WorldWideScience

Sample records for advanced burner test

  1. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  2. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  3. BURNER RIG TESTING OF A500 C/SiC

    Science.gov (United States)

    2018-03-17

    AFRL-RX-WP-TR-2018-0071 BURNER RIG TESTING OF A500® C /SiC Larry P. Zawada Universal Technology Corporation Jennifer Pierce UDRI...TITLE AND SUBTITLE BURNER RIG TESTING OF A500® C /SiC 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6...test program characterized the durability behavior of A500® C /SiC ceramic matrix composite material at room and elevated temperature. Specimens were

  4. Design and analysis of the federal aviation administration next generation fire test burner

    Science.gov (United States)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and

  5. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  6. Interim results: fines recycle testing using the 4-inch diameter primary graphite burner

    International Nuclear Information System (INIS)

    Palmer, W.B.

    1975-05-01

    The results of twenty-two HTGR primary burner runs in which graphite fines were recycled pneumatically to the 4-inch diameter pilot-plant primary fluidized-bed burner are described. The result of the tests showed that zero fines accumulation can easily be achieved while operating at plant equivalent burn rates. (U.S.)

  7. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    Science.gov (United States)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  8. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    International Nuclear Information System (INIS)

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-01-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% Δk. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% Δk. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  9. Experience from performance testing of low NOx burners for refinery heaters; Tests de performance avec des bruleurs de raffinerie a basse emission de NOx

    Energy Technology Data Exchange (ETDEWEB)

    Boden, J.C. [Refining Technology, BP Oil International, Sunbury (United Kingdom)

    2001-07-01

    Developments in low NOx burner technology have resulted in major reductions in NOx emissions from refinery process heaters. However, the techniques used in low NOx burners to reduce NOx emissions can potentially affect other key aspects of burner performance, particularly flame stability and completeness of combustion. BP has evaluated many of the currently available low and ultra-low NOx burners, both natural and forced draught, in its purpose-built test furnace. This extensive test programme has shown that to be a reliable predictor of actual performance a test rig must recreate accurately the real furnace conditions, particularly with respect to furnace and hearth temperatures. The testing has demonstrated the NOx emissions to be expected in practice from different generic types of burner, conventional, low NOx and ultra-low NOx, and has highlighted the sets of conditions most likely to lead to combustion performance problems. (authors)

  10. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  11. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  12. Cutting edge SRU control : improved environmental compliance with Jacobs advanced burner control+ (ABC+)

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, G. [Jacobs Canada Inc., Calgary, AB (Canada); Henning, A.; Kobussen, S. [Jacobs Nederland BV, Hoogvliet (Netherlands)

    2009-07-01

    Oil sands bitumen contains approximately 4 to 5 per cent sulphur by weight and the bitumen is upgraded to produce lighter fractions. During coking the bitumen is heated and cracked into lighter molecules and a mixture of kerosene, naphtha and gas oil is recovered via fractionation. Then, the vapors leaving the fractionator are processed through hydrodesulphurization, followed by removal by amine based sweetening units. The acid gas from the ASUs is sent to the sulphur recovery units (SRUs) where most of the sulphur is recovered as elemental sulphur. The oil sands industry faces many challenges with respect to environmental impact, energy use and greenhouse gas emissions including the recovery of sulphur and minimizing hydrogen sulfide (H{sub 2}S) and sulphur dioxide (SO{sub 2}) emissions from the oil sands production facilities. In order to improve the SRU control response to acid gas feed variations, Jacobs Comprimo Sulphur Solutions implemented advanced burner control+ (ABC+) at Suncor's Simonette Gas Plant's SRU in northern Alberta. This control system used an acid gas feed analyzer and dynamic algorithms to control the combustion air to the reaction furnace. The analyzer measures H{sub 2}S, total hydrocarbons, carbon dioxide (CO{sub 2}) and water (H{sub 2}O) accurately and quickly, which is important for having effective and fast air-to-acid gas ratio control. The paper provided background information on the Suncor Simonette Gas Plant and discussed ABC+ versus conventional control. An overview of the simplified ABC and ABC+ systems was then illustrated and presented. The ABB multiwave process photometer was also explained. Last, a dynamic simulation of the potential benefits of ABC+ was discussed and the ABC+ benefits for oil sands were presented. It was concluded that ABC+ provides improved SRU performance, reduced SO{sub 2} emissions and violations, and reduced flaring. 1 tab., 3 figs.

  13. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  14. LOW NOX BURNER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  15. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  16. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  17. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  18. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  19. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    Directory of Open Access Journals (Sweden)

    Luciano Fanton

    2012-01-01

    Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.

  20. Room/corner tests of wall linings with 100/300 kW burner

    Science.gov (United States)

    M. A. Dietenberger; O. Grexa; R. H. White; M. S. Sweet; M. Janssens

    1995-01-01

    Six room/comer tests of common wall linings were conducted with gypsum-lined ceiling exposed to propane burning at 100 kW for 10 min followed by 300 kW for 10 min. This test protocol is an option provided by ISO 9705. The flashover event occurred at 1,000 kW rate of heat release within several seconds of observing flames out the doorway. The time to flashover of the...

  1. Case study for co and counter swirling domestic burners

    Directory of Open Access Journals (Sweden)

    Ashraf Kotb

    2018-03-01

    Full Text Available In this case study, the influence of equivalence ratio for co and counter-swirl domestic burners compared with non-swirl design on the thermal efficiency as well as CO emissions has been studied using liquefied petroleum gas (LPG. Also, the flame stability, and pot height, which is defined as the burner-to-pot distance (H, of the co and counter domestic burners were compared. The analysis of the results showed that, for both swirl burners co and counter one the thermal efficiency under all operation conditions tested is higher than the non-swirled burner (base burner. For example, the thermal efficiency increased by 8.8%, and 5.8% than base burner for co and counter swirl, respectively at Reynolds number equal 2000 and equivalence ratio 1. The co and counter swirl burners show lower CO emission than the base burner. The co swirl burner has wider operation range than counter swirl. With the increase of pot height, the thermal efficiency of all burners decreases because the flame and combustion gases are cooled due to mixing with ambient air. As a result, the heat transfer is decreased due to atmospheric loss, which decrease the thermal efficiency.

  2. ERA-Net Evaluation of technology status for small-scale combustion of pellets from new ash rich biomasses - combustion tests in residential burners

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Johansson, Mathias; Frida Claesson

    2008-07-01

    In this project, pellets with higher ash content compared to the wood pellets used today on the Swedish market were tested in three domestic-scale burners. The tests were carried out based on EN 303-5. In the flue gas, combustion parameters as carbon monoxide, carbon dioxide, oxygen and hydro carbons were measured, and also more fuel specific parameters such as nitrogen oxides, sulphur dioxide, hydrogen chloride, total dust and particle mass- and number concentration. The dust (fly ash) and bottom ash were characterized chemically. The implications of high ash content on combustion performance are discussed in the report. Altogether five pellets with 8 mm diameter were tested: oilseed straw pellet, reed canary grass pellet (RCG), barley straw pellet, bark pellet and wood pellet. All fuels were dry ranging from 6.5-12 % moisture. The ash content varied from 0.3 weight-% dm in wood to 7.9 % in RCG. Barley straw has a noticeable low ash melting temperature, < 980 deg C, and could not be combusted in any of the burners. The nitrogen content varied nine times and sulphur more than 10 times. The chlorine content was very low in wood and bark and more than 20 times higher in oilseed and barley. The composition of inorganic species in the fuel ash was dominated by calcium, potassium and silica in wood, bark and oilseed pellet, while RCG and barley straw were dominated by silica. The three burners used were commercial and known to fulfil high quality requirements. Burner A is a pellet burner where fuel is supplied on top of the grate with no mechanical mean for moving bottom ash on the grate during combustion. Bottom ash is blown away, and any slag remaining on the grate is removed with a scrape before ignition. Burner B is an upward burning pellet burner where fuel and ash is pushed upwards and the glow bed is exposed to the surrounding combustion department. Burner C is a forward burning grain burner that pushes fuel and ash forwards, inside a cylinder. From the

  3. Pulverized coal burner

    Science.gov (United States)

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  4. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  5. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  6. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Grudzinski, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  7. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  8. Advanced Vehicle Testing and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Garetson, Thomas [The Clarity Group, Incorporated, Chicago, IL (United States)

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  9. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    Science.gov (United States)

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  10. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS, VOLUME 1, TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    Science.gov (United States)

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  11. Methane combustion in catalytic premixed burners

    International Nuclear Information System (INIS)

    Cerri, I.; Saracco, G.; Specchia, V.

    1999-01-01

    Catalytic premixed burners for domestic boiler applications were developed with the aim of achieving a power modularity from 10 to 100% and pollutant emissions limited to NO x 2 , where the combustion took place entirely inside the burner heating it to incandescence and allowing a decrease in the flame temperature and NO x emissions. Such results were confirmed through further tests carried out in a commercial industrial-scale boiler equipped with the conical panels. All the results, by varying the excess air and the heat power employed, are presented and discussed [it

  12. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  13. Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings

    Science.gov (United States)

    Baird, Benjamin

    This study is the investigation of the effect of elliptical nozzle burner geometry and partial premixing, both 'passive control' methods, on a hydrogen/hydrocarbon flame. Both laminar and turbulent flames for circular, 3:1, and 4:1 aspect ratio (AR) elliptical burners are considered. The amount of air mixed with the fuel is varied from fuel-lean premixed flames to fuel-rich partially premixed flames. The work includes measurements of flame stability, global pollutant emissions, flame radiation, and flame structure for the differing burner types and fuel conditions. Special emphasis is placed on the near-burner region. Experimentally, both conventional (IR absorption, chemiluminecent, and polarographic emission analysis,) and advanced (laser induced fluorescence, planar laser induced fluorescence, Laser Doppler Velocimetry (LDV), Rayleigh scattering) diagnostic techniques are used. Numerically, simulations of 3-dimensional laminar and turbulent reacting flow are conducted. These simulations are run with reduced chemical kinetics and with a Reynolds Stress Model (RSM) for the turbulence modeling. It was found that the laminar flames were similar in appearance and overall flame length for the 3:1 AR elliptical and the circular burner. The laminar 4:1 AR elliptical burner flame split into two sub-flames along the burner major axis. This splitting had the effect of greatly shortening the 4:1 AR elliptical burner flame to have an overall flame length about half of that of the circular and 3:1 AR elliptical burner flames. The length of all three burners flames increased with increasing burner exit equivalence ratio. The blowout velocity for the three burners increased with increase in hydrogen mass fraction of the hydrogen/propane fuel mixture. For the rich premixed flames, the circular burner was the most stable, the 3:1 AR elliptical burner, was the least stable, and the 4:1 AR elliptical burner was intermediate to the two other burners. This order of stability was due

  14. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  15. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  16. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  17. Nitrogen oxide suppression by using a new design of pulverized-coal burners

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Cameron, S.D.; Grekhov, L.L. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The results of testing a low-NO{sub x} swirl burner are presented. This burner was developed by Babcock Energy Ltd., for reducing nitrogen oxide emissions when burning Ekibastuz and Kuznetsk low-caking coals in power boilers. The tests conducted at a large plant of the BEL Technological Center showed that the new burner reduces NO{sub x} emissions by approximately two times. 6 refs., 6 figs., 1 tab.

  18. Economic Analysis of Symbiotic Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    International Nuclear Information System (INIS)

    Williams, Kent Alan; Shropshire, David E.

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  19. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  20. Test Concept for Advanced Oxidation Techniques

    DEFF Research Database (Denmark)

    Bennedsen, Lars Rønn; Søgaard, Erik Gydesen; Mortensen, Lars

    advanced on-site oxidation tests. The remediation techniques included are electrochemical oxidation, photochemical/photocatalytic oxidation, ozone, hydrogen peroxide, permanganate, and persulfate among others. A versatile construction of the mobile test unit makes it possible to combine different...

  1. Verification tests for CANDU advanced fuel

    International Nuclear Information System (INIS)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D.

    1997-07-01

    For the development of a CANDU advanced fuel, the CANFLEX-NU fuel bundles were tested under reactor operating conditions at the CANDU-Hot test loop. This report describes test results and test methods in the performance verification tests for the CANFLEX-NU bundle design. The main items described in the report are as follows. - Fuel bundle cross-flow test - Endurance fretting/vibration test - Freon CHF test - Production of technical document. (author). 25 refs., 45 tabs., 46 figs

  2. Advanced Test Reactor probabilistic risk assessment

    International Nuclear Information System (INIS)

    Atkinson, S.A.; Eide, S.A.; Khericha, S.T.; Thatcher, T.A.

    1993-01-01

    This report discusses Level 1 probabilistic risk assessment (PRA) incorporating a full-scope external events analysis which has been completed for the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory

  3. Numerical simulation of porous burners and hole plate surface burners

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan

    2004-01-01

    Full Text Available In comparison to the free flame burners the porous medium burners, especially those with flame stabilization within the porous material, are characterized by a reduction of the combustion zone temperatures and high combustion efficiency, so that emissions of pollutants are minimized. In the paper the finite-volume numerical tool for calculations of the non-isothermal laminar steady-state flow, with chemical reactions in laminar gas flow as well as within porous media is presented. For the porous regions the momentum and energy equations have appropriate corrections. In the momentum equations for the porous region an additional pressure drop has to be considered, which depends on the properties of the porous medium. For the heat transfer within the porous matrix description a heterogeneous model is considered. It treats the solid and gas phase separately, but the phases are coupled via a convective heat exchange term. For the modeling of the reaction of the methane laminar combustion the chemical reaction scheme with 164 reactions and 20 chemical species was used. The proposed numerical tool is applied for the analyses of the combustion and heat transfer processes which take place in porous and surface burners. The numerical experiments are accomplished for different powers of the porous and surface burners, as well as for different heat conductivity character is tics of the porous regions.

  4. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    Ball, S.J.

    1987-01-01

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  5. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  6. IEN project - Fluidized bed burner

    International Nuclear Information System (INIS)

    1985-08-01

    Due to difficulties inherent to the organic waste storage from laboratories and institutes which use radioactive materials for scientific researches, the Nuclear Facilities Division (DIN/CNEN); elaborated a project for constructing a fluidized burner, in laboratory scale, for burning the low level organic radioactive wastes. The burning system of organic wastes is described. (M.C.K.) [pt

  7. Optimisation of efficiency and emissions in pellet burners

    International Nuclear Information System (INIS)

    Eskilsson, David; Roennbaeck, Marie; Samuelsson, Jessica; Tullin, Claes

    2004-01-01

    There is a trade-off between the emissions of nitrogen oxides (NO x ) and of unburnt hydrocarbons and carbon monoxide (OGC and CO). Decreasing the excess air results in lower NO x emission but also increased emission of unburnt. The efficiency increases, as the excess air is decreased until the losses due to incomplete combustion become too high. The often-high NO x emission in today's pellet burners can be significantly reduced using well-known techniques such as air staging. The development of different chemical sensors is very intensive and recently sensors for CO and OGC have been introduced on the market. These sensors may, together with a Lambda sensor, provide efficient control for optimal performance with respect to emissions and efficiency. In this paper, results from an experimental parameter study in a modified commercial burner, followed by Chemkin simulations with relevant input data and experiments in a laboratory reactor and in a prototype burner, are summarised. Critical parameters for minimisation of NO x emission from pellet burners are investigated in some detail. Also, results from tests of a new sensor for unburnt are reported. In conclusion, relatively simple design modifications can significantly decrease NO x emission from today's pellet burners

  8. Advanced Mechanical Testing of Sandwich Materials

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Jenstrup, Claus

    2008-01-01

    An advanced digital optical system has been used to measure surface strains on sandwich face and core specimens tested in a project concerned with improved criteria for designing sandwich X-joints. The face sheet specimens were of glass reinforced polyester and were tested in tension. The core sp...

  9. Process development report: 0.40-m primary burner system

    International Nuclear Information System (INIS)

    Young, D.T.

    1978-04-01

    Fluidized bed combustion is required in reprocessing the graphite-based fuel elements from high-temperature gas-cooled reactor (HTGR) cores. This burning process requires combustion of beds containing both large particles and very dense particles, and also of fine graphite particles which elutriate from the bed. This report documents the successful long-term operation of the 0.40-m primary burner in burning crushed fuel elements. The 0.40-m system operation is followed from its first short heatup test in September 1976 to a > 40-h burning campaign that processed 20 LHTGR blocks in September 1977. The 0.40-m perforated conical gas distributor, scaled up from the 0.20-m primary burner, has proven reliable in safely burning even the largest, densest adhered graphite/fuel particle clusters originating from the crushing of loaded fuel elements. Such clusters had never been fed to the 0.20-m system. Efficient combustion of graphite fines using the pressurized recycle technique was demonstrated throughout the long-duration operation required to reduce a high carbon fresh feed bed to a low carbon particle bed. Again, such operation had never been completed on the 0.20-m system from which the 0.40-m burner was scaled. The successful completion of the tests was due, in part, to implementation of significant equipment revisions which were suggested by both the initial 0.40-m system tests and by results of ongoing development work on the 0.2-m primary burner. These revisions included additional penetrations in the burner tube side-wall for above-bed fines recycle, replacement and deletion of several metal bellows with bellows of more reliable design, and improvements in designs for burner alignment and feeder mechanisms. 76 figures, 8 tables

  10. Advanced Stirling Convertor Testing at GRC

    Science.gov (United States)

    Schifer, Nick; Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.

  11. Wood pellets for stoker burner

    International Nuclear Information System (INIS)

    Nykaenen, S.

    2000-01-01

    The author of this article has had a stoker for several years. Wood chips and sod peat has been used as fuels in the stoker, either separately or mixed. Last winter there occurred problems with the sod peat due to poor quality. Wood pellets, delivered by Vapo Oy were tested in the stoker. The price of the pellets seemed to be a little high 400 FIM/500 kg large sack. If the sack is returned in good condition 50 FIM deposit will be repaid to the customer. However, Vapo Oy informed that the calorific value of wood pellets is three times higher than that of sod peat so it should not be more expensive than sod peat. When testing the wood pellets in the stoker, the silo of the stoker was filled with wood pellets. The adjustments were first left to position used for sod peat. However, after the fire had ignited well, the adjustments had to be decreased. The content of the silo was combusted totally. The combustion of the content of the 400 litter silo took 4 days and 22 hours. Respectively combustion of 400 l silo of good quality sod peat took 2 days. The water temperature with wood pellets remained at 80 deg C, while with sod peat it dropped to 70 deg C. The main disadvantage of peat with small loads is the unhomogenous composition of the peat. The results of this test showed that wood pellets will give better efficiency than peat, especially when using small burner heads. The utilization of them is easier, and the amount of ash formed in combustion is significantly smaller than with peat. Wood pellets are always homogenous and dry if you do not spoil it with unproper storage. Pellets do not require large storages, the storage volume needed being less than a half of the volume needed for sod peat. When using large sacks the amount needed can even be transported at the trunk of a passenger car. Depending on the area to be heated, a large sack is sufficient for heating for 2-3 weeks. Filling of stoker every 2-5 day is not an enormous task

  12. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  13. Developement of porous media burner operating on waste vegetable oil

    International Nuclear Information System (INIS)

    Lapirattanakun, Arwut; Charoensuk, Jarruwat

    2017-01-01

    Highlights: • Steam was successfully applied to promote combustion of WVO. • A specially designed porous domain was an essential element for stable combustion of WVO. • The performance of WVO burner was in the range of cooking stove. • Nozzle clog up in domestic WVO burner can be avoided when replacing it with a steam-assisted nozzle. - Abstract: A newly designed cooking stove using Wasted Vegetable Oil (WVO) as fuel was introduced. Porous media, containing 2 cm diameter of spherical ceramic balls, was used as a flame stabilizer. Steam was successfully applied in a burner at this scale to atomize WVO droplet and entrain air into the combustion zone as well as to reduce soot and CO emission. DIN EN 203-1 testing standard was adopted and the experiment was conducted at various firing rate with the water flow rate at 0.16, 0.20 and 0.22 kg/min. Temperature, emissions, visible flame length, thermal efficiency as well as combustion efficiency were evaluated. Under the current WVOB design, it was suitable to operate the burner at the range of nominal firing rate between 325 and 548 kW/m"2 with water flow rate of 0.16 kg/min, at burner height to diameter ratio of 0.75, giving CO and NO_x emissions up to 171 and 40 ppm, respectively (at 6% O_2). Thermal efficiency was at around 28% where the combustion efficiency was approximately at 99.5%. The performance of WVO burner could be improved further if increasing the H/D ratio to 1.5, yielding thermal efficiency up to 42%.

  14. Optimization of burners in oxygen-gas fired glass furnace

    NARCIS (Netherlands)

    Kersbergen, M.J. van; Beerkens, R.G.C.; Sarmiento-Darkin, W.; Kobayashi, H.

    2012-01-01

    The energy efficiency performance, production stability and emissions of oxygen-fired glass furnaces are influenced by the type of burner, burner nozzle sizes, burner positions, burner settings, oxygen-gas ratios and the fuel distribution among all the burners. These parameters have been optimized

  15. Advanced Demonstration and Test Reactor Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Gehin, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States); Qualls, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Croson, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy

  16. Advanced Demonstration and Test Reactor Options Study

    International Nuclear Information System (INIS)

    Petti, David Andrew; Hill, R.; Gehin, J.; Gougar, Hans David; Strydom, Gerhard; Heidet, F.; Kinsey, J.; Grandy, Christopher; Qualls, A.; Brown, Nicholas; Powers, J.; Hoffman, E.; Croson, D.

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power's share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy's (DOE's) broader commitment to pursuing an 'all of the above' clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate 'advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy'. Advanced reactors are

  17. Southern Woods-Burners: A Descriptive Analysis

    Science.gov (United States)

    M.L. Doolittle; M.L. Lightsey

    1979-01-01

    About 40 percent of the South's nearly 60,000 wildfires yearly are set by woods-burners. A survey of 14 problem areas in four southern States found three distinct sets of woods-burners. Most active woods-burners are young, white males whose activities are supported by their peers. An older but less active group have probably retired from active participation but...

  18. The influence of the furnace design on emissions from small wood pellet burners

    International Nuclear Information System (INIS)

    Aspfors, Jonas; Larfeldt, Jenny

    1999-01-01

    Two pellet burners have been installed and tested in a small scale boiler for house heating. The boiler is representative for the Swedish households and the burners, upwards and forward burning, are commercially available on the Swedish market. This work focuses on the boiler operation and particularly the potential of improved emissions by changing the furnace design. An insulation of the fireplace lowered the emission of CO by 50% and the emission of OGC by 60% for the upwards burning burner at low load. Modifying the furnace using baffles did not have any influence on the emissions. It is concluded that an increased temperature in the furnace is more important than an increased residence time of the combustible gases to decrease the emissions. At full load both burners emit approximately 300 mg CO per nm 3 gas and the emission of OGC are negligible. At half load the emissions of CO increased to 1000 mg/m n 3 and OGC to 125 mg/m n 3 in the upward burning burner. The forwards burning burner had a small increase in OGC to about 10 mg/m n 3 at half load while the emission of CO increased to 800 mg/m n 3 . The forward burning burner is less influenced on the furnace design compared to the upward burning burner. The comparatively high emissions of OGC for the upward burning burner is explained by the intermittent operation. However, it was possible to reduce the emissions from this burner by ceramic insulation of the furnace Project report from the program: Small scale combustion of biofuels. 3 refs, 12 figs, 2 tab, 1 appendix with 33 figs and 12 tabs

  19. Advanced Instrumentation for Transient Reactor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael L.; Anderson, Mark; Imel, George; Blue, Tom; Roberts, Jeremy; Davis, Kurt

    2018-01-31

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and design increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).

  20. Process development report: 0.20-m primary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1978-09-01

    HTGR reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite, separating the fissile and fertile particles, crushing and burning the SiC-coated fuel particles to remove the remainder of the carbon, dissolution and separation of the particles from insoluble materials, and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel elements is accomplished in a primary burner. This is a batch-continuous, fluidized-bed process utilizing above-bed gravity fines recycle. In gas-solid separation, a combination of a cyclone and porous metal filters is used. This report documents operational tests performed on a 0.20-m primary burner using crushed fuel representative of both Fort St. Vrain and large high-temperature gas-cooled reactor cores. The burner was reconstructed to a gravity fines recycle mode prior to beginning these tests. Results of two separate and successful 48-hour burner runs and several short-term runs have indicated the operability of this concept. Recommendations are made for future work

  1. Future Transient Testing of Advanced Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by

  2. Future Transient Testing of Advanced Fuels

    International Nuclear Information System (INIS)

    Carmack, Jon

    2009-01-01

    The transient in-reactor fuels testing workshop was held on May 4-5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat energie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric - Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the

  3. Instrumentation to Enhance Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  4. Instrumentation to Enhance Advanced Test Reactor Irradiations

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Daw, J.E.; Taylor, S.C.

    2009-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  5. Standardization of Tests for Advanced Composites

    OpenAIRE

    石川, 隆司; ISHIKAWA, Takashi; 野口, 義男; NOGUCHI, Yoshio; 濱口, 泰正; HAMAGUCHI, Yasumasa

    2003-01-01

    Advanced composites are essentially the only feasible materials for the construction of newly developed aerospace vehicle. However, the path to be followed for the validation, evaluation and certification of composite aircraft structures is quite different from that of traditional metallic aircraft structures, and the importance of a composites database is now well recognized. A key issue in constructing a fully descriptive composites database is to establish standard composite test methods, ...

  6. Mastering Kali Linux for advanced penetration testing

    CERN Document Server

    Beggs, Robert W

    2014-01-01

    This book provides an overview of the kill chain approach to penetration testing, and then focuses on using Kali Linux to provide examples of how this methodology is applied in the real world. After describing the underlying concepts, step-by-step examples are provided that use selected tools to demonstrate the techniques. If you are an IT professional or a security consultant who wants to maximize the success of your network testing using some of the advanced features of Kali Linux, then this book is for you. This book will teach you how to become an expert in the pre-engagement, management,

  7. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  8. Irradiation Facilities at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2005-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC) (formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens

  9. Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Benson, Jeff; Thelen, Mary Catherine

    2011-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  10. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  11. Firing in fluid beds and burners

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.; Lans, R. van der; Storm Pedersen, L.; Philbert Nielsen, H.; Aslaug Hansen, L.; Lin, W.; Johnsson, J.E.; Dam-Johansen, K.

    1998-02-01

    An investigation of the effect of co-firing straw and pulverized coal was performed. Based on experiments from pilot-scale and full-scale it was concluded that a higher fraction of straw in the fuel feedstock mixture results in lower NO and SO{sub 2} emissions. The lower NO emission was mainly due to the higher volatile content of the straw, which leads to lower stoichiometry in the gas phase and in subsequent suppression of NO{sub x} formation. This conclusion is consistent with experimental and modeling results for pure coal combustion. The effect of coal quality on NO emissions has been investigated with three coals of different characteristics in three furnaces: in the Funen power station, unit 7 (FVO7), the Midtkraft Studstrup power station, unit 4 (MKS4), and the Mitsui Babcock Energy Ltd (MBEL) test-rig. The MBEL test-rig was able to reproduce qualitatively the emissions from the MKS4 plant, and quantitatively the emissions from the FVO7 plant. The better agreement between the MBEL test-rig and FVO7 is presumed to be related to the existence of a large primary zone with a relatively low stoichiometry, diminishing the influence of near burner air and fuel mixing rate on the NO emissions. An engineering model has been developed for the prediction of NO emissions and burnout from pulverized fuel combustion in swirl burners. A simplified model for reduction of N{sub 2}O in CFBC has been developed, and simulation results are in good agreement with experimental data from a 12 MW{sub th} CFB-boiler. (EG) EFP-94. 108 refs.

  12. Irradiation facilitates at the advanced test reactor

    International Nuclear Information System (INIS)

    Grover, Blaine S.

    2006-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC - formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950's with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens. The paper has the following contents: ATR description and capabilities; ATR operations, quality and safety requirements; Static capsule experiments; Lead experiments; Irradiation test vehicle; In-pile loop experiments; Gas test loop; Future testing; Support facilities at RTC; Conclusions. To summarize, the ATR has a long history in fuel and material irradiations, and will be fulfilling a critical role in the future fuel and material testing necessary to develop the next generation reactor systems and advanced fuel cycles. The

  13. Pyrolysis kinetics and combustion of thin wood by an advanced cone caorimetry test method

    Science.gov (United States)

    Mark Dietenberger

    2012-01-01

    Pyrolysis kinetics analysis of extractives, holocellulose, and lignin in the solid redwood over the entire heating regime was possible by specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for the thin specimen with tiny thermocouples, the methane ring burner with stainless-steel mesh above...

  14. Pyrolysis kinetics and combustion of thin wood using advanced cone calorimetry test method

    Science.gov (United States)

    Mark A. Dietenberger

    2011-01-01

    Mechanistic pyrolysis kinetics analysis of extractives, holocellulose, and lignin in solid wood over entire heating regime was possible using specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for thin specimen with tiny thermocouples, methane ring burner with stainless steel mesh above cone...

  15. Advanced Burner Reactor 1000MWth Reference Concept

    Energy Technology Data Exchange (ETDEWEB)

    Cahalan, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Fanning, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Kellogg, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Momozaki, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Park, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Reed, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Salev, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Seidensticker, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Tang, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Tzanos, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Chikazawa, Y. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2007-09-30

    The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence, to validate the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat.

  16. Burner for a wood burning furnace

    Energy Technology Data Exchange (ETDEWEB)

    Nolting, H

    1981-12-10

    The burner according to the invention consists of a horizontal tube, whose front wall is penetrated by an intake pipe, which is surrounded by a pipe duct and several divided shells, which are arranged below the pipe duct. The front wall is also provided with air openings. The intake pipe is provided with a spiral and moves chopped wood into the burner.

  17. Premixed combustion on ceramic foam burners

    NARCIS (Netherlands)

    Bouma, P.H.; Goey, de L.P.H.

    1999-01-01

    Combustion of a lean premixed methane–air mixture stabilized on a ceramic foam burner has been studied. The stabilization of the flame in the radiant mode has been simulated using a one-dimensional numerical model for a burner stabilized flat-flame, taking into account the heat transfer between the

  18. Thermal modelling of Advanced LIGO test masses

    International Nuclear Information System (INIS)

    Wang, H; Dovale Álvarez, M; Mow-Lowry, C M; Freise, A; Blair, C; Brooks, A; Kasprzack, M F; Ramette, J; Meyers, P M; Kaufer, S; O’Reilly, B

    2017-01-01

    High-reflectivity fused silica mirrors are at the epicentre of today’s advanced gravitational wave detectors. In these detectors, the mirrors interact with high power laser beams. As a result of finite absorption in the high reflectivity coatings the mirrors suffer from a variety of thermal effects that impact on the detectors’ performance. We propose a model of the Advanced LIGO mirrors that introduces an empirical term to account for the radiative heat transfer between the mirror and its surroundings. The mechanical mode frequency is used as a probe for the overall temperature of the mirror. The thermal transient after power build-up in the optical cavities is used to refine and test the model. The model provides a coating absorption estimate of 1.5–2.0 ppm and estimates that 0.3 to 1.3 ppm of the circulating light is scattered onto the ring heater. (paper)

  19. Industrial burner and process efficiency program

    Science.gov (United States)

    Huebner, S. R.; Prakash, S. N.; Hersh, D. B.

    1982-10-01

    There is an acute need for a burner that does not use excess air to provide the required thermal turndown and internal recirculation of furnace gases in direct fired batch type furnaces. Such a burner would improve fuel efficiency and product temperature uniformity. A high velocity burner has been developed which is capable of multi-fuel, preheated air, staged combustion. This burner is operated by a microprocessor to fire in a discrete pulse mode using Frequency Modulation (FM) for furnace temperature control by regulating the pulse duration. A flame safety system has been designed to monitor the pulse firing burners using Factory Mutual approved components. The FM combustion system has been applied to an industrial batch hardening furnace (1800 F maximum temperature, 2500 lbs load capacity).

  20. Recent progress of the advanced test accelerator

    International Nuclear Information System (INIS)

    Prono, D.S.

    1985-01-01

    The Advanced Test Accelerator (ATA) of Lawrence Livermore National Laboratory is a linear induction accelerator whose electron beam parameters are 10 kA, 50 MeV, and 70 ns. This accelerator structure basically is a 2.5 MeV injector followed by 190 identical induction accelerator cores each of which incrementally adds 250 kV to the electron beam as it threads the center of the core. Recent work on beam stability, beam emittance and beam brightness is reported

  1. A new scaling methodology for NO(x) emissions performance of gas burners and furnaces

    Science.gov (United States)

    Hsieh, Tse-Chih

    1997-11-01

    A general burner and furnace scaling methodology is presented, together with the resulting scaling model for NOsb{x} emissions performance of a broad class of swirl-stabilized industrial gas burners. The model is based on results from a set of novel burner scaling experiments on a generic gas burner and furnace design at five different scales having near-uniform geometric, aerodynamic, and thermal similarity and uniform measurement protocols. These provide the first NOsb{x} scaling data over the range of thermal scales from 30 kW to 12 MW, including input-output measurements as well as detailed in-flame measurements of NO, NOsb{x}, CO, Osb2, unburned hydrocarbons, temperature, and velocities at each scale. The in-flame measurements allow identification of key sources of NOsb{x} production. The underlying physics of these NOsb{x} sources lead to scaling laws for their respective contributions to the overall NOsb{x} emissions performance. It is found that the relative importance of each source depends on the burner scale and operating conditions. Simple furnace residence time scaling is shown to be largely irrelevant, with NOsb{x} emissions instead being largely controlled by scaling of the near-burner region. The scalings for these NOsb{x} sources are combined in a comprehensive scaling model for NOsb{x} emission performance. Results from the scaling model show good agreement with experimental data at all burner scales and over the entire range of turndown, staging, preheat, and excess air dilution, with correlations generally exceeding 90%. The scaling model permits design trade-off assessments for a broad class of burners and furnaces, and allows performance of full industrial scale burners and furnaces of this type to be inferred from results of small scale tests.

  2. Development of stoker-burner wood chip combustion systems for the UK market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The document makes a case for the development of a design of wood chip stoker-burner more suited to the UK than those currently imported from Sweden and Finland. The differences would centre on market conditions, performance and cost-effectiveness and the devices would be manufactured or part-manufactured in the UK. Econergy Limited was contracted by the DTI as part of its Sustainable Energy Programmes to design and construct an operational prototype stoker-burner rated at 120 kWth. A test rig was built to: (i) study modified burner heads and (ii) develop control hardware and a control strategy. Both (i) and (ii) are described. Tests brought about an increase in performance of the burner head and its wet wood performance. It was considered that further improvements are achievable and six areas for future study were suggested.

  3. The advanced test reactor strategic evaluation program

    International Nuclear Information System (INIS)

    Buescher, B.J.

    1989-01-01

    Since the Chernobly accident, the safety of test reactors and irradiation facilities has been critically evaluated from the public's point of view. A systematic evaluation of all safety, environmental, and operational issues must be made in an integrated manner to prioritize actions to maximize benefits while minimizing costs. Such a proactive program has been initiated at the Advanced Test Reactor (ATR). This program, called the Strategic Evaluation Program (STEP), is being conducted for the ATR to provide integrated safety and operational reviews of the reactor against the standards applied to licensed commercial power reactors. This has taken into consideration the lessons learned by the US Nuclear Regulatory Commission (NRC) in its Systematic Evaluation Program (SEP) and the follow-on effort known as the Integrated Safety Assessment Program (ISAP). The SEP was initiated by the NRC to review the designs of older operating nuclear power plants to confirm and document their safety. The ATR STEP objectives are discussed

  4. DESIGN AND DEVELOPMENT OF MILD COMBUSTION BURNER

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2013-12-01

    Full Text Available This paper discusses the design and development of the Moderate and Intense Low oxygen Dilution (MILD combustion burner using Computational Fluid Dynamics (CFD simulations. The CFD commercial package was used to simulate preliminary designs for the burner before the final design was sent to the workshop for fabrication. The burner is required to be a non-premixed and open burner. To capture and use the exhaust gas, the burner was enclosed within a large circular shaped wall with an opening at the top. An external EGR pipe was used to transport the exhaust gas which was mixed with the fresh oxidant. To control the EGR and exhaust flow, butterfly valves were installed at the top opening as a damper to close the exhaust gas flow at a certain ratio for EGR and exhaust out to the atmosphere. High temperature fused silica glass windows were installed to view and capture images of the flame and analyze the flame propagation. The burner simulation shows that MILD combustion was achieved for the oxygen mole fraction of 3-13%. The final design of the burner was fabricated and ready for the experimental validation.

  5. Development of a hardware-in-the-loop-test rig to verify the reliability of oil burner pumps. Application by the use of biocide in domestic heating oil; Entwicklung eines Hardware-in-the-loop Pruefstands zum Nachweis der Betriebssicherheit von Oelbrennerpumpen. Anwendungen bei Einsatz von Biozidadditiven

    Energy Technology Data Exchange (ETDEWEB)

    Rheinberg, Oliver van; Lukito, Jayadi; Liska, Martin [Oel-Waerme-Institut gGmbH (OWI), Aachen-Herzogenrath (Germany)

    2009-09-15

    Within this project, a hardware-in-the-loop test rig has been developed to investigate the influence of different fuels on the reliability of oil burner pumps. The test rig is constructed with commercial burner components. One test rig consists of four pump cycles, where the fuel recirculates for max. 2000 h. Low powered electric motors of 90 Watts have been used deliberately, so that the apparatus is more sensitive to failure due to an increase in pump load. A practise relevant intermittent operating mode has been implemented for the simulation of real operation characteristics. The measured variable and evaluation parameters are start-up torque, intake pressure, fuel pump pressure and temperature. Operation failures of oil burner pumps in the field, due to an over-additisation of biocides, have been observed. These failures could be reproducibly simulated on the pump test stands. The results of the project are a redefinition of limits of biocide concentration and the development of new biocides, which are suitable for use in domestic heating oil with a content of up to 20 % Fatty-Acid-Methyl-Ester. (orig.)

  6. RF torch discharge combined with conventional burner

    International Nuclear Information System (INIS)

    Janca, J.; Tesar, C.

    1996-01-01

    The design of the combined flame-rf-plasma reactor and experimental examination of this reactor are presented. For the determination of the temperature in different parts of the combined burner plasma the methods of emission spectroscopy were used. The temperatures measured in the conventional burner reach the maximum temperature 1900 K but in the burner with the superimposed rf discharge the neutral gas temperature substantially increased up to 2600 K but also the plasma volume increases substantially. Consequently, the resident time of reactants in the reaction zone increases

  7. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Science.gov (United States)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  8. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Directory of Open Access Journals (Sweden)

    Schiro Fabio

    2017-01-01

    Full Text Available The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen. Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  9. Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory

    Science.gov (United States)

    Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig

    2011-01-01

    This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.

  10. The Advanced Test Reactor Strategic Evaluation Program

    International Nuclear Information System (INIS)

    Buescher, B.J.

    1990-01-01

    A systematic evaluation of safety, environmental, and operational issues has been initiated at the Advanced Test Reactor (ATR). This program, the Strategic Evaluation Program (STEP), provides an integrated review of safety and operational issues against the standards applied to licensed commercial facilities. In the review of safety issues, 18 deviations were identified which required prompt attention. Resolution of these items has been accelerated in the program. An integrated living schedule is being developed to address the remaining findings. A risk evaluation is being performed on the proposed corrective actions and these actions will then be formally ranked in order of priority based on considerations of safety and operational significance. Once the final ranking is completed, an integrated schedule will be developed, which will include considerations of availability of funding and operating schedule. 3 refs., 2 figs

  11. A design of steady state fusion burner

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Hatori, Tadatsugu; Itoh, Kimitaka; Ikuta, Takashi; Kodama, Yuji.

    1975-01-01

    We present a brief design of a steady state fusion burner in which a continuous burning of nuclear fuel may be achieved with output power of a gigawatt. The laser fusion is proposed to ignite the fuel. (auth.)

  12. Advanced test reactor testing experience-past, present and future

    International Nuclear Information System (INIS)

    Marshall, Frances M.

    2006-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner 'lobes' to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors - US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, which places the capsule in direct contact with the primary coolant. The next level of experiment complexity is an instrumented lead experiment, which allows for active control of experiment conditions during the irradiation. The most complex experiment is the pressurized water loop, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans

  13. Development and demonstration of a gas-fired recuperative confined radiant burner (deliverable 42/43). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The objective of the project was to develop and demonstrate an innovative, efficient, low-pollutant, recuperative gas-fired IR-system (infrared radiation) for industrial processes (hereafter referred to as the CONRAD-system). The CONRAD-system is confined, so flue gases from the combustion can be kept separated from the product. The gas/air mixture to the burner is preheated by means of the flue gas, which increases the radiant efficiency of the CONRAD-system significantly over traditional gas-fired IR burners. During the first phase of the project, the CONRAD-system was designed and developed. The conducted work included a survey on suitable burner materials, modelling of the burner system, basic design of burner construction, control etc., experimental characterisation of several preprototypes and detailed design of the internal heat exchanger in the burner. The result is a cost effective burner system with a documented radiant efficiency up to 66% and low emissions (NO{sub x} and CO) all in accordance with the criteria of success set up at the start of the project. In the second phase of the project, the burner system was established and tested in laboratory and in four selected industrial applications: 1) Drying of coatings on sand cores in the automotive industry. 2) Baking of bread/cake. 3) General purpose painting/powder curing process 4. Curing of powder paint on wood components. The results from the preliminary tests Overe used to optimise the CONRAD-system, before it was applied in the industrial processes and demonstrated. However, the optimised burners manufactured for demonstration suffered from different 'infant failures', which made the installation in an industrial environment very cumbersome, and even impossible in the food industry and the automotive industry. In the latter cases realistic laboratory tests Overe carried out and the established know how reported for use when the burner problems are overcome.(au)

  14. Acoustic Pressure Oscillations Induced in I-Burner

    Science.gov (United States)

    Matsui, Kiyoshi

    Iwama et al. invented the I-burner to investigate acoustic combustion instability in solid-propellant rockets (Proceedings of ICT Conference, 1994, pp. 26-1 26-14). Longitudinal pressure oscillations were induced in the combustion chamber of a thick-walled rocket by combustion of a stepped-perforation grain (I-burner). These oscillations were studied here experimentally. Two I-burners with an internal diameter of 80 mm and a length of 1208 mm or 2240 mm were made. The grain had stepped perforations (20 and 42 mm in diameter and 657 and 160 mm in length, respectively). Longitudinal pressure oscillations always occur in two stages when an HTPB (hydroxyl-terminated polybutadiene)/AP (ammonium perchlorate)/aluminum-powder propellant burns (54 tests; the highest average pressure in the combustion chamber was 9.5 29 MPa), but no oscillations occur when an HTPB/AP propellant burns (29 tests). The pressure oscillations are essentially linear, but dissipation adds a nonlinear nature to them. In the first stage, the amplitudes are small and the first wave group predominates. In the next stage, the amplitudes are large and many wave groups are present. The change in the grain form accompanying the combustion affects the pressure oscillations.

  15. Testing of advanced chromium - iron based steel

    International Nuclear Information System (INIS)

    Simeg Veternikova, J.; Degmova, J.; Sabelova, V.; Sojak, S.; Petriska, M.; Slugen, V.; Simko, F.; Pekarcikova, M.

    2015-01-01

    Research and Development of advanced nuclear reactors in Generation IV (GEN IV) are limited by the selection of proper construction materials. Suitable candidate materials are still under extensive investigation, because their properties must be excellent to achieve high level of reactor system safety. NF 709 (Fe-20Cr-25Ni) is new austenitic steel with improved properties in compare to AISI steels; therefore it is also one of candidate materials. Our study is focused on investigation of radiation resistance as well as thermal stability of this steel - NF 709. New austenitic steel NF 709, candidate materials for construction of Generation IV reactors, was observed in term of its stability after an exposure to very high temperature and irradiation. The change of microstructure was observed by positron annihilation techniques which demonstrated the growth of vacancy defects from di-vacancies in as-received material to three-vacancies in material after the thermal and implantation treatments; although the total change of structure was very small. Thus, NF 709 showed good resistance to tested strains and according to our preliminary results. Therefore, this material could be used for high temperature applications and interchangeable components of Generation IV reactors. (authors)

  16. Corrosion of spent Advanced Test Reactor fuel

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Croson, M.L.

    1994-01-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented

  17. Vacuum system for Advanced Test Accelerator

    International Nuclear Information System (INIS)

    Denhoy, B.S.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10 -6 torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing

  18. Vacuum system for Advanced Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  19. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was

  20. Burners and combustion apparatus for carbon nanomaterial production

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  1. Measurements of the concentration of major chemical species in the flame of a test burner with a air swirling system; Mesures de concentration d`especes chimiques majoritaires dans la flamme d`un bruleur modele avec mise en rotation de l`air

    Energy Technology Data Exchange (ETDEWEB)

    Albert, St. [Gaz de France (GDF), 93 - La Plaine-Saint-Denis (France); Most, J.M.; Poireault, B. [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1996-12-31

    The study of combustion in industrial burners remains difficult because of the complexity of the equipments used: materials geometry, tri-dimensional flows etc.. The phenomena that control the combustion in a gas burner with a swirl air system has been studied thanks to a collaboration between the Direction of Research of Gaz de France (GdF) and the Laboratory for Combustion and Detonation Research (LCD) of the French National Centre of Scientific Research (CNRS). The burner used is developed by the LCD and the measurements of stable chemical species were performed by the CERSTA centre of GdF. These series of tests, performed in confined environment, have permitted to identify some of the parameters that influence combustion chemistry. Mapping of chemical species allows to distinguish 5 zones of flame development and also the zones of nitrogen oxides formation. Methane is rapidly centrifuged a few millimeters above the injection pipe and centrifuged with rotating combustion air. Carbon monoxide occurs immediately in the central recirculation zone which is weakly reactive (no oxygen and no methane). Oxygen content increases downflow from this area and carbon dioxide reaches its concentration maxima. CO formation decreases when the swirl number increases and CO{sub 2} formation occurs earlier. On the contrary, the emissions of CO and CH{sub 4} do not depend on the swirl value and the NO{sub x} values are only slightly dependent on this value. (J.S.)

  2. Study and mathematical model of ultra-low gas burner

    International Nuclear Information System (INIS)

    Gueorguieva, A.

    2001-01-01

    The main objective of this project is prediction and reduction of NOx and CO 2 emissions under levels recommended from European standards for gas combustion processes. A mathematical model of burner and combustion chamber is developed based on interacting fluid dynamics processes: turbulent flow, gas phase chemical reactions, heat and radiation transfer The NOx prediction model for prompt and thermal NOx is developed. The validation of CFD (Computer fluid-dynamics) simulations corresponds to 5 MWI burner type - TEA, installed on CASPER boiler. This burner is three-stream air distribution burner with swirl effect, designed by ENEL to meet future NOx emission standards. For performing combustion computer modelling, FLUENT CFD code is preferred, because of its capabilities to provide accurately description of large number of rapid interacting processes: turbulent flow, phase chemical reactions and heat transfer and for its possibilities to present wide range of calculation and graphical output reporting data The computational tool used in this study is FLUENT version 5.4.1, installed on fs 8200 UNIX systems The work includes: study the effectiveness of low-NOx concepts and understand the impact of combustion and swirl air distribution and flue gas recirculation on peak flame temperatures, flame structure and fuel/air mixing. A finite rate combustion model: Eddy-Dissipation (Magnussen-Hjertager) Chemical Model for 1, 2 step Chemical reactions of bi-dimensional (2D) grid is developed along with NOx and CO 2 predictions. The experimental part of the project consists of participation at combustion tests on experimental facilities located in Livorno. The results of the experiments are used, to obtain better vision for combustion process on small-scaled design and to collect the necessary input data for further Fluent simulations

  3. Process development report: 0.20-m secondary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1977-09-01

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (600 0 C), lower fluid bed operating temperature (850 0 C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout

  4. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  5. Advanced Oxidation: Oxalate Decomposition Testing With Ozone

    International Nuclear Information System (INIS)

    Ketusky, E.; Subramanian, K.

    2012-01-01

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  6. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration

  7. Advanced Test Reactor outage risk assessment

    International Nuclear Information System (INIS)

    Thatcher, T.A.; Atkinson, S.A.

    1997-01-01

    Beginning in 1997, risk assessment was performed for each Advanced Test Reactor (ATR) outage aiding the coordination of plant configuration and work activities (maintenance, construction projects, etc.) to minimize the risk of reactor fuel damage and to improve defense-in-depth. The risk assessment activities move beyond simply meeting Technical Safety Requirements to increase the awareness of risk sensitive configurations, to focus increased attention on the higher risk activities, and to seek cost-effective design or operational changes that reduce risk. A detailed probabilistic risk assessment (PRA) had been performed to assess the risk of fuel damage during shutdown operations including heavy load handling. This resulted in several design changes to improve safety; however, evaluation of individual outages had not been performed previously and many risk insights were not being utilized in outage planning. The shutdown PRA provided the necessary framework for assessing relative and absolute risk levels and assessing defense-in-depth. Guidelines were written identifying combinations of equipment outages to avoid. Screening criteria were developed for the selection of work activities to receive review. Tabulation of inherent and work-related initiating events and their relative risk level versus plant mode has aided identification of the risk level the scheduled work involves. Preoutage reviews are conducted and post-outage risk assessment is documented to summarize the positive and negative aspects of the outage with regard to risk. The risk for the outage is compared to the risk level that would result from optimal scheduling of the work to be performed and to baseline or average past performance

  8. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong; Gil, Y. S.; Chung, TaeWon; Chung, Suk-Ho

    2009-01-01

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a

  9. Design and evaluation of a porous burner for the mitigation of anthropogenic methane emissions.

    Science.gov (United States)

    Wood, Susie; Fletcher, David F; Joseph, Stephen D; Dawson, Adrian; Harris, Andrew T

    2009-12-15

    Methane constitutes 15% of total global anthropogenic greenhouse gas emissions. The mitigation of these emissions could have a significant near-term effect on slowing global warming, and recovering and burning the methane would allow a wasted energy resource to be exploited. The typically low and fluctuating energy content of the emission streams makes combustion difficult; however porous burners-an advanced combustion technology capable of burning low-calorific value fuels below the conventional flammability limit-are one possible mitigation solution. Here we discuss a pilot-scale porous burner designed for this purpose. The burner comprises a cylindrical combustion chamber filled with a porous bed of alumina saddles, combined with an arrangement of heat exchanger tubes for preheating the incoming emission stream. A computational fluid dynamics model was developed to aid in the design process. Results illustrating the burner's stable operating range and behavior are presented: stable ultralean combustion is demonstrated at natural gas concentrations as low as 2.3 vol%, with transient combustion at concentrations down to 1.1 vol%; the system is comparatively stable to perturbations in the operating conditions, and emissions of both carbon monoxide and unburned hydrocarbons are negligible. Based on this pilot-scale demonstration, porous burners show potential as a methane mitigation technology.

  10. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  11. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; FINAL

    International Nuclear Information System (INIS)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO(sub x) in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO(sub x) emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames-particularly under low NO(sub x) conditions. A CO/H(sub 2)/O(sub 2)/N(sub 2) flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state(sup 13)C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  12. Racial Differences in Mathematics Test Scores for Advanced Mathematics Students

    Science.gov (United States)

    Minor, Elizabeth Covay

    2016-01-01

    Research on achievement gaps has found that achievement gaps are larger for students who take advanced mathematics courses compared to students who do not. Focusing on the advanced mathematics student achievement gap, this study found that African American advanced mathematics students have significantly lower test scores and are less likely to be…

  13. The new low-NO{sub x} burner

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masato [Joban Joint Power Corporation, Ltd., Nagasaki (Japan); Domoto, Kazuhiro; Tanaka, Ryuichiro [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan). Boiler Engineering Dept. Power Systems; Matsumoto, Keigo [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan). Combustion Lab.

    2013-11-01

    Burner design requires good ignitability, high burn-up rate and low NO{sub x} emissions. Mitsubishi Heavy Industries Ltd. (MHI) developed a low-NO{sub x} burner which meets the aforementioned requirements. It also needs less combustion air, the burner nozzle is subjected to less thermal stresses, and the potential of NO{sub x} corrosion is being reduced. (orig.)

  14. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  15. Enraf Series 854 advanced technology gauge (ATG) acceptance test procedure

    International Nuclear Information System (INIS)

    Huber, J.H.

    1996-01-01

    This Acceptance Test Procedure was written to test the Enraf Series 854 Advanced Technology Gauge (ATG) prior to installation in the Tank Farms. The procedure sets various parameters and verifies that the gauge is functional

  16. Proton Testing of Advanced Stellar Compass Digital Processing Unit

    DEFF Research Database (Denmark)

    Thuesen, Gøsta; Denver, Troelz; Jørgensen, Finn E

    1999-01-01

    The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland.......The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland....

  17. Advanced CMOS Radiation Effects Testing and Analysis

    Science.gov (United States)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; hide

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  18. On Bunsen Burners, Bacteria and the Bible

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. On Bunsen Burners, Bacteria and the Bible. Milind Watve. Classroom Volume 1 Issue 2 February 1996 pp 84-89. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/02/0084-0089 ...

  19. Advanced Laboratory Setup for Testing Offshore Foundations

    DEFF Research Database (Denmark)

    Nielsen, Søren Dam; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2016-01-01

    This paper describes a test setup for testing small-scale offshore foundations under realistic conditions of high pore-water pressure and high impact loads. The actuator, used for loading has enough capacity to apply sufficient force and displacement to achieve both drained and undrained failure ...

  20. Advanced Stirling Convertor (ASC-E2) Characterization Testing

    Science.gov (United States)

    Williams, Zachary D.; Oriti, Salvatore M.

    2012-01-01

    Testing has been conducted on Advanced Stirling Convertors (ASCs)-E2 at NASA Glenn Research Center in support of the Advanced Stirling Radioisotope Generator (ASRG) project. This testing has been conducted to understand sensitivities of convertor parameters due to environmental and operational changes during operation of the ASRG in missions to space. This paper summarizes test results and explains the operation of the ASRG during space missions

  1. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  2. An advanced system for automated ultrasonic testing

    International Nuclear Information System (INIS)

    Dressler, K.

    1989-01-01

    As the main component of the AUP system, an ALOK ultrasonic unit has been chosen as it allows for testing of large component areas both search for defects and description of defect geometries. All data required for fault analysis can be obtained by one measuring run. For inspection of primary circuit components in nuclear power stations, the manipulator control and the ultrasonic probe are installed behind the first sufficient shielding. (orig./HP) [de

  3. Advanced testing and characterization of transportation soils and bituminous sands

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2007-12-01

    Full Text Available This research study was intended to develop laboratory test procedures for advance testing and characterization of fine-grained cohesive soils and oil sand materials. The test procedures are based on typical field loading conditions and the loading...

  4. CFD simulations on marine burner flames

    DEFF Research Database (Denmark)

    Cafaggi, Giovanni; Jensen, Peter Arendt; Glarborg, Peter

    The marine industry is changing with new demands concerning high energy efficiency, fuel flexibility and lower emissions of NOX and SOX. A collaboration between the company Alfa Laval and Technical University of Denmark has been established to support the development of the next generation...... of marine burners. The resulting auxiliary boilers shall be compact and able to operate with different fuel types, while reducing NOX emissions. The specific boiler object of this study uses a swirl stabilized liquid fuel burner, with a pressure swirl spill-return atomizer (Fig.1). The combustion chamber...... is enclosed in a water jacket used for water heating and evaporation, and a convective heat exchanger at the furnace outlet super-heats the steam. The purpose of the present study is to gather detailed knowledge about the influence of fuel spray conditions on marine utility boiler flames. The main goal...

  5. CFD optimization of a pellet burner

    Directory of Open Access Journals (Sweden)

    Westerlund Lars B.

    2012-01-01

    Full Text Available Increased capacity of computers has made CFD technology attractive for the design of different apparatuses. Optimization of a pellet burner using CFD was investigated in this paper. To make the design tool work fast, an approach with only mixing of gases was simulated. Other important phenomena such as chemical reactions were omitted in order to speed up the design process. The original design of the burner gave unsatisfactory performance. The optimized design achieved from simulation was validated and the results show a significant improvement. The power output increased and the emission of unburned species decreased but could be further reduced. The contact time between combustion gases and secondary air was probably too short. An increased contact time in high temperature conditions would possibly improve the design further.

  6. Combustion characteristics of porous media burners under various back pressures: An experimental study

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2017-07-01

    Full Text Available The porous media combustion technology is an effective solution to stable combustion and clean utilization of low heating value gas. For observing the combustion characteristics of porous media burners under various back pressures, investigating flame stability and figuring out the distribution laws of combustion gas flow and resistance loss, so as to achieve an optimized design and efficient operation of the devices, a bench of foamed ceramics porous media combustion devices was thus set up to test the cold-state resistance and hot-state combustion characteristic of burners in working conditions without back pressures and with two different back pressures. The following results are achieved from this experimental study. (1 The strong thermal reflux of porous media can preheat the premixed air effectively, so the flame can be kept stable easily, the combustion equivalent ratio of porous media burners is lower than that of traditional burners, and its pollutant content of flue gas is much lower than the national standard value. (2 The friction coefficient of foamed ceramics decreases with the increase of air flow rate, and its decreasing rate slows down gradually. (3 When the flow rate of air is low, viscosity is the dominant flow resistance, and the friction coefficient is in an inverse relation with the flow rate. (4 As the flow rate of air increases, inertia is the dominant flow resistance, and the friction coefficient is mainly influenced by the roughness and cracks of foamed ceramics. (5 After the introduction of secondary air, the minimum equivalent ratio of porous media burners gets much lower and its range of equivalent ratio is much larger than that of traditional burners.

  7. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  8. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Mukaiyama, Takehiko; Takano, Hideki; Ogawa, Toru; Osakabe, Masahiro.

    1989-07-01

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  9. Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sholes, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draft combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.

  10. Hawaiian Electric Advanced Inverter Test Plan - Result Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Anderson; Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh

    2016-10-14

    This presentation is intended to share the results of lab testing of five PV inverters with the Hawaiian Electric Companies and other stakeholders and interested parties. The tests included baseline testing of advanced inverter grid support functions, as well as distribution circuit-level tests to examine the impact of the PV inverters on simulated distribution feeders using power hardware-in-the-loop (PHIL) techniques. hardware-in-the-loop (PHIL) techniques.

  11. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  12. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  13. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  14. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  15. Innovative Clean Coal Technology (ICCT): 500-MW demonstration of advanced wall-fired cmbustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Field chemical emissions monitoring, Overfire air and overfire air/low NO{sub x} burner operation: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This report summarizes data gathered by Radian Corporation at a coal-fired power plant, designated Site 16, for a program sponsored by the United States Department of Energy (DOE), Southern Company Services (SCS), and the Electric Power Research Institute (EPRI). Concentrations of selected inorganic and organic substances were measured in the process and discharge streams of the plant operating under two different types of combustion modifications: overfire air (OFA) and a combination of overfire air with low-NO{sub x} burners (OFA/LNB). Information contained in this report will allow DOE and EPRI to determine the effects of low-NO{sub x} modifications on plant emissions and discharges. Sampling was performed on an opposed wall-fired boiler burning medium-sulfur bituminous coal. Emissions were controlled by electrostatic precipitators (ESPs). The testing was conducted in two distinct sampling periods, with the OFA test performed in March of 1991 and the OFA/LNB test performed in May of 1993. Specific objectives were: to quantify emissions of target substances from the stack; to determine the efficiency of the ESPs for removing the target substances; and to determine the fate of target substances in the various plant discharge streams.

  16. Building virtual pentesting labs for advanced penetration testing

    CERN Document Server

    Cardwell, Kevin

    2014-01-01

    Written in an easy-to-follow approach using hands-on examples, this book helps you create virtual environments for advanced penetration testing, enabling you to build a multi-layered architecture to include firewalls, IDS/IPS, web application firewalls, and endpoint protection, which is essential in the penetration testing world. If you are a penetration tester, security consultant, security test engineer, or analyst who wants to practice and perfect penetration testing skills by building virtual pen testing labs in varying industry scenarios, this is the book for you. This book is ideal if yo

  17. The influence of burner material properties on the acoustical transfer function of radiant surface burners

    NARCIS (Netherlands)

    Schreel, K.R.A.M.; Tillaart, van den E.L.; Goey, de L.P.H.

    2005-01-01

    Modern central heating systems use low NO$_x$ premixed burners with a largemodulation range. This can lead to noise problems which cannot be solved viatrial and error, but need accurate modelling. An acoustical analysis as part ofthe design phase can reduce the time-to-market considerably, but the

  18. Studies on a burner used biomass pellets as fuel. Performance of a spiral vortex pellet burner

    Energy Technology Data Exchange (ETDEWEB)

    Iwao, Toshio

    1987-12-21

    In order to develop a small size burner with high performance using biomass pellets fuel substitute for fuel oil, the burning performance of a spiral vortex pallet burner has been studied. An experimental equipment for the pellet burning is made up of a fuel supply unit, combustion chamber and a furnace. The used woody pellet is made of mixed sawdust and bark; with water content of 10.29%, particle diameter of 5.5-9mm, length of 5-50mm, and, apparent and real specific gravities are 0.59 and 1.334 respectively. The pellets are sent to bottom of the combustion chamber, spiral vortex combustion are carried out with blown air, the ashes and unburnt residues are discharged to out of combustion chamber with spiral vortex hot gases. As the result, it was clarified that the formation of the burning layers in a burner is required to be in order of the layers of ash, oxidation, reduction and carbonization up to the upper layer for high burning performance, and the formation of the layer is influenced by the condition of sedimentation of pellets in the combustion chamber. In the meanwhile the burning performance of the burner is influenced by the quantity of blast, the rate of feeding, and by the time of pre-heating in the combustion chamber. (23 figs, 5 refs)

  19. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  20. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    Science.gov (United States)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  1. RELAP5 kinetics model development for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Judd, J.L.; Terry, W.K.

    1990-01-01

    A point-kinetics model of the Advanced Test Reactor has been developed for the RELAP5 code. Reactivity feedback parameters were calculated by a three-dimensional analysis with the PDQ neutron diffusion code. Analyses of several hypothetical reactivity insertion events by the new model and two earlier models are discussed. 3 refs., 10 figs., 6 tabs

  2. Argonne to open new facility for advanced vehicle testing

    CERN Multimedia

    2002-01-01

    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  3. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    Science.gov (United States)

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  4. Results of Laboratory Testing of Advanced Power Strips

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  5. Some parameters and conditions defining the efficiency of burners ...

    Indian Academy of Sciences (India)

    irradiation in special burners, namely, in the blankets of ADS. Various views ... Ecologic gain – ratio of the ecologic threat level of initial LLW to that of final. LLW. .... For all burner types, the general tendency is that the increase of consumption.

  6. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    Science.gov (United States)

    Meer, David W.; Oriti, Salvatore M.

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  7. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  8. Burner rig alkali salt corrosion of several high temperature alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  9. 0.20-m (8-in.) primary burner development report

    International Nuclear Information System (INIS)

    Stula, R.T.; Young, D.T.; Rode, J.S.

    1977-12-01

    High-Temperature Gas-Cooled Reactors (HTGRs) utilize graphite-base fuels. Fluidized-bed burners are being employed successfully in the experimental reprocessing of these fuels. The primary fluidized-bed burner is a unit operation in the reprocessing flowsheet in which the graphite moderator is removed. A detailed description of the development status of the 0.20-m (8-in.) diameter primary fluidized-bed burner as of July 1, 1977 is presented. Experimental work to date performed in 0.10; 0.20; and 0.40-m (4, 8, and 16 in.) diameter primary burners has demonstrated the feasibility of the primary burning process and, at the same time, has defined more clearly the areas in which additional experimental work is required. The design and recent operating history of the 0.20-m-diameter burner are discussed, with emphasis placed upon the evolution of the current design and operating philosophy

  10. A Modeling Tool for Household Biogas Burner Flame Port Design

    Science.gov (United States)

    Decker, Thomas J.

    Anaerobic digestion is a well-known and potentially beneficial process for rural communities in emerging markets, providing the opportunity to generate usable gaseous fuel from agricultural waste. With recent developments in low-cost digestion technology, communities across the world are gaining affordable access to the benefits of anaerobic digestion derived biogas. For example, biogas can displace conventional cooking fuels such as biomass (wood, charcoal, dung) and Liquefied Petroleum Gas (LPG), effectively reducing harmful emissions and fuel cost respectively. To support the ongoing scaling effort of biogas in rural communities, this study has developed and tested a design tool aimed at optimizing flame port geometry for household biogas-fired burners. The tool consists of a multi-component simulation that incorporates three-dimensional CAD designs with simulated chemical kinetics and computational fluid dynamics. An array of circular and rectangular port designs was developed for a widely available biogas stove (called the Lotus) as part of this study. These port designs were created through guidance from previous studies found in the literature. The three highest performing designs identified by the tool were manufactured and tested experimentally to validate tool output and to compare against the original port geometry. The experimental results aligned with the tool's prediction for the three chosen designs. Each design demonstrated improved thermal efficiency relative to the original, with one configuration of circular ports exhibiting superior performance. The results of the study indicated that designing for a targeted range of port hydraulic diameter, velocity and mixture density in the tool is a relevant way to improve the thermal efficiency of a biogas burner. Conversely, the emissions predictions made by the tool were found to be unreliable and incongruent with laboratory experiments.

  11. Verification tests for CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Chung, Jang Hwan; Suk, Ho Cheon; Jeong, Moon Ki; Park, Joo Hwan; Jeong, Heung Joon; Jeon, Ji Soo; Kim, Bok Deuk

    1994-07-01

    This project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year Out-of-pile hydraulic tests for the prototype of CANFLEX bundle was conducted in the CANDU-hot test loop at KAERI. Thermalhydraulic analysis with the assumption of CANFLEX-NU fuel loaded in Wolsong-1 was performed by using thermalhydraulic code, and the thermal margin and T/H compatibility of CANFLEX bundle with existing fuel for CANDU-6 reactor have been evaluated. (Author)

  12. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jang Hwan; Suk, Hoh Chun; Jung, Moon Kee; Oh, Duk Joo; Park, Joo Hwan; Shim, Kee Sub; Jang, Suk Kyoo; Jung, Heung Joon; Park, Jin Suk; Jung, Seung Hoh; Jun, Ji Soo; Lee, Yung Wook; Jung, Chang Joon; Byun, Taek Sang; Park, Kwang Suk; Kim, Bok Deuk; Min, Kyung Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This is the `94 annual report of the CANDU advanced fuel verification test project. This report describes the out-of pile hydraulic tests at CANDU-hot test loop for verification of CANFLEX fuel bundle. It is also describes the reactor thermal-hydraulic analysis for thermal margin and flow stability. The contents in this report are as follows; (1) Out-of pile hydraulic tests for verification of CANFLEX fuel bundle. (a) Pressure drop tests at reactor operation condition (b) Strength test during reload at static condition (c) Impact test during reload at impact load condition (d) Endurance test for verification of fuel integrity during life time (2) Reactor thermal-hydraulic analysis with CANFLEX fuel bundle. (a) Critical channel power sensitivity analysis (b) CANDU-6 channel flow analysis (c) Flow instability analysis. 61 figs, 29 tabs, 21 refs. (Author).

  13. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    International Nuclear Information System (INIS)

    Jung, Jang Hwan; Suk, Hoh Chun; Jung, Moon Kee; Oh, Duk Joo; Park, Joo Hwan; Shim, Kee Sub; Jang, Suk Kyoo; Jung, Heung Joon; Park, Jin Suk; Jung, Seung Hoh; Jun, Ji Soo; Lee, Yung Wook; Jung, Chang Joon; Byun, Taek Sang; Park, Kwang Suk; Kim, Bok Deuk; Min, Kyung Hoh

    1995-07-01

    This is the '94 annual report of the CANDU advanced fuel verification test project. This report describes the out-of pile hydraulic tests at CANDU-hot test loop for verification of CANFLEX fuel bundle. It is also describes the reactor thermal-hydraulic analysis for thermal margin and flow stability. The contents in this report are as follows; (1) Out-of pile hydraulic tests for verification of CANFLEX fuel bundle. (a) Pressure drop tests at reactor operation condition (b) Strength test during reload at static condition (c) Impact test during reload at impact load condition (d) Endurance test for verification of fuel integrity during life time (2) Reactor thermal-hydraulic analysis with CANFLEX fuel bundle. (a) Critical channel power sensitivity analysis (b) CANDU-6 channel flow analysis (c) Flow instability analysis. 61 figs, 29 tabs, 21 refs. (Author)

  14. Testing Systems and Results for Advanced Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Griffith, G.W.; Garnier, J.E.

    2012-01-01

    Light Water Reactor Sustainability (LWRS) Program Advanced LWR Nuclear Fuel Development (ALFD) Pathway. Development and testing of high performance fuel cladding identified as high priority to support: enhancement of fuel performance, reliability, and reactor safety. One of the technologies being examined is an advanced fuel cladding made from ceramic matrix composites (CMC) utilizing silicon carbide (SiC) as a structural material supplementing a commercial Zircaloy-4 (Zr-4) tube. A series of out-of-pile tests to fully characterize the SiC CMC hybrid design to produce baseline data. The planned tests are intended to either produce quantitative data or to demonstrate the properties required to achieve two initial performance conditions relative to standard zircaloybased cladding: decreased hydrogen uptake (corrosion) and decreased fretting of the cladding tube under normal operating and postulated accident conditions. These two failure mechanisms account for approximately 70% of all in-pile failures of LWR commercial fuel assemblies

  15. Efficient industrial burner control of a flexible burner management system; Effiziente industrielle Brennertechnik durch Einsatz flexibler Feuerungsautomaten

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Ulrich; Saenger, Peter [Siemens AG, Rastatt (Germany)

    2012-02-15

    Compactness and flexibility of a burner control system is a very important issue. With a few types a wide range in different industrial applications should be covered. This paper presents different applications of a new burner control system: heating of cooling lines in glass industry, steam generation and air heating for a pistachio roastery and in grain dryers. (orig.)

  16. Advanced In-pile Instrumentation for Material and Test Reactors

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Daw, J.E.; Unruh, T.C.; Chase, B.M.; Davis, K.L.; Palmer, A.J.; Schley, R.S.

    2013-06-01

    The US Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified; and the progress of other development efforts is summarized. As reported in this paper, INL staff is currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating 'advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors. (authors)

  17. Advanced In-Pile Instrumentation for Materials Testing Reactors

    Science.gov (United States)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.

    2014-08-01

    The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.

  18. A burner for the combustion of spent tall oil soap

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.M.; Wong, J.K.; Moffatt, B.; Belanger, G. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre; Soriano, D. [Brais Malouin and Associates, Montreal, PQ (Canada)

    2003-07-01

    Efficiency in industrial processes applies both to the form of energy involved and the many by-products resulting from the process. Tall oil soap (TOS) is a white frothy substance created during the pulping process. It contains chemicals that can be extracted for use in other industries. The processing of TOS results in a product called spent TOS. This study examined the incineration process to derive process heat from the calorific value in spent TOS. Brais Malouin and Associates (BMA) proposed that an atomizing nozzle should be used for use with this liquid in an incinerating burner. The efficiency of atomization of spent TOS with the BMA nozzle was determined by the Canada Centre for Mineral and Energy Technology (CANMET), which also characterized the combustion in a simulated boiler situation. The combustion tests were performed in the Pilot-Scale Research Boiler at the CANMET Energy Technology Centre (CETC). Pre-heating was done with a number 2 oil flame. Flame stability was determined by observing the flame through sight ports and by measuring the gas in the furnace. The experiments showed that spent TOS could successfully burn with a number 2 oil, in a proportion of 81 spent TOS to 19 oil mass ratio. As the amount of spent TOS was increased, the amount of sulphur dioxide, nitrogen oxide (NOx) and carbon monoxide decreased. The number 2 fuel oil was responsible for the sulphur dioxide in the exhaust. It is believed that the reduction in the carbon monoxide in the exhaust is attributable to the water-gas shift reaction. As the proportion of spent TOS increased, it was shown that the amount of NOx in the exhaust decreased rapidly. A bluish-green molten deposit formed in the furnace near the burner came from copper and manganese found in the ash of the spent TOS. 7 refs., 7 tabs., 16 figs.

  19. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  20. Advanced Grid Support Functionality Testing for Florida Power and Light

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hurtt, James [Florida Power and Light, Juno Beach, FL (United States)

    2017-03-21

    This report describes the results of laboratory testing of advanced photovoltaic (PV) inverter testing undertaken by the National Renewable Energy Laboratory (NREL) on behalf of the Florida Power and Light Company (FPL). FPL recently commissioned a 1.1 MW-AC PV installation on a solar carport at the Daytona International Speedway in Daytona Beach, Florida. In addition to providing a source of clean energy production, the site serves as a live test bed with 36 different PV inverters from eight different manufacturers. Each inverter type has varied support for advanced grid support functions (GSFs) that are becoming increasingly commonplace, and are being required through revised interconnection standards such as UL1741, IEEE1547, and California (CA) Rule 21. FPL is interested in evaluating the trade-offs between different GSFs, their compliance to emerging standards, and their effects on efficiency and reliability. NREL has provided a controlled laboratory environment to undertake such a study. This work covered nine different classes of tests to compare inverter capabilities and performance for four different inverters that were selected by FPL. The test inverters were all three-phase models rated between 24-36 kW, and containing multiple PV input power point trackers. Advanced grid support functions were tested for functional behavior, and included fixed power factor operation, voltage-ride through, frequency ride-through, volt-var control, and frequency-Watt control. Response to abnormal grid conditions with GSFs enabled was studied through anti-islanding, fault, and load rejection overvoltage tests. Finally, efficiency was evaluated across a range of operating conditions that included power factor, output power, and input voltage variations. Test procedures were derived from requirements of a draft revision of UL741, CA Rule 21, and/or previous studies at NREL. This reports summarizes the results of each test case, providing a comparative performance analysis

  1. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    Science.gov (United States)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  2. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy...... of the maximum junction temperature estimation is also proposed. Finally, the validity and effectiveness of the proposed method is confirmed by experimental results.......On-state collector-emitter voltage (VCE) is a good indicator to determine the wear-out condition of power device modules. Further, it is a one of the Temperature Sensitive Electrical Parameters (TSEPs) and thus can be used for junction temperature estimation. In this paper, the junction temperature...

  3. Utility Advanced Turbine Systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  4. Structural Dynamics Testing of Advanced Stirling Convertor Components

    Science.gov (United States)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  5. Utility advanced turbine systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  6. Development of a multi-fuel burner for operation with light oil, natural gas and low calorific value gas; Entwicklung eines Mehrstoffbrenners fuer Heizoel-, Erdgas- und Schwachgasbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Giese, Anne; Tali, Eren [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2013-08-15

    In the course of the AiF research project 'Development of a multi-fuel burner for operation with natural gas, light oil and low calorific value gas (MSB)' (IGF Grant No. 16202 N), various burner concepts based on the principle of continuously staged air were developed, analysed by means of computational fluid dynamics, built, investigated experimentally and finally tested at a real biomass gasifier (plant). This article describes the results of this research project. (orig.)

  7. Molten salt burner fuel behaviour and treatment

    International Nuclear Information System (INIS)

    Ignatiev, V.V.; Zakirov, R.Y.; Grebenkine, K.F.

    2001-01-01

    The objective of this paper is to discuss the feasibility of molten salt reactor technology for treatment of Pu, minor actinides and fission products, when the reactor and fission product clean-up unit are planned as an integral system. This contribution summarises the available R and D which led to selection of the fuel compositions for the molten salt reactor of the TRU burner type (MSB). Special characteristics of behaviour of TRUs and fission products during power operation of MSB concepts are presented. The present paper briefly reviews the processing developments underlying the prior molten salt reactor programmes and relates them to the separation requirements of the MSB concept, including the permissible range of processing cycle times and removal times. Status and development needs in the thermodynamic properties of fluorides, fission product clean-up methods and container materials compatibility with the working fluids for the fission product clean-up unit are discussed. (authors)

  8. AGA answers complaints on burner tip prices

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the American Gas Association has rebutted complaints that natural gas prices have dropped at the wellhead but not at the burner tip. AGA Pres. Mike Baly the an association study of the issue found that all classes of customers paid less for gas in 1991 than they did in 1984, when gas prices were at their peak. He the, the study also shows that 100% of the wellhead price decline has been passed through to natural gas consumers in the form of lower retail prices. Baly the the average cost of gas delivered to all customers classes fell by $1.12/Mcf from 1984 to 1991, which exceeds the $1.10/Mcf decline in average wellhead prices during the same period

  9. Enhanced in-pile instrumentation at the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T.; Chase, B. M.; Palmer, J.; Condie, K. G.; Davis, K. L. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2011-07-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and realtime flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted. (authors)

  10. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    Science.gov (United States)

    Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  11. Advanced Test Accelerator (ATA) pulse power technology development

    International Nuclear Information System (INIS)

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described

  12. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  13. Information on the Advanced Plant Experiment (APEX) Test Facility

    International Nuclear Information System (INIS)

    Smith, Curtis Lee

    2015-01-01

    The purpose of this report provides information related to the design of the Oregon State University Advanced Plant Experiment (APEX) test facility. Information provided in this report have been pulled from the following information sources: Reference 1: R. Nourgaliev and et.al, 'Summary Report on NGSAC (Next-Generation Safety Analysis Code) Development and Testing,' Idaho National Laboratory, 2011. Note that this is report has not been released as an external report. Reference 2: O. Stevens, Characterization of the Advanced Plant Experiment (APEX) Passive Residual Heat Removal System Heat Exchanger, Master Thesis, June 1996. Reference 3: J. Reyes, Jr., Q. Wu, and J. King, Jr., Scaling Assessment for the Design of the OSU APEX-1000 Test Facility, OSU-APEX-03001 (Rev. 0), May 2003. Reference 4: J. Reyes et al, Final Report of the NRC AP600 Research Conducted at Oregon State University, NUREG/CR-6641, July 1999. Reference 5: K. Welter et al, APEX-1000 Confirmatory Testing to Support AP1000 Design Certification (non-proprietary), NUREG-1826, August 2005.

  14. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  15. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Allen, Todd R.; Benson, Jeff B.; Cole, James I.; Thelen, Mary Catherine

    2012-01-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  16. Advanced radiant combustion system. Final report, September 1989--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  17. Development of strand burner for solid propellant burning rate studies

    International Nuclear Information System (INIS)

    Aziz, A; Mamat, R; Ali, W K Wan

    2013-01-01

    It is well-known that a strand burner is an apparatus that provides burning rate measurements of a solid propellant at an elevated pressure in order to obtain the burning characteristics of a propellant. This paper describes the facilities developed by author that was used in his studies. The burning rate characteristics of solid propellant have be evaluated over five different chamber pressures ranging from 1 atm to 31 atm using a strand burner. The strand burner has a mounting stand that allows the propellant strand to be mounted vertically. The strand was ignited electrically using hot wire, and the burning time was recorded by electronic timer. Wire technique was used to measure the burning rate. Preliminary results from these techniques are presented. This study shows that the strand burner can be used on propellant strands to obtain accurate low pressure burning rate data

  18. Evaluating the efficacy of a minor actinide burner

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Omberg, R.P.; Wootan, D.W.

    1993-06-01

    The efficacy of a minor actinide burner can be evaluated by comparing safety and economic parameters to the support ratio. Minor actinide mass produced per unit time in this number of Light Water Reactors (LWRs) can be burned during the same time period in one burner system. The larger the support ratio for a given set of safety and economic parameters, the better. To illustrate this concept, the support ratio for selected Liquid Metal Reactor (LMR) burner core designs was compared with corresponding coolant void worths, a fundamental safety concern following the Chernobyl accident. Results can be used to evaluate the cost in reduced burning of minor actinides caused by LMR sodium void reduction efforts or to compare with other minor actinide burner systems

  19. Assessment of PWR plutonium burners for nuclear energy centers

    International Nuclear Information System (INIS)

    Frankel, A.J.; Shapiro, N.L.

    1976-06-01

    The purpose of the study was to explore the performance and safety characteristics of PWR plutonium burners, to identify modifications to current PWR designs to enhance plutonium utilization, to study the problems of deploying plutonium burners at Nuclear Energy Centers, and to assess current industrial capability of the design and licensing of such reactors. A plutonium burner is defined to be a reactor which utilizes plutonium as the sole fissile addition to the natural or depleted uranium which comprises the greater part of the fuel mass. The results of the study and the design analyses performed during the development of C-E's System 80 plant indicate that the use of suitably designed plutonium burners at Nuclear Energy Centers is technically feasible

  20. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  1. Seismically induced accident sequence analysis of the advanced test reactor

    International Nuclear Information System (INIS)

    Khericha, S.T.; Henry, D.M.; Ravindra, M.K.; Hashimoto, P.S.; Griffin, M.J.; Tong, W.H.; Nafday, A.M.

    1991-01-01

    A seismic probabilistic risk assessment (PRA) was performed for the Department of Energy (DOE) Advanced Test Reactor (ATR) as part of the external events analysis. The risk from seismic events to the fuel in the core and in the fuel storage canal was evaluated. The key elements of this paper are the integration of seismically induced internal flood and internal fire, and the modeling of human error rates as a function of the magnitude of earthquake. The systems analysis was performed by EG ampersand G Idaho, Inc. and the fragility analysis and quantification were performed by EQE International, Inc. (EQE)

  2. Testing aspects of advanced coherent electron cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  3. Stress analysis of HLW containers advanced test work Compas project

    International Nuclear Information System (INIS)

    Ove Arup and Partners

    1990-01-01

    The Compas project is concerned with the structural performance of metal overpacks which may be used to encapsulate vitrified high-level waste forms before disposal in deep geological repositories. This document describes the activities performed between June and August 1989 forming the advanced test work phase of this project. This is the culmination of two years' analysis and test work to demonstrate whether the analytical ability exists to model containers subjected to realistic loads. Three mild steel containers were designed and manufactured to be one-third scale models of a realistic HLW container, modified to represent the effect of anisotropic loading and to facilitate testing. The containers were tested under a uniform external pressure and all failed by buckling in the mid-body region. The outer surface of each container was comprehensively strain-gauged to provide strain history data at all positions of interest. In parallel with the test work, Compas project partners, from five different European countries, independently modelled the behaviour of each of the containers using their computer codes to predict the failure pressure and produce strain history data at a number of specified locations. The first axisymmetric container was well modelled but predictions for the remaining two non-axisymmetric containers were much more varied, with differences of up to 50% occurring between failure predictions and test data

  4. Test Protocols for Advanced Inverter Interoperability Functions - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Dean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ralph, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated on grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not now required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already apparent as

  5. Test Protocols for Advanced Inverter Interoperability Functions – Main Document

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Dean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ralph, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated on grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not currently required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already

  6. Design process and instrumentation of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Air pollution and global climate change have become a serious environmental problem leading to increasingly stringent government regulations worldwide. New designs and methods for improving combustion systems to minimize the production of toxic emissions, like nitrogen oxides (NOx) are therefore needed. In order to control smog, acid rain, ozone depletion, and greenhouse-effect warming, a reduction of nitrogen oxide is necessary. One alternative for combined electrical power and heat generation (CHP) are micro-cogeneration units which use a micro-turbine as a prime mover. However, to increase the efficiencies of these units, micro-cogeneration technology still needs to be developed further. This paper described the design process, building, and testing of a new low NOx wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. The primary goal of the study was to develop a practical and simple WMDB, which produces low emissions by using lean-premixed surface combustion concept and its objectives were separated into four phases which were described in this paper. Phase I involved the design and construction of the burner. Phase II involved a qualitative flow visualization study for the duct burner premixer to assist the new design of the burner by introducing an efficient premixer that could be used in this new application. Phase III of this research program involved non-reacting flow modeling on the burner premixer flow field using a commercial computational fluid dynamic model. In phase IV, the reacting flow experimental investigation was performed. It was concluded that the burner successfully increased the quantity and the quality of the heat released from the micro-CHP unit and carbon monoxide emissions of less than 9 ppm were reached. 3 refs., 3 figs.

  7. Sensitivity of Transmutation Capability to Recycling Scenarios in KALIMER-600 TRU Burner

    International Nuclear Information System (INIS)

    Lee, Yong Kyo; Kim, Myung Hyun

    2013-01-01

    The purpose of this study is to test transmutation and design feasibility of KALIMER burner caused from many limitations in recycling options; such as low recovery factors and external feed. Design impact from many recycling options will be tested as a sensitivity to various recycling process parameters under many recycling scenarios. Through this study, possibilities when Pyro-processing is realized with SFR can be expected in the recycling scenarios. For the development of sodium-cooled fast reactor(SFR) technology, prototype KALIMER plant is now under R and D stage in Korea. For the future application of SFR for waste transmutation, KALIMER core was designed for TRU burner by KAERI. Feasibility of TRU burner cannot be evaluated exactly because overall functional parameters in pyro-processing recycling process has not been verified yet. There is great possibility to accept undesirable process functions in pyro-processing. Only TRU nuclides composition a little differs between PWR SF and CANDU SF so first scenario has no problem operating SFR. In second scenario, the radiotoxicity of waste at 99% of TRU RF have to be confirmed whether it is proper level to reposit as Low and Intermediate Level Wastes or not. And the reactor safety at high RF of RE must be inspected. Not only third scenario but also several scenarios for good measure are being calculated and will be evaluated

  8. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Jeremy T [ORNL

    2009-05-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  9. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    International Nuclear Information System (INIS)

    Busby, Jeremy T.

    2009-01-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  10. Safety Assurance for Irradiating Experiments in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Tomberlin; S. B. Grover

    2004-11-01

    The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory (INEEL), was specifically designed to provide a high neutron flux test environment for conducting a variety of experiments. This paper addresses the safety assurance process for two general types of experiments conducted in the ATR facility and how the safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore, this type of experiment is addressed in more detail in the ATR safety basis. This allows the individual safety analysis for this type of experiment to be more standardized. The second type of experiment is defined in more general terms in the ATR safety basis and is permitted under more general controls. Therefore, the individual safety analysis for the second type of experiment tends to be more unique and is tailored to each experiment.

  11. Safety Assurance for Irradiating Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    T. A. Tomberlin; S. B. Grover

    2004-01-01

    The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory (INEEL), was specifically designed to provide a high neutron flux test environment for conducting a variety of experiments. This paper addresses the safety assurance process for two general types of experiments conducted in the ATR facility and how the safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore, this type of experiment is addressed in more detail in the ATR safety basis. This allows the individual safety analysis for this type of experiment to be more standardized. The second type of experiment is defined in more general terms in the ATR safety basis and is permitted under more general controls. Therefore, the individual safety analysis for the second type of experiment tends to be more unique and is tailored to each experiment

  12. Performance Evaluation and Robustness Testing of Advanced Oscilloscope Triggering Schemes

    Directory of Open Access Journals (Sweden)

    Shakeb A. KHAN

    2010-01-01

    Full Text Available In this paper, performance and robustness of two advanced oscilloscope triggering schemes is evaluated. The problem of time period measurement of complex waveforms can be solved using the algorithms, which utilize the associative memory network based weighted hamming distance (Whd and autocorrelation based techniques. Robustness of both the advanced techniques, are then evaluated by simulated addition of random noise of different levels to complex test signals waveforms, and minimum value of Whd (Whd min and peak value of coefficient of correlation(COCmax are computed over 10000 cycles of the selected test waveforms. The distance between mean value of second lowest value of Whd and Whd min and distance between second highest value of coefficient of correlation (COC and COC max are used as parameters to analyze the robustness of considered techniques. From the results, it is found that both the techniques are capable of producing trigger pulses efficiently; but correlation based technique is found to be better from robustness point of view.

  13. Needs for development in nondestructive testing for advanced reactor systems

    International Nuclear Information System (INIS)

    McClung, R.W.

    1978-01-01

    The needs for development of nondestructive testing (NDT) techniques and equipment were surveyed and analyzed relative to problem areas for the Liquid-Metal Fast Breeder Reactor, the Molten-Salt Breeder Reactor, and the Advanced Gas-Cooled Reactor. The paper first discusses the developmental needs that are broad-based requirements in nondestrutive testing, and the respective methods applicable, in general, to all components and reactor systems. Next, the requirements of generic materials and components that are common to all advanced reactor systems are examined. Generally, nondestructive techniques should be improved to provide better reliability and quantitativeness, improved flaw characterization, and more efficient data processing. Specific recommendations relative to such methods as ultrasonics, eddy currents, acoustic emission, radiography, etc., are made. NDT needs common to all reactors include those related to materials properties and degradation, welds, fuels, piping, steam generators, etc. The scope of applicability ranges from initial design and material development stages through process control and manufacturing inspection to in-service examination

  14. Advancing nuclear technology and research. The advanced test reactor national scientific user facility

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Jeff B; Marshall, Frances M [Idaho National Laboratory, Idaho Falls, ID (United States); Allen, Todd R [Univ. of Wisconsin, Madison, WI (United States)

    2012-03-15

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research. The mission of the ATR NSUF is to provide access to world-class facilities, thereby facilitating the advancement of nuclear science and technology. Cost free access to the ATR, INL post irradiation examination facilities, and partner facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to United States Department of Energy. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  15. Linear accelerator for burner-reactor

    International Nuclear Information System (INIS)

    Batskikh, G.I.; Murin, B.P.; Fedotov, A.P.

    1991-01-01

    Future development of nuclear power engineering depends on the successful solution of two key problems of safety and utilization of high level radioactive wastes (HLRW) of atomic power plants (APP). Modern methods of HLRW treatment involve solidification, preliminary storing for a period of 30-50 years necessary for the decay of long-living nuclides and final burial in geological formations several hundred meters below the ground surface. The depth burial of the radioactive wastes requires complicated under ground constructions. It's very expensive and doesn't meet modern ecological requirements. Alternative modern and more reasonable methods of APP HLRW treatment are under consideration now. One of the methods involves separation of APP waste radionuclides for use in economy with subsequent transmutation of the long-living isotopes into the short-living ones by high-intensity neutron fluxes generated by proton accelerators. The installation intended for the long-living radionuclides transmutation into the short-living ones is called burner-reactor. It can be based on the continuous regime proton accelerator with 1.5 GeV energy, 0.3 A current and beam mean power of 450 MW. The preferable type of the proton accelerator with the aforementioned parameters is the linear accelerator

  16. A test harness for accelerating physics parameterization advancements into operations

    Science.gov (United States)

    Firl, G. J.; Bernardet, L.; Harrold, M.; Henderson, J.; Wolff, J.; Zhang, M.

    2017-12-01

    The process of transitioning advances in parameterization of sub-grid scale processes from initial idea to implementation is often much quicker than the transition from implementation to use in an operational setting. After all, considerable work must be undertaken by operational centers to fully test, evaluate, and implement new physics. The process is complicated by the scarcity of like-to-like comparisons, availability of HPC resources, and the ``tuning problem" whereby advances in physics schemes are difficult to properly evaluate without first undertaking the expensive and time-consuming process of tuning to other schemes within a suite. To address this process shortcoming, the Global Model TestBed (GMTB), supported by the NWS NGGPS project and undertaken by the Developmental Testbed Center, has developed a physics test harness. It implements the concept of hierarchical testing, where the same code can be tested in model configurations of varying complexity from single column models (SCM) to fully coupled, cycled global simulations. Developers and users may choose at which level of complexity to engage. Several components of the physics test harness have been implemented, including a SCM and an end-to-end workflow that expands upon the one used at NOAA/EMC to run the GFS operationally, although the testbed components will necessarily morph to coincide with changes to the operational configuration (FV3-GFS). A standard, relatively user-friendly interface known as the Interoperable Physics Driver (IPD) is available for physics developers to connect their codes. This prerequisite exercise allows access to the testbed tools and removes a technical hurdle for potential inclusion into the Common Community Physics Package (CCPP). The testbed offers users the opportunity to conduct like-to-like comparisons between the operational physics suite and new development as well as among multiple developments. GMTB staff have demonstrated use of the testbed through a

  17. Advances in Educational and Psychological Testing: Theory and Applications. Evaluation in Education and Human Services Series.

    Science.gov (United States)

    Hambleton, Ronald K., Ed.; Zaal, Jac N., Ed.

    The 14 chapters of this book focus on the technical advances, advances in applied settings, and emerging topics in the testing field. Part 1 discusses methodological advances, Part 2 considers developments in applied settings, and Part 3 reviews emerging topics in the field of testing. Part 1 papers include: (1) "Advances in…

  18. The effect of orifice plate insertion on low NOx radial swirl burner performances (simulated variable area burner)

    International Nuclear Information System (INIS)

    Mohammad Nazri Mohd Jaafar

    2000-01-01

    The effect of inserting an outlet orifice plate of different sizes at the exit plane of the swirler outlet were studied for small radial swirler with fixed curves vanes. Tests were carried out using two different sizes flame tubes of 76 mm and 140 mm inside diameter, respectively and 330 mm in length. The system was fuelled via eight vane passage fuel nozzles of 3.5 mm diameter hole. This type of fuel injection helps in mixing the fuel and air better prior to ignition. Tests were carried out at 20 mm W.G. pressure loss which is representative of gas burners for domestic central heating system operating conditions. Tests were also carried out at 400 K preheated inlet air temperature and using only natural gas as fuel. The aim of the insertion of orifice plate was to create the swirler pressure loss at the swirler outlet phase so that the swirler outlet shear layer turbulence was maximize to assist with fuel/air mixing. For the present work, the smallest orifice plate exhibited a very low NO x emissions even at 0.7 equivalence ratio were NO x is well below 10 ppm corrected at 0% oxygen at dry basis. Other emissions such as carbon monoxide and unburned hydrocarbon were below 10 ppm and 100 ppm, respectively, over a wide range of operating equivalence ratios. The implies that good combustion was achieved using the smallest orifice plate. (Author)

  19. Design considerations of the irradiation test vehicle for the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  20. Design considerations of the irradiation test vehicle for the advanced test reactor

    International Nuclear Information System (INIS)

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-01-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements

  1. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  2. Influence of the burner swirl on the azimuthal instabilities in an annular combustor

    Science.gov (United States)

    Mazur, Marek; Nygård, Håkon; Worth, Nicholas; Dawson, James

    2017-11-01

    Improving our fundamental understanding of thermoacoustic instabilities will aid the development of new low emission gas turbine combustors. In the present investigation the effects of swirl on the self-excited azimuthal combustion instabilities in a multi-burner annular annular combustor are investigated experimentally. Each of the burners features a bluff body and a swirler to stabilize the flame. The combustor is operated with an ethylene-air premixture at powers up to 100 kW. The swirl number of the burners is varied in these tests. For each case, dynamic pressure measurements at different azimuthal positions, as well as overhead imaging of OH* of the entire combustor are conducted simultaneously and at a high sampling frequency. The measurements are then used to determine the azimuthal acoustic and heat release rate modes in the chamber and to determine whether these modes are standing, spinning or mixed. Furthermore, the phase shift between the heat release rate and pressure and the shape of these two signals are analysed at different azimuthal positions. Based on the Rayleigh criterion, these investigations allow to obtain an insight about the effects of the swirl on the instability margins of the combustor. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement n° 677931 TAIAC).

  3. The Advanced Test Reactor Irradiation Facilities and Capabilities

    International Nuclear Information System (INIS)

    S. Blaine Grover; Raymond V. Furstenau

    2007-01-01

    The Advanced Test Reactor (ATR) is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR's unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments

  4. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  5. Recent advances in diagnostic testing for gastroesophageal reflux disease.

    Science.gov (United States)

    Naik, Rishi D; Vaezi, Michael F

    2017-06-01

    Gastroesophageal reflux disease (GERD) has a large economic burden with important complications that include esophagitis, Barrett's esophagus, and adenocarcinoma. Despite endoscopy, validated patient questionnaires, and traditional ambulatory pH monitoring, the diagnosis of GERD continues to be challenging. Areas covered: This review will explore the difficulties in diagnosing GERD with a focus on new developments, ranging from basic fundamental changes (histology and immunohistochemistry) to direct patient care (narrow-band imaging, impedance, and response to anti-reflux surgery). We searched PubMed using the noted keywords. We included data from full-text articles published in English. Further relevant articles were identified from the reference lists of review articles. Expert commentary: Important advances in novel parameters in intraluminal impedance monitoring such as baseline impedance monitoring has created some insight into alternative diagnostic strategies in GERD. Recent advances in endoscopic assessment of esophageal epithelial integrity via mucosal impedance measurement is questioning the paradigm of prolonged ambulatory testing for GERD. The future of reflux diagnosis may very well be without the need for currently employed technologies and could be as simple as assessing changes in epithelia integrity as a surrogate marker for GERD. However, future studies must validate such an approach.

  6. Influence of burner form and pellet type on domestic pellet boiler performance

    Science.gov (United States)

    Rastvorov, D. V.; Osintsev, K. V.; Toropov, E. V.

    2017-10-01

    The study presents combustion and emission results obtained using two serial pellet boilers of the same heating capacity 40 kW. These boilers have been designed by producers for domestic conditions of exploitation. The principal difference between boilers was the type of the burner. The study concerns the efficiency and ecological performance difference between burners of circular and rectangular forms. The features of the combustion process in both types of burners were studied when boiler operated with different sorts of pellets. The results suggest that the burner of circular form excels the rectangular form burner. However, there is some difference of NOx emission between circular and rectangular burners.

  7. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1990-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. The methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and is expected to continue operation for at least and additional 25 years. Aging evaluations are in progress to address additional replacements that may be needed during this period

  8. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1989-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. Methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and will continue operation for perhaps another 20 years. Aging evaluations are in program to address additional replacements that may be needed during this extended time period. 3 figs

  9. Replacement of the Advanced Test Reactor control room

    International Nuclear Information System (INIS)

    Durney, J.L.; Klingler, W.B.

    1989-01-01

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor. 1 fig., 1 tab

  10. Replacement of the Advanced Test Reactor control room

    International Nuclear Information System (INIS)

    Durney, J.L.; Klingler, W.B.

    1990-01-01

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor

  11. Database requirements for the Advanced Test Accelerator project

    International Nuclear Information System (INIS)

    Chambers, F.W.

    1984-01-01

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures

  12. Advanced photon source low-energy undulator test line

    International Nuclear Information System (INIS)

    Milton, S.V.

    1997-01-01

    The injector system of the Advanced Photon Source (APS) consists of a linac capable of producing 450-MeV positrons or > 650-MeV electrons, a positron accumulator ring (PAR), and a booster synchrotron designed to accelerate particles to 7 GeV. There are long periods of time when these machines are not required for filling the main storage ring and instead can be used for synchrotron radiation research. We describe here an extension of the linac beam transport called the Low-Energy Undulator Test Line (LEUTL). The LEUTL will have a twofold purpose. The first is to fully characterize innovative, future generation undulators, some of which may prove difficult or impossible to measure by traditional techniques. These might include small-gap and superconducting undulators, very long undulators, undulators with designed-in internal focusing, and helical undulators. This technique also holds the promise of extending the magnetic measurement sensitivity beyond that presently attainable. This line will provide the capability to directly test undulators before their possible insertion into operating storage rings. A second use for the test line will be to investigate the generation of coherent radiation at wavelengths down to a few tens of nanometers

  13. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every

  14. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX

  15. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    International Nuclear Information System (INIS)

    Hamid Farzan

    2001-01-01

    Coal-fired electric utilities are facing a serious challenge with regards to curbing their NO(sub x) emissions. At issue are the NO(sub x) contributions to the acid rain, ground level ozone, and particulate matter formation. Substantial NO(sub x) control requirements could be imposed under the proposed Ozone Transport Rule, National Ambient Air Quality Standards, and New Source Performance Standards. McDermott Technology, Inc. (MTI), Babcock and Wilcox (B and W), and Fuel Tech are teaming to provide an integrated solution for NO(sub x) control. The system will be comprised of an ultra low-NO(sub x) pulverized coal (PC) burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. This system will be capable of meeting a target emission limit of 0.15 lb NO(sub x)/10(sup 6) Btu and target ammonia (NH3) slip level targeted below 5 ppmV for commercial units. Our approach combines the best available combustion and post-combustion NO(sub x) control technologies. More specifically, B and W's DRB-4Z TM ultra low-NO(sub x) PC burner technology will be combined with Fuel Tech's NO(sub x)OUT (SNCR) and NO(sub x)OUT Cascade (SNCR/SCR hybrid) systems and jointly evaluated and optimized in a state-of-the-art test facility at MTI. Although the NO(sub x)OUT Cascade (SNCR/SCR hybrid) system will not be tested directly in this program, its potential application for situations that require greater NO(sub x) reductions will be inferred from other measurements (i.e., SNCR NO(sub x) removal efficiency plus projected NO(sub x) reduction by the catalyst based on controlled ammonia slip). Our analysis shows that the integrated ultra low-NO(sub x) burner and SNCR system has the lowest cost when the burner emissions are 0.25 lb NO(sub x)/10(sup 6) Btu or less. At burner NO(sub x) emission level of 0.20 lb NO(sub x)/10(sup 6) Btu, the levelized cost per ton of NO(sub x) removed is 52% lower than the SCR cost

  16. Design and construction of an air inductor burner

    International Nuclear Information System (INIS)

    Martinez, Camilo; Cardona, Mario; Arrieta, Andres Amell

    2001-01-01

    This article presents research results performed with the purpose of obtain design parameters, construction, and air inductor burner operation, which are used in industrial combustion systems, in several processes such as: metal fusion (fusion furnaces), fluids heating (immerse heating tubes), steam production (steam boiler), drying processes, etc. In order to achieve such objectives, a prototype with thermal power modulation from 6 to 52 kW, was built to be either operated with natural gas or with LPG. The burner was built taking in mind the know how (design procedure) developed according to theoretical schemes of different bibliographic references and knowledge of the research group in gas science and technology of the University of Antioquia. However, with such procedure only the burner mixer is dimensioned and five parameters must to be selected by the designer: burner thermal power, primary aeration ratio, counter pressure at combustion chamber, air pressure admission and gas fuel intended to use. For head design we took in mind research done before by the group of science and technology in gas research: Mono port and bar burner heads with their respective stabilization flame systems

  17. Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand

    International Nuclear Information System (INIS)

    Makmool, U.; Jugjai, S.; Tia, S.; Vallikul, P.; Fungtammasan, B.

    2007-01-01

    Cooker-top burners are used extensively in Thailand because of the rapid combustion and high heating-rates created by an impinging flame, which is characteristic of these types of burners. High thermal efficiency with low level of CO emissions is the most important performance criteria for these burners. The wide variation in reported performances of the burners appears to be due to the ad hoc knowledge gained through trial and error of the local manufacturers rather than sound scientific principles. This is extremely undesirable in view of safety, energy conservation and environmental protection. In the present work, a nationwide cooker-top burner performance survey and an implementation of a PIV technique to analyze the burner performance as well as advising local manufacturers were carried out. Experimental data were reported for the base line value of thermal efficiency of all the burners. The thermal performance parameters and dynamic properties of the flow field at a flame impingement area, i.e. velocity magnitude, turbulent intensity, vorticity and strain rate were also reported as a function of burner type, which was categorized into four types based on the configuration of the burner head: radial flow burners, swirling flow burners, vertical flow burners and porous radiant burners

  18. Planned Experiments on the Princeton Advanced Test Stand

    Science.gov (United States)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.

    2010-11-01

    The Princeton Advanced Test Stand (PATS) device is an experimental facility based on the STS-100 high voltage test stand transferred from LBNL. It consists of a multicusp RF ion source, a pulsed extraction system capable of forming high-perveance 100keV ion beams, and a large six-foot-long vacuum with convenient access for beam diagnostics. This results in a flexible system for studying high perveance ion beams relevant to NDCX-I/II, including experiments on beam neutralization by ferroelectric plasma sources (FEPS) being developed at PPPL. Research on PATS will concern the basic physics of beam-plasma interactions, such as the effects of volume neutralization on beam emittance, as well as optimizing technology of the FEPS. PATS combines the advantage of an ion beam source and a large-volume plasma source in a chamber with ample access for diagnostics, resulting in a robust setup for investigating and improving relevant aspects of neutralized drift. There are also plans for running the ion source with strongly electro-negative gases such as chlorine, making it possible to extract positive or negative ion beams.

  19. Potential for new societal contributions from the advanced test reactor

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Conner, J.E.; Ingram, F.W.

    1993-01-01

    The mission of the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory is to study the effects of intense radiation on materials and fuels and to produce radioisotopes for the U.S. Department of Energy (DOE) for government and commercial applications. Because of reductions in defense spending, four of the nine loop test spaces will become available in 1994. The purpose of this paper is to explore the potential benefits to society from these available neutrons. The ATR is a 250-MW(thermal) light water reactor with highly enriched uranium in plate-type fuel. Forty fuel elements are arranged in a serpentine pattern. The ATR uses a combination of hafnium control drums and shim rods to adjust power and hold flux distortion to a minimum. The different quadrants of the ATR can be operated at significantly different power levels to meet a variety of mission requirements. Irradiation positions are available at various locations throughout the core and beryllium reflector

  20. Advanced Utility Mercury-Sorbent Field-Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  1. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  2. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  3. Slurry burner for mixture of carbonaceous material and water

    Science.gov (United States)

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  4. Dependence of flame length on cross sections of burners

    Energy Technology Data Exchange (ETDEWEB)

    Hackeschmidt, M.

    1983-06-01

    This article analyzes the relation between the shape of burner muzzle and the resulting flame jet in a combustion chamber. Geometrical shapes of burner muzzles, either square, circular or triangular are compared as well as proportions of flame dimensions. A formula for calculating flame lengths is derived, for which the mathematical value 'contact profile radius' for burner muzzle shape is introduced. The formula for calculating flame lengths allows a partial replacement of the empirical flame mixing factor according to N.Q. Toai, 1981. The geometrical analysis does not include thermodynamic and reaction kinetic studies, which may be necessary for evaluating heterogenous (coal dust) combustion flames with longer burning time. (12 refs.)

  5. Evaluation of a high-temperature burner-duct-recuperator system

    Science.gov (United States)

    1990-07-01

    The U.S. Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R and D) to improve the energy efficiency of American industry and to provide for fuel flexibility. OIT has funded a multiyear R and D project by the Babcock and Wilcox Company (B and W) to design, fabricate, field test, and evaluate a high-temperature burner-duct-recuperator (HTBDR) system. This ceramic-based recuperator system recovers waste heat from the corrosive, high-temperature (2170 F) flue gas stream of a steel soaking pit to preheat combustion air to as high as 1700 F. The preheated air is supplied to a high-temperature burner. The B and W R and D program, which is now complete, involved several activities, including selecting and evaluating ceramic materials, designing the system, and developing and evaluating the prototype. In addition, a full-scale unit was tested at a B and W steel soaking pit. The full-scale system consisted of a modular single-stage ceramic recuperator, a conventional two-pass metallic recuperator, a high-temperature burner, fans, insulated ducting, and associated controls and instrumentation. The metallic recuperator preheated combustion air to about 750 F before it passed to the ceramic module. This technical case study describes the DOE/B and W recuperator project and highlights the field tests of the full-scale recuperator system. The document makes results of field tests and data analysis available to other researchers and private industry. It discusses project status, summarizes field tests, and reviews the potential effects the technology will have on energy use and system economics.

  6. Incineration of ion exchange resins using concentric burners

    International Nuclear Information System (INIS)

    Fukasawa, T.; Chino, K.; Kawamura, F.; Kuriyama, O.; Yusa, H.

    1985-01-01

    A new incineration method, using concentric burners, is studied to reduce the volume of spent ion exchange resins generated from nuclear power plants. Resins are ejected into the center of a propane-oxygen flame and burned within it. The flame length is theoretically evaluated by the diffusion-dominant model. By reforming the burner shape, flame length can be reduced by one-half. The decomposition ratio decreases with larger resin diameters due to the loss of unburned resin from the flame. A flame guide tube is adapted to increase resin holding time in the flame, which improves the decomposition ratio to over 98 wt%

  7. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  8. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  9. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  10. Functional toxicology: tools to advance the future of toxicity testing

    Science.gov (United States)

    Gaytán, Brandon D.; Vulpe, Chris D.

    2014-01-01

    The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds—information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352

  11. Advanced Test Reactor probabilistic risk assessment methodology and results summary

    International Nuclear Information System (INIS)

    Eide, S.A.; Atkinson, S.A.; Thatcher, T.A.

    1992-01-01

    The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 report documents a comprehensive and state-of-the-art study to establish and reduce the risk associated with operation of the ATR, expressed as a mean frequency of fuel damage. The ATR Level 1 PRA effort is unique and outstanding because of its consistent and state-of-the-art treatment of all facets of the risk study, its comprehensive and cost-effective risk reduction effort while the risk baseline was being established, and its thorough and comprehensive documentation. The PRA includes many improvements to the state-of-the-art, including the following: establishment of a comprehensive generic data base for component failures, treatment of initiating event frequencies given significant plant improvements in recent years, performance of efficient identification and screening of fire and flood events using code-assisted vital area analysis, identification and treatment of significant seismic-fire-flood-wind interactions, and modeling of large loss-of-coolant accidents (LOCAs) and experiment loop ruptures leading to direct damage of the ATR core. 18 refs

  12. Altitude Performance Characteristics of Tail-pipe Burner with Convergingconical Burner Section on J47 Turbojet Engine

    Science.gov (United States)

    Prince, William R; Mcaulay, John E

    1950-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.

  13. The acoustic response of burner-stabilised flat flames : a two-dimensional numerical analysis

    NARCIS (Netherlands)

    Rook, R.; Goey, de L.P.H.

    2003-01-01

    The response of burner-stabilized flat flames to acoustic perturbations is studied numerically. So far, one-dimensional models have been used to study this system. However, in most practical surface burners, the scale of the perforations in the burner plate is of the order of the flame thickness.

  14. The advanced test reactor national scientific user facility advancing nuclear technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Thelen, M.C.; Meyer, M.K.; Marshall, F.M.; Foster, J.; Benson, J.B.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  15. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Benson, J.B.; Foster, J.A.; Marshall, F.M.; Meyer, M.K.; Thelen, M.C.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  16. Pressure-Sensitive Paints Advance Rotorcraft Design Testing

    Science.gov (United States)

    2013-01-01

    The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure

  17. The advanced computational testing and simulation toolkit (ACTS)

    International Nuclear Information System (INIS)

    Drummond, L.A.; Marques, O.

    2002-01-01

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  18. The advanced computational testing and simulation toolkit (ACTS)

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  19. 40 CFR 266.102 - Permit standards for burners.

    Science.gov (United States)

    2010-07-01

    ... or industrial furnace downstream of the combustion zone and prior to release of stack gases to the... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces...

  20. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Theodorus H.

    2012-01-01

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbulence? To that end an active grid is constructed that consists of two perforated disks of which one is rotating, creating a system of pulsating jets, which in the end can be used as a central

  1. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Th.H.

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbu- lence? To that end an active grid is constructed that consists of two perforated disks of which one is rotat- ing, creating a system of pulsating jets, which in the end can be used as a central

  2. 300 MWe Burner Core Design with two Enrichment Zoning

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Sang Ji; Kim, Yeong Il

    2008-01-01

    KAERI has been developing the KALIMER-600 core design with a breakeven fissile conversion ratio. The core is loaded with a ternary metallic fuel (TRU-U-10Zr), and the breakeven characteristics are achieved without any blanket assembly. As an alternative plan, a KALIMER-600 burner core design has been also performed. In the early stage of the development of a fast reactor, the main purpose is an economical use of a uranium resource but nowadays in addition to the maximum utilization of a uranium resource, the burning of a high level radioactive waste is taken as an additional interest for the harmony of the environment. In way of constructing the commercial size reactor which has the power level ranging from 800 MWe to 1600 MWe, the demonstration reactor which has the power level ranging from 200 MWe to 600 MWe was usually constructed for the midterm stage to commercial size reactor. In this paper, a 300 MWe burner core design was performed with purpose of demonstration reactor for KALIMER-600 burner of 600 MWe. As a means to flatten the power distribution, instead of a single fuel enrichment scheme adapted in design of KALIMER-600 burner, the 2 enrichment zoning approach was adapted

  3. Regulator of Dust and Coal Burner of Power Boilers

    Directory of Open Access Journals (Sweden)

    W. Wujcik

    2004-01-01

    Full Text Available The papers considers problems concerning introduction of neutron regulator into engineering practice. The regulator makes it possible to regulate CO, N0^ and O2 values with the purpose to optimize ejections into environment. The paper contains scheme of automation control of cyclone dust and coal burner with the help of a neutron regulator.

  4. Effect of cycled combustion ageing on a cordierite burner plate

    International Nuclear Information System (INIS)

    Garcia, Eugenio; Gancedo, J. Ramon; Gracia, Mercedes

    2010-01-01

    A combination of 57 Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe 2+ and Fe 3+ ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for ≅40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe 3+ ions existing in the cordierite lattice were reduced to Fe 2+ , and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: →Depth profile analyses used as a probe to understand changes in refractory structure. →All changes take place in the uppermost surface of the burner, close to the flame. →Reduction to Fe 2+ of substitutional Fe 3+ ions and partial cordierite decomposition. →Heating-cooling cycling induces a sintering of the existing iron oxide particles. →Chemical changes can explain the alterations observed in the material microstructure.

  5. Results of Laboratory Testing of Advanced Power Strips: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  6. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    Science.gov (United States)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  7. A Secure Test Technique for Pipelined Advanced Encryption Standard

    Science.gov (United States)

    Shi, Youhua; Togawa, Nozomu; Yanagisawa, Masao; Ohtsuki, Tatsuo

    In this paper, we presented a Design-for-Secure-Test (DFST) technique for pipelined AES to guarantee both the security and the test quality during testing. Unlike previous works, the proposed method can keep all the secrets inside and provide high test quality and fault diagnosis ability as well. Furthermore, the proposed DFST technique can significantly reduce test application time, test data volume, and test generation effort as additional benefits.

  8. Development of advanced-RCCA in PWR (2). Design of advanced-RCCA and verification test

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, T.; Naitou, T.; Suzuki, S.; Kawahara, H. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Tanaka, T. [Kansai Electric Power Co., Inc. (Japan); Kuriyama, H. [Hokkaido Electric Power Co., Inc., Sapporo (Japan); Fujii, S. [Shikoku Electric Power Co., Inc., Takamatsu (Japan); Murakami, S. [Kyusyu Electric Power Co., Inc. (Japan); Murota, M. [Japan Atomic Power Co., Tokyo (Japan)

    2001-07-01

    Advanced-RCCA enhances control rod worth by adopting boron carbide (B{sub 4}C) with enriched {sup 10}B (hybrid structure B{sub 4}C/Ag-In-Cd). In APWR, advanced-RCCA result in the reduction of the number of RCCA. In conventional PWR, large MOX or high burn-up fuel loading could be introduced without the additional RCCAs. The duplex cladding structure with Cr plating on each outside surface increases the reliability against the RCCA-wear and results in reduction of inspection cost (inspection-equipment, and inspection-interval). Design of advanced-RCCA and verification are also discussed. (author)

  9. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    Science.gov (United States)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  10. Research on the Improvement of a Natural Gas Fired Burner for the CHP Application in a Central Heating Boiler using Radiant Burner Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bieleveld, T.

    2010-08-15

    These days, the reduction of CO2 emissions from combustion devices is one of the main priorities for each design improvement. For the domestic use of the central heating boiler, Microgen Engine Corporation produces free piston Stirling engines for the Combined Heat and Power (CHP) application in these central heating boilers (Dutch: 'HRe ketel'). With CHP, the generation of electricity and heat are combined to increase overall efficiency, as heat is generally a waste product from the combustion to electric generation process. In this application, the Stirling engine, which can be defined as an external combustion engine, is heated by a natural gas fired engine-burner and cooled by a coolant flow. The heat transfer into the engine is converted into mechanical work and a heat flux from the engine. The mechanical work is used to produce electricity via a linear alternator. Heat in the flue gasses from the engine-burner is reused in a secondary burner and condensing heat exchanger. The coolant flow from the engine, after passing the secondary burner, is used for heating purposes. The heat transfer from engine-burner to the Stirling engine is analyzed and via several motivations it is found that it is favorable to improve fuel to electric conversion efficiency, for which the heat transfer efficiency of the engine-burner to the Stirling engine should be improved, as the engine design is not to be altered. From an initially developed linear free piston Stirling engine model and measurements performed at Microgen Engine Corporation, St. Petersborough, (UK), the engine power demand and engine-burner performance are found. The results are used to visualize the current energy flows of the Stirling engine and engine burner subsystem. The heat transfer to the engine is analyzed to find possible heat transfer improvements. It is concluded that heat transfer from the engine-burner to the engine can be approved if the flue losses due to convective heat transfer are

  11. Drop-in capsule testing of plutonium-based fuels in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Chang, G.S.; Ryskamp, J.M.; Terry, W.K.; Ambrosek, R.G.; Palmer, A.J.; Roesener, R.A.

    1996-09-01

    The most attractive way to dispose of weapons-grade plutonium (WGPu) is to use it as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PuO[sub 2]) mixed with urania (UO[sub 2]). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. The proposed weapons-grade MOX fuel is unusual, even relative to ongoing foreign experience with reactor-grade MOX power reactor fuel. Some demonstration of the in- reactor thermal, mechanical, and fission gas release behavior of the prototype fuel will most likely be required in a limited number of test reactor irradiations. The application to license operation with MOX fuel must be amply supported by experimental data. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) is capable of playing a key role in the irradiation, development, and licensing of these new fuel types. The ATR is a 250- MW (thermal) LWR designed to study the effects of intense radiation on reactor fuels and materials. For 25 years, the primary role of the ATR has been to serve in experimental investigations for the development of advanced nuclear fuels. Both large- and small-volume test positions in the ATR could be used for MOX fuel irradiation. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. Furthermore, these data can be obtained more quickly by using ATR instead of testing in a commercial LWR. Our previous work in this area has demonstrated that it is technically feasible to perform MOX fuel testing in the ATR. This report documents our analyses of sealed drop-in capsules containing plutonium-based test specimens placed in various ATR positions

  12. Parameter optimization through performance analysis of model based control of a batch heat treatment furnace with low NO x radiant tube burner

    International Nuclear Information System (INIS)

    Tiwari, Manish Kumar; Mukhopadhyay, Achintya; Sanyal, Dipankar

    2005-01-01

    A model based control structure for heat treating a 0.5% C steel slab in a batch furnace with low NO x radiant tube burner is designed and tested for performance to yield optimal parameter values using the model developed in the companion paper. Combustion is considered in a highly preheated and product gas diluted mode. Controlled combustion with a proposed arrangement for preheating and diluting the air by recirculating the exhaust gas that can be retrofitted with an existing burner yields satisfactory performance and emission characteristics. Finally, the effect of variable property considerations are presented and critically analyzed

  13. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    Science.gov (United States)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  14. Image-based spectroscopic sensor for the automatic control gas burners in the glass-processing industry. Multichannel spectral detection of flame emissions and multivariate analysis methods allow for optical quality monitoring and control of industrial burners; Bildgebende optische Spektralsensorik zur automatischen Regelung von Gasbrennern fuer die Glas verarbeitende Industrie. Durch mehrkanalige spektrale Aufnahmen der Flammenemission und multivariate Auswertemethoden kann die Qualitaet der Gasversorgung bei industriellen Brennern optisch ueberwacht und geregelt werden

    Energy Technology Data Exchange (ETDEWEB)

    Knetsch, R.; Arnold, W. [Herbert Arnold GmbH und Co. KG, Weilburg (Germany); Erfurth, F.; Scheibe, A.; Nyuyki, B.; Schmidt, W.D. [GMBU e.V., Jena (Germany). Fachsektion Photonik und Sensorik

    2009-07-01

    The precise composition of the combustion gas mixture of burners is essential for the maximum achievable flame temperature as well as for the economic use of raw material. We present a mobile device for optical flame analysis and optimization of gas supply for industrial burners. The relative fuel-oxygen-ratio can be assessed by means of spectral emission in the visible and UV region by factoring in the distribution of gas emissions along the flame. Based on spectral imaging technology our sensor allows for calculation of a flame index stating the quality of fuel supply. A laboratory sample of the flame sensor has been tested with different burners using natural gas and propane. The flame index has been determined successful for several fuel-oxygen-ratios. Practical experiments showed that uncomplicated software-based adaptation of the device to several burner configurations is possible.

  15. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    International Nuclear Information System (INIS)

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program

  16. Models for transient analyses in advanced test reactors

    International Nuclear Information System (INIS)

    Gabrielli, Fabrizio

    2011-01-01

    Several strategies are developed worldwide to respond to the world's increasing demand for electricity. Modern nuclear facilities are under construction or in the planning phase. In parallel, advanced nuclear reactor concepts are being developed to achieve sustainability, minimize waste, and ensure uranium resources. To optimize the performance of components (fuels and structures) of these systems, significant efforts are under way to design new Material Test Reactors facilities in Europe which employ water as a coolant. Safety provisions and the analyses of severe accidents are key points in the determination of sound designs. In this frame, the SIMMER multiphysics code systems is a very attractive tool as it can simulate transients and phenomena within and beyond the design basis in a tightly coupled way. This thesis is primarily focused upon the extension of the SIMMER multigroup cross-sections processing scheme (based on the Bondarenko method) for a proper heterogeneity treatment in the analyses of water-cooled thermal neutron systems. Since the SIMMER code was originally developed for liquid metal-cooled fast reactors analyses, the effect of heterogeneity had been neglected. As a result, the application of the code to water-cooled systems leads to a significant overestimation of the reactivity feedbacks and in turn to non-conservative results. To treat the heterogeneity, the multigroup cross-sections should be computed by properly taking account of the resonance self-shielding effects and the fine intra-cell flux distribution in space group-wise. In this thesis, significant improvements of the SIMMER cross-section processing scheme are described. A new formulation of the background cross-section, based on the Bell and Wigner correlations, is introduced and pre-calculated reduction factors (Effective Mean Chord Lengths) are used to take proper account of the resonance self-shielding effects of non-fuel isotopes. Moreover, pre-calculated parameters are applied

  17. The effectiveness of recirculating flue gasses on a gas-fuel oil boiler unit with hearth burners

    Energy Technology Data Exchange (ETDEWEB)

    Eremeev, V V; Kovalenko, A L; Kozlov, V G

    1981-01-01

    The results of investigating the effect of recirculating flue gasses on a TP-87 boiler (D = 420 tons per hour, 14 MPa, 560 C) with a hearth composition of four gas-fuel oil burners are presented. The heat-release rate of the volume of the furnace is 136 Kw per m/sup 3/; that if a cross section of the combustion chamber is 3.2 MW/m/sup 2/. The hot air temperature is 420 C. The tests were carried out during the combustion of M-100 petroleum oil which has a moisture content of 3 / 4% and a sulfur content of 2.4%. The pressure of the oil against the mechanical sprayers is 2.9-3.0 MPa at the rated load; the temperature is 125-130 C. The recirculation of the flue gasses was organized in order to expand the regulatory stress range and decrease the discharge of nitric oxides into the atmosphere. Moreover, flue gasses with a temperature of 330-370/sup 0/C were removed from a first-degree BE gas conduit, and, using two BGD-15.5 type exhaust fans, were fed into the annular channels around the burners. The calculated velocity of the gasses at the output of the burner is equal to 35 M/s; the air velocity is 64 M/s. It is shown that the TP-87 furnace--with fuel oil hearth burners and recirculation to obtain flue gasses into independent burner ducts--makes it possible to obtain a useful stress range during almost complete fuel oil combustion with minimal air exceses by maintaining the calculated temperature of the superheated vapor. Recirculating flue gasses in a duct around the burners constitutes an effective means of decreasing the discharge of nitric oxides, and of decreasing local heat stress on the screens. However, increasing the recirculation coefficient to 0.17 causes a 0.35% increase in the loss of heat with the departing gasses (the temperature of which increases by 7 C), and a 0.15% decrease in the heat flow rate for SN, which leads to an overall drop of approx. 0.5% in the efficiency coefficient of the boiler.

  18. Advances in Ultrasonic Testing of Austenitic Stainless Steel Welds

    International Nuclear Information System (INIS)

    Moysan, J.; Ploix, M. A.; Corneloup, G.; Guy, P.; Guerjouma, R. El; Chassignole, B.

    2008-01-01

    A precise description of the material is a key point to obtain reliable results when using wave propagation codes. In the case of multipass welds, the material is very difficult to describe due to its anisotropic and heterogeneous properties. Two main advances are presented in the following. The first advance is a model which describes the anisotropy resulting from the metal solidification and thus the model reproduces an anisotropy that is correlated with the grain orientation. The model is called MINA for modelling anisotropy from Notebook of Arc welding. With this kind of material modeling a good description of the behaviour of the wave propagation is obtained, such as beam deviation or even beam division. But another advance is also necessary to have a good amplitude prediction: a good quantification of the attenuation, particularly due to grain scattering, is also required as far as attenuation exhibits a strong anisotropic behaviour too. Measurement of attenuation is difficult to achieve in anisotropic materials. An experimental approach has been based both on the decomposition of experimental beams into plane waves angular spectra and on the propagation modelling through the anisotropic material via transmission coefficients computed in generally triclinic case. Various examples of results are showed and also some prospects to continue refining numerical simulation of wave propagation.

  19. Characterisation of heat transfer and flame length in a semi-scale industrial furnace equipped with HiTAC burner

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Nehme, W.; Biswas, A.K.; Yang, W.; Blasiak, W.; Bertin, D. [Royal Institute of Technology, Stockholm (Sweden)

    2010-09-15

    This paper investigates the effects of multiple burner nozzles on the combustion characteristics, such as flame volume, heat transfer and NOx emission in a high temperature air combustion (HiTAC) industrial furnace. Experiments were carried out in one semi-industrial furnace located in Kungliga Tekniska Hogskolan (Stockholm, Sweden). Three different types of burners were tested, including both regenerative and recuperative types. Variable flame temperature and oxygen concentration were applied in experiments. Heat transfer characteristics of HiTAC are studied in this paper, and the influences of a variety of inertial fuel/air jets are investigated for both flame length and NOx emission. One improved correlation between chemical flame length and flame Froude number is established for HiTAC with manifold nozzles. NOx emission is also correlated to the flame Froude number. The HiTAC recirculation system effects on flame shape, NOx emission and heat transfer were also examined.

  20. Structure of diffusion flames from a vertical burner

    Science.gov (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  1. Passive safety design characteristics of the KALIMER-600 burner reactor

    International Nuclear Information System (INIS)

    Kwon, Young-Min; Jeong, Hae-Yong; Cho, Chung-Ho; Ha, Ki-Seok; Kim, Sang-Ji

    2009-01-01

    The Korea Atomic Energy Research Institute (KAERI) has recently studied several burner core designs for a transuranics (TRU) transmutation based on the breakeven core geometry of KALIMER-600. The KALIMER-600 is a net electrical rating of 600MWe, sodium-cooled, metallic-fueled, pool-type reactor. For the burner core concept selected for the present analysis, the smearing fractions of the fuel rods in three fuel zones are changed while maintaining the cladding outer diameter and cladding thickness. The resulting fuel slug smearing fractions of the inner, middle, and outer core zones are 36%, 40%, and 48%, respectively. The TRU conversion ratio is 0.57 and the TRU enrichment of the driver fuel is set to 30.0 w/o because of the current practical limitation of the U-TRU-10%Zr metal fuel database. The purpose of this paper is to evaluate the safety performance characteristics provided by the passive safety design features in the KALIMER-600 burner reactor by using a system-wide safety analysis code. The present scoping analysis focuses on an assessment of the enhanced safety design features that provide passive and self-regulating responses to transient conditions and an evaluation of the safety margin during unprotected overpower, unprotected loss of flow, and unprotected loss of heat sink events. The analysis results show that the KALIMER-600 burner reactor provides larger safety margins with respect to the sodium boiling, fuel rod integrity, and structural integrity. The overall inherent safety can be enhanced by accounting for the reactivity feedback mechanisms in the design process. (author)

  2. Effect of cycled combustion ageing on a cordierite burner plate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Eugenio [Instituto de Ceramica y Vidrio, CSIC, c/ Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); Gancedo, J. Ramon [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain); Gracia, Mercedes, E-mail: rocgracia@iqfr.csic.es [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain)

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.

  3. ENRAF Series 854 Advanced Technology Gauge (ATG) Acceptance Test Procedure

    International Nuclear Information System (INIS)

    HUBER, J.H.

    1999-01-01

    This procedure provides acceptance testing for Enraf Series 854 level gauges used to monitor levels in Hanford Waste Storage Tanks. The test will verify that the gauge functions according to the manufacturer's instructions and specifications and is properly setup prior to being delivered to the tank farm area. This ATP does not set up the gauge for any specific tank, but is generalized to permit testing the gauge prior to installation package preparation

  4. Application of advanced non-destructive testing for testing the integrity of concrete foundations

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc

    2004-01-01

    computer from the cross-hole sonic logging data by prepared software fit the expected range of Ultrasonic Pulse Velocity results from the laboratory tests and can improve the reliability of interpreted quality. The acquired capabilities are valuable asset to apply the Cross-hole sonic method - advanced non-destructive testing (NDT) technique for testing the integrity of the deep concrete foundations. (author)

  5. Burner Rig Hot Corrosion of a Single Crystal Ni-48Al-Ti-Hf-Ga Alloy

    Science.gov (United States)

    Nesbitt, James A.; Darolia, Ram; Cuy, Michael D.

    1998-01-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a gamma' layer ahead of the advancing oxide fingers.

  6. Burner rig hot corrosion of a single crystal Ni-48Al-Ti-Hf-Ga alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, J.A.; Darolia, R.; Cuy, M.D.

    1999-07-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a {gamma}{prime} layer ahead of the advancing oxide fingers.

  7. Appraisal of BWR plutonium burners for energy centers

    International Nuclear Information System (INIS)

    Williamson, H.E.

    1976-01-01

    The design of BWR cores with plutonium loadings beyond the self-generation recycle (SGR) level is investigated with regard to their possible role as plutonium burners in a nuclear energy center. Alternative plutonium burner approaches are also examined including the substitution of thorium for uranium as fertile material in the BWR and the use of a high-temperature gas reactor (HTGR) as a plutonium burner. Effects on core design, fuel cycle facility requirements, economics, and actinide residues are considered. Differences in net fissile material consumption among the various plutonium-burning systems examined were small in comparison to uncertainties in HTGR, thorium cycle, and high plutonium-loaded LWR technology. Variation in the actinide content of high-level wastes is not likely to be a significant factor in determining the feasibility of alternate systems of plutonium utilization. It was found that after 10,000 years the toxicity of actinide high-level wastes from the plutonium-burning fuel cycles was less than would have existed if the processed natural ores had not been used for nuclear fuel. The implications of plutonium burning and possible future fuel cycle options on uranium resource conservation are examined in the framework of current ERDA estimates of minable uranium resources

  8. Microjet burners for molecular-beam sources and combustion studies

    Science.gov (United States)

    Groeger, Wolfgang; Fenn, John B.

    1988-09-01

    A novel microjet burner is described in which combustion is stabilized by a hot wall. The scale is so small that the entire burner flow can be passed through a nozzle only 0.2 mm or less in diameter into an evacuated chamber to form a supersonic free jet with expansion so rapid that all collisional processes in the jet gas are frozen in a microsecond or less. This burner can be used to provide high-temperature source gas for free jet expansion to produce intense beams of internally hot molecules. A more immediate use would seem to be in the analysis of combustion products and perhaps intermediates by various kinds of spectroscopies without some of the perturbation effects encountered in probe sampling of flames and other types of combustion devices. As an example of the latter application of this new tool, we present infrared emission spectra for jet gas obtained from the combustion of oxygen-hydrocarbon mixtures both fuel-rich and fuel-lean operation. In addition, we show results obtained by mass spectrometric analysis of the combustion products.

  9. Comparison calculations for an accelerator-driven minor actinide burner

    International Nuclear Information System (INIS)

    2002-01-01

    International interest in accelerator-driven systems (ADS) has recently been increasing in view of the important role that these systems may play as efficient minor actinide and long-lived fission-product (LLFP) burners and/or energy producers with an enhanced safety potential. However, the current methods of analysis and nuclear data for minor actinide and LLFP burners are not as well established as those for conventionally fuelled reactor systems. Hence, in 1999, the OECD/NEA Nuclear Science Committee organised a benchmark exercise for an accelerator-driven minor actinide burner to check the performances of reactor codes and nuclear data for ADS with unconventional fuel and coolant. The benchmark model was a lead-bismuth-cooled subcritical system driven by a beam of 1 GeV protons. This report provides an analysis of the results supplied by seven participants from eight countries. The analysis reveals significant differences in important neutronic parameters, indicating a need for further investigation of the nuclear data, especially minor actinide data, as well as the calculation methods. This report will be of particular interest to reactor physicists and nuclear data evaluators developing nuclear systems for nuclear waste management. (authors)

  10. Integrating mediation and moderation to advance theory development and testing.

    Science.gov (United States)

    Karazsia, Bryan T; Berlin, Kristoffer S; Armstrong, Bridget; Janicke, David M; Darling, Katherine E

    2014-03-01

    The concepts and associated analyses of mediation and moderation are important to the field of psychology. Although pediatric psychologists frequently incorporate mediation and moderation in their theories and empirical research, on few occasions have we integrated mediation and moderation. In this article, conceptual reasons for integrating mediation and moderation are offered. We illustrate a model that integrates mediation and moderation. In our illustration, the strength of an indirect or a mediating effect varied as a function of a moderating variable. Clinical implications of the integration of mediation and moderation are discussed, as is the potential of integrated models to advance research programs in pediatric psychology.

  11. Advances in the analysis of pressure interference tests

    Energy Technology Data Exchange (ETDEWEB)

    Martinez R, N. [Petroleos Mexicanos, PEMEX, Mexico City (Mexico); Samaniego V, F. [Univ. Nacional Autonoma de Mexico (Mexico)

    2010-12-15

    This paper presented an extension for radial, linear, and spherical flow conditions of the El-Khatib method for analyzing pressure interference tests through utilization of the pressure derivative. Conventional analysis of interference tests considers only radial flow, but some reservoirs have physical field conditions in which linear or spherical flow conditions prevail. The INTERFERAN system, a friendly computer code for the automatic analysis of pressure interference tests, was also discussed and demonstrated by way of 2 field cases. INTERFERAN relies on the principle of superposition in time and space to interpret a test of several wells with variable histories of production or injection or both. The first field case addressed interference tests conducted in the naturally fractured geothermal field of Klamath Falls, and the second field case was conducted in a river-formed bed in which linear flow conditions are dominant. The analysis was deemed to be reliable. 13 refs., 1 tab., 7 figs.

  12. Optical diagnostics to adjust burners. Een optische diagnostiek voor het instellen van branders

    Energy Technology Data Exchange (ETDEWEB)

    Braam, A L.H.; Hulshof, H J.M.; De Jongh, W [NV KEMA, Arnhem (Netherlands)

    1991-05-01

    The most efficient method to reduce nitrogen oxides in a natural gas flame or a coal flame is a correct adjustment of the burners. A newly developed optical method to measure the temperature distribution in the flame is discussed. KEMA (a Dutch Electrotechnical Equipment Testing Agency) developed the measuring method to control the combustion process in each burner of a natural gas- or coal-fired power plant for NOx formation for a constant energy production, and for the stability of the combustion. By means of data from the temperature distribution measurements some important parameters concerning NOx formation can be determined. Attention is paid to several active and passive spectroscopic methods to measure temperatures in flames. Passive spectroscopy is considered to be the best measuring method. Concentrations of radicals (CH, CN, NH) and temperature distribution are determined by means of a spectroheliograph and a camera, flame temperatures are measured by means of metal tracers. Experimental measurements carried out in the Flevo plant (EPON) are discussed. 8 figs.

  13. Optimization of a premixed low-swirl burner for industrial applications

    International Nuclear Information System (INIS)

    Fable, S.E.; Cheng, R.K.

    2000-01-01

    This study was motivated by recent tests results showing that a 5cm i.d. low-swirl burner (LSB) stabilizes ultra-lean premixed turbulent flames up to 600kW. A parametric study has been performed to determine the optimum ultra-lean LSB configuration, i.e. one that will achieve low NOx and flame stability, for thermal input between 15kW to 150kW. Using Laser Doppler Velocimetry (LDV), non-reacting centerline velocity and rms fluctuation profiles were measured, and were found to show self-similar behavior. This self-similarity may explain why the flame remains stationary relative to the burner exit despite a change in bulk flow velocity from 5 to 90m/s. The recess distance of the swirler affects the shape of the mean and rms velocity profiles. Lean blow-off limits were also determined for various recess distances, and an optimum exit length was found that provides stable operation for ultra-lean flames

  14. Advanced WEC Dynamics & Controls FY16 Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Ryan Geoffrey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bacelli, Giorgio [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Patterson, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A model-scale wave tank test was conducted in the interest of improving control systems design of wave energy converters (WECs). The success of most control strategies is based directly upon the availability of a reduced-order model with the ability to capture the dynamics of the system with sufficient accuracy. For this reason, the test described in this report, which is the first in a series of planned tests on WEC controls, focused on system identification (system ID) and model validation.

  15. Advances in isotopic analysis for food authenticity testing

    DEFF Research Database (Denmark)

    Laursen, Kristian Holst; Bontempo, L.; Camin, Federica

    2016-01-01

    Abstract Stable isotope analysis has been used for food authenticity testing for more than 30 years and is today being utilized on a routine basis for a wide variety of food commodities. During the past decade, major analytical method developments have been made and the fundamental understanding...... authenticity testing is currently developing even further. In this chapter, we aim to provide an overview of the latest developments in stable isotope analysis for food authenticity testing. As several review articles and book chapters have recently addressed this topic, we will primarily focus on relevant...... literature from the past 5 years. We will focus on well-established methods for food authenticity testing using stable isotopes but will also include recent methodological developments, new applications, and current and future challenges....

  16. Acoustic testing and modeling: an advanced undergraduate laboratory.

    Science.gov (United States)

    Russell, Daniel A; Ludwigsen, Daniel O

    2012-03-01

    This paper describes an advanced laboratory course in acoustics, specifically targeted for students with an interest in engineering applications at a school with a strongly integrated industrial co-op program. The laboratory course is developed around a three-pronged approach to problem solving that combines and integrates theoretical models, computational models, and experimental data. The course is structured around modules that begin with fundamental concepts and build laboratory skills and expand the knowledge base toward a final project. Students keep a detailed laboratory notebook, write research papers in teams, and must pass laboratory certification exams. This paper describes the course layout and philosophy and shares personal experience from both faculty and student perspectives. © 2012 Acoustical Society of America

  17. Experimental Evaluation of a Low Emissions High Performance Duct Burner for Variable Cycle Engines (VCE)

    Science.gov (United States)

    Lohmann, R. P.; Mador, R. J.

    1979-01-01

    An evaluation was conducted with a three stage Vorbix duct burner to determine the performance and emissions characteristics of the concept and to refine the configuration to provide acceptable durability and operational characteristics for its use in the variable cycle engine (VCE) testbed program. The tests were conducted at representative takeoff, transonic climb, and supersonic cruise inlet conditions for the VSCE-502B study engine. The test stand, the emissions sampling and analysis equipment, and the supporting flow visualization rigs are described. The performance parameters including the fuel-air ratio, the combustion efficiency/exit temperature, thrust efficiency, and gaseous emissions calculations are defined. The test procedures are reviewed and the results are discussed.

  18. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  19. Flight Test Results of the Earth Observing-1 Advanced Land Imager Advanced Land Imager

    Science.gov (United States)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Hearn, David R.; Digenis, Constantine J.

    2002-09-01

    The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range from 0.433 to 2.35 μm. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.

  20. EMERIS: an advanced information system for a materials testing reactor

    International Nuclear Information System (INIS)

    Adorjan, F.; Buerger, L.; Lux, I.; Mesko, L.; Szabo, K.; Vegh, J.; Ivanov, V.V.; Mozhaev, A.A.; Yakovlev, V.V.

    1990-06-01

    The basic features of the Materials Testing Reactor of IAE, Moscow (MR) Information System (EMERIS) are outlined. The purpose of the system is to support reactor and experimental test loop operators by a flexible, fully computerized and user-friendly tool for the aquisition, analysis, archivation and presentation of data obtained during operation of the experimental facility. High availability of EMERIS services is ensured by redundant hardware and software components, and by automatic configuration procedure. A novel software feature of the system is the automatic Disturbance Analysis package, which is aimed to discover primary causes of irregularities occurred in the technology. (author) 2 refs.; 2 figs

  1. Effects of Burner Configurations on the Natural Oscillation Characteristics of Laminar Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    K. R. V. Manikantachari

    2015-09-01

    Full Text Available In this work, effects of burner configurations on the natural oscillations of methane laminar diffusion flames under atmospheric pressure and normal gravity conditions have been studied experimentally. Three regimes of laminar diffusion flames, namely, steady, intermittent flickering and continuous flickering have been investigated. Burner configurations such as straight pipe, contoured nozzle and that having an orifice plate at the exit have been considered. All burners have the same area of cross section at the exit and same burner lip thickness. Flame height data has been extracted from direct flame video using MATLAB. Shadowgraph videos have been captured to analyze the plume width characteristics. Results show that, the oscillation characteristics of the orifice burner is significantly different from the other two burners; orifice burner produces a shorter flame and wider thermal plume width in the steady flame regime and the onset of the oscillation/flickering regimes for the orifice burner occurs at a higher fuel flow rate. In the natural flickering regime, the dominating frequency of flame flickering remains within a small range, 12.5 Hz to 15 Hz, for all the burners and for all fuel flow rates. The time-averaged flame length-scale parameters, such as the maximum and the minimum flame heights, increase with respect to the fuel flow rate, however, the difference in the maximum and the minimum flame heights remains almost constant.

  2. Characterization of combustion in a fabric singeing burner operating with varsol

    International Nuclear Information System (INIS)

    Quintana M, Juan C; Mendoza S, Cesar Camilo; Molina Alejandro

    2009-01-01

    The textile industry uses singeing burners to diminish the amount of pilling on surface fabrics. Some of these burners use Stoddard solvent which has high cost per unit of energy, high flammability and emits volatile organic compounds that pose an occupational safety hazard. This study characterized a singing burner operating with varsol performing measurements of temperature downstream the burner, air and fuel flows, and concentration of CO, CO 2 , O 2 and NO x . These measurements defined the most important characteristics of the Stoddard solvent flame that should be maintained to obtain a similar behavior in an eventual change to natural gas.

  3. [The advance of detection technology of HIV self-testing].

    Science.gov (United States)

    Yan, L; Xiao, P P; Yan, H J; Huan, X P; Fu, G F; Li, J J; Yang, H T

    2017-11-06

    At present, China's AIDS testing increased rapidly, but there are still many people living with HIV do not recognize their status, thus postponing the antiviral treatment time. HIV self-testing (HST) is an effective method to expand the testing, not only simple operation, easy to get a result, effectively protect the detection privacy, expand the selection of testers, suit to the entire population, but also the premise and basis of other AIDS comprehensive prevention measures, all over the world are promoting it. Because the HST has controversies in the window period, price and before and after controversial, and our country is in the initial stage of HST, so it is not to develop related policies, but more and more countries are in accordance with their own situations are modified or developed to allow to use rapid detection of AIDS policy to regulate the field. This paper analyzed and summarized the advantage and influence factors of HST promotion, HST believes that in the long term, the advantages outweigh the disadvantages, we need to formulate relevant policies, and improve the sensitivity of the kit, shorten the window period of time, production and promotion of operation standard of video, specification and testing the operating practices, preventing and reporting the possible social harm, investigation and understanding of the needs of the people of the crowd, to maximize the advantages of HST, find more infection, so as to curb the epidemic of AIDS.

  4. Advancements in the technologies for mechanized ultrasonic testing

    International Nuclear Information System (INIS)

    Sterke, A. de.

    1976-01-01

    Review is given of the techniques applied, with an accent on weld testing and examination of nuclear pressure vessels during fabrication and periodically. The use of multiprobe systems, the merits of data recording, the present restrictions, the requirements and the trends are examined

  5. Advanced Background Subtraction Applied to Aeroacoustic Wind Tunnel Testing

    Science.gov (United States)

    Bahr, Christopher J.; Horne, William C.

    2015-01-01

    An advanced form of background subtraction is presented and applied to aeroacoustic wind tunnel data. A variant of this method has seen use in other fields such as climatology and medical imaging. The technique, based on an eigenvalue decomposition of the background noise cross-spectral matrix, is robust against situations where isolated background auto-spectral levels are measured to be higher than levels of combined source and background signals. It also provides an alternate estimate of the cross-spectrum, which previously might have poor definition for low signal-to-noise ratio measurements. Simulated results indicate similar performance to conventional background subtraction when the subtracted spectra are weaker than the true contaminating background levels. Superior performance is observed when the subtracted spectra are stronger than the true contaminating background levels. Experimental results show limited success in recovering signal behavior for data where conventional background subtraction fails. They also demonstrate the new subtraction technique's ability to maintain a proper coherence relationship in the modified cross-spectral matrix. Beam-forming and de-convolution results indicate the method can successfully separate sources. Results also show a reduced need for the use of diagonal removal in phased array processing, at least for the limited data sets considered.

  6. Compact Heat Exchanger Design and Testing for Advanced Reactors and Advanced Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Zhang, Xiaoqin; Christensen, Richard; Anderson, Mark

    2018-03-31

    The goal of the proposed research is to demonstrate the thermal hydraulic performance of innovative surface geometries in compact heat exchangers used as intermediate heat exchangers (IHXs) and recuperators for the supercritical carbon dioxide (s-CO2) Brayton cycle. Printed-circuit heat exchangers (PCHEs) are the primary compact heat exchangers of interest. The overall objectives are: 1. To develop optimized PCHE designs for different working fluid combinations including helium to s-CO2, liquid salt to s-CO2, sodium to s-CO2, and liquid salt to helium; 2. To experimentally and numerically investigate thermal performance, thermal stress and failure mechanism of PCHEs under various transients; and 3. To study diffusion bonding techniques for elevated-temperature alloys and examine post-test material integrity of the PCHEs. The project objectives were accomplished by defining and executing five different tasks corresponding to these specific objectives. The first task involved a thorough literature review and a selection of IHX candidates with different surface geometries as well as a summary of prototypic operational conditions. The second task involved optimization of PCHE design with numerical analyses of thermal-hydraulic performances and mechanical integrity. The subsequent task dealt with the development of testing facilities and engineering design of PCHE to be tested in s-CO2 fluid conditions. The next task involved experimental investigation and validation of the thermal-hydraulic performances and thermal stress distribution of prototype PCHEs manufactured with particular surface geometries. The last task involved an investigation of diffusion bonding process and posttest destructive testing to validate mechanical design methods adopted in the design process. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed s-CO2 test loop (STL

  7. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    International Nuclear Information System (INIS)

    Powell, Jade; Heng, Ik Siong; Torres-Forné, Alejandro; Font, José A; Lynch, Ryan; Trifirò, Daniele; Cuoco, Elena; Cavaglià, Marco

    2017-01-01

    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the improvements made to increase the performance and lower the latency of the algorithms on real data. This work provides an important test for understanding the performance of these methods on real, non stationary data in preparation for the second advanced gravitational-wave detector observation run, planned for later this year. We show that all methods can classify transients in non stationary data with a high level of accuracy and show the benefits of using multiple classifiers. (paper)

  8. An introduction to the Advanced Testing Line for Actinide Separations (ATLAS)

    International Nuclear Information System (INIS)

    Pope, N.G.; Yarbro, S.L.; Schreiber, S.B.; Day, R.S.

    1992-03-01

    The Advanced Testing Line for Actinide Separations (ATLAS) will evaluate promising plutonium recovery process modifications and new technologies. It combines advances in process chemistry, process control, process analytical chemistry, and process engineering. ATLAS has a processing capability equal to other recovery systems but without the pressure to achieve predetermined recovery quotas

  9. Nondestructive Testing of Advanced Concrete Structure during Lifetime

    Directory of Open Access Journals (Sweden)

    Lubos Pazdera

    2015-01-01

    Full Text Available The paper reports on measurements and analysis of the measurements during hardening and drying of specimens using selected acoustic nondestructive testing techniques. An integrated approach was created for better understanding of the relations between the lifetime cycle and the development of the mechanical properties of concrete. Acoustic emission, impact echo, and ultrasonic techniques were applied simultaneously to the same mixtures. These techniques and results are presented on alkali-activated slag mortars. The acoustic emission method detects transient elastic waves within the material, caused by the release of cumulated stress energy, which can be mechanical, thermal, or chemical. Hence, the cause is a phenomenon which releases elastic energy into the material, which then spreads in the form of an elastic wave. The impact echo method is based on physical laws of elastic stress wave propagation in solids generated by mechanical impulse. Ultrasonic testing is commonly used to find flaws in materials or to assess wave velocity spreading.

  10. Experiential study on temperature and emission performance of micro burner during porous media combustion

    Science.gov (United States)

    Janvekar, Ayub Ahmed; Abdullah, M. Z.; Ahmad, Z. A.; Abas, A.; Ismail, A. K.; Hussien, A. A.; Kataraki, P. S.; Ishak, M. H. H.; Mazlan, M.; Zubair, A. F.

    2018-05-01

    Addition of porous materials in reaction zone give rise to significant improvements in combustion performance. In this work, a dual layered micro porous media burner was tested for stable flame and emissions. Reaction and preheat layer was made up of discrete (zirconia) and foam (porcelain) type of materials respectively. Three different thickness of reaction zone was tested, each with 10, 20 and 30mm. Interestingly, only 20mm thick layer can able to show better thermal efficiency of 72% as compared to 10 and 30mm. Best equivalence ratio came out to be 0.7 for surface and 0.6 for submerged flame conditions. Moreover, emission was continuously monitored to detect presence of NOx and CO, which were under controlled limits.

  11. A high turndown, ultra low emission low swirl burner for natural gas, on-demand water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Therkelsen, Peter L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-13

    Previous research has shown that on-demand water heaters are, on average, approximately 37% more efficient than storage water heaters. However, approximately 98% of water heaters in the U.S. use storage water heaters while the remaining 2% are on-demand. A major market barrier to deployment of on-demand water heaters is their high retail cost, which is due in part to their reliance on multi-stage burner banks that require complex electronic controls. This project aims to research and develop a cost-effective, efficient, ultra-low emission burner for next generation natural gas on-demand water heaters in residential and commercial buildings. To meet these requirements, researchers at the Lawrence Berkeley National Laboratory (LBNL) are adapting and testing the low-swirl burner (LSB) technology for commercially available on-demand water heaters. In this report, a low-swirl burner is researched, developed, and evaluated to meet targeted on-demand water heater performance metrics. Performance metrics for a new LSB design are identified by characterizing performance of current on-demand water heaters using published literature and technical specifications, and through experimental evaluations that measure fuel consumption and emissions output over a range of operating conditions. Next, target metrics and design criteria for the LSB are used to create six 3D printed prototypes for preliminary investigations. Prototype designs that proved the most promising were fabricated out of metal and tested further to evaluate the LSB’s full performance potential. After conducting a full performance evaluation on two designs, we found that one LSB design is capable of meeting or exceeding almost all the target performance metrics for on-demand water heaters. Specifically, this LSB demonstrated flame stability when operating from 4.07 kBTU/hr up to 204 kBTU/hr (50:1 turndown), compliance with SCAQMD Rule 1146.2 (14 ng/J or 20 ppm NOX @ 3% O2), and lower CO emissions than state

  12. Advanced Development of Leishmania Topical Skin Test Antigen

    Science.gov (United States)

    2012-09-28

    was discarded. The lysate was then heated in a water bath for 30 minutes at 60°C. The material was cooled to 10 °C, poured into sterile centrifuge...followed to assess the effectiveness of the cleaning and sanitization procedures. The filling, capping and assembly of final containers occurred in Class...40 and 80 µg doses per 0.1 mL. For all skin tests, 0.1 mL was injected intradermally into the volar surface of the forearm . Final LtSTA Report for

  13. JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

    2009-03-27

    The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were

  14. Pathophysiology of recent advances in current thyroid function testing

    International Nuclear Information System (INIS)

    Hesch, R.D.

    1977-01-01

    In the first chapter I have discussed thyroid function and thyroid status which is determined by thyroid gland function in secreting T4 and peripheral biotransformation of T4. The accuracy of a current in-vitro diagnostic strategy allows high reliability in clinical routine. More recent test procedures for iodothyronines and immunological phenomena need further evaluation. In another chapter the biotransformation of T4 to bioactive and regulatory iodothyronines with respect to possible clinical implications is discussed. Finally, the role of TBG for interpration of T4 and T3 concentrations is determined and more attention directed to its functional heterogeneity. (orig.) [de

  15. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  16. Advances in the use of inhalation provocation tests in clinical evaluation

    NARCIS (Netherlands)

    Hargreave, F. E.; Ramsdale, E. H.; Sterk, P. J.; Juniper, E. F.

    1985-01-01

    Recent advances in the use of inhalation provocation tests in the clinical evaluation of asthma have been made with methacholine and histamine tests. The tests can be better standardized and the results more accurately interpreted. The ease of stimulation of bronchoconstriction by methacholine and

  17. HEAPA Filter Bank In-Place Leak Test of Advanced Fuel Science Building

    Energy Technology Data Exchange (ETDEWEB)

    Ji, C. G.; Bae, S. O.; Kim, C. H

    2007-12-15

    To maintain the optimum condition of Advanced Fuel Science Building in KAERI, this report is described leak tests for HEPA Filter of HVAC in this facility. The main topics of this report are as follows for: - Procurement Specification - Visual Inspection - Airflow Capacity Test - HEPA Filter Bank In-Place Test.

  18. Acceptance Test Report for the 241-AN-107 Enraf Advanced Technology Gauges

    International Nuclear Information System (INIS)

    Dowell, J.L.; Enderlin, V.R.

    1995-06-01

    This Acceptance Test Report covers the results of the execution of the Acceptance Test Procedure for the 241-AN-107 Enraf Advanced Technology Gauges. The test verified the proper operation of the gauges to measure waste density and level in the 241-AN-107 tank

  19. Recent advances of genomic testing in perinatal medicine.

    Science.gov (United States)

    Peters, David G; Yatsenko, Svetlana A; Surti, Urvashi; Rajkovic, Aleksandar

    2015-02-01

    Rapid progress in genomic medicine in recent years has made it possible to diagnose subtle genetic abnormalities in a clinical setting on routine basis. This has allowed for detailed genotype-phenotype correlations and the identification of the genetic basis of many congenital anomalies. In addition to the availability of chromosomal microarray analysis, exome and whole-genome sequencing on pre- and postnatal samples of cell-free DNA has revolutionized the field of prenatal diagnosis. Incorporation of these technologies in perinatal pathology is bound to play a major role in coming years. In this communication, we briefly present the current experience with use of classical chromosome analysis, fluorescence in situ hybridization, and microarray testing, development of whole-genome analysis by next-generation sequencing technology, offer a detailed review of the history and current status of non-invasive prenatal testing using cell-free DNA, and discuss the advents of these new genomic technologies in perinatal medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  1. Advanced stellar compass deep space navigation, ground testing results

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2006-01-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks...... and the costs of the deep space missions. Navigation is the Achilles' heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant...... to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging....

  2. ESCRIME: testing bench for advanced operator workstations in future plants

    International Nuclear Information System (INIS)

    Poujol, A.; Papin, B.

    1994-01-01

    The problem of optimal task allocation between man and computer for the operation of nuclear power plants is of major concern for the design of future plants. As the increased level of automation induces the modification of the tasks actually devoted to the operator in the control room, it is very important to anticipate these consequences at the plant design stage. The improvement of man machine cooperation is expected to play a major role in minimizing the impact of human errors on plant safety. The CEA has launched a research program concerning the evolution of the plant operation in order to optimize the efficiency of the human/computer systems for a better safety. The objective of this program is to evaluate different modalities of man-machine share of tasks, in a representative context. It relies strongly upon the development of a specific testing facility, the ESCRIME work bench, which is presented in this paper. It consists of an EDF 1300MWe PWR plant simulator connected to an operator workstation. The plant simulator model presents at a significant level of details the instrumentation and control of the plant and the main connected circuits. The operator interface is based on the generalization of the use of interactive graphic displays, and is intended to be consistent to the tasks to be performed by the operator. The functional architecture of the workstation is modular, so that different cooperation mechanisms can be implemented within the same framework. It is based on a thorough analysis and structuration of plant control tasks, in normal as well as in accident situations. The software architecture design follows the distributed artificial intelligence approach. Cognitive agents cooperate in order to operate the process. The paper presents the basic principles and the functional architecture of the test bed and describes the steps and the present status of the program. (author)

  3. Numerical simulations of a large scale oxy-coal burner

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Taeyoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Park, Sanghyun; Ryu, Changkook [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Yang, Won [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group

    2013-07-01

    Oxy-coal combustion is one of promising carbon dioxide capture and storage (CCS) technologies that uses oxygen and recirculated CO{sub 2} as an oxidizer instead of air. Due to difference in physical properties between CO{sub 2} and N{sub 2}, the oxy-coal combustion requires development of burner and boiler based on fundamental understanding of the flame shape, temperature, radiation and heat flux. For design of a new oxy-coal combustion system, computational fluid dynamics (CFD) is an essential tool to evaluate detailed combustion characteristics and supplement experimental results. In this study, CFD analysis was performed to understand the combustion characteristics inside a tangential vane swirl type 30 MW coal burner for air-mode and oxy-mode operations. In oxy-mode operations, various compositions of primary and secondary oxidizers were assessed which depended on the recirculation ratio of flue gas. For the simulations, devolatilization of coal and char burnout by O{sub 2}, CO{sub 2} and H{sub 2}O were predicted with a Lagrangian particle tracking method considering size distribution of pulverized coal and turbulent dispersion. The radiative heat transfer was solved by employing the discrete ordinate method with the weighted sum of gray gases model (WSGGM) optimized for oxy-coal combustion. In the simulation results for oxy-model operation, the reduced swirl strength of secondary oxidizer increased the flame length due to lower specific volume of CO{sub 2} than N{sub 2}. The flame length was also sensitive to the flow rate of primary oxidizer. The oxidizer without N{sub 2} that reduces thermal NO{sub x} formation makes the NO{sub x} lower in oxy-mode than air-mode. The predicted results showed similar trends with measured temperature profiles for various oxidizer compositions. Further numerical investigations are required to improve the burner design combined with more detailed experimental results.

  4. Safety aspects of Particle Bed Reactor plutonium burner system

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1993-01-01

    An assessment is made of the safety aspects peculiar to using the Particle Bed Reactor (PBR) as the burner in a plutonium disposal system. It is found that a combination of the graphitic fuel, high power density possible with the PBR and engineered design features results in an attractive concept. The high power density potentially makes it possible to complete the plutonium burning without requiring reprocessing and remanufacturing fuel. This possibility removes two hazardous steps from a plutonium burning complex. Finally, two backup cooling systems depending on thermo-electric converters and heat pipes act as ultimate heat removal sinks in the event of accident scenarios which result in loss of fuel cooling

  5. Inherent safe fast breeder reactors and actinide burners, metallic fuel

    International Nuclear Information System (INIS)

    Dorner, S.; Schumacher, G.

    1991-04-01

    Nuclear power without breeder strategy uses the possibilities for the energy supply only to a small extend compared to the possibilities of fast breeder reactors, which offer an energy supply for thousands of years. Moreover, a fast neutron device offers the opportunity to run an actinide-burner that could improve the situation of waste management. Within this concept metallic fuel could play a key role. The present report shows some important aspects of the concept like the pyrometallic reprocessing, the behaviour of metallic fuel during a core meltdown accident and others. The report should contribute to the discussion of these problems and initialize further work

  6. Engineering models for low-NO{sub x} burners

    Energy Technology Data Exchange (ETDEWEB)

    Storm Pedersen, Lars

    1997-08-01

    The present Ph.D. thesis describes a theoretical investigation of NO formation in pulverised coal combustion and an experimental investigation of co-combustion of straw and pulverised coal. The theoretical work has resulted in a simplified mathematical model of a swirling pulverised coal flame able to predict the NO emission and the burnout of coal. In order to simplify the flow pattern of a confined swirling flame, the residence time distribution (RTD) in a swirling pulverised coal flame was determined. This was done by using the solution of a detailed fluid dynamic mathematical model for a 2.2 MW{sub th} and a 12 MW{sub th} pulverised coal flame. From the mathematical solution the RTD was simulated by tracing a number of fluid particles or inert particles. The RTD in the near burner zone was investigated by use of the mathematical model for the 2.2 MW{sub th} and 12 MW{sub th} flame. Results showed that the gas phase in the near burner zone may be approximated as a CSTR and that the mean residence time increased with particle size. In pulverised coal flames, the most important volatile nitrogen component forming NO{sub x} is HCN. To be able to model the nitrogen chemistry in coal flames it is necessary to have an adequate model for HCN oxidation. In order to develop a model for HCN/NH{sub 3}/NO conversion, a systematic reduction of a detailed chemical kinetic model was performed. Based on the simplification of the flow pattern for a swirling flame and the reduced chemistry developed, a chemical engineering model of pulverised coal flame was established. The objectives were to predict the NO emission, the CO emission, and the burnout of char. The effects of co-firing straw and pulverised coal was investigated in a 2.5 MW{sub th} pilot-scale burner and a 250 MW{sub e} utility boiler. In the 2.5 MW{sub th} trial the straw was chopped and fed separately to the burner, whereas in the full-scale experiment the straw was pre-processed as pellets and pulverised with the

  7. Advanced ion beam calorimetry for the test facility ELISE

    International Nuclear Information System (INIS)

    Nocentini, R.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Ruf, B.; Wünderlich, D.; Bonomo, F.; Pimazzoni, A.; Pasqualotto, R.

    2015-01-01

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m 2 in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m 2 , for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and

  8. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed; Mansour, Morkous S.; Memon, Nasir K.; Anjum, Dalaver H.; Chung, Suk-Ho

    2016-01-01

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide

  9. Deposition stress effects on the life of thermal barrier coatings on burner rigs

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  10. Premix fuels study applicable to duct burner conditions for a variable cycle engine

    Science.gov (United States)

    Venkataramani, K. S.

    1978-01-01

    Emission levels and performance of a premixing Jet-A/air duct burner were measured at reference conditions representative of take-off and cruise for a variable cycle engine. In a parametric variation sequence of tests, data were obtained at inlet temperatures of 400, 500 and 600K at equivalence ratios varying from 0.9 to the lean stability limit. Ignition was achieved at all the reference conditions although the CO levels were very high. Significant nonuniformity across the combustor was observed for the emissions at the take-off condition. At a reference Mach number of 0.117 and an inlet temperature of 600K, corresponding to a simulated cruise condition, the NOx emission level was approximately 1 gm/kg-fuel.

  11. Studi Eksperimen Distribusi Temperatur Nyala Api Kompor Bioetanol Tipe Side Burner dengan Variasi Diameter Firewall

    Directory of Open Access Journals (Sweden)

    R.R. Vienna Sona Saputri Soetadi

    2012-09-01

    Full Text Available Untuk mendapatkan kompor bioetanol efisiensi thermal maksimal diperlukan penelitian komprehensif. Salah satunya adalah penelitian terhadap posisi peletakkan beban pada kompor bioetanol kompak. Pengujian dilakukan pada kompor uji bioetanol dengan kadar 99%, yaitu kompor bioetanol tipe side burner dengan firewall 2.5 inci dan firewall 3 inci. Pengukuran temperatur api dengan 13 thermocouple K dengan pengukuran searah api keatas setiap 5 mm-an. Kemudian, water boiling test dilakukan untuk mendapatkan daya dan beban dan dilanjutkan mengukur waktu pendidihan air. Hasil penelitian ini menunjukkan gambaran total distribusi temperatur nyala api difusi. Hasil menunjukkan untuk kompor 2.5 inci dengan daya 1.6 kW mempunyai temperatur 542 ºC dengan jarak ketinggian 5 mm dari rim kompor sedangkan kompor 3 inci menghasilkan daya 2.38 kW dengan temperatur 516 ºC.

  12. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  13. Numerical investigation of a novel burner to combust anode exhaust gases of SOFC stacks

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-09-01

    Full Text Available The aim of the present study was a numerical investigation of the efficiency of the combustion process of a novel concept burner under different operating conditions. The design of the burner was a part of the development process of a complete SOFC based system and a challenging combination of technical requirements to be fulfilled. A Computational Fluid Dynamics model of a non-premixed burner was used to simulate combustion of exhaust gases from the anode region of Solid Oxide Fuel Cell stacks. The species concentrations of the exhaust gases were compared with experimental data and a satisfactory agreement of the conversion of hydrocarbons was obtained. This validates the numerical methodology and also proves applicability of the developed approach that quantitatively characterized the interaction between the exhaust gases and burner geometry for proper combustion modelling. Thus, the proposed CFD approach can be safely used for further numerical optimisation of the burner design.

  14. Effect of energetic electrons on combustion of premixed burner flame

    Science.gov (United States)

    Sasaki, Koichi

    2011-10-01

    In many studies of plasma-assisted combustion, authors superpose discharges onto flames to control combustion reactions. This work is motivated by more fundamental point of view. The standpoint of this work is that flames themselves are already plasmas. We irradiated microwave power onto premixed burner flame with the intention of heating electrons in it. The microwave power was limited below the threshold for a discharge. We obtained the enhancement of burning velocity by the irradiation of the microwave power, which was understood by the shortening of the flame length. At the same time, we observed the increases in the optical emission intensities of OH and CH radicals. Despite the increases in the optical emission intensities, the optical emission spectra of OH and CH were not affected by the microwave irradiation, indicating that the enhancement of the burning velocity was not attributed to the increase in the gas temperature. On the other hand, we observed significant increase in the optical emission intensity of the second positive system of molecular nitrogen, which is a clear evidence for electron heating in the premixed burner flame. Therefore, it is considered that the enhancement of the burning velocity is obtained by nonequilibrium combustion chemistry which is driven by energetic electrons. By irradiating pulsed microwave power, we examined the time constants for the increases and decreases in the optical emission intensities of N2, OH, CH, and continuum radiation.

  15. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    Science.gov (United States)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  16. Design and construction of a regenerative radiant tube burner

    International Nuclear Information System (INIS)

    Henao, Diego Alberto; Cano C, Carlos Andres; Amell Arrieta, Andres A.

    2002-01-01

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  17. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Science.gov (United States)

    2010-07-01

    ... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat...

  18. Pollutant Concentrations and Emission Rates from Scripted Natural Gas Cooking Burner Use in Nine Northern California Homes

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Delp, William W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lorenzetti, David M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maddalena, Randy L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    METHODS: Combustion pollutant concentrations were measured during the scripted operation of natural gas cooking burners in nine homes. In addition to a base condition of closed windows, no forced air unit (FAU) use, and no mechanical exhaust, additional experiments were conducted while operating an FAU and/or vented range hood. Test homes included a 26m2 two-room apartment, a 134m2 first floor flat, and seven detached homes of 117–226m2. There were four single-story, four two-story and one 1.5 story homes. Cooktop use entailed boiling and simmering activities, using water as a heat sink. Oven and broiler use also were simulated. Time-resolved concentrations of carbon dioxide (CO2), nitric oxide (NO), nitrogen oxides (NOX), nitrogen dioxide (NO2), particles with diameters of 6 nm or larger (PN), carbon monoxide (CO), and fine particulate matter (PM2.5) were measured in the kitchen (K) and bedroom area (BR) of each home. CO2, NO, NO2, and PN data from sequential experiments were analyzed to quantify the contribution of burner use to the highest 1h and 4h time-integrated concentrations in each room. RESULTS: Four of the nine homes had kitchen 1h NO2 exceed the national ambient air quality standard (100 ppb). Two other homes had 1h NO2 exceed 50 ppb in the kitchen, and three had 1h NO2 above 50 ppb in the bedroom, suggesting substantial exposures to anyone at home when burners are used for a single substantial event. In all homes, the highest 1h kitchen PN exceeded 2 x105 cm-3-h, and the highest 4h PN exceeded 3 x105 cm-3-hr in all homes. The lowest 1h kitchen/bedroom ratios were 1.3–2.1 for NO in the apartment and two open floor plan homes. The largest K/BR ratios of 1h NO2 were in a two-story 1990s home retrofitted for deep energy savings: ratios in this home were 3.3 to 6.6. Kitchen 1h ratios of NO, NO2 and PN to CO2 were used to calculate fuel normalized emission factors (ng J-1). Range hood use substantially reduced cooking burner pollutant concentrations both

  19. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    International Nuclear Information System (INIS)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D.

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs

  20. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D. [and others

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs.

  1. Advanced topics on rotor blade full-scale structural fatigue testing and requirements

    DEFF Research Database (Denmark)

    Berring, Peter; Fedorov, Vladimir; Belloni, Federico

    further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. Those methods are presented in [1]. This report deals with more advanced topics...

  2. Out-pile test of non-instrumented capsule for the advanced PWR fuel pellets in HANARO irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Oh, D. S.; Bang, J. K.; Kim, Y. M.; Yang, Y. S.; Jeong, Y. H.; Jeon, H. K.; Ryu, J. S. [KAERI, Taejon (Korea, Republic of)

    2002-05-01

    Non-instrumental capsule were designed and fabricated to irradiate the advanced pellet developed for the high burn-up LWR fuel in the HANARO in-pile capsule. This capsule was out-pie tested at Cold Test Loop-I in KAERI. From the pressure drop test results, it is noted that the flow velocity across the non-instrumented capsule of advanced PWR fuel pellet corresponding to the pressure drop of 200 kPa is measured to be about 7.45 kg/sec. Vibration frequency for the capsule ranges from 13.0 to 32.3 Hz. RMS displacement for non-instrumented capsule of advanced PWR fuel pellet is less than 11.6 {mu}m, and the maximum displacement is less that 30.5 {mu}m. The flow rate for endurance test were 8.19 kg/s, which was 110% of 7.45 kg/s. And the endurance test was carried out for 100 days and 17 hours. The test results found not to the wear satisfied to the limits of pressure drop, flow rate, vibration and wear in the non-instrumented capsule.

  3. Comparison of parametric instabilities for different test mass materials in advanced gravitational wave interferometers

    International Nuclear Information System (INIS)

    Ju, L.; Zhao, C.; Gras, S.; Degallaix, J.; Blair, D.G.; Munch, J.; Reitze, D.H.

    2006-01-01

    Following the recognition that parametric instabilities can significantly compromise the performance of advanced laser interferometer gravitational wave detectors, we compare the performance of three different test mass configurations: all fused silica test masses, all sapphire test masses and fused silica inboard test masses with sapphire end test masses. We show that the configuration with sapphire end test masses offers the opportunity for thermal tuning on a time scale comparable to the ring up time of oscillatory instabilities. This approach may enable significant reduction of parametric gain

  4. Current status of the active test at RRP and development programs for the advanced melter

    International Nuclear Information System (INIS)

    Kanehira, Norio

    2016-01-01

    The vitrification facility in Rokkasho Reprocessing Plant started the active tests to solidify HAW into the glass in 2007 which was the examination of the final stage before the operation, but the active test had to be discontinued due to the trouble of glass melter operation with down of pouring by deposit of noble metals on the melter bottom. After the equipment and operating conditions were improved in response to the result of the mock-up tests, a series of active tests were restarted active tests in May, 2012. These tests were finished with enough confirmation of stability in the state such as glass temperature and controlling the noble metals. JNFL has been developed the advanced melter, Joule heated ceramic melter, and the design of the advanced melter is largely different from the existing one. For the confirmation of the advanced melter performances, the full-scale inactive tests had been performed and successfully finished. This paper describes outline of development for advanced melter in Rokkasho Reprocessing Plant. (author)

  5. Vacuum-to-air interface for the advanced test accelerator beam director

    International Nuclear Information System (INIS)

    Cruz, G.E.; Edwards, W.F.; Kavanagh, D.P.; Addis, R.B.; Weiss, W.C.; Livenspargar, C.M.

    1986-01-01

    A vacuum-to-air transition was created to facilitate the Lawrence Livermore National Laboratory's Advanced Test Accelerator (ATA) electron beam 1-Hz pulse rate. It is necessary that a pulsed particle beam go from a region at 10 -6 torr through a 1-cm-diam maximum aperture into a region at 760 torr. This must be accomplished without the use of windows or solid barriers. Two tests will be conducted on the vacuum-to-air interface. The first determines pressure profiles through 1.0-mm- and 10.0-mm-diam orifices. The second test employs an expendable foil and foil advancement mechanism. In this paper, the experimental results of the orifice test are presented and the analytical results are compared with the empirical results. The foil advancement test will be documented after the test is completed. The mechanism serves both as an orifice and as a fast-acting vacuum valve. In operation, the electron beam penetrates the thin foil, thereby creating an aperture of minimum geometry. During the balance of the pulse cycle, after the beam duration, the foil is advanced to seal the opening and recover the almost negligible loss in vacuum

  6. Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Ott, Larry J.; Ellis, Ronald James; McDuffee, Joel Lee; Spellman, Donald J.; Bevard, Bruce Balkcom

    2009-01-01

    The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

  7. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  8. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    Science.gov (United States)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  9. A small porous-plug burner for studies of combustion chemistry and soot formation

    Science.gov (United States)

    Campbell, M. F.; Schrader, P. E.; Catalano, A. L.; Johansson, K. O.; Bohlin, G. A.; Richards-Henderson, N. K.; Kliewer, C. J.; Michelsen, H. A.

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  10. Advanced testing and validation centre gets electric vehicle technology to market faster

    Energy Technology Data Exchange (ETDEWEB)

    Astil, T.; Girard, F. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2010-07-01

    The National Research Council (NRC) Institute for Fuel Cell Innovation is advancing Canada's clean energy advantage through NRC's technology cluster initiatives, which help Canadian small and medium enterprises achieve commercialization breakthroughs in key sectors. This presentation discussed the technology evaluation program (TEP) offered by the NRC Institute for Fuel Cell Innovation. The presentation discussed the TEPs mission, advanced testing and validation centre (ATVC), previous ATVC clients, environmental chamber, dynamometer, vibration table, electrochemical battery testing, and electrochemical testing laboratory. The ATVC is a specialized and safe environment for objective, reliable and accurate standardized testing applications of electric vehicle technologies. It offers independent test services to external organizations, making it easier to prove that electric vehicle technologies will perform under specific operating conditions. figs.

  11. Exposure calculation code module for reactor core analysis: BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.

  12. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...

  13. Exposure calculation code module for reactor core analysis: BURNER

    International Nuclear Information System (INIS)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules

  14. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles...... and to determine the relative importance of different modeling choices for straw combustion. Investigated modeling choices encompass the particle size and shape distribution, the modification of particle motion and heating due to the departure from the spherical ideal, the devolatilization rate of straw......, the influence of inlet boundary conditions and the effect of particles on the carrier phase turbulence. It is concluded that straw combustion is associated with a significantly longer flame and smaller recirculation zones compared to coal combustion for the present air flow specifications. The particle size...

  15. Dynamic Impact Testing and Model Development in Support of NASA's Advanced Composites Program

    Science.gov (United States)

    Melis, Matthew E.; Pereira, J. Michael; Goldberg, Robert; Rassaian, Mostafa

    2018-01-01

    The purpose of this paper is to provide an executive overview of the HEDI effort for NASA's Advanced Composites Program and establish the foundation for the remaining papers to follow in the 2018 SciTech special session NASA ACC High Energy Dynamic Impact. The paper summarizes the work done for the Advanced Composites Program to advance our understanding of the behavior of composite materials during high energy impact events and to advance the ability of analytical tools to provide predictive simulations. The experimental program carried out at GRC is summarized and a status on the current development state for MAT213 will be provided. Future work will be discussed as the HEDI effort transitions from fundamental analysis and testing to investigating sub-component structural concept response to impact events.

  16. Premixed burner experiments: Geometry, mixing, and flame structure issues

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Lewis, M.J.; Gupta, M. [Univ of Maryland, College Park, MD (United States)] [and others

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  17. Experimental verification of altitude effect over thermal power in an atmospheric burner

    International Nuclear Information System (INIS)

    Amell Arrieta, Andres; Agudelo, John Ramiro; Cortes, Jaime

    1992-01-01

    Colombian national massive gasification plan is carried out in a variety of geographic altitudes ranging from 0 to 2.600 meter. The biggest market is located in the Andinan Region, which is characterized by great urban centres located at high altitudes. Commercial, domestic and industrial applications are characterized by the utilization of appliances using atmospheric burners. The thermal power of these burners is affected by altitude. This paper shows experimental results of thermal power reduction in atmospheric burners due to altitude changes. It was found that thermal power is reduced by 1,5% each 304 meters of altitude

  18. Industrial applications of Tenova FlexyTech flame-less low NOx burners

    International Nuclear Information System (INIS)

    Fantuzzi, M.; Ballarino, L.

    2008-01-01

    Environmental emissions constraints have led manufacturers to improve their low NO x recuperative burners. The development by Tenova of the FlexyTech Flame-less burners with low NO x emissions, even below the present 'Best Available Technology' limit of 40 ppm at 3% O 2 with furnace temperature 1250 C, air preheat 450 C, is described. The results achieved during the R and D programme have been also improved in the industrial installations. Some details and performances of the recent furnaces equipped with such burners are provided. (authors)

  19. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  20. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  1. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    Science.gov (United States)

    Dugala, Gina M.

    2010-01-01

    The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.

  2. ACT Test Performance by Advanced Placement Students in Memphis City Schools

    Science.gov (United States)

    Mo, Lun; Yang, Fang; Hu, Xiangen; Calaway, Florance; Nickey, John

    2011-01-01

    The authors investigated the extent to which taking specific types of Advanced Placement (AP) courses and the number of courses taken predicts the likelihood of passing subject benchmarks and earning a score of 19 on the composite score on the ACT test, and examined the role gender plays in the projection. They found evidence that taking an AP…

  3. Advancing the Science of Developmental Neurotoxicity (DNT) Testing for Better Safety Evaluation

    DEFF Research Database (Denmark)

    Bal-Price, Anna; Coecke, Sandra; Costa, Lucio

    2012-01-01

    Bal-Price AK, Coecke S, Costa L, Crofton KM, Fritsche E, Goldberg A, Grandjean P, Lein PJ, Li A, Lucchini R, Mundy WR, Padilla S, Persico A, Seiler AEM, Kreysa J. Conference Report: Advancing the Science of Developmental Neurotoxicity (DNT) Testing for Better Safety Evaluation. Altex 2012: 29: 202-15....

  4. Hardware design for the production of NTD silicon in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Schell, M.J.

    1984-01-01

    The Advanced Test Reactor (ATR) is a 250-MW(t) materials testing and nuclear research facility operated for EG and G Idaho, Inc. The unique capabilities of the ATR can be readily adapted via hardware to produce large quantitities of large-diameter (20 cm plus) doped silicon crystals. Conservative estimates place the production capability in excess of 15 metric tons per year. The proposed hardware is based upon a closed-loop, hydraulic-shuttle tube system

  5. Experimental investigation and optimisation of burner systems for glass melting ends with regenerative air preheating. Final report; Experimentelle Untersuchung und Optimierung von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Scherello, A.; Flamme, M.; Kremer, H.

    2000-02-15

    The project comprised experiments on burner systems for glass melting ends with regenerative air preheating for the purpose of optimisation. The experimental set-up was to reflect realistic conditions. In the first stage of the investigations, modern burner systems were installed in a GWI test facility and investigated. [German] Ziel des oben genannten Forschungsvorhabens war die Durchfuehrung experimenteller Untersuchungen von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung sowie deren Optimierung. Dazu war es notwendig, einen experimentellen Aufbau zu realisieren, mit dessen Hilfe die Stroemungs-, Mischungs- und Umsetzungsphaenomene von Glasschmelzoefen realistisch nachgestellt und aussagekraeftige Untersuchungen durchgefuehrt werden koennen. In einem ersten Untersuchungsschritt wurden moderne Brennerlanzen an der GWI-Versuchsanlage installiert und untersucht. (orig.)

  6. Relevance of passive safety testing at the fast flux test facility to advanced liquid metal reactors - 5127

    International Nuclear Information System (INIS)

    Wootan, D.W.; Omberg, R.P.

    2015-01-01

    Significant cost and safety improvements can be realized in advanced liquid metal reactor (LMR) designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. Testing at the Rapsodie and EBR-II reactors had demonstrated the beneficial effect of reactivity feedback caused by changes in fuel temperature and core geometry mechanisms in a liquid metal fast reactor in a holistic sense. The FFTF passive safety testing program was developed to examine how specific design elements influenced dynamic reactivity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results from smaller cores like Rapsodie and EBR-II to reactor cores that were more prototypic in scale to reactors of current interest. The U.S. Department of Energy, Office of Nuclear Energy Advanced Reactor Technology program is in the process of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs. (authors)

  7. Oregon state university's advanced plant experiment (APEX) AP1000 integral facility test program

    International Nuclear Information System (INIS)

    Reyes, J.N.; Groome, J.T.; Woods, B.G.; Young, E.; Abel, K.; Wu, Q.

    2005-01-01

    Oregon State University (OSU) has recently completed a three year study of the thermal hydraulic behavior of the Westinghouse AP1000 passive safety systems. Eleven Design Basis Accident (DBA) scenarios, sponsored by the U.S. Department of Energy (DOE) with technical support from Westinghouse Electric, were simulated in OSU's Advanced Plant Experiment (APEX)-1000. The OSU test program was conducted within the purview of the requirements of 10CFR50 Appendix B, NQA-1 and 10 CFR 21 and the test data was used to provide benchmarks for computer codes used in the final design approval of the AP1000. In addition to the DOE certification testing, OSU conducted eleven confirmatory tests for the U.S. Nuclear Regulatory Commission. This paper presents the test program objectives, a description of the APEX-1000 test facility and an overview of the test matrix that was conducted in support of plant certification. (authors)

  8. Verification test of advanced LWR fuel components of Westinghouse type nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho

    2004-08-01

    The purpose of this project is to independently conduct the performance test of the spacer grids and the cladding material of the 16x16 and 17x17 advanced fuels for Westinghouse type plants, and to improve the relevant test technology. Major works and results of the present research are as follows. 1. The design and structural features of the spacer grids were investigated, especially the finally determined I-spring was thoroughly analyzed in the point of the mechanical damage and characteristic. 2. As for the mechanical tests of the space grids, the characterization, the impact and the fretting wear tests were carried out. The block as well as the in-grid tests were conducted for the spring/dimple characterization, from which a simple method was developed that simulated the boundary conditions of the assembled grid straps. The impact tester was modified and improved to accommodate a full size grid assembly. The impact result showed that the grid assembly fulfilled the design criteria. As for the fretting wear tests, a sliding test under the room temperature air/water, a sliding/impact test under the room temperature air and a sliding/impact tests under the high temperature and pressure environments were carried out. To this end, a high temperature and pressure fretting wear tester was newly developed. The wear characteristic and the resistibility of the advanced grid spring/dimple were analyzed in detail. The test results were verified through comparing those with the test results by the Westinghouse company. 3. The properties and performance of the newly adopted material for the cladding, Low Sn Zirlo was investigated by a room and high temperature tensile tests and a corrosion tests under the environments of 360 .deg. C water, 400 steam and 360 .deg. C 70ppm LiOH. Through the present project, all the test equipment and technologies for the fuel components were procured, which will be used for future domestic development of a new fuel

  9. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.; Mannaa, O.; Chung, Suk-Ho

    2015-01-01

    and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff

  10. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro; Isobe, Yusuke; Hayashi, Naoki; Yamashita, Hiroshi; Chung, Suk-Ho

    2015-01-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study

  11. Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under AC electric fields

    KAUST Repository

    Tran, Vu Manh; Cha, Min

    2016-01-01

    alternating current electric fields to a gap between the upper and lower parts of a counterflow, annular slot burner and present the characteristics of the propagating nonpremixed edge-flames produced. Contrary to many other previous studies, flame

  12. Burning low volatile fuel in tangentially fired furnaces with fuel rich/lean burners

    International Nuclear Information System (INIS)

    Wei Xiaolin; Xu Tongmo; Hui Shien

    2004-01-01

    Pulverized coal combustion in tangentially fired furnaces with fuel rich/lean burners was investigated for three low volatile coals. The burners were operated under the conditions with varied value N d , which means the ratio of coal concentration of the fuel rich stream to that of the fuel lean stream. The wall temperature distributions in various positions were measured and analyzed. The carbon content in the char and NO x emission were detected under various conditions. The new burners with fuel rich/lean streams were utilized in a thermal power station to burn low volatile coal. The results show that the N d value has significant influences on the distributions of temperature and char burnout. There exists an optimal N d value under which the carbon content in the char and the NO x emission is relatively low. The coal ignition and NO x emission in the utilized power station are improved after retrofitting the burners

  13. Super long-term creep tests of advanced HP and IP rotor steels

    Energy Technology Data Exchange (ETDEWEB)

    Tchizhik, A.A. [The Polzunov Central Boiler and Turbine Institute, Department the Fatigue Life of Materials for Power Plans Equipment, St. Petersburg (Russian Federation)

    1998-12-31

    A creep model has been developed for predicting the long-term creep behavior, in excess of 200,000 h for advanced materials.The new creep theory is based on a continuum microdamage model and is used to calculate the fields of stress and strain and wedge and cavities damage in critical components of steam and gas turbines. The application of this new model increases the reliability and service life of modern turbines. The accuracy of the model to predict long - term creep behavior, creep ductility was verified using the data bank of super long-term creep tests of advanced materials. (orig.) 12 refs.

  14. Super long-term creep tests of advanced HP and IP rotor steels

    Energy Technology Data Exchange (ETDEWEB)

    Tchizhik, A A [The Polzunov Central Boiler and Turbine Institute, Department the Fatigue Life of Materials for Power Plans Equipment, St. Petersburg (Russian Federation)

    1999-12-31

    A creep model has been developed for predicting the long-term creep behavior, in excess of 200,000 h for advanced materials.The new creep theory is based on a continuum microdamage model and is used to calculate the fields of stress and strain and wedge and cavities damage in critical components of steam and gas turbines. The application of this new model increases the reliability and service life of modern turbines. The accuracy of the model to predict long - term creep behavior, creep ductility was verified using the data bank of super long-term creep tests of advanced materials. (orig.) 12 refs.

  15. Impact of beta-blockers on cardiopulmonary exercise testing in patients with advanced liver disease.

    Science.gov (United States)

    Wallen, M P; Hall, A; Dias, K A; Ramos, J S; Keating, S E; Woodward, A J; Skinner, T L; Macdonald, G A; Arena, R; Coombes, J S

    2017-10-01

    Patients with advanced liver disease may develop portal hypertension that can result in variceal haemorrhage. Beta-blockers reduce portal pressure and minimise haemorrhage risk. These medications may attenuate measures of cardiopulmonary performance, such as the ventilatory threshold and peak oxygen uptake measured via cardiopulmonary exercise testing. To determine the effect of beta-blockers on cardiopulmonary exercise testing variables in patients with advanced liver disease. This was a cross-sectional analysis of 72 participants who completed a cardiopulmonary exercise test before liver transplantation. All participants remained on their usual beta-blocker dose and timing prior to the test. Variables measured during cardiopulmonary exercise testing included the ventilatory threshold, peak oxygen uptake, heart rate, oxygen pulse, the oxygen uptake efficiency slope and the ventilatory equivalents for carbon dioxide slope. Participants taking beta-blockers (n = 28) had a lower ventilatory threshold (P advanced liver disease taking beta-blockers compared to those not taking the medication. This may incorrectly risk stratify patients on beta-blockers and has implications for patient management before and after liver transplantation. The oxygen uptake efficiency slope was not influenced by beta-blockers and may therefore be a better measure of cardiopulmonary performance in this patient population. © 2017 John Wiley & Sons Ltd.

  16. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...... approach is based on a generalisation of hysteresis control. The strategies are verified on a simulation model of the compact marine boiler for control of low/high burner load switches.  ...

  17. Mathematical model of stacked one-sided arrangement of the burners

    Directory of Open Access Journals (Sweden)

    Oraz J.A.

    2017-01-01

    Full Text Available Paper is aimed at computer simulation of the turbulent methane-air combustion in upgraded U-shaped boiler unit. To reduce the temperature in the flame and hence NOx release every burner output was reduced, but the number of the burners was increased. The subject of studying: complex of characteristics with space-time fields in the upgraded steam boiler E-370 with natural circulation. The flare structure, temperature and concentrations were determined computationally.

  18. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation

    OpenAIRE

    Valera Medina, Agustin; Marsh, Richard; Runyon, Jon; Pugh, Daniel; Beasley, Paul; Hughes, Timothy Richard; Bowen, Philip John

    2017-01-01

    Ammonia has been proposed as a potential energy storage medium in the transition towards a low-carbon economy. This paper details experimental results and numerical calculations obtained to progress towards optimisation of fuel injection and fluidic stabilisation in swirl burners with ammonia as the primary fuel. A generic tangential swirl burner has been employed to determine flame stability and emissions produced at different equivalence ratios using ammonia–methane blends. Experiments were...

  19. Duct burners in heat recovery system for cogeneration and captive power plants

    International Nuclear Information System (INIS)

    Majumdar, J.

    1992-01-01

    Our oil explorations both onshore and offshore have thrown open bright prospects of cogeneration by using natural gas in gas turbine power plants with heat recovery units. Both for co-gen and combined cycle systems, supplementary firing of GT exhaust gas is normally required. Hence, duct burners have significant role for effective contribution towards of efficacy of heat recovery system for gas turbine exhaust gas. This article details on various aspects of duct burners in heat recovery systems. (author)

  20. Experimental investigations and numerical simulations of methane cup-burner flame

    Directory of Open Access Journals (Sweden)

    Kubát P.

    2013-04-01

    Full Text Available Pulsation frequency of the cup-burner flame was determined by means of experimental investigations and numerical simulations. Simplified chemical kinetics was successfully implemented into a laminar fluid flow model applied to the complex burner geometry. Our methodical approach is based on the monitoring of flame emission, fast Fourier transformation and reproduction of measured spectral features by numerical simulations. Qualitative agreement between experimental and predicted oscillatory behaviour was obtained by employing a two-step methane oxidation scheme.

  1. Characterization of a Rijke Burner as a Tool for Studying Distribute Aluminum Combustion

    OpenAIRE

    Newbold, Brian R.

    1996-01-01

    As prelude to the quantitative study of aluminum distributed combustion, the current work has characterized the acoustic growth, frequency, and temperature of a Rijke burner as a function of mass flow rate, gas composition, and geometry. By varying the exhaust temperature profile, the acoustic growth rate can be as much as tripled from the baseline value of approximately 120 s-1• At baseline, the burner operated in the third harmonic mode at a frequency of 1300 Hz, but geometry or temperature...

  2. Experimentation and mathematical simulation of the operation of a 300-kW boiler, equipped with a progressive regulation or on/off burner

    Energy Technology Data Exchange (ETDEWEB)

    Anglesio, P [Politecnico di Torino, Italy; Perthuis, E

    1980-04-01

    The results of an experimental study undertaken during tests run with domestic fuel oil and natural gas, are described. Losses via wall surfaces and exhaust gases are determined, and according to variations in output with the effective power of the boiler and the advantage of progressive regulation mode operation, from the energy point of view, are demonstrated. The mathematical model developed is presented. Simulation is obtained by considering thermal transfers in the hearth, and then the exchanger of the boiler. For continuous operation, two programs are presented. The first is used for adjustment to experimental results. A third program simulates discontinuous operation. Theoretical results slightly overestimate actual output, but confirm the advantage of progressive regulation. The economic study shows that the excess cost of a progressive modulation type burner tends to direct choice towards a compromise, in the form of a dual-rate (high/low) type burner.

  3. The use of safeguards data for process monitoring in the Advanced Test Line for Actinide Separations

    International Nuclear Information System (INIS)

    Barnes, J.W.; Yarbro, S.L.

    1987-01-01

    Los Alamos is constructing an integrated process monitoring/materials control and accounting (PM/MC and A) system in the Advanced Testing Line for Actinide Separations (ATLAS) at the Los Alamos Plutonium Facility. The ATLAS will test and demonstrate new methods for aqueous processing of plutonium. The ATLAS will also develop, test, and demonstrate the concepts for integrated process monitoring/materials control and accounting. We describe how this integrated PM/MC and A system will function and provide benefits to both process research and materials accounting personnel

  4. Instruments for non-destructive evaluation of advanced test reactor inpile tubes

    International Nuclear Information System (INIS)

    Livingston, R.A.; Beller, L.S.; Edgett, S.M.

    1986-01-01

    The Advanced Test Reactor is a 250 MW LWR used primarily for irradiation testing of materials contained in inpile tubes that pass through the reactor core. These tubes provided the high pressure and temperature water environment required for the test specimens. The reactor cooling water surrounding the inpile tubes is at much lower pressure and temperature. The structural integrity of the inpile tubes is monitored by routine surveillance to ensure against unplanned reactor shutdowns to replace defective inpile tubes. The improved instruments developed for inpile tube surveillance include a bore profilometer, ultrasonic flaw detetion system and bore diameter gauges. The design and function of these improved instruments is presented

  5. Advances in prenatal screening for Down syndrome: II first trimester testing, integrated testing, and future directions.

    Science.gov (United States)

    Benn, Peter A

    2002-10-01

    The acceptability of prenatal screening and diagnosis of Down syndrome is dependent, in part, on the gestational age at which the testing is offered. First trimester screening could be advantageous if it has sufficient efficacy and can be effectively delivered. Two first trimester maternal serum screening markers, pregnancy-associated plasma protein-A (PAPP-A) and free beta-human chorionic gonadotropin (beta-hCG), are useful for identifying women at increased risk for fetal Down syndrome. In addition, measurement of an enlarged thickness of the subcutaneous fluid-filled space at the back of the neck of the developing fetus (referred to as nuchal translucency or NT) has been demonstrated to be an indicator for these high-risk pregnancies. When these three parameters are combined, estimates for Down syndrome efficacy exceed those currently attainable in the second trimester. Women who are screen-positive in the first trimester can elect to receive cytogenetic testing of a chorionic villus biopsy. The first trimester tests could also, theoretically, be combined with the second trimester maternal serum screening tests (integrated screening) to obtain even higher levels of efficacy. There are, however, several practical limitations to first trimester and integrated screening. These include scheduling of testing within relatively narrow gestational age intervals, availability of appropriately trained ultrasonographers for NT measurement, risks associated with chorionic villus biopsy, and costs. There is also increasing evidence that an enlarged NT measurement is indicative of a high risk for spontaneous abortion and for fetal abnormalities that are not detectable by cytogenetic analysis. Women whose fetuses show enlarged NT, therefore, need first trimester counseling regarding their Down syndrome risks and the possibility of other adverse pregnancy outcomes. Follow-up ultrasound and fetal echocardiography in the second trimester are also indicated. First trimester

  6. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  7. Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Jørgensen, Søren; Blaabjerg, Frede

    2016-01-01

    This paper presents an apparatus and methodology for an advanced accelerated power cycling test of insulated-gate bipolar transistor (IGBT) modules. In this test, the accelerated power cycling test can be performed under more realistic electrical operating conditions with online wear-out monitoring...... of tested power IGBT module. The various realistic electrical operating conditions close to real three-phase converter applications can be achieved by the simple control method. Further, by the proposed concept of applying the temperature stress, it is possible to apply various magnitudes of temperature...... swing in a short cycle period and to change the temperature cycle period easily. Thanks to a short temperature cycle period, test results can be obtained in a reasonable test time. A detailed explanation of apparatus such as configuration and control methods for the different functions of accelerated...

  8. Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)

    Science.gov (United States)

    Patel, Deepak

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.

  9. Design evaluation of the 20-cm (8-inch) secondary burner system

    International Nuclear Information System (INIS)

    Rode, J.S.

    1977-08-01

    This report describes an evaluation of the design of the existing 20-cm (8-inch) engineering-scale secondary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) secondary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype secondary burner system. One concept utilizes the existing burner heating and cooling subsystems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes internal gas cooling of the burner, retains the existing heating subsystem for design compatibility, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated

  10. Design evaluation of the 40-cm (16-inch) primary burner system

    International Nuclear Information System (INIS)

    Rode, J.S.

    1977-06-01

    An evaluation is given of the design of the existing 40-cm (16-in.) engineering-scale primary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) primary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype primary burner system. One concept utilizes the existing burner heating and cooling sub-systems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes direct contact hot gas heating and internal gas cooling of the burner, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated

  11. Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner

    Energy Technology Data Exchange (ETDEWEB)

    Catapan, R.C.; Costa, M. [Mechanical Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Oliveira, A.A.M. [Mechanical Engineering Department, Federal University of Santa Catarina, Campus Universitario Professor Joao David Ferreira Lima, 88040-900 Florianopolis, SC (Brazil)

    2011-01-15

    Industrial processes where the heating of large surfaces is required lead to the possibility of using large surface porous radiant burners. This causes additional temperature uniformity problems, since it is increasingly difficult to evenly distribute the reactant mixture over a large burner surface while retaining its stability and keeping low pollutant emissions. In order to allow for larger surface area burners, a non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner using a single large injection hole is proposed and analyzed for a double-layered burner operating in open and closed hot (laboratory-scale furnace, with temperature-controlled, isothermal walls) environments. In both environments, local mean temperatures within the porous medium have been measured. For lower reactant flow rate and ambient temperature the flame shape is conical and anchored at the rim of the injection hole. As the volumetric flow rate or furnace temperature is raised, the flame undergoes a transition to a plane flame stabilized near the external burner surface. However, the stability range envelope remains the same in both regimes. (author)

  12. Testing advances in molecular discrimination among Chinook salmon life histories: evidence from a blind test.

    Science.gov (United States)

    Banks, Michael A; Jacobson, David P; Meusnier, Isabelle; Greig, Carolyn A; Rashbrook, Vanessa K; Ardren, William R; Smith, Christian T; Bernier-Latmani, Jeremiah; Van Sickle, John; O'Malley, Kathleen G

    2014-06-01

    The application of DNA-based markers toward the task of discriminating among alternate salmon runs has evolved in accordance with ongoing genomic developments and increasingly has enabled resolution of which genetic markers associate with important life-history differences. Accurate and efficient identification of the most likely origin for salmon encountered during ocean fisheries, or at salvage from fresh water diversion and monitoring facilities, has far-reaching consequences for improving measures for management, restoration and conservation. Near-real-time provision of high-resolution identity information enables prompt response to changes in encounter rates. We thus continue to develop new tools to provide the greatest statistical power for run identification. As a proof of concept for genetic identification improvements, we conducted simulation and blind tests for 623 known-origin Chinook salmon (Oncorhynchus tshawytscha) to compare and contrast the accuracy of different population sampling baselines and microsatellite loci panels. This test included 35 microsatellite loci (1266 alleles), some known to be associated with specific coding regions of functional significance, such as the circadian rhythm cryptochrome genes, and others not known to be associated with any functional importance. The identification of fall run with unprecedented accuracy was demonstrated. Overall, the top performing panel and baseline (HMSC21) were predicted to have a success rate of 98%, but the blind-test success rate was 84%. Findings for bias or non-bias are discussed to target primary areas for further research and resolution. © 2014 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  13. Fragrance patch tests prepared in advance may give false-negative reactions.

    Science.gov (United States)

    Mowitz, Martin; Svedman, Cecilia; Zimerson, Erik; Bruze, Magnus

    2014-11-01

    Several of the ingredients in fragrance mix I (FM I) have been shown to evaporate from petrolatum preparations applied in test chambers to an extent that can be suspected to affect the patch test result. To compare the reactivity towards FM I and fragrance mix II (FM II) when they are applied in test chambers in advance and immediately prior to the patch test occasion. Seven hundred and ninety-five consecutive patients were simultaneously patch tested with duplicate samples of FM I and FM II. One sample was applied in the test chamber 6 days in advance (6D sample), and the other sample was applied immediately before the patients were patch tested (fresh sample). Twenty-two (2.8%) patients reacted exclusively to the fresh sample of FM I, 6 (0.7%) reacted exclusively to the 6D sample, and 22 (2.8%) reacted to both samples. The corresponding numbers for FM II were 9 (1.1%) for the fresh sample, 6 (0.7%) for the 6D sample and 12 (1.5%) for both samples. There was a statistically significant difference between the numbers of patients reacting to the fresh and 6D samples of FM I. No corresponding difference was observed for FM II. This can probably be explained by differences in volatilities between the ingredients of FM I and FM II. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. In-situ Creep Testing Capability Development for Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  15. Major advances in testing of dairy products: milk component and dairy product attribute testing.

    Science.gov (United States)

    Barbano, D M; Lynch, J M

    2006-04-01

    Milk component analysis is relatively unusual in the field of quantitative analytical chemistry because an analytical test result determines the allocation of very large amounts of money between buyers and sellers of milk. Therefore, there is high incentive to develop and refine these methods to achieve a level of analytical performance rarely demanded of most methods or laboratory staff working in analytical chemistry. In the last 25 yr, well-defined statistical methods to characterize and validate analytical method performance combined with significant improvements in both the chemical and instrumental methods have allowed achievement of improved analytical performance for payment testing. A shift from marketing commodity dairy products to the development, manufacture, and marketing of value added dairy foods for specific market segments has created a need for instrumental and sensory approaches and quantitative data to support product development and marketing. Bringing together sensory data from quantitative descriptive analysis and analytical data from gas chromatography olfactometry for identification of odor-active compounds in complex natural dairy foods has enabled the sensory scientist and analytical chemist to work together to improve the consistency and quality of dairy food flavors.

  16. Should EGFR mutations be tested in advanced lung squamous cell carcinomas to guide frontline treatment?

    Science.gov (United States)

    Chiu, Chao-Hua; Chou, Teh-Ying; Chiang, Chi-Lu; Tsai, Chun-Ming

    2014-10-01

    There is no argument over using epidermal growth factor receptor (EGFR) mutation status to guide the frontline treatment for advanced lung adenocarcinoma (LADC); however, the role of the testing in lung squamous cell carcinoma (LSQC) remains controversial. Currently, the guidelines/consensus statements regarding EGFR mutation testing in LSQC are not consistent among different oncology societies. American Society of Clinical Oncology recommends performing EGFR mutation testing in all patients; European Society for Medical Oncology, College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology, and National Comprehensive Cancer Network suggest for some selected group. EGFR mutation is rarely found in LSQC; however, more importantly, it is not a valid predictive biomarker for EGFR tyrosine kinase inhibitors (EGFR-TKI) in LSQC as it has been shown in LADC. Available data showed that the response rate and progression-free survival in EGFR mutant LSQC patients treated with EGFR-TKI are not better than that observed in patients treated with platinum-doublet chemotherapy in the first-line setting. Therefore, in contrast to advanced LADC, EGFR mutation testing may not be necessarily performed upfront in advanced LSQC because not only the mutation rate is low, but also the predictive value is insufficient. For LSQC patients with known sensitizing-EGFR mutations, both conventional chemotherapy and EGFR-TKI are acceptable frontline treatment options.

  17. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    Science.gov (United States)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2009-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.

  18. Lessons Learned During Cryogenic Optical Testing of the Advanced Mirror System Demonstrators (AMSDs)

    Science.gov (United States)

    Hadaway, James; Reardon, Patrick; Geary, Joseph; Robinson, Brian; Stahl, Philip; Eng, Ron; Kegley, Jeff

    2004-01-01

    Optical testing in a cryogenic environment presents a host of challenges above and beyond those encountered during room temperature testing. The Advanced Mirror System Demonstrators (AMSDs) are 1.4 m diameter, ultra light-weight (mA2), off-axis parabolic segments. They are required to have 250 nm PV & 50 nm RMS surface figure error or less at 35 K. An optical testing system, consisting of an Instantaneous Phase Interferometer (PI), a diffractive null corrector (DNC), and an Absolute Distance Meter (ADM), was used to measure the surface figure & radius-of-curvature of these mirrors at the operational temperature within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The Ah4SD program was designed to improve the technology related to the design, fabrication, & testing of such mirrors in support of NASA s James Webb Space Telescope (JWST). This paper will describe the lessons learned during preparation & cryogenic testing of the AMSDs.

  19. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  20. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

  1. Test Hardware Design for Flightlike Operation of Advanced Stirling Convertors (ASC-E3)

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  2. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  3. Parametric Analysis of a Hover Test Vehicle using Advanced Test Generation and Data Analysis

    Science.gov (United States)

    Gundy-Burlet, Karen; Schumann, Johann; Menzies, Tim; Barrett, Tony

    2009-01-01

    Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.

  4. After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Forest Howard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”

  5. Premixed Combustion of Coconut Oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2013-10-01

    Full Text Available Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. Keywords: cellular flame; glycerol; perforated flame;secondary Bunsen flame with open tip; triple flame

  6. Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement.

    Science.gov (United States)

    Shatkin, J A; Ong, Kimberly J; Beaudrie, Christian; Clippinger, Amy J; Hendren, Christine Ogilvie; Haber, Lynne T; Hill, Myriam; Holden, Patricia; Kennedy, Alan J; Kim, Baram; MacDonell, Margaret; Powers, Christina M; Sharma, Monita; Sheremeta, Lorraine; Stone, Vicki; Sultan, Yasir; Turley, Audrey; White, Ronald H

    2016-08-01

    The Society for Risk Analysis (SRA) has a history of bringing thought leadership to topics of emerging risk. In September 2014, the SRA Emerging Nanoscale Materials Specialty Group convened an international workshop to examine the use of alternative testing strategies (ATS) for manufactured nanomaterials (NM) from a risk analysis perspective. Experts in NM environmental health and safety, human health, ecotoxicology, regulatory compliance, risk analysis, and ATS evaluated and discussed the state of the science for in vitro and other alternatives to traditional toxicology testing for NM. Based on this review, experts recommended immediate and near-term actions that would advance ATS use in NM risk assessment. Three focal areas-human health, ecological health, and exposure considerations-shaped deliberations about information needs, priorities, and the next steps required to increase confidence in and use of ATS in NM risk assessment. The deliberations revealed that ATS are now being used for screening, and that, in the near term, ATS could be developed for use in read-across or categorization decision making within certain regulatory frameworks. Participants recognized that leadership is required from within the scientific community to address basic challenges, including standardizing materials, protocols, techniques and reporting, and designing experiments relevant to real-world conditions, as well as coordination and sharing of large-scale collaborations and data. Experts agreed that it will be critical to include experimental parameters that can support the development of adverse outcome pathways. Numerous other insightful ideas for investment in ATS emerged throughout the discussions and are further highlighted in this article. © 2016 Society for Risk Analysis.

  7. Levodopa responsiveness of dysphagia in advanced Parkinson's disease and reliability testing of the FEES-Levodopa-test.

    Science.gov (United States)

    Warnecke, Tobias; Suttrup, Inga; Schröder, Jens B; Osada, Nani; Oelenberg, Stephan; Hamacher, Christina; Suntrup, Sonja; Dziewas, Rainer

    2016-07-01

    It is still controversially discussed whether central dopaminergic stimulation improves swallowing ability in Parkinson's disease (PD). We evaluated the effect of oral levodopa application on dysphagia in advanced PD patients with motor fluctuations. In 15 PD patients (mean age 71.93 ± 8.29 years, mean disease duration 14.33 ± 5.94 years) with oropharyngeal dysphagia and motor fluctuations endoscopic swallowing evaluation was performed in the off state and on state condition following a specifically developed protocol (FEES-levodopa-test). The respective dysphagia score covered three salient parameters, i. e. premature spillage, penetration/aspiration events and residues, each tested with liquid as well as semisolid and solid food consistencies. An improvement of >30% in this score indicated levodopa responsiveness of dysphagia. Measures were compared between the off- and on-state condition by using the Wilcoxon Test and marginal homogeneity test. Inter- and intrarater reliability was also investigated. Severity of swallowing dysfunction in the off state varied widely. The lowest dysphagia score was 15 points (dysphagia without any aspiration risk). The highest dysphagia score was 84 points (dysphagia with aspiration of all consistencies). Seven patients showed a marked improvement of dysphagia in the on state condition. Eight PD patients did not respond. Inter- and intrarater reliability was excellent for all three subscales in the off state and on state conditions. A significant proportion of advanced PD patients with motor fluctuations and mild to moderate oropharyngeal dysphagia may demonstrate a clinically relevant improvement of swallowing after levodopa challenge. The FEES-levodopa-test is a reliable and sensitive tool to differentiate these responders from non-responders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Earth Observing System (EOS)/ Advanced Microwave Sounding Unit-A (AMSU-A): Special Test Equipment. Software Requirements

    Science.gov (United States)

    Schwantje, Robert

    1995-01-01

    This document defines the functional, performance, and interface requirements for the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A) Special Test Equipment (STE) software used in the test and integration of the instruments.

  9. Validation test of advanced technology for IPV nickel-hydrogen flight cells - Update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the LEO cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion.

  10. U.S. advanced accelerator applications program: plans to develop and test waste transmutation technologies

    International Nuclear Information System (INIS)

    Van Tuyle, G.; Bennett, D.; Arthur, E.; Cappiello, M.; Finck, P.; Hill, D.; Herczeg, J.; Goldner, F.

    2001-01-01

    The primary mission of the U.S. Advanced Accelerator Applications (AAA) Program is to establish a national nuclear technology research capability that can demonstrate accelerator-based transmutation of waste and conduct transmutation research while at the same time providing a capability for the production of tritium if required. The AAA Program was created during fiscal year 2001 from the Accelerator Transmutation of Waste (ATW) Program and the Accelerator Production of Tritium (APT) Project. This paper describes the new AAA Program, as well as its two major components: development and testing of waste transmutation technologies and construction of an integrated accelerator-driven test facility (ADTF). (author)

  11. Fabrication and test of prototype ring magnets for the ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    Tanabe, J.; Avery, R.; Caylor, R.; Green, M.I.; Hoyer, E.; Halbach, K.; Hernandez, S.; Humphries, D.; Kajiyama, Y.; Keller, R.; Low, W.; Marks, S.; Milburn, J.; Yee, D.

    1989-03-01

    Prototype Models for the Advanced Light Source (ALS) Booster Dipole, Quadrupole and Sextupole and the Storage Ring Gradient Magnet, Quadrupole and Sextupole have been constructed. The Booster Magnet Prototypes have been tested. The Storage Ring Magnets are presently undergoing tests and magnetic measurements. This paper reviews the designs and parameters for these magnets, briefly describes features of the magnet designs which respond to the special constraints imposed by the requirements for both accelerator rings, and reviews some of the results of magnet measurements for the prototype. 13 refs., 7 figs., 1 tab

  12. Advances in measuring techniques for turbine cooling test rigs - Status report

    Science.gov (United States)

    Pollack, F. G.

    1974-01-01

    Instrumentation development pertaining to turbine cooling research has resulted in the design and testing of several new systems. Pressure measurements on rotating components are being made with a rotating system incorporating ten miniature transducers and a slip-ring assembly. The system has been tested successfully up to speeds of 9000 rpm. An advanced system development combining pressure transducer and thermocouple signals is also underway. Thermocouple measurements on rotating components are transferred off the shaft by a 72-channel rotating data system. Thermocouple data channels are electronically processed on board and then removed from the shaft in the form of a digital serial train by one winding of a rotary transformer.

  13. Advanced power cycler with intelligent monitoring strategy of IGBT module under test

    DEFF Research Database (Denmark)

    Choi, U. M.; Blaabjerg, F.; Iannuzzo, F.

    2017-01-01

    and diode, which for the wear-out condition monitoring are presented. This advanced power cycler allows to perform power cycling test cost-effectively under conditions close to real power converter applications. In addition, an intelligent monitoring strategy for the separation of package-related wear......-out failure mechanisms has been proposed. By means of the proposed method, the wear-out failure mechanisms of an IGBT module can be separated without any additional efforts during the power cycling tests. The validity and effectiveness of the proposed monitoring strategy are also verified by experiments....

  14. Technology developments for ACIGA high power test facility for advanced interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P [School of Physics, University of Western Australia, Perth, WA 6009 (Australia); Barton, M [California Institute of Technology, LIGO Project, Pasadena, CA 91125 (United States); Blair, D G [School of Physics, University of Western Australia, Perth, WA 6009 (Australia)] [and others

    2005-05-21

    The High Optical Power Test Facility for Advanced Interferometry has been built by the Australian Consortium for Interferometric Gravitational Astronomy north of Perth in Western Australia. An 80 m suspended cavity has been prepared in collaboration with LIGO, where a set of experiments to test suspension control and thermal compensation will soon take place. Future experiments will investigate radiation pressure instabilities and optical spring effects in a high power optical cavity with {approx}200 kW circulating power. The facility combines research and development undertaken by all consortium members, whose latest results are presented.

  15. Technology developments for ACIGA high power test facility for advanced interferometry

    International Nuclear Information System (INIS)

    Barriga, P; Barton, M; Blair, D G

    2005-01-01

    The High Optical Power Test Facility for Advanced Interferometry has been built by the Australian Consortium for Interferometric Gravitational Astronomy north of Perth in Western Australia. An 80 m suspended cavity has been prepared in collaboration with LIGO, where a set of experiments to test suspension control and thermal compensation will soon take place. Future experiments will investigate radiation pressure instabilities and optical spring effects in a high power optical cavity with ∼200 kW circulating power. The facility combines research and development undertaken by all consortium members, whose latest results are presented

  16. Summary test results of the particle-beam diagnostics for the Advanced Photon Source (APS) subsystems

    International Nuclear Information System (INIS)

    Lumpkin, A.; Wang, X.; Sellyey, W.; Patterson, D.; Kahana, E.

    1994-01-01

    During the first half of 1994, a number of the diagnostic systems for measurement of the charged-particle beam parameters throughout the subsystems of the Advanced Photon Source (APS) have been installed and tested. The particle beams eventually will involve 450-MeV to 7-GeV positrons and with different pulse formats. The first test and commissionin results for beam profiles, beam position monitors, loss rate monitors, current monitors, and synchrotron radiation photon monitors hve been obtained using 200- to 350-MeV electron beams injected into the subsystems. Data presented are principally from the transport lines and the positron accumulator ring

  17. Preliminary Results on the Effects of Distributed Aluminum Combustion Upon Acoustic Growth Rates in a Rijke Burner

    OpenAIRE

    Newbold, Brian R.

    1998-01-01

    Distributed particle combustion in solid propellant rocket motors may be a significant cause of acoustic combustion instability. A Rijke burner has been developed as a tool to investigate the phenomenon. Previous improvements and characterization of the upright burner lead to the addition of a particle injection flame. The injector flame increases the burner's acoustic driving by about 10% which is proportional to the injector's additional 2 g/min of gas. Frequency remained fairly constant fo...

  18. Cadmium depletion impacts on hardening neutron spectrum for advanced fuel testing in ATR

    International Nuclear Information System (INIS)

    Chang, Gray S.

    2011-01-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim-Effect in the test region. (author)

  19. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.

  20. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model

    Science.gov (United States)

    Meer, David W.; Lewandowski, Edward J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  1. Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope

    International Nuclear Information System (INIS)

    Mishra, Chandra Kant; Arun, K. G.; Iyer, Bala R.; Sathyaprakash, B. S.

    2010-01-01

    General relativity has very specific predictions for the gravitational waveforms from inspiralling compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to which the measurement of the PN coefficients, possible with the second generation gravitational-wave detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and 3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of 11-44M · . The choice of the lower frequency cutoff is important for testing post-Newtonian theory using the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.

  2. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  3. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  4. Advanced power cycling test for power module with on-line on-state VCE measurement

    DEFF Research Database (Denmark)

    Choi, Ui-min; Trintis, Ionut; Blaabjerg, Frede

    2015-01-01

    module. The proposed concept can perform various stress conditions which is valid in a real mission profile and it is using a real power converter application with small loss. The concept of the proposed test setup is first presented. Then, the on-line on-state collector-emitter voltage VCE measurement......Recent research has made an effort to improve the reliability of power electronic systems to comply with more stringent constraints on cost, safety, predicted lifetime and availability in many applications. For this, studies about failure mechanisms of power electronic components and lifetime...... estimation of power semiconductor devices and capacitors have been done. Accelerated power cycling test is one of the common tests to assess the power device module and develop the lifetime model considering the physics of failure. In this paper, a new advanced power cycling test setup is proposed for power...

  5. Testing of the Advanced Stirling Radioisotope Generator Engineering Unit at NASA Glenn Research Center

    Science.gov (United States)

    Lewandowski, Edward J.

    2013-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.

  6. Thermo-Acoustic Properties of a Burner with Axial Temperature Gradient: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Béla Kosztin

    2013-03-01

    Full Text Available This paper presents a model for thermo-acoustic effects in a gas turbine combustor. A quarter-wavelength burner with rectangular cross-section has been built and studied from an experimental and theoretical perspective. It has a premixed methane-air flame, which is held by a bluff body, and spans the width of the burner. The flame is compact, i.e. its length is much smaller than that of the burner. The fundamental mode of the burner is unstable; its frequency and pressure distribution have been measured. The complex pressure reflection coefficients at the upstream and downstream end of the burner were also measured. For the theoretical considerations, we divide the burner into three regions (the cold pre-combustion chamber, the flame region and the hot outlet region, and assume one-dimensional acoustic wave propagation in each region. The acoustic pressure and velocity are assumed continuous across the interface between the precombustion chamber and flame region, and across the interface between the flame region and outlet region. The burner ends are modelled by the measured pressure reflection coefficients. The mean temperature is assumed to have the following profile: uniformly cold and uniformly hot in the pre-combustion chamber and outlet region, respectively, and rising continuously from cold to hot in the flame region. For comparison, a discontinuous temperature profile, jumping directly from cold to hot, is also considered. The eigenfrequencies are calculated, and the pressure distribution of the fundamental mode is predicted. There is excellent agreement with the experimental results. The exact profile of the mean temperature in the flame region is found to be unimportant. This study gives us an experimentally validated Green's function, which is a very useful tool for further theoretical studies.

  7. Advanced thorium cycles in LWRs and HWRs

    International Nuclear Information System (INIS)

    Radkowsky, A.

    The main aspects of advanced thorium cycles in LWRs and HWRs are reviewed. New concepts include the seed blanket close packed heavy water breeder, the light water seed blanket thorium burner and self-induced thorium cycle in CANDU type reactors. (author)

  8. Advanced supersonic propulsion study, phase 4

    Science.gov (United States)

    Howlett, R. A.

    1977-01-01

    Installation characteristics for a Variable Stream Control Engine (VSCE) were studied for three advanced supersonic airplane designs. Sensitivity of the VSCE concept to change in technology projections was evaluated in terms of impact on overall installed performance. Based on these sensitivity results, critical technology requirements were reviewed, resulting in the reaffirmation of the following requirements: low-noise nozzle system; a high performance, low emissions duct burner and main burner; hot section technology; variable geometry components; and propulsion integration features, including an integrated electronic control system.

  9. Smart-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Palmintier, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hale, Elaine T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgindy, Tarek [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bugbee, Bruce [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rossol, Michael N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lopez, Anthony J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnamurthy, Dheepak [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vergara, Claudio [MIT; Domingo, Carlos Mateo [IIT Comillas; Postigo, Fernando [IIT Comillas; de Cuadra, Fernando [IIT Comillas; Gomez, Tomas [IIT Comillas; Duenas, Pablo [MIT; Luke, Max [MIT; Li, Vivian [MIT; Vinoth, Mohan [GE Grid Solutions; Kadankodu, Sree [GE Grid Solutions

    2017-08-09

    The National Renewable Energy Laboratory (NREL) in collaboration with Massachusetts Institute of Technology (MIT), Universidad Pontificia Comillas (Comillas-IIT, Spain) and GE Grid Solutions, is working on an ARPA-E GRID DATA project, titled Smart-DS, to create: 1) High-quality, realistic, synthetic distribution network models, and 2) Advanced tools for automated scenario generation based on high-resolution weather data and generation growth projections. Through these advancements, the Smart-DS project is envisioned to accelerate the development, testing, and adoption of advanced algorithms, approaches, and technologies for sustainable and resilient electric power systems, especially in the realm of U.S. distribution systems. This talk will present the goals and overall approach of the Smart-DS project, including the process of creating the synthetic distribution datasets using reference network model (RNM) and the comprehensive validation process to ensure network realism, feasibility, and applicability to advanced use cases. The talk will provide demonstrations of early versions of synthetic models, along with the lessons learnt from expert engagements to enhance future iterations. Finally, the scenario generation framework, its development plans, and co-ordination with GRID DATA repository teams to house these datasets for public access will also be discussed.

  10. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  11. Advancing molecular-guided surgery through probe development and testing in a moderate cost evaluation pipeline

    Science.gov (United States)

    Pogue, Brian W.; Paulsen, Keith D.; Hull, Sally M.; Samkoe, Kimberley S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim

    2015-03-01

    Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill and finish, toxicity testing, and early phase clinical trials with image guidance.

  12. Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications

    International Nuclear Information System (INIS)

    Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

    1981-10-01

    Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production

  13. Engineering, installation, testing, and initial operation of the DIII-D Advanced Divertor

    International Nuclear Information System (INIS)

    Andersen, P.M.; Baxi, C.B.; Reis, E.E.; Schaffer, M.J.; Smith, J.P.

    1990-09-01

    The Advanced Divertor (AD) for General Atomics tokamak, DIII-D, was installed in the summer of 1990. The AD has enabled two classes of physics experiments to be run: divertor biasing and divertor baffling. Both are new experiments for DIII-D. The AD has two principal components: (1) a continuous ring electrode; and (2) a toroidally symmetric baffle. The tokamak can be run in bias baffle or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D control system. The paper covers design, analysis, fabrication, installation, instrumentation, testing, initial operation, and future plans for the Advanced Divertor from an engineering viewpoint. 2 refs., 5 figs

  14. Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement: Advancing Risk Analysis for Nanoscale Materials

    Energy Technology Data Exchange (ETDEWEB)

    Shatkin, J. A. [Vireo Advisors, Boston MA USA; Ong, Kimberly J. [Vireo Advisors, Boston MA USA; Beaudrie, Christian [Compass RM, Vancouver CA USA; Clippinger, Amy J. [PETA International Science Consortium Ltd, London UK; Hendren, Christine Ogilvie [Center for the Environmental Implications of NanoTechnology, Duke University, Durham NC USA; Haber, Lynne T. [TERA, Cincinnati OH USA; Hill, Myriam [Health Canada, Ottawa Canada; Holden, Patricia [UC Santa Barbara, Bren School of Environmental Science & Management, ERI, and UC CEIN, University of California, Santa Barbara CA USA; Kennedy, Alan J. [U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg MS USA; Kim, Baram [Independent, Somerville MA USA; MacDonell, Margaret [Argonne National Laboratory, Environmental Science Division, Argonne IL USA; Powers, Christina M. [U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Transportation and Air Quality, Ann Arbor MI USA; Sharma, Monita [PETA International Science Consortium Ltd, London UK; Sheremeta, Lorraine [Alberta Ingenuity Labs, Edmonton Alberta Canada; Stone, Vicki [John Muir Building Gait 1 Heriot-Watt University, Edinburgh Scotland UK; Sultan, Yasir [Environment Canada, Gatineau QC Canada; Turley, Audrey [ICF International, Durham NC USA; White, Ronald H. [RH White Consultants, Silver Spring MD USA

    2016-08-01

    The Society for Risk Analysis (SRA) has a history of bringing thought leadership to topics of emerging risk. In September 2014, the SRA Emerging Nanoscale Materials Specialty Group convened an international workshop to examine the use of alternative testing strategies (ATS) for manufactured nanomaterials (NM) from a risk analysis perspective. Experts in NM environmental health and safety, human health, ecotoxicology, regulatory compliance, risk analysis, and ATS evaluated and discussed the state of the science for in vitro and other alternatives to traditional toxicology testing for NM. Based on this review, experts recommended immediate and near-term actions that would advance ATS use in NM risk assessment. Three focal areas-human health, ecological health, and exposure considerations-shaped deliberations about information needs, priorities, and the next steps required to increase confidence in and use of ATS in NM risk assessment. The deliberations revealed that ATS are now being used for screening, and that, in the near term, ATS could be developed for use in read-across or categorization decision making within certain regulatory frameworks. Participants recognized that leadership is required from within the scientific community to address basic challenges, including standardizing materials, protocols, techniques and reporting, and designing experiments relevant to real-world conditions, as well as coordination and sharing of large-scale collaborations and data. Experts agreed that it will be critical to include experimental parameters that can support the development of adverse outcome pathways. Numerous other insightful ideas for investment in ATS emerged throughout the discussions and are further highlighted in this article.

  15. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    Science.gov (United States)

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  16. Cladding and Duct Materials for Advanced Nuclear Recycle Reactors

    International Nuclear Information System (INIS)

    Allen, Todd R.; Busby, J. T.; Klueh, R. L.; Maloy, Stuart A.; Toloczko, Mychailo B.

    2008-01-01

    This is a review article that provides an overview of the reactor core structural materials and clad and duct needs for the GNEP advanced burner reactor design. A short history of previous research on structural materials for irradiation environments is provided. There is also a section describing some advanced materials that may be candidate materials for various reactor core structures

  17. Parametric Study of High-Efficiency and Low-Emission Gas Burners

    Directory of Open Access Journals (Sweden)

    Shuhn-Shyurng Hou

    2013-01-01

    Full Text Available The objective of this study is to investigate the influence of three significant parameters, namely, swirl flow, loading height, and semi-confined combustion flame, on thermal efficiency and CO emissions of a swirl flow gas burner. We focus particularly on the effects of swirl angle and inclination angle on the performance of the swirl flow burner. The results showed that the swirl flow burner yields higher thermal efficiency and emits lower CO concentration than those of the conventional radial flow burner. A greater swirl angle results in higher thermal efficiency and CO emission. With increasing loading height, the thermal efficiency increases but the CO emission decreases. For a lower loading height (2 or 3 cm, the highest efficiency occurs at the inclination angle 15°. On the other hand, at a higher loading height, 4 cm, thermal efficiency increases with the inclination angle. Moreover, the addition of a shield can achieve a great increase in thermal efficiency, about 4-5%, and a decrease in CO emissions for the same burner (swirl flow or radial flow.

  18. MA-burners efficiency parameters allowing for the duration of transmutation process

    International Nuclear Information System (INIS)

    Gulevich, A.; Zemskov, E.; Kalugin, A.; Ponomarev, L.; Seliverstov, V.; Seregin, M.

    2010-01-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time τ - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n rep - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  19. MA-burners efficiency parameters allowing for the duration of transmutation process

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko Square 1, Obninsk, Kaluga Region 249020 (Russian Federation); Kalugin, A.; Ponomarev, L. [Russian Research Center ' ' Kurchatov Institute' ' Kurchatov Square 1, Moscow 123182 (Russian Federation); Seliverstov, V. [Institute of Theoretical and Experimental Physics ul.B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation); Seregin, M. [Russian Research Institute of Chemical Technology Kashirskoe Shosse 33, Moscow 115230 (Russian Federation)

    2010-07-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time {tau} - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n{sub rep} - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  20. Vacuum tests of a beamline front-end mock-up at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Liu, C.; Nielsen, R.W.; Kruy, T.L.; Shu, D.; Kuzay, T.M.

    1994-01-01

    A-mock-up has been constructed to test the functioning and performance of the Advanced Photon Source (APS) front ends. The mock-up consists of all components of the APS insertion-device beamline front end with a differential pumping system. Primary vacuum tests have been performed and compared with finite element vacuum calculations. Pressure distribution measurements using controlled leaks demonstrate a better than four decades of pressure difference between the two ends of the mock-up. The measured pressure profiles are consistent with results of finite element analyses of the system. The safety-control systems are also being tested. A closing time of ∼20 ms for the photon shutter and ∼7 ms for the fast closing valve have been obtained. Experiments on vacuum protection systems indicate that the front end is well protected in case of a vacuum breach

  1. International on Workshop Advances in Laboratory Testing & Modelling of Soils and Shales

    CERN Document Server

    Laloui, Lyesse

    2017-01-01

    In this spirit, the ATMSS International Workshop “Advances in Laboratory Testing & Modelling of Soils and Shales” (Villars-sur-Ollon, Switzerland; 18-20 January 2017) has been organized to promote the exchange of ideas, experience and state of the art among major experts active in the field of experimental testing and modelling of soils and shales. The Workshop has been organized under the auspices of the Technical Committees TC-101 “Laboratory Testing”, TC-106 “Unsaturated Soils” and TC-308 “Energy Geotechnics” of the International Society of Soil Mechanics and Geotechnical Engineering. This volume contains the invited keynote and feature lectures, as well as the papers that have been presented at the Workshop. The topics of the lectures and papers cover a wide range of theoretical and experimental research, including unsaturated behaviour of soils and shales, multiphysical testing of geomaterials, hydro–mechanical behaviour of shales and stiff clays, the geomechanical behaviour of the ...

  2. The US Advanced Liquid Metal Reactor and the Fast Flux Test Facility Phase IIA passive safety tests

    International Nuclear Information System (INIS)

    Shen, P.K.; Harris, R.A.; Campbell, L.R.; Dautel, W.A.; Dubberley, A.E.; Gluekler, E.L.

    1992-07-01

    This report discusses the safety approach of the Advanced Liquid Metal reactor program, sponsored by the US Department of Energy, which relies upon passive reactor responses to off-normal condition to limit power and temperature excursions to levels that allow safety margins. Gas expansion modules (GEM) have included in the design to provide negative reactivity to enhance these margins in the extremely unlikely event that pumping power is lost and the highly reliable scram system fails to operate. The feasibility and beneficial features of these devices were first demonstrated in the core of the Fast Flux Test Facility (FFTF) in 1986. Preapplication safety evaluations by the US Nuclear Regulatory Commission have identified areas that must be addressed if these devices are to be relied on. One of these areas is the response of the reactor when it is critical and the pumps are turned on, resulting in positive reactivity being added to the core. Tests to examine such transients have been performed as part of the continuing FFTF program to confirm the passive safety characteristics of liquid metal reactors (LMR). The primary tests consisted of starting the main coolant pumps, which forced sodium coolant into the GEMS, decreasing neutron leakage and adding positive reactivity. The resulting transients were shown to be benign and easily mitigated by the reactivity feedbacks inherent in the FFTF and all LMRs. Steady-state auxiliary tests of the GEM and feedback reactivity worths accurately predicted the transient results. The auxiliary GEM worth tests also demonstrated that the worth can be determined at a subcritical state, which allows for a verification of the GEM's availability prior to ascending to power

  3. PSA-operations synergism for the advanced test reactor shutdown operations PSA

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1996-01-01

    The Advanced Test Reactor (ATR) Probabilistic Safety Assessment (PSA) for shutdown operations, cask handling, and canal draining is a successful example of the importance of good PSA-operations synergism for achieving a realistic and accepted assessment of the risks and for achieving desired risk reduction and safety improvement in a best and cost-effective manner. The implementation of the agreed-upon upgrades and improvements resulted in the reductions of the estimated mean frequency for core or canal irradiated fuel uncovery events, a total reduction in risk by a factor of nearly 1000 to a very low and acceptable risk level for potentially severe events

  4. Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, Ben [NICADD, DeKalb; Mihalcea, Daniel [NICADD, DeKalb; Panuganti, Harsha [NICADD, DeKalb; Piot, Philippe [Fermilab; Brau, Charles [Vanderbilt U.; Choi, Bo [Vanderbilt U.; Gabella, William [Vanderbilt U.; Ivanov, Borislav [Vanderbilt U.; Mendenhall, Marcus [Vanderbilt U.; Lynn, Christopher [Swarthmore Coll.; Sen, Tanaji [Fermilab; Wagner, Wolfgang [Forschungszentrum Dresden Rossendorf

    2014-07-01

    In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.

  5. Development of an aging evaluation and life extension program for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Dwight, J.E. Jr.

    1988-01-01

    A life extension program has been developed for the US Department of Energy's Advanced Test Reactor. The program is an adaptation of life extension pilot programs at the Surry Unit 1 and Monticello generating stations and is being completed in three phases. In Phase 1, the critical plant components were identified. In Phase 2, existing lifetime analyses and support data for the critical components were reviewed. The results from the review give a preliminary indication that an overall plant lifetime in excess of forty years is feasible. In Phase 3, now in progress, detailed evaluations for component life extensions are being performed. 2 refs., 2 figs., 1 tab

  6. Contributions of fast breeder test reactor to the advanced technology in India

    International Nuclear Information System (INIS)

    Kapoor, R.P.

    2001-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe loop type, sodium cooled, plutonium rich mixed carbide fuelled reactor. Its operation at Indira Gandhi Centre for Atomic Research, since first criticality in 1985, has contributed immensely to the advancement of this multidisciplinary and complex fast breeder technology in the country. It has also given a valuable operational feedback for the design of 500 MWe Prototype Fast Breeder Reactor. This paper highlights FBTR's significant contributions to this important technology which has a potential to provide energy security to the country in future. (author)

  7. Implementation and Initial Testing of Advanced Processing and Analysis Algorithms for Correlated Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cutler, Theresa Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Robert Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects in all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.

  8. POC-scale testing of an advanced fine coal dewatering equipment/technique

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  9. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    Science.gov (United States)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  10. First test of high frequency Gravity Waves from inflation using Advanced LIGO

    International Nuclear Information System (INIS)

    Lopez, Alejandro; Freese, Katherine

    2015-01-01

    Inflation models ending in a first order phase transition produce gravitational waves (GW) via bubble collisions of the true vacuum phase. We demonstrate that these bubble collisions can leave an observable signature in Advanced LIGO, an upcoming ground-based GW experiment. These GW are dependent on two parameters of the inflationary model: ε represents the energy difference between the false vacuum and the true vacuum of the inflaton potential, and χ measures how fast the phase transition ends (χ ∼ the number of e-folds during the actual phase transition). Advanced LIGO will be able to test the validity of single-phase transition models within the parameter space 10 7  GeV∼< ε 1/4  ∼< 10 10  GeV and 0.19 ∼< χ ∼< 1. If inflation occurred through a first order phase transition, then Advanced LIGO could be the first to discover high frequency GW from inflation

  11. Summary of thermocouple performance during advanced gas reactor fuel irradiation experiments in the advanced test reactor and out-of-pile thermocouple testing in support of such experiments

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A. J.; Haggard, DC; Herter, J. W.; Swank, W. D.; Knudson, D. L.; Cherry, R. S. [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, (United States); Scervini, M. [University of Cambridge, Department of Material Science and Metallurgy, 27 Charles Babbage Road, CB3 0FS, Cambridge, (United Kingdom)

    2015-07-01

    High temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time-dependent change in composition and, as a consequence, a time-dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B) and tungsten-rhenium thermocouples (Type C). For lower temperature applications, previous experiences with Type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly, Type N thermocouples are expected to be only slightly affected by neutron fluence. Currently, the use of these nickel-based thermocouples is limited when the temperature exceeds 1000 deg. C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past 10 years, three long-term Advanced Gas Reactor experiments have been conducted with measured temperatures ranging from 700 deg. C - 1200 deg. C. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out-of-pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150 deg. C and 1200 deg. C for 2,000 hours at each temperature, followed by 200 hours at 1250 deg. C and 200 hours at 1300 deg. C. The standard Type N design utilizes high purity, crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including a Haynes 214 alloy sheath, spinel (MgAl{sub 2}O{sub 4}) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly

  12. Summary of Thermocouple Performance During Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor and Out-of-Pile Thermocouple Testing in Support of Such Experiments

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Palmer; DC Haggard; J. W. Herter; M. Scervini; W. D. Swank; D. L. Knudson; R. S. Cherry

    2011-07-01

    High temperature gas reactor experiments create unique challenges for thermocouple based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B); and tungsten-rhenium thermocouples (Types C and W). For lower temperature applications, previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of these Nickel based thermocouples is limited when the temperature exceeds 1000°C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past ten years, three long-term Advanced Gas Reactor (AGR) experiments have been conducted with measured temperatures ranging from 700oC – 1200oC. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out of pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150oC and 1200oC for 2000 hours at each temperature, followed by 200 hours at 1250oC, and 200 hours at 1300oC. The standard Type N design utilizes high purity crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including Haynes 214 alloy sheath, spinel (MgAl2O4) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard fired alumina

  13. Holy smoke in medieval funerary rites: chemical fingerprints of frankincense in southern Belgian incense burners.

    Science.gov (United States)

    Baeten, Jan; Deforce, Koen; Challe, Sophie; De Vos, Dirk; Degryse, Patrick

    2014-01-01

    Frankincense, the oleogum resin from Boswellia sp., has been an early luxury good in both Western and Eastern societies and is particularly used in Christian funerary and liturgical rites. The scant grave goods in late medieval burials comprise laterally perforated pottery vessels which are usually filled with charcoal. They occur in most regions of western Europe and are interpreted as incense burners but have never been investigated with advanced analytical techniques. We herein present chemical and anthracological results on perforated funerary pots from 4 Wallonian sites dating to the 12-14th century AD. Chromatographic and mass spectrometric analysis of lipid extracts of the ancient residues and comparison with extracts from four Boswellia species clearly evidence the presence of degraded frankincense in the former, based on characteristic triterpenoids, viz. boswellic and tirucallic acids, and their myriad dehydrated and oxygenated derivatives. Cembrane-type diterpenoids indicate B. sacra (southern Arabia) and B. serrata (India) as possible botanical origins. Furthermore, traces of juniper and possibly pine tar demonstrate that small amounts of locally available fragrances were mixed with frankincense, most likely to reduce its cost. Additionally, markers of ruminant fats in one sample from a domestic context indicate that this vessel was used for food preparation. Anthracological analysis demonstrates that the charcoal was used as fuel only and that no fragrant wood species were burned. The chars derived from local woody plants and were most likely recovered from domestic fires. Furthermore, vessel recycling is indicated by both contextual and biomarker evidence. The results shed a new light on funerary practices in the Middle Ages and at the same time reveal useful insights into the chemistry of burned frankincense. The discovery of novel biomarkers, namely Δ2-boswellic acids and a series of polyunsaturated and aromatic hydrocarbons, demonstrates the high

  14. Fusion-driven actinide burner design study. Second quarterly progress report

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Gold, R.E.; Holman, R.R.

    1975-11-01

    The Second Quarterly Progress Report summarizes the status at the mid-point of the conceptual design effort. The fusion driver continues to pose some of the principal design problems due to the necessity of advancing plasma engineering and technology for long pulse, high duty cycle operation. The development of credible design solutions to these problems is one of the major objectives of the study. The TF and OH coil designs have been modified to provide a more compact arrangement in the nose region of the TF coils and to ensure fully cryostable operation. A unique concept has been developed to effectively shield the TF coils from the poloidal fields. A vacuum vessel concept which separates the functions for sustaining the differential pressure load and for sealing the vacuum system is described. The thickness of the blanket has been decreased to reduce the power density and the actinide inventory. Determination and presentation of actinide depletion characteristics represents a major element thus far in the study and is a principal objective. Evaluation of the changes in the hazard only during irradiation proved to be an inadequate measure of the reduction in long term hazards due to the importance of radioactive daughter products which appear much later in time. Therefore, comparisons have been made of long term decay characteristics before and after irradiation in the actinide burner. It has also been noted that some of the actinides that are produced during irradiation have beneficial applications as radioisotopic power sources. These and other considerations suggest that alternate approaches to assessing the waste management problem be considered to develop a meaningful perspective on long term hazards from the actinides

  15. Fusion-driven actinide burner design study. Second quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Chi, J.W.H.; Gold, R.E.; Holman, R.R.

    1975-11-01

    The Second Quarterly Progress Report summarizes the status at the mid-point of the conceptual design effort. The fusion driver continues to pose some of the principal design problems due to the necessity of advancing plasma engineering and technology for long pulse, high duty cycle operation. The development of credible design solutions to these problems is one of the major objectives of the study. The TF and OH coil designs have been modified to provide a more compact arrangement in the nose region of the TF coils and to ensure fully cryostable operation. A unique concept has been developed to effectively shield the TF coils from the poloidal fields. A vacuum vessel concept which separates the functions for sustaining the differential pressure load and for sealing the vacuum system is described. The thickness of the blanket has been decreased to reduce the power density and the actinide inventory. Determination and presentation of actinide depletion characteristics represents a major element thus far in the study and is a principal objective. Evaluation of the changes in the hazard only during irradiation proved to be an inadequate measure of the reduction in long term hazards due to the importance of radioactive daughter products which appear much later in time. Therefore, comparisons have been made of long term decay characteristics before and after irradiation in the actinide burner. It has also been noted that some of the actinides that are produced during irradiation have beneficial applications as radioisotopic power sources. These and other considerations suggest that alternate approaches to assessing the waste management problem be considered to develop a meaningful perspective on long term hazards from the actinides.

  16. Improving the AGR fuel testing power density profile versus irradiation-time in the advanced test reactor

    International Nuclear Information System (INIS)

    Chang, Gray S.; Lillo, Misti A.; Maki, John T.; Petti, David A.

    2009-01-01

    The Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on ceramic-coated fuel particles. Each TRISO-coated fuel particle has its own containment which serves as the principal barrier against radionuclide release under normal operating and accident conditions. These fuel particles, in the form of graphite fuel compacts, are currently undergoing a series of irradiation tests in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) to support the Advanced Gas-Cooled Reactor (AGR) fuel qualification program. A representive coated fuel particle with an 235 U enrichment of 19.8 wt% was used in this analysis. The fuel burnup analysis tool used to perform the neutronics study reported herein, couples the Monte Carlo transport code MCNP, with the radioactive decay and burnup code ORIGEN2. The fuel burnup methodology known as Monte-Carlo with ORIGEN2 (MCWO) was used to evaluate the AGR experiment assembly and demonstrate compliance with ATR safety requirements. For the AGR graphite fuel compacts, the MCWO-calculated fission power density (FPD) due to neutron fission in 235 U is an important design parameter. One of the more important AGR fuel testing requirements is to maintain the peak fuel compact temperature close to 1250degC throughout the proposed irradiation campaign of 550 effective full power days (EFPDs). Based on the MCWO-calculated FPD, a fixed gas gap size was designed to allow regulation of the fuel compact temperatures throughout the entire fuel irradiation campaign by filling the gap with a mixture of helium and neon gases. The chosen fixed gas gap can only regulate the peak fuel compact temperature in the desired range during the irradiation test if the ratio of the peak power density to the time-dependent low power density (P/T) at 550 EFPDs is less than 2.5. However, given the near constant neutron flux within the ATR driver core and the depletion of 235 U

  17. Rate of detection of advanced neoplasms in proximal colon by simulated sigmoidoscopy vs fecal immunochemical tests.

    Science.gov (United States)

    Castells, Antoni; Quintero, Enrique; Álvarez, Cristina; Bujanda, Luis; Cubiella, Joaquín; Salas, Dolores; Lanas, Angel; Carballo, Fernando; Morillas, Juan Diego; Hernández, Cristina; Jover, Rodrigo; Hijona, Elizabeth; Portillo, Isabel; Enríquez-Navascués, José M; Hernández, Vicent; Martínez-Turnes, Alfonso; Menéndez-Villalva, Carlos; González-Mao, Carmen; Sala, Teresa; Ponce, Marta; Andrés, Mercedes; Teruel, Gloria; Peris, Antonio; Sopeña, Federico; González-Rubio, Francisca; Seoane-Urgorri, Agustín; Grau, Jaume; Serradesanferm, Anna; Pozo, Àngels; Pellisé, Maria; Balaguer, Francesc; Ono, Akiko; Cruzado, José; Pérez-Riquelme, Francisco; Alonso-Abreu, Inmaculada; Carrillo-Palau, Marta; de la Vega-Prieto, Mariola; Iglesias, Rosario; Amador, Javier; Blanco, José Manuel; Sastre, Rocio; Ferrándiz, Juan; González-Hernández, Ma José; Andreu, Montserrat; Bessa, Xavier

    2014-10-01

    We compared the ability of biennial fecal immunochemical testing (FIT) and one-time sigmoidoscopy to detect colon side-specific advanced neoplasms in a population-based, multicenter, nationwide, randomized controlled trial. We identified asymptomatic men and women, 50-69 years old, through community health registries and randomly assigned them to groups that received a single colonoscopy examination or biennial FIT. Sigmoidoscopy yield was simulated from results obtained from the colonoscopy group, according to the criteria proposed in the UK Flexible Sigmoidoscopy Trial for colonoscopy referral. Patients who underwent FIT and were found to have ≥75 ng hemoglobin/mL were referred for colonoscopy. Data were analyzed from 5059 subjects in the colonoscopy group and 10,507 in the FIT group. The main outcome was rate of detection of any advanced neoplasm proximal to the splenic flexure. Advanced neoplasms were detected in 317 subjects (6.3%) in the sigmoidoscopy simulation group compared with 288 (2.7%) in the FIT group (odds ratio for sigmoidoscopy, 2.29; 95% confidence interval, 1.93-2.70; P = .0001). Sigmoidoscopy also detected advanced distal neoplasia in a higher percentage of patients than FIT (odds ratio, 2.61; 95% confidence interval, 2.20-3.10; P = .0001). The methods did not differ significantly in identifying patients with advanced proximal neoplasms (odds ratio, 1.17; 95% confidence interval, 0.78-1.76; P = .44). This was probably due to the lower performance of both strategies in detecting patients with proximal lesions (sigmoidoscopy detected these in 19.1% of patients and FIT in 14.9% of patients) vs distal ones (sigmoidoscopy detected these in 86.8% of patients and FIT in 33.5% of patients). Sigmoidoscopy, but not FIT, detected proximal lesions in lower percentages of women (especially those 50-59 years old) than men. Sigmoidoscopy and FIT have similar limitations in detecting advanced proximal neoplasms, which depend on patients' characteristics

  18. Effect of fuel volatility on performance of tail-pipe burner

    Science.gov (United States)

    Barson, Zelmar; Sargent, Arthur F , Jr

    1951-01-01

    Fuels having Reid vapor pressures of 6.3 and 1.0 pounds per square inch were investigated in a tail-pipe burner on an axial-flow-type turbojet engine at a simulated flight Mach number of 0.6 and altitudes from 20,000 to 45,000 feet. With the burner configuration used in this investigation, having a mixing length of only 8 inches between the fuel manifold and the flame holder, the low-vapor-pressure fuel gave lower combustion efficiency at a given tail-pipe fuel-air ratio. Because the exhaust-nozzle area was fixed, the lower efficiency resulted in lower thrust and higher specific fuel consumption. The maximum altitude at which the burner would operate was practically unaffected by the change in fuel volatility.

  19. First results from the 'Violin-Mode' tests on an advanced LIGO suspension at MIT

    International Nuclear Information System (INIS)

    Lockerbie, N A; Tokmakov, K V; Carbone, L; Shapiro, B; Bell, A; Strain, K A

    2011-01-01

    This paper describes the first results from 'Violin-Mode' measurements made on the four suspension fibres of a fully suspended 40 kg test mass. These measurements were made at the LIGO lab, Gravitational Wave Observatory test facility, at MIT. Here, an aluminium-alloy (dummy) test mass, simulating an advanced LIGO (Laser Interferometer Gravitational Wave Observatory) test mass/mirror, had been suspended in air from a test suspension by four fused-silica suspension fibres, each measuring 400 μm in diameter x 600 mm long. Violin-Mode measurements were made on these highly tensioned fibres by retrofitting a prototype system of four novel shadow sensors to the test suspension, one per fibre, these sensors having, collectively, a displacement sensitivity of (6.9 ± 1.3) x 10 -11 m (rms) Hz -1/2 , at 500 Hz, over a measuring span of ±0.1 mm. Violin-Mode fundamental resonances were detected in all four fibres: with frequencies ∼ 485 Hz when the test mass was supported lightly from below, and at ∼500 Hz when it was fully suspended. In the latter case the Violin-Mode detection took place whilst the test mass, together with its suspension fibres, was undergoing relatively large-amplitude 'pendulum-mode' motion, at ∼0.6 Hz. This motion was measured to have a peak-peak amplitude at one of the suspension fibres of up to ∼140 μm (35 μm, rms) the shadow sensors each having subsidiary outputs for monitoring such low-frequency, large amplitude, motion. Under fully suspended conditions, a calibrated Violin-Mode 'free-oscillation' amplitude of 430 ± 20 picometres, rms, was measured at 500.875 Hz, in the same suspension fibre which was found to be undergoing, simultaneously, the ∼140 μm peak-peak motion. Over the bandwidth monitored (dc to 3.2 kHz), Violin-Mode harmonics up to the sixth were recorded in an evoked response. It was concluded that the prototype system had demonstrated amply its practical viability as a detector of Violin-Mode resonances in the test

  20. First results from the ‘Violin-Mode’ tests on an advanced LIGO suspension at MIT

    Science.gov (United States)

    Lockerbie, N. A.; Carbone, L.; Shapiro, B.; Tokmakov, K. V.; Bell, A.; Strain, K. A.

    2011-12-01

    This paper describes the first results from ‘Violin-Mode’ measurements made on the four suspension fibres of a fully suspended 40 kg test mass. These measurements were made at the LIGO lab, Gravitational Wave Observatory test facility, at MIT. Here, an aluminium-alloy (dummy) test mass, simulating an advanced LIGO (Laser Interferometer Gravitational Wave Observatory) test mass/mirror, had been suspended in air from a test suspension by four fused-silica suspension fibres, each measuring 400 µm in diameter × 600 mm long. Violin-Mode measurements were made on these highly tensioned fibres by retrofitting a prototype system of four novel shadow sensors to the test suspension, one per fibre, these sensors having, collectively, a displacement sensitivity of (6.9 ± 1.3) × 10-11 m (rms) Hz-1/2, at 500 Hz, over a measuring span of ±0.1 mm. Violin-Mode fundamental resonances were detected in all four fibres: with frequencies ˜ 485 Hz when the test mass was supported lightly from below, and at ˜500 Hz when it was fully suspended. In the latter case the Violin-Mode detection took place whilst the test mass, together with its suspension fibres, was undergoing relatively large-amplitude ‘pendulum-mode’ motion, at ˜0.6 Hz. This motion was measured to have a peak-peak amplitude at one of the suspension fibres of up to ˜140 µm (35 µm, rms)—the shadow sensors each having subsidiary outputs for monitoring such low-frequency, large amplitude, motion. Under fully suspended conditions, a calibrated Violin-Mode ‘free-oscillation’ amplitude of 430 ± 20 picometres, rms, was measured at 500.875 Hz, in the same suspension fibre which was found to be undergoing, simultaneously, the ˜140 µm peak-peak motion. Over the bandwidth monitored (dc to 3.2 kHz), Violin-Mode harmonics up to the sixth were recorded in an evoked response. It was concluded that the prototype system had demonstrated amply its practical viability as a detector of Violin-Mode resonances in the

  1. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    International Nuclear Information System (INIS)

    Santi, Peter A.; Demuth, Scott F.; Klasky, Kristen L.; Lee, Haeok; Miller, Michael C.; Sprinkle, James K.; Tobin, Stephen J.; Williams, Bradley

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  2. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A [Los Alamos National Laboratory; Demuth, Scott F [Los Alamos National Laboratory; Klasky, Kristen L [Los Alamos National Laboratory; Lee, Haeok [Los Alamos National Laboratory; Miller, Michael C [Los Alamos National Laboratory; Sprinkle, James K [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Williams, Bradley [DOE, NE

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  3. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options

    International Nuclear Information System (INIS)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J.; Parma, Edward J.Jr; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-01-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents

  4. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  5. Development of combined low-emissions burner devices for low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  6. Analyses of the performance of the ASTRID-like TRU burners in regional scenario studies - 5136

    International Nuclear Information System (INIS)

    Vezzoni, B.; Gabrielli, F.; Rineiski, A.

    2015-01-01

    In the past, large Sodium Fast Reactors systems (earlier CAPRA/CADRA, later ESFR and ESFR-like systems) and Accelerator Driven Systems (ADS-EFIT) were considered and extensively studied in Europe for managing MAs/Pu within regional or national scenario studies. After the ASTRID system was proposed in France, ASTRID-like burners could be considered as further options to be investigated. Low conversion ratio (CR) ASTRID-like burner cores (1200 MWth) have been considered at KIT by introducing few modifications with respect to the original French ASTRID design. These modifications allow keeping almost unchanged the main characteristics of the system (e.g. thermal power) and avoiding a strong deterioration of safety parameters (such as sodium void effect) after introduction of large amounts of Pu (more than 20%) and MAs (2-12%) in the fuel. These cores have already been studied at KIT for phase-out scenarios. A constant energy production case, relevant for a European or another regional scenario is considered in the paper. Cases with different shares (from 10 to 30%) of ASTRID-like burners in the nuclear energy fleet are compared. The results show that the ASTRID-like burners allow the use of all TRUs compositions foreseen in the fuel cycle with a proper choice of the MAs to Pu ratios and of the U/TRUs fractions either in phasing-out and on-going nuclear energy utilization conditions. The results show that a mixed fleet composed of 11% burners and 89% ESFR is able to stabilize the MAs in the cycle. The same stabilization is obtained with a fleet composed by 33% burner in combination with LWRs only

  7. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    Energy Technology Data Exchange (ETDEWEB)

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo [Dipartimento di Energetica, Politecnico di Milano, via La Masa, 34, 20156 Milano (Italy)

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  8. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, A. [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, J.G.; Bonnet, U. [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2007-09-15

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub x}. (orig.)

  9. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, Alexander [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, Joachim G.; Bonnet, Uwe [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2009-07-01

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub X}. (orig.)

  10. Analysis, fabrication, and field test of an advanced embedded throwing electromechanical sensing system

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Zhang, Dan [Beijing JiaoTong University, Beijing (China)

    2014-01-15

    Scientific measuring equipment is important in maintaining and further improving the daily training quality of professional athletes. In throwing sports, only kinematic information is usually recorded by several high-speed cameras, whereas the dynamic data are lacking. An advanced embedded throwing system is analyzed, fabricated, and field tested. This throwing system can be used to substitute the normal shot-put that obtains acceleration information from the upper limb when force is applied onto the device. This device has four main parts, namely, a mechanical shell, an embedded sensor, a signal processing circuit, and interface ports. The detailed design, simulation, and prototyping process are introduced in this work. The practical results obtained from the field test and feedback from users prove that the proposed throwing system is efficient for technical training and monitoring. This design provides a unique solution for the modeling and development of non-traditional, electro-mechanical sensing devices.

  11. Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2016-06-01

    Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.

  12. Simulations of Liners and Test Objects for a New Atlas Advanced Radiography Source

    International Nuclear Information System (INIS)

    Morgan, D. V.; Iversen, S.; Hilko, R. A.

    2002-01-01

    The Advanced Radiographic Source (ARS) will improve the data significantly due to its smaller source width. Because of the enhanced ARS output, larger source-to-object distances are a reality. The harder ARS source will allow radiography of thick high-Z targets. The five different spectral simulations resulted in similar imaging detector weighted transmission. This work used a limited set of test objects and imaging detectors. Other test objects and imaging detectors could possibly change the MVp-sensitivity result. The effect of material motion blur must be considered for the ARS due to the expected smaller X-ray source size. This study supports the original 1.5-MVp value

  13. Development of an Intelligent Maximum Power Point Tracker Using an Advanced PV System Test Platform

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Amoiridis, Anastasios; Beres, Remus Narcis

    2013-01-01

    The performance of photovoltaic systems is often reduced by the presence of partial shadows. The system efficiency and availability can be improved by a maximum power point tracking algorithm that is able to detect partial shadow conditions and to optimize the power output. This work proposes...... an intelligent maximum power point tracking method that monitors the maximum power point voltage and triggers a current-voltage sweep only when a partial shadow is detected, therefore minimizing power loss due to repeated current-voltage sweeps. The proposed system is validated on an advanced, flexible...... photovoltaic inverter system test platform that is able to reproduce realistic partial shadow conditions, both in simulation and on hardware test system....

  14. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    Science.gov (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide

    2018-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  15. Mechanical testing and development of the helical field coil joint for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Bryan, W.E.; Goranson, P.L.; Warwick, J.E.

    1985-01-01

    The helical field (HF) coil set for the Advanced Toroidal Facility (ATF) is an M = 12, l = 2, constant-ratio torsatron winding consisting of 2 coils, each with 14 turns of heavy copper conductor. The coils are divided into 24 identical segments to facilitate fabrication and minimize the assembly schedule. The segments are connected across through-bolted lap joints that must carry up to 124,000 A per turn for 5 s or 62,500 A steady-state. In addition, the joints must carry the high magnetic and thermal loads induced in the conductor and still fit within the basic 140- by 30-mm copper envelope. Extensive testing and development were undertaken to verify and refine the basic joint design. Tests included assembly force and clamping force for various types of misalignment; joint resistance as a function of clamping force; clamp bolt relaxation due to thermal cycling; fatigue testing of full-size, multiturn joint prototypes; and low-cycle fatigue and tensile tests of annealed CDA102 copper. The required performance parameters and actual test results, as well as the final joint configuration, are presented. 2 refs., 9 figs., 4 tabs

  16. The Continued Need for Modeling and Scaled Testing to Advance the Hanford Tank Waste Mission

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, Loni M.; Fort, James A.; Rector, David R.

    2013-09-03

    Hanford tank wastes are chemically complex slurries of liquids and solids that can exhibit changes in rheological behavior during retrieval and processing. The Hanford Waste Treatment and Immobilization Plant (WTP) recently abandoned its planned approach to use computational fluid dynamics (CFD) supported by testing at less than full scale to verify the design of vessels that process these wastes within the plant. The commercial CFD tool selected was deemed too difficult to validate to the degree necessary for use in the design of a nuclear facility. Alternative, but somewhat immature, CFD tools are available that can simulate multiphase flow of non-Newtonian fluids. Yet both CFD and scaled testing can play an important role in advancing the Hanford tank waste mission—in supporting the new verification approach, which is to conduct testing in actual plant vessels; in supporting waste feed delivery, where scaled testing is ongoing; as a fallback approach to design verification if the Full Scale Vessel Testing Program is deemed too costly and time-consuming; to troubleshoot problems during commissioning and operation of the plant; and to evaluate the effects of any proposed changes in operating conditions in the future to optimize plant performance.

  17. ADX: a high field, high power density, Advanced Divertor test eXperiment

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  18. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  19. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; J. E. Daw

    2011-03-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

  20. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; R. Schley; J. Palmer; K. Condie

    2014-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support the growth of nuclear science and technology in the United States (US). By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort at the Idaho National Laboratory (INL) is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this initial review, recommendations were made with respect to what instrumentation is needed at the ATR, and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. Since 2009, annual reports have been issued to provide updates on the program strategy and the progress made on implementing the strategy. This report provides an update reflecting progress as of January 2014.

  1. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    Science.gov (United States)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  2. Critical need for MFE: the Alcator DX advanced divertor test facility

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  3. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Daw, J.E.

    2011-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program's strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

  4. Partial discharge tests and characterisation of the Advanced Photon Source linac modulator cables

    International Nuclear Information System (INIS)

    Cours, A.

    2007-01-01

    The advanced photon source (APS) linac modulators are PFN-type pulsers with switch-mode charging power supplies (PSs). The PS and the PFN are connected to each other by 15 feet of 100-kV x-ray cable, with the PFN end of the cable terminated with a connector that was confirmed partial-discharge (PD)-free up to 38 kV ac (53.5 kV peak). Another end of the cable is terminated with a connector that was designed by the PS manufacturer and cannot easily be replaced with another type of connector, since part of it is located inside the densely packed PS. PD tests of the cables with this type of connector show that the PD inception voltages (PDIVs) in different cables turn out to be located within a wide voltage range: 21 to 27 kV ac that corresponds to 29 to 38 kV peak. In order to evaluate the insulation condition of the modulator cables, detect insulation deterioration, and ensure failure-preventing equipment maintenance, over the last two years the PDIVs of all high-voltage (HV) cables in use in the modulators have been tested about every three and a half months. Before the tests, all cables were removed from the equipment, carefully cleaned, inspected, and regreased. The tests were performed using a 40-kV PD detector. The test results show that: 1 The PDIVs remain almost unchanged in all tested cables. 2 From test to test, the PDIV of any particular cable may slightly oscillate around some average value. This possibly depends on the connector regreasing technique. 3 There is no direct evidence of cable insulation deterioration during more than two years of operation under voltage higher than the PD inception level.

  5. Application of roof radiant burners in large pusher-type furnaces

    Directory of Open Access Journals (Sweden)

    A. Varga

    2009-07-01

    Full Text Available The paper deals with the application of roof flat-flame burners in the pusher-type steel slab reheating furnaces, after furnace reconstruction and replacement of conventional torch burners, with the objective to increase the efficiency of radiative heat transfer from the refractory roof to the charge. Based on observations and on measurements of the construction and process parameters under operating conditions, the advantages and disadvantages of indirectly oriented radiant heat transfer are analysed in relation to the heat transfer in classically fired furnaces.

  6. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    International Nuclear Information System (INIS)

    Li, N.; Yefimov, E.; Pankratov, D.

    1998-04-01

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods

  7. Development, study and use of GN type high-speed burners

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, R A; Yerinov, A Y

    1981-01-01

    The design of a tunnel high speed gas burner for thermal, tunnel, and annealing furnaces is described. The use of GN type burners and heat treating processes and annealing of articles allows one to attain high uniformity of heating, to reduce fuel consumption, and to simplify the lining. A high degree of (+ or - f/sup 0/C) heating uniformity and significant (up to 30%) fuel saving was obtained in a heat treatment furnace with a roll-out hearth at the Uralkhimmash plant.

  8. The effect of heat transfer on acoustics in burner stabilized flat flames

    OpenAIRE

    Schreel, K.R.A.M.; Tillaart, van den, E.L.; Janssen, R.W.M.; Goey, de, L.P.H.; Vovelle, C.; Lucka, K.

    2003-01-01

    Modern central heating systems use low NO$_x$ premixed burners with a large modulation range. This can lead to noise problems which cannot be solved via trial and error, but need accurate modelling. An acoustic analysis as part of the design phase can reduce the time-to-market considerably, but the acoustic response of the flame is an unknown and complex key-factor. In this study, the influence of the heat transfer between the gas and the burner on the acoustic transfer coefficient is studied...

  9. Effect of Low Frequency Burner Vibrations on the Characteristics of Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    C. Kanthasamy

    2012-03-01

    Full Text Available Mechanical vibrations introduced in diffusion flame burners significantly affect the flame characteristics. In this experimental study, the effects of axial vibrations on the characteristics of laminar diffusion flames are investigated systematically. The effect of the frequency and amplitude of the vibrations on the flame height oscillations and flame stability is brought out. The amplitude of flame height oscillations is found to increase with increase in both frequency and amplitude of burner vibrations. Vibrations are shown to enhance stability of diffusion flames. Although flame lifts-off sooner with vibrations, stability of the flame increases.

  10. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  11. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER). Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report consists of appendices pertaining to the separating media evaluation (calcium nitrate solution) and testing for an advanced cyclone process. Appendices include: materials safety data, aqueous medium regeneration, pH control strategy, and other notes and data.

  12. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    Science.gov (United States)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  13. Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter

    Science.gov (United States)

    1993-01-01

    Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.

  14. Rapid BRAF mutation tests in patients with advanced melanoma : Comparison of immunohistochemistry, Droplet Digital PCR, and the Idylla Mutation Platform

    NARCIS (Netherlands)

    Bisschop, Cornelis; Ter Elst, Arja; Bosman, Lisette J; Platteel, Inge; Jalving, Mathilde; van den Berg, Anke; Diepstra, Arjan; van Hemel, Bettien; Diercks, Gilles F H; Hospers, Geke A P; Schuuring, Ed

    BRAF mutational testing has become a common practice in the diagnostic process of patients with advanced melanoma. Although time-consuming, DNA sequencing techniques are the current gold standard for mutational testing. However, in certain clinical situations, a rapid test result is required. In

  15. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Science.gov (United States)

    2010-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... Vertically fired boiler. 2 Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State Plant Unit...

  16. Comparison of test protocols for standard room/corner tests

    Science.gov (United States)

    R. H. White; M. A. Dietenberger; H. Tran; O. Grexa; L. Richardson; K. Sumathipala; M. Janssens

    1998-01-01

    As part of international efforts to evaluate alternative reaction-to-fire tests, several series of room/comer tests have been conducted. This paper reviews the overall results of related projects in which different test protocols for standard room/corner tests were used. Differences in the test protocols involved two options for the ignition burner scenario and whether...

  17. Development of optimized advanced austenitic steels (II). Evaluation of out-of-pile testing results of the test fuel claddings

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki; Mizuta, Shunji; Ukai, Shigeharu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-03-01

    14Cr-25Ni optimized advanced austenitic steels have been developed to improve the swelling resistance of 15Cr-20Ni austenitic stainless steels used for FBR fuel cladding. In this improvement, Ti, Nb, V and P were dissolved into 14Cr-25Ni matrix by means of the high-temperature solution treatment to make finely distributed and stabilized precipitates in the operation. Furthermore, at the final stage of cold-working, cold-working level increased and residual stress was reduced. In this study, as fabricated microstructure observation, solubility of alloying elements and grain size test in the manufacturing process were evaluated. Following results were obtained. (1) Spherical precipitates were observed in the grain. Most of them were identified as complexed carbide-nitride [Ti,Nb(C,N)] by EDX analysis. (2) The dissolved percentages of Ti and Ni in the matrix were about 70% and 30% respectively. Undissolved Ti and Nb may react with undissolved carbon and precipitate as MC carbides. (3) High-temperature solution treatment is effective for the sufficient solubility of alloying elements, but it is likely to induce very large grains, which is the cause of defective signal in the ultrasonic alloy testing. The results of the grain size test showed that the large grain size is reduced in low Nb (0.1wt%) alloy compared with the standard alloy (0.2wt% Nb), and the effectiveness for the grain size control by reducing the Nb content was confirmed. Also, it was suggested that the intermediate heat treatment and cold work conditions would possibly avoid the occurrence of the large grain at the final heat treatment. (author)

  18. Post launch calibration and testing of the Advanced Baseline Imager on the GOES-R satellite

    Science.gov (United States)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  19. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    Science.gov (United States)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  20. Operating the Advanced Test Reactor in today's economic and regulatory environment

    International Nuclear Information System (INIS)

    Furstenau, R.V.; Patrick, M.E.; Mecham, D.C.

    1999-01-01

    The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory, is the US Department of Energy's largest and most versatile test reactor. Base programs at ATR are planned well into the 21st century. The ATR and support facilities along with an overview of current programs will be reviewed, but the main focus of the presentation will be on the impact that today's economic and regulatory concerns have had on the operation of this test reactor. Today's economic and regulatory concerns have demanded more work be completed at lower cost while increasing the margin of safety. By the beginning of the 1990 s, federal budgets for research generally and particularly for nuclear research had decreased dramatically. Many national needs continued to require testing in the ATR; but demanded lower cost, increased efficiency, improved performance, and an increased margin of safety. At the same time budgets were decreasing, there was an increase in regulatory compliance activity. The new standards imposed higher margins of safety. The new era of greater openness and higher safety standards complemented research demands to work safer, smarter and more efficiently. Several changes were made at the ATR to meet the demands of the sponsors and public. Such changes included some workforce reductions, securing additional program sponsors, upgrading some facilities, dismantling other facilities, and implementing new safety programs. (author)

  1. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    Science.gov (United States)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  2. Acoustic Performance of an Advanced Model Turbofan in Three Aeroacoustic Test Facilities

    Science.gov (United States)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot-Low-Speed Wind Tunnel (LSWT), and in two other aeroacoustic facilities. The Universal Propulsion Simulator (UPS) fan was designed and manufactured by the General Electric Aircraft Engines (GEAE) Company, and featured active core, as well as bypass, flow paths. The reference test configurations were with the metal, M4, rotor with hardwall and treated bypass flow ducts. The UPS fan was tested within an airflow at a Mach number of 0.20 (limited flow data were also acquired at a Mach number of 0.25) which is representative of aircraft takeoff and approach conditions. Comparisons were made between data acquired within the airflow (9x15 LSWT and German-Dutch Wind Tunnel (DNW)) and outside of a free jet (Boeing Low Speed Aero acoustic Facility (LSAF) and DNW). Sideline data were acquired on an 89-in. (nominal 4 fan diameters) sideline using the same microphone assembly and holder in the 9x15 LSWT and DNW facilities. These data showed good agreement for similar UPS operating conditions and configurations. Distortion of fan spectra tonal content through a free jet shear layer was documented, suggesting that in-flow acoustic measurements are required for comprehensive fan noise diagnostics. However, there was good agreement for overall sound power level (PWL) fan noise measurements made both within and outside of the test facility airflow.

  3. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    International Nuclear Information System (INIS)

    Montierth, Leland M.

    2016-01-01

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  4. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  5. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  6. Development of a Fissile Materials Irradiation Capability for Advanced Fuel Testing at the MIT Research Reactor

    International Nuclear Information System (INIS)

    Hu Linwen; Bernard, John A.; Hejzlar, Pavel; Kohse, Gordon

    2005-01-01

    A fissile materials irradiation capability has been developed at the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) to support nuclear engineering studies in the area of advanced fuels. The focus of the expected research is to investigate the basic properties of advanced nuclear fuels using small aggregates of fissile material. As such, this program is intended to complement the ongoing fuel evaluation programs at test reactors. Candidates for study at the MITR include vibration-packed annular fuel for light water reactors and microparticle fuels for high-temperature gas reactors. Technical considerations that pertain to the design of the MITR facility are enumerated including those specified by 10 CFR 50 concerning the definition of a research reactor and those contained in a separate license amendment that was issued by the U.S. Nuclear Regulatory Commission to MIT for these types of experiments. The former includes limits on the cross-sectional area of the experiment, the physical form of the irradiated material, and the removal of heat. The latter addresses experiment reactivity worth, thermal-hydraulic considerations, avoidance of fission product release, and experiment specific temperature scrams

  7. Advanced Presentation of BETHSY 6.2TC Test Results Calculated by RELAP5 and TRACE

    Directory of Open Access Journals (Sweden)

    Andrej Prošek

    2012-01-01

    Full Text Available Today most software applications come with a graphical user interface, including U.S. Nuclear Regulatory Commission TRAC/RELAP Advanced Computational Engine (TRACE best-estimate reactor system code. The graphical user interface is called Symbolic Nuclear Analysis Package (SNAP. The purpose of the present study was to assess the TRACE computer code and to assess the SNAP capabilities for input deck preparation and advanced presentation of the results. BETHSY 6.2 TC test was selected, which is 15.24 cm equivalent diameter horizontal cold leg break. For calculations the TRACE V5.0 Patch 1 and RELAP5/MOD3.3 Patch 4 were used. The RELAP5 legacy input deck was converted to TRACE input deck using SNAP. The RELAP5 and TRACE comparison to experimental data showed that TRACE results are as good as or better than the RELAP5 calculated results. The developed animation masks were of great help in comparison of results and investigating the calculated physical phenomena and processes.

  8. A structured approach to evaluating aging of the advanced test reactor

    International Nuclear Information System (INIS)

    Dwight, J.E.

    1990-01-01

    An aging evaluation program has been developed for the United States Department of Energy's Advanced Test Reactor to support the current goal of operation through the year 2014 and beyond. The Aging Evaluation and Life Extension Program (AELEX) employs a three-phased approach. In Phases 1 and 2, now complete, components were identified, categorized and prioritized. Critical components were selected and aging mechanisms for the critical components identified. An initial evaluation of the critical components was performed and extended life operation for the plant appears to be both technically and economically feasible. Detailed evaluations of the critical components are now in progress in the early stages of Phase 3. Some results are available. Evaluations of many non-critical components and refinements to the program based on probabilistic risk assessment results will follow in later stages of Phase 3. 6 refs., 2 figs., 5 tabs

  9. Potential for large-diameter NTD silicon production in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Herring, J.S.; Korenke, R.E.

    1984-01-01

    The Advanced Test Reactor (ATR) is a 250-MW(t) flux-trap reactor located at the Idaho National Engineering Laboratory (INEL). Within the reflector are four 124-mm-diameter I-holes, which are available for silicon irradiation. Two large irradiation volumes of 0.5 m x 0.4 m x 1.2 m and 0.5 m x 0.2 m x 1.2 m are also available for transmutation doping. Thermal fluxes in these locations range from 0.56 to 23.0 x 10 12 nt/cm 3 -s. Use of the ATR for providing neutron transmutation doping (NTD) services in sizes not available elsewhere in the United States may be feasible

  10. Human factors engineering evaluation of the Advanced Test Reactor Control Room

    International Nuclear Information System (INIS)

    Boone, M.P.; Banks, W.W.

    1980-12-01

    The information presented here represents preliminary findings related to an ongoing human engineering evaluation of the Advanced Test Reactor (ATR) Control Room. Although many of the problems examined in this report have been previously noted by ATR operations personnel, the systematic approach used in this investigation produced many new insights. While many violations of Human Engineering military standards (MIL-STD) are noted, and numerous recommendations made, the recommendations should be examined cautiously. The reason for our suggested caution lies in the fact that many ATR operators have well over 10-years experience in operating the controls, meters, etc. Hence, it is assumed adaptation to the existing system is quite developed and the introduction of hardware/control changes, even though the changes enhance the system, may cause short-term (or long-term, depending upon the amount of operator experience and training) adjustment problems for operators adapting to the new controls/meters and physical layout

  11. Biomechanical testing of zirconium dioxide osteosynthesis system for Le Fort I advancement osteotomy fixation.

    Science.gov (United States)

    Hingsammer, Lukas; Grillenberger, Markus; Schagerl, Martin; Malek, Michael; Hunger, Stefan

    2018-01-01

    The following work is the first evaluating the applicability of 3D printed zirconium dioxide ceramic miniplates and screws to stabilize maxillary segments following a Le-Fort I advancement surgery. Conventionally used titanium and individual fabricated zirconium dioxide miniplates were biomechanically tested and compared under an occlusal load of 120N and 500N using 3D finite element analysis. The overall model consisted of 295,477 elements. Under an occlusal load of 500N a safety factor before plastic deformation respectively crack of 2.13 for zirconium dioxide and 4.51 for titanium miniplates has been calculated. From a biomechanical point of view 3D printed ZrO 2 mini-plates and screws are suggested to constitute an appropriate patient specific and metal-free solution for maxillary stabilization after Le Fort I osteotomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Smith, James A.; Jewell, James Keith

    2015-01-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  13. Risk-based management system development for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Davis, M.L.; Eide, S.A.

    1990-01-01

    A Risk-Based Management System (RBMS) is being developed to facilitate the use of the Advanced Test Reactor (ATR) probabilistic risk assessment to support ATR operation. Most ATR RBMS questions can best be answered using the System Analysis and Risk Assessment System (SARA) developed at the Idaho National Engineering Laboratory. However, some applications may require employment of the other four codes used to develop and report the PRA. These four codes include the Integrated Reliability and Risk Analysis System (IRRAS), SETS, ETA-II, and the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). The ATR RBMS will evolve over three years, and will include the results of the Level 3 and external events analysis

  14. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    Science.gov (United States)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  15. TFTR alpha extraction and measurement: Development and testing of advanced alpha detectors: Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.

    1988-01-01

    Advanced alpha-particle detectors made of heavy elements were investigated as alternatives to silicon surface-barrier detectors for the ''foil-neutralization technique'' of alpha-particle diagnostics in fusion reactors with high neutron backgrounds. From an extensive literature review, it was decided that HgI 2 would make a more suitable detector for alpha-particle diagnostics than other heavy element detectors such as CdTe. Thus, HgI 2 detectors were designed and fabricated. Experimental tests were performed to determine detector characteristics and detector responses to alpha particles. Radiation noise measurements were also performed using the North Carolina State University PULSTAR nuclear reactor for both the HgI 2 detectors and commercial Si(Au) surface barrier detectors. 15 refs., 1 fig

  16. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Human Factors, Controls, and Statistics; Smith, James A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design; Jewell, James Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design

    2015-02-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  17. Computer-based regulating control system for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Johnson, M.R.

    1983-01-01

    This paper describes a new control system which has recently been designed and installed at the Advanced Test Reactor at INEL, replacing an older system that had been in service for some 17 years. Based on modern digital technology, the new system provides improved capability, reliability, and an enhanced man/machine interface that includes comprehensive failure and error messages and voice synthesis. In addition to control functions, and transparent to the operator, the system performs continual on-line checks to sense subsystem failures and takes appropriate automatic action. In the maintenance mode, service technicians can carry on a dialog with the controller to quickly identify faulty components. The operational capabilities of the new system are summarized, and reactor operator training, experience, and acceptance of the system are discussed

  18. Reliability of Strength Testing using the Advanced Resistive Exercise Device and Free Weights

    Science.gov (United States)

    English, Kirk L.; Loehr, James A.; Laughlin, Mitzi A.; Lee, Stuart M. C.; Hagan, R. Donald

    2008-01-01

    The Advanced Resistive Exercise Device (ARED) was developed for use on the International Space Station as a countermeasure against muscle atrophy and decreased strength. This investigation examined the reliability of one-repetition maximum (1RM) strength testing using ARED and traditional free weight (FW) exercise. Methods: Six males (180.8 +/- 4.3 cm, 83.6 +/- 6.4 kg, 36 +/- 8 y, mean +/- SD) who had not engaged in resistive exercise for at least six months volunteered to participate in this project. Subjects completed four 1RM testing sessions each for FW and ARED (eight total sessions) using a balanced, randomized, crossover design. All testing using one device was completed before progressing to the other. During each session, 1RM was measured for the squat, heel raise, and deadlift exercises. Generalizability (G) and intraclass correlation coefficients (ICC) were calculated for each exercise on each device and were used to predict the number of sessions needed to obtain a reliable 1RM measurement (G . 0.90). Interclass reliability coefficients and Pearson's correlation coefficients (R) also were calculated for the highest 1RM value (1RM9sub peak)) obtained for each exercise on each device to quantify 1RM relationships between devices.

  19. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-01-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  20. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.