WorldWideScience

Sample records for advanced burner test

  1. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  2. Preliminary safety evaluation of the advanced burner test reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  3. Tests of gas-blast burners

    International Nuclear Information System (INIS)

    Testing of the most sold small gas-blast burners on the Danish market was carried out with regard to carbon monoxide emission contra the content of oxygen in the flue gas in relation to the burners' combustion stability at varying fire box pressures. The burners tested were Weishaupt WG 1: DG no. 2506, Riello 40 GS3: DG no. 2722, Bentone BEG 15: DG no. 2153 and Box 1 G: no. 1104. This covers 90% of the Danish market for gas burners. It was concluded that all the burners had a broader area of adjustment possibilities without carbon monoxide emission than previously tested box burners. This with the exception of when surplus oxygen is low, where large of amounts of carbon monoxide are generated at an oxygen content in flue gas of ca. 2% (10.8% CO2). Burners in which the total pressure in the blower was high were the most stable with regard to air supply and varying fire-box pressure. It is pointed out that other conditions of design have also influence in this respect. In the cases of Weishaupt, Bentone and Riello burners there is a significant relation between blast pressure and oxygen content in the flue gas, whereas in the case of the Box burner, the percentage of oxygen in the flue gas rises in relation to increased pressure in the smoke outlet. The results of the tests are presented in great detail. (AB)

  4. Advanced Burner Reactor Preliminary NEPA Data Study

    International Nuclear Information System (INIS)

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  5. Advanced Burner Reactor Preliminary NEPA Data Study.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  6. Fan Atomized Burner design advances & commercial development progress

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, B. [Heat-Wise, Inc., Ridge, NY (United States); Butcher, T.A. [Brookhaven National Lab., Upton, NY (United States)

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  7. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  8. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward

    International Nuclear Information System (INIS)

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  9. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  10. Carbide and Nitride Fuels for Advanced Burner Reactor

    International Nuclear Information System (INIS)

    The impacts of the mixed carbide and nitride fuels on the core performances and passive safety features of TRU burner were assessed and comapred with the metallic and oxide fuels. Targeting the potential design goals adopted in the Advanced Burner Reactor core concepts, the alternative TRU burner concepts were developed by loading carbide and nitride fuels. The neutron spectrum is softer than that of the metal core, but harder than that of the oxide core, and the core performance parameters such as fuel residence time, discharge burnup, flux level, etc are generally between the values of the metal and oxide cores. The margin to fuel melt was significantly increased because of the high thermal conductivity and high melting temperature, and hence there is an additional room to improve the thermal efficiency by increasing the operating temperature. The changed fuel composition affected the kinetics parameters and reactivity feedback coefficients, but the variations were minimal. The reduced core height decreases the sodium void worth, and the high thermal conductivity decreases the fuel temperature and Doppler constant. As a result, both carbide and nitride cores have favorable passive safety features without additional design fixes that are required in the oxide core concepts. (author)

  11. Demonstration test of burner liner strain measuring system

    Science.gov (United States)

    Stetson, K. A.

    1984-01-01

    A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.

  12. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  13. Neutronic Analysis of Advanced SFR Burner Cores using Deep-Burn PWR Spent Fuel TRU Feed

    International Nuclear Information System (INIS)

    In this work, an advanced sodium-cooled fast TRU (Transuranics) burner core using deep-burn TRU feed composition discharged from small LWR cores was neutronically analyzed to show the effects of deeply burned TRU feed composition on the performances of sodium-cooled fast burner core. We consider a nuclear park that is comprised of the commercial PWRs, small PWRs of 100MWe for TRU deep burning using FCM (Fully Ceramic Micro-encapsulated) fuels and advanced sodium-cooled fast burners for their synergistic combination for effective TRU burning. In the small PWR core having long cycle length of 4.0 EFPYs, deep burning of TRU up to 35% is achieved with FCM fuel pins whose TRISO particle fuels contain TRUs in their central kernel. In this paper, we analyzed the performances of the advanced SFR burner cores using TRU feeds discharged from the small long cycle PWR deep-burn cores. Also, we analyzed the effect of cooling time for the TRU feeds on the SFR burner core. The results showed that the TRU feed composition from FCM fuel pins of the small long cycle PWR core can be effectively used into the advanced SFR burner core by significantly reducing the burnup reactivity swing which reduces smaller number of control rod assemblies to satisfy all the conditions for the self controllability than the TRU feed composition discharged from the typical PWR cores

  14. Field testing the prototype BNL fan-atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  15. A blueprint for GNEP advanced burner reactor startup fuel fabrication facility

    International Nuclear Information System (INIS)

    Research highlights: → This article discusses use of WG-plutonium as the startup fuel for Advanced Burner Reactor. → The presence of gallium in WG fuel may compromise the fuel integrity. → There is no facility exists to remove gallium from plutonium except at laboratory scale. → This article discusses the processes and issues associated with the gallium removal. → The article provides realistic scenario to all stack-holders involved in designing and operating ABR. - Abstract: The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu)-239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the

  16. Advanced fuel cycle scenario study in the European context using different burner reactor concepts

    International Nuclear Information System (INIS)

    Different types of fast spectrum dedicated burners have been proposed for the management of radioactive wastes in the frame of various advanced fuel cycle scenarios. Accelerator-driven systems (ADS) and critical low conversion ratio fast reactors have been studied, e.g. within the European context. A potential alternative system is a fusion-fission hybrid (FFH). In the present study, a sodium-cooled fast reactor driven by a D-T fusion neutron source, the subcritical advanced burner reactor (SABR) system is considered. In order to intercompare the different systems, a systematic study is under way. The performances of the two types of systems (SABR, ADS) will be compared from a minor actinide (MA) or transuranic (i.e. Pu+MA) burning potential point of view. The present paper reports preliminary results of the first phase of study, i.e. the comparison of SABR and ADS when used as minor actinides burners. (authors)

  17. Evaluation of NOx emissions from advanced-technology range burners. Final report, March 1, 1990-June 30, 1991

    International Nuclear Information System (INIS)

    With growing concern for indoor air quality, it was important that emission rates from unvented combustion sources be cataloged to evaluate the effect they may have on the indoor air quality. Flue gas emissions were evaluated from new or European type or Japanese sealed or not sealed blue flame type range top burners installed in a conventional free standing gas range. Emissions were also evaluated from burners in advanced technology market ranges equipped with either blue flame or infrared burners

  18. Carbide and nitride fuels for advanced burner reactor

    International Nuclear Information System (INIS)

    Full text: Under the U.S. fast reactor program, reference and alternative 1000 MWth Advanced Burner Reactor (ABR) core concepts were developed using ternary metallic (U-TRU-Zr) and mixed oxide (UO2+TRUO2) fuels. Recently, mixed carbide and nitride fuels have been considered as fast reactor fuels on the basis of their high density, compatibility with coolant, high melting temperature, and excellent thermal conductivity although they are ceramic fuel like a mixed oxide fuel. Thus, the performance of the ABR core loaded with carbide and nitride fuels was evaluated in this study with an expectation that the carbide and nitride fuels can mitigate disadvantages of both metallic and oxide fuels in the ABR: favorable passive safety features in a severe accident compared to the oxide core, a higher discharge burnup compared to the metallic core, and a potential to increase thermal efficiency. All calculations performed in this study were focused on the neutronics characteristics, although the fabrication and irradiation experiences for carbide and nitride fuels are limited and some problems were observed in the reprocessing and irradiation of these fuels. The mixed monocarbide and mixed mononitride fuels were selected as the alternative fuel forms and the ABR core concepts with these fuels were developed based on the reference 1000 MWth ABR core concepts. For consistency, the potential design goals used in the reference ABR core concepts were also employed in this study: a 1000 MWth power rating, medium TRU conversion ratio of ∼0.75, a compact core, one-year operational cycle length at least with a capacity factor of 90%, sufficient shutdown margin with a limited maximum single control assembly fault, and possible use of either metallic or any ceramic fuels in the same core layout. The core layout and outer assembly dimensions of the reference 1000 MWth ABR core were kept, but the intra assembly design parameters were varied to maximize the discharge burnup within the

  19. INITIAL TEST RESULTS OF THE LIMESTONE INJECTION MULTISTAGE BURNER (LIMB) DEMONSTRATION PROJECT

    Science.gov (United States)

    The paper discusses SO2 removal efficiency and low-NOx burner performance obtained during short term tests, as well as the impact of LIMB ash on electrostatic precipitator (ESP) performance at Ohio Edison's Edgewater Station. Project goals are to demonstrate 50% or more SO2 remov...

  20. Advancement of Cellular Ceramics Made of Silicon Carbide for Burner Applications

    International Nuclear Information System (INIS)

    Lower emissions of CO and NOx as well as a higher power density were observed in combustion processes performed in porous media like ceramic foams. Only a few materials are applicable for porous burners. Open-celled ceramic foams made of silicon carbide are of particular interest because of their outstanding properties. Two different SiC materials have been investigated, silicon-infiltrated silicon carbide (SiSiC) and pressureless sintered silicon carbide (SSiC). The oxidation behaviour of both has been characterized by furnace oxidation and burner tests up to 500 h operating time. Up to a temperature of 1200 deg. C SiSiC exhibited a good oxidation resistance in combustion gases by forming a protective layer of silica. High inner porosity up to 30% in the ceramic struts was found in the SSiC material. Caused by inner oxidation processes the pure material SSiC allows only short time applications with a temperature limit of 1550 deg. C in combustion gases. An increase of the lifetime of the SSiC foams was obtained by development of a new SSiC with an inner porosity of less than 12%. The result was a considerable reduction of the inner oxidation processes in the SSiC struts.

  1. Dilapidation of the TBC system during the Burner Rig Test

    Directory of Open Access Journals (Sweden)

    S Sreenivas

    2015-06-01

    Full Text Available Substrate of Inconel 718 was deposited with a bond coat of nickel cobalt chromium aluminium yttriym (NiCoCrAlY. A top coat of thermal barrier coating of 8% Yttria stabilised zirconia (YSZ was sprayed over the bond coat by an air plasma spray (APS technique by employing standard process parameters. Static oxidation test conducted at 1000 0C and for 120 hours (h revealed that main degradation modes of the TBC system were connected with formation of porous NiAl2O4 oxides in the thermally grown oxide area followed by formation of micro-cracks, delamination of ceramic layer and spallation of ceramic topcoat.

  2. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  3. Mathematical modeling and experimental tests of the air jets mixing process in a new prototype of lignite burner for lower NOx emissions

    International Nuclear Information System (INIS)

    In order to decrease the NOx emissions generated by a lignite steam generator, a new prototype burner has been designed. The burner should operate with staggered combustion, to achieve lower temperatures in the first zone of the flame. The paper presents in parallel the results of the mathematical model and experimental tests of the mixing process of primary, secondary and tertiary air-flow jets at environmental temperature. Keywords: mathematical modeling, experimental tests, lignite burner, NOx reduction

  4. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  5. Use of freeze-casting in advanced burner reactor fuel design

    International Nuclear Information System (INIS)

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO2) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results

  6. Development and Test Performance of a Three-Burner Wood-Fired Stove

    International Nuclear Information System (INIS)

    A three-burner wood stove has been designed, constructed and its performance characteristics tested by computing the percentages of wood consumed and the quantity of heat utilized when three pots containing water were heated simultaneously in the three cooking compartments respectively. The result shows that the percentages of wood consumed and the heat energy used were 72.5% and 33.6% respectively. These indicate an improvement on the previous work, which gave the percentages of wood consumed and heat energy utilized to be respectively 61.8% and 10.4% for three-stone wood stove and 79.8% and 19.8% for a two-hole stove. Also the central heating compartment received more heat energy (465.4 KJ) than the side ones (336.3 KJ and 298.2 KJ) after 36 minutes so that the user could discriminate on their application with respect to the heat requirements of what is being cooked

  7. An Advanced Option for Sodium Cooled TRU Burner Loaded with Uranium-Free Fuels

    International Nuclear Information System (INIS)

    The sodium cooled fast reactors of this kind that are called burners are designed to have low conversion ratio by reducing fuel volume fraction or reducing neutron leakage or increasing neutron absorption. However, the typical SFR burners have a limited ability of TRU burning rate due to the fact that they use metallic or oxide fuels containing fertile nuclides such as 238U and 232Th and these fertile nuclides generate fissile nuclides through neutron capture even if they are designed to have low conversion ratio (e.g., 0.6). To further enhance the TRU burning rate, the removal of the fertile nuclides from the initial fuels is required and it will accelerate the reduction of TRUs that are accumulated in storages of LWR spent fuels. However, it has been well-known 4 that the removals of the fertile nuclides from the fuel degrade the inherent safety of the SFR burner cores through the significant decrease of the fuel Doppler effect, the increase of sodium void reactivity worth, and reduction of delayed neutron fraction. In this work, new option for the sodium cooled fast TRU burner cores loaded with fertile-free metallic fuels was proposed and the new cores were designed by using the suggested option. The cores were designed to enhance the inherent safety characteristics by using axially central absorber region and 6 or 12 ZrH1.8 moderator rods per fuel assembly. For each option, we considered two different types of fertile-free ternary metallic fuel (i.e., TRU-W-10Zr and TRU-Ni-10Zr). Also, we performed the BOR (Balance of Reactivity) analyses to show the self-controllability under ATWS as a measure of inherent safety. The core performance analysis showed that the new cores using axially central absorber region substantially improve the core performance parameters such as burnup reactivity swing and sodium void reactivity worth

  8. An Advanced Option for Sodium Cooled TRU Burner Loaded with Uranium-Free Fuels

    Energy Technology Data Exchange (ETDEWEB)

    You, WuSeung; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The sodium cooled fast reactors of this kind that are called burners are designed to have low conversion ratio by reducing fuel volume fraction or reducing neutron leakage or increasing neutron absorption. However, the typical SFR burners have a limited ability of TRU burning rate due to the fact that they use metallic or oxide fuels containing fertile nuclides such as {sup 238}U and {sup 232}Th and these fertile nuclides generate fissile nuclides through neutron capture even if they are designed to have low conversion ratio (e.g., 0.6). To further enhance the TRU burning rate, the removal of the fertile nuclides from the initial fuels is required and it will accelerate the reduction of TRUs that are accumulated in storages of LWR spent fuels. However, it has been well-known 4 that the removals of the fertile nuclides from the fuel degrade the inherent safety of the SFR burner cores through the significant decrease of the fuel Doppler effect, the increase of sodium void reactivity worth, and reduction of delayed neutron fraction. In this work, new option for the sodium cooled fast TRU burner cores loaded with fertile-free metallic fuels was proposed and the new cores were designed by using the suggested option. The cores were designed to enhance the inherent safety characteristics by using axially central absorber region and 6 or 12 ZrH1.8 moderator rods per fuel assembly. For each option, we considered two different types of fertile-free ternary metallic fuel (i.e., TRU-W-10Zr and TRU-Ni-10Zr). Also, we performed the BOR (Balance of Reactivity) analyses to show the self-controllability under ATWS as a measure of inherent safety. The core performance analysis showed that the new cores using axially central absorber region substantially improve the core performance parameters such as burnup reactivity swing and sodium void reactivity worth.

  9. Regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Davies, T.E.; Quinn, D.E.; Watson, J.E.

    1986-08-05

    A regenerative burner is described operable in fire and flue modes comprising: a burner shell having first and second internal chambers, the first chamber being disposed on the flame axis of the burner and the second chamber surrounding the radial perimeter of the first chamber; a gas permeable annular regenerative bed separating the first and second chambers such that gas flow between the first and second chambers must travel through the regenerative bed in a generally radial direction with respect to the flame axis; means for supplying combustion air to the second chamber when the burner is in the fire mode and for exhausting the products of combustion from the second chamber when the burner is in the flue mode; and means for supplying fuel in the vicinity of the flame axis for mixing with combustion air to support combustion when the burner is in the fire mode.

  10. Regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, G.M.

    1990-05-08

    This patent describes a method of combusting fuel in a furnace having a pair of regenerative burners, each burner having a combustion chamber. It comprises: supplying fuel and oxygen alternatively to each burner to create alternating firing burners wherein the oxygen is supplied from two sources providing first and second oxidizing gases having different oxygen concentrations and simultaneously alternating the application of negative pressure to the remaining non-firing burner to recover heat from flue gases exhausted by the regenerative bed of the non-firing burner to be used further to preheat at least part of the oxygen being supplied to the firing burner; mixing the fuel with a fraction of the oxygen under substoichiometric combustion condition to create products of incomplete combustion to form a hot, luminous flame core containing partially pyrolized fuel; and mixing the partially pyrolyzed fuel with a remaining fraction of the oxygen to complete combustion of the pyrolized fuel; and controlling the total flow of fuel and oxygen supplied to each burner to provide each burner with a desired flame stoichiometry.

  11. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  12. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  13. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    OpenAIRE

    Luciano Fanton; Christian Paravan; Luigi T. De Luca

    2012-01-01

    Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models ...

  14. Testing of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Combined heat and power (CHP) or cogeneration involves the generation of electricity in addition to the productive use of waste heat from the combustion process using the same primary fuel. An alternative to combined electrical power and heat generation is a micro-cogeneration unit which uses a micro-turbine as a prime mover. This type of unit is expected to result in a shift from large and centralized plants to smaller, more economical on-site generation plants. This paper presented a new low nitrogen oxide (NOx) wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. In order to increase its thermal output, the low NOx WMDB was designed, built and integrated for evaluation with the Ingersol-Rand 70 kw micro-cogeneration unit. The wire-mesh burner had a conical shape and was manufactured by ACOTECH. The paper also discussed the advantages of micro-CHP units which are more attractive to building owners, retail establishments, commercial and light industrial facilities. Advantages include quality of the power supply; more economical, cleaner power; and the addition of new capacity without new transmission lines. It was concluded that low levels of emission were achieved with the development of a low NOx wire-mesh duct burner for a micro-cogeneration plant. 2 refs., 5 figs.

  15. Development and testing of the pore burner technology for oil burners. Final report; Entwicklung und Erprobung der Porenbrennertechnik fuer Oelbrenner. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Trimis, D.; Wawrzinek, K.; Koehne, H.; Lucka, K.; Rudolphi, I.; Hatzfeld, O.; Volkert, J.; Rutsche, A.; Adler, J.; Standke, G.; Haase, F.; Krueger, K.; Kuechen, C.

    2001-11-01

    The application of the pore burner technology in oil burners was investigated. Together with a new concept for oil-fuelled high efficiency boilers, this technology opens up a vast potential for energy conservation and pollutant reduction. [German] Der Waermebedarf von Wohneinheiten nimmt, flankiert durch Vorgaben des Gesetzgebers, in Zukunft weiter ab. Parallel dazu werden die Grenzwerte fuer die maximal zulaessigen Schadgasemissionen der Heizanlagen verschaerft und die emissionsintensiven und im intermittierenden Betrieb bei Teillast sehr haeufigen Start/Stop-Betriebsphasen konventioneller Oel-Heizsysteme strenger bewertet. Ziel dieses Vorhabens ist es, die fuer die Verbrennung gasfoermiger Brennstoffe bereits erfolgreich demonstrierten Vorteile der Porenbrennertechnik (sehr niedrige Schadstoffemissionen, aeusserst breiter Bereich der Leistungsmodulation bis 1:20, hohe Energiedichte und damit kleine Baugroesse, minimale Geraeuschemission) auch fuer die Verbrennung von Heizoel nutzbar zu machen. In Verbindung mit einem neuen Konzept fuer die Oel-Brennwerttechnik erschliesst diese Technologie ein hohes Einsparpotential hinsichtlich Energieverbrauch und Schadstoffemissionen. (orig.)

  16. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  17. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  18. Blending of hydrogen in natural gas distribution systems. Volume II. Combustion tests of blends in burners and appliances. Final report, June 1, 1976--August 30, 1977. [8, 11, 14, 20, 22, 25, and 31% hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    The emerging ''hydrogen economy'' is a strong contender as one method to supplement or extend the domestic natural gas supply. This volume of the subject study ''Blending Hydrogen in Natural Gas Distribution Systems'' describes combustion studies to determine the maximum amount of hydrogen that can be blended in natural gas and utilized satisfactorily in typical appliances with no adjustment or conversion. Eleven pilot burners and twenty-three main burners typical of those in current use were operated on hydrogen-natural gas mixtures containing approximately 8, 11, 14, 20, 22, 25, and 31 percent, by volume, hydrogen. The eleven pilot burners and thirteen main burners were tested outside the appliance they were a part of. Ten main burners were tested in their respective appliances. Performance of the various burners tested are as follows: (1) Gas blends containing more than 6 to 11% hydrogen are the limiting mixtures for target type pilot burners. (2) Gas blends containing more than 20 to 22% hyrogen are the limiting mixtures for main burners operating in the open. (3) Gas blends containing more than 22 to 25% hydrogen are the limiting mixtures for main burners tested in appliances. (4) Modification of the orifice in target pilots or increasing the supply pressure to a minimum of 7 inches water column will permit the use of gas blends with 20% hydrogen.

  19. Research, development, and testing of a prototype two-stage low-input rate oil burner for variable output heating system applications

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F.; Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    The use of a Two-Stage Fan Atomized Oil Burner (TSFAB) in space and water heating applications will have dramatic advantages in terms of it`s potential for a high Annual Fuel Utilization Efficiency (AFUE) and/or Energy Factor (EF) rating for the equipment. While demonstrations of a single rate burner in an actual application have already yielded sufficient confidence that space and domestic heating loads can be met at a single low firing rate, this represents only a narrow solution to the diverse nature of building space heating and domestic water loads that the industry must address. The mechanical development, proposed control, and testing of the Two-Stage burner is discussed in terms of near term and long term goals.

  20. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    Directory of Open Access Journals (Sweden)

    Luciano Fanton

    2012-01-01

    Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.

  1. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to...

  2. Advanced Vehicle Testing and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Garetson, Thomas [The Clarity Group, Incorporated, Chicago, IL (United States)

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  3. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 2. PILOT SCALE TESTS

    Science.gov (United States)

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  4. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 1. LABORATORY SCALE TESTS

    Science.gov (United States)

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  5. Advanced test reactor. Testing capabilities and plans

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner 'lobes' to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plants for the NSUF. (author)

  6. Short-term corrosion testing in a burner rig with oxy-fuel and conventional firing

    International Nuclear Information System (INIS)

    As part of the European ENCAP project, a test rig has been modified by IVD (Institute of Process - Engineering and Power Plant Technology), Stuttgart, Germany to compare oxy-fuel firing with conventional firing. A broad spectrum of alloys from low alloyed steels to nickel alloys were exposed on a cooled probe in this rig at a metal temperature of 630 C for up to 40 hours with lignite from the Lausitz region as the fuel, and for 26 hours with bituminous coal (Kleinkopje) as fuel. For lignite firing, both exposure with oxy-fuel firing with recirculation of flue gas and conventional firing has been conducted to compare the corrosion attack and deposit composition. Only oxy-fuel tests were conducted with the bituminous coal. For the lignite fuel, the deposit composition from oxy-fuel and conventional firing was similar, and consisted of calcium sulphate (anhydrite) and iron oxide (hematite). The corrosion attack for the different alloys was also similar for both types of combustion. The corrosion attack was oxidation with some sulfidation/sulphation at the oxide-metal interface. In general, the thickness of the corrosion product decreased for the higher alloyed steels. The ferritic steels formed a two layered oxide. The high nickel containing alloy Hastelloy C-2000 showed a surprisingly high corrosion rate with internal attack and an outer nickel oxide. The Kanthal APM and Nimonic 263 alloys had the best oxide with even surface coverage. For the bituminous coal test, there was very little deposit on the specimens, and the deposit was rich in aluminium, silicon, oxygen and iron with lesser amounts of calcium and sulphur. The corrosion attack for the different alloys was similar to that observed for lignite where Kanthal APM had the most protective oxide coverage. Generally the mass gain rates are similar between the different tests for the same material. The main findings from these short term tests are that alumina forming alloys and super austenitic stainless steels

  7. Short-term corrosion testing in a burner rig with oxy-fuel and conventional firing

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, M. [Vattenfall Heat Nordic/DTU Mekanik (Denmark); Hjornhede, A. [Vattenfall Power Consultant AB (Sweden); Gerhardt, A. [Institute of Process-Engineering and Power Plant Technology (IVD)/ Vattenfall Research and Development (Germany)

    2009-07-01

    As part of the European ENCAP project, a test rig has been modified by IVD (Institute of Process - Engineering and Power Plant Technology), Stuttgart, Germany to compare oxy-fuel firing with conventional firing. A broad spectrum of alloys from low alloyed steels to nickel alloys were exposed on a cooled probe in this rig at a metal temperature of 630 C for up to 40 hours with lignite from the Lausitz region as the fuel, and for 26 hours with bituminous coal (Kleinkopje) as fuel. For lignite firing, both exposure with oxy-fuel firing with recirculation of flue gas and conventional firing has been conducted to compare the corrosion attack and deposit composition. Only oxy-fuel tests were conducted with the bituminous coal. For the lignite fuel, the deposit composition from oxy-fuel and conventional firing was similar, and consisted of calcium sulphate (anhydrite) and iron oxide (hematite). The corrosion attack for the different alloys was also similar for both types of combustion. The corrosion attack was oxidation with some sulfidation/sulphation at the oxide-metal interface. In general, the thickness of the corrosion product decreased for the higher alloyed steels. The ferritic steels formed a two layered oxide. The high nickel containing alloy Hastelloy C-2000 showed a surprisingly high corrosion rate with internal attack and an outer nickel oxide. The Kanthal APM and Nimonic 263 alloys had the best oxide with even surface coverage. For the bituminous coal test, there was very little deposit on the specimens, and the deposit was rich in aluminium, silicon, oxygen and iron with lesser amounts of calcium and sulphur. The corrosion attack for the different alloys was similar to that observed for lignite where Kanthal APM had the most protective oxide coverage. Generally the mass gain rates are similar between the different tests for the same material. The main findings from these short term tests are that alumina forming alloys and super austenitic stainless steels

  8. Thermophotovoltaic generation of electricity in a gas fired heater: Influence of radiant burner configurations and combustion processes

    International Nuclear Information System (INIS)

    With recent advances in low bandgap thermophotovoltaic (TPV) devices, further research into the radiant burner and its effect on the performance of TPV systems is particularly needed. The present work investigates various gas fired radiant burner/emitters and the influence of the combustion processes on radiant power and radiant efficiency. The performance tests with the burner/emitters have been conducted in a TPV self powered heater (mini cogenerator). It is shown that the radiant burner performance is affected markedly by the combustion parameters. Care must be taken to diminish the risk of flashback for the surface flame type burner. The maximum radiant power density and radiant efficiency of the burner/emitters have been determined. This is of great interest to TPV generation in gas fired heating appliances. Furthermore, the maximum electric power generated by the GaSb TPV converter is measured under a range of operating conditions for the different burner/emitter configurations. An electric power density of 0.332 W/cm2 has been achieved. Finally, the cogenerating aspects of the TPV systems are discussed

  9. Recent Advances in Contextuality Tests

    Science.gov (United States)

    Thompson, Jayne; Kurzyński, Paweł; Lee, Su-Yong; Soeda, Akihito; Kaszlikowski, Dagomir

    2016-07-01

    Our everyday experiences support the hypothesis that physical systems exist independently of the act of observation. Concordant theories are characterized by the objective realism assumption whereby the act of measurement simply reveals preexisting well-defined elements of reality. In stark contrast quantum mechanics portrays a world in which reality loses its objectivity and is in fact created by observation. Quantum contextuality as first discovered by Bell [1] and Kochen-Specker [2] captures aspects of this philosophical clash between classical and quantum descriptions of the world. Here we briefly summarize some of the more recent advances in the field of quantum contextuality. We approach quantum contextuality through its close relation to Bell type nonlocal scenarios and highlight some of the rapidly developing tests and experimental implementations.

  10. Thermionic cogeneration burner assessment

    International Nuclear Information System (INIS)

    Both electric power and high-temperature flue gas can be cogenerated by combining a furnace burner with thermionic converters, forming a thermionic cogeneration burner. To assess the performance and cost of such a burner, a one-for-one replacement, bolt-on burner, which could be used in most industrial applications, was designed in detail. It was analyzed and parametric performance data was derived from a mathematical model. Details of the design analysis, as well as an economic evaluation of installed cost ($/kW) and internal rate-of-return, are presented

  11. Design and construction of thermionic cogeneration burner module

    International Nuclear Information System (INIS)

    The thermionic cogeneration burner module is a high temperature burner equipped with thermionic converters. A demonstration of a thermionic cogeneration system is under way. In this demonstration a hot oil heater (used in various industrial processes) was equipped with a thermionic cogeneration burner module. This module contained converters that were connected in series to produce approximately 180 watts at 2.4 volts. The system is now undergoing preliminary testing. It is expected that additional test results will be available in the fall

  12. Combustor burner vanelets

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  13. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  14. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Grudzinski, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  15. Gas/particle flow characteristics of two swirl burners

    International Nuclear Information System (INIS)

    A three-component particle-dynamics anemometer is used to measure, in the near-burner region, the characteristics of gas/particle two-phase flows with a centrally fuel rich swirl coal combustion burner and enhanced ignition-dual register burner, on a gas/particle two-phase test facility. Velocities, RMS velocities, particle mean diameters and particle volume flux profiles were obtained. For the centrally fuel rich burner, particles penetrate the central recirculation zone partially, and are then deflected radially. For the enhanced ignition-dual register burner, particles completely penetrate the central recirculation zone. Compared with the enhanced ignition-dual register burner, in the same cross-section, the particle volume flux peak value for the centrally fuel rich burner is much closer to the chamber axis and much larger near the chamber axis. In six cross-sections from x/d = 0.3 to 2.5, the particle volume flux in the central recirculation zone for the centrally fuel rich burner is much larger than that for the enhanced ignition-dual register burner. For the centrally fuel rich burner, most of bigger particles are resident in the region near the chamber axis and the residence time is prolonged. The influence of gas/particle flow characteristics on combustion has been analyzed.

  16. FIELD EVALUATION OF LOW-EMISSIONS COAL BURNER TECHNOLOGY ON UTILITY BOILERS; VOLUME II. SECOND GENERATION LOW-NOX BOILERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  17. DESIGN AND FIELD DEMONSTRATION OF A LOW-NOX BURNER FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAMERS

    Science.gov (United States)

    The paper discusses a program that addresses the need for advanced NOx control technology for thermally enhanced oil recovery (TEOR) steam generators. A full-scale (60 million Btu/hr) burner system has been developed and tested, the concept for which was based on fundamental stud...

  18. A heated chamber burner for atomic absorption spectroscopy.

    Science.gov (United States)

    Venghiattis, A A

    1968-07-01

    A new heated chamber burner is described. The burner is of the premixed type, and burner heads of the types conventionally used in atomic absorption may be readily adapted to it. This new sampling system has been tested for Ag, Al, Ca, Cu, Fe, Mg, Mn, Ni, Pb, Si, Ti, and Zn in aqueous solutions. An improvement of the order of ten times has been obtained in sensitivity, and in detection limits as well, for the elements determined. Interferences controllable are somewhat more severe than in conventional burners but are controllable. PMID:20068792

  19. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  20. Thermal Characteristics of Heating-furnace with Regenerative Burner

    OpenAIRE

    HUA, Jianshe; Li, Xiaoming; Kawabata, Nobuyoshi

    2005-01-01

    Thermal characteristics between the heating-furnace with regenerative burner and the classical triple-fired continuous furnace by heat balance testing for two billet steel heating-furnace at the same billet steel heating have been analyzed. In addition, the operating principle, the thermal characteristics and the effect of energy saving for heating-furnace with regenerative burner are introduced.

  1. Emission characteristics of a novel low NOx burner fueled by hydrogen-rich mixtures with methane

    OpenAIRE

    Dutka, Marcin Damian; Ditaranto, Mario; Løvås, Terese

    2015-01-01

    The use of hydrogen-rich fuels may be challenging for burner designers due to unique properties of hydrogen compared to conventional fuels such as natural gas. Burner retrofit may be required to use hydrogen-enriched fuels in combustion systems that are designed for natural gas combustion. This study aimed to experimentally investigate NOx emissions from a novel low NOx burner fueled by methane-hydrogen mixtures. The burner was tested in a cylindrical combustion chamber at atmosph...

  2. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  3. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS. VOLUME I. DISTRIBUTED MIXING BURNER EVALUATION

    Science.gov (United States)

    The report gives results of a study in which NOx emissions and general combustion performance characteristics of four burners were evaluated under experimental furnace conditions. Of primary interest was the performance of a low NOx Distributed Mixing Burner (DMB), which was test...

  4. Ceramic application for regenerative burner system

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.B.; Park, B.H.; Kim, Y.W.; Bae, W.S. [RIST, Pohang (Korea)

    1999-05-01

    Recently, regenerative burner system was developed and begins to be gradually used for better energy savings. Compared to conventional burner system, the regenerative one has the several merits such as higher fuel efficiency, light weight of apparatus, low harmful toxic gas and homogeneous heating zone, etc. The regenerative material, a very important component of the new regenerative burner system should possess the properties of low specific density, higher surface area and high specific heat capacity. Ceramics is the best regenerative material because of stable mechanical properties even at high temperature and better thermal properties and excellent chemical stability. In this study, alumina ball, alumina tube, 3-D ceramic foam and honeycomb as regenerative materials were tested and evaluated. The computer simulation was conducted and compared to the result of field test. This paper is aimed to introduce a new application of ceramics at high temperature. 7 refs., 5 figs., 3 tabs.

  5. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  6. Downhole burner for wells

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H.; Hazard, H.R.; Hummell, J.D.; Schulz, E.J.

    1966-03-22

    This is a downhole gas and air burner for use in wells to stimulate production. The combustible mixture is supplied to the combustion chamber of the downhole burner through a delivery tube. This tube includes a flow-back preventer and a check valve. The flashback preventers consist of a porous material which has restricted flow paths. The check valve controls the flow of combustible mixture to the combustion chamber and prevents undesirable pulsating flow through the combustion chamber and the delivery tube. The check valve also prevents flooding of the combustion chamber by well fluid. The burner is ignited electrically. The porous material can be flat strip or a conically shaped piece of thin porous metal.

  7. Advanced Mechanical Testing of Sandwich Materials

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Jenstrup, Claus;

    2008-01-01

    An advanced digital optical system has been used to measure surface strains on sandwich face and core specimens tested in a project concerned with improved criteria for designing sandwich X-joints. The face sheet specimens were of glass reinforced polyester and were tested in tension. The core sp...

  8. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-02-24

    Osaka Gas Co., Ltd.'s new flat-flame heat-treatment burner offers lower material costs, reduced combustion noise, and elimination of the need for a high-pressure fuel gas to provide a high-velocity combustion burner. The flat-flame burner contains an air-swirling chamber with a flame opening in one side; the wall defining the flame opening has a small thickness around the opening and a flat outer face. This construction causes the combustion gas to be forced out from the flame opening in a spiral direction by the swirling air current within the air chamber; together with the orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space, this helps assure the formation of a flat flame spreading out over a very wide area for very rapid, uniform, and highly efficient heat treatment of an article to be heated. This approach also permits the thickness of the overall device to be reduced. The supply of combustion air in the form of a swirling stream makes it possible to provide a high-velocity combustion burner without using a high-pressure fuel gas, with the advantage of satisfactory mixture of the fuel gas and combustion air and consequently markedly reduced combustion noise.

  9. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; SEMIANNUAL

    International Nuclear Information System (INIS)

    An initial testing campaign was carried out during the summer of 2000 to evaluate the impact of multiburner firing on NOx emissions. Extensive data had been collected during the Fall of 1999 and Spring of 2000 using a single pulverized-coal (PC) burner, and this data collection was funded by a separate Department of Energy program, the Combustion 2000 Low Emission Boiler System (LEBS) project under the direction of DB Riley. This single-burner data was thus available for comparison with NOx emissions obtained while firing three burners at the same overall load and operating conditions. A range of operating conditions were explored that were compatible with single-burner data, and thus the emission trends as a function of air staging, burner swirl and other parameters will be described below. In addition, a number of burner-to-burner operational variations were explored that provided interesing insight on their potential impact on NOx emissions. Some of these variations include: running one burner very fuel rich while running the others fuel lean; varying the swirl of a single burner while holding others constant; increasing the firing rate of a single burner while decreasing the others. In general, the results to date indicated that multiburner firing yielded higher NOx emissions than single burner firing at the same fuel rate and excess air. At very fuel rich burner stoichiometries (SR and lt; 0.75), the difference between multiple and single burners became indistinguishable. This result is consistent with previous single-burner data that showed that at very rich stoichiometries the NOx emissions became independent of burner settings such as air distributions, velocities and burner swirl

  10. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  11. Advanced Materials Laboratory User Test Planning Guide

    Science.gov (United States)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  12. THIRTY-DAY FIELD TESTS OF INDUSTRIAL BOILERS: SITE 5 - GAS-FIRED LOW-NOX BURNER

    Science.gov (United States)

    This is a final report on a test program to evaluate the long-term effectiveness of combustion modifications on industrial boilers. During previous programs, short-term tests were performed on industrial boilers to determine the effect of combustion modifications on air pollutant...

  13. Test Concept for Advanced Oxidation Techniques

    DEFF Research Database (Denmark)

    Bennedsen, Lars Rønn; Søgaard, Erik Gydesen; Mortensen, Lars

    as establishing the applicability of the proposed technique, the treatability tests also provide essential site-specific design parameters required for the full scale system, namely; oxidant demand, delivery method, kinetics etc. Drawing up field studies and laboratory data, this poster will discus the importance...... advanced on-site oxidation tests. The remediation techniques included are electrochemical oxidation, photochemical/photocatalytic oxidation, ozone, hydrogen peroxide, permanganate, and persulfate among others. A versatile construction of the mobile test unit makes it possible to combine different...

  14. Future Transient Testing of Advanced Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by

  15. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non

  16. Instrumentation to Enhance Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  17. Instrumentation to Enhance Advanced Test Reactor Irradiations

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  18. Mastering Kali Linux for advanced penetration testing

    CERN Document Server

    Beggs, Robert W

    2014-01-01

    This book provides an overview of the kill chain approach to penetration testing, and then focuses on using Kali Linux to provide examples of how this methodology is applied in the real world. After describing the underlying concepts, step-by-step examples are provided that use selected tools to demonstrate the techniques. If you are an IT professional or a security consultant who wants to maximize the success of your network testing using some of the advanced features of Kali Linux, then this book is for you. This book will teach you how to become an expert in the pre-engagement, management,

  19. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  20. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  1. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  2. Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  3. Oil burner nozzle

    Science.gov (United States)

    Wright, Donald G.

    1982-01-01

    An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

  4. Economic Analysis of Symbiotic Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    International Nuclear Information System (INIS)

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: 1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, 2) a 'singletier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and 3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall bus-bar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  5. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  6. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  7. Advancing Test Capabilities at NASA Wind Tunnels

    Science.gov (United States)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  8. Economic Analyiss of "Symbiotic" Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kent Alan [ORNL; Shropshire, David E. [Idaho National Laboratory (INL)

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a

  9. Low NO sub x regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, J.E.; Finke, H.P.

    1991-01-08

    This patent describes improvements in a regenerative burner having a regenerative bed, a burner port and a fuel nozzle. The improvement comprises: a burner baffle having apertures therein for selectively directing combustion air and inducing combustion gas recirculation into a primary combustion zone for suppressing NO{sub x} emissions, the baffle and the fuel nozzle being positioned substantially adjacent the burner port and being substantially coplanar in a plane perpendicular to a burner axis.

  10. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-03-09

    Osaka Gas Co., Ltd.'s new flat-flame burner has an air-swirling chamber with a flame opening in one side so constructed that combustion gas is forced out from the flame opening in a spiral direction by the swirling air current within the air chamber. The orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space assures formation of a flat flame spreading out over a very wide area, thereby ensuring very rapid, uniform and highly efficient heat treatment of an article to be heated. With the present invention, moreover, it is possible to materially reduce the thickness of the overall device.

  11. PROTOTYPE EVALUATION OF COMMERCIAL SECOND GENERATION LOW-NO BURNER PERFORMANCE AND SULFUR CAPTURE

    Science.gov (United States)

    The report gives results of pilot-scale combustion tests of a Riley Stoker second-generation low-NOx burner combined with dry sorbent injection for SO2 control. The burner design is based on the distributed mixing concept. Combustion tests were conducted at 100 million Btu/hr in ...

  12. Advanced Placement: More than a Test.

    Science.gov (United States)

    Colwell, Richard

    1990-01-01

    Encourages music teachers to work with students interested in advanced placement (AP) music courses. Discusses the logistics and advantages of placing students in these courses. Describes the Advanced Placement Listening and Literature and the Advanced Placement Theory courses and examinations. Outlines the examination scoring method and looks at…

  13. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    Science.gov (United States)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  14. Vacuum system for Advanced Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  15. Vacuum system for Advanced Test Accelerator

    International Nuclear Information System (INIS)

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10-6 torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing

  16. Corrosion of spent Advanced Test Reactor fuel

    International Nuclear Information System (INIS)

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented

  17. Advanced coated particle fuels

    International Nuclear Information System (INIS)

    The coated particle fuel (cpf) has been developed for use in high-temperature gas-cooled reactors, but it may find applications in other types of reactors. In JAERI, besides the development of cpf for High Temperature Engineering Test Reactor, conceptual studies of the cpf applications in actinide burner reactors and space reactors have been made. The conceptual design studies as well as the research and development of advanced coatings, ZrC and TiN, are reviewed. (author)

  18. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  19. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration

  20. Flow processes in a radiant tube burner: Combusting flow

    International Nuclear Information System (INIS)

    Highlights: → 3D combusting flow in an industrial radiant tube burner is modelled using the ANSYS-CFX CFD code. → Results are validated against data from an industrial furnace (NO emissions within 7%). → The flame is long and narrow with slight asymmetry. Mixing near the fuel injector is very effective. → The recuperator section is reasonably effective, but design improvements are proposed. → The design is vulnerable to eccentricities due to manufacturing or assembly tolerances. -- Abstract: This paper describes a study of the combustion process in an industrial radiant tube burner (RTB), used in heat treating furnaces, as part of an attempt to improve burner performance. A detailed three-dimensional Computational Fluid Dynamics model has been used, validated with experimental test furnace temperature and flue gas composition measurements. Simulations using the Eddy Dissipation combustion model with peak temperature limitation and the Discrete Transfer radiation model showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust (including NO). Other combustion and radiation models were also tested but gave inferior results in various aspects. The effects of certain RTB design features are analysed, and an analysis of the heat transfer processes within the burner is presented.

  1. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    International Nuclear Information System (INIS)

    This is final report of the CANDU advanced fuel (CANFLEX fuel) verification test project. This report describes performance verification tests performed for the development of the CANFLEX-NU bundle. The test items described in the report are as follows. - Fuel channel pressure drop test, -Fuel strength tests, - Fuel impact test, - Fuel endurance test (vibration test), - Compatibility test with fueling machine, - Critical heat flux test. 58 tabs., 60 figs., 32 refs. (Author)

  2. Regenerative ceramic burner has highest efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.

    1986-01-01

    Regenerative ceramic burners consisting of a double gas/air burner and utilising waste heat which is stored via regenerators are described. The system is capable of operating at 1400/sup 0/C, it removes about 85-90% of energy from hot waste gases and exhibits energy savings of 40-60% over cold nozzle mix burners and 20-25% over recuperative burners. (UK).

  3. A gas burner device for highspeed heating

    Energy Technology Data Exchange (ETDEWEB)

    Nosach, V.G.; Danchenko, V.N.; Zanemonets, V.F.

    1979-01-01

    The design and the results of the investigations of gas burners with porous cooling by fire Pv of two forms: a gas burner which makes it possible to organize the process of the burning for Pv heating, and a gas burner creating a stream of combustion products.

  4. Optimisation of efficiency and emissions in pellet burners

    International Nuclear Information System (INIS)

    There is a trade-off between the emissions of nitrogen oxides (NOx) and of unburnt hydrocarbons and carbon monoxide (OGC and CO). Decreasing the excess air results in lower NOx emission but also increased emission of unburnt. The efficiency increases, as the excess air is decreased until the losses due to incomplete combustion become too high. The often-high NOx emission in today's pellet burners can be significantly reduced using well-known techniques such as air staging. The development of different chemical sensors is very intensive and recently sensors for CO and OGC have been introduced on the market. These sensors may, together with a Lambda sensor, provide efficient control for optimal performance with respect to emissions and efficiency. In this paper, results from an experimental parameter study in a modified commercial burner, followed by Chemkin simulations with relevant input data and experiments in a laboratory reactor and in a prototype burner, are summarised. Critical parameters for minimisation of NOx emission from pellet burners are investigated in some detail. Also, results from tests of a new sensor for unburnt are reported. In conclusion, relatively simple design modifications can significantly decrease NOx emission from today's pellet burners

  5. Enraf Series 854 advanced technology gauge (ATG) acceptance test procedure

    International Nuclear Information System (INIS)

    This Acceptance Test Procedure was written to test the Enraf Series 854 Advanced Technology Gauge (ATG) prior to installation in the Tank Farms. The procedure sets various parameters and verifies that the gauge is functional

  6. Process development report: 0.40-m primary burner system

    International Nuclear Information System (INIS)

    Fluidized bed combustion is required in reprocessing the graphite-based fuel elements from high-temperature gas-cooled reactor (HTGR) cores. This burning process requires combustion of beds containing both large particles and very dense particles, and also of fine graphite particles which elutriate from the bed. This report documents the successful long-term operation of the 0.40-m primary burner in burning crushed fuel elements. The 0.40-m system operation is followed from its first short heatup test in September 1976 to a > 40-h burning campaign that processed 20 LHTGR blocks in September 1977. The 0.40-m perforated conical gas distributor, scaled up from the 0.20-m primary burner, has proven reliable in safely burning even the largest, densest adhered graphite/fuel particle clusters originating from the crushing of loaded fuel elements. Such clusters had never been fed to the 0.20-m system. Efficient combustion of graphite fines using the pressurized recycle technique was demonstrated throughout the long-duration operation required to reduce a high carbon fresh feed bed to a low carbon particle bed. Again, such operation had never been completed on the 0.20-m system from which the 0.40-m burner was scaled. The successful completion of the tests was due, in part, to implementation of significant equipment revisions which were suggested by both the initial 0.40-m system tests and by results of ongoing development work on the 0.2-m primary burner. These revisions included additional penetrations in the burner tube side-wall for above-bed fines recycle, replacement and deletion of several metal bellows with bellows of more reliable design, and improvements in designs for burner alignment and feeder mechanisms. 76 figures, 8 tables

  7. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy of the...

  8. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 1. TECHNICAL RESULTS

    Science.gov (United States)

    The report discusses results from sampling flue gas from an enhanced oil recovery steam generator (EOR steamer) equipped with an MHI PM low-NOx burner. The tests included burner performance/emission mapping tests, comparative testing of an identical steamer equipped with a conven...

  9. A Consistent Comparative Study of Advanced Sodium-cooled Fast Burner Cores loaded with Thorium and Uranium-based Metallic Fuels

    International Nuclear Information System (INIS)

    We considered uranium-based metallic fuel of TRU-U-10Zr for driver fuel and thorium was considered as blanket because thorium blanket produces less amount of TRU than uranium blanket and use of thorium blanket leads to smaller sodium void worth than the use of uranium blanket due to the fact that the η-value increases much less with energy for 233U than for 239Pu and 232Th is less fissile than 238U. However, these cores using thorium blanket still have a large amount of TRU production from the driver fuels because the driver fuels contain a large amount of depleted uranium which leads to the production of TRU through neutron capture. The objective of this work is to consistently compare the neutronic performances of advanced sodium cooled fast reactor cores loaded with thorium and uraniumbased metallic fuels as driver fuel for TRU burning. Our main emphasis is given on the analyses of the differences in the core performance parameters. For consistent comparison, we used the same core configuration and all the same design parameters except for the fact that depleted uranium in uraniumbased fuel is replaced with thorium. We considered the cores having no thorium blanket and the cores having thorium blanket that were designed in our previous works

  10. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  11. Methods testing electrodes for advanced batteries

    Czech Academy of Sciences Publication Activity Database

    Novák, V.; Vondrák, Jiří

    Vol. 2. Brno: Akademické nakladatelství CERM, 2000 - (Vondrák, J.; Sedlaříková, M.), s. 13.1-13.4 ISBN 80-214-1615-7. [Advanced Batteries and Accumulators /1./. Brno (CZ), 28.08.2000-01.09.2000] R&D Projects: GA AV ČR IAA4032002 Institutional research plan: CEZ:AV0Z4032918 Keywords : electrodes * batteries * electrochemistry Subject RIV: CG - Electrochemistry

  12. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States); Palmer, A.J.; Ingram, F.W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Wiffen, F.W. [Dept. of Energy, Germantown, MD (United States). Office of Fusion Energy

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  13. Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces

    OpenAIRE

    Cvoro, Valentina

    2007-01-01

    Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate. Therefore, to further improve current NOx reduction technologies and assist in the assessment of NOx levels in new and retrofit plant cases, an improved understanding of the impact of burner interactions is required. The aim of this research is tw...

  14. Space Testing of the Advanced Instrument Controller

    OpenAIRE

    Goforth, Todd; Cannon, Scott; Lyke, James

    1999-01-01

    An extremely compact, low-power instrument controller and data processor system has been developed for space-based applications. Known as the Advanced Instrument Controller (AIC), this hybrid device contains both digital and analog components in a package less than 5 grams in weight and 2 x 3 em in size. Based on the Intel 8031151 microprocessor and implementing a superset of the 8051 instruction set, the AIC supports l28k of SRAM, 128k of EEPROM, four 8-bit parallel ports, six serial communi...

  15. Advances in DUS Test Technique for Coconut

    Institute of Scientific and Technical Information of China (English)

    Ling GAO; Li XU; Difa LlU; Rulian ZHANG

    2014-01-01

    As great progress has been made in the field of protection of new plant varieties, more attention is paid to the standardization of DUS (Distinctness, Unifor-mity, and Stability) test procedure. For further studies of tropical plants as their im-portance in agriculture and germplasm, protection of coconut becomes more signifi-cant and thus DUS test technique of coconut is needed. ln this essay, we analyzed the status quo of the DUS test guidelines by lnternational Union for the Protection of New Varieties of Plants (UPOV proj.3) and national DUS test guidelines in Chi-na, and provided some suggestions or promotions for improving the guidelines of DUS test in coconut.

  16. Development of low NO{sub x} regenerative burner system; Tei NO{sub x} rijenereiteibubana no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Nakamachi, I. [Tokyo Gas Co., Ltd., Tokyo (Japan)

    2000-03-10

    An advanced low NO{sub x} combustion technology, FDI (Fuel Direct Injection), has been developed. FDI combustion technology reduces thermal NO{sub x} substantially for combustion of high preheated air over 1,000 degree C. The principal of its ultra-low NO{sub x} combustion is the separate and direct injection at high momentum of combustion air and fuel gas into the furnace. By directly injecting air and fuel, self-induced flue gas re-circulation is substantially enhanced, reducing the formation of thermal NO{sub x} to a substantially low level. Applied to a regenerative burner system that utilize high air preheat for fuel saving, the FDI combustion has demonstrated more than 90 % NO{sub x} reduction. As compared to conventional ones, simple and compact regenerative burners have been developed. These new regenerative burners have been designed solely for the use of FDI low NO{sub x} combustion technology. Field tests of various furnaces such as forging, re-heating and aluminum melting have successfully demonstrated substantial low NO{sub x} level below 100 ppm (at 11 % O{sub 2}) by the FDI technology with fuel saving of 20-60 %. (author)

  17. The influence of the furnace design on emissions from small wood pellet burners

    International Nuclear Information System (INIS)

    Two pellet burners have been installed and tested in a small scale boiler for house heating. The boiler is representative for the Swedish households and the burners, upwards and forward burning, are commercially available on the Swedish market. This work focuses on the boiler operation and particularly the potential of improved emissions by changing the furnace design. An insulation of the fireplace lowered the emission of CO by 50% and the emission of OGC by 60% for the upwards burning burner at low load. Modifying the furnace using baffles did not have any influence on the emissions. It is concluded that an increased temperature in the furnace is more important than an increased residence time of the combustible gases to decrease the emissions. At full load both burners emit approximately 300 mg CO per nm3 gas and the emission of OGC are negligible. At half load the emissions of CO increased to 1000 mg/mn3 and OGC to 125 mg/mn3 in the upward burning burner. The forwards burning burner had a small increase in OGC to about 10 mg/mn3 at half load while the emission of CO increased to 800 mg/mn3. The forward burning burner is less influenced on the furnace design compared to the upward burning burner. The comparatively high emissions of OGC for the upward burning burner is explained by the intermittent operation. However, it was possible to reduce the emissions from this burner by ceramic insulation of the furnace Project report from the program: Small scale combustion of biofuels. 3 refs, 12 figs, 2 tab, 1 appendix with 33 figs and 12 tabs

  18. Regenerative burner generates more savings

    Energy Technology Data Exchange (ETDEWEB)

    Swinden, D.

    The latest developments in high-efficiency gas-fired burners are traced, and the transfer of the new technology from laboratory to industry is outlined. The system described depends on the ceramic regenerator reducing the flue gas temperature so that conventional cold air fans can be used and on a packing of alumina balls to recover 90% of the available heat in waste gases.

  19. Advances in Significance Testing for Cluster Detection

    Science.gov (United States)

    Coleman, Deidra Andrea

    Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic

  20. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  1. Endurance test for non-instrumented capsule of advanced PWR fuel pellet (test procedure)

    International Nuclear Information System (INIS)

    This test procedure details the test loop, test method, and test procedure for pressure drop, vibration and endurance test of Non-instrumented Capsule of Advanced PWR Fuel Pellet. From the pressure drop test, the hydraulic design requirements of the capsule are verified. HANARO limit condition is checked and the compatibility with HANARO core is verified. From flow induced vibration test vibration frequency, vibration displacement are investigated. The wear of Non-instrumented Capsule of Advanced PWR Fuel Pellet is investigated through endurance test, and these data are used to evaluate the expected wear of during maximum resident time of Non-instrumented Capsule

  2. The BNL fan-atomized burner system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    Brookhaven National Laboratory (BNL) has a continuing interest in the development of advanced oil burners which can provide new capabilities not currently available with pressure atomized, retention head burners. Specifically program goals include: the ability to operate at firing rates as low as 0.25 gph; the ability to operate with very low excess air levels for high steady state efficiency and to minimize formation of sulfuric acid and iron sulfate fouling; low emissions of smoke, CO, and NO{sub x} even at very low excess air levels; and the potential for modulation - either staged firing or continuous modulation. In addition any such advanced burner must have production costs which would be sufficiently attractive to allow commercialization. The primary motivation for all work sponsored by the US DOE is, of course, improved efficiency. With existing boiler and furnace models this can be achieved through down-firing and low excess air operation. Also, with low excess air operation fouling and efficiency degradation due to iron-sulfate scale formation are reduced.

  3. Firing in fluid beds and burners

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.; Lans, R. van der; Storm Pedersen, L.; Philbert Nielsen, H.; Aslaug Hansen, L.; Lin, W.; Johnsson, J.E.; Dam-Johansen, K.

    1998-02-01

    An investigation of the effect of co-firing straw and pulverized coal was performed. Based on experiments from pilot-scale and full-scale it was concluded that a higher fraction of straw in the fuel feedstock mixture results in lower NO and SO{sub 2} emissions. The lower NO emission was mainly due to the higher volatile content of the straw, which leads to lower stoichiometry in the gas phase and in subsequent suppression of NO{sub x} formation. This conclusion is consistent with experimental and modeling results for pure coal combustion. The effect of coal quality on NO emissions has been investigated with three coals of different characteristics in three furnaces: in the Funen power station, unit 7 (FVO7), the Midtkraft Studstrup power station, unit 4 (MKS4), and the Mitsui Babcock Energy Ltd (MBEL) test-rig. The MBEL test-rig was able to reproduce qualitatively the emissions from the MKS4 plant, and quantitatively the emissions from the FVO7 plant. The better agreement between the MBEL test-rig and FVO7 is presumed to be related to the existence of a large primary zone with a relatively low stoichiometry, diminishing the influence of near burner air and fuel mixing rate on the NO emissions. An engineering model has been developed for the prediction of NO emissions and burnout from pulverized fuel combustion in swirl burners. A simplified model for reduction of N{sub 2}O in CFBC has been developed, and simulation results are in good agreement with experimental data from a 12 MW{sub th} CFB-boiler. (EG) EFP-94. 108 refs.

  4. Development of stoker-burner wood chip combustion systems for the UK market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The document makes a case for the development of a design of wood chip stoker-burner more suited to the UK than those currently imported from Sweden and Finland. The differences would centre on market conditions, performance and cost-effectiveness and the devices would be manufactured or part-manufactured in the UK. Econergy Limited was contracted by the DTI as part of its Sustainable Energy Programmes to design and construct an operational prototype stoker-burner rated at 120 kWth. A test rig was built to: (i) study modified burner heads and (ii) develop control hardware and a control strategy. Both (i) and (ii) are described. Tests brought about an increase in performance of the burner head and its wet wood performance. It was considered that further improvements are achievable and six areas for future study were suggested.

  5. Building virtual pentesting labs for advanced penetration testing

    CERN Document Server

    Cardwell, Kevin

    2014-01-01

    Written in an easy-to-follow approach using hands-on examples, this book helps you create virtual environments for advanced penetration testing, enabling you to build a multi-layered architecture to include firewalls, IDS/IPS, web application firewalls, and endpoint protection, which is essential in the penetration testing world. If you are a penetration tester, security consultant, security test engineer, or analyst who wants to practice and perfect penetration testing skills by building virtual pen testing labs in varying industry scenarios, this is the book for you. This book is ideal if yo

  6. Computational fluid dynamics in oil burner design

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  7. A numerical investigation of the aerodynamics of a furnace with a movable block burner

    OpenAIRE

    T.J. Fudihara; L. Goldstein Jr.; Mori, M.

    2007-01-01

    In this work the air flow in a furnace was computationally investigated. The furnace, for which experimental test data are available, is composed of a movable block burner connected to a cylindrical combustion chamber by a conical quarl. The apertures between the movable and the fixed blocks of the burner determine the ratio of the tangential to the radial air streams supplied to the furnace. Three different positions of the movable blocks were studied at this time. A three-dimensional invest...

  8. Gasifier burner ignition system

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The BI-GAS pilot plant is designed such that its lower region (Stage I) is the combustion zone where oxygen and steam contact and react with recycled char. As with other combustion systems, provisions must be made to initiate combustion at start-up, to reinitiate combustion in case of a process upset where combustion is lost, and to continuously monitor the presence of combustion. An ignition system had to be developed, capable of reliable and repeated operation at pressures up to 1500 psi in a methane-rich or otherwise reducing atmosphere. The initial development work was done by Babcock and Wilcox and included development of both the ignitor system and the flame confirmation system. B and W's initial proposal specifically dealt with investigating a hypergolic (chemical auto-combustion) igniter. Hypergolic ignition is the spontaneous combustion of a compound upon contact with an oxygen containing media. This oxygen source includes air, oxygen, carbon dioxide, and water. The liquid compound studied was triethylaluminum (Al(C/sub 2/H/sub 5/)/sub 3/) otherwise identified as TEA and supplied by Ethyl Corporation, Baton Rouge, Louisiana. The hypergolic ignition system has been operated successfully and proved reliable at high pressure (750 psig) through repeated testing over a three-year period. The system designed by Stearns-Roger based on the study by Babcock and Wilcox was basically correct. Two relatively minor design defects and operational revisions to improve performance were accomplished by on-site personnel with little expenditure of time or money. The remaining problems currently experienced with the TEA ignition system are considered minor. Further work should continue to determine the lowest possible TEA concentration that can be used and still provide consistent ignition, and the system should be tested soon at the full design operating pressure of 1500 psig.

  9. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  10. Combustion Characteristics of Oxy-fuel Burners for CO2 Capturing Boilers

    Science.gov (United States)

    Ahn, Joon; Kim, Hyouck Ju; Choi, Kyu Sung

    Oxy-fuel boilers have been developed to capture CO2 from the exhaust gas. A 50 kW class model burner has been developed and tested in a furnace type boiler. The burner has been scaled up to 0.5 and 3 MW class for fire-tube type boilers. The burners are commonly laid out in a coaxial type to effectively heat the combustion chamber of boilers. Burners are devised to support air and oxy-fuel combustion modes for the retrofitting scenario. FGR (flue gas recirculation) has been tried during the scale-up procedure. Oxy-fuel combustion yields stretched flame to uniformly heat the combustion chamber. It also provides the high CO2 concentration, which is over 90% in dry base. However, pure oxy-fuel combustion increases NO concentration, because of the reduced flow rate. The FGR can suppress the thermal NOx induced by the infiltration of the air.

  11. Heat transfer and combustion characteristics of a burner with a rotary regenerative heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yasuo; Kaji, Hitoshi; Arai, Norio

    1998-07-01

    The authors have developed a Rotary Regenerative Combustion (RRX) System, which is coupled with a compact high efficiency regenerative air heat exchanger and a combustion burner. This system contributes to saving energy of fuel firing industrial furnaces and decreases NO{sub x} emission. This technology can be considered as a solution of greenhouse problem. This paper, discusses a compact high efficiency regenerative air heat exchanger in comparison with the existing types of regenerative burners and reverse firing with high momentum fuel jet (with motive fluid) in the furnace. This burner is compact in size, with high fuel efficiency, low NOx emission, easy to operate, and reliable, based on the results of field tests and commercial operations. The authors can say that the RRX system is a regenerative burner of the second generation.

  12. Advanced Techniques in Pulmonary Function Test Analysis Interpretation and Diagnosis

    OpenAIRE

    Gildea, T.J.; Bell, C. William

    1980-01-01

    The Pulmonary Functions Analysis and Diagnostic System is an advanced clinical processing system developed for use at the Pulmonary Division, Department of Medicine at the University of Nebraska Medical Center. The system generates comparative results and diagnostic impressions for a variety of routine and specialized pulmonary functions test data. Routine evaluation deals with static lung volumes, breathing mechanics, diffusing capacity, and blood gases while specialized tests include lung c...

  13. Results of Laboratory Testing of Advanced Power Strips

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  14. Argonne to open new facility for advanced vehicle testing

    CERN Multimedia

    2002-01-01

    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  15. Experimental study of porous metal burners for domestic stove applications

    International Nuclear Information System (INIS)

    Highlights: • The flat flame cooktop burner is experimental and analytical investigated. • The heat transfer flux can be evaluated using analytical and numerical methods. • The performance of the flat flame burners is superior to Bunsen flame type burners. • Efficiency and emissions of the flat flame burners can be well controlled. - Abstract: This paper investigates a clean and highly efficient domestic stove burner composed of a flat flame burner for cooking and water heating. The feasibility of the flat flame burner is experimentally verified by demonstrating that the flame is stabilized by a porous metal medium and by comparison with a typical Bunsen flame burner. The flame appearance, temperature distribution, relative thermal efficiency and pollution emissions in terms of Emission Index of CO (EICO) and Emission Index of NOx (EINOx) were measured and analyzed. The results show that the operating range, turndown ratio, and pollution emissions of the flat flame burners are superior to those of traditional Bunsen flame burners. The heat transfer and efficiency for both the jet flame burner and the flat flame burner can be evaluated using analytical and numerical methods. Furthermore, in contrast to traditional Bunsen flame burners, the efficiency and pollution emissions of flat flame burners are not strongly affected by the distance between the cool boundary of pot or pan and the burner exit. For domestic stove applications in particular, where different sized pots and pans are used, the efficiency and pollution emissions can be well controlled with a flat flame burner

  16. Development and demonstration of a gas-fired recuperative confined radiant burner (deliverable 42/43). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The objective of the project was to develop and demonstrate an innovative, efficient, low-pollutant, recuperative gas-fired IR-system (infrared radiation) for industrial processes (hereafter referred to as the CONRAD-system). The CONRAD-system is confined, so flue gases from the combustion can be kept separated from the product. The gas/air mixture to the burner is preheated by means of the flue gas, which increases the radiant efficiency of the CONRAD-system significantly over traditional gas-fired IR burners. During the first phase of the project, the CONRAD-system was designed and developed. The conducted work included a survey on suitable burner materials, modelling of the burner system, basic design of burner construction, control etc., experimental characterisation of several preprototypes and detailed design of the internal heat exchanger in the burner. The result is a cost effective burner system with a documented radiant efficiency up to 66% and low emissions (NO{sub x} and CO) all in accordance with the criteria of success set up at the start of the project. In the second phase of the project, the burner system was established and tested in laboratory and in four selected industrial applications: 1) Drying of coatings on sand cores in the automotive industry. 2) Baking of bread/cake. 3) General purpose painting/powder curing process 4. Curing of powder paint on wood components. The results from the preliminary tests Overe used to optimise the CONRAD-system, before it was applied in the industrial processes and demonstrated. However, the optimised burners manufactured for demonstration suffered from different 'infant failures', which made the installation in an industrial environment very cumbersome, and even impossible in the food industry and the automotive industry. In the latter cases realistic laboratory tests Overe carried out and the established know how reported for use when the burner problems are overcome.(au)

  17. An intelligent monitoring system for the detection of slag deposition on a pulverized coal fired burner

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.K.; Wilcox, S.J.; Ward, J.; Lewitt, M. [University of Glamorgan, Pontypridd (United Kingdom). School for Technology

    2005-08-01

    The objective of this paper is to describe the further development of a monitoring system to detect the presence of so-called burner eyebrows, i.e. relatively large deposits of slag around the burner quarl in pulverized coal fired boilers. Experiments were undertaken with a range of coals and with various artificial eyebrows constructed from cast refractory inserts. The system uses a microphone to detect combustion noise and an infrared sensor which measures flame radiation, and the signals from these cheap, easily installed sensors were analyzed by a hybrid neural network. In tests with two coals, the system was able to distinguish the different eyebrows with a high degree of accuracy if representative data were used to train the network for each particular coal. In further tests with a range of six different coals, the system was able to distinguish between a clean burner and one fitted with a particular sized eyebrow. In this case, it proved to be possible to use only the features from three of the coals in the training process and the data from the remaining fuels for validation. The monitoring system, therefore, appears to be relatively independent of changes to the coal fired by the burner if trained with a representative range of coals. Finally, this paper presents a possible method to detect burner eyebrows via the evaluation of so-called 'eyebrow indices' using a self-organizing map which is trained solely using clean burner sensor patterns.

  18. Measurements of the concentration of major chemical species in the flame of a test burner with a air swirling system; Mesures de concentration d`especes chimiques majoritaires dans la flamme d`un bruleur modele avec mise en rotation de l`air

    Energy Technology Data Exchange (ETDEWEB)

    Albert, St. [Gaz de France (GDF), 93 - La Plaine-Saint-Denis (France); Most, J.M.; Poireault, B. [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1996-12-31

    The study of combustion in industrial burners remains difficult because of the complexity of the equipments used: materials geometry, tri-dimensional flows etc.. The phenomena that control the combustion in a gas burner with a swirl air system has been studied thanks to a collaboration between the Direction of Research of Gaz de France (GdF) and the Laboratory for Combustion and Detonation Research (LCD) of the French National Centre of Scientific Research (CNRS). The burner used is developed by the LCD and the measurements of stable chemical species were performed by the CERSTA centre of GdF. These series of tests, performed in confined environment, have permitted to identify some of the parameters that influence combustion chemistry. Mapping of chemical species allows to distinguish 5 zones of flame development and also the zones of nitrogen oxides formation. Methane is rapidly centrifuged a few millimeters above the injection pipe and centrifuged with rotating combustion air. Carbon monoxide occurs immediately in the central recirculation zone which is weakly reactive (no oxygen and no methane). Oxygen content increases downflow from this area and carbon dioxide reaches its concentration maxima. CO formation decreases when the swirl number increases and CO{sub 2} formation occurs earlier. On the contrary, the emissions of CO and CH{sub 4} do not depend on the swirl value and the NO{sub x} values are only slightly dependent on this value. (J.S.)

  19. Development of a multi-fuel burner for coal gasification process; Entwicklung eines Kombibrenners fuer den Kohlevergasungsprozess

    Energy Technology Data Exchange (ETDEWEB)

    Al-Halbouni, Ahmad; Rahms, Hendrik; Chalh-Andreas, Bachir [Brinkmann Industrielle Feuerungssysteme GmbH, Voerde (Germany); Giese, Anne [Gas- und Waerme-Institut Essen e.V., Essen (Germany); Benim, Ali Cemal [Fachhochschule Duesseldorf (Germany)

    2013-08-15

    In the course of a German ZIM cooperative research project, Brinkmann Industrielle Feuerungssysteme GmbH develops a supersonic oxygen-multi-fuel burner in close cooperation with its research partners Gas- und Waerme-Institut essen e.V. (GWI) and Duesseldorf University of Applied Sciences (FHD). This burner is capable of combusting natural gas as well as light oil efficiently, using pure oxygen as an oxidizer. It is intended to be used primarily for energy-intensive applications, but especially as a start-up burner for coal gasification processes. In these processes, specific operating conditions can be found, such as fluctuating pressures, high temperatures and inert atmospheres. Therefore, the main goal of the development is aimed at utilizing the high energy densities found in supersonic by oxy-fuel combustion. This article covers several burner development phases, from initial design and manufacturing activities to burner testing and optimisation. Results achieved up to now are presented and next steps defined. (orig.)

  20. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jang Hwan; Suk, Hoh Chun; Jung, Moon Kee; Oh, Duk Joo; Park, Joo Hwan; Shim, Kee Sub; Jang, Suk Kyoo; Jung, Heung Joon; Park, Jin Suk; Jung, Seung Hoh; Jun, Ji Soo; Lee, Yung Wook; Jung, Chang Joon; Byun, Taek Sang; Park, Kwang Suk; Kim, Bok Deuk; Min, Kyung Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This is the `94 annual report of the CANDU advanced fuel verification test project. This report describes the out-of pile hydraulic tests at CANDU-hot test loop for verification of CANFLEX fuel bundle. It is also describes the reactor thermal-hydraulic analysis for thermal margin and flow stability. The contents in this report are as follows; (1) Out-of pile hydraulic tests for verification of CANFLEX fuel bundle. (a) Pressure drop tests at reactor operation condition (b) Strength test during reload at static condition (c) Impact test during reload at impact load condition (d) Endurance test for verification of fuel integrity during life time (2) Reactor thermal-hydraulic analysis with CANFLEX fuel bundle. (a) Critical channel power sensitivity analysis (b) CANDU-6 channel flow analysis (c) Flow instability analysis. 61 figs, 29 tabs, 21 refs. (Author).

  1. AREAL test facility for advanced accelerator and radiation source concepts

    Science.gov (United States)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  2. RF torch discharge combined with conventional burner

    International Nuclear Information System (INIS)

    The design of the combined flame-rf-plasma reactor and experimental examination of this reactor are presented. For the determination of the temperature in different parts of the combined burner plasma the methods of emission spectroscopy were used. The temperatures measured in the conventional burner reach the maximum temperature 1900 K but in the burner with the superimposed rf discharge the neutral gas temperature substantially increased up to 2600 K but also the plasma volume increases substantially. Consequently, the resident time of reactants in the reaction zone increases

  3. Regenerative burner combination and method of burning a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wills, B.J.

    1992-06-17

    Regenerative burners fire alternatively into respective radiant tubes which are closed at their ends remote from the burners. Products of combustion from each flame tube pass to the closed end of the tube and back to be exhausted from the radiant tube associated with the firing burner through a transfer duct to the other burner, where heat is extracted before the products of combustion are discharged, for heating combustion air for use when the other burner is firing. (Author).

  4. Rotrix `vortex breakdown` burner turbulence-stabilized combustion of heating oil

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, P. [Viessmann Manufacturing Co., Inc., Ontario (Canada)

    1995-04-01

    For the past two years, the Viessmann MatriX radiant burner has been setting the standard for low emission combustion of gas. Now, with the RotriX burner, Viessmann has succeeded in drastically reducing nitrogenoxide emissions in the combustoin of oil. After a successful test period, the RotriX burner is now being introduced to the market. The RotriX oil burner consequently takes into account the mechanisms in the creation of harmful emissions in the combustion of heating oil No. 2, and guarantees stable combustion under any operating conditions. The burner has the following features: heating oil is combusted only after complete vaporization and mixing with combustion air and recirculated flue gases; the flame is not stabilized with a turbulator disk, but a strong turbulating current is created by means of the Vortex Breakdown phenomenon, which develops a very stable flame under any operating conditions; and high internal flue gas recirculation rates lower the flame temperature to the point where thermal NO formation is reduced to the same low level as in the combustion of gas. The new burner has extremely low emissions of NOx < 60 mg/kWh, and CO < 5 mg/kWh at a CO{sub 2} concentraiton of 14%.

  5. LOFT advanced densitometer L1-4 test

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D.B.

    1978-06-28

    The report covers the PC-2, C-beam chordal average density measurement made on the loss-of-fluid test (LOFT) primary coolant system hot leg during the L1-4 nonnuclear loss-of-coolant accident (LOCA) test conducted May 3, 1977. The P-2, C-beam, or LOFT advanced densitometer, used was of the pulse height analysis/energy discrimination, or nuclear hardened type to be used for LOFT nuclear tests. The L1-4 test verified the applicability of pulse height analysis/energy discrimination techniques of the nuclear hardened gamma densitometer. Test results show that the reactor coolant fluid chordal average density can be calculated from gamma radiation source signal measured count rate data.

  6. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  7. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  8. Utility advanced turbine systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  9. Utility Advanced Turbine Systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  10. Advanced radial inflow turbine rotor program: Design and dynamic testing

    Science.gov (United States)

    Rodgers, C.

    1976-01-01

    The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).

  11. Advanced orbiting systems test-bedding and protocol verification

    Science.gov (United States)

    Noles, James; De Gree, Melvin

    1989-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has begun the development of a set of protocol recommendations for Advanced Orbiting Systems (SOS). The AOS validation program and formal definition of AOS protocols are reviewed, and the configuration control of the AOS formal specifications is summarized. Independent implementations of the AOS protocols by NASA and ESA are discussed, and cross-support/interoperability tests which will allow the space agencies of various countries to share AOS communication facilities are addressed.

  12. Models for transient analyses in advanced test reactors

    OpenAIRE

    Gabrielli, Fabrizio

    2011-01-01

    Several strategies are developed worldwide to respond to the world’s increasing demand for electricity. Modern nuclear facilities are under construction or in the planning phase. In parallel, advanced nuclear reactor concepts are being developed to achieve sustainability, minimize waste, and ensure uranium resources. To optimize the performance of components (fuels and structures) of these systems, significant efforts are under way to design new Material Test Reactors facilities in Europe whi...

  13. Low NO[sub x] regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-12-01

    A joint development project between British Gas and Hotwork Development has resulted in maintaining the efficiency of a regenerative burner but without the penalty of the higher NO[sub x] emissions normally associated with combustion air preheat. (author)

  14. Regenerative burner use on reheat furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Baggley, G.W. [Bloom Engineering Co. Inc., Pittsburgh, PA (United States)

    1995-06-01

    The environmental advantages of using regenerative burner technology on steel reheat furnaces are explored in this article, in particular improved fuel energy efficiencies and reduced pollution emissions, of nitrogen oxides and carbon monoxide. Experience of the use of regenerative burners in the United States and Japan, where they have achieved significant market penetration is also described, including a case history of a top-fired billet reheat furnace installed in the United States. (UK)

  15. Enhanced in-pile instrumentation at the advanced test reactor

    International Nuclear Information System (INIS)

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and realtime flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted. (authors)

  16. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility (NSUF) in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  17. Process development report: 0. 20-m secondary burner system

    Energy Technology Data Exchange (ETDEWEB)

    Rickman, W.S.

    1977-09-01

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (600/sup 0/C), lower fluid bed operating temperature (850/sup 0/C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout (0.45 m/s).

  18. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  19. Process development report: 0.20-m secondary burner system

    International Nuclear Information System (INIS)

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (6000C), lower fluid bed operating temperature (8500C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout

  20. Study and mathematical model of ultra-low gas burner

    International Nuclear Information System (INIS)

    The main objective of this project is prediction and reduction of NOx and CO2 emissions under levels recommended from European standards for gas combustion processes. A mathematical model of burner and combustion chamber is developed based on interacting fluid dynamics processes: turbulent flow, gas phase chemical reactions, heat and radiation transfer The NOx prediction model for prompt and thermal NOx is developed. The validation of CFD (Computer fluid-dynamics) simulations corresponds to 5 MWI burner type - TEA, installed on CASPER boiler. This burner is three-stream air distribution burner with swirl effect, designed by ENEL to meet future NOx emission standards. For performing combustion computer modelling, FLUENT CFD code is preferred, because of its capabilities to provide accurately description of large number of rapid interacting processes: turbulent flow, phase chemical reactions and heat transfer and for its possibilities to present wide range of calculation and graphical output reporting data The computational tool used in this study is FLUENT version 5.4.1, installed on fs 8200 UNIX systems The work includes: study the effectiveness of low-NOx concepts and understand the impact of combustion and swirl air distribution and flue gas recirculation on peak flame temperatures, flame structure and fuel/air mixing. A finite rate combustion model: Eddy-Dissipation (Magnussen-Hjertager) Chemical Model for 1, 2 step Chemical reactions of bi-dimensional (2D) grid is developed along with NOx and CO2 predictions. The experimental part of the project consists of participation at combustion tests on experimental facilities located in Livorno. The results of the experiments are used, to obtain better vision for combustion process on small-scaled design and to collect the necessary input data for further Fluent simulations

  1. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was

  2. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  3. CFD Analysis of NOx Emissions of a Natural Gas Lean Premixed Burner for Heavy Duty Gas Turbine

    OpenAIRE

    Andreini, A.; Cerutti, M; B. Facchini; Innocenti, A.

    2015-01-01

    The present work presents a numerical analysis of a low NOx partially premixed burner for heavy duty gas turbine. The first part of the paper is focused on the study of the premixing process inside the burner using standard RANS CFD approach. The resulting profiles at different test points have been used to perform reactive simulations of an experimental test rig, where exhaust NOx emissions were measured. A reliable numerical setup was found comparing predicted and measured NOx emissions at ...

  4. Cooperative Software Testing and Analysis:Advances and Challenges

    Institute of Scientific and Technical Information of China (English)

    谢涛; 张路; 肖旭生; 熊英飞; 郝丹

    2014-01-01

    In recent years, to maximize the value of software testing and analysis, we have proposed the methodology of cooperative software testing and analysis (in short as cooperative testing and analysis) to enable testing and analysis tools to cooperate with their users (in the form of tool-human cooperation), and enable one tool to cooperate with another tool (in the form of tool-tool cooperation). Such cooperations are motivated by the observation that a tool is typically not powerful enough to address complications in testing or analysis of complex real-world software, and the tool user or another tool may be able to help out some problems faced by the tool. To enable tool-human or tool-tool cooperation, effective mechanisms need to be developed 1) for a tool to communicate problems faced by the tool to the tool user or another tool, and 2) for the tool user or another tool to assist the tool to address the problems. Such methodology of cooperative testing and analysis forms a new research frontier on synergistic cooperations between humans and tools along with cooperations between tools and tools. This article presents recent example advances and challenges on cooperative testing and analysis.

  5. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; FINAL

    International Nuclear Information System (INIS)

    The focus of this program is to provide insight into the formation and minimization of NO(sub x) in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO(sub x) emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames-particularly under low NO(sub x) conditions. A CO/H(sub 2)/O(sub 2)/N(sub 2) flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state(sup 13)C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  6. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  7. The Advanced Photon Source Injector Test Stand Control System

    CERN Document Server

    MacLean, J F

    2001-01-01

    The Advanced Photon Source (APS) primary and backup injectors consist of two thermionic-cathode rf guns. These guns are being upgraded to provide improved performance, to improve ease of maintenance, and to reduce downtime required for repair or replacement of a failed injector. As part of the process, an injector test stand is being prepared. This stand is effectively independent of the APS linac and will allow for complete characterization and validation of an injector prior to its installation into the APS linac. A modular control system for the test stand has been developed using standard APS control solutions with EPICS to deliver a flexible and comprehensive control system. The modularity of the system will allow both the future expansion of test stand functionality and the evaluation of new control techniques and solutions.

  8. Advanced Test Reactor National Scientific User Facility Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of

  9. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  10. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  11. Development and certification of the innovative pioneer oil burner for residential heating appliances

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, B. [Heat Wise Inc., Ridge, NY (United States)

    1997-09-01

    The Pioneer burner represents another important milestone for the oil heat industry. It is the first practical burner design that is designated for use in small capacity heating appliances matching the needs of modern energy efficient home designs. Firing in the range of 0.3 GPH to 0.65 GPH (40,000-90,000 Btu/hr) it allows for new oil heating appliance designs to compete with the other major fuel choices in the small design load residential market. This market includes energy efficient single family houses, town-houses, condominiums, modular units, and mobile homes. The firing range also is wide enough to cover a large percentage of more conventional heating equipment and home designs as well. Having recently passed Underwriters Laboratory certification tests the burner in now being field tested in several homes and samples are being made available to interested boiler and furnace manufacturers for product development and application testing.

  12. Application of a Central Composite Design for the Study of NOx Emission Performance of a Low NOx Burner

    Directory of Open Access Journals (Sweden)

    Marcin Dutka

    2015-04-01

    Full Text Available In this study, the influence of various factors on nitrogen oxides (NOx emissions of a low NOx burner is investigated using a central composite design (CCD approach to an experimental matrix in order to show the applicability of design of experiments methodology to the combustion field. Four factors have been analyzed in terms of their impact on NOx formation: hydrogen fraction in the fuel (0%–15% mass fraction in hydrogen-enriched methane, amount of excess air (5%–30%, burner head position (20–25 mm from the burner throat and secondary fuel fraction provided to the burner (0%–6%. The measurements were performed at a constant thermal load equal to 25 kW (calculated based on lower heating value. Response surface methodology and CCD were used to develop a second-degree polynomial regression model of the burner NOx emissions. The significance of the tested factors over their respective ranges has been evaluated using the analysis of variance and by the consideration of the coefficients of the model equation. Results show that hydrogen addition to methane leads to increased NOx emissions in comparison to emissions from pure methane combustion. Hydrogen content in a fuel is the strongest factor affecting NOx emissions among all the factors tested. Lower NOx formation because of increased excess air was observed when the burner was fuelled by pure methane, but this effect diminished for hydrogen-rich fuel mixtures. NOx emissions were slightly reduced when the burner head was shifted closer to the burner outer tube, whereas a secondary fuel stream provided to the burner was found to have no impact on NOx emissions over the investigated range of factors.

  13. Stress analysis of HLW containers advanced test work Compas project

    International Nuclear Information System (INIS)

    The Compas project is concerned with the structural performance of metal overpacks which may be used to encapsulate vitrified high-level waste forms before disposal in deep geological repositories. This document describes the activities performed between June and August 1989 forming the advanced test work phase of this project. This is the culmination of two years' analysis and test work to demonstrate whether the analytical ability exists to model containers subjected to realistic loads. Three mild steel containers were designed and manufactured to be one-third scale models of a realistic HLW container, modified to represent the effect of anisotropic loading and to facilitate testing. The containers were tested under a uniform external pressure and all failed by buckling in the mid-body region. The outer surface of each container was comprehensively strain-gauged to provide strain history data at all positions of interest. In parallel with the test work, Compas project partners, from five different European countries, independently modelled the behaviour of each of the containers using their computer codes to predict the failure pressure and produce strain history data at a number of specified locations. The first axisymmetric container was well modelled but predictions for the remaining two non-axisymmetric containers were much more varied, with differences of up to 50% occurring between failure predictions and test data

  14. Free-electron laser results from the Advanced Test Accelerator

    International Nuclear Information System (INIS)

    PALADIN is a 10.6-μm FEL amplifier experiment operating at the Lawrence Livermore National Laboratory's Advanced Test Accelerator, an induction linear accelerator designed to produce a 45-MeV, 10-kA electron beam. With a 15-m long wiggler, PALADIN demonstrated 27 dB of exponential gain from a 14-kW input signal. With a 5-MW input signal, the amplifier saturated after 10 dB of gain. The exponentially growing signal in the unsaturated amplifier was clearly seen to be gain guided by the electron beam. 7 refs., 8 figs

  15. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Piot, Philippe [Fermilab; Harms, Elvin [Fermilab; Henderson, Stuart [Fermilab; Leibfritz, Jerry [Fermilab; Nagaitsev, Sergei [Fermilab; Shiltsev, Vladimir [Fermilab; Valishev, Alexander [Fermilab

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  16. Testing aspects of advanced coherent electron cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  17. Potential for new societal contributions from the advanced test reactor

    International Nuclear Information System (INIS)

    The mission of the Advanced Test Reactor (ATR) at Idaho National Engineering Laboratory is to study the effects of intense radiation on materials and fuels and to produce radioisotopes for the U.S. Department of Energy (DOE) for government and commercial applications. The purpose of this paper is to explore the potential benefits to society from these available neutrons. The ATR is a 250-MW(thermal) light water reactor highly enriched uranium in plate-type fuel. The ATR uses a combination of hafnium control drums and shim rods to adjust power and hold flux distortion to a minimum. The different quadrants of the ATR can be operated at different power levels to meet a variety of mission requirements. Irradiation positions are available at various locations throughout the core and beryllium reflector. A summary of the flux levels at various ATR reflector and loop positions. is given. These fluxes are maintained with a relatively constant axial flux profile throughout cycles that last 35 to 42 days. These neutrons can be used for testing and irradiation programs that support commercial reactor license extension, advanced fuel development, materials effects studies, failure cause/effect studies, coolant chemistry evaluations, prototype testing programs, isotope production, and basic research. Radioisotope production falls into three categories: medical, industrial, and research. In summary, the ATR is a unique, high-power test reactor capable of supporting the current DOE mission and producing radioisotopes. Space available for radioisotope production and fuels or materials testing will increase by 44% in 1994, improving DOE's ability to support national needs in health care, industry, and research

  18. The Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

    2011-08-01

    In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposer’s physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user’s technical needs. The current NSUF partners are

  19. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    International Nuclear Information System (INIS)

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  20. Design of Test Support Hardware for Advanced Space Suits

    Science.gov (United States)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  1. Development of an advanced respirator fit-test headform.

    Science.gov (United States)

    Bergman, Michael S; Zhuang, Ziqing; Hanson, David; Heimbuch, Brian K; McDonald, Michael J; Palmiero, Andrew J; Shaffer, Ronald E; Harnish, Delbert; Husband, Michael; Wander, Joseph D

    2014-01-01

    Improved respirator test headforms are needed to measure the fit of N95 filtering facepiece respirators (FFRs) for protection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking) Advanced Headform (StAH) was developed for evaluating the fit of N95 FFRs. The StAH was developed based on the anthropometric dimensions of a digital headform reported by the National Institute for Occupational Safety and Health (NIOSH) and has a silicone polymer skin with defined local tissue thicknesses. Quantitative fit factor evaluations were performed on seven N95 FFR models of various sizes and designs. Donnings were performed with and without a pre-test leak checking method. For each method, four replicate FFR samples of each of the seven models were tested with two donnings per replicate, resulting in a total of 56 tests per donning method. Each fit factor evaluation was comprised of three 86-sec exercises: "Normal Breathing" (NB, 11.2 liters per min (lpm)), "Deep Breathing" (DB, 20.4 lpm), then NB again. A fit factor for each exercise and an overall test fit factor were obtained. Analysis of variance methods were used to identify statistical differences among fit factors (analyzed as logarithms) for different FFR models, exercises, and testing methods. For each FFR model and for each testing method, the NB and DB fit factor data were not significantly different (P > 0.05). Significant differences were seen in the overall exercise fit factor data for the two donning methods among all FFR models (pooled data) and in the overall exercise fit factor data for the two testing methods within certain models. Utilization of the leak checking method improved the rate of obtaining overall exercise fit factors ≥100. The FFR models, which are expected to achieve overall fit factors ≥ 100 on human subjects, achieved overall exercise fit factors ≥ 100 on the StAH. Further research is needed to evaluate the correlation of FFRs fitted on the StAH to FFRs

  2. Design considerations of the irradiation test vehicle for the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  3. IMPROVEMENT OF OPERATIONAL CHARACTERISTICS OF ELECTRIC COOKER BURNERS

    Directory of Open Access Journals (Sweden)

    I. M. Kirick

    2015-01-01

    Full Text Available On the basis of a complex theoretical and experimental investigations a principally new design of small inertial burner for electric cookers has been developed that significantly out-perform burners of conventional types. 

  4. Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover

    2005-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

  5. Advancing nuclear technology and research. The advanced test reactor national scientific user facility

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research. The mission of the ATR NSUF is to provide access to world-class facilities, thereby facilitating the advancement of nuclear science and technology. Cost free access to the ATR, INL post irradiation examination facilities, and partner facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to United States Department of Energy. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  6. The advanced test reactor national scientific user facility: advancing nuclear technology education

    International Nuclear Information System (INIS)

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy designated the Idaho National Laboratory (INL) Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The ATR NSUF provides education programs including a Users Week, internships, faculty student team projects and faculty/staff exchanges. In addition, the ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  7. Influential parameters of nitrogen oxides emissions for microturbine swirl burner with pilot burner

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2010-01-01

    Full Text Available Swirl burners are the most common type of device in wide range of applications, including gas turbine combustors. Due to their characteristics, swirl flows are extensively used in combustion systems because they enable high energy conversion in small volume with good stabilization behavior over the wide operating range. The flow and mixing process generated by the swirl afford excellent flame stability and reduced NOx emissions. Experimental investigation of NOx emission of a purposely designed micro turbine gas burner with pilot burner is presented. Both burners are equipped with swirlers. Mixtures of air and fuel are introduced separately: through the inner swirler - primary mixture for pilot burner, and through the outer swirler - secondary mixture for main burner. The effects of swirl number variations for the both burners were investigated, including parametric variations of the thermal power and air coefficient. It was found that the outer swirler affects the emission of NOx only for the air coefficient less than 1.4. The increase of swirl number resulted in decrease of NOx emission. The inner swirler and thermal power were found to have negligible effect on emission.

  8. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  9. Advanced neutron source corrosion test-loop facility

    International Nuclear Information System (INIS)

    The reference core for the advanced neutron source (ANS) will have a configuration similar to the present High-Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory: simply, an array of aluminum-alloy-clad fuel plates immersed in rapidly flowing water. The high thermal conductivity of the aluminum combined with the high heat transfer coefficient governing heat flow from the plate to the water keep the fuel inside the plates at an acceptable temperature. Unfortunately, the exposed of aluminum under these conditions leads to the formation of a thin layer of oxide (boehmite) that separates the fuel plates from the coolant water. The boehmite film has very poor thermal conductivity, and the heat flux that must cross this film can cause excessive heating of the fuel during the lifetime of the core. A test loop has been built to determine experimentally the rate of corrosion product formation on the aluminum cladding at the higher heat fluxes. Preliminary experiments have been completed that illustrate the capabilities of the loop system and the general behavior of an aluminum specimen exposed to large heat fluxes and coolant velocities. This same facility will be used for thermal-hydraulic testing; however, modifications will be necessary because of higher heat fluxes, temperatures, and pressures. Currently, the design is for light water testing; heavy water tests will be conducted in the future, which will require additional modifications

  10. DESIGN REPORT LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  11. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  12. LASER-ENHANCED IONIZATION SPECTROMETRY WITH A TOTAL CONSUMPTION BURNER

    OpenAIRE

    Green, R; Hall, Janet

    1983-01-01

    This paper describes the use of a total consumption burner as an analytical atom reservoir for laser-enhanced ionization spectrometry. A total consumption burner and premixed burner are compared for limits of detection and matrix interferences. These results demonstrate that high sensitivity laser-enhanced ionization measurements are possible in adverse sample environments where traditional methods of optical spectrometry have proven inadequate.

  13. The Advanced Test Reactor as a National Scientific User Facility

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) has been in operation since 1967 and mainly used to support U.S. Department of Energy (US DOE) materials and fuels research programs. Irradiation capabilities of the ATR and post-irradiation examination capabilities of the Idaho National Laboratory (INL) were generally not being utilized by universities and other potential users due largely to a prohibitive pricing structure. While materials and fuels testing programs using the ATR continue to be needed for US DOE programs such as the Advanced Fuel Cycle Initiative and Next Generation Nuclear Plant, US DOE recognized there was a national need to make these capabilities available to a broader user base. In April 2007, the U.S. Department of Energy designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). As a NSUF, most of the services associated with university experiment irradiation and post-irradiation examinations are provided free-of-charge. The US DOE is providing these services to support U.S. leadership in nuclear science, technology, and education and to encourage active university/industry/laboratory collaboration. The first full year of implementing the user facility concept was 2008 and it was a very successful year. The first university experiment pilot project was developed in collaboration with the University of Wisconsin and began irradiation in the ATR in 2008. Lessons learned from this pilot program will be applied to future NSUF projects. Five other university experiments were also competitively selected in March 2008 from the initial solicitation for proposals. The NSUF now has a continually open process where universities can submit proposals as they are ready. Plans are to invest in new and upgraded capabilities at the ATR, post-irradiation examination capabilities at the INL, and in a new experiment assembly facility to further support the implementation of the user facility concept. Through a newly created Partnership Program

  14. Evaluation of the advanced mixed oxide fuel test FO-2 irradiated in Fast Flux Test Facility

    International Nuclear Information System (INIS)

    The advanced mixed-oxide (UO2-PuO2) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF), is undergoing postirradiation examination (PIE). This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) (Leggett and Omberg 1987) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of twelve different types. The test was irradiated for 312 equivalent full power days (EFPD) in FFTF. It had a peak pin power of 13.7 kW/ft and reached a peak burnup of 65.2 MWd/kgM with a peak fast fluence of 9.9 /times/ 1022 n/cm2 (E > 0.1 MeV). This document discusses the test and its results. 6 refs., 19 figs., 4 tabs

  15. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  16. Simulating advanced life support systems to test integrated control approaches

    Science.gov (United States)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  17. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every

  18. Process development report: 0. 40-m primary burner system. [Spent fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.T.

    1978-04-01

    Fluidized bed combustion is required in reprocessing the graphite-based fuel elements from high-temperature gas-cooled reactor (HTGR) cores. This burning process requires combustion of beds containing both large particles and very dense particles, and also of fine graphite particles which elutriate from the bed. This report documents the successful long-term operation of the 0.40-m primary burner in burning crushed fuel elements. The 0.40-m system operation is followed from its first short heatup test in September 1976 to a > 40-h burning campaign that processed 20 LHTGR blocks in September 1977. The 0.40-m perforated conical gas distributor, scaled up from the 0.20-m primary burner, has proven reliable in safely burning even the largest, densest adhered graphite/fuel particle clusters originating from the crushing of loaded fuel elements. Such clusters had never been fed to the 0.20-m system. Efficient combustion of graphite fines using the pressurized recycle technique was demonstrated throughout the long-duration operation required to reduce a high carbon fresh feed bed to a low carbon particle bed. Again, such operation had never been completed on the 0.20-m system from which the 0.40-m burner was scaled. The successful completion of the tests was due, in part, to implementation of significant equipment revisions which were suggested by both the initial 0.40-m system tests and by results of ongoing development work on the 0.2-m primary burner. These revisions included additional penetrations in the burner tube side-wall for above-bed fines recycle, replacement and deletion of several metal bellows with bellows of more reliable design, and improvements in designs for burner alignment and feeder mechanisms. 76 figures, 8 tables.

  19. Replacement of the Advanced Test Reactor control room

    International Nuclear Information System (INIS)

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor

  20. Database requirements for the Advanced Test Accelerator project

    International Nuclear Information System (INIS)

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures

  1. Communication of Advanced Test Reactor probabilistic risk assessment results

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 results were efficiently communicated in two reports following the completion of revision 1 of the ATR PRA. As the ATR PRA including external events fills four large volume, it was considered impractical to expect all of the individuals at ATR who could benefit from the information to read the entire PRA. Even though many ATR personnel received training in PRA methodology and were involved in some aspects of the PRA, another hinderance to effective communication of the PRA results is that the PRA was written and organized to meet the requirements of practitioners and reviewers who are well-versed in PRA methods. Therefore, two PRA summary reports, an ATR risk summary report and an ATR functional group summary report, were written to communicate the ATR PRA results and insights to interested ATR personnel

  2. Bed burners for grate boilers; Baeddbraennare foer rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Sendelius, Mikael; Schuster, Robert [AaF-Energikonsult AB, Stockholm (Sweden)

    2003-10-01

    The objective of this work is to increase the knowledge of bed burners and their optimal positions in furnaces. The results from several computational fluid mechanics calculations are presented. An investigation concerning bed burners among plant owners is included as well. A bed burner is defined as a burner used for enhancing the combustion process on the bed i.e. it is used to dry incoming wet fuel. A load burner is used to quickly increase the boiler load and primarily not for creating better combustion conditions on the grate. Fluid mechanics calculations have been performed for five different cases, including the reference case. The following four bed burner arrangements have been examined: flat flame burner, six burners placed in the combustion chamber, two symmetric placed burners and two asymmetric placed burners. The same furnace model has been used through all the simulations. The incident radiation has been calculated in order to determine which one of the bed burners having the best possibility to improve the combustion process on the grate. The results showed that the flat flame burner and the six burners placed in the combustion chamber gave the most incident radiation on the first two grate zones. Bed burners placed further back in the furnace gave less good results. A comparison between the reference case (the case without burners) and the case with two burners showed that there was almost no difference in incident radiation between the two cases. The case with six burners placed in the combustion chamber gave most incident radiation, however this arrangement gave an irregular distribution of the radiation on the bed. Too high or irregular distributed radiation increases the risk for getting regions, on the grate, where the fuel is completely burnt. Primary air will pass through these regions. This phenomenon will lead to high temperatures that cause increased levels of emissions, in particular NO{sub x}. Reorganizing the burner positions and

  3. Advancement of flash hydrogasification: Task VIII. Performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Falk, A.Y.; Schuman, M.D.; Kahn, D.R.

    1986-06-01

    This topical report documents the technical effort required to investigate and verify the reaction chemistry associated with the Rockwell Advanced Flash Hydropyrolysis (AFHP) concept for the production of substitute natural gas (SNG) from coal. The testing phase of the program included 5 preburner performance evaluation tests (14 test conditions) and 11 coal-fed reactor tests (19 test conditions). The reactor test parameters investigated spanned exist temperatures from 1775 to 2050/sup 0/F, residence times from 2 to 8 s, inlet gas-to-coal ratios from 0.15 to 0.27 lb-mole/lb, and inlet-steam-to-H/sub 2/ mole ratios from 0.15 to 0.86. One test was conducted to investigate the effect of CH/sub 4/ addition to the hydrogen feed stream (22 mole % CH/sub 4/), with subsequent partial oxidation of the CH/sub 4/ to CO/sub x/ in the preburner system, on the AFHP reactor chemistry and product gas composition. Overall carbon conversion and total carbon conversion to gases (namely, CH/sub 4/, C/sub 2/H/sub 6/, CO, and CO/sub 2/) ranged from 53 to 68% and 35 to 68%, respectively. The gas produced was primarily CH/sub 4/ (31 to 53% carbon conversion to CH/sub 4/). Carbon conversion to total liquids was strongly dependent on reactor exit temperature and to a lesser extent on residence time, with values ranging from about 20% to 1775/sup 0/F and 2-S residence time to zero at 1975/sup 0/F and residence times greater than 5 s. Carbon conversion to C/sub 6/H/sub 6/ asd high as 11.2% was obtained. Carbon conversion to CO/sub x/ ranged from 3.5 to 29.4%. Methane addition was found not to significantly affect the AFHP reactor chemistry. As a result of this program, Rockwell has expanded its data base and significantly improved its correlation model describing the processes occurring during flash hydropyrolysis. The correlation provides an excellent tool for subsequent process evaluations to determine the economic potential of the Rockwell coal hydrogasification process. 23 refs., 51 figs

  4. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    Energy Technology Data Exchange (ETDEWEB)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  5. Regenerative burner in the metals industry

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.

    1986-07-01

    The Regenerative Ceramic Burner, RCB is becoming widely accepted in the UK as the successor of the world famous recuperative burner. This paper describes the RCB and its modes of operation and compares it with the recuperative burner. This comparison uses the example of a reheating furnace employed to heat a 10 tonne billet to 1250/sup 0/C. The superior technical performance of the RCB is mirrored in its economic attractiveness. For most medium and large furnace applications the device can pay for itself in less than two years with 40 to 50% fuel savings. Examples of the use of the device are presented from both the steel and aluminium industries. In all cases, operation and worthwhile energy savings have been achieved. In its role on an aluminum melter, the burner has demonstrated its ability to handle contaminated gases with minimum maintenance requirement. The paper concludes with ideas for future developments of the technology which will extend its use into other industry sectors.

  6. Temperature controlled material irradiation in the advanced test reactor

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) is located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, USA and is owned and regulated by the U.S. Department of Energy (US DOE). The ATR is operated for the US DOE by Lockheed Martin Idaho Technologies. In recent years, prime irradiation space in the ATR has been made available for use by customers having irradiation service needs in addition to the reactor's principal user, the U.S. Naval Nuclear Propulsion Program. To enhance the reactor's capabilities, the US DOE has initiated the development of an Irradiation Test Vehicle (ITV) capable of providing neutron spectral tailoring and temperature control for up to 28 experiments. The ATR-ITV will have the flexibility to simultaneously support a variety of experiments requiring fast, thermal or mixed spectrum neutron environments. Temperature control is accomplished by varying the thermal conductivity across a gas gap established between the experiment specimen capsule wall and the experiment 'in-pile tube (IPT)' inside diameter. Thermal conductivity is adjusted by alternating the control gas mixture ratio of two gases with different thermal conductivities

  7. Market assessment for the fan atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    Westphalen, D. [A.D. Little, Inc., Cambridge, MA (United States)

    1996-07-01

    The market potential for the fan atomized burner (FAB) in water and space heating applications was examined. The major findings of the study are as follows. (1). The FAB`s low-input capability allows development of oil-fired room heaters and wall furnaces, a new market area for oil heat. (2). Among conventional oil-fired products, furnaces will benefit most from the burner`s low input capability due to (1) their quick delivery of heat and (2) their more prevalent use in warmer climates and smaller homes. (3). The greatest potential for increased product sales or oil sales exists in the use of the burner with new products (i.e., room heaters). Sales of boilers and direct-fired water heaters are not likely to increase with the use of the burner. (4). Acceptance of the burner will be dependent on proof of reliability. Proof of better reliability than conventional burners would accelerate acceptance.

  8. Advanced Utility Mercury-Sorbent Field-Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  9. PROTOTYPE EVALUATION OF COMMERCIAL SECOND GENERATION LOW-NOX BURNER PERFORMANCE AND SULFUR DIOXIDE CAPTURE POTENTIAL

    Science.gov (United States)

    The report gives results of tests on two large-scale staged-mixing (SM) burners developed by L and L Steinmuller of West Germany. One objective was to optimize their performance for low-NOx emissions, high efficiency, and combined NOx/SO2 control with sorbent injection. The exper...

  10. Cordierite Bricks for Ceramic Burner of Hot Blast Stove YB/T 4128-2005

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Chai Junlan

    2009-01-01

    @@ 1 Scope This standard specifies the classification,brand,technical requirements,shape and dimension,test method,quality appraisal procedure,packing,marking,transportation,storage and quality certificate of cordierite bricks for ceramic burner of blast furnace and hot blast stove.

  11. Electrochemical test methods for advanced battery and semiconductor technology

    Science.gov (United States)

    Hsu, Chao-Hung

    This dissertation consists of two studies. The first study was the evaluation of metallic materials for advanced lithium ion batteries and the second study was the determination of the dielectric constant k for the low-k materials. The advanced lithium ion battery is miniature for implantable medical devices and capable of being recharged from outside of the body using magnetic induction without physical connections. The stability of metallic materials employed in the lithium ion battery is one of the major safety concerns. Three types of materials---Pt-Ir alloy, Ti alloys, and stainless steels---were evaluated extensively in this study. The electrochemical characteristics of Pt-Ir alloy, Ti alloys, and stainless steels were evaluated in several types of battery electrolytes in order to determine the candidate materials for long-term use in lithium ion batteries. The dissolution behavior of these materials and the decomposition behavior of the battery electrolyte were investigated using the anodic potentiodynamic polarization (APP) technique. Lifetime prediction for metal dissolution was conducted using constant potential polarization (CPP) technique. The electrochemical impedance spectroscopy (EIS) technique was employed to investigate the metal dissolution behavior or the battery electrolyte decomposition at the open circuit potential (OCP). The scanning electron microscope (SEM) was used to observe the morphology changes after these tests. The effects of experimental factors on the corrosion behaviors of the metallic materials and stabilities of the battery electrolytes were also investigated using the 23 factorial design approach. Integration of materials having low dielectric constant k as interlayer dielectrics and/or low-resistivity conductors will partially solve the RC delay problem for the limiting performance of high-speed logic chips. The samples of JSR LKD 5109 material capped by several materials were evaluated by using EIS. The feasibility of using

  12. Development of the Radiation Stabilized Distributed Flux Burner. Phase 1, final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Duret, M.J.

    1997-06-01

    The RSB was first developed for Thermally Enhanced Oil Recovery steamers which fire with a single 60 MMBtu/hr burner; the California Energy Commission and Chevron USA were involved in the burner development. The burner has also since found applications in refinery and chemical plant process heaters. All Phase I goals were successfully met: the RSB achieved sub-9 ppM NOx and sub-50 ppM CO emissions using high excess air, external flue gas recirculation (FGR), and fuel staging in the 3 MMBtu/hr laboratory watertube boiler. In a test in a 50,000 lb/hr oil field steamer with fuel staging, it consistently achieved sub-20 ppM NOx and as low as 10 ppM NOx. With high CO{sub 2} casing gas in this steamer, simulating external FGR, sub-20 ppM NOx and as low as 5 ppM NOx were achieved. Burner material cost was reduced by 25% on a per Btu basis by increasing the effective surface firing rate at the burner; further reductions will occur in Phase II. The market for 30 ppM and 9 ppM low NOx burners has been identified as package boilers in the 50,000 to 250,000 lb/hr size range (the 30 ppM is for retrofit, the 9 ppM for the new boiler market). Alzeta and Babcock & Wilcox have teamed to sell both boiler retrofits and new boilers; they have identified boiler designs which use the compact flame shape of the RSB and can increase steam capacity while maintaining the same boiler footprint. Alzeta, Chevron, and B & W have teamed to identify sites to demonstrate the RSB in Phases II and III. In Phase II, the RSB will be demonstrated in a 100,000 lb/hr industrial watertube boiler.

  13. Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    CERN Document Server

    Turyshev, Slava G; Folkner, William M; Girerd, Andre R; Hemmati, Hamid; Murphy, Thomas W; Jr.,; Williams, James G; Degnan, John J

    2010-01-01

    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter $\\gamma$, with an accuracy of two parts in $10^7$, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, $G$ and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measureme...

  14. Functional toxicology: tools to advance the future of toxicity testing

    Directory of Open Access Journals (Sweden)

    Brandon David Gaytán

    2014-05-01

    Full Text Available The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds – information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1 novel insights into chemical toxicity; (2 pathways and mechanisms deserving of further study; and (3 candidate human toxicant susceptibility or resistance genes.

  15. Power-conditioning system for the Advanced Test Accelerator

    International Nuclear Information System (INIS)

    The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector

  16. Advanced Test Reactor National Scientific User Facility Progress

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  17. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    International Nuclear Information System (INIS)

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  18. The advanced test reactor national scientific user facility advancing nuclear technology

    International Nuclear Information System (INIS)

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  19. The advanced containment experiments (ACE) radioiodine test facility experimental program

    International Nuclear Information System (INIS)

    Results of the Advanced Containment Experiments (ACE) Radioiodine Test Facility (RTF) program are reported. This study consisted of four intermediate-scale experiments that investigated the effects of radiation, pH, surfaces and initial iodine speciation on iodine behaviour. The tests revealed that, in high radiation fields, the long-term volatility of iodine is independent of the initial iodine speciation (CsI, I2, CH3I). This is presumably because radiolytic reactions inter-convert aqueous iodine species; I- was the predominant aqueous iodine species after an absorbed dose of about 30-40 kGy. Tests at pH 9 and 5.5 demonstrated that iodine volatility increased significantly with decreasing pH. In addition, this study demonstrated that containment surfaces can play an important role in determining iodine volatility, gas and aqueous phase iodine speciation, and surface adsorption. In summary: The ACE/RTF experiments have demonstrated the importance of several factors on iodine behaviour within containment under reactor accident conditions. One of the most important factors was radiation. Without radiation, the volatility of iodine was dependent on the initial speciation of iodine, presumably because inter-conversion of iodine species by non-radiolytic reactions is relatively slow. In contrast, in the presence of radiation, the long-term volatility of iodine was independent of initial speciation. This is attributed to aqueous phase radiolytic reactions that result in rapid inter-conversion of iodine species. Iodine volatility was shown to increase significantly with decreasing pH. However, changing the pH from acidic to alkaline conditions did not result in rapid decreases in iodine volatility. This may have been due to desorption of volatile iodine species from surfaces, in the case of stainless steel, and the influence of organics in the epoxy tests. Surfaces were shown to influence iodine volatility and speciation. Higher gas phase iodine concentrations were

  20. 30 CFR 7.406 - Flame test apparatus.

    Science.gov (United States)

    2010-07-01

    ... natural gas type Tirrill burner, with a nominal inside diameter of 3/8 inch, to apply the flame to the test specimen. The fuel for the burner shall be natural gas composed of at least 96 percent...

  1. The advanced computational testing and simulation toolkit (ACTS)

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  2. The advanced computational testing and simulation toolkit (ACTS)

    International Nuclear Information System (INIS)

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  3. Advanced radiant combustion system. Final report, September 1989--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  4. Refinery burner simulation design architecture summary.

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  5. FLOX burner technology for wood furnaces

    International Nuclear Information System (INIS)

    Current research at IVD focuses on the development of FLOX burners for small furnaces, with the intention of making problematic biomass available for energetic utilisation. At the same time, soiling and emission problems are to be reduced or avoided by using innovative technologies. One of these is the technology of flameless oxidation, which is already applied successfully in the natural gas industry because of its low NOx emissions. The IVD is working on two different plant concepts. (orig.)

  6. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  7. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  8. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  9. Design and development of a low NOx regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Regenerative burner technology is used worldwide by a range of process industries to utilize waste heat and reduce specific energy consumption. Regenerative burners are associated with annual energy savings of 6.2 PJ and consequently have a further benefit, reducing CO[sub 2] emissions by approximately 316,000 tonnes/year. However, the high air pre-heat temperatures attained by these burners are also responsible for NOx emissions rates which are substantially higher than those for cold air fired burners. To address this problem the current project was set up to develop a low NOx regenerative burner which would comply with the then anticipated NOx emission legislation. The combination of computational fluid dynamic (CFD) modelling and experimental work has shown that there are available methods to reduce NOx emissions. For instance, in this project NOx emissions from a 3 MW burner were reduced to levels similar to those of a 600 kW unit. (author)

  10. Results of Laboratory Testing of Advanced Power Strips: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  11. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    Science.gov (United States)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  12. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 2. DATA SUPPLEMENT

    Science.gov (United States)

    The report is a compendium of detailed test sampling and analysis data obtained in field tests of an enhanced oil recovery steam generator (EOR steamer) equipped with a MHI PM low-NOx crude oil burner. Test data included in the report include equipment calibration records, steame...

  13. ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING; TOPICAL

    International Nuclear Information System (INIS)

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide and gt;99.99% particulate collection efficiency for particle sizes from 0.01 to 50(micro)m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of

  14. Drop-in capsule testing of plutonium-based fuels in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    The most attractive way to dispose of weapons-grade plutonium (WGPu) is to use it as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PuO[sub 2]) mixed with urania (UO[sub 2]). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. The proposed weapons-grade MOX fuel is unusual, even relative to ongoing foreign experience with reactor-grade MOX power reactor fuel. Some demonstration of the in- reactor thermal, mechanical, and fission gas release behavior of the prototype fuel will most likely be required in a limited number of test reactor irradiations. The application to license operation with MOX fuel must be amply supported by experimental data. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) is capable of playing a key role in the irradiation, development, and licensing of these new fuel types. The ATR is a 250- MW (thermal) LWR designed to study the effects of intense radiation on reactor fuels and materials. For 25 years, the primary role of the ATR has been to serve in experimental investigations for the development of advanced nuclear fuels. Both large- and small-volume test positions in the ATR could be used for MOX fuel irradiation. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. Furthermore, these data can be obtained more quickly by using ATR instead of testing in a commercial LWR. Our previous work in this area has demonstrated that it is technically feasible to perform MOX fuel testing in the ATR. This report documents our analyses of sealed drop-in capsules containing plutonium-based test specimens placed in various ATR positions

  15. Performance analysis of porous radiant burners used in LPG cooking stove

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, P.; Anand, Piyush; Sachdeva, Prateek [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039 (India)

    2011-07-01

    This paper discusses the performance investigations of a porous radiant burner (PRB) used in LPG cooking stove. Performance of the burner was studied at different equivalence ratios and power intensities. Thermal efficiency was found using the water-boiling test described in IS: 4246:2002. The newly designed PRB showed a maximum thermal efficiency of about 71%, which is 6% higher than that of the conventional burners. Influence of ambient temperature on the thermal efficiency of the PRB was also investigated. Using a PRB of 80 mm diameter at the operating conditions of 0.68 equivalence ratio and 1.24 kW power intensity, the thermal efficiency was found to increase from 61% at 18.5 oC to 71% at 31 oC ambient temperature. The CO and NOx emissions of the PRB are in the range of 9 to 16 ppm and 0 to 0.2 ppm, respectively, while the respective values for the conventional burner are in the range of 50 to 225 ppm and 2 to 7 ppm.

  16. Performance analysis of porous radiant burners used in LPG cooking stove

    Directory of Open Access Journals (Sweden)

    P. Muthukumar, Piyush Anand, Prateek Sachdeva

    2011-03-01

    Full Text Available This paper discusses the performance investigations of a porous radiant burner (PRB used in LPG cooking stove. Performance of the burner was studied at different equivalence ratios and power intensities. Thermal efficiency was found using the water-boiling test described in IS: 4246:2002. The newly designed PRB showed a maximum thermal efficiency of about 71%, which is 6% higher than that of the conventional burners. Influence of ambient temperature on the thermal efficiency of the PRB was also investigated. Using a PRB of 80 mm diameter at the operating conditions of 0.68 equivalence ratio and 1.24 kW power intensity, the thermal efficiency was found to increase from 61% at 18.5 oC to 71% at 31 oC ambient temperature. The CO and NOx emissions of the PRB are in the range of 9 to 16 ppm and 0 to 0.2 ppm, respectively, while the respective values for the conventional burner are in the range of 50 to 225 ppm and 2 to 7 ppm.

  17. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    International Nuclear Information System (INIS)

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program

  18. Advanced RADAR Sensors Modeling for Driving Assistance Systems Testing.

    OpenAIRE

    KEDZIA, Jean-Claude; DESOUZA, Philippe; Gruyer, Dominique

    2016-01-01

    With Advanced Driver Assistance Systems (ADAS) getting always more sophisticated, the related Virtual Prototyping platforms have to propose a very high level of accuracy with improved flexibility regarding vehicles, sensors, environments and scenarios. In this paper a new strategy is introduced for RADAR sensors modeling aimed at allowing high accuracy while limiting the related development efforts.

  19. Beta Test Plan for Advanced Inverters Interconnecting Distributed Resources with Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, A.; Chakraborty, S.; Basso, T.; Coddington, M.

    2014-01-01

    This document provides a preliminary (beta) test plan for grid interconnection systems of advanced inverter-based DERs. It follows the format and methodology/approach established by IEEE Std 1547.1, while incorporating: 1. Upgraded tests for responses to abnormal voltage and frequency, and also including ride-through. 2. A newly developed test for voltage regulation, including dynamic response testing. 3. Modified tests for unintentional islanding, open phase, and harmonics to include testing with the advanced voltage and frequency response functions enabled. Two advanced inverters, one single-phase and one three-phase, were tested under the beta test plan. These tests confirmed the importance of including tests for inverter dynamic response, which varies widely from one inverter to the next.

  20. 77 FR 24480 - Application for New Awards; Advanced Placement (AP) Test Fee Program-Reopening the AP Test Fee...

    Science.gov (United States)

    2012-04-24

    .... ACTION: Notice reopening the AP Test Fee fiscal year 2012 competition. Catalog of Federal Domestic Assistance (CFDA) Number: 84.330B. SUMMARY: On February 15, 2012, we published in the Federal Register (77 FR... Application for New Awards; Advanced Placement (AP) Test Fee Program--Reopening the AP Test Fee Fiscal...

  1. Models for transient analyses in advanced test reactors

    International Nuclear Information System (INIS)

    Several strategies are developed worldwide to respond to the world's increasing demand for electricity. Modern nuclear facilities are under construction or in the planning phase. In parallel, advanced nuclear reactor concepts are being developed to achieve sustainability, minimize waste, and ensure uranium resources. To optimize the performance of components (fuels and structures) of these systems, significant efforts are under way to design new Material Test Reactors facilities in Europe which employ water as a coolant. Safety provisions and the analyses of severe accidents are key points in the determination of sound designs. In this frame, the SIMMER multiphysics code systems is a very attractive tool as it can simulate transients and phenomena within and beyond the design basis in a tightly coupled way. This thesis is primarily focused upon the extension of the SIMMER multigroup cross-sections processing scheme (based on the Bondarenko method) for a proper heterogeneity treatment in the analyses of water-cooled thermal neutron systems. Since the SIMMER code was originally developed for liquid metal-cooled fast reactors analyses, the effect of heterogeneity had been neglected. As a result, the application of the code to water-cooled systems leads to a significant overestimation of the reactivity feedbacks and in turn to non-conservative results. To treat the heterogeneity, the multigroup cross-sections should be computed by properly taking account of the resonance self-shielding effects and the fine intra-cell flux distribution in space group-wise. In this thesis, significant improvements of the SIMMER cross-section processing scheme are described. A new formulation of the background cross-section, based on the Bell and Wigner correlations, is introduced and pre-calculated reduction factors (Effective Mean Chord Lengths) are used to take proper account of the resonance self-shielding effects of non-fuel isotopes. Moreover, pre-calculated parameters are applied

  2. Models for transient analyses in advanced test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielli, Fabrizio

    2011-02-22

    Several strategies are developed worldwide to respond to the world's increasing demand for electricity. Modern nuclear facilities are under construction or in the planning phase. In parallel, advanced nuclear reactor concepts are being developed to achieve sustainability, minimize waste, and ensure uranium resources. To optimize the performance of components (fuels and structures) of these systems, significant efforts are under way to design new Material Test Reactors facilities in Europe which employ water as a coolant. Safety provisions and the analyses of severe accidents are key points in the determination of sound designs. In this frame, the SIMMER multiphysics code systems is a very attractive tool as it can simulate transients and phenomena within and beyond the design basis in a tightly coupled way. This thesis is primarily focused upon the extension of the SIMMER multigroup cross-sections processing scheme (based on the Bondarenko method) for a proper heterogeneity treatment in the analyses of water-cooled thermal neutron systems. Since the SIMMER code was originally developed for liquid metal-cooled fast reactors analyses, the effect of heterogeneity had been neglected. As a result, the application of the code to water-cooled systems leads to a significant overestimation of the reactivity feedbacks and in turn to non-conservative results. To treat the heterogeneity, the multigroup cross-sections should be computed by properly taking account of the resonance self-shielding effects and the fine intra-cell flux distribution in space group-wise. In this thesis, significant improvements of the SIMMER cross-section processing scheme are described. A new formulation of the background cross-section, based on the Bell and Wigner correlations, is introduced and pre-calculated reduction factors (Effective Mean Chord Lengths) are used to take proper account of the resonance self-shielding effects of non-fuel isotopes. Moreover, pre-calculated parameters are

  3. Energy saving by regenerative burner; Rigene burner ni yoru sho energy

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, S. [Chugai Ro Co. Ltd., Osaka (Japan)

    2000-03-01

    Described are the characteristics of a regenerative burner (RB) and some important respects to consider before its employment. In this burner system, a set of two burners are operated, with one burning and the other sucking gas out of the furnace. The roles are switched over between the two burners every minute or every tens of seconds, and the repetition of heat accumulation and radiation by the heat accumulating bodies in the heat accumulators results in an air temperature which is near the gas temperature in the furnace. An optimum switchover time is determined by the make, or the specific heat and weight, of the heat accumulating bodies. The configuration may be effectively employed in the modification of existing furnaces (1) when treatment capacity improvement is required or (2) when sufficient waste heat recovery is impossible. In the case of (1), an increase in combustion will be mandatory for capacity enhancement. Refurbishment to increase combustion, however, will not be required when RB is installed, and this enables capacity improvement while maintaining or enhancing energy saving performance at a low cost. In the case of (2), at a steel-making plant where recovery of waste heat is difficult because a ladle preheater or tandish preheater has no flue, effective heat recovery will be realized if RB is installed. (NEDO)

  4. Application of advanced non-destructive testing for testing the integrity of concrete foundations

    International Nuclear Information System (INIS)

    computer from the cross-hole sonic logging data by prepared software fit the expected range of Ultrasonic Pulse Velocity results from the laboratory tests and can improve the reliability of interpreted quality. The acquired capabilities are valuable asset to apply the Cross-hole sonic method - advanced non-destructive testing (NDT) technique for testing the integrity of the deep concrete foundations. (author)

  5. Increasing the efficiency of radiant burners by using polymer membranes

    International Nuclear Information System (INIS)

    Gas-fired radiant burners are used to convert fuel chemical energy into radiation energy for various applications. The radiation output of a radiant burner largely depends on the temperature of the combustion flame. In fact, the radiation output and, thus, the radiant efficiency increase to a great extent with flame temperature. Oxygen-enriched combustion can increase the flame temperature without increasing fuel cost. However, it has not been widely applied because of the high cost of oxygen production. In the present work, oxygen-enriched combustion of natural gas in porous radiant burners was studied. The oxygen-enriched air was produced passively, using polymer membranes. The membranes were shown to be an effective means of obtaining an oxygen-enriched environment for gas combustion in the radiant burners. Two different porous radiant burners were used in this study. One is a reticulated ceramic burner and the other is a ceramic fibre burner. The experimental results showed that the radiation output and the radiant efficiency of these burners increased markedly with rising oxygen concentrations in the combustion air. Also investigated were the effects of oxygen enrichment on combustion mode, and flame stability on the porous media

  6. Furnaces with multiple flameless combustion burners

    NARCIS (Netherlands)

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple flameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a com

  7. ENRAF Series 854 Advanced Technology Gauge (ATG) Acceptance Test Procedure

    International Nuclear Information System (INIS)

    This procedure provides acceptance testing for Enraf Series 854 level gauges used to monitor levels in Hanford Waste Storage Tanks. The test will verify that the gauge functions according to the manufacturer's instructions and specifications and is properly setup prior to being delivered to the tank farm area. This ATP does not set up the gauge for any specific tank, but is generalized to permit testing the gauge prior to installation package preparation

  8. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    DEFF Research Database (Denmark)

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik;

    in the sampling equipment. The use of the IR technique for determination of particle temperatures, particle sizes, and number density proved reliable in both the swirl burner and the laboratory scale fixed bed reactor. When the technique was used in the swirl burner the subsequent data treatment was......This report sums up the findings in PSO-project 010069, “Advanced Diagnostics in Oxy- Fuel Combustion Processes”. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory...

  9. Advances in the analysis of pressure interference tests

    Energy Technology Data Exchange (ETDEWEB)

    Martinez R, N. [Petroleos Mexicanos, PEMEX, Mexico City (Mexico); Samaniego V, F. [Univ. Nacional Autonoma de Mexico (Mexico)

    2010-12-15

    This paper presented an extension for radial, linear, and spherical flow conditions of the El-Khatib method for analyzing pressure interference tests through utilization of the pressure derivative. Conventional analysis of interference tests considers only radial flow, but some reservoirs have physical field conditions in which linear or spherical flow conditions prevail. The INTERFERAN system, a friendly computer code for the automatic analysis of pressure interference tests, was also discussed and demonstrated by way of 2 field cases. INTERFERAN relies on the principle of superposition in time and space to interpret a test of several wells with variable histories of production or injection or both. The first field case addressed interference tests conducted in the naturally fractured geothermal field of Klamath Falls, and the second field case was conducted in a river-formed bed in which linear flow conditions are dominant. The analysis was deemed to be reliable. 13 refs., 1 tab., 7 figs.

  10. Irradiation tests of advanced plutonium-bearing fuels

    International Nuclear Information System (INIS)

    The capsule irradiation tests of uranium-plutonium mixed carbide and nitride fuels are under way in Japan Materials Testing Reactor (JMTR) for evaluating the fuel performance. The fuel pins containing these fuels, helium bonded to stainless steel cladding, have been irradiated in the NaK bonded capsules with a double metal containment in which thermocouples are installed. The present paper summarizes the results of the development in irradiation technology of these plutonium-bearing fuels utilizing JMTR. (author)

  11. 78 FR 19691 - Applications for New Awards; Advanced Placement (AP) Test Fee Program

    Science.gov (United States)

    2013-04-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION... Secondary Education, Department of Education. ACTION: Notice. Overview Information Advanced Placement Test... course and (2) plan to take an advanced placement exam. The program is designed to increase the number...

  12. An introduction to the Advanced Testing Line for Actinide Separations (ATLAS)

    Energy Technology Data Exchange (ETDEWEB)

    Pope, N.G.; Yarbro, S.L.; Schreiber, S.B.; Day, R.S.

    1992-03-01

    The Advanced Testing Line for Actinide Separations (ATLAS) will evaluate promising plutonium recovery process modifications and new technologies. It combines advances in process chemistry, process control, process analytical chemistry, and process engineering. ATLAS has a processing capability equal to other recovery systems but without the pressure to achieve predetermined recovery quotas.

  13. An introduction to the Advanced Testing Line for Actinide Separations (ATLAS)

    International Nuclear Information System (INIS)

    The Advanced Testing Line for Actinide Separations (ATLAS) will evaluate promising plutonium recovery process modifications and new technologies. It combines advances in process chemistry, process control, process analytical chemistry, and process engineering. ATLAS has a processing capability equal to other recovery systems but without the pressure to achieve predetermined recovery quotas

  14. Could Acoustic Emission Testing Show a Pipe Failure in Advance?

    Science.gov (United States)

    Soares, S. D.; Teixeira, J. C. G.

    2004-02-01

    During the last 20 years PETROBRAS has been attempting to use Acoustic Emission (AE) as an inspection tool. In this period the AE concept has changed from a revolutionary method to a way of finding areas to make a complete inspection. PETROBRAS has a lot of pressure vessels inspected by AE and with other NDTs techniques to establish their relationship. In other hand, PETROBRAS R&D Center has conducted destructive hydrostatic tests in pipelines samples with artificial defects made by milling. Those tests were monitored by acoustic emission and manual ultrasonic until the complete failure of pipe sample. This article shows the results obtained and a brief proposal of analysis criteria for this environment of test.

  15. Commercialisation of Biomarker Tests for Mental Illnesses: Advances and Obstacles.

    Science.gov (United States)

    Chan, Man K; Cooper, Jason D; Bahn, Sabine

    2015-12-01

    Substantial strides have been made in the field of biomarker research for mental illnesses over the past few decades. However, no US FDA-cleared blood-based biomarker tests have been translated into routine clinical practice. Here, we review the challenges associated with commercialisation of research findings and discuss how these challenges can impede scientific impact and progress. Overall evidence indicates that a lack of research funding and poor reproducibility of findings were the most important obstacles to commercialization of biomarker tests. Fraud, pre-analytical and analytical limitations, and inappropriate statistical analysis are major contributors to poor reproducibility. Increasingly, these issues are acknowledged and actions are being taken to improve data validity, raising the hope that robust biomarker tests will become available in the foreseeable future. PMID:26549771

  16. EMERIS: an advanced information system for a materials testing reactor

    International Nuclear Information System (INIS)

    The basic features of the Materials Testing Reactor of IAE, Moscow (MR) Information System (EMERIS) are outlined. The purpose of the system is to support reactor and experimental test loop operators by a flexible, fully computerized and user-friendly tool for the aquisition, analysis, archivation and presentation of data obtained during operation of the experimental facility. High availability of EMERIS services is ensured by redundant hardware and software components, and by automatic configuration procedure. A novel software feature of the system is the automatic Disturbance Analysis package, which is aimed to discover primary causes of irregularities occurred in the technology. (author) 2 refs.; 2 figs

  17. Acceptance Test Report for the 241-AN-107 Enraf Advanced Technology Gauges

    International Nuclear Information System (INIS)

    This Acceptance Test Report covers the results of the execution of the Acceptance Test Procedure for the 241-AN-107 Enraf Advanced Technology Gauges. The test verified the proper operation of the gauges to measure waste density and level in the 241-AN-107 tank

  18. Acceptance Test Report for the 241-AN-107 Enraf Advanced Technology Gauges

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, J.L.; Enderlin, V.R.

    1995-06-01

    This Acceptance Test Report covers the results of the execution of the Acceptance Test Procedure for the 241-AN-107 Enraf Advanced Technology Gauges. The test verified the proper operation of the gauges to measure waste density and level in the 241-AN-107 tank.

  19. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  20. Problems in Testing the Intonation of Advanced Foreign Learners.

    Science.gov (United States)

    Mendelsohn, David

    1978-01-01

    It is argued that knowledge about the testing of intonation in English as a foreign language is inadequate; the major problems are outlined and tentative suggestions are given. The basic problem is that the traditional foreign language teacher's conception of intonation is limited. A three-part definition of intonation is favored, with suggestions…

  1. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    Science.gov (United States)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  2. Advanced Capabilities for Wind Tunnel Testing in the 21st Century

    Science.gov (United States)

    Kegelman, Jerome T.; Danehy, Paul M.; Schwartz, Richard J.

    2010-01-01

    Wind tunnel testing methods and test technologies for the 21st century using advanced capabilities are presented. These capabilities are necessary to capture more accurate and high quality test results by eliminating the uncertainties in testing and to facilitate verification of computational tools for design. This paper discusses near term developments underway in ground testing capabilities, which will enhance the quality of information of both the test article and airstream flow details. Also discussed is a selection of new capability investments that have been made to accommodate such developments. Examples include advanced experimental methods for measuring the test gas itself; using efficient experiment methodologies, including quality assurance strategies within the test; and increasing test result information density by using extensive optical visualization together with computed flow field results. These points could be made for both major investments in existing tunnel capabilities or for entirely new capabilities.

  3. [Advanced Testing and Laboratory for HBV, HCV, and HIV Infection].

    Science.gov (United States)

    Deguchi, Matsuo

    2015-06-01

    Most target substances for immunoassay of infectious disease are antigens or antibodies which do not exist in the human body. Therefore, the method to set reference values is different from chemistry or hematology testing. High sensitivity is required for infectious disease testing, particularly for screening. Also, its reference values (cut-off values) are set as low as possible. Therefore, a false-positive reaction can be caused due to slightly non-specific reactions in infectious disease reagents. The specificities for infectious disease reagents were evaluated with 9 kinds of HCV antibody test kit and 9 kinds of HIV screening kit. The frequencies of false-positive results were 0.2-1.8 and 0.2-1.3%, respectively, and even a kit with a high specificity showed a false-positive result for 1 in 500 samples. The sensitivities for infectious disease reagents were evaluated with a newly developed super-high- sensitive HBs antigen assay kit and 8 kinds of chemiluminescence HBs antigen assay kit which are highly sensitive conventional kits. As a result, the super-high-sensitive kit was 10 to 40 times more sensitive than conventional kits. After introducing the super-high-sensitive kit to routine assays, 16 HBV-infected patients, who were not identified with the conventional kits, were detected for six months. On the other hand, we confirmed false-positive results due to contamination between specimens after introducing the super-high-sensitive kit. It is recommended to use the super-high-sensitive kit in a well-controlled environment to prevent contamination between specimens in order to generate highly reliable test results. PMID:26548240

  4. Testing of an advanced thermochemical conversion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  5. DEVELOPMENT OF CRITERIA FOR EXTENSION OF APPLICABILITY OF LOW-EMISSION, HIGH-EFFICIENCY COAL BURNERS: FOURTH ANNUAL REPORT

    Science.gov (United States)

    The report summarizes technical progress during the fourth year of effort on EPA contract 68-02-2667. NOx and SOx emission characteristics of two low-NOx distributed-mixing burners were tested with three coals in a large water-tube simulator furnace (50-70 million Btu/hr firing r...

  6. Use of regenerative burner systems in batchwise furnace operation; Einsatz von regenerativen Brennersystemen im satzweisen Ofenbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Tschapowetz, Erwin; Krammer, Helmut; Geidies, Joerg [Andritz Maerz GmbH, Duesseldorf (Germany)

    2013-06-15

    The use of regenerative burner heating systems in continuously operated plants in the steel and forging industries is tested in practice over the years. Due to the enormous energy savings with correspondingly large power requirements, and the continuous mode, these systems are used very successfully. In batch-wise operation, especially in the forging business, this system was rather uneconomical due to the batch operation and the cost situation. Due to the development of combination burner, regenerator and regulation a system was developed that in the light of rising gas prices and the demand for emission reduction also allows the use in batch-wise operation. The system at Saarschmiede and Boehler Edelstahl will be presented. (orig.)

  7. Pathophysiological aspects of recent advances in current thyroid function testing

    International Nuclear Information System (INIS)

    The paper first discusses thyroid function and thyroid ''status'', which is determined by thyroid gland function in secreting T4, and peripheral bio-transformation of T4. The accuracy of a current in-vitro diagnostic strategy ensures high reliability in clinical routine. More recent test procedures for iodothyronines and immunological phenomena need further evaluation. Later, the bio-transformation of T4 to bioactive and regulatory iodothyronines is discussed with respect to its possible clinical implications. Finally, the significance of TBG in the interpretation of T4 and T3 concentrations is determined and more attention is directed to its functional heterogeneity. (author)

  8. Pathophysiology of recent advances in current thyroid function testing

    International Nuclear Information System (INIS)

    In the first chapter I have discussed thyroid function and thyroid status which is determined by thyroid gland function in secreting T4 and peripheral biotransformation of T4. The accuracy of a current in-vitro diagnostic strategy allows high reliability in clinical routine. More recent test procedures for iodothyronines and immunological phenomena need further evaluation. In another chapter the biotransformation of T4 to bioactive and regulatory iodothyronines with respect to possible clinical implications is discussed. Finally, the role of TBG for interpration of T4 and T3 concentrations is determined and more attention directed to its functional heterogeneity. (orig.)

  9. JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

    2009-03-27

    The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were

  10. AGA answers complaints on burner tip prices

    International Nuclear Information System (INIS)

    This paper reports that the American Gas Association has rebutted complaints that natural gas prices have dropped at the wellhead but not at the burner tip. AGA Pres. Mike Baly the an association study of the issue found that all classes of customers paid less for gas in 1991 than they did in 1984, when gas prices were at their peak. He the, the study also shows that 100% of the wellhead price decline has been passed through to natural gas consumers in the form of lower retail prices. Baly the the average cost of gas delivered to all customers classes fell by $1.12/Mcf from 1984 to 1991, which exceeds the $1.10/Mcf decline in average wellhead prices during the same period

  11. Advanced tensile testing methods for bulk superconductors at cryogenic temperatures

    International Nuclear Information System (INIS)

    Tensile tests of bulk high Tc superconductors at room temperature have been generally performed by gluing the bulk specimens to Al-alloy rods. Because of the difference in the coefficient of thermal expansion, thermal stresses were induced at cryogenic temperatures especially near the interface between the specimen and the rods. In this study, tensile testing methods with minimized effect of the thermal stress were tried by using specimens cut from Dy-Ba-Cu-O superconductors. These were: (1) The rod material of Al-alloy was replaced with Ti-alloy, which has the coefficient close to the bulk. (2) The interlayer made of the identical bulk superconductor was inserted between the specimen and the Ti-alloy rod. The nominal tensile strength at the liquid nitrogen temperature (LNT) of the specimen glued to the Ti-alloy rods was significantly higher than that glued to the Al-alloy rods. The application of the interlayers increased the strength significantly. The FEM analysis showed that the thermal tensile stress component in the direction of loading axis within the specimen at LNT is markedly reduced by the method (1) and substantially eliminated in the method (2)

  12. Test Driven Development: Advancing Knowledge by Conjecture and Confirmation

    Directory of Open Access Journals (Sweden)

    Manfred Lange

    2011-12-01

    Full Text Available Test Driven Development (TDD is a critical agile software development practice that supports innovation in short development cycles. However, TDD is one of the most challenging agile practices to adopt because it requires changes to work practices and skill sets. It is therefore important to gain an understanding of TDD through the experiences of those who have successfully adopted this practice. We collaborated with an agile team to provide this experience report on their adoption of TDD, using observations and interviews within the product development environment. This article highlights a number of practices that underlie successful development with TDD. To provide a theoretical perspective that can help to explain how TDD supports a positive philosophy of software development, we have revised Northover et al.’s conceptual framework, which is based on a four stage model of agile development, to reinterpret Popper’s theory of conjecture and falsification in the context of agile testing strategies. As a result of our findings, we propose an analytical model for TDD in agile software development which provides a theoretical basis for further investigations into the role of TDD and related practices.

  13. Design process and instrumentation of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Air pollution and global climate change have become a serious environmental problem leading to increasingly stringent government regulations worldwide. New designs and methods for improving combustion systems to minimize the production of toxic emissions, like nitrogen oxides (NOx) are therefore needed. In order to control smog, acid rain, ozone depletion, and greenhouse-effect warming, a reduction of nitrogen oxide is necessary. One alternative for combined electrical power and heat generation (CHP) are micro-cogeneration units which use a micro-turbine as a prime mover. However, to increase the efficiencies of these units, micro-cogeneration technology still needs to be developed further. This paper described the design process, building, and testing of a new low NOx wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. The primary goal of the study was to develop a practical and simple WMDB, which produces low emissions by using lean-premixed surface combustion concept and its objectives were separated into four phases which were described in this paper. Phase I involved the design and construction of the burner. Phase II involved a qualitative flow visualization study for the duct burner premixer to assist the new design of the burner by introducing an efficient premixer that could be used in this new application. Phase III of this research program involved non-reacting flow modeling on the burner premixer flow field using a commercial computational fluid dynamic model. In phase IV, the reacting flow experimental investigation was performed. It was concluded that the burner successfully increased the quantity and the quality of the heat released from the micro-CHP unit and carbon monoxide emissions of less than 9 ppm were reached. 3 refs., 3 figs.

  14. Hydraulic test for non-instrumented capsule of advanced PWR fuel pellet

    International Nuclear Information System (INIS)

    This report presents the results of pressure drop test, vibration test and endurance test for Non-instrumented Capsule of Advanced PWR Fuel Pellet which were designed fabricated by KAERI. From the pressure drop test results, it is noted that the flow rate across the Non-instrumented Capsule of Advanced PWR Fuel Pellet corresponding to the pressure drop of 200 kPa is measured to be about 7.45 kg/sec. Vibration frequency for the Non-instrumented Capsule of Advanced PWR Fuel Pellet ranges from 13.0 to 32.3 Hz. RMS(Root Mean Square) displacement for the fuel rig is less than 11.6 μm, and the maximum displacement is less than 30.5 μm. The endurance test was carried out for 103 days and 17 hours

  15. Variation in the gaze, caloric test and vestibular-evoked myogenic potential with advancing age

    Directory of Open Access Journals (Sweden)

    Sharda Sarda

    2014-01-01

    Full Text Available Objectives: The present study was aimed to investigate age related changes on Caloric test, Gaze Test and Vestibular Evoked Myogenic Potential (cVEMP. Materials and Methods: The participants included 50 individuals ranging from 20-70 years having no complaint of dizziness or any major illness. The basic audiological test battery was carried out followed by Caloric test, Gaze Test and the VEMP. Results: There was no consistent pattern seen on the caloric test and gaze test with advancing age while VEMP showed significant increase in latency and decrease in amplitude of both P13 and N23 as the age advances. Discussion: The comparison of the mean SPV values do not show an age related pattern because the caloric test does not challenge the semicircular canal system enough so as to reveal its defects. The age related changes in the cVEMP parameters could be attributed to the age related degeneration in the vestibular sense organ

  16. A Development and Application of a Ladle Regenerative Burner System for a Steel Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seong Soo [POSCO, Pohang (Korea); Park, Heung Soo [Research Institute of Industrial Science and Technology, Pohang (Korea)

    2001-06-01

    This study developed a self-model on a regenerative ladle heating system, 300 millions kcal/hr of a burning capacity using COG fuel, and conducted a performance test through applying it to a field. The model has a structure, which can tilt through loading a mixed burner with a high-speed spay nozzle on a ladle cover, as well as a fixed duct and can inhale and exhaust the air through the inside of a rotating duct built horizontally. The regenerative system is designed of a rectangular parallelepiped, 0.56 m{sup 3} of an inside volume, and uses 25 mm diameter of a ceramic ball as a regenerating material. This study got conclusions through operating the installed system in field and testing burning as follows: 1) The structure of a burner and a duct system selected through this study is a vertical burning regenerative ladle heating system and suitable to a space application and an operation; 2) The self-designed burner shows the stable burning state, its ignition is excellent in high loading time, and the designed speed of a moving fluid in spray is adequate; 3) In the condition of the lowest absorption, the preheating temperature of burning air reaches to 530 deg C, and the sensible heat of burning exhaust gas can be recovered over 50%; 4) The saving effect of fuel gas due to the installation of this system is measured minimum 25%{approx}30%. 3 figs.

  17. Chylomicrons: Advances in biology, pathology, laboratory testing, and therapeutics.

    Science.gov (United States)

    Julve, Josep; Martín-Campos, Jesús M; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2016-04-01

    The adequate absorption of lipids is essential for all mammalian species due to their inability to synthesize some essential fatty acids and fat-soluble vitamins. Chylomicrons (CMs) are large, triglyceride-rich lipoproteins that are produced in intestinal enterocytes in response to fat ingestion, which function to transport the ingested lipids to different tissues. In addition to the contribution of CMs to postprandial lipemia, their remnants, the degradation products following lipolysis by lipoprotein lipase, are linked to cardiovascular disease. In this review, we will focus on the structure-function and metabolism of CMs. Second, we will analyze the impact of gene defects reported to affect CM metabolism and, also, the role of CMs in other pathologies, such as atherothrombotic cardiovascular disease and diabetes mellitus. Third, we will provide an overview of the laboratory tests currently used to study CM disorders, and, finally, we will highlight current treatments in diseases affecting CMs. PMID:26868089

  18. Advanced ThioClear process testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lani, B.

    1998-03-01

    Wet scrubbing is the leading proven commercial post-combustion FGD technology available to meet the sulfur dioxide reductions required by the Clean Air Act Amendments. To reduce costs associated with wet FGD, Dravo Lime Company has developed the ThioClear process. ThioClear is an ex-situ forced oxidation magnesium-enhanced lime FGD process. ThioClear process differs from the conventional magnesium-enhanced lime process in that the recycle liquor has minimal suspended solids and the by-products are wallboard quality gypsum and magnesium hydroxide, an excellent reagent for water treatment. The process has demonstrated sulfur dioxide removal efficiencies of +95% in both a vertical spray scrubber tower and a horizontal absorber operating at gas velocities of 16 fps, respectively. This report details the optimization studies and associated economics from testing conducted at Dravo Lime Company`s pilot plant located at the Miami Fort Station of the Cincinnati Gas and Electric Company.

  19. Adaptive thermal compensation of test masses in advanced LIGO

    CERN Document Server

    Lawrence, R; Fritschel, P; Marfuta, P; Shoemaker, D M; Lawrence, Ryan; Zucker, Michael; Fritschel, Peter; Marfuta, Phil; Shoemaker, David

    2002-01-01

    As the first generation of laser interferometric gravitational wave detectors near operation, research and development has begun on increasing the instrument's sensitivity while utilizing the existing infrastructure. In the Laser Interferometer Gravitational Wave Observatory (LIGO), significant improvements are being planned for installation in ~2007, increasing strain sensitivity through improved suspensions and test mass substrates, active seismic isolation, and higher input laser power. Even with the highest quality optics available today, however, finite absorption of laser power within transmissive optics, coupled with the tremendous amount of optical power circulating in various parts of the interferometer, result in critical wavefront deformations which would cripple the performance of the instrument. Discussed is a method of active wavefront correction via direct thermal actuation on optical elements of the interferometer. A simple nichrome heating element suspended off the face of an affected optic w...

  20. ESCRIME: testing bench for advanced operator workstations in future plants

    International Nuclear Information System (INIS)

    The problem of optimal task allocation between man and computer for the operation of nuclear power plants is of major concern for the design of future plants. As the increased level of automation induces the modification of the tasks actually devoted to the operator in the control room, it is very important to anticipate these consequences at the plant design stage. The improvement of man machine cooperation is expected to play a major role in minimizing the impact of human errors on plant safety. The CEA has launched a research program concerning the evolution of the plant operation in order to optimize the efficiency of the human/computer systems for a better safety. The objective of this program is to evaluate different modalities of man-machine share of tasks, in a representative context. It relies strongly upon the development of a specific testing facility, the ESCRIME work bench, which is presented in this paper. It consists of an EDF 1300MWe PWR plant simulator connected to an operator workstation. The plant simulator model presents at a significant level of details the instrumentation and control of the plant and the main connected circuits. The operator interface is based on the generalization of the use of interactive graphic displays, and is intended to be consistent to the tasks to be performed by the operator. The functional architecture of the workstation is modular, so that different cooperation mechanisms can be implemented within the same framework. It is based on a thorough analysis and structuration of plant control tasks, in normal as well as in accident situations. The software architecture design follows the distributed artificial intelligence approach. Cognitive agents cooperate in order to operate the process. The paper presents the basic principles and the functional architecture of the test bed and describes the steps and the present status of the program. (author)

  1. INITIAL IRRADIATION OF THE FIRST ADVANCED GAS REACTOR FUEL DEVELOPMENT AND QUALIFICATION EXPERIMENT IN THE ADVANCED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover; David A. Petti

    2007-09-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  2. Microwave plasma burner and temperature measurements in its flames

    International Nuclear Information System (INIS)

    An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner is operated by injecting liquid hydrocarbon fuels into a microwave plasma torch in air discharge and by mixing the resultant gaseous hydrogen and carbon compounds with air or oxygen gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. While the temperature of the torch plasma flame was only 550 K at a measurement point, that of the plasma-burner flame with the addition of 0.025 lpm (liters per minute) kerosene and 20 lpm oxygen drastically increased to about 1850 K. A preliminary experiment was carried out, measuring the temperature profiles of flames along the radial and axial directions

  3. Study of a ceramic burner for shaftless stoves

    Institute of Scientific and Technical Information of China (English)

    Fang-qin Dai; Suo-yi Huang; Shao-hua Li; Ke Liu

    2009-01-01

    A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed.The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distribution of the flows in the chambers and joint were studied by cold model experiments.This type of ceramic burner was successfully applied in 6# blast furnace at Liuzhou Iron & Steel Co.Ltd.(LISC) and this practice proved that it could be used in the hot blast stove and other stoves with a higher effi-ciency and a higher steadiness of hot blast temperature at 1200℃.With the combustion of blast furnace gas alone, the thermal effi- ciency was up to 78.95%, saving energy remarkably.

  4. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D. [and others

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs.

  5. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    International Nuclear Information System (INIS)

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs

  6. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    Science.gov (United States)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  7. Experimental and Theoretical Studies of a Low Nox Swirl Burner

    OpenAIRE

    Spangelo, Øystein

    2004-01-01

    Nitrogen oxides emitted to the atmosphere can cause health problems for humans and environmental problems such as acid rain and global warming. The main part of the world energy consumption involves combustion; hence nitrogen oxide abatement in combustion is an important research field. Formation and reduction of NOx in combustion and the current regulations on NOx emissions are reviewed.A novel low NOx swirl stabilized gas burner concept, the Swirl Burner, has been studied experimentally, th...

  8. Furnaces with multiple flameless combustion burners

    OpenAIRE

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple flameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a combustion technology capable of accomplishing the combination of high energy efficiency (by preheating of the combustion air) and low emissions, especially nitrogen oxides (NOx ). These high combustio...

  9. Sensors and methods for control of modulating burners

    Energy Technology Data Exchange (ETDEWEB)

    Michel, J.-B.; Neumann, V.; Theurillat, P. [Centre Suisse d' Electronique et de Microtechnique, Neuchatel (Switzerland); Abu-Sharekh, Y. [Erlangen-Nuremberg Univ. (Germany). LSTM

    2003-07-01

    In recent years, many interesting developments have taken place for an improved control of domestic burners, with an emphasis on modulating gas and oil burners. These relate to new types of sensors for the control of excess air and to new methods and tools for the implantation of control systems on micro-controllers. These developments are reviewed and the application to the Bioflam domestic boiler is described. (orig.)

  10. Corrosion of Stainless Steels of Cryogenic Hydrocarbon Flare Tips Burners

    OpenAIRE

    H. U. Nwosu; A. U. Iwuoha

    2011-01-01

    Analysis of the corrosion resistance of AISI Type 304 Stainless Steel (SS) used in flare tips (burners) of natural gas (NG) extraction facilities is considered to determine the resistance of this grade of austenitic stainless steel to the aggressive corrosive actions of the environment. It was observed that the grade of SS yielded quite early to corrosion attacks which gave effects to scaling, flaking, pitting, material thinning and flare distortions in the burners contrary to expectations. T...

  11. Integrated environmental protection in the textile industry: Development of a mobile and pollutant-free low temperature heating system by utilization of advanced textile heating mats and emission-free pore burner engineering. Final report; Integrierter Umweltschutz in der Textilindustrie: Entwicklung eines mobilen umweltfreundlichen Niedertemperatur-Heizsystems durch Einsatz neuartiger textiler Heizmatten und Anwendung der emissionsarmen Porenbrenner-Heiztechnik. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagl, E.; Fuchs, H.

    2003-09-26

    Flexible heating mats can be produced in large surfaces with variable structure and a high degree of prefabrication. The pore burner heating technology has extremely low pollutant emissions and high power modulation. These two components are coupled to obtain a highly advantageous heating system, based on the principle of flexible plastic tubes incorporated in textile mats and serving as hot water conduits. The water is heated in a heat exchanger by a pore burner without an open flame. The resulting heating panels are mobile as the pore burner/heat transmission system is designed as a compact unit. (orig.) [German] Flexible Heizmatten lassen sich als grosse Flaechen mit variabler Struktur und hohem Vorfertigungsgrad herstellen. Die Porenbrenner-Heiztechnik zeichnet sich durch eine extrem niedrige Schadstoffemission bei hoher Leistungsmodulation aus. Durch Kopplung beider Komponenten entsteht ein Heizsystem, das die genannten vorteilhaften Eigenschaften zusammenfuehrt. Das Wirkprinzip des neuen Heizsystems beruht darauf, dass in mattenartige Textilstrukturen flexible Kunststoffschlaeuche eingearbeitet werden, die als Stroemungskanaele fuer Warmwasser dienen. Das mittels Porenbrenner ohne offene Flamme verbrannte Brennstoff-Luftgemisch erwaermt ueber einen Waermetauscher das Wasser. Durch Anschluss der Schlaeuche an den mit Hilfe einer Pumpe realisierten Warmwasserkreislauf unter Verwendung entsprechender Anschlusselemente wird eine Wasserzirkulation in den Schlaeuchen erreicht. Die so geschaffenen Heizflaechen sind ortsveraenderlich einsetzbar, da das Porenbrenner-Waermeuebertragersystem als mobile kompakte Einheit gestaltet ist. (orig.)

  12. Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover; David A. Petti

    2008-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The design of the first experiment (designated AGR-1) was completed in 2005, and the fabrication and assembly of the test train as well as the support systems and fission product monitoring system that monitor and control the experiment during irradiation were completed in September 2006. The experiment was inserted in the ATR in December 2006, and is serving as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed and the status of the experiment is provided.

  13. Out-pile test of non-instrumented capsule for the advanced PWR fuel pellets in HANARO irradiation test

    International Nuclear Information System (INIS)

    Non-instrumental capsule were designed and fabricated to irradiate the advanced pellet developed for the high burn-up LWR fuel in the HANARO in-pile capsule. This capsule was out-pie tested at Cold Test Loop-I in KAERI. From the pressure drop test results, it is noted that the flow velocity across the non-instrumented capsule of advanced PWR fuel pellet corresponding to the pressure drop of 200 kPa is measured to be about 7.45 kg/sec. Vibration frequency for the capsule ranges from 13.0 to 32.3 Hz. RMS displacement for non-instrumented capsule of advanced PWR fuel pellet is less than 11.6 μm, and the maximum displacement is less that 30.5 μm. The flow rate for endurance test were 8.19 kg/s, which was 110% of 7.45 kg/s. And the endurance test was carried out for 100 days and 17 hours. The test results found not to the wear satisfied to the limits of pressure drop, flow rate, vibration and wear in the non-instrumented capsule

  14. The effect of orifice plate insertion on low NOx radial swirl burner performances (simulated variable area burner)

    International Nuclear Information System (INIS)

    The effect of inserting an outlet orifice plate of different sizes at the exit plane of the swirler outlet were studied for small radial swirler with fixed curves vanes. Tests were carried out using two different sizes flame tubes of 76 mm and 140 mm inside diameter, respectively and 330 mm in length. The system was fuelled via eight vane passage fuel nozzles of 3.5 mm diameter hole. This type of fuel injection helps in mixing the fuel and air better prior to ignition. Tests were carried out at 20 mm W.G. pressure loss which is representative of gas burners for domestic central heating system operating conditions. Tests were also carried out at 400 K preheated inlet air temperature and using only natural gas as fuel. The aim of the insertion of orifice plate was to create the swirler pressure loss at the swirler outlet phase so that the swirler outlet shear layer turbulence was maximize to assist with fuel/air mixing. For the present work, the smallest orifice plate exhibited a very low NOx emissions even at 0.7 equivalence ratio were NOx is well below 10 ppm corrected at 0% oxygen at dry basis. Other emissions such as carbon monoxide and unburned hydrocarbon were below 10 ppm and 100 ppm, respectively, over a wide range of operating equivalence ratios. The implies that good combustion was achieved using the smallest orifice plate. (Author)

  15. THEORETICAL ANALYSIS AND PRACTICE ON THE SELECTION OF KEY PARAMETERS FOR HORIZONTAL BIAS BURNER

    Institute of Scientific and Technical Information of China (English)

    刘泰生; 许晋源

    2003-01-01

    The air flow ratio and the pulverized-coal mass flux ratio between the rich and lean sides are the key parameters of horizontal bias burner. In order to realize high combustion efficiency, excellent stability of ignition, low NOx emission and safe operation, six principal demands are presented on the selection of key parameters. An analytical model is established on the basis of the demands, the fundamentals of combustion and the operation results. An improved horizontal bias burner is also presented and applied. The experiment and numerical simulation results show the improved horizontal bias burner can realize proper key parameters, lower NOx emission, high combustion efficiency and excellent performance of part load operation without oil support. It also can reduce the circumfluence and low velocity zone existing at the downstream sections of vanes, and avoid the burnout of the lean primary-air nozzle and the jam in the lean primary-air channel. The operation and test results verify the reasonableness and feasibility of the analytical model.

  16. Status of advanced airfoil tests in the Langley 0.3-meter transonic cryogenic tunnel

    Science.gov (United States)

    Ladson, C. L.; Ray, E. J.

    1984-01-01

    A joint NASA/U.S. industry program to test advanced technology airfoils in the Langley 0.3-meter Transonic Tunnel (TCT) was formulated under the Langley ACEE Project Office. The objectives include providing U.S. industry an opportunity to compare their most advanced airfoils to the latest NASA designs by means of high Reynolds number tests in the same facility. At the same time, industry would again experience in the design and construction of cryogenic test techniques. The status and details of the test program are presented. Typical aerodynamic results obtained, to date, are presented at chord Reynolds number up to 45 x 10(6) and are compared to results from other facilities and theory. Details of a joint agreement between NASA and the Deutsche Forschungs- und Versuchsantalt fur Luft- and Raumfahrt e.V. (DFVLR) for tests of two airfoils are also included. Results of these tests will be made available as soon as practical.

  17. The Advanced Microwave Sounding Unit-A: Antenna Number 2 Bearing Assembly Life Test

    Science.gov (United States)

    Powers, Charles E.

    1997-01-01

    Four bearing assemblies, lubricated with Apiezon C oil with 5% lead naphthenate (PbNp), were life tested in support of the Advanced Microwave Sounding Unit-A (AMSU-A). These assemblies were tested continuously for five to six years using the scanning pattern of the flight instrument. A post-life-test analysis was performed on two of the assemblies to evaluate the lubricant behavior and wear in the bearings.

  18. Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover

    2006-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  19. Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    The United States Department of Energy's Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation

  20. Evaluation of the advanced mixed-oxide fuel test FO-2 irradiated in the FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    The advanced mixed-oxide (UO2-PuO2) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF) is undergoing postirradiation examination. This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of 12 different types. Two L (annular) fuel pins, GF02L04 (FFTF and transient tested) and GF02L09 (FFTF only), were destructively examined. Evaluation of the FO-2 fuel pins and assembly shows the excellent and predictable performance of the mixed-oxide fuels with HT9 structural material. This, combined with the robust behavior of the pins in transient tests, and the continued excellent performance of the CDE indicate this is a superior fuel system for liquid-metal reactors. It offers greatly reduced deformation during irradiation, while maintaining good operating characteristics

  1. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  2. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    International Nuclear Information System (INIS)

    Coal-fired electric utilities are facing a serious challenge with regards to curbing their NO(sub x) emissions. At issue are the NO(sub x) contributions to the acid rain, ground level ozone, and particulate matter formation. Substantial NO(sub x) control requirements could be imposed under the proposed Ozone Transport Rule, National Ambient Air Quality Standards, and New Source Performance Standards. McDermott Technology, Inc. (MTI), Babcock and Wilcox (B and W), and Fuel Tech are teaming to provide an integrated solution for NO(sub x) control. The system will be comprised of an ultra low-NO(sub x) pulverized coal (PC) burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. This system will be capable of meeting a target emission limit of 0.15 lb NO(sub x)/10(sup 6) Btu and target ammonia (NH3) slip level targeted below 5 ppmV for commercial units. Our approach combines the best available combustion and post-combustion NO(sub x) control technologies. More specifically, B and W's DRB-4Z TM ultra low-NO(sub x) PC burner technology will be combined with Fuel Tech's NO(sub x)OUT (SNCR) and NO(sub x)OUT Cascade (SNCR/SCR hybrid) systems and jointly evaluated and optimized in a state-of-the-art test facility at MTI. Although the NO(sub x)OUT Cascade (SNCR/SCR hybrid) system will not be tested directly in this program, its potential application for situations that require greater NO(sub x) reductions will be inferred from other measurements (i.e., SNCR NO(sub x) removal efficiency plus projected NO(sub x) reduction by the catalyst based on controlled ammonia slip). Our analysis shows that the integrated ultra low-NO(sub x) burner and SNCR system has the lowest cost when the burner emissions are 0.25 lb NO(sub x)/10(sup 6) Btu or less. At burner NO(sub x) emission level of 0.20 lb NO(sub x)/10(sup 6) Btu, the levelized cost per ton of NO(sub x) removed is 52% lower than the SCR cost

  3. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX

  4. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.; Fleming, P.

    2010-12-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  5. Flashback Analysis in Tangential Swirl Burners

    Directory of Open Access Journals (Sweden)

    Valera-Medina A.

    2011-10-01

    Full Text Available Premixed lean combustion is widely used in Combustion Processes due to the benefits of good flame stability and blowoff limits coupled with low NOx emissions. However, the use of novel fuels and complex flows have increased the concern about flashback, especially for the use of syngas and highly hydrogen enriched blends. Thus, this paper describes a combined practical and numerical approach to study the phenomenon in order to reduce the effect of flashback in a pilot scale 100 kW tangential swirl burner. Natural gas is used to establish the baseline results and effects of different parameters changes. The flashback phenomenon is studied with the use of high speed photography. The use of a central fuel injector demonstrates substantial benefits in terms of flashback resistance, eliminating coherent structures that may appear in the flow channels. The critical boundary velocity gradient is used for characterization, both via the original Lewis and von Elbe formula and via analysis using CFD and investigation of boundary layer conditions in the flame front.

  6. Ball plasma dynamics for FBX BURNER reactor

    International Nuclear Information System (INIS)

    The authors have been conducting fundamental experiments on the moving plasma balls in the major axis direction. This has a fundamental importance for the quasi-steady fusion reactor scheme FBX BURNER. This configuration is the descendants of Spheromak type nuclear fusion scheme but with long toroidal field coils. The main issues have been focused onto the dynamic stability of the moving plasma balls. The second issue is the collision between two successive plasma balls as shown. This shows a basic result from an optical measurement. The comparison with magnetic measurements shows peculiar but interesting features of the system. The dimension of the plasma injector is 2 m in length as a whole. It is in a coaxial configuration. The external electrode is 150 mm in inner diameter and the inner electrode is 50 mm in diameter. This is attached to a 1 m insulation reservoir with same inner diameter. An axial magnetic field up to 0.1 Tesla is applied on the discharge with a current of up to 10 kA in few ms. The authors show their experimental and numerical simulation results on these problems

  7. Linear accelerator for burner-reactor

    International Nuclear Information System (INIS)

    Future development of nuclear power engineering depends on the successful solution of two key problems of safety and utilization of high level radioactive wastes (HLRW) of atomic power plants (APP). Modern methods of HLRW treatment involve solidification, preliminary storing for a period of 30-50 years necessary for the decay of long-living nuclides and final burial in geological formations several hundred meters below the ground surface. The depth burial of the radioactive wastes requires complicated under ground constructions. It's very expensive and doesn't meet modern ecological requirements. Alternative modern and more reasonable methods of APP HLRW treatment are under consideration now. One of the methods involves separation of APP waste radionuclides for use in economy with subsequent transmutation of the long-living isotopes into the short-living ones by high-intensity neutron fluxes generated by proton accelerators. The installation intended for the long-living radionuclides transmutation into the short-living ones is called burner-reactor. It can be based on the continuous regime proton accelerator with 1.5 GeV energy, 0.3 A current and beam mean power of 450 MW. The preferable type of the proton accelerator with the aforementioned parameters is the linear accelerator

  8. Fusion-Fission Burner for Transuranic Actinides

    Science.gov (United States)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  9. Advanced E-O test capability for Army Next-Generation Automated Test System (NGATS)

    Science.gov (United States)

    Errea, S.; Grigor, J.; King, D. F.; Matis, G.; McHugh, S.; McKechnie, J.; Nehring, B.

    2015-05-01

    The Future E-O (FEO) program was established to develop a flexible, modular, automated test capability as part of the Next Generation Automatic Test System (NGATS) program to support the test and diagnostic needs of currently fielded U.S. Army electro-optical (E-O) devices, as well as being expandable to address the requirements of future Navy, Marine Corps and Air Force E-O systems. Santa Barbara infrared (SBIR) has designed, fabricated, and delivered three (3) prototype FEO for engineering and logistics evaluation prior to anticipated full-scale production beginning in 2016. In addition to presenting a detailed overview of the FEO system hardware design, features and testing capabilities, the integration of SBIR's EO-IR sensor and laser test software package, IRWindows 4™, into FEO to automate the test execution, data collection and analysis, archiving and reporting of results is also described.

  10. Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand

    International Nuclear Information System (INIS)

    Cooker-top burners are used extensively in Thailand because of the rapid combustion and high heating-rates created by an impinging flame, which is characteristic of these types of burners. High thermal efficiency with low level of CO emissions is the most important performance criteria for these burners. The wide variation in reported performances of the burners appears to be due to the ad hoc knowledge gained through trial and error of the local manufacturers rather than sound scientific principles. This is extremely undesirable in view of safety, energy conservation and environmental protection. In the present work, a nationwide cooker-top burner performance survey and an implementation of a PIV technique to analyze the burner performance as well as advising local manufacturers were carried out. Experimental data were reported for the base line value of thermal efficiency of all the burners. The thermal performance parameters and dynamic properties of the flow field at a flame impingement area, i.e. velocity magnitude, turbulent intensity, vorticity and strain rate were also reported as a function of burner type, which was categorized into four types based on the configuration of the burner head: radial flow burners, swirling flow burners, vertical flow burners and porous radiant burners

  11. Demonstration of a steam jet scrubber off-gas system and the burner efficiency of a mixed incinerator facility

    International Nuclear Information System (INIS)

    A full-scale incinerator system, the Consolidated Incineration Facility (CIF), is being designed to process solid and liquid low-level radioactive, mixed, and RCRA hazardous waste. This facility will consist of a rotary kiln, secondary combustion chamber (SCC), and a wet of-gas system. A prototype steam jet scrubber wastewater will be immobilized in a cement matrix after assumptions for the CIF. The scrubber wastewater will be immobilized in a cement matrix after the blowdown has been concentrated to a maximum solids concentration in a cross-flow filtration system. A sintered metal inertial filter system has been successfully tested. Burner efficiency was tested in a high intensity vortex burner, which destroyed the hazardous waste streams tested. These tests are detailed by the authors

  12. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  13. Advanced Test Reactor In-Canal Ultrasonic Scanner: Experiment Design and Initial Results on Irradiated Plates

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Wachs; J. M. Wight; D. T. Clark; J. M. Williams; S. C. Taylor; D. J. Utterbeck; G. L. Hawkes; G. S. Chang; R. G. Ambrosek; N. C. Craft

    2008-09-01

    An irradiation test device has been developed to support testing of prototypic scale plate type fuels in the Advanced Test Reactor. The experiment hardware and operating conditions were optimized to provide the irradiation conditions necessary to conduct performance and qualification tests on research reactor type fuels for the RERTR program. The device was designed to allow disassembly and reassembly in the ATR spent fuel canal so that interim inspections could be performed on the fuel plates. An ultrasonic scanner was developed to perform dimensional and transmission inspections during these interim investigations. Example results from the AFIP-2 experiment are presented.

  14. Bioswirl: A Wood Pellet Burner for Oil Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Ljungdahl, Boo; Lundberg, Henrik [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-11-01

    A compact and robust firing system for wood pellets has been developed and its operation demonstrated during one season. The firing system was developed with the aim to retrofit heat producing oil-fired burners in the range of 0.5 to 5 MW. In this power range there are severe economical restrictions on the firing systems used; operation with high availability and low emissions of unburned gases and NO{sub x} should be secured with only periodic supervision of the boiler. At the same time there are technical restrictions since, for instance, scale up of existing commercial small grate firing technique leads to an undesired volumetric increase of the pellet burner, compared to the oil-burners to be retrofitted. Here a burner system for crushed wood pellets was developed in order to increase the combustion intensity. The pellets are fed from the storage silo to a mill/crusher where the fuel is crushed to a coarse wood powder with a size distribution of 0.5 to 4 mm, which is about the same size as the original particle size distribution used for the pellet production. Thus a simple crushing mill can be used and any excess energy demand for milling is avoided. The crushed pellets are thereafter directly fed into a cyclone burner. The centrifugal forces assure a sufficient residence time to complete thermal conversion of the large wood particles in the burner, i.e. the particles are large compared to pulverised fuel. The burner is designed with secondary -and tertiary air registers for a staged air supply and connected to a furnace in which the final burn out of combustible gases takes place. This results in an efficient burn out and low NO, emissions even at turn down ratios in the order of 1:8. Ash particles will follow the exhaust gas as fly ash. During the heating season 2001-2002 the Bioswirl burner has been demonstrated in a small-scale district heating system. A 1200 kW oil burner has been replaced with an 800 kW Bioswirl burner. The system has been operated with

  15. Advancing the Science of Developmental Neurotoxicity (DNT) Testing for Better Safety Evaluation

    DEFF Research Database (Denmark)

    Bal-Price, Anna; Coecke, Sandra; Costa, Lucio;

    2012-01-01

    Bal-Price AK, Coecke S, Costa L, Crofton KM, Fritsche E, Goldberg A, Grandjean P, Lein PJ, Li A, Lucchini R, Mundy WR, Padilla S, Persico A, Seiler AEM, Kreysa J. Conference Report: Advancing the Science of Developmental Neurotoxicity (DNT) Testing for Better Safety Evaluation. Altex 2012: 29: 202-15....

  16. Cognitive Levels of Questions Used by Iranian EFL Teachers in Advanced Reading Comprehension Tests

    Science.gov (United States)

    Khorsand, Narjess

    2009-01-01

    This study examined the cognitive levels of questions used by Iranian EFL teachers in advanced reading comprehension tests. Twenty teachers participated in this study and generated 215 questions which were then categorized according to Bloom's taxonomy. This taxonomy consists of six major categories which starts from the simplest behavior to the…

  17. 2015 Groundwater Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Ponds

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  18. Design and construction of an air inductor burner

    International Nuclear Information System (INIS)

    This article presents research results performed with the purpose of obtain design parameters, construction, and air inductor burner operation, which are used in industrial combustion systems, in several processes such as: metal fusion (fusion furnaces), fluids heating (immerse heating tubes), steam production (steam boiler), drying processes, etc. In order to achieve such objectives, a prototype with thermal power modulation from 6 to 52 kW, was built to be either operated with natural gas or with LPG. The burner was built taking in mind the know how (design procedure) developed according to theoretical schemes of different bibliographic references and knowledge of the research group in gas science and technology of the University of Antioquia. However, with such procedure only the burner mixer is dimensioned and five parameters must to be selected by the designer: burner thermal power, primary aeration ratio, counter pressure at combustion chamber, air pressure admission and gas fuel intended to use. For head design we took in mind research done before by the group of science and technology in gas research: Mono port and bar burner heads with their respective stabilization flame systems

  19. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  20. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station

    Science.gov (United States)

    De La Cruz, Melinda; Henderson, Steve

    2016-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD1553B, Ethernet and TAXI) and is designed for rapid testing and deployment of payload experiments to the ISS. The ISS's goal is to reduce the amount of time it takes for a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface.

  1. Super long-term creep tests of advanced HP and IP rotor steels

    Energy Technology Data Exchange (ETDEWEB)

    Tchizhik, A.A. [The Polzunov Central Boiler and Turbine Institute, Department the Fatigue Life of Materials for Power Plans Equipment, St. Petersburg (Russian Federation)

    1998-12-31

    A creep model has been developed for predicting the long-term creep behavior, in excess of 200,000 h for advanced materials.The new creep theory is based on a continuum microdamage model and is used to calculate the fields of stress and strain and wedge and cavities damage in critical components of steam and gas turbines. The application of this new model increases the reliability and service life of modern turbines. The accuracy of the model to predict long - term creep behavior, creep ductility was verified using the data bank of super long-term creep tests of advanced materials. (orig.) 12 refs.

  2. Recent advances of annular centrifugal extractor for hot test of nuclear waste partitioning process

    Institute of Scientific and Technical Information of China (English)

    HeXiang-Ming; YanYu-Shun; 等

    1998-01-01

    Advances are being made in the design of the annular centrifugal extractor fornuclear fuel reprocessing extraction process studies.The extractors have been built and tested.Twelve stages of this extractor and 50 stages are used toimplement the TRPO process for the cleanup ofcommercial and defense nuclear waste liquids,respectively.Following advances are available:(1) simple way of assembly and disassembly between rotor part and housing part of extractor,ease of manipulator operation;(2)automatic sampling from housing of extractor in hot cell;(3) compact multi-stage housing system;(4) easy interstage link;(5) computer data acquisition and monitoring system of speed.

  3. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  4. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-09-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal

  5. Advanced power cycling test for power module with on-line on-state VCE measurement

    DEFF Research Database (Denmark)

    Choi, Ui-min; Trintis, Ionut; Blaabjerg, Frede; Jørgensen, Søren; Svarre, Morten Liengaard

    Recent research has made an effort to improve the reliability of power electronic systems to comply with more stringent constraints on cost, safety, predicted lifetime and availability in many applications. For this, studies about failure mechanisms of power electronic components and lifetime...... estimation of power semiconductor devices and capacitors have been done. Accelerated power cycling test is one of the common tests to assess the power device module and develop the lifetime model considering the physics of failure. In this paper, a new advanced power cycling test setup is proposed for power...

  6. The use of safeguards data for process monitoring in the Advanced Test Line for Actinide Separations

    International Nuclear Information System (INIS)

    Los Alamos is constructing an integrated process monitoring/materials control and accounting (PM/MC and A) system in the Advanced Testing Line for Actinide Separations (ATLAS) at the Los Alamos Plutonium Facility. The ATLAS will test and demonstrate new methods for aqueous processing of plutonium. The ATLAS will also develop, test, and demonstrate the concepts for integrated process monitoring/materials control and accounting. We describe how this integrated PM/MC and A system will function and provide benefits to both process research and materials accounting personnel

  7. Development of an advanced method for expansion due to compression testing

    International Nuclear Information System (INIS)

    For the purpose of detailed and precise descriptions of pellet-cladding mechanical interaction (PCMI), the advanced EDC test method was developed based on the modification of the conventional EDC test. The employment of ring-shaped specimens together with metallic inner pellet allows to obtain reproducible and less-error experimental results on strains along hoop and axial directions directly. The setup is even capable to be exposed to high temperature experiments which has not yet achieved by the conventional EDC tests. (author)

  8. Advanced Vehicle Testing Activity Cold Weather On-road Testing of the Chevrolet Volt

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    This report details cold weather on-road testing of a Chevrolet Volt. It quantifies changes in efficiency and electric range as ambient temperature changes. It will be published to INL's AVTA website as an INL technical report and will be accessible to the general public.

  9. COAL PARTICLE FLOW PATTERNS FOR O2 ENRICHED, LOW NOx BURNERS; F

    International Nuclear Information System (INIS)

    Over the past year, the hot flow studies have focused on the validation of a novel 2M near-flame combustion furnace. The 2M furnace was specifically designed to investigate burner aerodynamics and flame stability phenomena. Key accomplishments include completion of coal and oxygen mass balance calculations and derivation of emission conversion equations, upgrade of furnace equipment and flame safety systems, shakedown testing and partial completion of a parametric flame stability study. These activities are described in detail below along with a description of the 2M furnace and support systems

  10. Optimization of a premixed low-swirl burner for industrial applications

    OpenAIRE

    Fable, S.E.; Cheng, R. K.

    2000-01-01

    This study was motivated by recent tests results showing that a 5cm i.d. low-swirl burner (LSB) stabilizes ultra-lean premixed turbulent flames up to 600kW. A parametric study has been performed to determine the optimum ultra-lean LSB configuration, i.e. one that will achieve low NOx and flame stability, for thermal input between 15kW to 150kW. Using Laser Doppler Velocimetry (LDV), non-reacting centerline velocity and rms fluctuation profiles were measured, and were found to show self-...

  11. Numerical Study of NOx and Flame Shape of a DLE Burner

    OpenAIRE

    Hamedi, Naser

    2012-01-01

    For natural gas combustion, there is a large amount of experience in the gas turbine industry. However, much of the design work is based on costly combustion tests due to insufficient accuracy of existing prediction tools for data such as emissions and effects due to fuel composition. In the present work, Computational Fluid Dynamics (CFD) approach is used to study partially premixed combustion in the 3rd generation DLE (Dry Low Emission) burner that is used in SGT-700 and SGT-800 gas turbine...

  12. A small scale solar agricultural dryer with biomass burner and heat storage back-up heater

    Energy Technology Data Exchange (ETDEWEB)

    Tarigan, Elieser [Univ. Surabaya (UBAYA) Jl. Raya Kalirungkut, Surabaya (Indonesia); Tekasakul, Perapong [Prince of Songkla Univ., Hat Yai, Songkhla (Thailand)

    2008-07-01

    This paper describes a small scale solar agricultural dryer with a simple biomass burner and heat storage back-up heater. The key design features of the dryer are the combination of direct and indirect type solar dryer, the jacket and gap enclosing the drying chamber as a hot gas passage, and the arrangement of the real bricks in the heat storage system. The overall thermal efficiency of the dryer, tested for drying of some different agricultural products, was found to be in the range of 3% - 13%. The overall thermal efficiency of the biomass back-up heater was found to be about 20%. (orig.)

  13. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    Science.gov (United States)

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including

  14. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    International Nuclear Information System (INIS)

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO2) mixed with urania (UO2). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified

  15. Altitude Performance Characteristics of Tail-pipe Burner with Convergingconical Burner Section on J47 Turbojet Engine

    Science.gov (United States)

    Prince, William R; Mcaulay, John E

    1950-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.

  16. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover

    2009-09-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  17. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    Science.gov (United States)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.

    1985-01-01

    With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.

  18. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 4: Full scale ground test

    Science.gov (United States)

    Jackson, A. C.; Dorwald, F.

    1982-01-01

    The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.

  19. Oil burner system with an individual regulation of the burners within a wide range of loading and low emissions of NOx

    International Nuclear Information System (INIS)

    An oil burner system is implemented with an individual regulation of the burners within a wide range of loading and low emissions of NOx. The air regime of the burners is organized according to the requirements for a 'deferred combustion', a pre-condition for low level of the NOx emissions. The lances are Y nozzles with practically linear characteristic of the flow depending on the oil pressure. The oil (heavy boiler fuel) is heated up to 138 deg C (viscosity 16.0 mm2/s) for initial ignition and cold furnace and 130 deg C (viscosity 18,5 mm2/s) for a heated furnace and air temperature 150 deg C. The regulation of the fuel - air ratio is individual for each burner. The oil burner system and the various burners are controlled automatically by a DCS Teleperm XP - Siemens of the Unit. (authors)

  20. In-situ Creep Testing Capability Development for Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  1. Major advances in testing of dairy products: milk component and dairy product attribute testing.

    Science.gov (United States)

    Barbano, D M; Lynch, J M

    2006-04-01

    Milk component analysis is relatively unusual in the field of quantitative analytical chemistry because an analytical test result determines the allocation of very large amounts of money between buyers and sellers of milk. Therefore, there is high incentive to develop and refine these methods to achieve a level of analytical performance rarely demanded of most methods or laboratory staff working in analytical chemistry. In the last 25 yr, well-defined statistical methods to characterize and validate analytical method performance combined with significant improvements in both the chemical and instrumental methods have allowed achievement of improved analytical performance for payment testing. A shift from marketing commodity dairy products to the development, manufacture, and marketing of value added dairy foods for specific market segments has created a need for instrumental and sensory approaches and quantitative data to support product development and marketing. Bringing together sensory data from quantitative descriptive analysis and analytical data from gas chromatography olfactometry for identification of odor-active compounds in complex natural dairy foods has enabled the sensory scientist and analytical chemist to work together to improve the consistency and quality of dairy food flavors. PMID:16537952

  2. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

  3. Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

  4. Test Hardware Design for Flightlike Operation of Advanced Stirling Convertors (ASC-E3)

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  5. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  6. After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Forest Howard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”

  7. After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, ''Comprehensive Emergency Management System.''

  8. Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners

    Energy Technology Data Exchange (ETDEWEB)

    Clark Atlanta University

    2002-12-02

    The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

  9. Advanced model structures applied to system identification of a servo- hydraulic test rig

    Directory of Open Access Journals (Sweden)

    P. Czop

    2010-07-01

    Full Text Available Purpose: This paper deals with a method for the parametric system identification of a nonlinear system to obtain its parametric representation using a linear transfer function. Such representation is applicable in off-line profile correction methods minimizing the error between a reference input signal and a signal performed by the test rig. In turn, a test signal can be perfectly tracked by a servo-hydraulic test rig. This is the requirement in massive production where short test sequences are repeated to validate the products.Design/methodology/approach: A numerical and experimental case studies are presented in the paper. The numerical study presents a system identification process of a nonlinear system consisting of a linear transfer function and a nonlinear output component, being a static function. The experimental study presents a system identification process of a nonlinear system which is a servo-hydraulic test rig. The simulation data has been used to illustrate the feasibility study of the proposed approach, while the experimental data have been used to validate advanced model structures under operational conditions.Findings: The advanced model structures confirmed their better performance by means of the model fit in the time domain.Research limitations/implications: The method applies to analysis of such mechanical and hydraulic systems for which measurements are corrupted by residual harmonic disturbances resulting from system nonlinearities.Practical implications: The advanced model structures are intended to be used as inverse models in off-line signal profile correction.Originality/value: The results state the foundation for the off-line parametric error cancellation method which aims in improving tracking of load signals on servo-hydraulic test rigs.

  10. Technology developments for ACIGA high power test facility for advanced interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P [School of Physics, University of Western Australia, Perth, WA 6009 (Australia); Barton, M [California Institute of Technology, LIGO Project, Pasadena, CA 91125 (United States); Blair, D G [School of Physics, University of Western Australia, Perth, WA 6009 (Australia)] [and others

    2005-05-21

    The High Optical Power Test Facility for Advanced Interferometry has been built by the Australian Consortium for Interferometric Gravitational Astronomy north of Perth in Western Australia. An 80 m suspended cavity has been prepared in collaboration with LIGO, where a set of experiments to test suspension control and thermal compensation will soon take place. Future experiments will investigate radiation pressure instabilities and optical spring effects in a high power optical cavity with {approx}200 kW circulating power. The facility combines research and development undertaken by all consortium members, whose latest results are presented.

  11. Pilot Test of Advanced Treatments Combination of Wastewater for Groundwater Recharge

    Institute of Scientific and Technical Information of China (English)

    成徐洲; 杨磊; 吴天宝; 甘一苹; 胡俊

    2002-01-01

    To solve the water shortage problem, an artificial groundwater recharge system will be constructed in Beijing for wastewater reuse as a demonstration and training center. Design and operating experience for the demonstration plant was gained through pilot tests of advanced treatment technologies with soil infiltration of well treated secondary effluent. The test results showed that the selected treatment technology meets the recommended water quality criteria for groundwater recharge and the gas chromatography-mass spectrometer (GC/MS) analysis results showed significantly improved water quality.

  12. LOW NOX, HIGH EFFICIENCY MULTISTAGED BURNER: GASEOUS FUEL RESULTS

    Science.gov (United States)

    The paper discusses the evaluation of a multistaged combustion burner design on a 0.6 MW package boiler simulator for in-furnace NOx control and high combustion efficiency. Both deep air staging, resulting in a three-stage configuration, and boiler front wall fuel staging of undo...

  13. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen;

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles and to...

  14. Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces

    Science.gov (United States)

    Hassan, Mohamed I.; Al Kindi, Rashid

    2014-09-01

    Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.

  15. Regenerative burner system for thermoelectric power sources. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Guazzoni, G.; Angello, J.; Herchakowski, A.

    1979-07-01

    A thermoelectric power source is being developed to provide a multifuel, silent, maintenance free tactical power generator for forward area and unattended-operation applications. An experimental study of a regenerative burner system for the 500-Watt Thermoelectric Power Source has resulted in significant reduction in fuel consumption and infrared signature of the power source.

  16. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model

    Science.gov (United States)

    Meer, David W.; Lewandowski, Edward J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  17. Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope

    International Nuclear Information System (INIS)

    General relativity has very specific predictions for the gravitational waveforms from inspiralling compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to which the measurement of the PN coefficients, possible with the second generation gravitational-wave detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and 3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of 11-44M·. The choice of the lower frequency cutoff is important for testing post-Newtonian theory using the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.

  18. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Kirsi St. Marie; Dave Wang

    2003-04-30

    This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD

  19. Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement.

    Science.gov (United States)

    Shatkin, J A; Ong, Kimberly J; Beaudrie, Christian; Clippinger, Amy J; Hendren, Christine Ogilvie; Haber, Lynne T; Hill, Myriam; Holden, Patricia; Kennedy, Alan J; Kim, Baram; MacDonell, Margaret; Powers, Christina M; Sharma, Monita; Sheremeta, Lorraine; Stone, Vicki; Sultan, Yasir; Turley, Audrey; White, Ronald H

    2016-08-01

    The Society for Risk Analysis (SRA) has a history of bringing thought leadership to topics of emerging risk. In September 2014, the SRA Emerging Nanoscale Materials Specialty Group convened an international workshop to examine the use of alternative testing strategies (ATS) for manufactured nanomaterials (NM) from a risk analysis perspective. Experts in NM environmental health and safety, human health, ecotoxicology, regulatory compliance, risk analysis, and ATS evaluated and discussed the state of the science for in vitro and other alternatives to traditional toxicology testing for NM. Based on this review, experts recommended immediate and near-term actions that would advance ATS use in NM risk assessment. Three focal areas-human health, ecological health, and exposure considerations-shaped deliberations about information needs, priorities, and the next steps required to increase confidence in and use of ATS in NM risk assessment. The deliberations revealed that ATS are now being used for screening, and that, in the near term, ATS could be developed for use in read-across or categorization decision making within certain regulatory frameworks. Participants recognized that leadership is required from within the scientific community to address basic challenges, including standardizing materials, protocols, techniques and reporting, and designing experiments relevant to real-world conditions, as well as coordination and sharing of large-scale collaborations and data. Experts agreed that it will be critical to include experimental parameters that can support the development of adverse outcome pathways. Numerous other insightful ideas for investment in ATS emerged throughout the discussions and are further highlighted in this article. PMID:27510619

  20. Burner tilting angle effect on velocity profile in 700 MW Utility Boiler

    Science.gov (United States)

    Munisamy, K. M.; Yusoff, M. Z.; Thangaraju, S. K.; Hassan, H.; Ahmad, A.

    2015-09-01

    700 MW of utility boiler is investigated with manipulation of inlet burner angle. Manipulation of burner titling angle is an operational methodology in controlling rear pass temperature in utility boilers. The rear pass temperature unbalance between right and left side is a problem caused by fouling and slagging of the ash from the coal fired boilers. This paper presents the CFD investigation on the 0° and -30° of the burner angle of the utility boiler. The results focusing on the velocity profile. The design condition of 0° burner firing angle is compared with the off-design burner angle -30° which would be the burner angle to reduce the rear pass temperature un-balance by boiler operators. It can be concluded that the -30° burner angle reduce the turbulence is fire ball mixing inside the furnace. It also shift the fire ball position in the furnace to reduce the rear pass temperature.

  1. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  2. The Down Syndrome Information Act: Balancing the Advances of Prenatal Testing Through Public Policy.

    Science.gov (United States)

    Leach, Mark W

    2016-04-01

    Since the dawn of prenatal testing in the 1970s, concerns have been raised over its administration to respect a mother's autonomy as well as the expressive critique against those with the tested-for condition. Advances in prenatal testing have made it such that more mothers than ever are given a test result of Down syndrome, yet are not provided the rest of the information recommended by professional guidelines. In response, first federal legislation and then, increasingly, state legislation is requiring that this information be provided to expectant mothers. Though receiving broad bipartisan support in passage, some of the statutes have received criticism. These public policy measures will be surveyed and evaluated as to their relative merits and limitations. PMID:27028250

  3. Interim report on the performance test results for the Advanced Verification for Inventory sample System (AVIS)

    International Nuclear Information System (INIS)

    The AVIS (Advanced Verification for Inventory sample System) is a high accuracy nondestructive assay (NDA) system for Safeguards to measure the plutonium mass for plutonium uranium mixed oxide (MOX) powder and pellet for large scale MOX fuel fabrication plant (J-MOX). It is intended that the AVIS measurement will be substituted for a fraction of the DA samples to reduce the number of DA from J-MOX. Therefore, the AVIS has a crucial role to attain effective safeguards for J-MOX. JAEA, which has experience/knowledge to develop the NDA system and plutonium handling field, was entrusted with performance testing for the AVIS from NMCC. JAEA has conducted performance testing on the AVIS using standard radiation source (neutron and gamma). As the results of test, it was confirmed that the AVIS has the designed performance. This paper reports the performance test results and evaluation results of measurement accuracy of the AVIS. (author)

  4. Low NOx burners--prediction of emissions concentration based on design, measurements and modelling.

    Science.gov (United States)

    Bebar, Ladislav; Kermes, Vit; Stehlik, Petr; Canek, Josef; Oral, Jaroslav

    2002-01-01

    This paper describes possible ways of prediction of nitrogen oxides formation during combustion of hydrocarbon fuels. Mathematical model based on experimental data acquired from the testing facility has been developed. The model enables to predict--at a high probability measure--the extent of nitrogen oxides emissions. The mathematical model of nitrogen oxide formation relies on the application of simplified kinetic equations describing the formation of nitrogen oxides at so-called equivalent temperature. It is a semi-empirical model that comes out of experimental knowledge. An important role played by the burner design itself has been emphasized and therefore an important supplementary parameter of the model is the characteristic of the burner design. It has been established that there was a good agreement between experimental data and those calculated by the application of the model to various conditions marked out by different combustion parameters in the combustion chamber. The results obtained by application of the model respect the influence of parameters validated by industrial practice that control the formation of nitrogen oxides in the course of fuel combustion. Such parameters-first of all-tare the temperature in the combustion chamber and the concentration of the substances taking part in the reaction. By application of the model, it is possible to assess the consequence of, for example the surplus of combustion air, the increase of temperature of combustion air, the supply of inert gas, etc. on the nitrogen oxides emissions of the operating burner under evaluation. Efficient combining of experience and sophisticated approach together with importance of thus access for an improved design are shown. PMID:12099503

  5. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    K. L. Davis; D. L. Knudson; J. L. Rempe; J. C. Crepeau; S. Solstad

    2015-07-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status of INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  6. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  7. A case of advanced intrahepatic cholangiocarcinoma successfully treated with chemosensitivity test-guided systemic chemotherapy

    Institute of Scientific and Technical Information of China (English)

    Kazumichi Abe; Takeru Wakatsuki; Fumiko Katsushima; Kyoko Monoe; Yukiko Kanno; Atsushi Takahashi; Junko Yokokawa; Hiromasa Ohira

    2009-01-01

    Intrahepatic cholangiocarcinoma (ICC) is a relatively rare and highly fatal neoplasm that arises from the biliary epithelium. Prognosis is generally poor and survival is limited to a few months. Here we present a case of advanced ICC successfully treated by chemosensitivity test-guided systemic chemotherapy combining S-1 and cisplatin (CDDP). A 65-year-old woman with a liver tumor was referred to our hospital on November 21, 2007. Abdominal ultrasonography and computed tomography (CT) showed low-density masses of 50 and 15 mm in diameter, respectively in segment Ⅷ of the liver and in the enlarged lymph node in the para-aorta. Ultrasonography-guided fine needle biopsy diagnosed the tumors as ICC. Since the patient was inoperable for lymph node metastasis, she underwent systemic chemotherapy with gemcitabine. Six months after initiation of chemotherapy, CT revealed ICC progression in the liver and pleural dissemination with pleural effusion. The patient was admitted to our hospital for anticancer drug sensitivity testing on June 9, 2008. Based on the sensitivity test results, we elected to administer systemic chemotherapy combining S-1 and CDDP. Two months into the second chemotherapy treatment, CT revealed a reduction of the tumors in the liver and lymph node and a decrease in pleural effusion.After eight cycles of the second chemotherapy, 17 mo after ICC diagnosis, she is alive and well with no sign of recurrence. We conclude that chemosensitivity testing may effectively determine the appropriate chemotherapy regimen for advanced ICC.

  8. Large Eddy Simulation of Flow Structures in the Sydney Swirl Burner

    DEFF Research Database (Denmark)

    Yang, Yang

    This thesis represents the research on swirling flow using large eddy simulation(LES). Three cases from the Sydney swirl burner database have been chosen as test cases; one medium swirl isothermal case N29S054, one high swirl isothermal case N16S159 and one medium swirl reacting case SM1. The the...... LES method strategy has limitations concerning wall bounded flows, especially for complex geometries typically found in industry. Multi‐phase flows need special treatment.......This thesis represents the research on swirling flow using large eddy simulation(LES). Three cases from the Sydney swirl burner database have been chosen as test cases; one medium swirl isothermal case N29S054, one high swirl isothermal case N16S159 and one medium swirl reacting case SM1. The...... theories of LES and the corresponding closure models have been well developed. This research focuses on statistical analysing flow field and characteristic features. Validation studies show good agreement in the isothermal cases, while for the reacting case, the LES predictions are less satisfactory. There...

  9. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  10. Advancing molecular-guided surgery through probe development and testing in a moderate cost evaluation pipeline

    Science.gov (United States)

    Pogue, Brian W.; Paulsen, Keith D.; Hull, Sally M.; Samkoe, Kimberley S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim

    2015-03-01

    Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill and finish, toxicity testing, and early phase clinical trials with image guidance.

  11. Results of prototype particle-beam diagnostics tests for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation source (hard x-rays) based on 7-GeV positrons circulating in a 1,104-m circumference storage ring. In the past year a number of the diagnostic prototypes for the measurement of the charged-particle beam parameters throughout the subsystems of the facility (ranging from 450-MeV to 7-GeV positrons and with different pulse formats) have been built and tested. Results are summarized for the beam position monitor (BPM), current monitor (CM), loss monitor (LM), and imaging systems (ISYS). The test facilities ranged from the 40-MeV APS linac test stand to the existing storage rings at SSRL and NSLS

  12. Results of prototype particle-beam diagnostics tests for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation source (hard x-rays) based on 7-GeV positrons circulating in a 1104-m circumference storage ring. In the past year a number of the diagnostic prototypes for the measurement of the charged-particle beam parameters throughout the subsystems of the facility (ranging from 450-MeV to 7-GeV positrons and with different pulse formats) have been built and tested. Results are summarized for the beam position monitor (BPM), current monitor (CM), loss monitor (LM), and imaging systems (ISYS). The test facilities ranged from the 40-MeV APS linac test stand to the existing storage rings at SSRL and NSLS

  13. Vacuum tests of a beamline front-end mock-up at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A-mock-up has been constructed to test the functioning and performance of the Advanced Photon Source (APS) front ends. The mock-up consists of all components of the APS insertion-device beamline front end with a differential pumping system. Primary vacuum tests have been performed and compared with finite element vacuum calculations. Pressure distribution measurements using controlled leaks demonstrate a better than four decades of pressure difference between the two ends of the mock-up. The measured pressure profiles are consistent with results of finite element analyses of the system. The safety-control systems are also being tested. A closing time of ∼20 ms for the photon shutter and ∼7 ms for the fast closing valve have been obtained. Experiments on vacuum protection systems indicate that the front end is well protected in case of a vacuum breach

  14. Vacuum tests of a beamline front-end mock-up at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A mock-up has been constructed to test the functioning and performance of the Advanced Photon Source (APS) front ends. The mock-up consists of all components of the APS insertion-device beamline front end with a differential pumping system. Primary vacuum tests have been performed and compared with finite element vacuum calculations. Pressure distribution measurements using controlled leaks demonstrate a better than four decades of pressure difference between the two ends of the mock-up. The measured pressure profiles are consistent with results of finite element analyses of the system. The safety-control systems are also being tested. A closing time of ∼20 ms for the photon shutter and ∼7 ms for the fast closing valve have been obtained. Experiments on vacuum protection systems indicate that the front end is well protected in case of a vacuum breach

  15. The Advanced Placement Physics Examinations: Test Development and Free-Response Section Readings

    Science.gov (United States)

    McMurray, Terri; Cain, L. S.

    2003-11-01

    The Advanced Placement Physics B and C Examinations are developed by a Test Development Committee consisting of both high school and college teachers appointed by The College Board. We will discuss the creation of the tests from their conception to their administration to more than 60,000 high school students each year. We will also discuss the reading of the free response sections for each exam. A group of readers, consisting of interested and motivated high school AP physics teachers and college instructors who teach comparable courses, is appointed to read the free response sections during June of each year. Two experienced readers, one of whom is a member of the Test Development Committee, will share information in this talk on becoming involved with the AP program as a reader.

  16. Structural Benchmark Creep Testing for the Advanced Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.; Shah, Ashwin R.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for use on long duration Science missions such as lunar applications, Mars rovers, and deep space missions. For the inherent long life times required, a structurally significant design limit for the heater head component of the ASRG Advanced Stirling Convertor (ASC) is creep deformation induced at low stress levels and high temperatures. Demonstrating proof of adequate margins on creep deformation and rupture for the operating conditions and the MarM-247 material of construction is a challenge that the NASA Glenn Research Center is addressing. The combined analytical and experimental program ensures integrity and high reliability of the heater head for its 17-year design life. The life assessment approach starts with an extensive series of uniaxial creep tests on thin MarM-247 specimens that comprise the same chemistry, microstructure, and heat treatment processing as the heater head itself. This effort addresses a scarcity of openly available creep properties for the material as well as for the virtual absence of understanding of the effect on creep properties due to very thin walls, fine grains, low stress levels, and high-temperature fabrication steps. The approach continues with a considerable analytical effort, both deterministically to evaluate the median creep life using nonlinear finite element analysis, and probabilistically to calculate the heater head s reliability to a higher degree. Finally, the approach includes a substantial structural benchmark creep testing activity to calibrate and validate the analytical work. This last element provides high fidelity testing of prototypical heater head test articles; the testing includes the relevant material issues and the essential multiaxial stress state, and applies prototypical and accelerated temperature profiles for timely results in a

  17. Optimizing advanced liquid metal reactors for burning actinides

    International Nuclear Information System (INIS)

    In this report, the process to design an Advanced Liquid Metal Reactor (ALMR) for burning the transuranic part of nuclear waste is discussed. The influence of design parameters on ALMR burner performance is studied and the results are incorporated in a design schedule for optimizing ALMRs for burning transuranics. This schedule is used to design a metallic and an oxide fueled ALMR burner to burn as much as possible transurancis. The two designs burn equally well. (orig.)

  18. 10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors (HPRR)) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

  19. EVALUATION AND DEMONSTRATION OF LOW-NOX BURNER SYSTEMS FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAM GENERATORS: FINAL REPORT - FIELD EVALUATION OF COMMERCIAL PROTOTYPE BURNER

    Science.gov (United States)

    The report gives results of the final phase of a program to develop, demonstrate, and evaluate a low-NOx burner for crude-oil-fired steam generators used for thermally enhanced oil recovery (TEOR). The burner designed and demonstrated under this program was developed from design ...

  20. New Sensors for the Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the selection strategy of what instrumentation is needed, and the program generated for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF with data from irradiation tests using these sensors. In addition, progress is reported on current research efforts to provide users advanced methods for detecting temperature, fuel thermal conductivity, and changes in sample geometry

  1. PSA-operations synergism for the advanced test reactor shutdown operations PSA

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) Probabilistic Safety Assessment (PSA) for shutdown operations, cask handling, and canal draining is a successful example of the importance of good PSA-operations synergism for achieving a realistic and accepted assessment of the risks and for achieving desired risk reduction and safety improvement in a best and cost-effective manner. The implementation of the agreed-upon upgrades and improvements resulted in the reductions of the estimated mean frequency for core or canal irradiated fuel uncovery events, a total reduction in risk by a factor of nearly 1000 to a very low and acceptable risk level for potentially severe events

  2. Advancement of experimentation for measuring hydraulic conductivity of bentonite using high-pressure consolidation test apparatus

    International Nuclear Information System (INIS)

    In the geological disposal facility of high-level radioactive wastes, it is important to grasp the hydraulic conductivity characteristic of bentonite. The purpose of this study is the advancement of the examination method for the measurement of a more reliable hydraulic conductivity using high-pressure consolidation test apparatus (maximum consolidation pressure 10MPa). Consequently, it succeeded in improving the reliability of data by raising the resolution of displacement used for an examination, increasing to 80 the number of measurement data for 2 minutes after making each consolidation pressure act on the occasion of measurement and adopting the data of a high consolidation pressure (more than 5.88MPa) stage. (author)

  3. Assessment of Advanced Life Support competence when combining different test methods--reliability and validity

    DEFF Research Database (Denmark)

    Ringsted, C; Lippert, F; Hesselfeldt, R;

    2007-01-01

    Summary Robust assessment of Advanced Life Support (ALS) competence is paramount to the credibility of ALS-provider certification and for estimating the learning outcome and retention of ALS competence following the courses. The Euro- pean Resuscitation Council (ERC) provides two sets of MCQs and...... Correlation Coefficients between 0.766 and 0.977. Inter-rater agreements on pass/fail decisions were not perfect. The one MCQ test was significantly more difficult than the other. There were no significant differences between CASTests....

  4. Experimental Evaluation of a Low Emissions High Performance Duct Burner for Variable Cycle Engines (VCE)

    Science.gov (United States)

    Lohmann, R. P.; Mador, R. J.

    1979-01-01

    An evaluation was conducted with a three stage Vorbix duct burner to determine the performance and emissions characteristics of the concept and to refine the configuration to provide acceptable durability and operational characteristics for its use in the variable cycle engine (VCE) testbed program. The tests were conducted at representative takeoff, transonic climb, and supersonic cruise inlet conditions for the VSCE-502B study engine. The test stand, the emissions sampling and analysis equipment, and the supporting flow visualization rigs are described. The performance parameters including the fuel-air ratio, the combustion efficiency/exit temperature, thrust efficiency, and gaseous emissions calculations are defined. The test procedures are reviewed and the results are discussed.

  5. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    Science.gov (United States)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2015-01-01

    A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micros to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.

  6. First test of high frequency Gravity Waves from inflation using Advanced LIGO

    International Nuclear Information System (INIS)

    Inflation models ending in a first order phase transition produce gravitational waves (GW) via bubble collisions of the true vacuum phase. We demonstrate that these bubble collisions can leave an observable signature in Advanced LIGO, an upcoming ground-based GW experiment. These GW are dependent on two parameters of the inflationary model: ε represents the energy difference between the false vacuum and the true vacuum of the inflaton potential, and χ measures how fast the phase transition ends (χ ∼ the number of e-folds during the actual phase transition). Advanced LIGO will be able to test the validity of single-phase transition models within the parameter space 107 GeV∼< ε1/4 ∼< 1010 GeV and 0.19 ∼< χ ∼< 1. If inflation occurred through a first order phase transition, then Advanced LIGO could be the first to discover high frequency GW from inflation

  7. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    Science.gov (United States)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  8. Implementation and Initial Testing of Advanced Processing and Analysis Algorithms for Correlated Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cutler, Theresa Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Robert Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects in all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.

  9. POC-scale testing of an advanced fine coal dewatering equipment/technique

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  10. First test of high frequency Gravity Waves from inflation using Advanced LIGO

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Alejandro; Freese, Katherine, E-mail: aolopez@umich.edu, E-mail: ktfreese@umich.edu [Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2015-01-01

    Inflation models ending in a first order phase transition produce gravitational waves (GW) via bubble collisions of the true vacuum phase. We demonstrate that these bubble collisions can leave an observable signature in Advanced LIGO, an upcoming ground-based GW experiment. These GW are dependent on two parameters of the inflationary model: ε represents the energy difference between the false vacuum and the true vacuum of the inflaton potential, and χ measures how fast the phase transition ends (χ ∼ the number of e-folds during the actual phase transition). Advanced LIGO will be able to test the validity of single-phase transition models within the parameter space 10{sup 7} GeV∼< ε{sup 1/4} ∼< 10{sup 10} GeV and 0.19 ∼< χ ∼< 1. If inflation occurred through a first order phase transition, then Advanced LIGO could be the first to discover high frequency GW from inflation.

  11. Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner

    Directory of Open Access Journals (Sweden)

    Abdolsaeid Ganjehkaviri

    2016-02-01

    Full Text Available This paper presents an experimental investigation of the combustion characteristics of palm methyl ester (PME, also known as palm oil-based biodiesel, in an oil burner system. The performance of conventional diesel fuel (CDF and various percentages of diesel blended with palm oil-based biodiesel is also studied to evaluate their performance. The performance of the various fuels is evaluated based on the temperature profile of the combustor’s wall and emissions, such as nitrogen oxides (NOx and carbon monoxide (CO. The combustion experiments were conducted using three different oil burner nozzles (1.25, 1.50 and 1.75 USgal/h under lean (equivalence ratio (Φ = 0.8, stoichiometric (Φ = 1 and rich fuel (Φ = 1.2 ratio conditions. The results show that the rate of emission formation decreases as the volume percent of palm biodiesel in a blend increases. PME combustion tests present a lower temperature inside the chamber compared to CDF combustion. High rates of NOx formation occur under lean mixture conditions with the presence of high nitrogen and sufficient temperature, whereas high CO occurs for rich mixtures with low oxygen presence.

  12. Optimization of a premixed low-swirl burner for industrial applications

    International Nuclear Information System (INIS)

    This study was motivated by recent tests results showing that a 5cm i.d. low-swirl burner (LSB) stabilizes ultra-lean premixed turbulent flames up to 600kW. A parametric study has been performed to determine the optimum ultra-lean LSB configuration, i.e. one that will achieve low NOx and flame stability, for thermal input between 15kW to 150kW. Using Laser Doppler Velocimetry (LDV), non-reacting centerline velocity and rms fluctuation profiles were measured, and were found to show self-similar behavior. This self-similarity may explain why the flame remains stationary relative to the burner exit despite a change in bulk flow velocity from 5 to 90m/s. The recess distance of the swirler affects the shape of the mean and rms velocity profiles. Lean blow-off limits were also determined for various recess distances, and an optimum exit length was found that provides stable operation for ultra-lean flames

  13. A numerical investigation of the aerodynamics of a furnace with a movable block burner

    Directory of Open Access Journals (Sweden)

    T. J. Fudihara

    2007-06-01

    Full Text Available In this work the air flow in a furnace was computationally investigated. The furnace, for which experimental test data are available, is composed of a movable block burner connected to a cylindrical combustion chamber by a conical quarl. The apertures between the movable and the fixed blocks of the burner determine the ratio of the tangential to the radial air streams supplied to the furnace. Three different positions of the movable blocks were studied at this time. A three-dimensional investigation was performed by means of the finite volume method. The numerical grid was developed by the multiblock technique. The turbulence phenomenon was addressed by the RNG k-epsilon model. Profiles of the axial, tangential and radial velocities in the combustion chamber were outlined. The map of the predicted axial velocity in the combustion chamber was compared with a map of the experimental axial velocity. The internal space of the furnace was found to be partially filled with a reverse flow that extended around the longitudinal axis. A swirl number profile along the furnace length is presented and shows an unexpected increase in the swirl in the combustion chamber.

  14. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    Directory of Open Access Journals (Sweden)

    W.K. Hiromi Ariyaratne, Morten C. Melaaen, Lars-André Tokheim

    2013-01-01

    Full Text Available Solid hazardous waste mixed with wood chips (SHW is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement plant by varying the SHW substitution rate from 0 to 3 t/hr. Clinker quality, emissions and other relevant operational data from the experiment were analysed using fuel characteristics of coal and SHW. The results revealed that SHW could safely replace around 20% of the primary coal energy without giving negative effects. The limiting factor is the free lime content of the clinker. Results from the present study were also compared with results from a previous test using meat and bone meal.

  15. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A [Los Alamos National Laboratory; Demuth, Scott F [Los Alamos National Laboratory; Klasky, Kristen L [Los Alamos National Laboratory; Lee, Haeok [Los Alamos National Laboratory; Miller, Michael C [Los Alamos National Laboratory; Sprinkle, James K [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Williams, Bradley [DOE, NE

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  16. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    International Nuclear Information System (INIS)

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  17. Heat transfer characteristics of a rotary regenerative combustion system (RRX); Kaitenshiki chikunetsu burner (RRX) no dennetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Miyama, H.; Kaji, H. [Chiyoda Corp., Tokyo (Japan); Hirose, Y. [Furnace Techno Co., Yokohama (Japan); Arai, N. [Nagoya University, Nagoya (Japan). Research Center for Advanced Energy Conversion

    1996-11-10

    With a view to save fuel, the use of a regenerative burner as a heating source has been spreading in the field of industrial furnaces. By combining a burner with a regenerative air preheater, a second generation regenerative burner-the Rotary Regenerative Combustion System (RRX) has been developed, which makes for lower emissions of air pollutants and compactness, in addition to fuel savings. In this paper, heat transfer characteristics of RRX were deduced theoretically based on the heat transfer theory of a regenerative air preheater and investigated experimentally using two test rigs. A commercially operating fired heater was revamped in the summer of 1994 to install 3 sets of RRXS, and it has been successfully operated for one year. As a result, it was recognized that the heat transfer rate in a RRX can be predicted within {plus_minus} 10% of deviation, by considering not only convective but also radiative heat transfer. Furthermore, it was confirmed both theoretically and experimentally that fuel efficiency exceeding 90% was stably attained in a commercialized fired heater. Around 60 ppm of NOx emission (as dry, 6%O2) was also measured, although the preheated air temperature was calculated as high as 930 K. 8 refs., 6 figs., 4 tabs.

  18. A double-regenerative burner for blast-furnace gas

    Energy Technology Data Exchange (ETDEWEB)

    Edmundson, J.T. (British Steel Corp., Port Talbot (UK)); Jenkins, D.P. (Bristol Polytechnic (GB))

    1990-12-01

    The purpose of this project was to demonstrate the operative reliability of a novel regenerative burner system utilising low-calorific-value fuel gas and capable of high-temperature performance at high efficiency. The system is based on the extension of the application of the self-generative principle to both fuel gas and air supplies. Two burners operate in tandem, of which one fires while the other regenerates both the fuel gas and combustion air preheat beds. Blast-furnace gas with a calorific value of 2.9 MJ m{sup -3} was the fuel source. 1500 hours of operative trials were carried out. For the duration of the trials all the planned investigations were completed satisfactorily, and the results successfully indicate the ability of the system to achieve high-temperature performance at high thermal efficiency. (author).

  19. Fuel burner with air-deflecting object and method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Durfee, E.P.

    1980-12-16

    There is provided an improved fuel burner of the type having an air blower and blast tube. The improvement involves placement of an air-deflecting object inside the housing of the air blower or in the blast tube. In one embodiment, the object has a v-shaped cross section, and is attached to a gently tapered cylinder; the object can be held in place by inserting it through a hole of appropriate dimension in the air blower or blast tube, and tapping on the exposed end of the tapered cylinder until the latter is engaged in the hole. There is also provided a method of improving a fuel burner by mounting a air-deflecting object of the type described in the air blower housing or in the blast tube.

  20. The Continued Need for Modeling and Scaled Testing to Advance the Hanford Tank Waste Mission

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, Loni M.; Fort, James A.; Rector, David R.

    2013-09-03

    Hanford tank wastes are chemically complex slurries of liquids and solids that can exhibit changes in rheological behavior during retrieval and processing. The Hanford Waste Treatment and Immobilization Plant (WTP) recently abandoned its planned approach to use computational fluid dynamics (CFD) supported by testing at less than full scale to verify the design of vessels that process these wastes within the plant. The commercial CFD tool selected was deemed too difficult to validate to the degree necessary for use in the design of a nuclear facility. Alternative, but somewhat immature, CFD tools are available that can simulate multiphase flow of non-Newtonian fluids. Yet both CFD and scaled testing can play an important role in advancing the Hanford tank waste mission—in supporting the new verification approach, which is to conduct testing in actual plant vessels; in supporting waste feed delivery, where scaled testing is ongoing; as a fallback approach to design verification if the Full Scale Vessel Testing Program is deemed too costly and time-consuming; to troubleshoot problems during commissioning and operation of the plant; and to evaluate the effects of any proposed changes in operating conditions in the future to optimize plant performance.

  1. Performance test results of the advanced verification for inventory sample system (AVIS) (2)

    International Nuclear Information System (INIS)

    The Advanced Verification for Inventory sample System (AVIS) is a nondestructive assay (NDA) system to verify the plutonium mass with high accuracy in the small plutonium uranium mixed oxide (MOX) powder and pellet samples at Japan Nuclear Fuel Limited MOX fuel fabrication plant (J-MOX) under construction. The AVIS was designed by Los Alamos National Laboratory (LANL) under the auspices of the Secretariat of Nuclear Regulation Authority. The AVIS will fulfill an important role in the safeguards approach for J-MOX because the AVIS will be used as a verification tool instead of destructive analysis for a part of the samples for bias defect. Japan Atomic Energy Agency (JAEA), which has experience and knowledge to develop the NDA systems and plutonium handling fields, was entrusted with performance testing for the AVIS by the Nuclear Material Control Center of Japan. As a first phase, JAEA conducted the performance tests by using 252Cf neutron sources. In this test, neutron detection efficiency, die-away time and other detector properties were evaluated, and it was confirmed that the AVIS had the performance designed by LANL. As a second phase, JAEA conducted the performance tests by using MOX samples. In this test, the measurement accuracy of the AVIS was evaluated. From the results, it was confirmed that the AVIS could almost satisfy the performance requirements on the accuracy by IAEA. (author)

  2. Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2016-06-01

    Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.

  3. Feasibility of conducting a dynamic helium charging experiment for vanadium alloys in the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1996-10-01

    The feasibility of conducting a dynamic helium charging experiment (DHCE) for vanadium alloys in the water-cooled Advanced Test Reactor (ATR) is being investigated as part of the U.S./Monbusho collaboration. Preliminary findings suggest that such an experiment is feasible, with certain constraints. Creating a suitable irradiation position in the ATR, designing an effective thermal neutron filter, incorporating thermocouples for limited specimen temperature monitoring, and handling of tritium during various phases of the assembly and reactor operation all appear to be feasible. An issue that would require special attention, however, is tritium permeation loss through the capsule wall at the higher design temperatures (>{approx}600{degrees}C). If permeation is excessive, the reduced amount of tritium entering the test specimens would limit the helium generation rates in them. At the lower design temperatures (<{approx}425{degrees}C), sodium, instead of lithium, may have to be used as the bond material to overcome the tritium solubility limitation.

  4. Neural network setpoint control of an advanced test reactor experiment loop simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, G.A.; Bryan, S.R.; Powell, R.H.; Chick, D.R.

    1990-09-01

    This report describes the design, implementation, and application of artificial neural networks to achieve temperature and flow rate control for a simulation of a typical experiment loop in the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory (INEL). The goal of the project was to research multivariate, nonlinear control using neural networks. A loop simulation code was adapted for the project and used to create a training set and test the neural network controller for comparison with the existing loop controllers. The results for three neural network designs are documented and compared with existing loop controller action. The neural network was shown to be as accurate at loop control as the classical controllers in the operating region represented by the training set. 9 refs., 28 figs., 2 tabs.

  5. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    Science.gov (United States)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  6. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER). Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report consists of appendices pertaining to the separating media evaluation (calcium nitrate solution) and testing for an advanced cyclone process. Appendices include: materials safety data, aqueous medium regeneration, pH control strategy, and other notes and data.

  7. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  8. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    Science.gov (United States)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  9. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; R. Schley; J. Palmer; K. Condie

    2014-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support the growth of nuclear science and technology in the United States (US). By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort at the Idaho National Laboratory (INL) is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this initial review, recommendations were made with respect to what instrumentation is needed at the ATR, and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. Since 2009, annual reports have been issued to provide updates on the program strategy and the progress made on implementing the strategy. This report provides an update reflecting progress as of January 2014.

  10. ADX: a high field, high power density, Advanced Divertor test eXperiment

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  11. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; J. E. Daw

    2011-03-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

  12. Critical need for MFE: the Alcator DX advanced divertor test facility

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  13. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program's strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

  14. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  15. Infrared Imaging of Uninhibited Cup-Burner Flame

    Czech Academy of Sciences Publication Activity Database

    Nevrlý, Václav; Bitala, P.; Střižík, Michal; Zelinger, Zdeněk; Danihelka, P.; Kollárik, T.; Grigorová, E.; Jánošík, L.; Jelínková, R.; Mikoczy, A.; Filipi, B.; Dudáček, A.

    Vienna: Verlag ProcessEng Engineering GmbH, 2009. s. 317-317. ISBN 978-3-902655-06-6. [European Combustion Meeting /4./. 14.04.2009–17.04.2009, Vienna] R&D Projects: GA MŠk OC 111 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z40400503 Keywords : cup burner * flame * infrared imaging * soot Subject RIV: JB - Sensors, Measurment, Regulation

  16. Optimization of a premixed cylindrical burner for low pollutant emission

    International Nuclear Information System (INIS)

    Highlights: • The mixing uniformity of methane closely relates to low burning emissions. • Optimal exit position and diameter of nozzle are obtained with high methane mixing. • Low emissions of optimal burner are experimentally validated. - Abstract: A premixed cylindrical burner is numerically and experimentally investigated to realize low pollutant emission. The geometrical parameters of nozzle exit position and nozzle diameter are optimized by using a validated Computational Fluid Dynamics model. The natural gas-air mixing in the mix chamber indicates that the uniformity of methane concentration increases with the increase of distance from ejector outlet. It is found that the nozzle exit position at −3.0 mm improves the overall performance of premixed cylindrical burner, when nozzle diameter is not less than 1.6 mm. The emission characteristics of nitrogen oxides and carbon monoxide are also examined by experimental approach. It is found that load factor has a great influence on nitrogen oxides and carbon monoxide emissions, but the effect is gradually disappeared when air coefficient is not less than 1.4. When nozzle exit position is −3.0 mm, nozzle diameter is not less than 1.6 mm and air coefficient is not less than 1.4, the emissions of nitrogen oxides and carbon monoxide are less than 20 ppm and 50 ppm, respectively

  17. Porous medium burners for the combustion of gases from landfills. The direct simulation approach

    OpenAIRE

    Malico, Isabel

    2013-01-01

    Landfill methane recovery associated to its conversion to carbon dioxide through combustion is a common greenhouse gas mitigation strategy in developed countries. The typically low and fluctuating energy content of landfill gas makes combustion challenging. Among the several possible energy conversion technologies, innovative porous burners are a potential option. These burners offer a set of advantages when compared to free flame burners, but are still under investigation. The development...

  18. Experimental testing of reduced-scale seismic isolation bearings for the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    A series of tests of reduced-scale seismic isolation bearings undertaken in support of the development of a seismic isolation concept for the Advanced Liquid Metal Reactor (ALMR) is described. A procurement specification applicable to both full-size and reduced-scale bearings was developed by the program participants and used to purchase bearings of four different designs from two manufacturers. The high-damping rubber isolators were subjected to horizontal, vertical, and failure tests designed to quantify their mechanical properties both within the range of design loads and displacements as well as to establish their margins before failure. The test results show that bearings from both manufacturers provide stable and repeatable behavior with minor variations in stiffness and damping as a function of loading frequency and load history. None of the bearings showed substantial variation in properties due to changes in axial load. All of the bearings exhibited exceptional behavior when loaded beyond the design level, with displacement margins greater than 3 and force margins greater than 4. This test program provides a thorough data-set for further analytical and experimental validations of the seismic isolation concept for the ALMR. (author)

  19. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    Science.gov (United States)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  20. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition as part of a fuel meat thickness optimization effort for reactor performance other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  1. Post Launch Calibration and Testing of the Advanced Baseline Imager on the GOES-R Satellite

    Science.gov (United States)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  2. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    Science.gov (United States)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  3. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    Science.gov (United States)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  4. Operating the Advanced Test Reactor in today's economic and regulatory environment

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory, is the US Department of Energy's largest and most versatile test reactor. Base programs at ATR are planned well into the 21st century. The ATR and support facilities along with an overview of current programs will be reviewed, but the main focus of the presentation will be on the impact that today's economic and regulatory concerns have had on the operation of this test reactor. Today's economic and regulatory concerns have demanded more work be completed at lower cost while increasing the margin of safety. By the beginning of the 1990 s, federal budgets for research generally and particularly for nuclear research had decreased dramatically. Many national needs continued to require testing in the ATR; but demanded lower cost, increased efficiency, improved performance, and an increased margin of safety. At the same time budgets were decreasing, there was an increase in regulatory compliance activity. The new standards imposed higher margins of safety. The new era of greater openness and higher safety standards complemented research demands to work safer, smarter and more efficiently. Several changes were made at the ATR to meet the demands of the sponsors and public. Such changes included some workforce reductions, securing additional program sponsors, upgrading some facilities, dismantling other facilities, and implementing new safety programs. (author)

  5. Characterization of combustion in a fabric singeing burner operating with varsol

    International Nuclear Information System (INIS)

    The textile industry uses singeing burners to diminish the amount of pilling on surface fabrics. Some of these burners use Stoddard solvent which has high cost per unit of energy, high flammability and emits volatile organic compounds that pose an occupational safety hazard. This study characterized a singing burner operating with varsol performing measurements of temperature downstream the burner, air and fuel flows, and concentration of CO, CO2, O2 and NOx. These measurements defined the most important characteristics of the Stoddard solvent flame that should be maintained to obtain a similar behavior in an eventual change to natural gas.

  6. Gas-turbine critical research and advanced technology support project

    Science.gov (United States)

    Clark, J. S.; Hodge, P. E.; Lowell, C. E.; Anderson, D. N.; Schultz, D. F.

    1981-01-01

    A technology data base for utility gas turbine systems capable of burning coal derived fuels was developed. The following areas are investigated: combustion; materials; and system studies. A two stage test rig is designed to study the conversion of fuel bound nitrogen to NOx. The feasibility of using heavy fuels in catalytic combustors is evaluated. A statistically designed series of hot corrosion burner rig tests was conducted to measure the corrosion rates of typical gas turbine alloys with several fuel contaminants. Fuel additives and several advanced thermal barrier coatings are tested. Thermal barrier coatings used in conjunction with low critical alloys and those used in a combined cycle system in which the stack temperature was maintained above the acid corrosion temperature are also studied.

  7. Experimental characterization of a radiant porous burner for low temperatures using natural gas; Caracterizacao experimental de um queimador poroso radiante a gas natural para baixas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Catapan, Rafael C.; Hissanaga, Newton Junior; Pereira, Fernando M.; Oliveira Junior, Amir A.M. de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica; Serfaty, Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Freire, Luiz G.M. [PETROBRAS - RedeGasEnergia, RJ (Brazil)

    2004-07-01

    This article describes the experimental characterization of a radiant porous burner for temperatures between 500 deg C and 900 deg C. These low temperature radiant burners can be used in many practical applications as drying of paper and wood, plastic coating, food cooking and ambient heating. Two different configurations of silicon carbide porous ceramic foams were tested: one with a radian reflecting region (RRR) at the outlet and another without this region. Both configurations were able to sustain the reaction with equivalent ratio under 0,35. The configuration with a reflecting region was able to sustain flames with a minimum power of 60 kW/m{sup 2} and the other configuration with 100 W/m{sup 2}.The configuration with the RRR reached minimum superficial temperatures about 100 deg C lower than the other one. These results show that the reflecting region increases the heat recirculation inside the porous burner. The radiant efficiency varied from 20% to 35% for both burners. (author)

  8. Low-NOx combustion on regenerative burner systems in an industrial furnace; Kanetsuroyo chikunetsu saisei burner ni okeru tei NOx ka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M.; Suzuki, T.; Nakanishi, R.; Kitamura, R. [Kobe Steel, Ltd., Kobe (Japan)

    1996-05-01

    This paper describes the injection combustion experiments using low-NOx regenerative burner and its application to the forging furnace. For this combustion, the fuel was separately injected on an angle to the axis of the air stream. The mixing of fuel and air was restricted at the initial stage of combustion. The mixing combustion proceeded with separating the burner. The flue gas was exhausted with self-recirculation. With increasing the injection angle (difference between the injection angles of fuel and air), the NOx concentration was lowered when the velocity ratio of fuel/air injection was 1.34. The NOx concentration decreased by the increase of fuel injection velocity. For the industrial furnace, it had better set the combustion and idle periods mutually. The NOx concentration increases with increasing the temperature, qualitatively. The temperature in the axis of fuel injection was lower than the other region. For the forging furnace using existed original burners and modified low-NOx burners, the NOx concentration increased with increasing the proportion of original burners. When the modified burners were used, the NOx concentration was below 50 ppm even above 1,000 centigrade inside the furnace. For the modified burners, the fuel can be saved and the period for temperature up can be shortened. 4 refs., 12 figs.

  9. Development of a Fissile Materials Irradiation Capability for Advanced Fuel Testing at the MIT Research Reactor

    International Nuclear Information System (INIS)

    A fissile materials irradiation capability has been developed at the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) to support nuclear engineering studies in the area of advanced fuels. The focus of the expected research is to investigate the basic properties of advanced nuclear fuels using small aggregates of fissile material. As such, this program is intended to complement the ongoing fuel evaluation programs at test reactors. Candidates for study at the MITR include vibration-packed annular fuel for light water reactors and microparticle fuels for high-temperature gas reactors. Technical considerations that pertain to the design of the MITR facility are enumerated including those specified by 10 CFR 50 concerning the definition of a research reactor and those contained in a separate license amendment that was issued by the U.S. Nuclear Regulatory Commission to MIT for these types of experiments. The former includes limits on the cross-sectional area of the experiment, the physical form of the irradiated material, and the removal of heat. The latter addresses experiment reactivity worth, thermal-hydraulic considerations, avoidance of fission product release, and experiment specific temperature scrams

  10. Advanced computational sensors technology: testing and evaluation in visible, SWIR, and LWIR imaging

    Science.gov (United States)

    Rizk, Charbel G.; Wilson, John P.; Pouliquen, Philippe

    2015-05-01

    The Advanced Computational Sensors Team at the Johns Hopkins University Applied Physics Laboratory and the Johns Hopkins University Department of Electrical and Computer Engineering has been developing advanced readout integrated circuit (ROIC) technology for more than 10 years with a particular focus on the key challenges of dynamic range, sampling rate, system interface and bandwidth, and detector materials or band dependencies. Because the pixel array offers parallel sampling by default, the team successfully demonstrated that adding smarts in the pixel and the chip can increase performance significantly. Each pixel becomes a smart sensor and can operate independently in collecting, processing, and sharing data. In addition, building on the digital circuit revolution, the effective well size can be increased by orders of magnitude within the same pixel pitch over analog designs. This research has yielded an innovative class of a system-on-chip concept: the Flexible Readout and Integration Sensor (FRIS) architecture. All key parameters are programmable and/or can be adjusted dynamically, and this architecture can potentially be sensor and application agnostic. This paper reports on the testing and evaluation of one prototype that can support either detector polarity and includes sample results with visible, short-wavelength infrared (SWIR), and long-wavelength infrared (LWIR) imaging.

  11. Reliability of Strength Testing using the Advanced Resistive Exercise Device and Free Weights

    Science.gov (United States)

    English, Kirk L.; Loehr, James A.; Laughlin, Mitzi A.; Lee, Stuart M. C.; Hagan, R. Donald

    2008-01-01

    The Advanced Resistive Exercise Device (ARED) was developed for use on the International Space Station as a countermeasure against muscle atrophy and decreased strength. This investigation examined the reliability of one-repetition maximum (1RM) strength testing using ARED and traditional free weight (FW) exercise. Methods: Six males (180.8 +/- 4.3 cm, 83.6 +/- 6.4 kg, 36 +/- 8 y, mean +/- SD) who had not engaged in resistive exercise for at least six months volunteered to participate in this project. Subjects completed four 1RM testing sessions each for FW and ARED (eight total sessions) using a balanced, randomized, crossover design. All testing using one device was completed before progressing to the other. During each session, 1RM was measured for the squat, heel raise, and deadlift exercises. Generalizability (G) and intraclass correlation coefficients (ICC) were calculated for each exercise on each device and were used to predict the number of sessions needed to obtain a reliable 1RM measurement (G . 0.90). Interclass reliability coefficients and Pearson's correlation coefficients (R) also were calculated for the highest 1RM value (1RM9sub peak)) obtained for each exercise on each device to quantify 1RM relationships between devices.

  12. Thermal hydraulic test apparatus to develop advanced BWR fuel bundles with spectral shift rods (SSR)

    International Nuclear Information System (INIS)

    An advanced water rod (WR) called the spectral shift rod (SSR), which replaces a conventional WR in a BWR fuel bundle, enhances the BWR's merit of uranium saving through the spectral shift operation. The SSR consists of an inlet hole, a wide ascending path, a narrow descending path and an outlet hole. The inlet hole locates below a lower tie plate (LTP) and the outlet hole is set above it. In the SSR, water boils by neutron and gamma-ray heating and water level is formed in the ascending path. This SSR water level can be controlled by core flow rate, which amplifies core void fraction change, resulting in the amplified spectral shift effect. Steady state and transient tests were conducted to evaluate SSR thermal-hydraulic characteristics under BWR operation condition. The several types of SSR configuration were tested, which covers SSR design in both next generation and conventional BWRs. In this paper, the test apparatus overview and measurement systems especially two phase water level measures in the SSR are presented. (author)

  13. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  14. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  15. Risk-based management system development for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    A Risk-Based Management System (RBMS) is being developed to facilitate the use of the Advanced Test Reactor (ATR) probabilistic risk assessment to support ATR operation. Most ATR RBMS questions can best be answered using the System Analysis and Risk Assessment System (SARA) developed at the Idaho National Engineering Laboratory. However, some applications may require employment of the other four codes used to develop and report the PRA. These four codes include the Integrated Reliability and Risk Analysis System (IRRAS), SETS, ETA-II, and the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). The ATR RBMS will evolve over three years, and will include the results of the Level 3 and external events analysis

  16. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    International Nuclear Information System (INIS)

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  17. Development of an Integrated Test Facility (ITF) for the advanced man machine interface evaluation

    International Nuclear Information System (INIS)

    An Integrated Test Facilityu (ITF) is a human factors experimental environment to evaluate an advanced Man Machine Interface(MMI) design. The ITF includes a Human Machine Simulator (HMS) comprised of a nuclear power plant function simulator, man-machine interface, experiment control station for the experiment control and design, human behavioural data measurement system, and Data Analysis and Experiment Evaluation Supporting System(DAEXESS). The most important features of ITF is to secure the flexibility and expandibility of Man Machine Interface(MMI) design to change easily the environment of experiments to accomplish the experiment's objects. In this paper, we describe a development scope and characteristics of the ITF such as, hardware and software development scope and characteristics, system thermohydraulic modelling characteristics, and experiment station characteristics for the experiment variables design and control, to be used as an experiment enviroment for the evaluation of VDU-based control room

  18. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Human Factors, Controls, and Statistics; Smith, James A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design; Jewell, James Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design

    2015-02-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  19. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    Science.gov (United States)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  20. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  1. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  2. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  3. Fabrication and Comparison of Fuels for Advanced Gas Reactor Irradiation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Phillips; Charles Barnes; John Hunn

    2010-10-01

    As part of the program to demonstrate TRISO-coated fuel for the Next Generation Nuclear Plant, a series of irradiation tests of Advanced Gas Reactor (AGR) fuel are being performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. In the first test, called “AGR-1,” graphite compacts containing approximately 300,000 coated particles were irradiated from December 2006 until November 2009. Development of AGR-1 fuel sought to replicate the properties of German TRISO-coated particles. No particle failures were seen in the nearly 3-year irradiation to a burn up of 19%. The AGR-1 particles were coated in a two-inch diameter coater. Following fabrication of AGR-1 fuel, process improvements and changes were made in each of the fabrication processes. Changes in the kernel fabrication process included replacing the carbon black powder feed with a surface-modified carbon slurry and shortening the sintering schedule. AGR-2 TRISO particles were produced in a six-inch diameter coater using a change size about twenty-one times that of the two-inch diameter coater used to coat AGR-1 particles. Changes were also made in the compacting process, including increasing the temperature and pressure of pressing and using a different type of press. Irradiation of AGR-2 fuel began in late spring 2010. Properties of AGR-2 fuel compare favorably with AGR-1 and historic German fuel. Kernels are more homogeneous in shape, chemistry and density. TRISO-particle sphericity, layer thickness standard deviations, and defect fractions are also comparable. In a sample of 317,000 particles from deconsolidated AGR-2 compacts, 3 exposed kernels were found in a leach test. No SiC defects were found in a sample of 250,000 deconsolidated particles, and no IPyC defects in a sample of 64,000 particles. The primary difference in properties between AGR-1 and AGR-2 compacts is that AGR-2 compacts have a higher matrix density, 1.6 g/cm3 compared to about 1.3 g/cm3 for AGR-1 compacts. Based on

  4. Fabrication and Comparison of Fuels for Advanced Gas Reactor Irradiation Tests

    International Nuclear Information System (INIS)

    As part of the program to demonstrate TRISO-coated fuel for the Next Generation Nuclear Plant, a series of irradiation tests of Advanced Gas Reactor (AGR) fuel are being performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. In the first test, called 'AGR-1,' graphite compacts containing approximately 300,000 coated particles were irradiated from December 2006 until November 2009. Development of AGR-1 fuel sought to replicate the properties of German TRISO-coated particles. No particle failures were seen in the nearly 3-year irradiation to a burn up of 19%. The AGR-1 particles were coated in a two-inch diameter coater. Following fabrication of AGR-1 fuel, process improvements and changes were made in each of the fabrication processes. Changes in the kernel fabrication process included replacing the carbon black powder feed with a surface-modified carbon slurry and shortening the sintering schedule. AGR-2 TRISO particles were produced in a six-inch diameter coater using a change size about twenty-one times that of the two-inch diameter coater used to coat AGR-1 particles. Changes were also made in the compacting process, including increasing the temperature and pressure of pressing and using a different type of press. Irradiation of AGR-2 fuel began in late spring 2010. Properties of AGR-2 fuel compare favorably with AGR-1 and historic German fuel. Kernels are more homogeneous in shape, chemistry and density. TRISO-particle sphericity, layer thickness standard deviations, and defect fractions are also comparable. In a sample of 317,000 particles from deconsolidated AGR-2 compacts, 3 exposed kernels were found in a leach test. No SiC defects were found in a sample of 250,000 deconsolidated particles, and no IPyC defects in a sample of 64,000 particles. The primary difference in properties between AGR-1 and AGR-2 compacts is that AGR-2 compacts have a higher matrix density, 1.6 g/cm3 compared to about 1.3 g/cm3 for AGR-1 compacts. Based on fuel

  5. Methodology for the Weapons-Grade MOX Fuel Burnup Analysis in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    A UNIX BASH (Bourne Again SHell) script CMO has been written and validated at the Idaho National Laboratory (INL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN-2 (CMO). The new Monte Carlo burnup analysis methodology in this paper consists of MCNP coupling through CMO with ORIGEN-2, and is therefore called the MCWO. MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN-2. MCWO is capable of handling a large number of fuel burnup and material loading specifications, Advanced Test Reactor (ATR) lobe powers, and irradiation time intervals. MCWO processes user input that specifies the system geometry, initial material compositions, feed/removal specifications, and other code-specific parameters. Calculated results from MCNP, ORIGEN-2, and data process module calculations are output in succession as MCWO executes. The principal function of MCWO is to transfer one-group cross-section and flux values from MCNP to ORIGEN-2, and then transfer the resulting material compositions (after irradiation and/or decay) from ORIGEN-2 back to MCNP in a repeated, cyclic fashion. The basic requirements of MCWO are a working MCNP input file and some additional input parameters; all interaction with ORIGEN-2 as well as other calculations are performed by CMO. This paper presents the MCWO-calculated results for the Reduced Enrichment Research and Test Reactor (RERTR) experiments RERTR-1 and RERTR-2 as well as the Weapons-Grade Mixed Oxide (WG-MOX) fuel testing in ATR. Calculations performed for the WG-MOX test irradiation, which is managed by the Oak Ridge National Laboratory (ORNL), supports the DOE Fissile Materials Disposition Program (FMDP). The MCWO-calculated results are compared with measured data

  6. Studi Eksperimen Distribusi Temperatur Nyala Api Kompor Bioetanol Tipe Side Burner dengan Variasi Diameter Firewall

    Directory of Open Access Journals (Sweden)

    R.R. Vienna Sona Saputri Soetadi

    2012-09-01

    Full Text Available Untuk mendapatkan kompor bioetanol efisiensi thermal maksimal diperlukan penelitian komprehensif. Salah satunya adalah penelitian terhadap posisi peletakkan beban pada kompor bioetanol kompak. Pengujian dilakukan pada kompor uji bioetanol dengan kadar 99%, yaitu kompor bioetanol tipe side burner dengan firewall 2.5 inci dan firewall 3 inci. Pengukuran temperatur api dengan 13 thermocouple K dengan pengukuran searah api keatas setiap 5 mm-an. Kemudian, water boiling test dilakukan untuk mendapatkan daya dan beban dan dilanjutkan mengukur waktu pendidihan air. Hasil penelitian ini menunjukkan gambaran total distribusi temperatur nyala api difusi. Hasil menunjukkan untuk kompor 2.5 inci dengan daya 1.6 kW mempunyai temperatur 542 ºC dengan jarak ketinggian 5 mm dari rim kompor sedangkan kompor 3 inci menghasilkan daya 2.38 kW dengan temperatur 516 ºC.

  7. Compressible and low Mach number LES of a swirl experimental burner

    Science.gov (United States)

    Barré, David; Kraushaar, Matthias; Staffelbach, Gabriel; Moureau, Vincent; Gicquel, Laurent Y. M.

    2013-01-01

    Large-Eddy Simulations (LES) of a swirl experimental burner are performed using a compressible and a low Mach number solver. The investigations are focused on the modeling strategies in LES aimed at validating the flow predictions and principally the associated pressure losses. Accurate prediction of pressure drop through complex geometries, such as those typically encountered in industrial swirlers, is indeed of paramount importance to design and optimize the engine efficiency. LES is here probed and tested to identify the model parameters affecting pressure losses: grid resolution, wall treatment or solver accuracy, with the aim of highlighting the requirements for accurate pressure drop predictions. Results show that for the high Reynolds number flow considered, the wall law model provides the best predictions and minimizes the error compared to experimental findings with a reasonable overall CPU cost.

  8. Burner effects on melting process of regenerative aluminum melting furnace%烧嘴对蓄热式铝熔炼炉熔炼过程的影响

    Institute of Scientific and Technical Information of China (English)

    王计敏; 许朋; 闫红杰; 周孑民; 李世轩; 贵广臣; 李文科

    2013-01-01

    结合蓄热式铝熔炼炉熔炼过程的特点,运用FLUENT UDF和FLUENT Scheme混合编程,耦合用户自定义熔化模型和燃烧器换向及燃烧量变化模型,实现了蓄热式铝熔炼炉熔炼过程的数值模拟。依据优化原则,获得了熔炼时间随影响因子的变化规律:熔炼时间随着旋流数、燃烧器倾角、空气预热温度或天然气流量的增加而缩短;熔炼时间随着燃烧器间水平夹角或空燃比的延长,先减小而后增加;熔炼时间随着燃烧器高度的增加而延长。%According to the features of melting process of regenerative aluminum melting furnaces, a three-dimensional mathematical model with user-developed melting model, burner reversing and burning capacity model was established. The numerical simulation of melting process of a regenerative aluminum melting furnace was presented using hybrid programming method of FLUENT UDF and FLUENT scheme based on the heat balance test. Burner effects on melting process of aluminum melting furnaces were investigated by taking optimization regulations into account. The change rules of melting time on influence factors are achieved. Melting time decreases with swirl number, vertical angle of burner, air preheated temperature or natural gas flow; melting time firstly decreases with horizontal angle between burners or air-fuel ratio, then increases; melting time increases with the height of burner.

  9. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    Science.gov (United States)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  10. Modeling heat generation and flow in the Advanced Neutron Source Corrosion Test Loop specimen

    International Nuclear Information System (INIS)

    A finite difference computer code HEATING5 was used to model heat generation and flow in a typical experiment envisioned for the Advanced Neutron Source Corrosion Test Loop. The electrical resistivity and thermal conductivity of the test specimen were allowed to vary with local temperature, and the corrosion layer thickness was assigned along the length of the specimen in the manner predicted by the Griess Correlation. The computer solved the two-dimensional transport problem for a given total power dissipated in the specimen and stipulated coolant temperatures and water-side heat-transfer coefficients. The computed specimen temperatures were compared with those calculated on the basis of approximate analytical equations involving the total power dissipation and the assignment of the physical properties based on temperatures at single axial points on the specimen. The comparisons indicate that when temperature variations are large along the axis of the specimen, the variation in local heat flux should not be overlooked when using approximate equations or models. The approximate equations are most accurate near the center of the specimen where the heat flux remains closest to the average value, and in that region the calculated quantities agree closely with the results of the computer code. 4 figs., 1 tab

  11. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  12. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  13. FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology

    International Nuclear Information System (INIS)

    The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains ∼10, self-driven currents of ∼80%, fusion power ∼150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm-3 and neutron wall loading from 2-4 MWm-2 which are at the levels expected from the ARIES-RS/AT design studies

  14. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  15. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    Science.gov (United States)

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications. PMID:24032692

  16. DISTRIBUTED MIXING BURNER (DMB) ENGINEERING DESIGN FOR APPLICATION TO INDUSTRIAL AND UTILITY BOILERS

    Science.gov (United States)

    The report summarizes the design of two prototype distributed mixing burners (DMBs) for application to industrial and utility boilers. The DMB is a low-NOx pulverized-coal-fired burner in which: (1) mixing of the coal with combustion air is controlled to minimize NOx emissions, a...

  17. OH Diffusion in Silica Glass Preform During Jacketing Process by Oxy-Hydrogen Burner

    Institute of Scientific and Technical Information of China (English)

    B.H.Kim; S.R.Han; U.; C.Paek; W.-T.Han; S.; K.Oh

    2003-01-01

    Radial distribution of OH diffusion in silica glass preform during jacketing process using a oxy-hydrogen burner was investigated by FTIR spectroscopy. The OH peaks at the jacketing boundary and the surface of the preform were found to be due to diffusion of OH incorporated from the burner.

  18. CFCC radiant burner assessment. Final report, April 1, 1992--July 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, S.; Sullivan, J.

    1994-11-01

    The objective of this work was to identify methods of improving the performance of gas-fired radiant burners through the use of Continuous Fiber Ceramic Composites (CFCCs). Methods have been identified to improve the price and performance characteristics of the porous surface burner. Results are described.

  19. NOx formation in combustion of gaseous fuel in ejection burner

    Science.gov (United States)

    Rimár, Miroslav; Kulikov, Andrii

    2016-06-01

    The aim of this work is to prepare model for researching of the formation in combustion of gaseous fuels. NOx formation is one of the main ecological problems nowadays as nitrogen oxides is one of main reasons of acid rains. The ANSYS model was designed according to the calculation to provide full combustion and good mixing of the fuel and air. The current model is appropriate to research NOx formation and the influence of the different principles of NOx reduction method. Applying of designed model should spare both time of calculations and research and also money as you do not need to measure the burner characteristics.

  20. Calibration of 5-hole Probe for Flow Angles from Advanced Technologies Testing Aircraft System Flight Data

    Directory of Open Access Journals (Sweden)

    Y. Parameswaran

    2004-04-01

    Full Text Available This paper describes the investigations carried out to calibrate the 5-hole probe for flow angles from advanced technologies testing aircraft system flight data. The flight tests were carriedout with gear up and at nominal mid-centre of gravity location for two landing flap positions, Of= IN and 14°. Dynamic manoeuvres were executed to excite the short period and Dutch roll mode of the aircraft. In addition, pull up, push down and steady sideslip manoeuvres were also carried out. The data compatibility check on the recorded flight data has been carried out using maximum likelihood output error algorithm to estimate the bias, scale factor, and time delay in the pressure measurements from the 5-hole probe mounted on a noseboom in front of aircraft nose . Through a way of kinematic consistency checking, flight-validated scale factors, biases, and time delays are determined for the differential pressure measurements for both angle of attack and angle of sideslip. Also, the dynamic pressure measurement is found to have time delays. Based on the earlier investigations, it is once again confirmed that the measurements of attitude angles, obtained from the inertial platform, clearly indicate time delays referred to the other signals like linear accelerations and angular rates which are measured with the dedicated flight instrumentation package.The identified time delays in attitude angles agreed well with the inertial platform specifications. The estimates of sensitivity coefficients and scale factors from the flight data analysis correlates reasonably well with the manufacturer Rosemount calibration curves for the tested Mach range 0.23-0.53 . The flight data analysis at Mach number of about 0.59 indicateMach dependency for the angle of attack.

  1. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height...

  2. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options

    International Nuclear Information System (INIS)

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents

  3. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  4. Laboratory measurements in a turbulent, swirling flow. [measurement of soot inside a flame-tube burner

    Science.gov (United States)

    Hoult, D. P.

    1979-01-01

    Measurements of soot inside a flame-tube burner using a special water-flushed probe are discussed. The soot is measured at a series of points at each burner, and upon occasion gaseous constitutents NO, CO, hydrocarbons, etc., were also measured. Four geometries of flame-tube burners were studied, as well as a variety of different fuels. The role of upstream geometry on the downstream pollutant formation was studied. It was found that the amount of soot formed in particularly sensitive to how aerodynamically clean the configuration of the burner is upstream of the injector swirl vanes. The effect of pressure on soot formation was also studied. It was found that beyond a certain Reynolds number, the peak amount of soot formed in the burner is constant.

  5. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  6. Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover; David A. Petti; Michael E. Davenport

    2013-07-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  7. Test-retest reliability of UPDRS-III, dyskinesia scales, and timed motor tests in patients with advanced Parkinson's disease: an argument against multiple baseline assessments.

    Science.gov (United States)

    Metman, Leo Verhagen; Myre, Brian; Verwey, Niek; Hassin-Baer, Sharon; Arzbaecher, Jean; Sierens, Diane; Bakay, Roy

    2004-09-01

    The primary objective of this study was to assess the intra-rater reliability of the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS-III) in patients with advanced Parkinson's disease (PD). The secondary objective was to assess the intra-rater reliability of standard timed motor tests and dyskinesia scales to determine the necessity of multiple baseline core evaluations before surgery for PD. We carried out two standardized preoperative core evaluations of patients with advanced PD scheduled to undergo deep brain stimulation. Patients were examined in the defined off and on conditions by the same rater. UPDRS-III, timed tests, and dyskinesia scores from the two evaluations were compared using Wilcoxon Signed Ranks tests and intraclass correlation coefficients (ICC). Differences in UPDRS-III scores for the two visits were clinically and statistically nonsignificant, and the ICC was 0.9. Similarly, there were no significant differences in timed motor tests or dyskinesia scores, with a median ICC of 0.8. The results indicate that previous findings of high test-retest reliability of UPDRS-III in early untreated PD patients can now be extended to those with advanced disease complicated by motor fluctuations. In addition, test-retest reliability of dyskinesia scales and timed motor tests was high. Taken together, these findings challenge the need for multiple baseline assessments as currently stipulated in core assessment protocols for surgical intervention in PD. PMID:15372601

  8. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Annual report, October 1, 1996--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  9. Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

  10. Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

  11. Root-cause analysis of burner tip failures in coal-fired power plants

    International Nuclear Information System (INIS)

    Warpage and complete or partial tear of burner material was frequently experienced in coal-fired power plants due to material overheating. Root-cause analysis of a burner tip failure is investigated employing stress modeling in the burner tip material in this study. The analyses performed in this research paper include heat transfer and stress analyses employing computational tools. Thermal analysis was performed using Computational Fluid Dynamics (CFD) software FLUENT for computing temperature distribution within the burner tip due to convection and radiation. Once the temperature distribution in the burner tip is determined, Finite Element Analysis (FEA) is employed using ANSYS to determine the maximum stress and deformations in burner tip material. Both FLUENT and ANSYS are numerical commercial simulation tools employed in this study. Large temperature gradients along the burner tip result in local bending stresses. These stresses resulting in creep stresses might be causing warpage in the burner tip. In this study, a design option was exercised to eliminate the excessive stress gradient in the burner tip material. Seven different FEA models were developed to simulate different operating conditions. Proposed design modification (Model 5) was able to reduce the maximum compressive stress from 76.09 MPa to 33.59 MPa. Significant reduction in the thermal stress due to design modification in Model 5 made author believe that the proposed design solution would eliminate the burner tip failures in this particular power plant. - Highlights: • Maximum stress and displacement values in the baseline model were computed. • Computations were performed using commercial FEA software ANSYS. • Different operating conditions were simulated in models 1-2-3-4. • Proposed geometry to prevent the failure is simulated in Models 5 and 6. • The proposed design solution reduced the maximum compressive stresses by ∼50%

  12. HTGR actinide burner feasibility studies: Calculation scheme related considerations

    International Nuclear Information System (INIS)

    At the CEA, the actinides burner version of the prismatic block-type reactor is currently investigated, including studies about the design proposed by General Atomics. The purpose of this paper is essentially to evaluate the capability of the deterministic methods to calculate a wide range of core configurations. In the first part of the paper, the analysis is carried out on the 'Deep Burner' fuel element geometry. The fuel element calculations are performed with both Transport code APOLLO2 and Monte-Carlo code TRIPOLI4. This preliminary analysis shows the reliability of the deterministic code APOLLO2 to calculate heterogeneous fuel element configurations (fuel element loaded with plutonium and minor actinides). In the second part, the analysis deals with the core geometry in order to estimate the impact of some physical assumptions on the fine fuel isotopic depletion. Due to the strong spectrum transient in the core, it turns out that the transuranic mass balances in a GT-MHR cannot be estimated easily from fuel element calculations but rather need the use of a core modeling approach taking into account the presence of the graphite reflectors. Two different methods based on a fine core Diffusion calculation in CRONOS2 and a simplified Transport calculation in APOLLO2 are investigated in this paper. (authors)

  13. Performance analysis of the 840 MWt PRISM reference burner core

    International Nuclear Information System (INIS)

    The General Electric PRISM (Power Reactor, Innovative Small Module) is a modular, pool-type sodium-cooled fast reactor employing innovative, passive features to provide an extremely high level of public safety. A PRISM power block consists of two 840 MWt reactor modules, each with a vessel diameter of 9.15 m (30 ft), tied to a turbine generator and producing 622 MWe. A full-size plant consists of three power blocks producing 1866 MWe of electrical power. Two core configurations have been analyzed. The reference is a 'burner' core (conversion ratio of 0.8) and the alternative is a breakeven' core (plutonium consumption balanced by plutonium generation). The core nuclear designs are largely governed by passive safety and reactivity control issues. The key features employed to produce the desired passive safety characteristics are: a small core with a tight restraint system, the use of metallic U-Pu-Zr fuel, control rod withdrawal limiters (rod stops) and gas expansion modules (GEMs). A passive reactor vessel auxiliary cooling system (RVACS) assures safety-grade decay heat removal. This paper summarizes the operational and safety performance of the 840 MWt PRISM modular reactor, with emphasis on the reference burner core. (author)

  14. Design and construction of a regenerative radiant tube burner

    International Nuclear Information System (INIS)

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  15. Investigation of the Effect of Pilot Burner on Lean Blow Out Performance of A Staged Injector

    Institute of Scientific and Technical Information of China (English)

    YANG Jinhu; ZHANG Kaiyu; LIU Cunxi; RUAN Changlong; LIU Fuqiang; XU Gang

    2014-01-01

    The staged injector has exhibited great potential to achieve low emissions and is becoming the preferable choice of many civil airplanes.Moreover,it is promising to employ this injector design in military engine,which requires most of the combustion air enters the combustor through injector to reduce smoke emission.However,lean staged injector is prone to combustion instability and extinction in low load operation,so techniques for broadening its stable operation ranges are crucial for its application in real engine.In this work,the LBO performance of a staged injector is assessed and analyzed on a single sector test section.The experiment was done in atmospheric environment with optical access.Kerosene-PLIF technique was used to visualize the spray distribution and common camera was used to record the flame patterns.Emphasis is put on the influence of pilot burner on LBO performance.The fuel to air ratios at LBO of six injectors with different pilot swirler vane angle were evaluated and the obtained LBO data was converted into data at idle condition.Results show that the increase of pilot swirler vane angle could promote the air assisted atomization,which in turn improves the LBO performance slightly.Flame patterns typical in the process of LBO are analyzed and attempts are made to find out the main factors which govern the extinction process with the assistance of spray distribution and numerical flow field results.It can be learned that the flame patterns are mainly influenced by structure of the flow field just behind the pilot burner when the fuel mass flow rate is high; with the reduction of fuel,atomization quality become more and more important and is the main contributing factor of LBO.In the end of the paper,conclusions are drawn and suggestions are made for the optimization of the present staged injector.

  16. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    Science.gov (United States)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  17. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    International Nuclear Information System (INIS)

    Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed a Readiness Assessment in November 2009. The HSIS is a key component of the ATR National Scientific User Facility (NSUF) operated by Battelle Energy Alliance, LLC and is available to a wide variety of university researchers for nuclear fuels and materials experiments as well as medical isotope research and production.

  18. Extreme wind induced accident sequence analysis of the advanced test reactor

    International Nuclear Information System (INIS)

    An extreme wind probabilistic risk assessment (PRA) was performed for the Department of Energy (DOE) Advanced Test Reactor (ATR) as part of the external events analysis. The ATR is located at the Idaho National Engineering Laboratory (INEL) in Idaho. The analysis included evaluation of wind fragility of several structures. As part of the analysis the impact of extreme wind on the ATR core fuel damage frequency was evaluated. Loss of commercial power was modeled as an initiating event as a function of wind velocity. Normally, the components located inside the building are not affected directly as a result of wind. However, failure of a structure can eliminate several components as a result of spatial dependency. ATR support systems are located in several structures. Two walkdowns were conducted to collect the information on structures and components and to determine the structural-components interaction. Boolean equations were developed for core fuel damage sequences which included failure of components (structures) from extreme wind, random failures and operator errors. The sequences were quantified using wind hazard curves with wind fragility of the station power, components and non-wind unavailabilities. The result showed that contribution from extreme wind was less than 4%. ATR total core damage frequency from the internal and external events is estimated to be 5.E-5/yr. The system analysis (fault trees) was performed by the EG ampersand G, Idaho Inc. and the structures and components wind fragility and sequence quantification was performed by the EQE Engineering Consultants

  19. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rahmat Aryaeinejad; Douglas S. Crawford; Mark D. DeHart; George W. Griffith; D. Scott Lucas; Joseph W. Nielsen; David W. Nigg; James R. Parry; Jorge Navarro

    2010-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  20. Initial high-power testing of the ATF [Advanced Toroidal Facility] ECH [electron cyclotron heating] system

    International Nuclear Information System (INIS)

    The Advanced Toroidal Facility (ATF) is a moderate aspect ratio torsatron that will utilize 53.2 GHz 200 kW Electron Cyclotron Heating (ECH) to produce nearly current-free target plasmas suitable for subsequent heating by strong neutral beam injection. The initial configuration of the ECH system from the gyrotron to ATF consists of an optical arc detector, three bellows, a waveguide mode analyzer, two TiO2 mode absorbers, two 900 miter bends, two waveguide pumpouts, an insulating break, a gate valve, and miscellaneous straight waveguide sections feeding a launcher radiating in the TE02 mode. Later, a focusing Vlasov launcher will be added to beam the ECH power to the saddle point in ATF magnetic geometry for optimum power deposition. The ECH system has several unique features; namely, the entire ECH system is evacuated, the ECH system is broadband, forward power is monitored by a newly developed waveguide mode analyzer, phase correcting miter bends will be employed, and the ECH system will be capable of operating short pulse to cw. Initial high-power tests show that the overall system efficiency is 87%. The waveguide mode analyzer shows that the gyrotron mode output consists of 13% TE01, 82.6% TE02, 2.5% TE03, and 1.9% TE04. 4 refs

  1. A review of advanced genetic testing for clinical prognostication in uveal melanoma.

    Science.gov (United States)

    Werdich, Xiang Q; Jakobiec, Frederick A; Singh, Arun D; Kim, Ivana K

    2013-01-01

    Uveal melanoma (UM) has a strong propensity to metastasize and the prognosis for metastatic disease is very poor. It has been suggested that occult micrometastases are already present, but undetectable, in many patients at the time when the primary ocular tumor is diagnosed and treated. To identify high-risk patients for close monitoring and early intervention with prophylactic adjuvant systemic therapy, an accurate predictive system is necessary for stratifying those patients at risk of developing metastatic disease. To date, many clinical and histopathological features, molecular pathway characteristics, and genetic fingerprints of UM have been suggested for disease prognostication. Among the newest of them, tumor genetics has received the most attention in demonstrating promise as a prognostic tool. Because of the plethora of recent developments, we summarize and compare in this review the important standard and more advanced cytogenetic prognostic markers. We further describe the variety of genetic tests available for prognostication of UM, and provide a critical assessment of the respective advantages and disadvantages of these tools. PMID:24010756

  2. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    Energy Technology Data Exchange (ETDEWEB)

    Dan Ogden

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  3. A review of two recent occurrences at the Advanced Test Reactor involving subcontractor activities

    International Nuclear Information System (INIS)

    This report documents the results of a brief, unofficial investigation into two incidents at the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR) facility, reported on October 25 and 31, 1997. The first event was an unanticipated breach of confinement. The second involved reactor operation with an inoperable seismic scram subsystem, violating the reactor's Technical Specifications. These two incidents have been found to be unrelated. A third event that occurred on December 16, 1996, is also discussed because of its similarities to the first event listed above. Both of these incidents were unanticipated breaches of confinement, and both involved the work of construction subcontractor personnel. The cause for the subcontractor related occurrences is a work control process that fails to effectively interface with LMITCO management. ATR Construction Project managers work sufficient close with construction subcontractor personnel to understand planned day-to-day activities. They also have sufficient training and understanding of reactor operations to ensure adherence to applicable administrative requirements. However, they may not be sufficiently involved in the work authorization and control process to bridge an apparent communications gap between subcontractor employees and Facility Operations/functional support personnel for work inside the reactor facility. The cause for the inoperable seismic scram switch (resulting from a disconnected lead) is still under investigation. It does not appear to be subcontractor related

  4. An expanded framework for the advanced computational testing and simulation toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Osni A.; Drummond, Leroy A.

    2003-11-09

    The Advanced Computational Testing and Simulation (ACTS) Toolkit is a set of computational tools developed primarily at DOE laboratories and is aimed at simplifying the solution of common and important computational problems. The use of the tools reduces the development time for new codes and the tools provide functionality that might not otherwise be available. This document outlines an agenda for expanding the scope of the ACTS Project based on lessons learned from current activities. Highlights of this agenda include peer-reviewed certification of new tools; finding tools to solve problems that are not currently addressed by the Toolkit; working in collaboration with other software initiatives and DOE computer facilities; expanding outreach efforts; promoting interoperability, further development of the tools; and improving functionality of the ACTS Information Center, among other tasks. The ultimate goal is to make the ACTS tools more widely used and more effective in solving DOE's and the nation's scientific problems through the creation of a reliable software infrastructure for scientific computing.

  5. Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  6. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  7. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  8. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pope, M. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, M. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morrell, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jamison, R. K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nef, E. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nigg, D. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  9. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  10. Utilization of optical image data from the Advanced Test Accelerator (ATA)

    International Nuclear Information System (INIS)

    Extensive use is made of optical diagnostics to obtain information on the 50-MeV, 10-kA, 70-ns pulsed-electron beam produced by the Advanced Test Accelerator (ATA). Light is generated by the beam striking a foil inserted in the beamline or through excitation of the gas when the beamline is filled with air. The emitted light is collected and digitized. Two-dimensional images are recorded by either a gated framing camera or a streak camera. Extraction of relevant beam parameters, such as current density, current, and beam size, requires an understanding of the physics of the light-generation mechanism and an ability to handle and properly exploit a large digital database of image data. We will present a brief overview of the present understanding of the light-generation mechanisms in foil and gas, with emphasis on experimental observations and trends. We will review our data management and analysis techniques and indicate successful approaches for extracting beam parameters

  11. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg

    2013-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for effective application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  12. 10 CFR 830 Major Modification Determination for the Advanced Test Reactor Remote Monitoring and Management Capability

    Energy Technology Data Exchange (ETDEWEB)

    Bohachek, Randolph Charles [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactors is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.

  13. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010

    International Nuclear Information System (INIS)

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V and V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V and V, within the next 3-4 years via the ATR Core Modeling and Simulation and V and V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  14. Improved Computational Neutronics Methods And Validation Protocols For The Advanced Test Reactor

    International Nuclear Information System (INIS)

    The Idaho National Laboratory (INL) is in the process of modernizing the various reactor physics modeling and simulation tools used to support operation and safety assurance of the Advanced Test Reactor (ATR). Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009 was successfully completed during 2011. This demonstration supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR fuel cycle management process beginning in 2012. On the experimental side of the project, new hardware was fabricated, measurement protocols were finalized, and the first four of six planned physics code validation experiments based on neutron activation spectrometry were conducted at the ATRC facility. Data analysis for the first three experiments, focused on characterization of the neutron spectrum in one of the ATR flux traps, has been completed. The six experiments will ultimately form the basis for a flexible, easily-repeatable ATR physics code validation protocol that is consistent with applicable ASTM standards.

  15. 10 CFR 830 Major Modification Determination for the Advanced Test Reactor Remote Monitoring and Management Capability

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: 'contemporary practice in commercial power reactors is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).' This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.

  16. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    International Nuclear Information System (INIS)

    The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830

  17. Simple Flame Test Techniques Using Cotton Swabs

    Science.gov (United States)

    Sanger, Michael J.; Phelps, Amy J.

    2004-07-01

    This article describes three new methods for performing simple flame tests using cotton swabs. The first method uses a Bunsen burner and solid metal salts; the second method uses a Bunsen burner and 1 M aqueous solutions of metal salts; and the third method uses candles, rubbing alcohol, and solid metal salts. These methods have the advantage of being easy to perform, require inexpensive and easily-obtained materials, and have easy cleanup and disposal methods. See the Discussion on this Tested Demonstation .

  18. Cold Crucible Induction Melter Testing at The Idaho National Laboratory for the Advanced Remediation Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Jay Roach; Nick Soelberg; Mike Ancho; Eric Tchemitcheff; John Richardson

    2009-03-01

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. This paper provides preliminary results of tests using the engineering-scale CCIM test system located at the INL. The CCIM test system was operated continuously over a time period of about 58 hours. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated semi-continuously because the glass drain rate was higher than the glass feedrate. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was

  19. Application of advanced non-destructive testing to evaluate the foundation depth of the existing structures

    International Nuclear Information System (INIS)

    The applications of Parallel Seismic Test to evaluate deep foundations of the existing structures are still new in Vietnam. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the parallel seismic test method (PSM) was evaluated at Center for Nuclear Techniques, Hochiminh City. Background information on principle and general description of the method as it is typically applied in the evaluation of deep foundations are also summarized. A suitable test site was selected, where the foundation depths can be controlled for the parallel seismic tests were conducted by impacting the driven piles, and the travel times down the pile, through the soil, to a receiver located in an adjacent water-filled borehole were measured. The primary objective of the test program is to evaluated the accuracy of method in determining the pile length, to evaluate the capabilities of the method and the equipped system SPL-97, to define the type of material which comprises a deep foundation, the distance of the compression wave can travel through the adjacent soil before the signal attenuates beyond recognition and the ware velocities in the various soil strata encountered. The parallel seismic testing program is described and results are presented. Parallel seismic tests, as conventionally practiced, i.e. with short distance between a structure and an access hole, can be used to define the bottom of the piles, as well as to identify the material type from the computed velocity in the structural material. The conventional approach of using changes of slop of the plot versus first arrival to identify the bottom of a deep foundation works best when the piles are in a soil with uniform stiffness and the accuracy of the evaluated depths can be obtained about ± 0.5 m. Supplementing this approach of interpretation by the examining the amplitudes of the first arrival on a plot with the same scale for all records allows one to better interpret signals in more common

  20. Experimental investigation and optimisation of burner systems for glass melting ends with regenerative air preheating. Final report; Experimentelle Untersuchung und Optimierung von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Scherello, A.; Flamme, M.; Kremer, H.

    2000-02-15

    The project comprised experiments on burner systems for glass melting ends with regenerative air preheating for the purpose of optimisation. The experimental set-up was to reflect realistic conditions. In the first stage of the investigations, modern burner systems were installed in a GWI test facility and investigated. [German] Ziel des oben genannten Forschungsvorhabens war die Durchfuehrung experimenteller Untersuchungen von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung sowie deren Optimierung. Dazu war es notwendig, einen experimentellen Aufbau zu realisieren, mit dessen Hilfe die Stroemungs-, Mischungs- und Umsetzungsphaenomene von Glasschmelzoefen realistisch nachgestellt und aussagekraeftige Untersuchungen durchgefuehrt werden koennen. In einem ersten Untersuchungsschritt wurden moderne Brennerlanzen an der GWI-Versuchsanlage installiert und untersucht. (orig.)