliability of materials used in fossil power plants. At the same time, the construction of new plants has been at a low ebb, because of reduced capacity growth and surplus capacity. This led to creation of new institutions to support materials research and development during a period of malaise in industrial support. A remarkable surge of new materials and components for turbines, boilers, and auxiliaries have emerged. Some of the materials advances developed during this period are described. These include improved 1 CrMoV and 12 Cr rotors, temper resistant low Mn 3.5 NiCrMoV, super 9 Cr for heavy section piping and castings, super 12 Cr tubing for superheaters, Nimonic 80A high temperature bolting, titanium alloy blading for L.P. turbines, and many others covered by the present conference

  6. Advanced materials for space nuclear power systems

    International Nuclear Information System (INIS)

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications

  7. Advanced textural representation of materials appearance

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Filip, Jiří

    New York: ACM, 2011 - (Sander, P.), s. 1-84 ISBN 978-1-4503-1135-9. [SIGGRAPH Asia 2011. Hong Kong (CN), 12.12.2011-15.12.2011] R&D Projects: GA ČR GA102/08/0593; GA ČR GAP103/11/0335 Grant ostatní: CESNET(CZ) 387/2010 Institutional research plan: CEZ:AV0Z10750506 Keywords : visual texture * Bidirectional Texture Function * materials appearance Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2012/RO/haindl-advanced textural representation of materials appearance.pdf

  8. Use of ceramic materials in waste-package systems for geologic disposal of nuclear wastes

    International Nuclear Information System (INIS)

    A study to investigate the potential use of ceramic materials as components in the waste package systems was conducted. The initial objective of the study was to screen and compare a large number of ceramic materials and identify the best materials for the proposed application. The principal method used to screen the candidates was to subject samples of each material to a series of leaching tests and to determine their relative resistance to attack by the leach solutions. A total of 14 ceramic materials, plus graphite and basalt were evaluated using three different leach solutions: demineralized water, a synthetic Hanford ground water, and a synthetic WIPP brine solution. The ceramic materials screened were Al2O3 (99%), Al2O3 (99.8%), mullite (2Al2O3.SiO2), vitreous silica (SiO2), BaTiO3, CaTiO3, CaTiSiO5, TiO2, ZrO2, ZrSiO4, Pyroceram 9617, and Marcor Code 9658 machinable glass-ceramic. Average leach rates for the materials tested were determined from analyses of the leach solutions and/or sample weight loss measurements. Because of the limited scope of the present study, evaluation of the specimens was limited to ceramographic examination. Based on an overall evaluation of the leach rate data, five of the materials tested, namely graphite, TiO2, ZrO2, and the two grades of alumina, exhibited much greater resistance to leaching than did the other materials tested. Based on all the experimental data obtained, and considering other factors such as cost, availability, fabrication technology, and mechanical and physical properties, graphite and alumina are the preferred candidates for the barrier application. The secondary choices are TiO2 and ZrO2

  9. Tritium transport and release from lithium ceramic breeder materials

    International Nuclear Information System (INIS)

    In an operating fusion reactor,, the tritium breeding blanket will reach a condition in which the tritium release rate equals the production rate. The tritium release rate must be fast enough that the tritium inventory in the blanket does not become excessive. Slow tritium release will result in a large tritium inventory, which is unacceptable from both economic and safety viewpoints As a consequence, considerable effort has been devoted to understanding the tritium release mechanism from ceramic breeders and beryllium neutron multipliers through theoretical, laboratory, and in-reactor studies. This information is being applied to the development of models for predicting tritium release for various blanket operating conditions

  10. Natural radionuclides in ceramic building materials available in Cuddalore district, Tamil Nadu, India

    International Nuclear Information System (INIS)

    The activity concentrations of radium, thorium and potassium can vary from material to material and they should be measured as the radiation is hazardous for human health. Thus, studies have been planned to obtain the radioactivity of ceramic building materials used in Cuddalore District, Tamilnadu, India. The radioactivity of some ceramic materials used in this region has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyzer. The specific activities of 226Ra, 232Th and 40K, from the selected ceramic building materials, were in the range of 9.89-30.75, 24.68-70.4, 117.19-415.83 Bq kg-1, respectively. The radium equivalent activity, absorbed gamma dose rate (D) and annual effective dose rate associated with the natural radionuclides are calculated to assess the radiation hazards of the natural radioactivity in the ceramic building materials. It was found that none of the results exceeds the recommended limit value. (authors)

  11. High speed low damage grinding of advanced ceramics - Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.A.; Malkin, S.

    2000-02-01

    In the manufacture of structural ceramic components, grinding costs can comprise up to 80% of the entire manufacturing cost. As a result, one of the most challenging tasks faced by manufacturing process engineers is the development of a ceramic finishing process to maximize part throughput while minimizing costs and associated scrap levels. The efforts summarized in this report represent the second phase of a program whose overall objective was to develop a single-step, roughing-finishing process suitable for producing high-quality silicon nitride parts at high material removal rates and at substantially lower cost than traditional, multi-stage grinding processes. More specifically, this report provides a technical overview of High-Speed, Low-Damage (HSLD) ceramic grinding which employs elevated wheel speeds to achieve the small grain depths of cut necessary for low-damage grinding while operating at relatively high material removal rates. The study employed the combined use of laboratory grinding tests, mathematical grinding models, and characterization of the resultant surface condition. A single-step, roughing-finishing process operating at high removal rates was developed and demonstrated.

  12. Uses of Advanced Ceramic Composites in the Thermal Protection Systems of Future Space Vehicles

    Science.gov (United States)

    Rasky, Daniel J.

    1994-01-01

    Current ceramic composites being developed and characterized for use in the thermal protection systems (TPS) of future space vehicles are reviewed. The composites discussed include new tough, low density ceramic insulation's, both rigid and flexible; ultra-high temperature ceramic composites; nano-ceramics; as well as new hybrid ceramic/metallic and ceramic/organic systems. Application and advantage of these new composites to the thermal protection systems of future reusable access to space vehicles and small spacecraft is reviewed.

  13. Plasma Processed Nanosized-Powders of Refractory Compounds for Obtaining Fine-Grained Advanced Ceramics

    International Nuclear Information System (INIS)

    One of the ways for the production of ceramic materials with a fine-grained structure is the use of nanopowders. Different methods are used for the production of nanopowders. One of them is the method of plasmachemical synthesis. Different nanopowders of refractory materials can be obtained by this method. The preparation of nanosized powders of nitrides and oxides and their composites by the method of plasmachemical synthesis, the possibilities to receive nanopowders with different particle size and the potential advantages of nanopowders were investigated.

  14. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  15. Metal-ceramic functionally gradient material for insulation pipe joint in fusion environment

    International Nuclear Information System (INIS)

    A stainless steel/ceramics/stainless steel functionally gradient material (FGM) has been developed for an integrated insulation joint of the piping system. Both sides of the joint unit are welded to the main pipes. The FGM composed of metal and ceramics is produced by a sintering process from the powder stainless steel and powder ceramics. It is a key issue to suppress the residual thermal stress generated in the sintering process. The producible conditions, e.g., the thickness of graded layer, the column diameter, the materials combination and the sintering temperature and pressure, have been established. The performance tests of FGM joint, i.e., electrical property, mechanical property, vacuum tightness property and neutron irradiation effect were carried out. The results of those tests say that the FGM joint capable of providing the electrical insulation of cooling pipes for vacuum use. (orig.)

  16. Application of Technogenic-Raw Material and Burning Out Additive in Composite Ceramic System

    Directory of Open Access Journals (Sweden)

    Olga KIZINIEVIČ

    2012-09-01

    Full Text Available The investigation of the composite ceramic system containing easily fusible hydro-micous clay, technogenic finely dispersed raw material, and burning out waste additive is presented in the article. The properties of the raw materials used are described in the paper. The obtained ceramic bodies were burned at 1000 °C and 1050 °C temperatures, keeping at the highest burning temperature for 4 h. The analysis of physical-mechanical properties of composite ceramics (density, compressive strength, water absorption, its structural parameters (effective and total open porosity, reserve of pore volume, relative wall thickness of the pores and capillaries, and X-ray diffraction analysis was performed. The interdependencies between some structural parameters are described by empirical equations. DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2443

  17. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  18. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    Science.gov (United States)

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  19. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  20. Ceramic materials lead to underestimated DNA quantifications: a method for reliable measurements

    OpenAIRE

    E Piccinini

    2010-01-01

    In the context of investigating cell-material interactions or of material-guided generation of tissues, DNA quantification represents an elective method to precisely assess the number of cells attached or embedded within different substrates.Nonetheless, nucleic acids are known to electrostatically bind to ceramics, a class of materials commonly employed in orthopaedic implants and bone tissue engineering scaffolds. This phenomenon is expected to lead to a relevant underestimation of the DNA ...

  1. Metals and Ceramics Division materials science annual progress report for period ending June 30, 1978

    International Nuclear Information System (INIS)

    Topics covered include: structure of materials, theoretical research; x-ray diffraction research; fundamental ceramics studies; preparation and synthesis of high-temperature and special service materials; physical metallurgy; grain boundary segregation and fracture; mechanisms of surface and solid-state reactions; physical properties research; superconducting materials; radiation effects; facility and technique development; nuclear microanalysis; cooperative studies with universities and other research organizations; and fundamentals of welding and joining

  2. Metals and Ceramics Division materials science annual progress report for period ending June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J.; Peterson, S. (comps.)

    1978-09-01

    Topics covered include: structure of materials, theoretical research; x-ray diffraction research; fundamental ceramics studies; preparation and synthesis of high-temperature and special service materials; physical metallurgy; grain boundary segregation and fracture; mechanisms of surface and solid-state reactions; physical properties research; superconducting materials; radiation effects; facility and technique development; nuclear microanalysis; cooperative studies with universities and other research organizations; and fundamentals of welding and joining. (GHT)

  3. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials

    OpenAIRE

    Choi, Yu-Sung; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk; Yeo, In-Sung

    2012-01-01

    PURPOSE Fracture of the veneering material of zirconia restorations frequently occurs in clinical situations. The purpose of this in vitro study was to compare the fracture strengths of zirconia crowns veneered with various ceramic materials by various techniques. MATERIALS AND METHODS A 1.2 mm, 360° chamfer preparation and occlusal reduction of 2 mm were performed on a first mandibular molar, and 45 model dies were fabricated in a titanium alloy by CAD/CAM system. Forty-five zirconia copings...

  4. Machining, joining and modifications of advanced materials

    CERN Document Server

    Altenbach, Holm

    2016-01-01

    This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quali...

  5. International Symposium on Advanced Materials (ISAM 2013)

    Science.gov (United States)

    2014-06-01

    This proceeding is a compilation of peer reviewed papers presented at the 13th International Symposium on Advanced Materials (ISAM 2013) held from September 23-27, 2013, at Islamabad, Pakistan. In my capacity as ISAM-2013 Secretary, I feel honoured that the symposium has ended on a positive note. The ever increasing changes and intricacies that characterize modern industry necessitate a growing demand for technical information on advanced materials. ISAM and other similar forums serve to fulfill this need. The five day deliberations of ISAM 2013, consisted of 19 technical sessions and 2 poster sessions. In all, 277 papers were presented, inclusive of 80 contributory, invited and oral presentations. The symposium also hosted panel discussions led by renowned scientists and eminent researchers from foreign as well as local institutes. The ultimate aim of this proceeding is to record in writing the new findings in the field of advanced materials. I hope that the technical data available in this publication proves valuable to young scientists and researchers working in this area of science. At the same time, I wish to acknowledge Institute of Physics (IOP) Publishing UK, for accepting the research papers from ISAM-2013 for publication in the IOP Conference Series: Materials Science and Engineering. The proceeding will be available on the IOP website as an online open access document. I am profoundly thankful to the Symposium Chairman for his steadfast support and valuable guidance without which ISAM 2013 could not have been the mega event that it turned out to be. My gratitude to all our distinguished participants, session chairs/co-chairs, and reviewers for their active role in the symposium. I appreciate the entire organizing committee for the zest and ardor with which each committee fulfilled its obligations to ISAM. Last yet not the least, my thankfulness goes to all our sponsors for wilfully financing the event. Dr. Sara Qaisar Symposium Secretary Further

  6. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    Highlights: ► We examine the feasibility of alpha particle measurements in ITER. ► We test advanced material detectors borrowed from the GERDA neutrino experiment. ► We compare experimental results on TEXTOR tokamak with our detector response model. ► We investigate the detector response in ITER full power D–T plasmas. ► Advanced materials show good signal to noise ratio and alpha particle selectivity. -- Abstract: Fusion alpha particle diagnostics for ITER remain a challenging task. Standard escaping alpha particle detectors in present tokamaks are not applicable to ITER and techniques suitable for fusion reactor conditions need further research and development [1,2]. The activation technique is widely used for the characterization of high fluence rates inside neutron reactors. Tokamak applications of the neutron activation technique are already well developed [3] whereas measuring escaping ions using this technique is a novel fusion plasma diagnostic development. Despite low alpha particle fluence levels in present tokamaks, promising results using activation technique combined with ultra-low level gamma-ray spectrometry [4] were achieved before in JET [5,6]. In this research work, we use new advanced detector materials. The material properties beneficial for alpha induced activation are (i) moderate neutron cross-sections (ii) ultra-high purity which reduces neutron-induced background activation and (iii) isotopic tailoring which increases the activation yield of the measured activation product. Two samples were obtained from GERDA[7], an experiment aimed at measuring the neutrinoless double beta decay in {sup 76}Ge. These samples, made of highly pure (9 N) germanium highly enriched to 87% in isotope Ge-76, were irradiated in real D–D fusion plasma conditions inside the TEXTOR tokamak. Comparison of the calculated and the experimentally measured activity shows good agreement. Compared to previously investigated high temperature ceramic material [8

  7. Production of continuous piezoelectric ceramic fibers for smart materials and active control devices

    Science.gov (United States)

    French, Jonathan D.; Weitz, Gregory E.; Luke, John E.; Cass, Richard B.; Jadidian, Bahram; Bhargava, Parag; Safari, Ahmad

    1997-05-01

    Advanced Cerametrics Inc. has conceived of and developed the Viscous-Suspension-Spinning Process (VSSP) to produce continuous fine filaments of nearly any powdered ceramic materials. VSSP lead zirconate titanate (PZT) fiber tows with 100 and 790 filaments have been spun in continuous lengths exceeding 1700 meters. Sintered PZT filaments typically are 10 - 25 microns in diameter and have moderate flexibility. Prior to carrier burnout and sintering, VSSP PZT fibers can be formed into 2D and 3D shapes using conventional textile and composite forming processes. While the extension of PZT is on the order of 20 microns per linear inch, a woven, wound or braided structure can contain very long lengths of PZT fiber and generate comparatively large output strokes from relatively small volumes. These structures are intended for applications such as bipolar actuators for fiber optic assembly and repair, vibration and noise damping for aircraft, rotorcraft, automobiles and home applications, vibration generators and ultrasonic transducers for medical and industrial imaging. Fiber and component cost savings over current technologies, such as the `dice-and-fill' method for transducer production, and the range of unique structures possible with continuous VSSP PZT fiber are discussed. Recent results have yielded 1-3 type composites (25 vol% PZT) with d33 equals 340 pC/N, K equals 470, and g33 equals 80 mV/N, kt equals 0.54, kp equals 0.19, dh equals 50.1pC/N and gh equals 13 mV/N.

  8. Metals and Ceramics Division materials science annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Progress is reported for research programs in the metals and ceramics division of ORNL. In structure of materials, theoretical research, x-ray diffraction studies, studies of erosion of ceramics, preparation and synthesis of high temperature and special service materials, and studies of stabilities of microphases in high-temperature structural materials. Research into deformation and mechanical properties included physical metallurgy, and grain boundary segregation and embrittlement. Physical properties and transport phenomena were studied and included mechanisms of surface and solid state reactions, and properties of superconducting materials. The radiation effects program, directed at understanding the effects of composition and microstructure on the structure and properties of materials irradiated at elevated temperatures, is also described

  9. Metals and Ceramics Division materials science annual progress report for period ending June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1977-09-01

    Progress is reported for research programs in the metals and ceramics division of ORNL. In structure of materials, theoretical research, x-ray diffraction studies, studies of erosion of ceramics, preparation and synthesis of high temperature and special service materials, and studies of stabilities of microphases in high-temperature structural materials. Research into deformation and mechanical properties included physical metallurgy, and grain boundary segregation and embrittlement. Physical properties and transport phenomena were studied and included mechanisms of surface and solid state reactions, and properties of superconducting materials. The radiation effects program, directed at understanding the effects of composition and microstructure on the structure and properties of materials irradiated at elevated temperatures, is also described. (GHT)

  10. ASME Material Challenges for Advanced Reactor Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  11. Standard practice for labeling ceramic art materials for chronic adverse health hazards

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a procedure for developing precautionary labels for ceramic art materials and provides hazard and precautionary statements based upon knowledge that exists in the scientific and medical communities. This practice concerns those chronic adverse health hazards known to be associated with a product or product component(s), when the component(s) is present in a physical form, volume, or concentration that in the opinion of a toxicologist has the potential to produce a chronic adverse health effect(s). 1.2 This practice is intended to apply exclusively to ceramic art materials which are packaged in sizes intended for use by artists or crafts people, either individually, or in a small group or class. 1.3 This practice applies to developing precautionary labeling for ceramic art materials intended for adult usage. Conformance to this practice does not imply that ceramic art materials will necessarily be labeled adequately or safe for use by children. Labeling determinations should cons...

  12. Influence of Water Storage and Bonding Material on Bond Strength of Metallic Brackets to Ceramic.

    Science.gov (United States)

    Costa, Ana Rosa; Correr, Américo Bortolazzo; Consani, Simonides; Giorgi, Maria Cecília Caldas; Vedovello, Silvia Amélia; Vedovello Filho, Mário; Santos, Eduardo Cesar Almada; Correr-Sobrinho, Lourenço

    2015-10-01

    This study investigated the influence of water storage (24 h and 6 months), and Transbond XT and Fuji Ortho LC bonding materials on the bond strength of metallic brackets bonded to feldspathic ceramic. Four cylinders of feldspathic ceramic were etched with 10% hydrofluoric acid for 60 s. Each cylinder received two layers of silane. Metallic brackets were bonded to the cylinders using Transbond XT or Fuji Ortho LC. Light-activation was carried out with 40 s total exposure time using Bluephase G2. Half the specimens for each bonding materials (n=20) were stored in distilled water at 37 °C for 24 h and the other half for 6 months. Shear bond strength testing was performed after storage times at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI) was used to evaluate the amount of adhesive remaining on the ceramic surface at ×8 magnification. Data were subjected to two-way ANOVA and Tukey's test (p<0.05). Transbond XT showed significantly higher bond strength (p<0.05) than Fuji Ortho LC. Significant differences in bond strength (p<0.05) were found when 24 h and 6 months storage times were compared between materials. ARI showed a predominance of score 0 for all groups, and higher scores at 1, 2 and 3 for 24 h storage time. In conclusion, storage time and bonding materials showed significant influence on the bond strength of brackets to ceramic. PMID:26647936

  13. Structural and dielectric properties of Mg-doped strontium titanate ceramics: dependence on the materials processing

    Czech Academy of Sciences Publication Activity Database

    Tkach, A.; Vilarinho, P.; Kholkin, A.; Reaney, I. M.; Petzelt, Jan

    455-456, - (2004), s. 40-44. ISSN 0255-5476 Institutional research plan: CEZ:AV0Z1010914 Keywords : SrTiO 3 * doping * materials processing * dielectric ceramics * structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.498, year: 2004

  14. Mechanical Properties of a new Dental all-ceramic Material-zirconia Toughened Nanometer-ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    CHAI Feng; XU Ling; CHAO Yong-lie; LIAO Yun-mao; ZHAO Yi-min

    2003-01-01

    Objectives:All-ceramic dental restorations are attractive to the dental community because of their advantages.But they're also challenged by relatively low flexural strength and intrinsic poor resistance to fracture.This paper aims to investigate mechanical properties of a new dental all-ceramic material, i.e. zirconia toughened nanometer-ceramic composite (α-Al2O3/nZrO2).Methods:α-Al2O3/nZrO2 ceramics powder (W) was processed with combined methods of chemical co-precipitation method and ball milling. Scanning electron microscopy (SEM)was used to determine the particle size distribution and to characterize the particle morphology of the powders. Four kinds of powders with different ZrO2 content (5wt%, 10wt%, 15wt% and 20wt%) were prepared by using α-Al2O3 powder to dilute the higher ZrO2 content powder (W). The ceramic matrix compacts were made by slip-casting technique and sintering to 1 200~1 600 ℃. The flexural strength and the fracture toughness of the matrix materials were measured via three-point bending test and single-edge notch beam methods, respectively.Results:1) The particle distribution of the Al2O3/nZrO2 powder ranged from 0.02~3.0 μm, with the superfine particles almost accounting for 20%;2) There is a significant difference of flexural strength (P<0.05) between the groups with 1 450 ℃ and 1 600 ℃ sintering temperature and 1 200 ℃;3) There is a significant difference of flexural strength (P<0.05) between different zirconia volume fraction groups with the same sintering temperature, the ceramic matrix samples with higher nZrO2 (W) content had much better mechanical properties than those of pure α-Al2O3 ceramics.Conclusions:The studied nanometer α-Al2O3/nZrO2 powder was homogeously distributed within the matrix and had reasonable powder-size gradation to improve mechanical properties of ceramics.%目的:口腔全瓷修复体以其独特优越性受到医患青睐,但脆性问题一直限制其应用范围及使用可靠性.本研

  15. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  16. The use of luminescence techniques with ceramic materials for retrospective dosimetry

    International Nuclear Information System (INIS)

    Luminescence techniques are being used with ceramic materials to provide evaluations of integrated external gamma dose for dose reconstruction in populated areas contaminated by Chernobyl fallout. A range of suitable ceramics can be found associated with buildings: on the exterior surfaces (tiles), within walls (bricks) and within the interiors (porcelain fittings and tiles). Dose evaluations obtained using such samples provide information concerning the time-averaged incident gamma radiation field, average shielding factors and, with the aid of computational modelling techniques, dose estimates at external reference positions

  17. Advances in High Energy Materials (Review Paper

    Directory of Open Access Journals (Sweden)

    U. R. Nair

    2010-03-01

    Full Text Available Research and development efforts for realizing higher performance levels of high energy materials (HEMs are continued unabated all over the globe. Of late, it is becoming increasingly necessary to ensure that such materials are also eco-friendly. This has provided thrust to research in the area of force multiplying HEMs and compounds free from pollution causing components. Enhancement of the performance necessitates introduction of strained structure or increase in oxygen balance to achieve near stoichiometry. The search for environment friendly molecules is focused on chlorine free propellant compositions and lead free primary explosives. Energetic polymers offer added advantage of partitioning of energy and thus not necessitating the concentration of only solid components (HEMs and metal fuels in the formulations, to achieve higher performance, thereby leading to improvement in energetics without adversely affecting the processability and mechanical properties. During recent times, research in the area of insensitive explosives has received impetus particularly with the signature of STANAG. This paper gives a review of the all-round advances in the areas of HEMs encompassing oxidizers, high-energy dense materials, insensitive high-energy materials, polymers and plasticizers. Selected formulations based on these materials are also included.Defence Science Journal, 2010, 60(2, pp.137-151, DOI:http://dx.doi.org/10.14429/dsj.60.327

  18. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  19. Influence of Composite Phosphate Inorganic Antibacterial Materials Containing Rare Earth on Activated Water Property of Ceramics

    Institute of Scientific and Technical Information of China (English)

    梁金生; 梁广川; 祁洪飞; 吴子钊; 冀志江; 金宗哲

    2004-01-01

    Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of 17O-NMR for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.

  20. The Influence of Tool Composite's Structure During Process of Diamond Grinding of Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Gawlik Józef

    2014-12-01

    Full Text Available This paper presents the results of the tests performed during the grinding process of the ceramic materials: – polycrystalline ceramics (Zirconium ZrO2 and mono-crystalline ceramics (sapphire α-Al2O3 by the diamond tools. Studies have shown that the concentration (thickening of the tool composite changes the tool's pore structure when using suitable wetted adamantine additives. Such modified composite has positive impact on tribological properties of the subsurface layer of the machined components. This is manifested by the reduction of the surface roughness and reduction of the vibration amplitude of the coefficient of friction. The possibilities of the positive effects when using wetted additives on the tool's composite during the pressing (briquetting stage confirm the study results.

  1. Glass and glass–ceramic coatings, versatile materials for industrial and engineering applications

    Indian Academy of Sciences (India)

    Amitava Majumdar; Sunirmal Jana

    2001-02-01

    Among various coating systems for industrial and engineering applications, glass and glass–ceramic coatings have advantages of chemical inertness, high temperature stability and superior mechanical properties such as abrasion, impact etc as compared to other coating materials applied by thermal spraying in its different forms viz. PVD, CVD, plasma, etc. Besides imparting required functional properties such as heat, abrasion and corrosion resistance to suit particular end use requirements, the glass and glass–ceramic coatings in general also provide good adherence, defect free surface and refractoriness. Systematic studies covering the basic science of glass and glass–ceramic coatings, the functional properties required for a particular end-use along with the various fields of application have been reviewed in this paper.

  2. Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets.

    Science.gov (United States)

    Okada, Hajime; Tanaka, Momoko; Kiriyama, Hiromitsu; Nakai, Yoshiki; Ochi, Yoshihiro; Sugiyama, Akira; Daido, Hiroyuki; Kimura, Toyoaki; Yanagitani, Takagimi; Yagi, Hideki; Meichin, Noriyuki

    2010-09-15

    We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate. PMID:20847774

  3. Research on toughening mechanisms of alumina matrix ceramic composite materials improved by rare earth additive

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xihua; LIU Changxia; LI Musen; ZHANG Jianhua

    2008-01-01

    Mixed rare earth elements were incorporated into alumina ceramic materials. Hot-pressing was used to fabricate alumina matrix composites in nitrogen atmosphere protection. Microstructures and mechanical properties of the composites were tested. It was indicated that the bending strength and fracture toughness of alumina matrix ceramic composites sintered at 1550℃ and 28 Mpa for 30 min were improved evidently. Besides mixed rare earth elements acting as a toughening phase, AlTiC master alloys were also added in as sintering assistants, which could prompt the formation of transient liquid phase, and thus nitrides of rare earth elements were produced. All of the above were beneficial for improving the mechanical properties of alumina matrix ceramic composites.

  4. Advanced Materials Laboratory User Test Planning Guide

    Science.gov (United States)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  5. Precision Finishing Of Ceramics

    Science.gov (United States)

    Bifano, T. G.; Blake, P. N.; Dow, T. A.; Scattergood, R. O.

    1987-01-01

    The manufacture of advanced ceramic components requires high accuracy and repeatibility in the control of the fabrication process. Surface finish in the nanometer range and excellent figure accuracy can be achieved if material can be removed from the surface without causing brittle fracture. To define the mechanism of "ductile" material removal, a series of experiments were initiated involving two processes: single-point diamond turning and diamond-wheel grinding. The results indicate that at small depths of cut, using stiff, well controlled machine tools, ceramic materials like silicon, silicon carbide, and germanium can be machined in a ductile regime.

  6. DEVELOPMENT OF CRYSTALLINE CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Brinkman, K.

    2011-09-22

    The Savannah River National Laboratory (SRNL) is developing crystalline ceramic waste forms to incorporate CS/LN/TM high Mo waste streams consisting of perovskite, hollandite, pyrochlore, zirconolite, and powellite phase assemblages. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase crystalline ceramics. Fiscal Year 2011 (FY11) activities included (i) expanding the compositional range by varying waste loading and fabrication of compositions rich in TiO{sub 2}, (ii) exploring the processing parameters of ceramics produced by the melt and crystallize process, (iii) synthesis and characterization of select individual phases of powellite and hollandite that are the target hosts for radionuclides of Mo, Cs, and Rb, and (iv) evaluating the durability and radiation stability of single and multi-phase ceramic waste forms. Two fabrication methods, including melting and crystallizing, and pressing and sintering, were used with the intent of studying phase evolution under various sintering conditions. An analysis of the XRD and SEM/EDS results indicates that the targeted crystalline phases of the FY11 compositions consisting of pyrochlore, perovskite, hollandite, zirconolite, and powellite were formed by both press and sinter and melt and crystallize processing methods. An evaluation of crystalline phase formation versus melt processing conditions revealed that hollandite, perovskite, zirconolite, and residual TiO{sub 2} phases formed regardless of cooling rate, demonstrating the robust nature of this process for crystalline phase development. The multiphase ceramic composition CSLNTM-06 demonstrated good resistance to proton beam irradiation. Electron irradiation studies on the single phase CaMoO{sub 4} (a component of the multiphase waste form) suggested that this material exhibits stability to 1000 years at anticipated self-irradiation doses (2 x 10{sup 10}-2 x 10{sup 11} Gy), but that

  7. Ceramic materials for energy and environmental applications: Functionalizing of properties by tailored compositions

    DEFF Research Database (Denmark)

    Ivanova, Mariya; Ricote, Sandrine; Baumann, Stefan;

    2013-01-01

    protons, oxygen ions and/or electronic carriers, stability, etc. The present chapter will therefore consider the structural features of selected material classes, as well as the principles of transport in bulk and microporous solids. It will furthermore illustrate and discuss the effects of selected...... separation and ion/electron transport at the relevant operating conditions and stability ranges, improved electrical or ionic conductivities and permeation rates are required. That can be achieved by doping and substitution which are actors on a nano-scale that usually lead to macroscopic impacts. This...... additives and substituents on sinterability, electrical/electrochemical properties and stability of selected ceramic materials for energy and environmental applications. The material variety will cover ceramic materials with different crystal structures like fluorites, perovskites, pyrochlores, fergusonites...

  8. Status and perspective of the R and D on ceramic breeder materials for testing in ITER

    International Nuclear Information System (INIS)

    The main line of ceramic breeder materials research and development is based on the use of the breeder material in the form of pebble beds. At present, there are three candidate pebble materials (Li4SiO4, and two forms of Li2TiO3) for DEMO reactors that will be used for testing in ITER. This paper reviews the R and D of as-fabricated pebble materials against the blanket performance requirements and makes recommendations on necessary steps toward the qualification of these materials for testing in ITER

  9. Development and application of ferrite materials for low temperature co-fired ceramic technology

    International Nuclear Information System (INIS)

    Development and application of ferrite materials for low temperature co-fired ceramic (LTCC) technology are discussed, specifically addressing several typical ferrite materials such as M-type barium ferrite, NiCuZn ferrite, YIG ferrite, and lithium ferrite. In order to permit co-firing with a silver internal electrode in LTCC process, the sintering temperature of ferrite materials should be less than 950 °C. These ferrite materials are research focuses and are applied in many ways in electronics. (review - magnetism, magnetic materials, and interdisciplinary research)

  10. A review of candidate ceramic materials for use as heat shield tiles in a supercritical-water-cooled-reactor

    International Nuclear Information System (INIS)

    The proposed Canadian supercritical-water-cooled reactor (SCWR) utilizes a reactor shell made of a zirconium alloy insulated with a ceramic tile heat shield. The main consideration in the selection of a tile material will be resistance to corrosion in supercritical water and long term microstructure stability, in addition to thermal conductivity. This paper provides a review of the literature on corrosion behaviours of ceramic materials in supercritical water and ranks candidate ceramic materials accordingly. Materials reviewed include alumina, zirconia, silica glasses, silicon carbide, silicon nitride, sialon, mullite, and aluminum nitride. (author)

  11. Chemical, mineralogical and ceramic properties of kaolinitic materials from the Tresnuraghes mining district (Western Sardinia, Italy)

    OpenAIRE

    Dondi, Michele; Guarini, Guia; Ligas, Paola; Raimondo, Mariarosa; Palomba, Marcella; Uras, Ivo

    2001-01-01

    Kaolinitic materials crop out in the Tresnuraghes mining district (Western Sardinia, Italy). Three main kaolinitic deposits, located in the Patalza, Salamura and Su Fongarazzu areas, respectively, were investigated in order to assess their potential in the ceramic industry. The parent rock-types of this raw material are the Oligocene-Miocene rhyolitic-rhyodacitic ignimbrites. Chemical and mineralogical analyses were performed on representative samples of each deposit, by XRD and XRF methodolo...

  12. Mechanical behavior of polycrystalline ceramics: Brittle fracture of SiC-Si3N4 materials

    Science.gov (United States)

    Leipold, M. H.; Kapadia, C. M.; Kelkar, A. H.

    1974-01-01

    The first study area involved magnesium oxide and the role of anion impurities, while the second area was directed toward slow crack growth in silicon nitride-silicon carbide ceramics. The oxide program involved development of fabrication techniques for anion doped materials and evaluation of the role of these anions in the hot pressing response, grain boundary diffusion of nickel doped material, grain boundary microhardness, and grain growth.

  13. Advances in material capsule technology in HANARO

    International Nuclear Information System (INIS)

    A material capsule system has been developed for irradiation tests of non-fissile materials in HANARO. This capsule system has been actively utilized for various material irradiation tests requested by users from research institutes, universities, and the industries. Based on the accumulated experience and the user's sophisticated requirements, several advances in material capsule technologies were obtained recently for a more precise control and analysis of the neutron irradiation effect in HANARO. New instrumented capsule technologies for a more precise control of the irradiation temperature and fluence of a specimen, irrespective of the reactor operation, have been developed and out-pile tested. The OR/IP capsule technologies for an irradiation test in the HANARO OR and IP test holes with a relatively lower neutron flux than the CT and IR test holes have also been developed and in-pile tested, successfully. A high temperature irradiation technology up to 1000degC is under development. An evaluation of the DPA (Displacement Per Atom) and activation of irradiated specimens was attempted by using the SPECTOR and ORIGEN2 codes, respectively. A new fluence monitor with a decreased activity was designed to measure the thermal and fast neutron fluences of the irradiated specimens. A friction welded tube using STS304 and Al1050 alloys was introduced to prevent a coolant leakage into a capsule during a capsule cutting process after an irradiation. (author)

  14. Advances in material capsule technology in HANARO

    International Nuclear Information System (INIS)

    A material capsule system has been developed for irradiation tests of non fissile materials in HANARO. This capsule system has been actively utilized for various material irradiation tests requested by users from research institutes, universities, and the industries. Based on the accumulated experience and the user's sophisticated requirements, several advances in material capsule technologies were obtained recently for a more precise control and analysis of the neutron irradiation effect in HANARO. New instrumented capsule technologies for a more precise control of the irradiation temperature and fluence of a specimen, irrespective of the reactor operation, have been developed and out pile tested. The OR/IP capsule technologies for an irradiation test in the HANARO OR and IP test holes with a relatively lower neutron flux than the CT and IR test holes have also been developed and in pile tested, successfully. A high temperature irradiation technology up to 1000 .deg. C is under development. An evaluation of the DPA (Displacement Per Atom) and activation of irradiated specimens was attempted by using the SPECTOR and ORIGEN2 codes, respectively. A new fluence monitor with a decreased activity was designed to measure the thermal and fast neutron fluences of the irradiated specimens. A friction welded tube using STS304 and Al1050 alloys was introduced to prevent a coolant leakage into a capsule during a capsule cutting process after an irradiation

  15. The binding of lubricating films to ceramic and refractory materials

    International Nuclear Information System (INIS)

    In order to better understand the chemical bonding forces which control lubricating film stability and adhesion, the binding of lead and tin atoms on the ceramics alumina and silica was investigated by laser induced thermal evaporation combined with mass spectrometric detection of the evaporated species. The interaction between lead or tin and alumina and silica was studied as a function of coverage. The sticking probability for the interaction was measured and found to be temperature and coverage dependent. At low coverage the binding energy of lead to alumina and silica was determined as 237 and 246 kJ mol -1 respectively, while the binding energy of tin to alumina and silica is 313 and 331 kJ mol -1, respectively. A binding energy model based on thermochemical and crystallographic data is used to predict corresponding values which agree with the experimental values. In addition, the authors report temperature programmed desorption and/or decomposition (This patent describes) used to investigate the thermal and/or chemical stability of MoS2 films on molybdenum supports. The TPD spectra for S2 from Mos2 were analyzed, and activation energies found to be dependent on the film application technique

  16. Control and characterization of ceramics materials by photothermic radiometry

    International Nuclear Information System (INIS)

    This work studies, by photothermal radiometry, semi-transparent and scattering ceramic coatings with a model in an axisymetrical geometry. The equation of the radiative transfer is solved thanks to a ten flux-model in order to calculate the luminance field, the radiative flux and the source term with a method by finite differences or the Fourier transform. The term of the source is introduced into the heat equation to calculate the temperature field. Theoretical simulations show the influence of the experimental conditions and the characteristics of the sample. The optical properties, which are necessary for the preceding model, are determined by adjusting measures of hemispherical directional reflectivity and transmissivity. The samples are then analyzed by photothermal radiometry under random noise excitation, which allows us to determine their harmonic response (amplitude and phase) in a large range of modulation frequencies. The confrontation between theory and experimental presents a good agreement. The process allows us to characterize the properties of the coating, and to determine the thermal resistance equivalent to a flaw at the interface. (author). 105 refs., 112 figs., 11 annexes

  17. Development of a ceramic material to cover walls to be applied in diagnostic radiological protection

    International Nuclear Information System (INIS)

    This study aims to formulate a ceramic composition for wall coating seeking to contribute to the optimization of diagnosis rooms' shielding. The work was based on experimental measures of X-radiation attenuation (80 and 100 kV) using ceramic coating materials containing different ceramic bases (red, white, gres, stoneware porcelain tiles, etc). Among the appraised ceramic bases, the white gres presented better attenuation properties and it was considered the most suitable material for the targets of this work. Different formulations of white gres were studied and altered in order to obtain better attenuation properties. Simulations of ceramic compositions using gres coating were made maintaining the percentages of 12-20% clay; 6-18% kaolin; 12-25% phyllite; 8-14% quartz; 1018% feldspar; 32-40% pegmatite and 6-8% talc in the composition of the necessary raw-material. The quantitative and qualitative chemical compositions of these materials were also evaluated and the most common representative elements are SiO2, Fe2O3, Al2O3, CaO and Ti2O3. Formulations containing Pb and Ba oxides were studied, considering that CaO can be replaced by PbO or BaO. The attenuation properties for X-radiation were investigated by computer simulations considering the incident and transmitted X-ray spectra for the different studied compositions and they were compared to the properties of the reference materials Pb, Ba and BaSO4 (barite). The results obtained with the simulations indicated the formulated composition of gres ceramic base that presented better attenuation properties considering the X-ray energies used in diagnosis (80, 100 and 150 kV). Ceramic plates based on the formulated compositions that presented lower percentage differences related to Pb were experimentally produced and physically tested as wall coating and protecting barrier. Properties as flexion resistance module, density, load rupture, water absorption and X radiation attenuation were evaluated for all produced

  18. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  19. High temperature material characterization and advanced materials development

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-15

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division.

  20. Screening of advanced cladding materials and UN–U3Si5 fuel

    International Nuclear Information System (INIS)

    Highlights: • Screening methodology for advanced fuel and cladding. • Cladding candidates, except for silicon carbide, exhibit reactivity penalty versus zirconium alloy. • UN–U3Si5 fuels have the potential to exhibit reactor physics and fuel management performance similar to UO2. • Harder spectrum in the UN ceramic composite fuel increases transuranic build-up. • Fuel and cladding properties assumed in these assessments are preliminary. - Abstract: In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2–Zr fuel–cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN–U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN–U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN–U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2–Zr fuel–cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels

  1. Structural ceramic coatings in composite microtruss cellular materials

    Energy Technology Data Exchange (ETDEWEB)

    Bele, E.; Bouwhuis, B.A.; Codd, C. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada); Hibbard, G.D., E-mail: glenn.hibbard@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada)

    2011-09-15

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al{sub 2}O{sub 3} sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al{sub 2}O{sub 3} coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: {yields} A new type of metal/ceramic microtruss cellular composite has been created. {yields} Reinforcing sleeves of Al{sub 2}O{sub 3} were deposited on low density Al microtruss cores. {yields} Significant compressive strength increases were seen at virtually no weight penalty. {yields} Failure mechanisms were studied by electron microscopy and finite element analysis. {yields} Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al{sub 2}O{sub 3} coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 {mu}m thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  2. Structural ceramic coatings in composite microtruss cellular materials

    International Nuclear Information System (INIS)

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al2O3 sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al2O3 coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: → A new type of metal/ceramic microtruss cellular composite has been created. → Reinforcing sleeves of Al2O3 were deposited on low density Al microtruss cores. → Significant compressive strength increases were seen at virtually no weight penalty. → Failure mechanisms were studied by electron microscopy and finite element analysis. → Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al2O3 coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 μm thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  3. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  4. Radiometric analysis of raw materials and end products in the Turkish ceramics industry

    International Nuclear Information System (INIS)

    This study presents the findings of radiometric analysis carried out to determine the activity concentrations of natural radionuclides in raw materials (clay, kaolin, quartz, feldspar, dolomite, alumina, bauxite, zirconium minerals, red mud and frit) and end products (glazed ceramic wall and floor tiles) in the Turkish ceramics industry. Hundred forty-six samples were obtained from various manufacturers and suppliers throughout the country and analyzed using gamma-ray spectrometer with HPGe detectors. Radiological parameters such as radium equivalent activity, activity concentration index and alpha index were calculated to assess the radiological aspects of the use of the ceramic end products as decorative or covering materials in construction sector. Results obtained were examined in the light of the relevant national and international legislation and guidance and compared with the results of similar studies reported in different countries. The results suggest that the use of ceramic end product samples examined in the construction of dwellings, workplaces and industrial buildings in Turkey is unlikely to give rise to any significant radiation exposure to the occupants.

  5. Thermodynamic analysis of chemical stability of ceramic materials in hydrogen-containing atmospheres at high temperatures

    Science.gov (United States)

    Misra, Ajay K.

    1990-01-01

    The chemical stability of several ceramic materials in hydrogen-containing environments was analyzed with thermodynamic considerations in mind. Equilibrium calculations were made as a function of temperature, moisture content, and total system pressure. The following ceramic materials were considered in this study: SiC, Si3N4, SiO2, Al2O3, mullite, ZrO2, Y2O3, CaO, MgO, BeO, TiB2, TiC, HfC, and ZrC. On the basis of purely thermodynamic arguments, upper temperature limits are suggested for each material for long-term use in H2-containing atmospheres.

  6. Materials for advanced ultrasupercritical steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Saha, Deepak [Energy Industries Of Ohio Inc., Independence, OH (United States); Thangirala, Mani [Energy Industries Of Ohio Inc., Independence, OH (United States); Booras, George [Energy Industries Of Ohio Inc., Independence, OH (United States); Powers, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Riley, Colin [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  7. Influence of the supporting die structures on the fracture strength of all-ceramic materials.

    Science.gov (United States)

    Yucel, Munir Tolga; Yondem, Isa; Aykent, Filiz; Eraslan, Oğuz

    2012-08-01

    This study investigated the influence of the elastic modulus of supporting dies on the fracture strengths of all-ceramic materials used in dental crowns. Four different types of supporting die materials (dentin, epoxy resin, brass, and stainless steel) (24 per group) were prepared using a milling machine to simulate a mandibular molar all-ceramic core preparation. A total number of 96 zirconia cores were fabricated using a CAD/CAM system. The specimens were divided into two groups. In the first group, cores were cemented to substructures using a dual-cure resin cement. In the second group, cores were not cemented to the supporting dies. The specimens were loaded using a universal testing machine at a crosshead speed of 0.5 mm/min until fracture occurred. Data were statistically analyzed using two-way analysis of variance and Tukey HSD tests (α = 0.05). The geometric models of cores and supporting die materials were developed using finite element method to obtain the stress distribution of the forces. Cemented groups showed statistically higher fracture strength values than non-cemented groups. While ceramic cores on stainless steel dies showed the highest fracture strength values, ceramic cores on dentin dies showed the lowest fracture strength values among the groups. The elastic modulus of the supporting die structure is a significant factor in determining the fracture resistance of all-ceramic crowns. Using supporting die structures that have a low elastic modulus may be suitable for fracture strength tests, in order to accurately reflect clinical conditions. PMID:21845404

  8. A bulk metal/ceramic composite material with a cellular structure

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhankui; YAO Kefu; LI Jingfeng

    2006-01-01

    A bulk metal/ceramic composite material with a honeycomb-like micro-cell structure has been prepared by sintering the spherical Al90Mn9Ce1 alloy powders clad by Al2O3 nano-powder with the spark plasma sintering (SPS) technique. The as-prepared material consists of Al90Mn9Ce1 alloy cell and closed Al2O3 ceramic cell wall. The diameter of the cells is about 20―40 μm, while a thickness of the cell wall is about 1―2 μm. The ultimate compressive strength of the as-sintered materials is about 514 MPa, while its fracture strain is up to about 0.65 %. This composite material might possess good anti-corrosion, thermal endurance and other potential properties due to its unique microstructure. The result shows that the Al90Mn9Ce1/Al2O3 composite powders can be sintered by spark plasma sintering technique despite the large difference in their sintering temperature. This work offers a way of designing and preparing metal/ceramic composite material with functional property.

  9. Radioactive waste immobilization using ion-exchange materials which form glass-ceramics

    International Nuclear Information System (INIS)

    This invention provides a process for the production of a glass-ceramic composite product in which the crystalline phase is thermodynamically stable and compatible with the host rock. The process comprises: (a) passing liquid radioactive waste materials through an inorganic ion exchange medium; (b) heating the ion exchange materials with sufficient glass-forming materials to form a melt; (c) cooling the melt to form a glass; and (d) heat treating the glass to crystallize sphene crystallites in a protective glassy matrix that contains the radioactive materials. There is also provided a cartridge containing the ion exchange medium

  10. Bonding values of two contemporary ceramic inlay materials to dentin following simulated aging

    Science.gov (United States)

    Khalil, Ashraf Abdelfattah

    2015-01-01

    PURPOSE To compare the push-out bond strength of feldspar and zirconia-based ceramic inlays bonded to dentin with different resin cements following simulated aging. MATERIALS AND METHODS Occlusal cavities in 80 extracted molars were restored in 2 groups (n=40) with CAD/CAM feldspar (Vitablocs Trilux forte) (FP) and zirconia-based (Ceramill Zi) (ZR) ceramic inlays. The fabricated inlays were luted in 2 subgroups (n=20) with either etch-and-bond (RelyX Ultimate Clicker) (EB) or self-adhesive (RelyX Unicem Aplicap) (SA) resin cement. Ten inlays in each subgroup were subjected to 3,500 thermal cycles and 24,000 loading cycles, while the other 10 served as control. Horizontal 3 mm thick specimens were cut out of the restored teeth for push out bond strength testing. Bond strength data were statistically analyzed using 1-way ANOVA and Tukey's comparisons at α=.05. The mode of ceramic-cement-dentin bond failure for each specimen was also assessed. RESULTS No statistically significant differences were noticed between FP and ZR bond strength to dentin in all subgroups (ANOVA, P=.05113). No differences were noticed between EB and SA (Tukey's, P>.05) bonded to either type of ceramics. Both adhesive and mixed modes of bond failure were dominant for non-aged inlays. Simulated aging had no significant effect on bond strength values (Tukey's, P>.05) of all ceramic-cement combinations although the adhesive mode of bond failure became more common (60-80%) in aged inlays. CONCLUSION The suggested cement-ceramic combinations offer comparable bonding performance to dentin substrate either before or after simulated aging that seems to have no adverse effect on the achieved bond. PMID:26816574

  11. Tensile Properties of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2009-01-01

    Roč. 409, - (2009), s. 168-175. ISSN 1013-9826. [Fractography of Advanced Ceramics /3./. Stará Lesná, 07.09.2008-10.09.2008] R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : tensile test * ceramics foam * open porosity * tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  12. Application of advanced large-scale ceramic melter technology for HLLW vitrification

    International Nuclear Information System (INIS)

    This paper outlines the current status and application of KIT-INE's advanced large-scale liquid-fed Joule-heated ceramic melter technology. The design of the major sub-components of the melter is briefly described and the progress addressed. The application of the technique in an industrial-scale facility is illustrated. The construction of this facility is scheduled to start in the year 2012. Also given are technical test results of a waste glass developed for use in this facility which will vitrify high sodium/high sulfur bearing HLLW. The plant has a design throughput of 65 l/h feed corresponding to a glass production rate of about 41 kg/h. (author)

  13. Monolithic ceramics

    Science.gov (United States)

    Herbell, Thomas P.; Sanders, William A.

    1992-01-01

    A development history and current development status evaluation are presented for SiC and Si3N4 monolithic ceramics. In the absence of widely sought improvements in these materials' toughness, and associated reliability in structural applications, uses will remain restricted to components in noncritical, nonman-rated aerospace applications such as cruise missile and drone gas turbine engine components. In such high temperature engine-section components, projected costs lie below those associated with superalloy-based short-life/expendable engines. Advancements are required in processing technology for the sake of fewer and smaller microstructural flaws.

  14. Multimillion atom molecular dynamics simulations of glasses and ceramic materials

    International Nuclear Information System (INIS)

    Molecular dynamics simulations are a powerful tool for studying physical and chemical phenomena in materials. In these lectures we shall review the molecular dynamics method and its implementation on parallel computer architectures. Using the molecular dynamics method we will study a number of materials in different ranges of density, temperature, and uniaxial strain. These include structural correlations in silica glass under pressure, crack propagation in silicon nitride films, sintering of silicon nitride nanoclusters, consolidation of nanophase materials, and dynamic fracture. Multimillion atom simulations of oxidation of aluminum nanoclusters and nanoindentation in silicon nitride will also be discussed. (c) 1999 American Institute of Physics

  15. Advanced neutron source materials surveillance program

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) will be composed of several different materials, one of which is 6061-T6 aluminum. Among other components, the reflector vessel and the core pressure boundary tube (CPBT), are to be made of 6061-T6 aluminum. These components will be subjected to high thermal neutron fluences and will require a surveillance program to monitor the strength and fracture toughness of the 6061-T6 aluminum over their lifetimes. The purpose of this paper is to explain the steps that were taken in the summer of 1994 toward developing the surveillance program. The first goal was to decide upon standard specimens to use in the fracture toughness and tensile testing. Second, facilities had to be chosen for specimens representing the CPBT and the reflector vessel base, weld, and heat-affected-zone (HAZ) metals. Third, a timetable had to be defined to determine when to remove the specimens for testing

  16. Thermal fatigue durability for advanced propulsion materials

    Science.gov (United States)

    Halford, Gary R.

    1989-01-01

    A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.

  17. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  18. NATO Conference on Materials for Advanced Batteries

    CERN Document Server

    Broadhead, J; Steele, B

    1980-01-01

    The idea of a NATO Science Committee Institute on "Materials for Advanced Batteries" was suggested to JB and DWM by Dr. A. G. Chynoweth. His idea was to bring together experts in the field over the entire spectrum of pure research to applied research in order to familiarize everyone with potentially interesting new systems and the problems involved in their development. Dr. M. C. B. Hotz and Professor M. N. Ozdas were instrumental in helping organize this meeting as a NATO Advanced Science Institute. An organlzlng committee consisting of the three of us along with W. A. Adams, U. v Alpen, J. Casey and J. Rouxel organized the program. The program consisted of plenary talks and poster papers which are included in this volume. Nearly half the time of the conference was spent in study groups. The aim of these groups was to assess the status of several key aspects of batteries and prospects for research opportunities in each. The study groups and their chairmen were: Current status and new systems J. Broadhead Hig...

  19. Tempered glass and thermal shock of ceramic materials

    Science.gov (United States)

    Bunnell, L. Roy

    1992-01-01

    A laboratory experiment is described that shows students the different strengths and fracture toughnesses between tempered and untempered glass. This paper also describes how glass is tempered and the materials science aspects of the process.

  20. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  1. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    International Nuclear Information System (INIS)

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x1020 n/cm2 and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 1010 Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x1020 n/cm2 and that it decays to about 1/100 in a year. (author)

  2. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Taiju; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Motohashi, Yoshinobu [Ibaraki Univ., Mito (Japan)

    2000-05-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x10{sup 20} n/cm{sup 2} and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 10{sup 10} Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x10{sup 20} n/cm{sup 2} and that it decays to about 1/100 in a year. (author)

  3. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    Science.gov (United States)

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-04-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

  4. Development of advanced pump impeller fabrication technology using direct nano- ceramic dispersion casting for long time erosion durability

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Jin Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2008-09-15

    Many components of pump impeller of nuclear power plants is generally made of stainless steel and Al-bronze with superior corrosion resistance to sea water. However, they should be replaced by one- to five-year period because of material damage by a very big cavitation impact load, even though their designed durability is twenty years. Especially, in case of Young-Gwang nuclear power plant located at the west sea, damage of components of pump impeller is so critical due to the additional damage by solid particle erosion and hence their replacement period is very short as several months compared to other nuclear power plants. In addition, it is very difficult to maintain and repair the components of pump impeller since there is no database on the exact durability and damage mechanism. Therefore, in this study, fabrication technology of new advanced materials modified by dispersion of nano-carbide and -oxide ceramics into the matrix is developed first. Secondly, technology to estimate the dynamic damage by solid particle erosion is established and hence applied to the prediction of the service life of the components of pump impeller.

  5. Thermo-mechano-chemical stability of ceramic materials during the electrowinning process using liquid metal electrodes in molten salts

    International Nuclear Information System (INIS)

    Pyroprocessing, which results in proliferation resistance, shows promise as an alternative to wet processing in the recycling of transuranics. However, the ceramic crucible used in the electrowinning process poses an issue during pyroprocessing. The crucible is chemically unstable and prone to thermal fatigue. In this study, the thermodynamic simulation software HSC (enthalpy, entropy and heat capacity) Chemistry was employed to evaluate the chemical stabilities of different ceramic crucibles containing liquid cadmium as well as liquid bismuth cathodes, which also contained rare earth elements and lithium. The chemical stabilities were experimentally validated by measuring the contact angles between the liquid cathode (LC) materials and four ceramic materials (Al2O3, MgO, Y2O3, and BeO) in situ. The infiltration depths of the liquid bismuth cathode elements were measured using X-ray photoelectron spectroscopy. To determine the Weibull distributions of the investigated ceramics, thermal fatigue tests were performed using plates of the ceramics. (author)

  6. Influence of different post core materials on the color of Empress 2 full ceramic crowns

    Institute of Scientific and Technical Information of China (English)

    GE Jing; WANG Xin-zhi; FENG Hai-lan

    2006-01-01

    Background For esthetic consideration, dentin color post core materials were normally used for all-ceramic crown restorations. However, in some cases, clinicians have to consider combining a full ceramic crown with a metal post core. Therefore, this experiment was conducted to test the esthetical possibility of applying cast metal post core in a full ceramic crown restoration.Methods The color of full ceramic crowns on gold and Nickel-Chrome post cores was compared with the color of the same crowns on tooth colored post cores. Different try-in pastes were used to imitate the influence of a composite cementation on the color of different restorative combinations. The majority of patients could not detect any color difference less than △E 1.8 between the two ceramic samples. So, △E 1.8 was taken as the objective evaluative criterion for the evaluation of color matching and patients' satisfaction.Results When the Empress 2 crown was combined with the gold alloy post core, the color of the resulting material was similar to that of a glass fiber reinforced resin post core (△E = 0.3). The gold alloy post core and the try-in paste did not show a perceptible color change in the full ceramic crowns, which indicated that the color of the crowns might not be susceptible to change between lab and clinic as well as during the process of composite cementation. Without an opaque covering the Ni-Cr post core would cause an unacceptable color effect on the crown (△E = 2.0), but with opaque covering, the color effect became more clinically satisfactory (△E=1.8).Conclusions It may be possible to apply a gold alloy post core in the Empress 2 full ceramic crown restoration when necessary. If a non-extractible Ni-Cr post core exists in the root canal, it might be possible to restore the tooth with an Empress 2 crown after coveting the labial surface of the core with one layer of opaque resin cement.

  7. Tensile behavior of glass/ceramic composite materials at elevated temperatures

    Science.gov (United States)

    Mandell, J. F.; Grande, D. H.; Jacobs, J.

    1987-01-01

    This paper describes the tensile behavior of high-temperature composite materials containing continuous Nicalon ceramic fiber reinforcement and glass and glass/ceramic matrices. The longitudinal properties of these materials can approach theoretical expectations for brittle matrix composites, failing at a strength and ultimate strain level consistent with those of the fibers. The brittle, high-modulus matrices result in a nonlinear stress-strain curve due to the onset of stable matrix cracking at 10 to 30 percent of the fiber strain to failure, and at strains below this range in off-axis plies. Current fibers and matrices can provide attractive properties well above 1000 C, but composites experience embrittlement in oxidizing atmospheres at 800 to 1000 C due to oxidation of a carbon interface reaction layer.The oxidation effect greatly increases the interface bond strength, causing composite embrittlement.

  8. Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes

    Science.gov (United States)

    Hochen, R.; Justie, B.

    1976-01-01

    The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.

  9. EXOTIC-7: irradiation of ceramic breeder materials to high lithium burnup

    International Nuclear Information System (INIS)

    The EXOTIC-7 irradiation experiment in the high flux reactor (HFR) has been completed. Its aim has been to investigate the effects of high lithium-burnup on the mechanical stability and tritium release characteristics of candidate ceramic breeder materials, originating from the fusion programmes of CEA, FZK, ENEA, AECL and ECN. The tested ceramic breeder materials were pellets of Li2ZrO3, LiAlO2 and Li8ZrO6 and pebbles of Li4SiO4 and Li2ZrO3, with a variety of characteristics, like grain size and porosity. The test matrix provided the simultaneous irradiation of eight independent capsules with on-line tritium monitoring. Two capsules contained a mixture of Li4SiO4 and beryllium pebbles. The experimental design, sample loading and main irradiation parameters are described. Some PIE results and analysis of in-situ tritium release behaviour are presented. (orig.)

  10. Environmental and economic aspects of using marble fine waste in the manufacture of facing ceramic materials

    Directory of Open Access Journals (Sweden)

    Zemlyanushnov Dmitriy Yur'evich

    2014-09-01

    Full Text Available This work considers economic expediency of using marble fine waste in facing ceramic materials manufacture by three-dimensional coloring method. Adding marble fine waste to the charge mixture reduces the production cost of the final product. This waste has a positive impact on the intensification of drying clay rocks and raw as a whole, which increases production efficiency. Using marble fine waste as a coloring admixture makes it possible to manufacture more environmentally friendly construction material with the use of wastes of hazard class 3 instead of class 4. At the same time, disposal areas and environmental load in the territories of mining and marble processing reduce significantly. Replacing ferrous pigments with manganese oxide for marble fine waste reduces the cost of the final product and the manufacture of facing ceramic brick of a wide range of colors - from dark brown to yellow.

  11. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    Science.gov (United States)

    Jeong, Woo Yun

    2013-06-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  12. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  13. A method for developing design diagrams for ceramic and glass materials using fatigue data

    Science.gov (United States)

    Heslin, T. M.; Magida, M. B.; Forrest, K. A.

    1986-01-01

    The service lifetime of glass and ceramic materials can be expressed as a plot of time-to-failure versus applied stress whose plot is parametric in percent probability of failure. This type of plot is called a design diagram. Confidence interval estimates for such plots depend on the type of test that is used to generate the data, on assumptions made concerning the statistical distribution of the test results, and on the type of analysis used. This report outlines the development of design diagrams for glass and ceramic materials in engineering terms using static or dynamic fatigue tests, assuming either no particular statistical distribution of test results or a Weibull distribution and using either median value or homologous ratio analysis of the test results.

  14. Synthesis of steel slag ceramics:chemical composition and crystalline phases of raw materials

    Institute of Scientific and Technical Information of China (English)

    Li-hua Zhao; Wei Wei; Hao Bai; Xu Zhang; Da-qiang Cang

    2015-01-01

    Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO–Al2O3–SiO2 and CaO–MgO–SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite,α-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.

  15. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    Science.gov (United States)

    Wananuruksawong, R.; Jinawath, S.; Padipatvuthikul, P.; Wasanapiarnpong, T.

    2011-10-01

    Silicon nitride (Si3N4) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si3N4 ceramic as a dental core material. The white Si3N4 was prepared by pressureless sintering at relative low sintering temperature of 1650 °C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si3N4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si3N4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y2O3 - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si3N4 specimens, the firing was performed in electric tube furnace between 1000-1200°C. The veneered specimens fired at 1100°C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98×10-6 °C-1, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  16. Vibronic Jahn-Teller coupling and structural-systematic aspects of superconductivity in ceramic materials

    International Nuclear Information System (INIS)

    The following subjects were mainly investigated: 1. Development of a concept concerning the mechanism of superconductivity in ceramic oxides from the standpoint of solid state chemistry. An important criterion for generating superconductivity in ceramic oxides seems to be the overlap of a narrow, weakly antibonding and metal-centred band with a very broad band of predominant oxygen character in the Fermi region. Spectroscopic investigations are in favour of such a concept and additionally indicate a vibronic coupling mechanism of the Jahn-Teller- or pseudo-Jahn-Teller type. 2. Synthesis of potentially superconducting ceramic oxides. A series of oxidic compounds with transition metal ions (Ni2+/Ni3+/Ni4+, Mn3+/Mn4+, Cu2+/Cu3+ etc.) and with cations, possessing a lone electron pair (Sb3+, Bi3+, Pb2+, Tl+) was prepared (K2NiF4-structure). The investigation of these ceramic materials led to interesting insight into the nature of the M-O-bond and the cooperative interactions between the metal ion centres; new superconductors could not be synthesized, however. (orig.)

  17. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  18. Calculation of the Ceramic Material Parameters from the Destructions

    Czech Academy of Sciences Publication Activity Database

    Fuis, Vladimír; Houfek, Martin

    Rio de Janeiro : SBPMat, 2009. s. 1-1. ISSN 1983-7542. [ICAM 2009. 20.09.2009-25.09.2009, Rio de Janeiro] Institutional research plan: CEZ:AV0Z20760514 Keywords : weibull * material parameters * destruction tests Subject RIV: BO - Biophysics http://www.icam2009.com/

  19. The production of advanced glass ceramic HLW forms using cold crucible induction melter

    International Nuclear Information System (INIS)

    Cold Crucible Induction Melters (CCIM) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in a near future. Unlike the existing Joule-Heated Melters (JHM) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIM offers unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. It is concluded that glass ceramic waste forms that are tailored to immobilize fission products of HLW can be can be made from the HLW processed with the CCIM. The advantageous higher temperatures reached with the CCIM and unachievable with JHM allows the lanthanides, alkali, alkaline earths, and molybdenum to dissolve into a molten glass. Upon controlled cooling they go into targeted crystalline phases to form a glass ceramic waste form with higher waste loadings than achievable with borosilicate glass waste forms. Natural cooling proves to be too fast for the formation of all targeted crystalline phases

  20. Life prediction methodology for ceramic components of advanced vehicular heat engines: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Khandelwal, P.K.; Provenzano, N.J.; Schneider, W.E. [Allison Engine Co., Indianapolis, IN (United States)

    1996-02-01

    One of the major challenges involved in the use of ceramic materials is ensuring adequate strength and durability. This activity has developed methodology which can be used during the design phase to predict the structural behavior of ceramic components. The effort involved the characterization of injection molded and hot isostatic pressed (HIPed) PY-6 silicon nitride, the development of nondestructive evaluation (NDE) technology, and the development of analytical life prediction methodology. Four failure modes are addressed: fast fracture, slow crack growth, creep, and oxidation. The techniques deal with failures initiating at the surface as well as internal to the component. The life prediction methodology for fast fracture and slow crack growth have been verified using a variety of confirmatory tests. The verification tests were conducted at room and elevated temperatures up to a maximum of 1371 {degrees}C. The tests involved (1) flat circular disks subjected to bending stresses and (2) high speed rotating spin disks. Reasonable correlation was achieved for a variety of test conditions and failure mechanisms. The predictions associated with surface failures proved to be optimistic, requiring re-evaluation of the components` initial fast fracture strengths. Correlation was achieved for the spin disks which failed in fast fracture from internal flaws. Time dependent elevated temperature slow crack growth spin disk failures were also successfully predicted.

  1. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  2. Tensile Strength Measurements of Ceramic Materials at High Rates of Strain

    OpenAIRE

    Gálvez, F.; Rodríguez, J.; V. Sánchez

    1997-01-01

    Ceramic materials are usually assumed linear elastic up to failure and the failure criterion is accustomed to be a limit condition related to the tensile strength. Due to the difficulties associated with the uniaxial tensile test, some different alternatives have been posed such as Brazilian tests and spalling test of long bars. In this work, a comparative study of these methods has been broached. Specimens of alumina and silicon carbide have been tested at different strain rates, showing the...

  3. Environmental and economic aspects of using marble fine waste in the manufacture of facing ceramic materials

    OpenAIRE

    Zemlyanushnov Dmitriy Yur'evich; Sokov Viktor Nikolaevich; Oreshkin Dmitriy Vladimirovich

    2014-01-01

    This work considers economic expediency of using marble fine waste in facing ceramic materials manufacture by three-dimensional coloring method. Adding marble fine waste to the charge mixture reduces the production cost of the final product. This waste has a positive impact on the intensification of drying clay rocks and raw as a whole, which increases production efficiency. Using marble fine waste as a coloring admixture makes it possible to manufacture more environmentally friendly construc...

  4. Studies of dynamic contact of ceramics and alloys for advanced heat engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gaydos, P.A.; Dufrane, K.F. [Battelle, Columbus, OH (United States)

    1993-06-01

    Advanced materials and coatings for low heat rejection engines have been investigated for almost a decade. Much of the work has concentrated on the critical wear interface between the piston ring and cylinder liner. Simplified bench tests have identified families of coatings with high temperature wear performance that could meet or exceed that of conventional engine materials at today`s operating temperatures. More recently, engine manufacturers have begun to optimize material combinations and manufacturing processes so that the materials not only have promising friction and wear performance but are practical replacements for current materials from a materials and manufacturing cost standpoint. In this study, the advanced materials supplied by major diesel engine manufacturers were evaluated in an experimental apparatus that simulates many of the in-cylinder conditions of a low heat rejection diesel engine. Results include ring wear factors and average dynamic friction coefficients measured at intervals during the test. These results are compared with other advanced materials tested in the past as well as the baseline wear of current engines. Both fabricated specimens and sections of actual ring and cylinder liners were used in the testing. Observations and relative friction and wear performance of the individual materials are provided.

  5. Composite magnetostrictive materials for advanced automotive magnetomechanical sensors

    International Nuclear Information System (INIS)

    In this paper we present the development of a composite magnetostrictive material for automotive applications. The material is based on cobalt ferrite, CoO centre dot Fe2O3, and contains a small fraction of metallic matrix phase that serves both as a liquid phase sintering aid during processing and enhances the mechanical properties over those of a simple sintered ferrite ceramic. In addition the metal matrix makes it possible to braze the material making the assembly of a sensor relatively simple. The material exhibits good sensitivity and should have high corrosion resistance while at the same time it is low cost

  6. Advanced Industrial Materials Program. Annual progress report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stooksbury, F. [comp.

    1994-06-01

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  7. PRELIMINARY STUDY OF CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Billings, A.; Brinkman, K.; Marra, J.

    2010-09-22

    The Savannah River National Laboratory (SRNL) developed a series of ceramic waste forms for the immobilization of Cesium/Lanthanide (CS/LN) and Cesium/Lanthanide/Transition Metal (CS/LN/TM) waste streams anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores, zirconolite, and other minor metal titanate phases. Identification of excess Al{sub 2}O{sub 3} via X-ray Diffraction (XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. XRD and SEM/EDS results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD, and had phase assemblages that were closer to the initial targets. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms. Initial studies of radiation damage tolerance using ion beam irradiation at Los

  8. Calculation of weibull material parameters of the ceramic head

    Czech Academy of Sciences Publication Activity Database

    Fuis, Vladimír; Hlavoň, Pavel; Návrat, Tomáš

    Gliwice : Wydawnictwo Katerdry Mechaniki Stosowanej, 2006 - (Gutkowski, W.), s. 15-18 ISBN 83-60102-30-9. [Modelling and optimization of physical systems. Wisla (PL), 16.06.2006-18.06.2006] R&D Projects: GA ČR(CZ) GP101/04/P037 Institutional research plan: CEZ:AV0Z20760514 Keywords : Weibul material parameters * FEM * bioceramics Subject RIV: BO - Biophysics

  9. Synergistically toughening effect of SiC whiskers and nanoparticles in Al2O3-based composite ceramic cutting tool material

    Science.gov (United States)

    Liu, Xuefei; Liu, Hanlian; Huang, Chuanzhen; Wang, Limei; Zou, Bin; Zhao, Bin

    2016-06-01

    In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiCnp advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vol% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730±95 MPa and fracture toughness is 5.6±0.6 MPa·m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.

  10. Effect of glycine pretreatment on the shear bond strength of a CAD/CAM resin nano ceramic material to dentin

    OpenAIRE

    Ceci, Matteo; Pigozzo, Marco; Scribante, Andrea; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Poggio, Claudio

    2016-01-01

    Background The purpose of this study was to evaluate the effect of glycine pretreatment on the shear bond strength between dentin and a CAD/CAM resin nano ceramic material (LavaTM Ultimate Restorative), bonded together with adhesive cements using three different luting protocols (total-etch; self-etch; self-adhesive). Material and Methods Thirty cylinders were milled from resin nano ceramic blocks with CAD/CAM technology. The cylinders were subsequently cemented to the exposed dentin of 30 bo...

  11. Effect of glycine pretreatment on the shear bond strength of a CAD/CAM resin nano ceramic material to dentin

    OpenAIRE

    Ceci, Matteo; Pigozzo, Marco; Scribante, Andrea; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Poggio, Claudio

    2016-01-01

    Background: The purpose of this study was to evaluate the effect of glycine pretreatment on the shear bond strength between dentin and a CAD/CAM resin nano ceramic material (LavaTM Ultimate Restorative), bonded together with adhesive cements using three different luting protocols (total-etch; self-etch; self-adhesive). Material and Methods: Thirty cylinders were milled from resin nano ceramic blocks with CAD/CAM technology. The cylinders were subsequently cemented...

  12. Review of micromachining of ceramics by etching

    Institute of Scientific and Technical Information of China (English)

    H.T.TING; K.A.ABOU-EL-HOSSEIN; H.B.CHUA

    2009-01-01

    In the last two decades, there has been an enormous surge in interest in ceramic materials and, as a result, there have been significant advances in their development and applications. Their inherent properties, such as capability of operating at temperatures far above metals, high level of hardness and toughness, low coefficient of thermal expansion and high thermal conductivity rendered ceramics to be one of the leading engineering materials. Many research works have been conducted in the past few years on machining of advanced ceramics using different processing methods in order to obtain a better surface roughness, higher material removal rate and improved tool life. Micromachining using chemical etching is one of those methods that do not involve the problem of tool life and direct tool-work piece contact. However, only a few research works have been done on micromachining of ceramics using chemical etching. Hence, study of chemical machining of advanced ceramics is still needed as the process has found wide application in the industry because of its relative low operating costs. In this work, we summarize the recent progresses in machining of different types of advanced ceramics, material processing methods such as wet etching and dry etching, and finally the prospects for control of material removal rate and surface quality in the process of ceramic micromachining.

  13. Evaluation of ceramic and polymeric materials for use in engineered barrier systems

    International Nuclear Information System (INIS)

    Ceramic materials evaluated in the screening studies were Al2O3 (99.8%), mullite, vitreous silica, BaTiO3, CaTiO3, CaZrO3, CaTiSiO5, TiO2, ZrSiO4, basalt, Pyroceram 9617, and Marcor code 9658 machinable glass ceramic. One grade of graphite (Toyotanso IB-11) was also evaluated. Demineralized water, a synthetic Hanford groundwater, and a synthetic NaCl brine solution were used in the screening tests. Demineralized water was used in all five of the leach tests, but the other solutions were only used in the static leach tests at 150 and 2500C. Based on the results obtained, graphite appears to be the most leach resistant of the materials tested with the two grades of alumina being the best of the ceramic materials. Titanium dioxide and ZrO2 are the most leach resistant of the remaining materials. Candidate materials from all three general classes of polymers (thermoplastics, thermosets, and elastomers) were considered in the selection of materials. Selected groups of polymers were tested in the flowing autoclave at 150, 200, and 2500C with some polymers being further tested at the next higher temperature. Next, selected samples were exposed to gamma radiation. These samples were then submitted for tensile and elongation measurements. Selected samples which appeared promising from both autoclave and radiation testing were further evaluated by impact tests. The materials that appeared most promising after autoclave testing were the EPDM rubbers, polyphenylene sulfide, poly(ethylene-tetrafluoroethylene) copolymer, and polyfurfuryl alcohol. The radiation dose had little effect on polyfurfuryl alcohol and polyphenylene sulfide samples; very significant decreases in elongation were observed for the fluorocarbon copolymer and the EPDM rubbers. While the polyphenylene sulfide and polyfurfuryl alcohol showed little change in impact strength, poly(ethylene-tetrafluoroethylene) decreased in impact strength

  14. Theoretical analysis of material removal mechanisms in pulsed laser fusion cutting of ceramics

    International Nuclear Information System (INIS)

    It is well known that the efficiency of material removal mechanisms has a crucial influence on the performance and quality of the laser cutting process. However, they are very difficult to study since the physical processes and parameters which govern them are quite complicated to observe and measure experimentally. For this reason, the development of theoretical models to analyse the material removal mechanisms is very important for understanding the characteristics and influence of these processes. In this paper, a theoretical model of the pulsed laser fusion cutting of ceramics is presented. The material removal mechanisms from the cutting front are modelled under the assumption that the ceramic material may be, simultaneously, melted and evaporated by the laser radiation. Therefore, three ejection mechanisms are investigated together: ejection of molten material by the assist gas, evaporation of the liquid and ejection of molten material due to the recoil pressure generated by the evaporation from the cutting front. The temporal evolution of the material removal mechanisms and the thickness of the molten layer are solved for several laser pulse modes. Theoretical results are compared with experimental observations to validate the conclusions regarding the influence of frequency and pulse length on the cutting process

  15. DEVELOPMENT OF CERAMIC WASTE FORMS FOR AN ADVANCED NUCLEAR FUEL CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Billings, A.; Brinkman, K.; Fox, K.

    2010-11-30

    A series of ceramic waste forms were developed and characterized for the immobilization of a Cesium/Lanthanide (CS/LN) waste stream anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3} and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores and other minor metal titanate phases. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. Identification of excess Al{sub 2}O{sub 3} via XRD and SEM/EDS in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms.

  16. Assessment of advanced materials development in the European Fusion long-term Technology Programme. Report to the FTSC-P by the Advanced Materials Working Group

    International Nuclear Information System (INIS)

    In view of the transition to the next, fifth, framework program, and the resources available, the European Commission (EC) requested to launch an assessment for the Advanced Materials area, as part of the European Fusion Technology Programme. A working group chaired by the Materials Field Coordinator assessed the current status of the programme with the view to prepare its future focusing on one class of materials, as expressed by the FTSC-P. Two classes of materials: SiC/SiC ceramic composites and low activation alloys on the basis of V, Ti and Cr are presently in the Advanced Materials area. They are all in very early stages of development with a view to their application in fusion power reactors. All have adverse properties that could exclude their use. SiC/SiC ceramic composites have by far the highest potential operating temperature, contributing greatly to the efficiency of fusion power reactors. At the same time it is also the development with the highest development loss risk. This class of materials needs an integrated approach of design, manufacturing and materials development different from alloy development. The alloys with vanadium and titanium as base element have limited application windows due to their inherent properties. If the development of RAFM steels continues as foreseen, the development of V and Ti alloys is not justifiable in the frame of the advanced materials programme. The oxide dispersion strengthened variant of RAFM steels might reach similar temperature limits: about 900K. Chromium based alloys hold the promise of higher operating temperatures, but the knowledge and experience in fusion applications is limited. Investigating the potential of chromium alloys is considered worthwhile. The alloys have comparable activation hazards and early recycling potential, with properly controlled compositions. Recycling of the SiC/SiC class of materials needs further investigation. The working group concludes that at this stage no contender can be

  17. Powder metallurgical fabrication of metal/ceramic functionally graded materials for high temperature use

    International Nuclear Information System (INIS)

    Powder metallurgical fabrication of metal/ceramic functionally graded material (FGM) has been described. The first part of this paper briefly shows the concept of FGM with the special reference to the large progress of research works on thermal barrier materials where the role of thermal stress relaxation function has been emphasized. Then, powder metallurgical processing of this type of FGM is reviewed on the basis of recent activities. Graded structures may be found in ordinary engineering materials from former days; however, if one has begun to tailor the intentional gradient of composition and/or microstructure in a material in order to achieve the desired functions and properties, the material shall possess the concept of Functionally Graded Material (FGM). The FGM has the great potential of applications in many fields by using gradient on chemical, biochemical, physical and mechanical properties. (author)

  18. Characterization of Ceramic Material Produced From a Cold Crucible Induction Melter Test

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-30

    This report summarizes the results from characterization of samples from a melt processed surrogate ceramic waste form. Completed in October of 2014, the first scaled proof of principle cold crucible induction melter (CCIM) test was conducted to process a Fe-hollandite-rich titanate ceramic for treatment of high level nuclear waste. X-ray diffraction, electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the CCIM material produced. Core samples at various radial locations from the center of the CCIM were taken. These samples were also sectioned and analyzed vertically. Together, the various samples were intended to provide an indication of the homogeneity throughout the CCIM with respect to phase assemblage, chemical composition, and chemical durability. Characterization analyses confirmed that a crystalline ceramic with desirable phase assemblage was produced from a melt using a CCIM. Hollandite and zirconolite were identified in addition to possible highly-substituted pyrochlore and perovskite. Minor phases rich in Fe, Al, or Cs were also identified. Remarkably only minor differences were observed vertically or radially in the CCIM material with respect to chemical composition, phase assemblage, and durability. This recent CCIM test and the resulting characterization in conjunction with demonstrated compositional improvements support continuation of CCIM testing with an improved feed composition and improved melter system.

  19. Advanced materials and structures for extreme operating conditions

    CERN Document Server

    Skrzypek, Jacek J; Rustichelli, Franco

    2008-01-01

    Increasing industrial demands for high temperature applications, high t- perature gradients, high heat cycle resistance, high wear resistance, impact resistance, etc. , require application of new materials. Conventional met- lic materials, such as steels, nickel- and aluminium-based alloys, etc. c- not resist such extreme operating conditions. They have to be replaced by new metal/matrix or ceramic/matrix composite materials, MMC or CMC, such as titanium/zirconia,titanium/alumina, nickel/zirconia,nickel/alumina, steel/chromium nitride MMCs, or titanium carbide/silicon carbide, alumina/ zirconi

  20. Thermodynamics of ceramic breeder materials for fusion reactors

    International Nuclear Information System (INIS)

    Based on known or deduced phase relationships in ternary lithium oxygen systems such as Li-Al-O, Li-Si-O and Li-Zr-O, the unknown free enthalpy of formation values of ternary compounds are calculated starting from the known data of the compounds of the binary border systems. Criterion for the data assessment is interconsistency of the data of all the compounds within a given multi-component system. With the help of these data the development of partial pressures during the breeding process can be calculated for all the compounds of interest. In order to facilitate a compatibility assessment the quaternary systems Cr-Li-Si-O, Fe-Li-Si-O and Be-Li-Si-O were also investigated and thermodynamic data of pertinent ternary and quaternary compounds determined. Both the partial pressure development and the compatibility behaviour of a lithium containing compound are criteria for its qualification as a breeder material for a fusion reactor. (orig.)

  1. Engineered Materials for Advanced Gas Turbine Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  2. Influence of Inclusion Shape on Thermoelasto-Plastic Optimun Design of Ceramic Metal Functionally Graded Materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A nonlinear finite element method is applied to observe how inclusion shape influence the thermal response of a ceramic-metal functionally graded material (FGM).The elastic and plastic behaviors of the layers which are two-phase isotropic composites consisting of randomly oriented elastic spheroidal inclusions and a ductile matrix are predicted by a mean field method.The prediction results show that inclusion shape has remarkable influence on the overall behavior of the composite.The consequences of the thermal response analysis of the FGM are that the response is dependent on inclusion shape and its composition profile cooperatively and that the plastic behavior of each layer should be taken into account in optimum design of a ceramic-metal FGM.

  3. Fabrication of porous LiAlO2 ceramic breeder material

    International Nuclear Information System (INIS)

    The gamma-LiAlO2 ceramic material is the reference candidate for the solid breeder option of the Next European Torus Program. The experiments and methodologies developed in Italy to produce high surface area gamma-LiAlO2 powders to be compacted by cold pressing and sintering at 70 to 90% of the theoretical density, keeping a near fully open porosity is presented. The lithiating step was assessed for the Li2CO3 and Li2O2 precursors reacting with Al2O3 having submicron grain size. Sol-gel methodologies were also developed for the gamma-LiAlO2 preparation by which very high surface area ceramic grade powders were obtained

  4. Thermoluminescence dating (TL-Dating): an absolute method for archeological dating of ceramic base materials

    International Nuclear Information System (INIS)

    Thermoluminescence dating is one of the known techniques that have been established in many laboratories across the regions. This technique is capable to date the archeological ceramic base materials and provides an absolute measurement with an accuracy of 5%. The study involves the dating of ceramic clay from historical site at Sungai Mas, Kuala Muda, Kedah. Pieces of broken poetry of archeological sample excavated by the Museum Department and Antiquity (JM4) have been dated using the TLD techniques at MINT laboratory. A TLD dosemeter of LiF chips is used for the background and sample dose measurement. The preparation of sample and the calibration techniques for the estimation of palaedose or dose presented in the sample since distant past is established. Results indicate that the samples are in the era of civilization from 200BP to 1600BP. Error factors associated in the measurement procedures are also discussed

  5. Microstructural Characterization of Reaction-Formed Silicon Carbide Ceramics. Materials Characterization

    Science.gov (United States)

    Singh, M.; Leonhardt, T. A.

    1995-01-01

    Microstructural characterization of two reaction-formed silicon carbide ceramics has been carried out by interference layering, plasma etching, and microscopy. These specimens contained free silicon and niobium disilicide as minor phases with silicon carbide as the major phase. In conventionally prepared samples, the niobium disilicide cannot be distinguished from silicon in optical micrographs. After interference layering, all phases are clearly distinguishable. Back scattered electron (BSE) imaging and energy dispersive spectrometry (EDS) confirmed the results obtained by interference layering. Plasma etching with CF4 plus 4% O2 selectively attacks silicon in these specimens. It is demonstrated that interference layering and plasma etching are very useful techniques in the phase identification and microstructural characterization of multiphase ceramic materials.

  6. Prediction of lifetime for ceramic materials in the elastic and viscoelastic region by fracture mechanical methods

    International Nuclear Information System (INIS)

    The investigation is mainly concerned with the effect of subcritical crack growth of ceramic materials on lifetime in static bending test and lifetime predictions. In the theoretical part the formulas of lifetime and dynamic bending strength are discussed in detail. In case of creep behaviour a procedure is proposed to make predictions possible. The experiments on Al2O3 and HPSN give a good agreement between predicted and measured lifetimes for linear elastic material behaviour. If creep behaviour dominates, the region of expected lifetimes and the qualitative shape of lifetime distribution can be predicted too. (orig.)

  7. Life Prediction/Reliability Data of Glass-Ceramic Material Determined for Radome Applications

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    Brittle materials, ceramics, are candidate materials for a variety of structural applications for a wide range of temperatures. However, the process of slow crack growth, occurring in any loading configuration, limits the service life of structural components. Therefore, it is important to accurately determine the slow crack growth parameters required for component life prediction using an appropriate test methodology. This test methodology also should be useful in determining the influence of component processing and composition variables on the slow crack growth behavior of newly developed or existing materials, thereby allowing the component processing and composition to be tailored and optimized to specific needs. Through the American Society for Testing and Materials (ASTM), the authors recently developed two test methods to determine the life prediction parameters of ceramics. The two test standards, ASTM 1368 for room temperature and ASTM C 1465 for elevated temperatures, were published in the 2001 Annual Book of ASTM Standards, Vol. 15.01. Briefly, the test method employs constant stress-rate (or dynamic fatigue) testing to determine flexural strengths as a function of the applied stress rate. The merit of this test method lies in its simplicity: strengths are measured in a routine manner in flexure at four or more applied stress rates with an appropriate number of test specimens at each applied stress rate. The slow crack growth parameters necessary for life prediction are then determined from a simple relationship between the strength and the applied stress rate. Extensive life prediction testing was conducted at the NASA Glenn Research Center using the developed ASTM C 1368 test method to determine the life prediction parameters of a glass-ceramic material that the Navy will use for radome applications.

  8. Surface properties of ceramic/metal composite materials for thermionic converter applications

    International Nuclear Information System (INIS)

    Ceramic/metal composite electrode materials are of interest for thermionic energy conversion (TEC) applications for several reasons. These materials consist of submicron metal fibers or islands in an oxide matrix and therefore provide a basis for fabricating finely structured electrodes, with projecting or recessed metallic regions for more efficient electron emission or collection. Furthermore, evaporation and surface diffusion of matrix oxides may provide oxygen enhancement of cesium adsorption and work function lowering at both the collecting and emitting electrode surfaces of the TEC. Finally, the high work function oxide matrix or oxide-metal interfaces may provide efficient surface ionization of cesium for space-charge reduction in the device. The authors are investigating two types of ceramic/metal composite materials. One type is a directionally solidified eutectic consisting of a bulk oxide matrix such as UO2 or stabilized ZrO2 with parallel metal fibers (W) running through the oxide being exposed at the surface by cutting perpendicular to the fiber direction. The second type of material, called a surface eutectic, consists of a refractory substrate (Mo) with a thin layer of deposited and segregated material (Mo-Cr2O3-A12O3) on the surface. The final configuration of this layer is an oxide matrix with metallic islands scattered throughout

  9. Effects of Surface Morphology ZnAl2O4 of Ceramic Materials on Osteoblastic Cells Responses

    International Nuclear Information System (INIS)

    Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nano structure thin films of ZnAl2O4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl2O4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl2O4 nano structured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nano structure ceramic improves cell-material interaction with enhanced spreading and filopodia with multiple cellular extensions on the surface of the ceramic and enhancing cell viability/proliferation in comparison with bulk ceramic surfaces used as control. Altogether, these results suggest that zinc aluminate nano structured materials have a great potential to be used in dental implant and bone substitute applications.Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nano structure thin films of ZnAl2O4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl2O4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl2O4 nano structured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nano structure ceramic improves cell-material

  10. High-resolution computed tomography for flaw detection in advanced thin-layer ceramics for fuel cells

    International Nuclear Information System (INIS)

    Advanced monolithic solid oxide fuel cells are being assembled from thin (∼50 μm) tape-cast ceramic layers with highly tailored mechanical properties. The layers need to be free of cracks and nonbonds. A high-resolution computed tomography system with a Ir-192 source was investigated as a tool for detecting cracks and nonbonds. Results suggest that channel sizes, including internal channels, can be determined but small in-plane cracks cannot be detected

  11. Analysis of the potential for ductile mode machining of ferroelectric ceramic materials

    International Nuclear Information System (INIS)

    Ferroelectric ceramics and single crystals have attained an enormous importance in an ever-widening range of technological applications. Their exceptional combination of properties include strong piezoelectric, pyroelectric and electro-optic effects. One of the most important and widely-used groups of ferroelectric ceramics is the solid solution form of the lead zirconate titanate (PZT) family. A wide range of products relies on the high-precision fabrication of components using ferroelectric ceramics, including: ultrasonic medical imaging transducers, ink jet printing heads, pyroelectric IR detection arrays and optical modulation systems. Not only is precision important, but also the degree of sub-surface damage must be minimised because this is known to compromise performance by engendering de-poling. This effect also leads to in-service problems due to fast ageing and noise effects caused by the movement of damage-induced domain walls and cracks. The contemporary technology which has been used to machine these materials has been grinding and diamond sawing followed by lapping and polishing

  12. Alternative technological approach for synthesis of ceramic pigments by waste materials recycling

    International Nuclear Information System (INIS)

    Alternative technological approach is proposed enabling utilization of raw materials from an oil refinery, such as waste guard layers from reactors. Reagent grade and purified MgO, Cr2O3, Fe2O3, and nitric acid (HNO3), were used as additional precursors. The homogeneous mixtures obtained were formed into pellets and sintered at different temperatures. The main phase was proved by X-ray phase analysis (XRD) and compared to ICPDS database. The main phase in the ceramics synthesized was solid solution of spinel MgAl2O4 and magnesiochromite. These minerals are classified as chromspinelide MgCr1.2Al0.4Fe0.4O4 and alumochromite MgCr1.6Al0.4O4. Additional SEM observations, combined with EDX analysis were performed, evincing agglomeration at lower temperatures, followed by agglomerate crumbling, at elevated calcination temperature. The complete transformation of initial precursors into the final ceramic compounds was found to occur at 800 degree centigrade 1 h. The ceramic samples synthesized had high density of 1.72-1.93 g/cm3 and large absorption area - 32.93% which is probably due to the high porosity of the sample. (Author)

  13. Characterization of ceramic masses using raw material of Para, Brazil: kaolin in natura

    International Nuclear Information System (INIS)

    The incorporation rejects to the mixtures has if shown viable in the reduction of the environmental liability and for the obtaining of a better quality of the ceramic mass. In the present work, is tried to study the potentiality of the use of ceramic formulations with the addition of kaolin in natura to the clays. Formulations with two clays of the area of the municipal district of Maraba with addition of up to 60% in kaolin weight were prepared and characterized. For the determination of the physical and mechanical properties proof bodies were made by prensagem uniaxial and later burned in temperature from 900 to 1200 deg C with landing of 3 hours. The raw materials were characterized through diffraction of rays X (DRX) and thermogravimetric analysis. The proof bodies prepared were used for determination of the lineal retraction (RL), absorption of water, apparent porosity, apparent density, loss to the fire and rupture module the flexing. The results were satisfactory for the smallest kaolin tenors in the ceramic mass, and the mass with 20% presented rupture module elevated, in the temperature of 1200 deg C. (author)

  14. Alternative technological approach for synthesis of ceramic pigments by waste materials recycling

    Energy Technology Data Exchange (ETDEWEB)

    Doynov, M.; Dimitrov, T.; Kozhukharov, S.

    2016-05-01

    Alternative technological approach is proposed enabling utilization of raw materials from an oil refinery, such as waste guard layers from reactors. Reagent grade and purified MgO, Cr{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, and nitric acid (HNO{sub 3}), were used as additional precursors. The homogeneous mixtures obtained were formed into pellets and sintered at different temperatures. The main phase was proved by X-ray phase analysis (XRD) and compared to ICPDS database. The main phase in the ceramics synthesized was solid solution of spinel MgAl{sub 2}O{sub 4} and magnesiochromite. These minerals are classified as chromspinelide MgCr{sub 1}.2Al{sub 0}.4Fe{sub 0}.4O{sub 4} and alumochromite MgCr{sub 1}.6Al{sub 0}.4O{sub 4}. Additional SEM observations, combined with EDX analysis were performed, evincing agglomeration at lower temperatures, followed by agglomerate crumbling, at elevated calcination temperature. The complete transformation of initial precursors into the final ceramic compounds was found to occur at 800 degree centigrade 1 h. The ceramic samples synthesized had high density of 1.72-1.93 g/cm{sup 3} and large absorption area - 32.93% which is probably due to the high porosity of the sample. (Author)

  15. Screening of advanced cladding materials and UN-U3Si5 fuel

    Science.gov (United States)

    Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa

    2015-07-01

    In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in

  16. Prototype Development of Remote Operated Hot Uniaxial Press (ROHUP) to Fabricate Advanced Tc-99 Bearing Ceramic Waste Forms - 13381

    Energy Technology Data Exchange (ETDEWEB)

    Alaniz, Ariana J.; Delgado, Luc R.; Werbick, Brett M. [University of Nevada - Las Vegas, Howard R. Hughes College of Engineering, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States); Hartmann, Thomas [University of Nevada - Las Vegas, Harry Reid Canter, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States)

    2013-07-01

    The objective of this senior student project is to design and build a prototype construction of a machine that simultaneously provides the proper pressure and temperature parameters to sinter ceramic powders in-situ to create pellets of rather high densities of above 90% (theoretical). This ROHUP (Remote Operated Hot Uniaxial Press) device is designed specifically to fabricate advanced ceramic Tc-99 bearing waste forms and therefore radiological barriers have been included in the system. The HUP features electronic control and feedback systems to set and monitor pressure, load, and temperature parameters. This device operates wirelessly via portable computer using Bluetooth{sup R} technology. The HUP device is designed to fit in a standard atmosphere controlled glove box to further allow sintering under inert conditions (e.g. under Ar, He, N{sub 2}). This will further allow utilizing this HUP for other potential applications, including radioactive samples, novel ceramic waste forms, advanced oxide fuels, air-sensitive samples, metallic systems, advanced powder metallurgy, diffusion experiments and more. (authors)

  17. Ceramic Technology Project semiannual progress report for October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work is organized into the following elements: materials and processing (monolithics [SiC, SiN], ceramic composites, thermal and wear coatings, joining), materials design methodology, data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, NDE), and technology transfer. Individual abstracts were prepared for the individual contributions.

  18. Viability of utilization of waste materials from ceramic products in precast concretes

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. I.

    2001-12-01

    Full Text Available The recycled and re-valuation process of waste materials involves studies lead to a deep acknowledges of them, finding applications for their intended use. The waste materials from ceramic products can be recycled into the construction sector, as arid or pozzolanic materials. The current work deals with the incorporation of ceramic materials in these two different ways, checking the behaviour of the elaborated mortar by mean of laboratory tests. Also, tests are developed in factory, using these as components for precast concrete tiles.

    Todo proceso de reciclado y revalorización de residuos implica estudios encaminados a un conocimiento profundo de los mismos, de forma que se busquen aplicaciones concretas de uso. Los materiales de desecho procedentes de productos cerámicos pueden ser reciclados dentro del sector de la construcción, ya sea como áridos o como materiales puzolánicos. El presente trabajo aborda la incorporación de materiales cerámicos desde estas dos vertientes, comprobando, en cada caso, el comportamiento de los morteros elaborados mediante ensayos de laboratorio. También se llevan a cabo pruebas en fábrica, siendo utilizados como componentes en prefabricados de hormigón.

  19. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    International Nuclear Information System (INIS)

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives

  20. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    Energy Technology Data Exchange (ETDEWEB)

    Wananuruksawong, R; Jinawath, S; Wasanapiarnpong, T [Research Unit of Advanced Ceramic, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Padipatvuthikul, P, E-mail: raayaa_chula@hotmail.com [Faculty of Dentistry, Srinakharinwirot University, Bangkok (Thailand)

    2011-10-29

    Silicon nitride (Si{sub 3}N{sub 4}) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si{sub 3}N{sub 4} ceramic as a dental core material. The white Si{sub 3}N{sub 4} was prepared by pressureless sintering at relative low sintering temperature of 1650 deg. C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si{sub 3}N{sub 4} ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si{sub 3}N{sub 4} specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y{sub 2}O{sub 3} - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si{sub 3}N{sub 4} specimens, the firing was performed in electric tube furnace between 1000-1200 deg. C. The veneered specimens fired at 1100 deg. C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98x10{sup -6} deg. C{sup -1}, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  1. Vitreous bond CBN high speed and high material removal rate grinding of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shih, A.J.; Grant, M.B.; Yonushonis, T.M. [Cummins Engine Co., Inc., Columbus, IN (United States); Morris, T.O.; McSpadden, S.B. [Oak Ridge National Lab., TN (United States)

    1998-08-01

    High speed (up to 127 m/s) and high material removal rate (up to 10 mm{sup 3}/s/mm) grinding experiments using a vitreous bond CBN wheel were conducted to investigate the effects of material removal rate, wheel speed, dwell time and truing speed ratio on cylindrical grinding of silicon nitride and zirconia. Experimental results show that the high grinding wheel surface speed can reduce the effective chip thickness, lower grinding forces, enable high material removal rate grinding and achieve a higher G-ratio. The radial feed rate was increased to as high as 0.34 {micro}m/s for zirconia and 0.25 {micro}m/s for silicon nitride grinding to explore the advantage of using high wheel speed for cost-effective high material removal rate grinding of ceramics.

  2. Catalytic Methods in Asymmetric Synthesis Advanced Materials, Techniques, and Applications

    CERN Document Server

    Gruttadauria, Michelangelo

    2011-01-01

    This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milesto

  3. Engineering with advanced materials for tailing dam designing

    OpenAIRE

    Kostadinov, Ljubisa; Krstev, Boris; Golomeov, Blagoj; Golomeova, Mirjana; Ilievski, Darko

    2012-01-01

    Tailing dam accidents hapened in the past serve as "alarm" for application of advanced methods and techniques at designing of tailing dams. The designing of advanced tailing dam nowdays is very current topic, due to the fact that designing would resolve very important issues for environmental protection. Advanced materials (geosyntetics) are used at process of construction in order the tailing dam to be constructed and to perform according to the advanced world standards. By applying the geos...

  4. Multiscale damage modeling of advanced composite materials

    OpenAIRE

    Menna, Costantino

    2013-01-01

    The use of composite materials has spread over the years throughout the engineering areas of structures. The technological progress in this field has recently expanded, resulting in the design of new composite configurations, including multilayered composite materials and multifunctional nanostructured materials. Even though traditional and emerging composite materials offer wide potentialities for engineering, a significant challenge is still open with respect to damage phenomena. Driven by ...

  5. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  6. Insulation materials for advanced water storages

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    2005-01-01

    sections different insulation materials are described with respect to material characteristics and some comments on the easiness of application for tank insulation. The material properties listed in this paper are typical values, which gives an idea of the possibilities but in case of a specific design a...

  7. Structural, microstructural and impedance spectroscopy study of functional ferroelectric ceramic materials based on barium titanate

    International Nuclear Information System (INIS)

    The differences between the physical properties of barium titanate BaTiO3 and newly obtained BaHfxTi1-xO3 were identified. These ceramics were prepared by solid-phase reaction from simple oxides and carbonates using the conventional method. The structure and morphology of investigated samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The application of impedance spectroscopy made possible to characterize of these materials in the terms of electrical properties

  8. Migration of Toxic Metals from Ceramic Food Packaging Materials into Acid Food Simulants

    OpenAIRE

    Zhanhua Dong; Lixin Lu; Zhigang Liu; Yali Tang; Jun Wang

    2014-01-01

    Long-term extraction experiments were carried out on glazed tile specimens with 4 and 10% (v/v) acetic acid, 1% (w/v) citric acid, and 1% (v/v) lactic acid solution in three temperature conditions (20, 40, and 60°C) to investigate the effect of temperature and pH value on extraction of lead, cobalt, nickel, and zinc from ceramic food packaging materials and to study the extraction kinetics of toxic metals. Results showed that except at 60°C the amount of extraction of lead, cobalt, nickel, an...

  9. Modelling of Grain Growth Kinetics in Porous Ceramic Materials under Normal and Irradiation Conditions

    Directory of Open Access Journals (Sweden)

    Mikhail S. Veshchunov

    2009-09-01

    Full Text Available Effect of porosity on grain growth is both the most frequent and technologically important situation encountered in ceramic materials. Generally this effect occurs during sintering, however, for nuclear fuels it also becomes very important under reactor irradiation conditions. In these cases pores and gas bubbles attached to the grain boundaries migrate along with the boundaries, in some circumstances giving a boundary migration controlled by the movement, coalescence and/or sintering of these particles. New mechanisms of intergranular bubble and pore migration which control the mobility of the grain boundary under normal and irradiation conditions are reviewed in this paper.

  10. Cell response of calcium phosphate based ceramics, a bone substitute material

    Directory of Open Access Journals (Sweden)

    Juliana Marchi

    2013-01-01

    Full Text Available The aim of this study was to characterize calcium phosphate ceramics with different Ca/P ratios and evaluate cell response of these materials for use as a bone substitute. Bioceramics consisting of mixtures of hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP powders in different proportions were pressed and sintered. The physical and chemical properties of these bioceramics were then characterized. Characterization of the biological properties of these materials was based on analysis of cell response using cultured fibroblasts. The number of cells attached to the samples was counted from SEM images of samples exposed to cell culture solution for different periods. These data were compared by analysis of variance (ANOVA complemented by the Tukey's test. The TCP sample had higher surface roughness and lower density. The adherence and growth of FMM1 cells on samples from all groups was studied. Even though the different calcium based ceramics exhibited properties which made them suitable as bone substitutes, those with higher levels of β-TCP revealed improved cell growth on their surfaces. These observations indicated two-phase calcium phosphate based materials with a β-TCP surface layer to be a promising bone substitute.

  11. Broadband mid-infrared wavelength conversion laser based on Cr2+ doped ceramic materials

    Science.gov (United States)

    Shang, Yaping; Yin, Ke; Li, Xiao; Wang, Peng; Xu, Xiaojun

    2015-10-01

    Broadband mid-infrared lasers are desirable for pretty important applications in fields of environmental protection, medical treatment, military applications, scientific, and other domains. Recently, super-continuum laser sources have achieved striking development. However, limited by the substrate materials, the output power scaling of the broadband mid-infrared fiber laser sources could not be increased drastically, especially for the long wavelength region. In this paper, we reported an experimental study about the broadband mid-infrared lasers based on Cr2+ doped II-VI ceramic materials, by using of a super-continuum laser source developed by our groups operating at 1550~2130nm with 200mW output power. The result suggested that the near-infrared spectral component of the super-continuum source was deeply absorbed by transition metal doped zinc chalcogenides ceramic materials, meanwhile the mid-infrared part, however, had been enhanced significantly by this new "power amplifier." Actually single-pass amplification efficiency was very limited. The best way to solve this problem was multi-pass amplification systems. We had shown an initial proof of this assumption by a double-pass experiments, the result was consistent with expected effect. Above all, the spectrum shaping from short wavelength to long wavelength was obtained. The innovative discovery had laid a solid foundation for high power, high efficiency, broadly tunable mid-infrared solid state lasers.

  12. Mechanical and tribological properties of ceramic-matrix friction materials with steel fiber and mullite fiber

    International Nuclear Information System (INIS)

    Highlights: • Interaction of mixing the steel and mullite fibers can improve the mechanical properties. • Mixing the steel and mullite fibers can also improve friction stability. • Friction coefficient increases with increasing additional mullite fiber content. • Ceramic-matrix friction material shows sever fade due to mullite fibers agglomerated. - Abstract: The purpose of the present work was to investigate and compare the mechanical and tribological behaviors of ceramic-matrix friction material (CMFM) with steel fiber (SF), mullite fiber (MF), and mixing SF and MF. The CMFM was prepared by hot-pressing sintering, and the tribological behaviors were determined using a constant speed friction tester. The worn surfaces and wear debris were observed by a scanning electron microscopy (SEM). Experiment results show that the combination of SF and MF can improve the mechanical properties that each single fiber does not have. The sever fade for the specimen reinforced by single MF during the whole friction testing can be attributed to the poor interface cohesive strength between MF and matrix. Mixing the SF and MF can improve the friction stability, and the friction coefficients for friction material with a mixture of the SF and MF increases with increasing MF content. For all specimens, increasing in the friction temperatures result in the increase of wear rates

  13. Fracture resistance of endodontically treated teeth restored with ceramic inlays and different base materials.

    Science.gov (United States)

    Saridag, Serkan; Sari, Tugrul; Ozyesil, Atilla Gokhan; Ari Aydinbelge, Hale

    2015-01-01

    This study evaluated the fracture resistance of endodontically treated teeth restored with different base materials and mesioocclusal-distal (MOD) ceramic inlays. Fifty mandibular molars were assigned into five groups (n=10 per group). Group1 (control) comprised intact molar teeth without any treatment. Teeth in other groups were subjected to root canal treatment and restored with MOD ceramic inlays on different base materials. In Group 2, base material was zinc phosphate cement; Group 3's was glass ionomer cement; Group 4's was composite resin, and Group 5's was composite resin reinforced with fiber. Finally, a continuous occlusal load was applied until fracture occurred. Mean fracture resistance of Group 1 (3,027 N) was significantly higher than the other groups (890, 1,070, 1,670, 1,226 N respectively). Fracture resistance of Group 4 was statistically comparable with Group 5 and significantly higher than Groups 2 and 3 (pinlay restorations could affect the fracture resistance of endodontically treated teeth. PMID:25740162

  14. Gamma and proton induced degradation in ceramics materials - A proposal for EUROATOM Fusion Project

    International Nuclear Information System (INIS)

    Ceramic materials will play very important roles in developing fusion reactors, where they will be used under heavy irradiation environment (neutrons, gamma-rays, helium and other ions) for substantial periods for the first time. Our programme intends to form a part of the existing on-going ceramics programmes to assess the suitability of SiO2 based materials for both diagnostic and remote handling application. Our proposal focuses on comparison of the ionization and displacement induced damage (influence on the UV and visible optical transmission properties) and on radiation enhanced diffusion of hydrogen isotopes in these materials, in cooperation with CIEMAT Madrid and SCK/CEN Mol. Our irradiation facilities are : IRASM with a 200 kCi Co-60 source, of minimum 2kGray/h, ethanol chlorine benzene and ESR dosimetry - HVEC 8 MV TANDEM protons up to 16 MeV and 200 nA and 600 kV DISKTRON H isotopes up to 600 keV at tens of μA. (authors)

  15. Advanced materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.R.; Stevenson, J.

    1995-08-01

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs. The goal is to modify and improve the current state-of-the-art materials and minimize the total number of cations in each material to avoid negative effects on the materials properties. Materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabricatoin and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions.

  16. Study of parameters of heat treatment in obtaining glass ceramic materials with addition of the industrial waste

    International Nuclear Information System (INIS)

    The production of materials from crystallization of glass, called glass ceramic, have proved interesting by the possibility of development of different microstructures, with reduced grain size and the presence of residual amorphous phase in different quantities. The method that uses the differential thermal analysis (DTA) provides research on the material properties over a wide temperature range, it's widely applied to crystallization processes of glass ceramic materials. Within this context, this paper aims to study the kinetics of nucleation and crystal growth in glass ceramic materials in the system SiO2- Al2O3-Li2O, obtained with the addition of mineral coal bottom ash as source of aluminosilicates, through the technique of differential thermal analysis. (author)

  17. Materials Challenges for Advanced Combustion and Gasification Fossil Energy Systems

    Science.gov (United States)

    Sridhar, S.; Rozzelle, P.; Morreale, B.; Alman, D.

    2011-04-01

    This special section of Metallurgical and Materials Transactions is devoted to materials challenges associated with coal based energy conversion systems. The purpose of this introductory article is to provide a brief outline to the challenges associated with advanced combustion and advanced gasification, which has the potential of providing clean, affordable electricity by improving process efficiency and implementing carbon capture and sequestration. Affordable materials that can meet the demanding performance requirements will be a key enabling technology for these systems.

  18. Method for preparing rare earth-barium-cuprate pre-ceramic resins and superconductive materials prepared therefrom

    International Nuclear Information System (INIS)

    This patent describes a method of making a pre-ceramic material capable of being converted into an electrically superconductive ceramic material having the general formula ABa2Cu3O7-x where A is a rare earth metal and x is from 0 to 0.5. It comprises refluxing stoichiometric amounts of a first solution comprising a rare earth isopropoxide and barium isopropoxide in isopropanol under a dry, inert atmosphere; adding to the first solution a stoichiometric amount of a second solution comprising copper ethylhexanoate in isopropanol; refluxing the first and second solutions to obtain a precipitate; adding to the precipitate a quantity of a first solvent comprising water and isopropanol; concentrating the homogeneous solution by removing a sufficient amount of the first solvent to produce a viscous or dry pre-ceramic resinous material; softening or dissolving the pre-ceramic resinous material in a second solvent comprising a binary mixture of a polar solvent and a nonpolar solvent to obtain a desired viscosity; and forming the viscous pre-ceramic material into the desired product shape

  19. Data on post irradiation experiments of heat resistant ceramic composite materials. PIE for 97M-13A

    International Nuclear Information System (INIS)

    The research on the radiation damage mechanism of heat resistant ceramic composite materials is one of the research subjects of the innovative basic research in the field of high temperature engineering, using the High Temperature engineering Test Reactor (HTTR). Three series of irradiation tests on the heat resistant ceramic composite materials, first to third irradiation test program, were carried out using the Japan Material Testing Reactor (JMTR). This is a summary report on the first irradiation test program; irradiation induced dimensional change, thermal expansion coefficient, X-ray diffraction and γ-ray spectrum are reported. (author)

  20. Data on post irradiation experiments of heat resistant ceramic composite materials. PIE for 97M-13A

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shin-ichi; Ishihara, Masahiro; Souzawa, Shizuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The research on the radiation damage mechanism of heat resistant ceramic composite materials is one of the research subjects of the innovative basic research in the field of high temperature engineering, using the High Temperature engineering Test Reactor (HTTR). Three series of irradiation tests on the heat resistant ceramic composite materials, first to third irradiation test program, were carried out using the Japan Material Testing Reactor (JMTR). This is a summary report on the first irradiation test program; irradiation induced dimensional change, thermal expansion coefficient, X-ray diffraction and {gamma}-ray spectrum are reported. (author)

  1. Selection and application of oral all-ceramic crown materials%口腔全瓷冠修复材料的选择及应用

    Institute of Scientific and Technical Information of China (English)

    程谨春

    2011-01-01

    BACKGROUND: Compared with porcelain fused to metal crown, the all-ceramic crown materials have been more and more applied in clinical anterior teeth restoration due to natural and stable color, low thermal conductivity, non-electric conductivity, wear resistance, good biocompatibility, non-transparent metallic, and relatively simple operations.OBJECTIVE: To summarize the characteristics, production methods and clinical application of different all-ceramic crown materials.METHODS: A computer-based online retrieval was performed in Wanfang database and Medline database between 2001 and 2011 for articles regarding the characteristics, production methods, physical and mechanical strength, chemical and biological compatibility, aesthetic appearance and clinical application of different all-ceramic crown materials.RESULTS AND CONCLUSION: Currently, the clinically used all-ceramic materials can be divided into slip casting porcelain,casting ceramic, heat-pressed glass ceramic, glass-infiltrated ceramics, densely-sintered aluminum oxide polycrystalline, partially stabilized tetragonal zirconium oxide polycrystalline, and nano-composite ceramic. Different materials have its specific mechanical properties and clinical indications, so clinical selection must be based on specific conditions. With the advance of high-strength ceramic studies, all-ceramic restorations become widely applied, and high-aluminum ceramic represented by In-ceram and zirconia all-ceramic crowns can achieve good effects within a short and long term, foreign clinical experiments have conducted the enlargement from anterior crown to rear crown and bridge. To insure optimum long-term clinical results of all-ceramic crown restorations, the key is to overcome the fragmentation of dental prosthesis, mainly through modifying the composition, improving the anti -smash property of ceramic materials, and a series of prevention measures.%背景:相对于金属烤瓷冠而言,全瓷冠具有色泽稳定自然,导

  2. Theoretical Studies on the Electronic Structures and Properties of Complex Ceramic Crystals and Novel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2012-01-14

    This project is a continuation of a long program supported by the Office of Basic Energy Science in the Office of Science of DOE for many years. The final three-year continuation started on November 1, 2005 with additional 1 year extension to October 30, 2009. The project was then granted a two-year No Cost Extension which officially ended on October 30, 2011. This report covers the activities within this six year period with emphasis on the work completed within the last 3 years. A total of 44 papers with acknowledgement to this grant were published or submitted. The overall objectives of this project are as follows. These objectives have been evolved over the six year period: (1) To use the state-of-the-art computational methods to investigate the electronic structures of complex ceramics and other novel crystals. (2) To further investigate the defects, surfaces/interfaces and microstructures in complex materials using large scale modeling. (3) To extend the study on ceramic materials to more complex bioceramic crystals. (4) To initiate the study on soft condensed matters including water and biomolecules. (5) To focus on the spectroscopic studies of different materials especially on the ELNES and XANES spectral calculations and their applications related to experimental techniques. (6) To develop and refine computational methods to be effectively executed on DOE supercomputers. (7) To evaluate mechanical properties of different crystals and those containing defects and relate them to the fundamental electronic structures. (8) To promote and publicize the first-principles OLCAO method developed by the PI (under DOE support for many years) for applications to large complex material systems. (9) To train a new generation of graduate students and postdoctoral fellows in modern computational materials science and condensed matter physics. (10) To establish effective international and domestic collaborations with both experimentalists and theorists in materials

  3. New trends in advanced high energy materials

    OpenAIRE

    Adam S. Cumming

    2009-01-01

    In the last twenty years military explosives and energetic materials in general have changed significantly. This has been due to several factors which include new operational requirements such as Insensitive Munitions (IM), but is also due to the availability of new materials and to new assessment and modelling techniques. These permit more effective use of materials and a more detailed understanding of the processes involved in applying the technology. This article will outline some of the e...

  4. Advanced Magnetostrictive Materials for Sonar Applications

    Directory of Open Access Journals (Sweden)

    Rajapan Rajapan

    2005-01-01

    Full Text Available Piezoelectric or magnetostrictive materials can be utilised as active materials for electroacoustic underwater transducers. Piezoceramic materials gained edge over the conventional magnetostrictive materials during 1940s due to their unique electro-acoustic properties. At present, inspite of passive sonars there is a need of low-frequency high-power active sonars for the Navy. This led toresearch for new activematerials with competing characteristics to that of the existing piezo transducers. The discovery of a giant magnetostrictive material, commercially known as Terfenol-D, led to a breakthrough in the development of a new generation of sonar transducers. Now, the materials (including composites as well as sensors are commercially available. A new generation of transducers have emerged in ocean-related areas like acoustic tomography, longrange underwater communication, geophysical exploration, oil well exploration, etc.Indian Institute of Technology Madras, Chennai, has also developed the basic material technology a few years back. At present, in India, National Institute of Ocean Technology, Chennai, is developing underwater transducers utilising giant magnetostrictive materials as well as piezoelectric materials for marine applications like sub-bottom profiling (seafloor mapping and long-range underwater communications. A prototype of a portable, low-frequency medium power transmitter operating over a wide-frequency range has been developed. The main advantage of this transducer is its simplicity in design. In this paper, (he recent developments in material processes, importance of device-oriented material characterisation, and transducer design aspects have been emphasised. Some results on the underwater performance of a wide-band transducer have also been presented. These materials also have ultrasonic applications, capable of revolutionising the processing industry.

  5. Advanced Mechanical Testing of Sandwich Materials

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Jenstrup, Claus;

    2008-01-01

    An advanced digital optical system has been used to measure surface strains on sandwich face and core specimens tested in a project concerned with improved criteria for designing sandwich X-joints. The face sheet specimens were of glass reinforced polyester and were tested in tension. The core sp...

  6. Advanced materials for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  7. High-temperature corrosion resistance of ceramics and ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  8. Bone cell-materials interaction on alumina ceramics with different grain sizes

    International Nuclear Information System (INIS)

    The objective of this work was to study adhesion, proliferation and differentiation of osteoblast cells (OPC1) on alumina ceramic, a bio-inert material. Alumina ceramic with different average grain sizes, 1 μm and 12 μm, respectively, were used in as-prepared condition without any grinding and polishing to understand the influence of grain size on cell-material interactions. Scanning electron microscopy and confocal imaging were used to study attachment, adhesion and differentiation of OPC1 cells. Cells attached, proliferated and differentiated well on both the substrates. Adhesion of cells, as assessed by observing the production of vinculin, was found to be a consistent phenomenon on both the substrates. On day 5 of cell culture, significant cell-attachment was observed and vinculin was detected throughout cytoplasm. MTT assay showed that proliferation of OPC1 cells was consistently higher in the case of 12 μm-alumina. Cells of different morphology, nodular, plate-like as well as elongated, were found to get anchored at grains, grain boundaries as well as pores. On day 16, there were clear signs of mineralization as well. Over all, alumina with average grain size of 12 μm showed better cell-attachment, growth and differentiation compared to 1 μm grain size samples.

  9. Study of radiation stability of new poly-phase ash-ceramic materials

    International Nuclear Information System (INIS)

    Study of physico-mechanical and thermophysical properties of ash-ceramics after repeated irradiation by accelerated electrons beams under different regimes is carried out. Ash of Almaty Thermal Power Plant (Almatinskaya GREhS) and clay of Ajnabulak deposit serve as objects of testing . Samples after preliminary drying have been burnt in electric crucible furnace at maximum temperature 1100 deg C. Samples with different densities (1100-1400 kg/m3) were got with help method of different rate of treatment and compressing of forming ash-clay mixture. Pressure strength for burnt samples made up 12.5-17.5 MPa. Examined samples irradiated a few times with following doses: 9.45·106; 27·106; 81·106 Gy. Thermophysical and physico-technical features of samples have been studied after each irradiation. Comparison of received results with data of non-irradiated samples shows, that evident changes in structure and properties of testing materials have been not observed. It is concluded, that new ash-ceramic materials have sufficient radiation stability

  10. Migration of Toxic Metals from Ceramic Food Packaging Materials into Acid Food Simulants

    Directory of Open Access Journals (Sweden)

    Zhanhua Dong

    2014-01-01

    Full Text Available Long-term extraction experiments were carried out on glazed tile specimens with 4 and 10% (v/v acetic acid, 1% (w/v citric acid, and 1% (v/v lactic acid solution in three temperature conditions (20, 40, and 60°C to investigate the effect of temperature and pH value on extraction of lead, cobalt, nickel, and zinc from ceramic food packaging materials and to study the extraction kinetics of toxic metals. Results showed that except at 60°C the amount of extraction of lead, cobalt, nickel, and zinc had linear dependence on time at longer times and removal of these toxic metals under other conditions increased linearly with the square root of the time, indicating a diffusion-controlled process. The amount of these toxic metals leached out from ceramic food packaging materials into the leachate, and the leaching rate increased with temperature and decreased with pH value of the food simulants. In addition, among these four toxic metals lead was the least leachable element, and nickel was the most leachable one. Disagreement between the ratios of the oxide of lead, cobalt, nickel, and zinc in the glaze and their release in the leachate suggested that extraction of these toxic metals was an incongruent dissolution process.

  11. EXOTIC-7: Irradiation of ceramic breeder materials to high lithium burnup

    International Nuclear Information System (INIS)

    The EXOTIC-7 irradiation experiment in the High Flux Reactor (HFR) at Petten has been completed. Its aim has been to investigate the effects of high lithium-burnup on the mechanical stability and tritium release characterisitcs of candidate ceramic breeder materials, originating from the Fusion Programmes of CEA, FZK, ENEA, AECL and ECN. The tested ceramic breeder materials were pellets of Li2ZrO3, LiAlO2 and Li8ZrO6 and pebbles of Li4SiO4 and Li2ZrO3, with a variety of characteristics, like grain size and porostiy. The test matrix provided the simultaneous irradiation of eight independent capsules with on-line tritium monitoring. Two capsules containd a mixture of Li4SiO4 and beryllium pebbles. The experimental design, sample loading and main riiadiation parameters are described. Some PIE results and analysis of in-situ tritium release behaviour are presented. (orig.)

  12. Studies on properties of low atomic number ceramics as limiter materials for fusion applications

    International Nuclear Information System (INIS)

    The present study deals with thermal shock and erosion-redeposition behaviour of low-Z-bulk-ceramics: SiC, SiC + Si, SiC + 3% Al, SiC + 2% AlN, AlN, Si3N4, BN with graphite as reference material. Also included are substrate-coating systems: TiC coated graphite, Cr2C3 coated graphite and TiN on Inconel. The properties are being investigated by electron beam and in-pile fusion machine tests in the KFA-Tokamak machine Textor. The electron-beam tests showed that sublimation was the dominant damaging effect for graphite, BN and SiN4. Materials with mediocre thermo-mechanical properties, such as SiC and AlN, showed cracks. The highest energy density values were tolerated by specimens of SiC alloyed with 2% AlN. In general, the in pile behaviour of the ceramics was comparable with the electron beam tests: BN and SiC + 2% AlN are at present regarded as the prime candidates for future irradiation tests. (author)

  13. A mesomechanical analysis of the deformation and fracture in polycrystalline materials with ceramic porous coatings

    Science.gov (United States)

    Balokhonov, R. R.; Zinoviev, A. V.; Romanova, V. A.; Batukhtina, E. E.

    2015-10-01

    The special features inherent in the mesoscale mechanical behavior of a porous ceramic coating-steel substrate composite are investigated. Microstructure of the coated material is accounted for explicitly as initial conditions of a plane strain dynamic boundary-value problem solved by the finite difference method. Using a mechanical analogy method, a procedure for generating a uniform curvilinear finite difference computational mesh is developed to provide a more accurate description of the complex grain boundary geometry. A modified algorithm for generation of polycrystalline microstructure of the substrate is designed on the basis of the cellular automata method. The constitutive equations for a steel matrix incorporate an elastic-plastic model for a material subjected to isotropic hardening. The Hall-Petch relation is used to account for the effect of the grain size on the yield stress and strain hardening history. A brittle fracture model for a ceramic coating relying on the Huber criterion is employed. The model allows for crack nucleation in the regions of triaxial tension. The complex inhomogeneous stress and plastic strain patterns are shown to be due to the presence of interfaces of three types: coating-substrate interface, grain boundaries, and pore surfaces.

  14. Thermal conductivity deg.radation of ceramic materials due to low temperature, low dose neutron irradiation

    International Nuclear Information System (INIS)

    The thermal conductivity degradation due to low-temperature neutron irradiation is studied and quantified in terms of thermal resistance terms. Neutron irradiation is assumed to have no effect on umklapp scattering. A theoretical model is presented to quantify the relative phonon-scattering effectiveness of the three dominant defect types produced by neutron irradiation: point defects, dislocation loops and voids. Several commercial ceramics have been irradiated with fission reactor fast neutrons at low temperatures to produce defects. Materials include silicon carbide, sapphire, polycrystalline alumina, aluminum nitride, silicon nitride, beryllium oxide, and a carbon fiber composite. The neutron dose corresponded to 0.001 and 0.01 displacements per atom (dpa) for a ∼60 deg. C irradiation and 0.01 and 0.1 dpa for a ∼300 deg. C irradiation. Substantial thermal conductivity degradation occurred in all of the materials except BeO following irradiation at 60 deg. C to a dose of only 0.001 dpa. The data are discussed in terms of the effective increase in thermal resistance caused by the different irradiation conditions. Evidence for significant point defect mobility during irradiation at 60 and 300 deg. C was obtained for all of the ceramics. The thermal stability of the radiation defects was investigated by isochronal annealing up to 1050 deg. C

  15. Isotope exchange reactions on ceramic breeder materials and their effect on tritium inventory

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, M.; Baba, A. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Kawamura, Y.; Nishi, M.

    1998-03-01

    Though lithium ceramic materials such as Li{sub 2}O, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3} and Li{sub 4}SiO{sub 4} are considered as breeding materials in the blanket of a D-T fusion reactor, the release behavior of the bred tritium in these solid breeder materials has not been fully understood. The isotope exchange reaction rate between hydrogen isotopes in the purge gas and tritium on the surface of breeding materials have not been quantified yet, although helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas in the recent blanket designs. The mass transfer coefficient representing the isotope exchange reaction between H{sub 2} and D{sub 2}O or that between D{sub 2} and H{sub 2}O in the ceramic breeding materials bed is experimentally obtained in this study. Effects of isotope exchange reactions on the tritium inventory in the bleeding blanket is discussed based on data obtained in this study where effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions are considered. The way to estimate the tritium inventory in a Li{sub 2}ZrO{sub 3} blanket used in this study shows a good agreement with data obtained in such in-situ experiments as MOZART, EXOTIC-5, 6 and TRINE experiments. (author)

  16. Production of Construction Materials Using Advanced Recycling Technologies

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Waste reduction, material reuse, and use of recycle-content products can be focused on the management system somewhat. In contrast, material recycling is the technical issue how to create new materials using wastes. Thus, three advanced recycling technologies; 1) Synthetic Lightweight Aggregate technology (SLA), 2) Clean Coal Technology (CCT), and 3) RP-1 Polymer Identification System are introduced.

  17. New trends in advanced high energy materials

    Directory of Open Access Journals (Sweden)

    Adam S. Cumming

    2009-06-01

    Full Text Available In the last twenty years military explosives and energetic materials in general have changed significantly. This has been due to several factors which include new operational requirements such as Insensitive Munitions (IM, but is also due to the availability of new materials and to new assessment and modelling techniques. These permit more effective use of materials and a more detailed understanding of the processes involved in applying the technology. This article will outline some of the effects in addition to taking a glance at what the future might hold.

  18. Lignin-Derived Advanced Carbon Materials.

    Science.gov (United States)

    Chatterjee, Sabornie; Saito, Tomonori

    2015-12-01

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed. PMID:26568373

  19. Strategies to Optimize the Strength and Fracture Resistance of Ceramic Laminates

    Czech Academy of Sciences Publication Activity Database

    Bermejo, R.; Chlup, Zdeněk; Šestáková, L.; Ševeček, O.; Danzer, R.

    Hoboken, NJ, USA : John Wiley & Sons, Inc.,, 2012 - (Singh, D.; Salem, J.; Halbig, M.; Mathur, S.), s. 163-174 ISBN 9781118205884. - (Ceramic Engineering and Science Proceedings). [International Conference on Advanced Ceramics and Composites /36./. Daytona Beach, Florida (US), 24.01.2012-25.01.2012] Institutional support: RVO:68081723 Keywords : Ceramic * Laminate * Fracture toughness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass http://onlinelibrary.wiley.com/doi/10.1002/9781118217467.ch16/summary

  20. Advances in ultrafine-grained materials

    Directory of Open Access Journals (Sweden)

    Yi Huang

    2013-03-01

    Full Text Available This review addresses new developments in the processing and properties of ultrafine-grained (UFG materials. These materials are produced through the application of severe plastic deformation to conventional coarse-grained metals and typically they have grain sizes within the submicrometer or even the nanometer range. Although several techniques are now available for achieving excellent homogeneity and high fractions of high-angle grain boundaries, this review concentrates on the major procedures of equal-channel angular pressing and high-pressure torsion. It is shown that UFG materials exhibit both excellent strength at ambient temperature and, if the grains are reasonably stable, outstanding superplastic properties at elevated temperatures. These materials also have a high innovation potential for use in commercial applications.